]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/dsa/mt7530.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / drivers / net / dsa / mt7530.c
1 /*
2 * Mediatek MT7530 DSA Switch driver
3 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14 #include <linux/etherdevice.h>
15 #include <linux/if_bridge.h>
16 #include <linux/iopoll.h>
17 #include <linux/mdio.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_gpio.h>
22 #include <linux/of_mdio.h>
23 #include <linux/of_net.h>
24 #include <linux/of_platform.h>
25 #include <linux/phy.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/reset.h>
29 #include <linux/gpio/consumer.h>
30 #include <net/dsa.h>
31
32 #include "mt7530.h"
33
34 /* String, offset, and register size in bytes if different from 4 bytes */
35 static const struct mt7530_mib_desc mt7530_mib[] = {
36 MIB_DESC(1, 0x00, "TxDrop"),
37 MIB_DESC(1, 0x04, "TxCrcErr"),
38 MIB_DESC(1, 0x08, "TxUnicast"),
39 MIB_DESC(1, 0x0c, "TxMulticast"),
40 MIB_DESC(1, 0x10, "TxBroadcast"),
41 MIB_DESC(1, 0x14, "TxCollision"),
42 MIB_DESC(1, 0x18, "TxSingleCollision"),
43 MIB_DESC(1, 0x1c, "TxMultipleCollision"),
44 MIB_DESC(1, 0x20, "TxDeferred"),
45 MIB_DESC(1, 0x24, "TxLateCollision"),
46 MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
47 MIB_DESC(1, 0x2c, "TxPause"),
48 MIB_DESC(1, 0x30, "TxPktSz64"),
49 MIB_DESC(1, 0x34, "TxPktSz65To127"),
50 MIB_DESC(1, 0x38, "TxPktSz128To255"),
51 MIB_DESC(1, 0x3c, "TxPktSz256To511"),
52 MIB_DESC(1, 0x40, "TxPktSz512To1023"),
53 MIB_DESC(1, 0x44, "Tx1024ToMax"),
54 MIB_DESC(2, 0x48, "TxBytes"),
55 MIB_DESC(1, 0x60, "RxDrop"),
56 MIB_DESC(1, 0x64, "RxFiltering"),
57 MIB_DESC(1, 0x6c, "RxMulticast"),
58 MIB_DESC(1, 0x70, "RxBroadcast"),
59 MIB_DESC(1, 0x74, "RxAlignErr"),
60 MIB_DESC(1, 0x78, "RxCrcErr"),
61 MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
62 MIB_DESC(1, 0x80, "RxFragErr"),
63 MIB_DESC(1, 0x84, "RxOverSzErr"),
64 MIB_DESC(1, 0x88, "RxJabberErr"),
65 MIB_DESC(1, 0x8c, "RxPause"),
66 MIB_DESC(1, 0x90, "RxPktSz64"),
67 MIB_DESC(1, 0x94, "RxPktSz65To127"),
68 MIB_DESC(1, 0x98, "RxPktSz128To255"),
69 MIB_DESC(1, 0x9c, "RxPktSz256To511"),
70 MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
71 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
72 MIB_DESC(2, 0xa8, "RxBytes"),
73 MIB_DESC(1, 0xb0, "RxCtrlDrop"),
74 MIB_DESC(1, 0xb4, "RxIngressDrop"),
75 MIB_DESC(1, 0xb8, "RxArlDrop"),
76 };
77
78 static int
79 mt7623_trgmii_write(struct mt7530_priv *priv, u32 reg, u32 val)
80 {
81 int ret;
82
83 ret = regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
84 if (ret < 0)
85 dev_err(priv->dev,
86 "failed to priv write register\n");
87 return ret;
88 }
89
90 static u32
91 mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
92 {
93 int ret;
94 u32 val;
95
96 ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
97 if (ret < 0) {
98 dev_err(priv->dev,
99 "failed to priv read register\n");
100 return ret;
101 }
102
103 return val;
104 }
105
106 static void
107 mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
108 u32 mask, u32 set)
109 {
110 u32 val;
111
112 val = mt7623_trgmii_read(priv, reg);
113 val &= ~mask;
114 val |= set;
115 mt7623_trgmii_write(priv, reg, val);
116 }
117
118 static void
119 mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
120 {
121 mt7623_trgmii_rmw(priv, reg, 0, val);
122 }
123
124 static void
125 mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
126 {
127 mt7623_trgmii_rmw(priv, reg, val, 0);
128 }
129
130 static int
131 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
132 {
133 struct mii_bus *bus = priv->bus;
134 int value, ret;
135
136 /* Write the desired MMD Devad */
137 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
138 if (ret < 0)
139 goto err;
140
141 /* Write the desired MMD register address */
142 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
143 if (ret < 0)
144 goto err;
145
146 /* Select the Function : DATA with no post increment */
147 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
148 if (ret < 0)
149 goto err;
150
151 /* Read the content of the MMD's selected register */
152 value = bus->read(bus, 0, MII_MMD_DATA);
153
154 return value;
155 err:
156 dev_err(&bus->dev, "failed to read mmd register\n");
157
158 return ret;
159 }
160
161 static int
162 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
163 int devad, u32 data)
164 {
165 struct mii_bus *bus = priv->bus;
166 int ret;
167
168 /* Write the desired MMD Devad */
169 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
170 if (ret < 0)
171 goto err;
172
173 /* Write the desired MMD register address */
174 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
175 if (ret < 0)
176 goto err;
177
178 /* Select the Function : DATA with no post increment */
179 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
180 if (ret < 0)
181 goto err;
182
183 /* Write the data into MMD's selected register */
184 ret = bus->write(bus, 0, MII_MMD_DATA, data);
185 err:
186 if (ret < 0)
187 dev_err(&bus->dev,
188 "failed to write mmd register\n");
189 return ret;
190 }
191
192 static void
193 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
194 {
195 struct mii_bus *bus = priv->bus;
196
197 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
198
199 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
200
201 mutex_unlock(&bus->mdio_lock);
202 }
203
204 static void
205 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
206 {
207 struct mii_bus *bus = priv->bus;
208 u32 val;
209
210 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
211
212 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
213 val &= ~mask;
214 val |= set;
215 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
216
217 mutex_unlock(&bus->mdio_lock);
218 }
219
220 static void
221 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
222 {
223 core_rmw(priv, reg, 0, val);
224 }
225
226 static void
227 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 core_rmw(priv, reg, val, 0);
230 }
231
232 static int
233 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
234 {
235 struct mii_bus *bus = priv->bus;
236 u16 page, r, lo, hi;
237 int ret;
238
239 page = (reg >> 6) & 0x3ff;
240 r = (reg >> 2) & 0xf;
241 lo = val & 0xffff;
242 hi = val >> 16;
243
244 /* MT7530 uses 31 as the pseudo port */
245 ret = bus->write(bus, 0x1f, 0x1f, page);
246 if (ret < 0)
247 goto err;
248
249 ret = bus->write(bus, 0x1f, r, lo);
250 if (ret < 0)
251 goto err;
252
253 ret = bus->write(bus, 0x1f, 0x10, hi);
254 err:
255 if (ret < 0)
256 dev_err(&bus->dev,
257 "failed to write mt7530 register\n");
258 return ret;
259 }
260
261 static u32
262 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
263 {
264 struct mii_bus *bus = priv->bus;
265 u16 page, r, lo, hi;
266 int ret;
267
268 page = (reg >> 6) & 0x3ff;
269 r = (reg >> 2) & 0xf;
270
271 /* MT7530 uses 31 as the pseudo port */
272 ret = bus->write(bus, 0x1f, 0x1f, page);
273 if (ret < 0) {
274 dev_err(&bus->dev,
275 "failed to read mt7530 register\n");
276 return ret;
277 }
278
279 lo = bus->read(bus, 0x1f, r);
280 hi = bus->read(bus, 0x1f, 0x10);
281
282 return (hi << 16) | (lo & 0xffff);
283 }
284
285 static void
286 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
287 {
288 struct mii_bus *bus = priv->bus;
289
290 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
291
292 mt7530_mii_write(priv, reg, val);
293
294 mutex_unlock(&bus->mdio_lock);
295 }
296
297 static u32
298 _mt7530_read(struct mt7530_dummy_poll *p)
299 {
300 struct mii_bus *bus = p->priv->bus;
301 u32 val;
302
303 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
304
305 val = mt7530_mii_read(p->priv, p->reg);
306
307 mutex_unlock(&bus->mdio_lock);
308
309 return val;
310 }
311
312 static u32
313 mt7530_read(struct mt7530_priv *priv, u32 reg)
314 {
315 struct mt7530_dummy_poll p;
316
317 INIT_MT7530_DUMMY_POLL(&p, priv, reg);
318 return _mt7530_read(&p);
319 }
320
321 static void
322 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
323 u32 mask, u32 set)
324 {
325 struct mii_bus *bus = priv->bus;
326 u32 val;
327
328 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
329
330 val = mt7530_mii_read(priv, reg);
331 val &= ~mask;
332 val |= set;
333 mt7530_mii_write(priv, reg, val);
334
335 mutex_unlock(&bus->mdio_lock);
336 }
337
338 static void
339 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
340 {
341 mt7530_rmw(priv, reg, 0, val);
342 }
343
344 static void
345 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
346 {
347 mt7530_rmw(priv, reg, val, 0);
348 }
349
350 static int
351 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
352 {
353 u32 val;
354 int ret;
355 struct mt7530_dummy_poll p;
356
357 /* Set the command operating upon the MAC address entries */
358 val = ATC_BUSY | ATC_MAT(0) | cmd;
359 mt7530_write(priv, MT7530_ATC, val);
360
361 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
362 ret = readx_poll_timeout(_mt7530_read, &p, val,
363 !(val & ATC_BUSY), 20, 20000);
364 if (ret < 0) {
365 dev_err(priv->dev, "reset timeout\n");
366 return ret;
367 }
368
369 /* Additional sanity for read command if the specified
370 * entry is invalid
371 */
372 val = mt7530_read(priv, MT7530_ATC);
373 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
374 return -EINVAL;
375
376 if (rsp)
377 *rsp = val;
378
379 return 0;
380 }
381
382 static void
383 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
384 {
385 u32 reg[3];
386 int i;
387
388 /* Read from ARL table into an array */
389 for (i = 0; i < 3; i++) {
390 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
391
392 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
393 __func__, __LINE__, i, reg[i]);
394 }
395
396 fdb->vid = (reg[1] >> CVID) & CVID_MASK;
397 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
398 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
399 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
400 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
401 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
402 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
403 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
404 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
405 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
406 }
407
408 static void
409 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
410 u8 port_mask, const u8 *mac,
411 u8 aging, u8 type)
412 {
413 u32 reg[3] = { 0 };
414 int i;
415
416 reg[1] |= vid & CVID_MASK;
417 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
418 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
419 /* STATIC_ENT indicate that entry is static wouldn't
420 * be aged out and STATIC_EMP specified as erasing an
421 * entry
422 */
423 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
424 reg[1] |= mac[5] << MAC_BYTE_5;
425 reg[1] |= mac[4] << MAC_BYTE_4;
426 reg[0] |= mac[3] << MAC_BYTE_3;
427 reg[0] |= mac[2] << MAC_BYTE_2;
428 reg[0] |= mac[1] << MAC_BYTE_1;
429 reg[0] |= mac[0] << MAC_BYTE_0;
430
431 /* Write array into the ARL table */
432 for (i = 0; i < 3; i++)
433 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
434 }
435
436 static int
437 mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
438 {
439 struct mt7530_priv *priv = ds->priv;
440 u32 ncpo1, ssc_delta, trgint, i;
441
442 switch (mode) {
443 case PHY_INTERFACE_MODE_RGMII:
444 trgint = 0;
445 ncpo1 = 0x0c80;
446 ssc_delta = 0x87;
447 break;
448 case PHY_INTERFACE_MODE_TRGMII:
449 trgint = 1;
450 ncpo1 = 0x1400;
451 ssc_delta = 0x57;
452 break;
453 default:
454 dev_err(priv->dev, "xMII mode %d not supported\n", mode);
455 return -EINVAL;
456 }
457
458 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
459 P6_INTF_MODE(trgint));
460
461 /* Lower Tx Driving for TRGMII path */
462 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
463 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
464 TD_DM_DRVP(8) | TD_DM_DRVN(8));
465
466 /* Setup core clock for MT7530 */
467 if (!trgint) {
468 /* Disable MT7530 core clock */
469 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
470
471 /* Disable PLL, since phy_device has not yet been created
472 * provided for phy_[read,write]_mmd_indirect is called, we
473 * provide our own core_write_mmd_indirect to complete this
474 * function.
475 */
476 core_write_mmd_indirect(priv,
477 CORE_GSWPLL_GRP1,
478 MDIO_MMD_VEND2,
479 0);
480
481 /* Set core clock into 500Mhz */
482 core_write(priv, CORE_GSWPLL_GRP2,
483 RG_GSWPLL_POSDIV_500M(1) |
484 RG_GSWPLL_FBKDIV_500M(25));
485
486 /* Enable PLL */
487 core_write(priv, CORE_GSWPLL_GRP1,
488 RG_GSWPLL_EN_PRE |
489 RG_GSWPLL_POSDIV_200M(2) |
490 RG_GSWPLL_FBKDIV_200M(32));
491
492 /* Enable MT7530 core clock */
493 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
494 }
495
496 /* Setup the MT7530 TRGMII Tx Clock */
497 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
498 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
499 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
500 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
501 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
502 core_write(priv, CORE_PLL_GROUP4,
503 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
504 RG_SYSPLL_BIAS_LPF_EN);
505 core_write(priv, CORE_PLL_GROUP2,
506 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
507 RG_SYSPLL_POSDIV(1));
508 core_write(priv, CORE_PLL_GROUP7,
509 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
510 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
511 core_set(priv, CORE_TRGMII_GSW_CLK_CG,
512 REG_GSWCK_EN | REG_TRGMIICK_EN);
513
514 if (!trgint)
515 for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
516 mt7530_rmw(priv, MT7530_TRGMII_RD(i),
517 RD_TAP_MASK, RD_TAP(16));
518 else
519 mt7623_trgmii_set(priv, GSW_INTF_MODE, INTF_MODE_TRGMII);
520
521 return 0;
522 }
523
524 static int
525 mt7623_pad_clk_setup(struct dsa_switch *ds)
526 {
527 struct mt7530_priv *priv = ds->priv;
528 int i;
529
530 for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
531 mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
532 TD_DM_DRVP(8) | TD_DM_DRVN(8));
533
534 mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
535 mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);
536
537 return 0;
538 }
539
540 static void
541 mt7530_mib_reset(struct dsa_switch *ds)
542 {
543 struct mt7530_priv *priv = ds->priv;
544
545 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
546 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
547 }
548
549 static void
550 mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
551 {
552 u32 mask = PMCR_TX_EN | PMCR_RX_EN;
553
554 if (enable)
555 mt7530_set(priv, MT7530_PMCR_P(port), mask);
556 else
557 mt7530_clear(priv, MT7530_PMCR_P(port), mask);
558 }
559
560 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
561 {
562 struct mt7530_priv *priv = ds->priv;
563
564 return mdiobus_read_nested(priv->bus, port, regnum);
565 }
566
567 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
568 u16 val)
569 {
570 struct mt7530_priv *priv = ds->priv;
571
572 return mdiobus_write_nested(priv->bus, port, regnum, val);
573 }
574
575 static void
576 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
577 uint8_t *data)
578 {
579 int i;
580
581 if (stringset != ETH_SS_STATS)
582 return;
583
584 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
585 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
586 ETH_GSTRING_LEN);
587 }
588
589 static void
590 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
591 uint64_t *data)
592 {
593 struct mt7530_priv *priv = ds->priv;
594 const struct mt7530_mib_desc *mib;
595 u32 reg, i;
596 u64 hi;
597
598 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
599 mib = &mt7530_mib[i];
600 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
601
602 data[i] = mt7530_read(priv, reg);
603 if (mib->size == 2) {
604 hi = mt7530_read(priv, reg + 4);
605 data[i] |= hi << 32;
606 }
607 }
608 }
609
610 static int
611 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
612 {
613 if (sset != ETH_SS_STATS)
614 return 0;
615
616 return ARRAY_SIZE(mt7530_mib);
617 }
618
619 static void mt7530_adjust_link(struct dsa_switch *ds, int port,
620 struct phy_device *phydev)
621 {
622 struct mt7530_priv *priv = ds->priv;
623
624 if (phy_is_pseudo_fixed_link(phydev)) {
625 dev_dbg(priv->dev, "phy-mode for master device = %x\n",
626 phydev->interface);
627
628 /* Setup TX circuit incluing relevant PAD and driving */
629 mt7530_pad_clk_setup(ds, phydev->interface);
630
631 /* Setup RX circuit, relevant PAD and driving on the host
632 * which must be placed after the setup on the device side is
633 * all finished.
634 */
635 mt7623_pad_clk_setup(ds);
636 } else {
637 u16 lcl_adv = 0, rmt_adv = 0;
638 u8 flowctrl;
639 u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE;
640
641 switch (phydev->speed) {
642 case SPEED_1000:
643 mcr |= PMCR_FORCE_SPEED_1000;
644 break;
645 case SPEED_100:
646 mcr |= PMCR_FORCE_SPEED_100;
647 break;
648 };
649
650 if (phydev->link)
651 mcr |= PMCR_FORCE_LNK;
652
653 if (phydev->duplex) {
654 mcr |= PMCR_FORCE_FDX;
655
656 if (phydev->pause)
657 rmt_adv = LPA_PAUSE_CAP;
658 if (phydev->asym_pause)
659 rmt_adv |= LPA_PAUSE_ASYM;
660
661 lcl_adv = linkmode_adv_to_lcl_adv_t(
662 phydev->advertising);
663 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
664
665 if (flowctrl & FLOW_CTRL_TX)
666 mcr |= PMCR_TX_FC_EN;
667 if (flowctrl & FLOW_CTRL_RX)
668 mcr |= PMCR_RX_FC_EN;
669 }
670 mt7530_write(priv, MT7530_PMCR_P(port), mcr);
671 }
672 }
673
674 static int
675 mt7530_cpu_port_enable(struct mt7530_priv *priv,
676 int port)
677 {
678 /* Enable Mediatek header mode on the cpu port */
679 mt7530_write(priv, MT7530_PVC_P(port),
680 PORT_SPEC_TAG);
681
682 /* Setup the MAC by default for the cpu port */
683 mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK);
684
685 /* Disable auto learning on the cpu port */
686 mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);
687
688 /* Unknown unicast frame fordwarding to the cpu port */
689 mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));
690
691 /* CPU port gets connected to all user ports of
692 * the switch
693 */
694 mt7530_write(priv, MT7530_PCR_P(port),
695 PCR_MATRIX(dsa_user_ports(priv->ds)));
696
697 return 0;
698 }
699
700 static int
701 mt7530_port_enable(struct dsa_switch *ds, int port,
702 struct phy_device *phy)
703 {
704 struct mt7530_priv *priv = ds->priv;
705
706 mutex_lock(&priv->reg_mutex);
707
708 /* Setup the MAC for the user port */
709 mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK);
710
711 /* Allow the user port gets connected to the cpu port and also
712 * restore the port matrix if the port is the member of a certain
713 * bridge.
714 */
715 priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
716 priv->ports[port].enable = true;
717 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
718 priv->ports[port].pm);
719 mt7530_port_set_status(priv, port, 1);
720
721 mutex_unlock(&priv->reg_mutex);
722
723 return 0;
724 }
725
726 static void
727 mt7530_port_disable(struct dsa_switch *ds, int port,
728 struct phy_device *phy)
729 {
730 struct mt7530_priv *priv = ds->priv;
731
732 mutex_lock(&priv->reg_mutex);
733
734 /* Clear up all port matrix which could be restored in the next
735 * enablement for the port.
736 */
737 priv->ports[port].enable = false;
738 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
739 PCR_MATRIX_CLR);
740 mt7530_port_set_status(priv, port, 0);
741
742 mutex_unlock(&priv->reg_mutex);
743 }
744
745 static void
746 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
747 {
748 struct mt7530_priv *priv = ds->priv;
749 u32 stp_state;
750
751 switch (state) {
752 case BR_STATE_DISABLED:
753 stp_state = MT7530_STP_DISABLED;
754 break;
755 case BR_STATE_BLOCKING:
756 stp_state = MT7530_STP_BLOCKING;
757 break;
758 case BR_STATE_LISTENING:
759 stp_state = MT7530_STP_LISTENING;
760 break;
761 case BR_STATE_LEARNING:
762 stp_state = MT7530_STP_LEARNING;
763 break;
764 case BR_STATE_FORWARDING:
765 default:
766 stp_state = MT7530_STP_FORWARDING;
767 break;
768 }
769
770 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
771 }
772
773 static int
774 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
775 struct net_device *bridge)
776 {
777 struct mt7530_priv *priv = ds->priv;
778 u32 port_bitmap = BIT(MT7530_CPU_PORT);
779 int i;
780
781 mutex_lock(&priv->reg_mutex);
782
783 for (i = 0; i < MT7530_NUM_PORTS; i++) {
784 /* Add this port to the port matrix of the other ports in the
785 * same bridge. If the port is disabled, port matrix is kept
786 * and not being setup until the port becomes enabled.
787 */
788 if (dsa_is_user_port(ds, i) && i != port) {
789 if (dsa_to_port(ds, i)->bridge_dev != bridge)
790 continue;
791 if (priv->ports[i].enable)
792 mt7530_set(priv, MT7530_PCR_P(i),
793 PCR_MATRIX(BIT(port)));
794 priv->ports[i].pm |= PCR_MATRIX(BIT(port));
795
796 port_bitmap |= BIT(i);
797 }
798 }
799
800 /* Add the all other ports to this port matrix. */
801 if (priv->ports[port].enable)
802 mt7530_rmw(priv, MT7530_PCR_P(port),
803 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
804 priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
805
806 mutex_unlock(&priv->reg_mutex);
807
808 return 0;
809 }
810
811 static void
812 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
813 {
814 struct mt7530_priv *priv = ds->priv;
815 bool all_user_ports_removed = true;
816 int i;
817
818 /* When a port is removed from the bridge, the port would be set up
819 * back to the default as is at initial boot which is a VLAN-unaware
820 * port.
821 */
822 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
823 MT7530_PORT_MATRIX_MODE);
824 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
825 VLAN_ATTR(MT7530_VLAN_TRANSPARENT));
826
827 priv->ports[port].vlan_filtering = false;
828
829 for (i = 0; i < MT7530_NUM_PORTS; i++) {
830 if (dsa_is_user_port(ds, i) &&
831 priv->ports[i].vlan_filtering) {
832 all_user_ports_removed = false;
833 break;
834 }
835 }
836
837 /* CPU port also does the same thing until all user ports belonging to
838 * the CPU port get out of VLAN filtering mode.
839 */
840 if (all_user_ports_removed) {
841 mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
842 PCR_MATRIX(dsa_user_ports(priv->ds)));
843 mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
844 PORT_SPEC_TAG);
845 }
846 }
847
848 static void
849 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
850 {
851 struct mt7530_priv *priv = ds->priv;
852
853 /* The real fabric path would be decided on the membership in the
854 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
855 * means potential VLAN can be consisting of certain subset of all
856 * ports.
857 */
858 mt7530_rmw(priv, MT7530_PCR_P(port),
859 PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
860
861 /* Trapped into security mode allows packet forwarding through VLAN
862 * table lookup.
863 */
864 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
865 MT7530_PORT_SECURITY_MODE);
866
867 /* Set the port as a user port which is to be able to recognize VID
868 * from incoming packets before fetching entry within the VLAN table.
869 */
870 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
871 VLAN_ATTR(MT7530_VLAN_USER));
872 }
873
874 static void
875 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
876 struct net_device *bridge)
877 {
878 struct mt7530_priv *priv = ds->priv;
879 int i;
880
881 mutex_lock(&priv->reg_mutex);
882
883 for (i = 0; i < MT7530_NUM_PORTS; i++) {
884 /* Remove this port from the port matrix of the other ports
885 * in the same bridge. If the port is disabled, port matrix
886 * is kept and not being setup until the port becomes enabled.
887 * And the other port's port matrix cannot be broken when the
888 * other port is still a VLAN-aware port.
889 */
890 if (!priv->ports[i].vlan_filtering &&
891 dsa_is_user_port(ds, i) && i != port) {
892 if (dsa_to_port(ds, i)->bridge_dev != bridge)
893 continue;
894 if (priv->ports[i].enable)
895 mt7530_clear(priv, MT7530_PCR_P(i),
896 PCR_MATRIX(BIT(port)));
897 priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
898 }
899 }
900
901 /* Set the cpu port to be the only one in the port matrix of
902 * this port.
903 */
904 if (priv->ports[port].enable)
905 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
906 PCR_MATRIX(BIT(MT7530_CPU_PORT)));
907 priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
908
909 mt7530_port_set_vlan_unaware(ds, port);
910
911 mutex_unlock(&priv->reg_mutex);
912 }
913
914 static int
915 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
916 const unsigned char *addr, u16 vid)
917 {
918 struct mt7530_priv *priv = ds->priv;
919 int ret;
920 u8 port_mask = BIT(port);
921
922 mutex_lock(&priv->reg_mutex);
923 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
924 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
925 mutex_unlock(&priv->reg_mutex);
926
927 return ret;
928 }
929
930 static int
931 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
932 const unsigned char *addr, u16 vid)
933 {
934 struct mt7530_priv *priv = ds->priv;
935 int ret;
936 u8 port_mask = BIT(port);
937
938 mutex_lock(&priv->reg_mutex);
939 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
940 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
941 mutex_unlock(&priv->reg_mutex);
942
943 return ret;
944 }
945
946 static int
947 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
948 dsa_fdb_dump_cb_t *cb, void *data)
949 {
950 struct mt7530_priv *priv = ds->priv;
951 struct mt7530_fdb _fdb = { 0 };
952 int cnt = MT7530_NUM_FDB_RECORDS;
953 int ret = 0;
954 u32 rsp = 0;
955
956 mutex_lock(&priv->reg_mutex);
957
958 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
959 if (ret < 0)
960 goto err;
961
962 do {
963 if (rsp & ATC_SRCH_HIT) {
964 mt7530_fdb_read(priv, &_fdb);
965 if (_fdb.port_mask & BIT(port)) {
966 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
967 data);
968 if (ret < 0)
969 break;
970 }
971 }
972 } while (--cnt &&
973 !(rsp & ATC_SRCH_END) &&
974 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
975 err:
976 mutex_unlock(&priv->reg_mutex);
977
978 return 0;
979 }
980
981 static int
982 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
983 {
984 struct mt7530_dummy_poll p;
985 u32 val;
986 int ret;
987
988 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
989 mt7530_write(priv, MT7530_VTCR, val);
990
991 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
992 ret = readx_poll_timeout(_mt7530_read, &p, val,
993 !(val & VTCR_BUSY), 20, 20000);
994 if (ret < 0) {
995 dev_err(priv->dev, "poll timeout\n");
996 return ret;
997 }
998
999 val = mt7530_read(priv, MT7530_VTCR);
1000 if (val & VTCR_INVALID) {
1001 dev_err(priv->dev, "read VTCR invalid\n");
1002 return -EINVAL;
1003 }
1004
1005 return 0;
1006 }
1007
1008 static int
1009 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1010 bool vlan_filtering)
1011 {
1012 struct mt7530_priv *priv = ds->priv;
1013
1014 priv->ports[port].vlan_filtering = vlan_filtering;
1015
1016 if (vlan_filtering) {
1017 /* The port is being kept as VLAN-unaware port when bridge is
1018 * set up with vlan_filtering not being set, Otherwise, the
1019 * port and the corresponding CPU port is required the setup
1020 * for becoming a VLAN-aware port.
1021 */
1022 mt7530_port_set_vlan_aware(ds, port);
1023 mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1024 }
1025
1026 return 0;
1027 }
1028
1029 static int
1030 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1031 const struct switchdev_obj_port_vlan *vlan)
1032 {
1033 /* nothing needed */
1034
1035 return 0;
1036 }
1037
1038 static void
1039 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1040 struct mt7530_hw_vlan_entry *entry)
1041 {
1042 u8 new_members;
1043 u32 val;
1044
1045 new_members = entry->old_members | BIT(entry->port) |
1046 BIT(MT7530_CPU_PORT);
1047
1048 /* Validate the entry with independent learning, create egress tag per
1049 * VLAN and joining the port as one of the port members.
1050 */
1051 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1052 mt7530_write(priv, MT7530_VAWD1, val);
1053
1054 /* Decide whether adding tag or not for those outgoing packets from the
1055 * port inside the VLAN.
1056 */
1057 val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1058 MT7530_VLAN_EGRESS_TAG;
1059 mt7530_rmw(priv, MT7530_VAWD2,
1060 ETAG_CTRL_P_MASK(entry->port),
1061 ETAG_CTRL_P(entry->port, val));
1062
1063 /* CPU port is always taken as a tagged port for serving more than one
1064 * VLANs across and also being applied with egress type stack mode for
1065 * that VLAN tags would be appended after hardware special tag used as
1066 * DSA tag.
1067 */
1068 mt7530_rmw(priv, MT7530_VAWD2,
1069 ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1070 ETAG_CTRL_P(MT7530_CPU_PORT,
1071 MT7530_VLAN_EGRESS_STACK));
1072 }
1073
1074 static void
1075 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1076 struct mt7530_hw_vlan_entry *entry)
1077 {
1078 u8 new_members;
1079 u32 val;
1080
1081 new_members = entry->old_members & ~BIT(entry->port);
1082
1083 val = mt7530_read(priv, MT7530_VAWD1);
1084 if (!(val & VLAN_VALID)) {
1085 dev_err(priv->dev,
1086 "Cannot be deleted due to invalid entry\n");
1087 return;
1088 }
1089
1090 /* If certain member apart from CPU port is still alive in the VLAN,
1091 * the entry would be kept valid. Otherwise, the entry is got to be
1092 * disabled.
1093 */
1094 if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1095 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1096 VLAN_VALID;
1097 mt7530_write(priv, MT7530_VAWD1, val);
1098 } else {
1099 mt7530_write(priv, MT7530_VAWD1, 0);
1100 mt7530_write(priv, MT7530_VAWD2, 0);
1101 }
1102 }
1103
1104 static void
1105 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1106 struct mt7530_hw_vlan_entry *entry,
1107 mt7530_vlan_op vlan_op)
1108 {
1109 u32 val;
1110
1111 /* Fetch entry */
1112 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1113
1114 val = mt7530_read(priv, MT7530_VAWD1);
1115
1116 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1117
1118 /* Manipulate entry */
1119 vlan_op(priv, entry);
1120
1121 /* Flush result to hardware */
1122 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1123 }
1124
1125 static void
1126 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1127 const struct switchdev_obj_port_vlan *vlan)
1128 {
1129 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1130 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1131 struct mt7530_hw_vlan_entry new_entry;
1132 struct mt7530_priv *priv = ds->priv;
1133 u16 vid;
1134
1135 /* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1136 * being set.
1137 */
1138 if (!priv->ports[port].vlan_filtering)
1139 return;
1140
1141 mutex_lock(&priv->reg_mutex);
1142
1143 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1144 mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1145 mt7530_hw_vlan_update(priv, vid, &new_entry,
1146 mt7530_hw_vlan_add);
1147 }
1148
1149 if (pvid) {
1150 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1151 G0_PORT_VID(vlan->vid_end));
1152 priv->ports[port].pvid = vlan->vid_end;
1153 }
1154
1155 mutex_unlock(&priv->reg_mutex);
1156 }
1157
1158 static int
1159 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1160 const struct switchdev_obj_port_vlan *vlan)
1161 {
1162 struct mt7530_hw_vlan_entry target_entry;
1163 struct mt7530_priv *priv = ds->priv;
1164 u16 vid, pvid;
1165
1166 /* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1167 * being set.
1168 */
1169 if (!priv->ports[port].vlan_filtering)
1170 return 0;
1171
1172 mutex_lock(&priv->reg_mutex);
1173
1174 pvid = priv->ports[port].pvid;
1175 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1176 mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1177 mt7530_hw_vlan_update(priv, vid, &target_entry,
1178 mt7530_hw_vlan_del);
1179
1180 /* PVID is being restored to the default whenever the PVID port
1181 * is being removed from the VLAN.
1182 */
1183 if (pvid == vid)
1184 pvid = G0_PORT_VID_DEF;
1185 }
1186
1187 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1188 priv->ports[port].pvid = pvid;
1189
1190 mutex_unlock(&priv->reg_mutex);
1191
1192 return 0;
1193 }
1194
1195 static enum dsa_tag_protocol
1196 mtk_get_tag_protocol(struct dsa_switch *ds, int port)
1197 {
1198 struct mt7530_priv *priv = ds->priv;
1199
1200 if (port != MT7530_CPU_PORT) {
1201 dev_warn(priv->dev,
1202 "port not matched with tagging CPU port\n");
1203 return DSA_TAG_PROTO_NONE;
1204 } else {
1205 return DSA_TAG_PROTO_MTK;
1206 }
1207 }
1208
1209 static int
1210 mt7530_setup(struct dsa_switch *ds)
1211 {
1212 struct mt7530_priv *priv = ds->priv;
1213 int ret, i;
1214 u32 id, val;
1215 struct device_node *dn;
1216 struct mt7530_dummy_poll p;
1217
1218 /* The parent node of master netdev which holds the common system
1219 * controller also is the container for two GMACs nodes representing
1220 * as two netdev instances.
1221 */
1222 dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent;
1223 priv->ethernet = syscon_node_to_regmap(dn);
1224 if (IS_ERR(priv->ethernet))
1225 return PTR_ERR(priv->ethernet);
1226
1227 regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1228 ret = regulator_enable(priv->core_pwr);
1229 if (ret < 0) {
1230 dev_err(priv->dev,
1231 "Failed to enable core power: %d\n", ret);
1232 return ret;
1233 }
1234
1235 regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1236 ret = regulator_enable(priv->io_pwr);
1237 if (ret < 0) {
1238 dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1239 ret);
1240 return ret;
1241 }
1242
1243 /* Reset whole chip through gpio pin or memory-mapped registers for
1244 * different type of hardware
1245 */
1246 if (priv->mcm) {
1247 reset_control_assert(priv->rstc);
1248 usleep_range(1000, 1100);
1249 reset_control_deassert(priv->rstc);
1250 } else {
1251 gpiod_set_value_cansleep(priv->reset, 0);
1252 usleep_range(1000, 1100);
1253 gpiod_set_value_cansleep(priv->reset, 1);
1254 }
1255
1256 /* Waiting for MT7530 got to stable */
1257 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1258 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1259 20, 1000000);
1260 if (ret < 0) {
1261 dev_err(priv->dev, "reset timeout\n");
1262 return ret;
1263 }
1264
1265 id = mt7530_read(priv, MT7530_CREV);
1266 id >>= CHIP_NAME_SHIFT;
1267 if (id != MT7530_ID) {
1268 dev_err(priv->dev, "chip %x can't be supported\n", id);
1269 return -ENODEV;
1270 }
1271
1272 /* Reset the switch through internal reset */
1273 mt7530_write(priv, MT7530_SYS_CTRL,
1274 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1275 SYS_CTRL_REG_RST);
1276
1277 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1278 val = mt7530_read(priv, MT7530_MHWTRAP);
1279 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1280 val |= MHWTRAP_MANUAL;
1281 mt7530_write(priv, MT7530_MHWTRAP, val);
1282
1283 /* Enable and reset MIB counters */
1284 mt7530_mib_reset(ds);
1285
1286 mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);
1287
1288 for (i = 0; i < MT7530_NUM_PORTS; i++) {
1289 /* Disable forwarding by default on all ports */
1290 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1291 PCR_MATRIX_CLR);
1292
1293 if (dsa_is_cpu_port(ds, i))
1294 mt7530_cpu_port_enable(priv, i);
1295 else
1296 mt7530_port_disable(ds, i, NULL);
1297 }
1298
1299 /* Flush the FDB table */
1300 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1301 if (ret < 0)
1302 return ret;
1303
1304 return 0;
1305 }
1306
1307 static const struct dsa_switch_ops mt7530_switch_ops = {
1308 .get_tag_protocol = mtk_get_tag_protocol,
1309 .setup = mt7530_setup,
1310 .get_strings = mt7530_get_strings,
1311 .phy_read = mt7530_phy_read,
1312 .phy_write = mt7530_phy_write,
1313 .get_ethtool_stats = mt7530_get_ethtool_stats,
1314 .get_sset_count = mt7530_get_sset_count,
1315 .adjust_link = mt7530_adjust_link,
1316 .port_enable = mt7530_port_enable,
1317 .port_disable = mt7530_port_disable,
1318 .port_stp_state_set = mt7530_stp_state_set,
1319 .port_bridge_join = mt7530_port_bridge_join,
1320 .port_bridge_leave = mt7530_port_bridge_leave,
1321 .port_fdb_add = mt7530_port_fdb_add,
1322 .port_fdb_del = mt7530_port_fdb_del,
1323 .port_fdb_dump = mt7530_port_fdb_dump,
1324 .port_vlan_filtering = mt7530_port_vlan_filtering,
1325 .port_vlan_prepare = mt7530_port_vlan_prepare,
1326 .port_vlan_add = mt7530_port_vlan_add,
1327 .port_vlan_del = mt7530_port_vlan_del,
1328 };
1329
1330 static int
1331 mt7530_probe(struct mdio_device *mdiodev)
1332 {
1333 struct mt7530_priv *priv;
1334 struct device_node *dn;
1335
1336 dn = mdiodev->dev.of_node;
1337
1338 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
1339 if (!priv)
1340 return -ENOMEM;
1341
1342 priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
1343 if (!priv->ds)
1344 return -ENOMEM;
1345
1346 /* Use medatek,mcm property to distinguish hardware type that would
1347 * casues a little bit differences on power-on sequence.
1348 */
1349 priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
1350 if (priv->mcm) {
1351 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
1352
1353 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
1354 if (IS_ERR(priv->rstc)) {
1355 dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1356 return PTR_ERR(priv->rstc);
1357 }
1358 }
1359
1360 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
1361 if (IS_ERR(priv->core_pwr))
1362 return PTR_ERR(priv->core_pwr);
1363
1364 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
1365 if (IS_ERR(priv->io_pwr))
1366 return PTR_ERR(priv->io_pwr);
1367
1368 /* Not MCM that indicates switch works as the remote standalone
1369 * integrated circuit so the GPIO pin would be used to complete
1370 * the reset, otherwise memory-mapped register accessing used
1371 * through syscon provides in the case of MCM.
1372 */
1373 if (!priv->mcm) {
1374 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
1375 GPIOD_OUT_LOW);
1376 if (IS_ERR(priv->reset)) {
1377 dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1378 return PTR_ERR(priv->reset);
1379 }
1380 }
1381
1382 priv->bus = mdiodev->bus;
1383 priv->dev = &mdiodev->dev;
1384 priv->ds->priv = priv;
1385 priv->ds->ops = &mt7530_switch_ops;
1386 mutex_init(&priv->reg_mutex);
1387 dev_set_drvdata(&mdiodev->dev, priv);
1388
1389 return dsa_register_switch(priv->ds);
1390 }
1391
1392 static void
1393 mt7530_remove(struct mdio_device *mdiodev)
1394 {
1395 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
1396 int ret = 0;
1397
1398 ret = regulator_disable(priv->core_pwr);
1399 if (ret < 0)
1400 dev_err(priv->dev,
1401 "Failed to disable core power: %d\n", ret);
1402
1403 ret = regulator_disable(priv->io_pwr);
1404 if (ret < 0)
1405 dev_err(priv->dev, "Failed to disable io pwr: %d\n",
1406 ret);
1407
1408 dsa_unregister_switch(priv->ds);
1409 mutex_destroy(&priv->reg_mutex);
1410 }
1411
1412 static const struct of_device_id mt7530_of_match[] = {
1413 { .compatible = "mediatek,mt7530" },
1414 { /* sentinel */ },
1415 };
1416 MODULE_DEVICE_TABLE(of, mt7530_of_match);
1417
1418 static struct mdio_driver mt7530_mdio_driver = {
1419 .probe = mt7530_probe,
1420 .remove = mt7530_remove,
1421 .mdiodrv.driver = {
1422 .name = "mt7530",
1423 .of_match_table = mt7530_of_match,
1424 },
1425 };
1426
1427 mdio_module_driver(mt7530_mdio_driver);
1428
1429 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1430 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
1431 MODULE_LICENSE("GPL");