]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/dsa/mv88e6xxx/chip.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / dsa / mv88e6xxx / chip.c
1 /*
2 * Marvell 88e6xxx Ethernet switch single-chip support
3 *
4 * Copyright (c) 2008 Marvell Semiconductor
5 *
6 * Copyright (c) 2015 CMC Electronics, Inc.
7 * Added support for VLAN Table Unit operations
8 *
9 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 */
16
17 #include <linux/delay.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if_bridge.h>
21 #include <linux/jiffies.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/of_mdio.h>
27 #include <linux/netdevice.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/phy.h>
30 #include <net/dsa.h>
31 #include <net/switchdev.h>
32 #include "mv88e6xxx.h"
33
34 static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35 {
36 if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
37 dev_err(chip->dev, "Switch registers lock not held!\n");
38 dump_stack();
39 }
40 }
41
42 /* The switch ADDR[4:1] configuration pins define the chip SMI device address
43 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
44 *
45 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
46 * is the only device connected to the SMI master. In this mode it responds to
47 * all 32 possible SMI addresses, and thus maps directly the internal devices.
48 *
49 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
50 * multiple devices to share the SMI interface. In this mode it responds to only
51 * 2 registers, used to indirectly access the internal SMI devices.
52 */
53
54 static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 int addr, int reg, u16 *val)
56 {
57 if (!chip->smi_ops)
58 return -EOPNOTSUPP;
59
60 return chip->smi_ops->read(chip, addr, reg, val);
61 }
62
63 static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 int addr, int reg, u16 val)
65 {
66 if (!chip->smi_ops)
67 return -EOPNOTSUPP;
68
69 return chip->smi_ops->write(chip, addr, reg, val);
70 }
71
72 static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 int addr, int reg, u16 *val)
74 {
75 int ret;
76
77 ret = mdiobus_read_nested(chip->bus, addr, reg);
78 if (ret < 0)
79 return ret;
80
81 *val = ret & 0xffff;
82
83 return 0;
84 }
85
86 static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 int addr, int reg, u16 val)
88 {
89 int ret;
90
91 ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 if (ret < 0)
93 return ret;
94
95 return 0;
96 }
97
98 static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
99 .read = mv88e6xxx_smi_single_chip_read,
100 .write = mv88e6xxx_smi_single_chip_write,
101 };
102
103 static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 {
105 int ret;
106 int i;
107
108 for (i = 0; i < 16; i++) {
109 ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 if (ret < 0)
111 return ret;
112
113 if ((ret & SMI_CMD_BUSY) == 0)
114 return 0;
115 }
116
117 return -ETIMEDOUT;
118 }
119
120 static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121 int addr, int reg, u16 *val)
122 {
123 int ret;
124
125 /* Wait for the bus to become free. */
126 ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 if (ret < 0)
128 return ret;
129
130 /* Transmit the read command. */
131 ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132 SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 if (ret < 0)
134 return ret;
135
136 /* Wait for the read command to complete. */
137 ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 if (ret < 0)
139 return ret;
140
141 /* Read the data. */
142 ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 if (ret < 0)
144 return ret;
145
146 *val = ret & 0xffff;
147
148 return 0;
149 }
150
151 static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152 int addr, int reg, u16 val)
153 {
154 int ret;
155
156 /* Wait for the bus to become free. */
157 ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 if (ret < 0)
159 return ret;
160
161 /* Transmit the data to write. */
162 ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 if (ret < 0)
164 return ret;
165
166 /* Transmit the write command. */
167 ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168 SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 if (ret < 0)
170 return ret;
171
172 /* Wait for the write command to complete. */
173 ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 if (ret < 0)
175 return ret;
176
177 return 0;
178 }
179
180 static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
181 .read = mv88e6xxx_smi_multi_chip_read,
182 .write = mv88e6xxx_smi_multi_chip_write,
183 };
184
185 static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 int addr, int reg, u16 *val)
187 {
188 int err;
189
190 assert_reg_lock(chip);
191
192 err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 if (err)
194 return err;
195
196 dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 addr, reg, *val);
198
199 return 0;
200 }
201
202 static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203 int addr, int reg, u16 val)
204 {
205 int err;
206
207 assert_reg_lock(chip);
208
209 err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 if (err)
211 return err;
212
213 dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 addr, reg, val);
215
216 return 0;
217 }
218
219 /* Indirect write to single pointer-data register with an Update bit */
220 static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
221 u16 update)
222 {
223 u16 val;
224 int i, err;
225
226 /* Wait until the previous operation is completed */
227 for (i = 0; i < 16; ++i) {
228 err = mv88e6xxx_read(chip, addr, reg, &val);
229 if (err)
230 return err;
231
232 if (!(val & BIT(15)))
233 break;
234 }
235
236 if (i == 16)
237 return -ETIMEDOUT;
238
239 /* Set the Update bit to trigger a write operation */
240 val = BIT(15) | update;
241
242 return mv88e6xxx_write(chip, addr, reg, val);
243 }
244
245 static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
246 {
247 u16 val;
248 int err;
249
250 err = mv88e6xxx_read(chip, addr, reg, &val);
251 if (err)
252 return err;
253
254 return val;
255 }
256
257 static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
258 int reg, u16 val)
259 {
260 return mv88e6xxx_write(chip, addr, reg, val);
261 }
262
263 static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip,
264 int addr, int regnum)
265 {
266 if (addr >= 0)
267 return _mv88e6xxx_reg_read(chip, addr, regnum);
268 return 0xffff;
269 }
270
271 static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip,
272 int addr, int regnum, u16 val)
273 {
274 if (addr >= 0)
275 return _mv88e6xxx_reg_write(chip, addr, regnum, val);
276 return 0;
277 }
278
279 static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
280 {
281 int ret;
282 unsigned long timeout;
283
284 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
285 if (ret < 0)
286 return ret;
287
288 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
289 ret & ~GLOBAL_CONTROL_PPU_ENABLE);
290 if (ret)
291 return ret;
292
293 timeout = jiffies + 1 * HZ;
294 while (time_before(jiffies, timeout)) {
295 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
296 if (ret < 0)
297 return ret;
298
299 usleep_range(1000, 2000);
300 if ((ret & GLOBAL_STATUS_PPU_MASK) !=
301 GLOBAL_STATUS_PPU_POLLING)
302 return 0;
303 }
304
305 return -ETIMEDOUT;
306 }
307
308 static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
309 {
310 int ret, err;
311 unsigned long timeout;
312
313 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
314 if (ret < 0)
315 return ret;
316
317 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
318 ret | GLOBAL_CONTROL_PPU_ENABLE);
319 if (err)
320 return err;
321
322 timeout = jiffies + 1 * HZ;
323 while (time_before(jiffies, timeout)) {
324 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
325 if (ret < 0)
326 return ret;
327
328 usleep_range(1000, 2000);
329 if ((ret & GLOBAL_STATUS_PPU_MASK) ==
330 GLOBAL_STATUS_PPU_POLLING)
331 return 0;
332 }
333
334 return -ETIMEDOUT;
335 }
336
337 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
338 {
339 struct mv88e6xxx_chip *chip;
340
341 chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
342
343 mutex_lock(&chip->reg_lock);
344
345 if (mutex_trylock(&chip->ppu_mutex)) {
346 if (mv88e6xxx_ppu_enable(chip) == 0)
347 chip->ppu_disabled = 0;
348 mutex_unlock(&chip->ppu_mutex);
349 }
350
351 mutex_unlock(&chip->reg_lock);
352 }
353
354 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
355 {
356 struct mv88e6xxx_chip *chip = (void *)_ps;
357
358 schedule_work(&chip->ppu_work);
359 }
360
361 static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
362 {
363 int ret;
364
365 mutex_lock(&chip->ppu_mutex);
366
367 /* If the PHY polling unit is enabled, disable it so that
368 * we can access the PHY registers. If it was already
369 * disabled, cancel the timer that is going to re-enable
370 * it.
371 */
372 if (!chip->ppu_disabled) {
373 ret = mv88e6xxx_ppu_disable(chip);
374 if (ret < 0) {
375 mutex_unlock(&chip->ppu_mutex);
376 return ret;
377 }
378 chip->ppu_disabled = 1;
379 } else {
380 del_timer(&chip->ppu_timer);
381 ret = 0;
382 }
383
384 return ret;
385 }
386
387 static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
388 {
389 /* Schedule a timer to re-enable the PHY polling unit. */
390 mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
391 mutex_unlock(&chip->ppu_mutex);
392 }
393
394 static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
395 {
396 mutex_init(&chip->ppu_mutex);
397 INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
398 init_timer(&chip->ppu_timer);
399 chip->ppu_timer.data = (unsigned long)chip;
400 chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
401 }
402
403 static int mv88e6xxx_mdio_read_ppu(struct mv88e6xxx_chip *chip, int addr,
404 int regnum)
405 {
406 int ret;
407
408 ret = mv88e6xxx_ppu_access_get(chip);
409 if (ret >= 0) {
410 ret = _mv88e6xxx_reg_read(chip, addr, regnum);
411 mv88e6xxx_ppu_access_put(chip);
412 }
413
414 return ret;
415 }
416
417 static int mv88e6xxx_mdio_write_ppu(struct mv88e6xxx_chip *chip, int addr,
418 int regnum, u16 val)
419 {
420 int ret;
421
422 ret = mv88e6xxx_ppu_access_get(chip);
423 if (ret >= 0) {
424 ret = _mv88e6xxx_reg_write(chip, addr, regnum, val);
425 mv88e6xxx_ppu_access_put(chip);
426 }
427
428 return ret;
429 }
430
431 static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
432 {
433 return chip->info->family == MV88E6XXX_FAMILY_6065;
434 }
435
436 static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
437 {
438 return chip->info->family == MV88E6XXX_FAMILY_6095;
439 }
440
441 static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
442 {
443 return chip->info->family == MV88E6XXX_FAMILY_6097;
444 }
445
446 static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
447 {
448 return chip->info->family == MV88E6XXX_FAMILY_6165;
449 }
450
451 static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
452 {
453 return chip->info->family == MV88E6XXX_FAMILY_6185;
454 }
455
456 static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
457 {
458 return chip->info->family == MV88E6XXX_FAMILY_6320;
459 }
460
461 static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
462 {
463 return chip->info->family == MV88E6XXX_FAMILY_6351;
464 }
465
466 static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
467 {
468 return chip->info->family == MV88E6XXX_FAMILY_6352;
469 }
470
471 static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
472 {
473 return chip->info->num_databases;
474 }
475
476 static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
477 {
478 /* Does the device have dedicated FID registers for ATU and VTU ops? */
479 if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
480 mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
481 return true;
482
483 return false;
484 }
485
486 /* We expect the switch to perform auto negotiation if there is a real
487 * phy. However, in the case of a fixed link phy, we force the port
488 * settings from the fixed link settings.
489 */
490 static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
491 struct phy_device *phydev)
492 {
493 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
494 u32 reg;
495 int ret;
496
497 if (!phy_is_pseudo_fixed_link(phydev))
498 return;
499
500 mutex_lock(&chip->reg_lock);
501
502 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
503 if (ret < 0)
504 goto out;
505
506 reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
507 PORT_PCS_CTRL_FORCE_LINK |
508 PORT_PCS_CTRL_DUPLEX_FULL |
509 PORT_PCS_CTRL_FORCE_DUPLEX |
510 PORT_PCS_CTRL_UNFORCED);
511
512 reg |= PORT_PCS_CTRL_FORCE_LINK;
513 if (phydev->link)
514 reg |= PORT_PCS_CTRL_LINK_UP;
515
516 if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
517 goto out;
518
519 switch (phydev->speed) {
520 case SPEED_1000:
521 reg |= PORT_PCS_CTRL_1000;
522 break;
523 case SPEED_100:
524 reg |= PORT_PCS_CTRL_100;
525 break;
526 case SPEED_10:
527 reg |= PORT_PCS_CTRL_10;
528 break;
529 default:
530 pr_info("Unknown speed");
531 goto out;
532 }
533
534 reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
535 if (phydev->duplex == DUPLEX_FULL)
536 reg |= PORT_PCS_CTRL_DUPLEX_FULL;
537
538 if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
539 (port >= chip->info->num_ports - 2)) {
540 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
541 reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
542 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
543 reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
544 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
545 reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
546 PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
547 }
548 _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
549
550 out:
551 mutex_unlock(&chip->reg_lock);
552 }
553
554 static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
555 {
556 int ret;
557 int i;
558
559 for (i = 0; i < 10; i++) {
560 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
561 if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
562 return 0;
563 }
564
565 return -ETIMEDOUT;
566 }
567
568 static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
569 {
570 int ret;
571
572 if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
573 port = (port + 1) << 5;
574
575 /* Snapshot the hardware statistics counters for this port. */
576 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
577 GLOBAL_STATS_OP_CAPTURE_PORT |
578 GLOBAL_STATS_OP_HIST_RX_TX | port);
579 if (ret < 0)
580 return ret;
581
582 /* Wait for the snapshotting to complete. */
583 ret = _mv88e6xxx_stats_wait(chip);
584 if (ret < 0)
585 return ret;
586
587 return 0;
588 }
589
590 static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
591 int stat, u32 *val)
592 {
593 u32 _val;
594 int ret;
595
596 *val = 0;
597
598 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
599 GLOBAL_STATS_OP_READ_CAPTURED |
600 GLOBAL_STATS_OP_HIST_RX_TX | stat);
601 if (ret < 0)
602 return;
603
604 ret = _mv88e6xxx_stats_wait(chip);
605 if (ret < 0)
606 return;
607
608 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
609 if (ret < 0)
610 return;
611
612 _val = ret << 16;
613
614 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
615 if (ret < 0)
616 return;
617
618 *val = _val | ret;
619 }
620
621 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
622 { "in_good_octets", 8, 0x00, BANK0, },
623 { "in_bad_octets", 4, 0x02, BANK0, },
624 { "in_unicast", 4, 0x04, BANK0, },
625 { "in_broadcasts", 4, 0x06, BANK0, },
626 { "in_multicasts", 4, 0x07, BANK0, },
627 { "in_pause", 4, 0x16, BANK0, },
628 { "in_undersize", 4, 0x18, BANK0, },
629 { "in_fragments", 4, 0x19, BANK0, },
630 { "in_oversize", 4, 0x1a, BANK0, },
631 { "in_jabber", 4, 0x1b, BANK0, },
632 { "in_rx_error", 4, 0x1c, BANK0, },
633 { "in_fcs_error", 4, 0x1d, BANK0, },
634 { "out_octets", 8, 0x0e, BANK0, },
635 { "out_unicast", 4, 0x10, BANK0, },
636 { "out_broadcasts", 4, 0x13, BANK0, },
637 { "out_multicasts", 4, 0x12, BANK0, },
638 { "out_pause", 4, 0x15, BANK0, },
639 { "excessive", 4, 0x11, BANK0, },
640 { "collisions", 4, 0x1e, BANK0, },
641 { "deferred", 4, 0x05, BANK0, },
642 { "single", 4, 0x14, BANK0, },
643 { "multiple", 4, 0x17, BANK0, },
644 { "out_fcs_error", 4, 0x03, BANK0, },
645 { "late", 4, 0x1f, BANK0, },
646 { "hist_64bytes", 4, 0x08, BANK0, },
647 { "hist_65_127bytes", 4, 0x09, BANK0, },
648 { "hist_128_255bytes", 4, 0x0a, BANK0, },
649 { "hist_256_511bytes", 4, 0x0b, BANK0, },
650 { "hist_512_1023bytes", 4, 0x0c, BANK0, },
651 { "hist_1024_max_bytes", 4, 0x0d, BANK0, },
652 { "sw_in_discards", 4, 0x10, PORT, },
653 { "sw_in_filtered", 2, 0x12, PORT, },
654 { "sw_out_filtered", 2, 0x13, PORT, },
655 { "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
656 { "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
657 { "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
658 { "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
659 { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
660 { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
661 { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
662 { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
663 { "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
664 { "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
665 { "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
666 { "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
667 { "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
668 { "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
669 { "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
670 { "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
671 { "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
672 { "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
673 { "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
674 { "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
675 { "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
676 { "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
677 { "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
678 { "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
679 { "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
680 { "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
681 };
682
683 static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
684 struct mv88e6xxx_hw_stat *stat)
685 {
686 switch (stat->type) {
687 case BANK0:
688 return true;
689 case BANK1:
690 return mv88e6xxx_6320_family(chip);
691 case PORT:
692 return mv88e6xxx_6095_family(chip) ||
693 mv88e6xxx_6185_family(chip) ||
694 mv88e6xxx_6097_family(chip) ||
695 mv88e6xxx_6165_family(chip) ||
696 mv88e6xxx_6351_family(chip) ||
697 mv88e6xxx_6352_family(chip);
698 }
699 return false;
700 }
701
702 static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
703 struct mv88e6xxx_hw_stat *s,
704 int port)
705 {
706 u32 low;
707 u32 high = 0;
708 int ret;
709 u64 value;
710
711 switch (s->type) {
712 case PORT:
713 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
714 if (ret < 0)
715 return UINT64_MAX;
716
717 low = ret;
718 if (s->sizeof_stat == 4) {
719 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
720 s->reg + 1);
721 if (ret < 0)
722 return UINT64_MAX;
723 high = ret;
724 }
725 break;
726 case BANK0:
727 case BANK1:
728 _mv88e6xxx_stats_read(chip, s->reg, &low);
729 if (s->sizeof_stat == 8)
730 _mv88e6xxx_stats_read(chip, s->reg + 1, &high);
731 }
732 value = (((u64)high) << 16) | low;
733 return value;
734 }
735
736 static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
737 uint8_t *data)
738 {
739 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
740 struct mv88e6xxx_hw_stat *stat;
741 int i, j;
742
743 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
744 stat = &mv88e6xxx_hw_stats[i];
745 if (mv88e6xxx_has_stat(chip, stat)) {
746 memcpy(data + j * ETH_GSTRING_LEN, stat->string,
747 ETH_GSTRING_LEN);
748 j++;
749 }
750 }
751 }
752
753 static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
754 {
755 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
756 struct mv88e6xxx_hw_stat *stat;
757 int i, j;
758
759 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
760 stat = &mv88e6xxx_hw_stats[i];
761 if (mv88e6xxx_has_stat(chip, stat))
762 j++;
763 }
764 return j;
765 }
766
767 static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
768 uint64_t *data)
769 {
770 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
771 struct mv88e6xxx_hw_stat *stat;
772 int ret;
773 int i, j;
774
775 mutex_lock(&chip->reg_lock);
776
777 ret = _mv88e6xxx_stats_snapshot(chip, port);
778 if (ret < 0) {
779 mutex_unlock(&chip->reg_lock);
780 return;
781 }
782 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
783 stat = &mv88e6xxx_hw_stats[i];
784 if (mv88e6xxx_has_stat(chip, stat)) {
785 data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
786 j++;
787 }
788 }
789
790 mutex_unlock(&chip->reg_lock);
791 }
792
793 static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
794 {
795 return 32 * sizeof(u16);
796 }
797
798 static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
799 struct ethtool_regs *regs, void *_p)
800 {
801 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
802 u16 *p = _p;
803 int i;
804
805 regs->version = 0;
806
807 memset(p, 0xff, 32 * sizeof(u16));
808
809 mutex_lock(&chip->reg_lock);
810
811 for (i = 0; i < 32; i++) {
812 int ret;
813
814 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
815 if (ret >= 0)
816 p[i] = ret;
817 }
818
819 mutex_unlock(&chip->reg_lock);
820 }
821
822 static int _mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int reg, int offset,
823 u16 mask)
824 {
825 unsigned long timeout = jiffies + HZ / 10;
826
827 while (time_before(jiffies, timeout)) {
828 int ret;
829
830 ret = _mv88e6xxx_reg_read(chip, reg, offset);
831 if (ret < 0)
832 return ret;
833 if (!(ret & mask))
834 return 0;
835
836 usleep_range(1000, 2000);
837 }
838 return -ETIMEDOUT;
839 }
840
841 static int mv88e6xxx_mdio_wait(struct mv88e6xxx_chip *chip)
842 {
843 return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
844 GLOBAL2_SMI_OP_BUSY);
845 }
846
847 static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
848 {
849 return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
850 GLOBAL_ATU_OP_BUSY);
851 }
852
853 static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip,
854 int addr, int regnum)
855 {
856 int ret;
857
858 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
859 GLOBAL2_SMI_OP_22_READ | (addr << 5) |
860 regnum);
861 if (ret < 0)
862 return ret;
863
864 ret = mv88e6xxx_mdio_wait(chip);
865 if (ret < 0)
866 return ret;
867
868 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA);
869
870 return ret;
871 }
872
873 static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip,
874 int addr, int regnum, u16 val)
875 {
876 int ret;
877
878 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
879 if (ret < 0)
880 return ret;
881
882 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
883 GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
884 regnum);
885
886 return mv88e6xxx_mdio_wait(chip);
887 }
888
889 static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
890 struct ethtool_eee *e)
891 {
892 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
893 int reg;
894
895 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
896 return -EOPNOTSUPP;
897
898 mutex_lock(&chip->reg_lock);
899
900 reg = mv88e6xxx_mdio_read_indirect(chip, port, 16);
901 if (reg < 0)
902 goto out;
903
904 e->eee_enabled = !!(reg & 0x0200);
905 e->tx_lpi_enabled = !!(reg & 0x0100);
906
907 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
908 if (reg < 0)
909 goto out;
910
911 e->eee_active = !!(reg & PORT_STATUS_EEE);
912 reg = 0;
913
914 out:
915 mutex_unlock(&chip->reg_lock);
916 return reg;
917 }
918
919 static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
920 struct phy_device *phydev, struct ethtool_eee *e)
921 {
922 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
923 int reg;
924 int ret;
925
926 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
927 return -EOPNOTSUPP;
928
929 mutex_lock(&chip->reg_lock);
930
931 ret = mv88e6xxx_mdio_read_indirect(chip, port, 16);
932 if (ret < 0)
933 goto out;
934
935 reg = ret & ~0x0300;
936 if (e->eee_enabled)
937 reg |= 0x0200;
938 if (e->tx_lpi_enabled)
939 reg |= 0x0100;
940
941 ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg);
942 out:
943 mutex_unlock(&chip->reg_lock);
944
945 return ret;
946 }
947
948 static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
949 {
950 int ret;
951
952 if (mv88e6xxx_has_fid_reg(chip)) {
953 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
954 fid);
955 if (ret < 0)
956 return ret;
957 } else if (mv88e6xxx_num_databases(chip) == 256) {
958 /* ATU DBNum[7:4] are located in ATU Control 15:12 */
959 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
960 if (ret < 0)
961 return ret;
962
963 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
964 (ret & 0xfff) |
965 ((fid << 8) & 0xf000));
966 if (ret < 0)
967 return ret;
968
969 /* ATU DBNum[3:0] are located in ATU Operation 3:0 */
970 cmd |= fid & 0xf;
971 }
972
973 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
974 if (ret < 0)
975 return ret;
976
977 return _mv88e6xxx_atu_wait(chip);
978 }
979
980 static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
981 struct mv88e6xxx_atu_entry *entry)
982 {
983 u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
984
985 if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
986 unsigned int mask, shift;
987
988 if (entry->trunk) {
989 data |= GLOBAL_ATU_DATA_TRUNK;
990 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
991 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
992 } else {
993 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
994 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
995 }
996
997 data |= (entry->portv_trunkid << shift) & mask;
998 }
999
1000 return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1001 }
1002
1003 static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1004 struct mv88e6xxx_atu_entry *entry,
1005 bool static_too)
1006 {
1007 int op;
1008 int err;
1009
1010 err = _mv88e6xxx_atu_wait(chip);
1011 if (err)
1012 return err;
1013
1014 err = _mv88e6xxx_atu_data_write(chip, entry);
1015 if (err)
1016 return err;
1017
1018 if (entry->fid) {
1019 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
1020 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
1021 } else {
1022 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1023 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1024 }
1025
1026 return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1027 }
1028
1029 static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1030 u16 fid, bool static_too)
1031 {
1032 struct mv88e6xxx_atu_entry entry = {
1033 .fid = fid,
1034 .state = 0, /* EntryState bits must be 0 */
1035 };
1036
1037 return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1038 }
1039
1040 static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1041 int from_port, int to_port, bool static_too)
1042 {
1043 struct mv88e6xxx_atu_entry entry = {
1044 .trunk = false,
1045 .fid = fid,
1046 };
1047
1048 /* EntryState bits must be 0xF */
1049 entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1050
1051 /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1052 entry.portv_trunkid = (to_port & 0x0f) << 4;
1053 entry.portv_trunkid |= from_port & 0x0f;
1054
1055 return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1056 }
1057
1058 static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1059 int port, bool static_too)
1060 {
1061 /* Destination port 0xF means remove the entries */
1062 return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1063 }
1064
1065 static const char * const mv88e6xxx_port_state_names[] = {
1066 [PORT_CONTROL_STATE_DISABLED] = "Disabled",
1067 [PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
1068 [PORT_CONTROL_STATE_LEARNING] = "Learning",
1069 [PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
1070 };
1071
1072 static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1073 u8 state)
1074 {
1075 struct dsa_switch *ds = chip->ds;
1076 int reg, ret = 0;
1077 u8 oldstate;
1078
1079 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1080 if (reg < 0)
1081 return reg;
1082
1083 oldstate = reg & PORT_CONTROL_STATE_MASK;
1084
1085 if (oldstate != state) {
1086 /* Flush forwarding database if we're moving a port
1087 * from Learning or Forwarding state to Disabled or
1088 * Blocking or Listening state.
1089 */
1090 if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1091 oldstate == PORT_CONTROL_STATE_FORWARDING) &&
1092 (state == PORT_CONTROL_STATE_DISABLED ||
1093 state == PORT_CONTROL_STATE_BLOCKING)) {
1094 ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1095 if (ret)
1096 return ret;
1097 }
1098
1099 reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1100 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1101 reg);
1102 if (ret)
1103 return ret;
1104
1105 netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1106 mv88e6xxx_port_state_names[state],
1107 mv88e6xxx_port_state_names[oldstate]);
1108 }
1109
1110 return ret;
1111 }
1112
1113 static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1114 {
1115 struct net_device *bridge = chip->ports[port].bridge_dev;
1116 const u16 mask = (1 << chip->info->num_ports) - 1;
1117 struct dsa_switch *ds = chip->ds;
1118 u16 output_ports = 0;
1119 int reg;
1120 int i;
1121
1122 /* allow CPU port or DSA link(s) to send frames to every port */
1123 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1124 output_ports = mask;
1125 } else {
1126 for (i = 0; i < chip->info->num_ports; ++i) {
1127 /* allow sending frames to every group member */
1128 if (bridge && chip->ports[i].bridge_dev == bridge)
1129 output_ports |= BIT(i);
1130
1131 /* allow sending frames to CPU port and DSA link(s) */
1132 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1133 output_ports |= BIT(i);
1134 }
1135 }
1136
1137 /* prevent frames from going back out of the port they came in on */
1138 output_ports &= ~BIT(port);
1139
1140 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1141 if (reg < 0)
1142 return reg;
1143
1144 reg &= ~mask;
1145 reg |= output_ports & mask;
1146
1147 return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1148 }
1149
1150 static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
1151 u8 state)
1152 {
1153 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1154 int stp_state;
1155 int err;
1156
1157 switch (state) {
1158 case BR_STATE_DISABLED:
1159 stp_state = PORT_CONTROL_STATE_DISABLED;
1160 break;
1161 case BR_STATE_BLOCKING:
1162 case BR_STATE_LISTENING:
1163 stp_state = PORT_CONTROL_STATE_BLOCKING;
1164 break;
1165 case BR_STATE_LEARNING:
1166 stp_state = PORT_CONTROL_STATE_LEARNING;
1167 break;
1168 case BR_STATE_FORWARDING:
1169 default:
1170 stp_state = PORT_CONTROL_STATE_FORWARDING;
1171 break;
1172 }
1173
1174 mutex_lock(&chip->reg_lock);
1175 err = _mv88e6xxx_port_state(chip, port, stp_state);
1176 mutex_unlock(&chip->reg_lock);
1177
1178 if (err)
1179 netdev_err(ds->ports[port].netdev,
1180 "failed to update state to %s\n",
1181 mv88e6xxx_port_state_names[stp_state]);
1182 }
1183
1184 static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1185 u16 *new, u16 *old)
1186 {
1187 struct dsa_switch *ds = chip->ds;
1188 u16 pvid;
1189 int ret;
1190
1191 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1192 if (ret < 0)
1193 return ret;
1194
1195 pvid = ret & PORT_DEFAULT_VLAN_MASK;
1196
1197 if (new) {
1198 ret &= ~PORT_DEFAULT_VLAN_MASK;
1199 ret |= *new & PORT_DEFAULT_VLAN_MASK;
1200
1201 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1202 PORT_DEFAULT_VLAN, ret);
1203 if (ret < 0)
1204 return ret;
1205
1206 netdev_dbg(ds->ports[port].netdev,
1207 "DefaultVID %d (was %d)\n", *new, pvid);
1208 }
1209
1210 if (old)
1211 *old = pvid;
1212
1213 return 0;
1214 }
1215
1216 static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1217 int port, u16 *pvid)
1218 {
1219 return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1220 }
1221
1222 static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1223 int port, u16 pvid)
1224 {
1225 return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1226 }
1227
1228 static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1229 {
1230 return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
1231 GLOBAL_VTU_OP_BUSY);
1232 }
1233
1234 static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1235 {
1236 int ret;
1237
1238 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1239 if (ret < 0)
1240 return ret;
1241
1242 return _mv88e6xxx_vtu_wait(chip);
1243 }
1244
1245 static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1246 {
1247 int ret;
1248
1249 ret = _mv88e6xxx_vtu_wait(chip);
1250 if (ret < 0)
1251 return ret;
1252
1253 return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1254 }
1255
1256 static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1257 struct mv88e6xxx_vtu_stu_entry *entry,
1258 unsigned int nibble_offset)
1259 {
1260 u16 regs[3];
1261 int i;
1262 int ret;
1263
1264 for (i = 0; i < 3; ++i) {
1265 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1266 GLOBAL_VTU_DATA_0_3 + i);
1267 if (ret < 0)
1268 return ret;
1269
1270 regs[i] = ret;
1271 }
1272
1273 for (i = 0; i < chip->info->num_ports; ++i) {
1274 unsigned int shift = (i % 4) * 4 + nibble_offset;
1275 u16 reg = regs[i / 4];
1276
1277 entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1278 }
1279
1280 return 0;
1281 }
1282
1283 static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1284 struct mv88e6xxx_vtu_stu_entry *entry)
1285 {
1286 return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1287 }
1288
1289 static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1290 struct mv88e6xxx_vtu_stu_entry *entry)
1291 {
1292 return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1293 }
1294
1295 static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1296 struct mv88e6xxx_vtu_stu_entry *entry,
1297 unsigned int nibble_offset)
1298 {
1299 u16 regs[3] = { 0 };
1300 int i;
1301 int ret;
1302
1303 for (i = 0; i < chip->info->num_ports; ++i) {
1304 unsigned int shift = (i % 4) * 4 + nibble_offset;
1305 u8 data = entry->data[i];
1306
1307 regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1308 }
1309
1310 for (i = 0; i < 3; ++i) {
1311 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1312 GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1313 if (ret < 0)
1314 return ret;
1315 }
1316
1317 return 0;
1318 }
1319
1320 static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1321 struct mv88e6xxx_vtu_stu_entry *entry)
1322 {
1323 return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1324 }
1325
1326 static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1327 struct mv88e6xxx_vtu_stu_entry *entry)
1328 {
1329 return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1330 }
1331
1332 static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1333 {
1334 return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1335 vid & GLOBAL_VTU_VID_MASK);
1336 }
1337
1338 static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1339 struct mv88e6xxx_vtu_stu_entry *entry)
1340 {
1341 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1342 int ret;
1343
1344 ret = _mv88e6xxx_vtu_wait(chip);
1345 if (ret < 0)
1346 return ret;
1347
1348 ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1349 if (ret < 0)
1350 return ret;
1351
1352 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1353 if (ret < 0)
1354 return ret;
1355
1356 next.vid = ret & GLOBAL_VTU_VID_MASK;
1357 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1358
1359 if (next.valid) {
1360 ret = mv88e6xxx_vtu_data_read(chip, &next);
1361 if (ret < 0)
1362 return ret;
1363
1364 if (mv88e6xxx_has_fid_reg(chip)) {
1365 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1366 GLOBAL_VTU_FID);
1367 if (ret < 0)
1368 return ret;
1369
1370 next.fid = ret & GLOBAL_VTU_FID_MASK;
1371 } else if (mv88e6xxx_num_databases(chip) == 256) {
1372 /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1373 * VTU DBNum[3:0] are located in VTU Operation 3:0
1374 */
1375 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1376 GLOBAL_VTU_OP);
1377 if (ret < 0)
1378 return ret;
1379
1380 next.fid = (ret & 0xf00) >> 4;
1381 next.fid |= ret & 0xf;
1382 }
1383
1384 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1385 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1386 GLOBAL_VTU_SID);
1387 if (ret < 0)
1388 return ret;
1389
1390 next.sid = ret & GLOBAL_VTU_SID_MASK;
1391 }
1392 }
1393
1394 *entry = next;
1395 return 0;
1396 }
1397
1398 static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
1399 struct switchdev_obj_port_vlan *vlan,
1400 int (*cb)(struct switchdev_obj *obj))
1401 {
1402 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1403 struct mv88e6xxx_vtu_stu_entry next;
1404 u16 pvid;
1405 int err;
1406
1407 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1408 return -EOPNOTSUPP;
1409
1410 mutex_lock(&chip->reg_lock);
1411
1412 err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1413 if (err)
1414 goto unlock;
1415
1416 err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1417 if (err)
1418 goto unlock;
1419
1420 do {
1421 err = _mv88e6xxx_vtu_getnext(chip, &next);
1422 if (err)
1423 break;
1424
1425 if (!next.valid)
1426 break;
1427
1428 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1429 continue;
1430
1431 /* reinit and dump this VLAN obj */
1432 vlan->vid_begin = next.vid;
1433 vlan->vid_end = next.vid;
1434 vlan->flags = 0;
1435
1436 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1437 vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1438
1439 if (next.vid == pvid)
1440 vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1441
1442 err = cb(&vlan->obj);
1443 if (err)
1444 break;
1445 } while (next.vid < GLOBAL_VTU_VID_MASK);
1446
1447 unlock:
1448 mutex_unlock(&chip->reg_lock);
1449
1450 return err;
1451 }
1452
1453 static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1454 struct mv88e6xxx_vtu_stu_entry *entry)
1455 {
1456 u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1457 u16 reg = 0;
1458 int ret;
1459
1460 ret = _mv88e6xxx_vtu_wait(chip);
1461 if (ret < 0)
1462 return ret;
1463
1464 if (!entry->valid)
1465 goto loadpurge;
1466
1467 /* Write port member tags */
1468 ret = mv88e6xxx_vtu_data_write(chip, entry);
1469 if (ret < 0)
1470 return ret;
1471
1472 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1473 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1474 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1475 reg);
1476 if (ret < 0)
1477 return ret;
1478 }
1479
1480 if (mv88e6xxx_has_fid_reg(chip)) {
1481 reg = entry->fid & GLOBAL_VTU_FID_MASK;
1482 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
1483 reg);
1484 if (ret < 0)
1485 return ret;
1486 } else if (mv88e6xxx_num_databases(chip) == 256) {
1487 /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1488 * VTU DBNum[3:0] are located in VTU Operation 3:0
1489 */
1490 op |= (entry->fid & 0xf0) << 8;
1491 op |= entry->fid & 0xf;
1492 }
1493
1494 reg = GLOBAL_VTU_VID_VALID;
1495 loadpurge:
1496 reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1497 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1498 if (ret < 0)
1499 return ret;
1500
1501 return _mv88e6xxx_vtu_cmd(chip, op);
1502 }
1503
1504 static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1505 struct mv88e6xxx_vtu_stu_entry *entry)
1506 {
1507 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1508 int ret;
1509
1510 ret = _mv88e6xxx_vtu_wait(chip);
1511 if (ret < 0)
1512 return ret;
1513
1514 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1515 sid & GLOBAL_VTU_SID_MASK);
1516 if (ret < 0)
1517 return ret;
1518
1519 ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1520 if (ret < 0)
1521 return ret;
1522
1523 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1524 if (ret < 0)
1525 return ret;
1526
1527 next.sid = ret & GLOBAL_VTU_SID_MASK;
1528
1529 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1530 if (ret < 0)
1531 return ret;
1532
1533 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1534
1535 if (next.valid) {
1536 ret = mv88e6xxx_stu_data_read(chip, &next);
1537 if (ret < 0)
1538 return ret;
1539 }
1540
1541 *entry = next;
1542 return 0;
1543 }
1544
1545 static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1546 struct mv88e6xxx_vtu_stu_entry *entry)
1547 {
1548 u16 reg = 0;
1549 int ret;
1550
1551 ret = _mv88e6xxx_vtu_wait(chip);
1552 if (ret < 0)
1553 return ret;
1554
1555 if (!entry->valid)
1556 goto loadpurge;
1557
1558 /* Write port states */
1559 ret = mv88e6xxx_stu_data_write(chip, entry);
1560 if (ret < 0)
1561 return ret;
1562
1563 reg = GLOBAL_VTU_VID_VALID;
1564 loadpurge:
1565 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1566 if (ret < 0)
1567 return ret;
1568
1569 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1570 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1571 if (ret < 0)
1572 return ret;
1573
1574 return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1575 }
1576
1577 static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1578 u16 *new, u16 *old)
1579 {
1580 struct dsa_switch *ds = chip->ds;
1581 u16 upper_mask;
1582 u16 fid;
1583 int ret;
1584
1585 if (mv88e6xxx_num_databases(chip) == 4096)
1586 upper_mask = 0xff;
1587 else if (mv88e6xxx_num_databases(chip) == 256)
1588 upper_mask = 0xf;
1589 else
1590 return -EOPNOTSUPP;
1591
1592 /* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1593 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1594 if (ret < 0)
1595 return ret;
1596
1597 fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1598
1599 if (new) {
1600 ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
1601 ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1602
1603 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1604 ret);
1605 if (ret < 0)
1606 return ret;
1607 }
1608
1609 /* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1610 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1611 if (ret < 0)
1612 return ret;
1613
1614 fid |= (ret & upper_mask) << 4;
1615
1616 if (new) {
1617 ret &= ~upper_mask;
1618 ret |= (*new >> 4) & upper_mask;
1619
1620 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1621 ret);
1622 if (ret < 0)
1623 return ret;
1624
1625 netdev_dbg(ds->ports[port].netdev,
1626 "FID %d (was %d)\n", *new, fid);
1627 }
1628
1629 if (old)
1630 *old = fid;
1631
1632 return 0;
1633 }
1634
1635 static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1636 int port, u16 *fid)
1637 {
1638 return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1639 }
1640
1641 static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1642 int port, u16 fid)
1643 {
1644 return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1645 }
1646
1647 static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1648 {
1649 DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1650 struct mv88e6xxx_vtu_stu_entry vlan;
1651 int i, err;
1652
1653 bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
1654
1655 /* Set every FID bit used by the (un)bridged ports */
1656 for (i = 0; i < chip->info->num_ports; ++i) {
1657 err = _mv88e6xxx_port_fid_get(chip, i, fid);
1658 if (err)
1659 return err;
1660
1661 set_bit(*fid, fid_bitmap);
1662 }
1663
1664 /* Set every FID bit used by the VLAN entries */
1665 err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1666 if (err)
1667 return err;
1668
1669 do {
1670 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1671 if (err)
1672 return err;
1673
1674 if (!vlan.valid)
1675 break;
1676
1677 set_bit(vlan.fid, fid_bitmap);
1678 } while (vlan.vid < GLOBAL_VTU_VID_MASK);
1679
1680 /* The reset value 0x000 is used to indicate that multiple address
1681 * databases are not needed. Return the next positive available.
1682 */
1683 *fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1684 if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1685 return -ENOSPC;
1686
1687 /* Clear the database */
1688 return _mv88e6xxx_atu_flush(chip, *fid, true);
1689 }
1690
1691 static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1692 struct mv88e6xxx_vtu_stu_entry *entry)
1693 {
1694 struct dsa_switch *ds = chip->ds;
1695 struct mv88e6xxx_vtu_stu_entry vlan = {
1696 .valid = true,
1697 .vid = vid,
1698 };
1699 int i, err;
1700
1701 err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1702 if (err)
1703 return err;
1704
1705 /* exclude all ports except the CPU and DSA ports */
1706 for (i = 0; i < chip->info->num_ports; ++i)
1707 vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1708 ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1709 : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1710
1711 if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
1712 mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1713 struct mv88e6xxx_vtu_stu_entry vstp;
1714
1715 /* Adding a VTU entry requires a valid STU entry. As VSTP is not
1716 * implemented, only one STU entry is needed to cover all VTU
1717 * entries. Thus, validate the SID 0.
1718 */
1719 vlan.sid = 0;
1720 err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1721 if (err)
1722 return err;
1723
1724 if (vstp.sid != vlan.sid || !vstp.valid) {
1725 memset(&vstp, 0, sizeof(vstp));
1726 vstp.valid = true;
1727 vstp.sid = vlan.sid;
1728
1729 err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1730 if (err)
1731 return err;
1732 }
1733 }
1734
1735 *entry = vlan;
1736 return 0;
1737 }
1738
1739 static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1740 struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
1741 {
1742 int err;
1743
1744 if (!vid)
1745 return -EINVAL;
1746
1747 err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1748 if (err)
1749 return err;
1750
1751 err = _mv88e6xxx_vtu_getnext(chip, entry);
1752 if (err)
1753 return err;
1754
1755 if (entry->vid != vid || !entry->valid) {
1756 if (!creat)
1757 return -EOPNOTSUPP;
1758 /* -ENOENT would've been more appropriate, but switchdev expects
1759 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
1760 */
1761
1762 err = _mv88e6xxx_vtu_new(chip, vid, entry);
1763 }
1764
1765 return err;
1766 }
1767
1768 static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
1769 u16 vid_begin, u16 vid_end)
1770 {
1771 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1772 struct mv88e6xxx_vtu_stu_entry vlan;
1773 int i, err;
1774
1775 if (!vid_begin)
1776 return -EOPNOTSUPP;
1777
1778 mutex_lock(&chip->reg_lock);
1779
1780 err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1781 if (err)
1782 goto unlock;
1783
1784 do {
1785 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1786 if (err)
1787 goto unlock;
1788
1789 if (!vlan.valid)
1790 break;
1791
1792 if (vlan.vid > vid_end)
1793 break;
1794
1795 for (i = 0; i < chip->info->num_ports; ++i) {
1796 if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
1797 continue;
1798
1799 if (vlan.data[i] ==
1800 GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1801 continue;
1802
1803 if (chip->ports[i].bridge_dev ==
1804 chip->ports[port].bridge_dev)
1805 break; /* same bridge, check next VLAN */
1806
1807 netdev_warn(ds->ports[port].netdev,
1808 "hardware VLAN %d already used by %s\n",
1809 vlan.vid,
1810 netdev_name(chip->ports[i].bridge_dev));
1811 err = -EOPNOTSUPP;
1812 goto unlock;
1813 }
1814 } while (vlan.vid < vid_end);
1815
1816 unlock:
1817 mutex_unlock(&chip->reg_lock);
1818
1819 return err;
1820 }
1821
1822 static const char * const mv88e6xxx_port_8021q_mode_names[] = {
1823 [PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
1824 [PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
1825 [PORT_CONTROL_2_8021Q_CHECK] = "Check",
1826 [PORT_CONTROL_2_8021Q_SECURE] = "Secure",
1827 };
1828
1829 static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
1830 bool vlan_filtering)
1831 {
1832 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1833 u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1834 PORT_CONTROL_2_8021Q_DISABLED;
1835 int ret;
1836
1837 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1838 return -EOPNOTSUPP;
1839
1840 mutex_lock(&chip->reg_lock);
1841
1842 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1843 if (ret < 0)
1844 goto unlock;
1845
1846 old = ret & PORT_CONTROL_2_8021Q_MASK;
1847
1848 if (new != old) {
1849 ret &= ~PORT_CONTROL_2_8021Q_MASK;
1850 ret |= new & PORT_CONTROL_2_8021Q_MASK;
1851
1852 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1853 ret);
1854 if (ret < 0)
1855 goto unlock;
1856
1857 netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1858 mv88e6xxx_port_8021q_mode_names[new],
1859 mv88e6xxx_port_8021q_mode_names[old]);
1860 }
1861
1862 ret = 0;
1863 unlock:
1864 mutex_unlock(&chip->reg_lock);
1865
1866 return ret;
1867 }
1868
1869 static int
1870 mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1871 const struct switchdev_obj_port_vlan *vlan,
1872 struct switchdev_trans *trans)
1873 {
1874 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1875 int err;
1876
1877 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1878 return -EOPNOTSUPP;
1879
1880 /* If the requested port doesn't belong to the same bridge as the VLAN
1881 * members, do not support it (yet) and fallback to software VLAN.
1882 */
1883 err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
1884 vlan->vid_end);
1885 if (err)
1886 return err;
1887
1888 /* We don't need any dynamic resource from the kernel (yet),
1889 * so skip the prepare phase.
1890 */
1891 return 0;
1892 }
1893
1894 static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1895 u16 vid, bool untagged)
1896 {
1897 struct mv88e6xxx_vtu_stu_entry vlan;
1898 int err;
1899
1900 err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1901 if (err)
1902 return err;
1903
1904 vlan.data[port] = untagged ?
1905 GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1906 GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1907
1908 return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1909 }
1910
1911 static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1912 const struct switchdev_obj_port_vlan *vlan,
1913 struct switchdev_trans *trans)
1914 {
1915 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1916 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1917 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1918 u16 vid;
1919
1920 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1921 return;
1922
1923 mutex_lock(&chip->reg_lock);
1924
1925 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1926 if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1927 netdev_err(ds->ports[port].netdev,
1928 "failed to add VLAN %d%c\n",
1929 vid, untagged ? 'u' : 't');
1930
1931 if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1932 netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1933 vlan->vid_end);
1934
1935 mutex_unlock(&chip->reg_lock);
1936 }
1937
1938 static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1939 int port, u16 vid)
1940 {
1941 struct dsa_switch *ds = chip->ds;
1942 struct mv88e6xxx_vtu_stu_entry vlan;
1943 int i, err;
1944
1945 err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1946 if (err)
1947 return err;
1948
1949 /* Tell switchdev if this VLAN is handled in software */
1950 if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1951 return -EOPNOTSUPP;
1952
1953 vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1954
1955 /* keep the VLAN unless all ports are excluded */
1956 vlan.valid = false;
1957 for (i = 0; i < chip->info->num_ports; ++i) {
1958 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1959 continue;
1960
1961 if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1962 vlan.valid = true;
1963 break;
1964 }
1965 }
1966
1967 err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1968 if (err)
1969 return err;
1970
1971 return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1972 }
1973
1974 static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
1975 const struct switchdev_obj_port_vlan *vlan)
1976 {
1977 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1978 u16 pvid, vid;
1979 int err = 0;
1980
1981 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1982 return -EOPNOTSUPP;
1983
1984 mutex_lock(&chip->reg_lock);
1985
1986 err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1987 if (err)
1988 goto unlock;
1989
1990 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1991 err = _mv88e6xxx_port_vlan_del(chip, port, vid);
1992 if (err)
1993 goto unlock;
1994
1995 if (vid == pvid) {
1996 err = _mv88e6xxx_port_pvid_set(chip, port, 0);
1997 if (err)
1998 goto unlock;
1999 }
2000 }
2001
2002 unlock:
2003 mutex_unlock(&chip->reg_lock);
2004
2005 return err;
2006 }
2007
2008 static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2009 const unsigned char *addr)
2010 {
2011 int i, ret;
2012
2013 for (i = 0; i < 3; i++) {
2014 ret = _mv88e6xxx_reg_write(
2015 chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2016 (addr[i * 2] << 8) | addr[i * 2 + 1]);
2017 if (ret < 0)
2018 return ret;
2019 }
2020
2021 return 0;
2022 }
2023
2024 static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2025 unsigned char *addr)
2026 {
2027 int i, ret;
2028
2029 for (i = 0; i < 3; i++) {
2030 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2031 GLOBAL_ATU_MAC_01 + i);
2032 if (ret < 0)
2033 return ret;
2034 addr[i * 2] = ret >> 8;
2035 addr[i * 2 + 1] = ret & 0xff;
2036 }
2037
2038 return 0;
2039 }
2040
2041 static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2042 struct mv88e6xxx_atu_entry *entry)
2043 {
2044 int ret;
2045
2046 ret = _mv88e6xxx_atu_wait(chip);
2047 if (ret < 0)
2048 return ret;
2049
2050 ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2051 if (ret < 0)
2052 return ret;
2053
2054 ret = _mv88e6xxx_atu_data_write(chip, entry);
2055 if (ret < 0)
2056 return ret;
2057
2058 return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2059 }
2060
2061 static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2062 const unsigned char *addr, u16 vid,
2063 u8 state)
2064 {
2065 struct mv88e6xxx_atu_entry entry = { 0 };
2066 struct mv88e6xxx_vtu_stu_entry vlan;
2067 int err;
2068
2069 /* Null VLAN ID corresponds to the port private database */
2070 if (vid == 0)
2071 err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2072 else
2073 err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2074 if (err)
2075 return err;
2076
2077 entry.fid = vlan.fid;
2078 entry.state = state;
2079 ether_addr_copy(entry.mac, addr);
2080 if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2081 entry.trunk = false;
2082 entry.portv_trunkid = BIT(port);
2083 }
2084
2085 return _mv88e6xxx_atu_load(chip, &entry);
2086 }
2087
2088 static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
2089 const struct switchdev_obj_port_fdb *fdb,
2090 struct switchdev_trans *trans)
2091 {
2092 /* We don't need any dynamic resource from the kernel (yet),
2093 * so skip the prepare phase.
2094 */
2095 return 0;
2096 }
2097
2098 static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2099 const struct switchdev_obj_port_fdb *fdb,
2100 struct switchdev_trans *trans)
2101 {
2102 int state = is_multicast_ether_addr(fdb->addr) ?
2103 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2104 GLOBAL_ATU_DATA_STATE_UC_STATIC;
2105 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2106
2107 mutex_lock(&chip->reg_lock);
2108 if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2109 netdev_err(ds->ports[port].netdev,
2110 "failed to load MAC address\n");
2111 mutex_unlock(&chip->reg_lock);
2112 }
2113
2114 static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2115 const struct switchdev_obj_port_fdb *fdb)
2116 {
2117 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2118 int ret;
2119
2120 mutex_lock(&chip->reg_lock);
2121 ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2122 GLOBAL_ATU_DATA_STATE_UNUSED);
2123 mutex_unlock(&chip->reg_lock);
2124
2125 return ret;
2126 }
2127
2128 static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2129 struct mv88e6xxx_atu_entry *entry)
2130 {
2131 struct mv88e6xxx_atu_entry next = { 0 };
2132 int ret;
2133
2134 next.fid = fid;
2135
2136 ret = _mv88e6xxx_atu_wait(chip);
2137 if (ret < 0)
2138 return ret;
2139
2140 ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2141 if (ret < 0)
2142 return ret;
2143
2144 ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2145 if (ret < 0)
2146 return ret;
2147
2148 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2149 if (ret < 0)
2150 return ret;
2151
2152 next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
2153 if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2154 unsigned int mask, shift;
2155
2156 if (ret & GLOBAL_ATU_DATA_TRUNK) {
2157 next.trunk = true;
2158 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
2159 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
2160 } else {
2161 next.trunk = false;
2162 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
2163 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
2164 }
2165
2166 next.portv_trunkid = (ret & mask) >> shift;
2167 }
2168
2169 *entry = next;
2170 return 0;
2171 }
2172
2173 static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2174 u16 fid, u16 vid, int port,
2175 struct switchdev_obj_port_fdb *fdb,
2176 int (*cb)(struct switchdev_obj *obj))
2177 {
2178 struct mv88e6xxx_atu_entry addr = {
2179 .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
2180 };
2181 int err;
2182
2183 err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2184 if (err)
2185 return err;
2186
2187 do {
2188 err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2189 if (err)
2190 break;
2191
2192 if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
2193 break;
2194
2195 if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
2196 bool is_static = addr.state ==
2197 (is_multicast_ether_addr(addr.mac) ?
2198 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2199 GLOBAL_ATU_DATA_STATE_UC_STATIC);
2200
2201 fdb->vid = vid;
2202 ether_addr_copy(fdb->addr, addr.mac);
2203 fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
2204
2205 err = cb(&fdb->obj);
2206 if (err)
2207 break;
2208 }
2209 } while (!is_broadcast_ether_addr(addr.mac));
2210
2211 return err;
2212 }
2213
2214 static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
2215 struct switchdev_obj_port_fdb *fdb,
2216 int (*cb)(struct switchdev_obj *obj))
2217 {
2218 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2219 struct mv88e6xxx_vtu_stu_entry vlan = {
2220 .vid = GLOBAL_VTU_VID_MASK, /* all ones */
2221 };
2222 u16 fid;
2223 int err;
2224
2225 mutex_lock(&chip->reg_lock);
2226
2227 /* Dump port's default Filtering Information Database (VLAN ID 0) */
2228 err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2229 if (err)
2230 goto unlock;
2231
2232 err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2233 if (err)
2234 goto unlock;
2235
2236 /* Dump VLANs' Filtering Information Databases */
2237 err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2238 if (err)
2239 goto unlock;
2240
2241 do {
2242 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2243 if (err)
2244 break;
2245
2246 if (!vlan.valid)
2247 break;
2248
2249 err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
2250 port, fdb, cb);
2251 if (err)
2252 break;
2253 } while (vlan.vid < GLOBAL_VTU_VID_MASK);
2254
2255 unlock:
2256 mutex_unlock(&chip->reg_lock);
2257
2258 return err;
2259 }
2260
2261 static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
2262 struct net_device *bridge)
2263 {
2264 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2265 int i, err = 0;
2266
2267 mutex_lock(&chip->reg_lock);
2268
2269 /* Assign the bridge and remap each port's VLANTable */
2270 chip->ports[port].bridge_dev = bridge;
2271
2272 for (i = 0; i < chip->info->num_ports; ++i) {
2273 if (chip->ports[i].bridge_dev == bridge) {
2274 err = _mv88e6xxx_port_based_vlan_map(chip, i);
2275 if (err)
2276 break;
2277 }
2278 }
2279
2280 mutex_unlock(&chip->reg_lock);
2281
2282 return err;
2283 }
2284
2285 static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2286 {
2287 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2288 struct net_device *bridge = chip->ports[port].bridge_dev;
2289 int i;
2290
2291 mutex_lock(&chip->reg_lock);
2292
2293 /* Unassign the bridge and remap each port's VLANTable */
2294 chip->ports[port].bridge_dev = NULL;
2295
2296 for (i = 0; i < chip->info->num_ports; ++i)
2297 if (i == port || chip->ports[i].bridge_dev == bridge)
2298 if (_mv88e6xxx_port_based_vlan_map(chip, i))
2299 netdev_warn(ds->ports[i].netdev,
2300 "failed to remap\n");
2301
2302 mutex_unlock(&chip->reg_lock);
2303 }
2304
2305 static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip,
2306 int port, int page, int reg, int val)
2307 {
2308 int ret;
2309
2310 ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2311 if (ret < 0)
2312 goto restore_page_0;
2313
2314 ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val);
2315 restore_page_0:
2316 mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2317
2318 return ret;
2319 }
2320
2321 static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip,
2322 int port, int page, int reg)
2323 {
2324 int ret;
2325
2326 ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2327 if (ret < 0)
2328 goto restore_page_0;
2329
2330 ret = mv88e6xxx_mdio_read_indirect(chip, port, reg);
2331 restore_page_0:
2332 mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2333
2334 return ret;
2335 }
2336
2337 static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2338 {
2339 bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2340 u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2341 struct gpio_desc *gpiod = chip->reset;
2342 unsigned long timeout;
2343 int ret;
2344 int i;
2345
2346 /* Set all ports to the disabled state. */
2347 for (i = 0; i < chip->info->num_ports; i++) {
2348 ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2349 if (ret < 0)
2350 return ret;
2351
2352 ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2353 ret & 0xfffc);
2354 if (ret)
2355 return ret;
2356 }
2357
2358 /* Wait for transmit queues to drain. */
2359 usleep_range(2000, 4000);
2360
2361 /* If there is a gpio connected to the reset pin, toggle it */
2362 if (gpiod) {
2363 gpiod_set_value_cansleep(gpiod, 1);
2364 usleep_range(10000, 20000);
2365 gpiod_set_value_cansleep(gpiod, 0);
2366 usleep_range(10000, 20000);
2367 }
2368
2369 /* Reset the switch. Keep the PPU active if requested. The PPU
2370 * needs to be active to support indirect phy register access
2371 * through global registers 0x18 and 0x19.
2372 */
2373 if (ppu_active)
2374 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2375 else
2376 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2377 if (ret)
2378 return ret;
2379
2380 /* Wait up to one second for reset to complete. */
2381 timeout = jiffies + 1 * HZ;
2382 while (time_before(jiffies, timeout)) {
2383 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2384 if (ret < 0)
2385 return ret;
2386
2387 if ((ret & is_reset) == is_reset)
2388 break;
2389 usleep_range(1000, 2000);
2390 }
2391 if (time_after(jiffies, timeout))
2392 ret = -ETIMEDOUT;
2393 else
2394 ret = 0;
2395
2396 return ret;
2397 }
2398
2399 static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_chip *chip)
2400 {
2401 int ret;
2402
2403 ret = _mv88e6xxx_mdio_page_read(chip, REG_FIBER_SERDES,
2404 PAGE_FIBER_SERDES, MII_BMCR);
2405 if (ret < 0)
2406 return ret;
2407
2408 if (ret & BMCR_PDOWN) {
2409 ret &= ~BMCR_PDOWN;
2410 ret = _mv88e6xxx_mdio_page_write(chip, REG_FIBER_SERDES,
2411 PAGE_FIBER_SERDES, MII_BMCR,
2412 ret);
2413 }
2414
2415 return ret;
2416 }
2417
2418 static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
2419 int reg, u16 *val)
2420 {
2421 int addr = chip->info->port_base_addr + port;
2422
2423 if (port >= chip->info->num_ports)
2424 return -EINVAL;
2425
2426 return mv88e6xxx_read(chip, addr, reg, val);
2427 }
2428
2429 static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2430 {
2431 struct dsa_switch *ds = chip->ds;
2432 int ret;
2433 u16 reg;
2434
2435 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2436 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2437 mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2438 mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2439 /* MAC Forcing register: don't force link, speed,
2440 * duplex or flow control state to any particular
2441 * values on physical ports, but force the CPU port
2442 * and all DSA ports to their maximum bandwidth and
2443 * full duplex.
2444 */
2445 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2446 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2447 reg &= ~PORT_PCS_CTRL_UNFORCED;
2448 reg |= PORT_PCS_CTRL_FORCE_LINK |
2449 PORT_PCS_CTRL_LINK_UP |
2450 PORT_PCS_CTRL_DUPLEX_FULL |
2451 PORT_PCS_CTRL_FORCE_DUPLEX;
2452 if (mv88e6xxx_6065_family(chip))
2453 reg |= PORT_PCS_CTRL_100;
2454 else
2455 reg |= PORT_PCS_CTRL_1000;
2456 } else {
2457 reg |= PORT_PCS_CTRL_UNFORCED;
2458 }
2459
2460 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2461 PORT_PCS_CTRL, reg);
2462 if (ret)
2463 return ret;
2464 }
2465
2466 /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
2467 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
2468 * tunneling, determine priority by looking at 802.1p and IP
2469 * priority fields (IP prio has precedence), and set STP state
2470 * to Forwarding.
2471 *
2472 * If this is the CPU link, use DSA or EDSA tagging depending
2473 * on which tagging mode was configured.
2474 *
2475 * If this is a link to another switch, use DSA tagging mode.
2476 *
2477 * If this is the upstream port for this switch, enable
2478 * forwarding of unknown unicasts and multicasts.
2479 */
2480 reg = 0;
2481 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2482 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2483 mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
2484 mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2485 reg = PORT_CONTROL_IGMP_MLD_SNOOP |
2486 PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
2487 PORT_CONTROL_STATE_FORWARDING;
2488 if (dsa_is_cpu_port(ds, port)) {
2489 if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
2490 reg |= PORT_CONTROL_DSA_TAG;
2491 if (mv88e6xxx_6352_family(chip) ||
2492 mv88e6xxx_6351_family(chip) ||
2493 mv88e6xxx_6165_family(chip) ||
2494 mv88e6xxx_6097_family(chip) ||
2495 mv88e6xxx_6320_family(chip)) {
2496 reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2497 PORT_CONTROL_FORWARD_UNKNOWN |
2498 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2499 }
2500
2501 if (mv88e6xxx_6352_family(chip) ||
2502 mv88e6xxx_6351_family(chip) ||
2503 mv88e6xxx_6165_family(chip) ||
2504 mv88e6xxx_6097_family(chip) ||
2505 mv88e6xxx_6095_family(chip) ||
2506 mv88e6xxx_6065_family(chip) ||
2507 mv88e6xxx_6185_family(chip) ||
2508 mv88e6xxx_6320_family(chip)) {
2509 reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2510 }
2511 }
2512 if (dsa_is_dsa_port(ds, port)) {
2513 if (mv88e6xxx_6095_family(chip) ||
2514 mv88e6xxx_6185_family(chip))
2515 reg |= PORT_CONTROL_DSA_TAG;
2516 if (mv88e6xxx_6352_family(chip) ||
2517 mv88e6xxx_6351_family(chip) ||
2518 mv88e6xxx_6165_family(chip) ||
2519 mv88e6xxx_6097_family(chip) ||
2520 mv88e6xxx_6320_family(chip)) {
2521 reg |= PORT_CONTROL_FRAME_MODE_DSA;
2522 }
2523
2524 if (port == dsa_upstream_port(ds))
2525 reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2526 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2527 }
2528 if (reg) {
2529 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2530 PORT_CONTROL, reg);
2531 if (ret)
2532 return ret;
2533 }
2534
2535 /* If this port is connected to a SerDes, make sure the SerDes is not
2536 * powered down.
2537 */
2538 if (mv88e6xxx_6352_family(chip)) {
2539 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2540 if (ret < 0)
2541 return ret;
2542 ret &= PORT_STATUS_CMODE_MASK;
2543 if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
2544 (ret == PORT_STATUS_CMODE_1000BASE_X) ||
2545 (ret == PORT_STATUS_CMODE_SGMII)) {
2546 ret = mv88e6xxx_power_on_serdes(chip);
2547 if (ret < 0)
2548 return ret;
2549 }
2550 }
2551
2552 /* Port Control 2: don't force a good FCS, set the maximum frame size to
2553 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2554 * untagged frames on this port, do a destination address lookup on all
2555 * received packets as usual, disable ARP mirroring and don't send a
2556 * copy of all transmitted/received frames on this port to the CPU.
2557 */
2558 reg = 0;
2559 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2560 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2561 mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
2562 mv88e6xxx_6185_family(chip))
2563 reg = PORT_CONTROL_2_MAP_DA;
2564
2565 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2566 mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2567 reg |= PORT_CONTROL_2_JUMBO_10240;
2568
2569 if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2570 /* Set the upstream port this port should use */
2571 reg |= dsa_upstream_port(ds);
2572 /* enable forwarding of unknown multicast addresses to
2573 * the upstream port
2574 */
2575 if (port == dsa_upstream_port(ds))
2576 reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2577 }
2578
2579 reg |= PORT_CONTROL_2_8021Q_DISABLED;
2580
2581 if (reg) {
2582 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2583 PORT_CONTROL_2, reg);
2584 if (ret)
2585 return ret;
2586 }
2587
2588 /* Port Association Vector: when learning source addresses
2589 * of packets, add the address to the address database using
2590 * a port bitmap that has only the bit for this port set and
2591 * the other bits clear.
2592 */
2593 reg = 1 << port;
2594 /* Disable learning for CPU port */
2595 if (dsa_is_cpu_port(ds, port))
2596 reg = 0;
2597
2598 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
2599 reg);
2600 if (ret)
2601 return ret;
2602
2603 /* Egress rate control 2: disable egress rate control. */
2604 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2605 0x0000);
2606 if (ret)
2607 return ret;
2608
2609 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2610 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2611 mv88e6xxx_6320_family(chip)) {
2612 /* Do not limit the period of time that this port can
2613 * be paused for by the remote end or the period of
2614 * time that this port can pause the remote end.
2615 */
2616 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2617 PORT_PAUSE_CTRL, 0x0000);
2618 if (ret)
2619 return ret;
2620
2621 /* Port ATU control: disable limiting the number of
2622 * address database entries that this port is allowed
2623 * to use.
2624 */
2625 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2626 PORT_ATU_CONTROL, 0x0000);
2627 /* Priority Override: disable DA, SA and VTU priority
2628 * override.
2629 */
2630 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2631 PORT_PRI_OVERRIDE, 0x0000);
2632 if (ret)
2633 return ret;
2634
2635 /* Port Ethertype: use the Ethertype DSA Ethertype
2636 * value.
2637 */
2638 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2639 PORT_ETH_TYPE, ETH_P_EDSA);
2640 if (ret)
2641 return ret;
2642 /* Tag Remap: use an identity 802.1p prio -> switch
2643 * prio mapping.
2644 */
2645 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2646 PORT_TAG_REGMAP_0123, 0x3210);
2647 if (ret)
2648 return ret;
2649
2650 /* Tag Remap 2: use an identity 802.1p prio -> switch
2651 * prio mapping.
2652 */
2653 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2654 PORT_TAG_REGMAP_4567, 0x7654);
2655 if (ret)
2656 return ret;
2657 }
2658
2659 /* Rate Control: disable ingress rate limiting. */
2660 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2661 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2662 mv88e6xxx_6320_family(chip)) {
2663 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2664 PORT_RATE_CONTROL, 0x0001);
2665 if (ret)
2666 return ret;
2667 } else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
2668 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2669 PORT_RATE_CONTROL, 0x0000);
2670 if (ret)
2671 return ret;
2672 }
2673
2674 /* Port Control 1: disable trunking, disable sending
2675 * learning messages to this port.
2676 */
2677 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
2678 0x0000);
2679 if (ret)
2680 return ret;
2681
2682 /* Port based VLAN map: give each port the same default address
2683 * database, and allow bidirectional communication between the
2684 * CPU and DSA port(s), and the other ports.
2685 */
2686 ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2687 if (ret)
2688 return ret;
2689
2690 ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2691 if (ret)
2692 return ret;
2693
2694 /* Default VLAN ID and priority: don't set a default VLAN
2695 * ID, and set the default packet priority to zero.
2696 */
2697 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2698 0x0000);
2699 if (ret)
2700 return ret;
2701
2702 return 0;
2703 }
2704
2705 static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2706 {
2707 int err;
2708
2709 err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
2710 (addr[0] << 8) | addr[1]);
2711 if (err)
2712 return err;
2713
2714 err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
2715 (addr[2] << 8) | addr[3]);
2716 if (err)
2717 return err;
2718
2719 return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
2720 (addr[4] << 8) | addr[5]);
2721 }
2722
2723 static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
2724 unsigned int msecs)
2725 {
2726 const unsigned int coeff = chip->info->age_time_coeff;
2727 const unsigned int min = 0x01 * coeff;
2728 const unsigned int max = 0xff * coeff;
2729 u8 age_time;
2730 u16 val;
2731 int err;
2732
2733 if (msecs < min || msecs > max)
2734 return -ERANGE;
2735
2736 /* Round to nearest multiple of coeff */
2737 age_time = (msecs + coeff / 2) / coeff;
2738
2739 err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
2740 if (err)
2741 return err;
2742
2743 /* AgeTime is 11:4 bits */
2744 val &= ~0xff0;
2745 val |= age_time << 4;
2746
2747 return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
2748 }
2749
2750 static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
2751 unsigned int ageing_time)
2752 {
2753 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2754 int err;
2755
2756 mutex_lock(&chip->reg_lock);
2757 err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
2758 mutex_unlock(&chip->reg_lock);
2759
2760 return err;
2761 }
2762
2763 static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2764 {
2765 struct dsa_switch *ds = chip->ds;
2766 u32 upstream_port = dsa_upstream_port(ds);
2767 u16 reg;
2768 int err;
2769
2770 /* Enable the PHY Polling Unit if present, don't discard any packets,
2771 * and mask all interrupt sources.
2772 */
2773 reg = 0;
2774 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
2775 mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2776 reg |= GLOBAL_CONTROL_PPU_ENABLE;
2777
2778 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2779 if (err)
2780 return err;
2781
2782 /* Configure the upstream port, and configure it as the port to which
2783 * ingress and egress and ARP monitor frames are to be sent.
2784 */
2785 reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
2786 upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
2787 upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2788 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
2789 reg);
2790 if (err)
2791 return err;
2792
2793 /* Disable remote management, and set the switch's DSA device number. */
2794 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2795 GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
2796 (ds->index & 0x1f));
2797 if (err)
2798 return err;
2799
2800 /* Clear all the VTU and STU entries */
2801 err = _mv88e6xxx_vtu_stu_flush(chip);
2802 if (err < 0)
2803 return err;
2804
2805 /* Set the default address aging time to 5 minutes, and
2806 * enable address learn messages to be sent to all message
2807 * ports.
2808 */
2809 err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
2810 GLOBAL_ATU_CONTROL_LEARN2ALL);
2811 if (err)
2812 return err;
2813
2814 err = mv88e6xxx_g1_set_age_time(chip, 300000);
2815 if (err)
2816 return err;
2817
2818 /* Clear all ATU entries */
2819 err = _mv88e6xxx_atu_flush(chip, 0, true);
2820 if (err)
2821 return err;
2822
2823 /* Configure the IP ToS mapping registers. */
2824 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2825 if (err)
2826 return err;
2827 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2828 if (err)
2829 return err;
2830 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2831 if (err)
2832 return err;
2833 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2834 if (err)
2835 return err;
2836 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2837 if (err)
2838 return err;
2839 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2840 if (err)
2841 return err;
2842 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2843 if (err)
2844 return err;
2845 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2846 if (err)
2847 return err;
2848
2849 /* Configure the IEEE 802.1p priority mapping register. */
2850 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2851 if (err)
2852 return err;
2853
2854 /* Clear the statistics counters for all ports */
2855 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
2856 GLOBAL_STATS_OP_FLUSH_ALL);
2857 if (err)
2858 return err;
2859
2860 /* Wait for the flush to complete. */
2861 err = _mv88e6xxx_stats_wait(chip);
2862 if (err)
2863 return err;
2864
2865 return 0;
2866 }
2867
2868 static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
2869 int target, int port)
2870 {
2871 u16 val = (target << 8) | (port & 0xf);
2872
2873 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
2874 }
2875
2876 static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
2877 {
2878 int target, port;
2879 int err;
2880
2881 /* Initialize the routing port to the 32 possible target devices */
2882 for (target = 0; target < 32; ++target) {
2883 port = 0xf;
2884
2885 if (target < DSA_MAX_SWITCHES) {
2886 port = chip->ds->rtable[target];
2887 if (port == DSA_RTABLE_NONE)
2888 port = 0xf;
2889 }
2890
2891 err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
2892 if (err)
2893 break;
2894 }
2895
2896 return err;
2897 }
2898
2899 static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
2900 bool hask, u16 mask)
2901 {
2902 const u16 port_mask = BIT(chip->info->num_ports) - 1;
2903 u16 val = (num << 12) | (mask & port_mask);
2904
2905 if (hask)
2906 val |= GLOBAL2_TRUNK_MASK_HASK;
2907
2908 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
2909 }
2910
2911 static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
2912 u16 map)
2913 {
2914 const u16 port_mask = BIT(chip->info->num_ports) - 1;
2915 u16 val = (id << 11) | (map & port_mask);
2916
2917 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
2918 }
2919
2920 static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
2921 {
2922 const u16 port_mask = BIT(chip->info->num_ports) - 1;
2923 int i, err;
2924
2925 /* Clear all eight possible Trunk Mask vectors */
2926 for (i = 0; i < 8; ++i) {
2927 err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
2928 if (err)
2929 return err;
2930 }
2931
2932 /* Clear all sixteen possible Trunk ID routing vectors */
2933 for (i = 0; i < 16; ++i) {
2934 err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
2935 if (err)
2936 return err;
2937 }
2938
2939 return 0;
2940 }
2941
2942 static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
2943 {
2944 int port, err;
2945
2946 /* Init all Ingress Rate Limit resources of all ports */
2947 for (port = 0; port < chip->info->num_ports; ++port) {
2948 /* XXX newer chips (like 88E6390) have different 2-bit ops */
2949 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2950 GLOBAL2_IRL_CMD_OP_INIT_ALL |
2951 (port << 8));
2952 if (err)
2953 break;
2954
2955 /* Wait for the operation to complete */
2956 err = _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2957 GLOBAL2_IRL_CMD_BUSY);
2958 if (err)
2959 break;
2960 }
2961
2962 return err;
2963 }
2964
2965 /* Indirect write to the Switch MAC/WoL/WoF register */
2966 static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
2967 unsigned int pointer, u8 data)
2968 {
2969 u16 val = (pointer << 8) | data;
2970
2971 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
2972 }
2973
2974 static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2975 {
2976 int i, err;
2977
2978 for (i = 0; i < 6; i++) {
2979 err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
2980 if (err)
2981 break;
2982 }
2983
2984 return err;
2985 }
2986
2987 static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
2988 u8 data)
2989 {
2990 u16 val = (pointer << 8) | (data & 0x7);
2991
2992 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
2993 }
2994
2995 static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
2996 {
2997 int i, err;
2998
2999 /* Clear all sixteen possible Priority Override entries */
3000 for (i = 0; i < 16; i++) {
3001 err = mv88e6xxx_g2_pot_write(chip, i, 0);
3002 if (err)
3003 break;
3004 }
3005
3006 return err;
3007 }
3008
3009 static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
3010 {
3011 return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
3012 GLOBAL2_EEPROM_CMD_BUSY |
3013 GLOBAL2_EEPROM_CMD_RUNNING);
3014 }
3015
3016 static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
3017 {
3018 int err;
3019
3020 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
3021 if (err)
3022 return err;
3023
3024 return mv88e6xxx_g2_eeprom_wait(chip);
3025 }
3026
3027 static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
3028 u8 addr, u16 *data)
3029 {
3030 u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
3031 int err;
3032
3033 err = mv88e6xxx_g2_eeprom_wait(chip);
3034 if (err)
3035 return err;
3036
3037 err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3038 if (err)
3039 return err;
3040
3041 return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3042 }
3043
3044 static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
3045 u8 addr, u16 data)
3046 {
3047 u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
3048 int err;
3049
3050 err = mv88e6xxx_g2_eeprom_wait(chip);
3051 if (err)
3052 return err;
3053
3054 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3055 if (err)
3056 return err;
3057
3058 return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3059 }
3060
3061 static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
3062 {
3063 u16 reg;
3064 int err;
3065
3066 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
3067 /* Consider the frames with reserved multicast destination
3068 * addresses matching 01:80:c2:00:00:2x as MGMT.
3069 */
3070 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
3071 0xffff);
3072 if (err)
3073 return err;
3074 }
3075
3076 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
3077 /* Consider the frames with reserved multicast destination
3078 * addresses matching 01:80:c2:00:00:0x as MGMT.
3079 */
3080 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
3081 0xffff);
3082 if (err)
3083 return err;
3084 }
3085
3086 /* Ignore removed tag data on doubly tagged packets, disable
3087 * flow control messages, force flow control priority to the
3088 * highest, and send all special multicast frames to the CPU
3089 * port at the highest priority.
3090 */
3091 reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
3092 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
3093 mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
3094 reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
3095 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3096 if (err)
3097 return err;
3098
3099 /* Program the DSA routing table. */
3100 err = mv88e6xxx_g2_set_device_mapping(chip);
3101 if (err)
3102 return err;
3103
3104 /* Clear all trunk masks and mapping. */
3105 err = mv88e6xxx_g2_clear_trunk(chip);
3106 if (err)
3107 return err;
3108
3109 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
3110 /* Disable ingress rate limiting by resetting all per port
3111 * ingress rate limit resources to their initial state.
3112 */
3113 err = mv88e6xxx_g2_clear_irl(chip);
3114 if (err)
3115 return err;
3116 }
3117
3118 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
3119 /* Initialize Cross-chip Port VLAN Table to reset defaults */
3120 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
3121 GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3122 if (err)
3123 return err;
3124 }
3125
3126 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3127 /* Clear the priority override table. */
3128 err = mv88e6xxx_g2_clear_pot(chip);
3129 if (err)
3130 return err;
3131 }
3132
3133 return 0;
3134 }
3135
3136 static int mv88e6xxx_setup(struct dsa_switch *ds)
3137 {
3138 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3139 int err;
3140 int i;
3141
3142 chip->ds = ds;
3143 ds->slave_mii_bus = chip->mdio_bus;
3144
3145 mutex_lock(&chip->reg_lock);
3146
3147 err = mv88e6xxx_switch_reset(chip);
3148 if (err)
3149 goto unlock;
3150
3151 /* Setup Switch Port Registers */
3152 for (i = 0; i < chip->info->num_ports; i++) {
3153 err = mv88e6xxx_setup_port(chip, i);
3154 if (err)
3155 goto unlock;
3156 }
3157
3158 /* Setup Switch Global 1 Registers */
3159 err = mv88e6xxx_g1_setup(chip);
3160 if (err)
3161 goto unlock;
3162
3163 /* Setup Switch Global 2 Registers */
3164 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
3165 err = mv88e6xxx_g2_setup(chip);
3166 if (err)
3167 goto unlock;
3168 }
3169
3170 unlock:
3171 mutex_unlock(&chip->reg_lock);
3172
3173 return err;
3174 }
3175
3176 static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
3177 {
3178 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3179 int err;
3180
3181 mutex_lock(&chip->reg_lock);
3182
3183 /* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
3184 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
3185 err = mv88e6xxx_g2_set_switch_mac(chip, addr);
3186 else
3187 err = mv88e6xxx_g1_set_switch_mac(chip, addr);
3188
3189 mutex_unlock(&chip->reg_lock);
3190
3191 return err;
3192 }
3193
3194 #ifdef CONFIG_NET_DSA_HWMON
3195 static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page,
3196 int reg)
3197 {
3198 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3199 int ret;
3200
3201 mutex_lock(&chip->reg_lock);
3202 ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg);
3203 mutex_unlock(&chip->reg_lock);
3204
3205 return ret;
3206 }
3207
3208 static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page,
3209 int reg, int val)
3210 {
3211 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3212 int ret;
3213
3214 mutex_lock(&chip->reg_lock);
3215 ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val);
3216 mutex_unlock(&chip->reg_lock);
3217
3218 return ret;
3219 }
3220 #endif
3221
3222 static int mv88e6xxx_port_to_mdio_addr(struct mv88e6xxx_chip *chip, int port)
3223 {
3224 if (port >= 0 && port < chip->info->num_ports)
3225 return port;
3226 return -EINVAL;
3227 }
3228
3229 static int mv88e6xxx_mdio_read(struct mii_bus *bus, int port, int regnum)
3230 {
3231 struct mv88e6xxx_chip *chip = bus->priv;
3232 int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3233 int ret;
3234
3235 if (addr < 0)
3236 return 0xffff;
3237
3238 mutex_lock(&chip->reg_lock);
3239
3240 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3241 ret = mv88e6xxx_mdio_read_ppu(chip, addr, regnum);
3242 else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
3243 ret = mv88e6xxx_mdio_read_indirect(chip, addr, regnum);
3244 else
3245 ret = mv88e6xxx_mdio_read_direct(chip, addr, regnum);
3246
3247 mutex_unlock(&chip->reg_lock);
3248 return ret;
3249 }
3250
3251 static int mv88e6xxx_mdio_write(struct mii_bus *bus, int port, int regnum,
3252 u16 val)
3253 {
3254 struct mv88e6xxx_chip *chip = bus->priv;
3255 int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3256 int ret;
3257
3258 if (addr < 0)
3259 return 0xffff;
3260
3261 mutex_lock(&chip->reg_lock);
3262
3263 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3264 ret = mv88e6xxx_mdio_write_ppu(chip, addr, regnum, val);
3265 else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
3266 ret = mv88e6xxx_mdio_write_indirect(chip, addr, regnum, val);
3267 else
3268 ret = mv88e6xxx_mdio_write_direct(chip, addr, regnum, val);
3269
3270 mutex_unlock(&chip->reg_lock);
3271 return ret;
3272 }
3273
3274 static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3275 struct device_node *np)
3276 {
3277 static int index;
3278 struct mii_bus *bus;
3279 int err;
3280
3281 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3282 mv88e6xxx_ppu_state_init(chip);
3283
3284 if (np)
3285 chip->mdio_np = of_get_child_by_name(np, "mdio");
3286
3287 bus = devm_mdiobus_alloc(chip->dev);
3288 if (!bus)
3289 return -ENOMEM;
3290
3291 bus->priv = (void *)chip;
3292 if (np) {
3293 bus->name = np->full_name;
3294 snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
3295 } else {
3296 bus->name = "mv88e6xxx SMI";
3297 snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
3298 }
3299
3300 bus->read = mv88e6xxx_mdio_read;
3301 bus->write = mv88e6xxx_mdio_write;
3302 bus->parent = chip->dev;
3303
3304 if (chip->mdio_np)
3305 err = of_mdiobus_register(bus, chip->mdio_np);
3306 else
3307 err = mdiobus_register(bus);
3308 if (err) {
3309 dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3310 goto out;
3311 }
3312 chip->mdio_bus = bus;
3313
3314 return 0;
3315
3316 out:
3317 if (chip->mdio_np)
3318 of_node_put(chip->mdio_np);
3319
3320 return err;
3321 }
3322
3323 static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3324
3325 {
3326 struct mii_bus *bus = chip->mdio_bus;
3327
3328 mdiobus_unregister(bus);
3329
3330 if (chip->mdio_np)
3331 of_node_put(chip->mdio_np);
3332 }
3333
3334 #ifdef CONFIG_NET_DSA_HWMON
3335
3336 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
3337 {
3338 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3339 int ret;
3340 int val;
3341
3342 *temp = 0;
3343
3344 mutex_lock(&chip->reg_lock);
3345
3346 ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6);
3347 if (ret < 0)
3348 goto error;
3349
3350 /* Enable temperature sensor */
3351 ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3352 if (ret < 0)
3353 goto error;
3354
3355 ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5));
3356 if (ret < 0)
3357 goto error;
3358
3359 /* Wait for temperature to stabilize */
3360 usleep_range(10000, 12000);
3361
3362 val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3363 if (val < 0) {
3364 ret = val;
3365 goto error;
3366 }
3367
3368 /* Disable temperature sensor */
3369 ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5));
3370 if (ret < 0)
3371 goto error;
3372
3373 *temp = ((val & 0x1f) - 5) * 5;
3374
3375 error:
3376 mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0);
3377 mutex_unlock(&chip->reg_lock);
3378 return ret;
3379 }
3380
3381 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
3382 {
3383 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3384 int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3385 int ret;
3386
3387 *temp = 0;
3388
3389 ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27);
3390 if (ret < 0)
3391 return ret;
3392
3393 *temp = (ret & 0xff) - 25;
3394
3395 return 0;
3396 }
3397
3398 static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3399 {
3400 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3401
3402 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3403 return -EOPNOTSUPP;
3404
3405 if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3406 return mv88e63xx_get_temp(ds, temp);
3407
3408 return mv88e61xx_get_temp(ds, temp);
3409 }
3410
3411 static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3412 {
3413 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3414 int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3415 int ret;
3416
3417 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3418 return -EOPNOTSUPP;
3419
3420 *temp = 0;
3421
3422 ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3423 if (ret < 0)
3424 return ret;
3425
3426 *temp = (((ret >> 8) & 0x1f) * 5) - 25;
3427
3428 return 0;
3429 }
3430
3431 static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3432 {
3433 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3434 int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3435 int ret;
3436
3437 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3438 return -EOPNOTSUPP;
3439
3440 ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3441 if (ret < 0)
3442 return ret;
3443 temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3444 return mv88e6xxx_mdio_page_write(ds, phy, 6, 26,
3445 (ret & 0xe0ff) | (temp << 8));
3446 }
3447
3448 static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3449 {
3450 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3451 int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3452 int ret;
3453
3454 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3455 return -EOPNOTSUPP;
3456
3457 *alarm = false;
3458
3459 ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3460 if (ret < 0)
3461 return ret;
3462
3463 *alarm = !!(ret & 0x40);
3464
3465 return 0;
3466 }
3467 #endif /* CONFIG_NET_DSA_HWMON */
3468
3469 static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
3470 {
3471 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3472
3473 return chip->eeprom_len;
3474 }
3475
3476 static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
3477 struct ethtool_eeprom *eeprom, u8 *data)
3478 {
3479 unsigned int offset = eeprom->offset;
3480 unsigned int len = eeprom->len;
3481 u16 val;
3482 int err;
3483
3484 eeprom->len = 0;
3485
3486 if (offset & 1) {
3487 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3488 if (err)
3489 return err;
3490
3491 *data++ = (val >> 8) & 0xff;
3492
3493 offset++;
3494 len--;
3495 eeprom->len++;
3496 }
3497
3498 while (len >= 2) {
3499 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3500 if (err)
3501 return err;
3502
3503 *data++ = val & 0xff;
3504 *data++ = (val >> 8) & 0xff;
3505
3506 offset += 2;
3507 len -= 2;
3508 eeprom->len += 2;
3509 }
3510
3511 if (len) {
3512 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3513 if (err)
3514 return err;
3515
3516 *data++ = val & 0xff;
3517
3518 offset++;
3519 len--;
3520 eeprom->len++;
3521 }
3522
3523 return 0;
3524 }
3525
3526 static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
3527 struct ethtool_eeprom *eeprom, u8 *data)
3528 {
3529 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3530 int err;
3531
3532 mutex_lock(&chip->reg_lock);
3533
3534 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3535 err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
3536 else
3537 err = -EOPNOTSUPP;
3538
3539 mutex_unlock(&chip->reg_lock);
3540
3541 if (err)
3542 return err;
3543
3544 eeprom->magic = 0xc3ec4951;
3545
3546 return 0;
3547 }
3548
3549 static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
3550 struct ethtool_eeprom *eeprom, u8 *data)
3551 {
3552 unsigned int offset = eeprom->offset;
3553 unsigned int len = eeprom->len;
3554 u16 val;
3555 int err;
3556
3557 /* Ensure the RO WriteEn bit is set */
3558 err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
3559 if (err)
3560 return err;
3561
3562 if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
3563 return -EROFS;
3564
3565 eeprom->len = 0;
3566
3567 if (offset & 1) {
3568 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3569 if (err)
3570 return err;
3571
3572 val = (*data++ << 8) | (val & 0xff);
3573
3574 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3575 if (err)
3576 return err;
3577
3578 offset++;
3579 len--;
3580 eeprom->len++;
3581 }
3582
3583 while (len >= 2) {
3584 val = *data++;
3585 val |= *data++ << 8;
3586
3587 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3588 if (err)
3589 return err;
3590
3591 offset += 2;
3592 len -= 2;
3593 eeprom->len += 2;
3594 }
3595
3596 if (len) {
3597 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3598 if (err)
3599 return err;
3600
3601 val = (val & 0xff00) | *data++;
3602
3603 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3604 if (err)
3605 return err;
3606
3607 offset++;
3608 len--;
3609 eeprom->len++;
3610 }
3611
3612 return 0;
3613 }
3614
3615 static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
3616 struct ethtool_eeprom *eeprom, u8 *data)
3617 {
3618 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3619 int err;
3620
3621 if (eeprom->magic != 0xc3ec4951)
3622 return -EINVAL;
3623
3624 mutex_lock(&chip->reg_lock);
3625
3626 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3627 err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
3628 else
3629 err = -EOPNOTSUPP;
3630
3631 mutex_unlock(&chip->reg_lock);
3632
3633 return err;
3634 }
3635
3636 static const struct mv88e6xxx_info mv88e6xxx_table[] = {
3637 [MV88E6085] = {
3638 .prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
3639 .family = MV88E6XXX_FAMILY_6097,
3640 .name = "Marvell 88E6085",
3641 .num_databases = 4096,
3642 .num_ports = 10,
3643 .port_base_addr = 0x10,
3644 .age_time_coeff = 15000,
3645 .flags = MV88E6XXX_FLAGS_FAMILY_6097,
3646 },
3647
3648 [MV88E6095] = {
3649 .prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
3650 .family = MV88E6XXX_FAMILY_6095,
3651 .name = "Marvell 88E6095/88E6095F",
3652 .num_databases = 256,
3653 .num_ports = 11,
3654 .port_base_addr = 0x10,
3655 .age_time_coeff = 15000,
3656 .flags = MV88E6XXX_FLAGS_FAMILY_6095,
3657 },
3658
3659 [MV88E6123] = {
3660 .prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
3661 .family = MV88E6XXX_FAMILY_6165,
3662 .name = "Marvell 88E6123",
3663 .num_databases = 4096,
3664 .num_ports = 3,
3665 .port_base_addr = 0x10,
3666 .age_time_coeff = 15000,
3667 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3668 },
3669
3670 [MV88E6131] = {
3671 .prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
3672 .family = MV88E6XXX_FAMILY_6185,
3673 .name = "Marvell 88E6131",
3674 .num_databases = 256,
3675 .num_ports = 8,
3676 .port_base_addr = 0x10,
3677 .age_time_coeff = 15000,
3678 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3679 },
3680
3681 [MV88E6161] = {
3682 .prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
3683 .family = MV88E6XXX_FAMILY_6165,
3684 .name = "Marvell 88E6161",
3685 .num_databases = 4096,
3686 .num_ports = 6,
3687 .port_base_addr = 0x10,
3688 .age_time_coeff = 15000,
3689 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3690 },
3691
3692 [MV88E6165] = {
3693 .prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
3694 .family = MV88E6XXX_FAMILY_6165,
3695 .name = "Marvell 88E6165",
3696 .num_databases = 4096,
3697 .num_ports = 6,
3698 .port_base_addr = 0x10,
3699 .age_time_coeff = 15000,
3700 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3701 },
3702
3703 [MV88E6171] = {
3704 .prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
3705 .family = MV88E6XXX_FAMILY_6351,
3706 .name = "Marvell 88E6171",
3707 .num_databases = 4096,
3708 .num_ports = 7,
3709 .port_base_addr = 0x10,
3710 .age_time_coeff = 15000,
3711 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3712 },
3713
3714 [MV88E6172] = {
3715 .prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
3716 .family = MV88E6XXX_FAMILY_6352,
3717 .name = "Marvell 88E6172",
3718 .num_databases = 4096,
3719 .num_ports = 7,
3720 .port_base_addr = 0x10,
3721 .age_time_coeff = 15000,
3722 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3723 },
3724
3725 [MV88E6175] = {
3726 .prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
3727 .family = MV88E6XXX_FAMILY_6351,
3728 .name = "Marvell 88E6175",
3729 .num_databases = 4096,
3730 .num_ports = 7,
3731 .port_base_addr = 0x10,
3732 .age_time_coeff = 15000,
3733 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3734 },
3735
3736 [MV88E6176] = {
3737 .prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
3738 .family = MV88E6XXX_FAMILY_6352,
3739 .name = "Marvell 88E6176",
3740 .num_databases = 4096,
3741 .num_ports = 7,
3742 .port_base_addr = 0x10,
3743 .age_time_coeff = 15000,
3744 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3745 },
3746
3747 [MV88E6185] = {
3748 .prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
3749 .family = MV88E6XXX_FAMILY_6185,
3750 .name = "Marvell 88E6185",
3751 .num_databases = 256,
3752 .num_ports = 10,
3753 .port_base_addr = 0x10,
3754 .age_time_coeff = 15000,
3755 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3756 },
3757
3758 [MV88E6240] = {
3759 .prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
3760 .family = MV88E6XXX_FAMILY_6352,
3761 .name = "Marvell 88E6240",
3762 .num_databases = 4096,
3763 .num_ports = 7,
3764 .port_base_addr = 0x10,
3765 .age_time_coeff = 15000,
3766 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3767 },
3768
3769 [MV88E6320] = {
3770 .prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
3771 .family = MV88E6XXX_FAMILY_6320,
3772 .name = "Marvell 88E6320",
3773 .num_databases = 4096,
3774 .num_ports = 7,
3775 .port_base_addr = 0x10,
3776 .age_time_coeff = 15000,
3777 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3778 },
3779
3780 [MV88E6321] = {
3781 .prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
3782 .family = MV88E6XXX_FAMILY_6320,
3783 .name = "Marvell 88E6321",
3784 .num_databases = 4096,
3785 .num_ports = 7,
3786 .port_base_addr = 0x10,
3787 .age_time_coeff = 15000,
3788 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3789 },
3790
3791 [MV88E6350] = {
3792 .prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
3793 .family = MV88E6XXX_FAMILY_6351,
3794 .name = "Marvell 88E6350",
3795 .num_databases = 4096,
3796 .num_ports = 7,
3797 .port_base_addr = 0x10,
3798 .age_time_coeff = 15000,
3799 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3800 },
3801
3802 [MV88E6351] = {
3803 .prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
3804 .family = MV88E6XXX_FAMILY_6351,
3805 .name = "Marvell 88E6351",
3806 .num_databases = 4096,
3807 .num_ports = 7,
3808 .port_base_addr = 0x10,
3809 .age_time_coeff = 15000,
3810 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3811 },
3812
3813 [MV88E6352] = {
3814 .prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
3815 .family = MV88E6XXX_FAMILY_6352,
3816 .name = "Marvell 88E6352",
3817 .num_databases = 4096,
3818 .num_ports = 7,
3819 .port_base_addr = 0x10,
3820 .age_time_coeff = 15000,
3821 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3822 },
3823 };
3824
3825 static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3826 {
3827 int i;
3828
3829 for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
3830 if (mv88e6xxx_table[i].prod_num == prod_num)
3831 return &mv88e6xxx_table[i];
3832
3833 return NULL;
3834 }
3835
3836 static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3837 {
3838 const struct mv88e6xxx_info *info;
3839 unsigned int prod_num, rev;
3840 u16 id;
3841 int err;
3842
3843 mutex_lock(&chip->reg_lock);
3844 err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
3845 mutex_unlock(&chip->reg_lock);
3846 if (err)
3847 return err;
3848
3849 prod_num = (id & 0xfff0) >> 4;
3850 rev = id & 0x000f;
3851
3852 info = mv88e6xxx_lookup_info(prod_num);
3853 if (!info)
3854 return -ENODEV;
3855
3856 /* Update the compatible info with the probed one */
3857 chip->info = info;
3858
3859 dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
3860 chip->info->prod_num, chip->info->name, rev);
3861
3862 return 0;
3863 }
3864
3865 static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3866 {
3867 struct mv88e6xxx_chip *chip;
3868
3869 chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
3870 if (!chip)
3871 return NULL;
3872
3873 chip->dev = dev;
3874
3875 mutex_init(&chip->reg_lock);
3876
3877 return chip;
3878 }
3879
3880 static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3881 struct mii_bus *bus, int sw_addr)
3882 {
3883 /* ADDR[0] pin is unavailable externally and considered zero */
3884 if (sw_addr & 0x1)
3885 return -EINVAL;
3886
3887 if (sw_addr == 0)
3888 chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3889 else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_MULTI_CHIP))
3890 chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3891 else
3892 return -EINVAL;
3893
3894 chip->bus = bus;
3895 chip->sw_addr = sw_addr;
3896
3897 return 0;
3898 }
3899
3900 static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
3901 struct device *host_dev, int sw_addr,
3902 void **priv)
3903 {
3904 struct mv88e6xxx_chip *chip;
3905 struct mii_bus *bus;
3906 int err;
3907
3908 bus = dsa_host_dev_to_mii_bus(host_dev);
3909 if (!bus)
3910 return NULL;
3911
3912 chip = mv88e6xxx_alloc_chip(dsa_dev);
3913 if (!chip)
3914 return NULL;
3915
3916 /* Legacy SMI probing will only support chips similar to 88E6085 */
3917 chip->info = &mv88e6xxx_table[MV88E6085];
3918
3919 err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3920 if (err)
3921 goto free;
3922
3923 err = mv88e6xxx_detect(chip);
3924 if (err)
3925 goto free;
3926
3927 err = mv88e6xxx_mdio_register(chip, NULL);
3928 if (err)
3929 goto free;
3930
3931 *priv = chip;
3932
3933 return chip->info->name;
3934 free:
3935 devm_kfree(dsa_dev, chip);
3936
3937 return NULL;
3938 }
3939
3940 static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3941 .tag_protocol = DSA_TAG_PROTO_EDSA,
3942 .probe = mv88e6xxx_drv_probe,
3943 .setup = mv88e6xxx_setup,
3944 .set_addr = mv88e6xxx_set_addr,
3945 .adjust_link = mv88e6xxx_adjust_link,
3946 .get_strings = mv88e6xxx_get_strings,
3947 .get_ethtool_stats = mv88e6xxx_get_ethtool_stats,
3948 .get_sset_count = mv88e6xxx_get_sset_count,
3949 .set_eee = mv88e6xxx_set_eee,
3950 .get_eee = mv88e6xxx_get_eee,
3951 #ifdef CONFIG_NET_DSA_HWMON
3952 .get_temp = mv88e6xxx_get_temp,
3953 .get_temp_limit = mv88e6xxx_get_temp_limit,
3954 .set_temp_limit = mv88e6xxx_set_temp_limit,
3955 .get_temp_alarm = mv88e6xxx_get_temp_alarm,
3956 #endif
3957 .get_eeprom_len = mv88e6xxx_get_eeprom_len,
3958 .get_eeprom = mv88e6xxx_get_eeprom,
3959 .set_eeprom = mv88e6xxx_set_eeprom,
3960 .get_regs_len = mv88e6xxx_get_regs_len,
3961 .get_regs = mv88e6xxx_get_regs,
3962 .set_ageing_time = mv88e6xxx_set_ageing_time,
3963 .port_bridge_join = mv88e6xxx_port_bridge_join,
3964 .port_bridge_leave = mv88e6xxx_port_bridge_leave,
3965 .port_stp_state_set = mv88e6xxx_port_stp_state_set,
3966 .port_vlan_filtering = mv88e6xxx_port_vlan_filtering,
3967 .port_vlan_prepare = mv88e6xxx_port_vlan_prepare,
3968 .port_vlan_add = mv88e6xxx_port_vlan_add,
3969 .port_vlan_del = mv88e6xxx_port_vlan_del,
3970 .port_vlan_dump = mv88e6xxx_port_vlan_dump,
3971 .port_fdb_prepare = mv88e6xxx_port_fdb_prepare,
3972 .port_fdb_add = mv88e6xxx_port_fdb_add,
3973 .port_fdb_del = mv88e6xxx_port_fdb_del,
3974 .port_fdb_dump = mv88e6xxx_port_fdb_dump,
3975 };
3976
3977 static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3978 struct device_node *np)
3979 {
3980 struct device *dev = chip->dev;
3981 struct dsa_switch *ds;
3982
3983 ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
3984 if (!ds)
3985 return -ENOMEM;
3986
3987 ds->dev = dev;
3988 ds->priv = chip;
3989 ds->drv = &mv88e6xxx_switch_driver;
3990
3991 dev_set_drvdata(dev, ds);
3992
3993 return dsa_register_switch(ds, np);
3994 }
3995
3996 static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
3997 {
3998 dsa_unregister_switch(chip->ds);
3999 }
4000
4001 static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4002 {
4003 struct device *dev = &mdiodev->dev;
4004 struct device_node *np = dev->of_node;
4005 const struct mv88e6xxx_info *compat_info;
4006 struct mv88e6xxx_chip *chip;
4007 u32 eeprom_len;
4008 int err;
4009
4010 compat_info = of_device_get_match_data(dev);
4011 if (!compat_info)
4012 return -EINVAL;
4013
4014 chip = mv88e6xxx_alloc_chip(dev);
4015 if (!chip)
4016 return -ENOMEM;
4017
4018 chip->info = compat_info;
4019
4020 err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4021 if (err)
4022 return err;
4023
4024 err = mv88e6xxx_detect(chip);
4025 if (err)
4026 return err;
4027
4028 chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
4029 if (IS_ERR(chip->reset))
4030 return PTR_ERR(chip->reset);
4031
4032 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4033 !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4034 chip->eeprom_len = eeprom_len;
4035
4036 err = mv88e6xxx_mdio_register(chip, np);
4037 if (err)
4038 return err;
4039
4040 err = mv88e6xxx_register_switch(chip, np);
4041 if (err) {
4042 mv88e6xxx_mdio_unregister(chip);
4043 return err;
4044 }
4045
4046 return 0;
4047 }
4048
4049 static void mv88e6xxx_remove(struct mdio_device *mdiodev)
4050 {
4051 struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4052 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4053
4054 mv88e6xxx_unregister_switch(chip);
4055 mv88e6xxx_mdio_unregister(chip);
4056 }
4057
4058 static const struct of_device_id mv88e6xxx_of_match[] = {
4059 {
4060 .compatible = "marvell,mv88e6085",
4061 .data = &mv88e6xxx_table[MV88E6085],
4062 },
4063 { /* sentinel */ },
4064 };
4065
4066 MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
4067
4068 static struct mdio_driver mv88e6xxx_driver = {
4069 .probe = mv88e6xxx_probe,
4070 .remove = mv88e6xxx_remove,
4071 .mdiodrv.driver = {
4072 .name = "mv88e6085",
4073 .of_match_table = mv88e6xxx_of_match,
4074 },
4075 };
4076
4077 static int __init mv88e6xxx_init(void)
4078 {
4079 register_switch_driver(&mv88e6xxx_switch_driver);
4080 return mdio_driver_register(&mv88e6xxx_driver);
4081 }
4082 module_init(mv88e6xxx_init);
4083
4084 static void __exit mv88e6xxx_cleanup(void)
4085 {
4086 mdio_driver_unregister(&mv88e6xxx_driver);
4087 unregister_switch_driver(&mv88e6xxx_switch_driver);
4088 }
4089 module_exit(mv88e6xxx_cleanup);
4090
4091 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
4092 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
4093 MODULE_LICENSE("GPL");