]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/dsa/mv88e6xxx/chip.c
net: dsa: mv88e6xxx: rename _mv88e6xxx_wait
[mirror_ubuntu-artful-kernel.git] / drivers / net / dsa / mv88e6xxx / chip.c
1 /*
2 * Marvell 88e6xxx Ethernet switch single-chip support
3 *
4 * Copyright (c) 2008 Marvell Semiconductor
5 *
6 * Copyright (c) 2015 CMC Electronics, Inc.
7 * Added support for VLAN Table Unit operations
8 *
9 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 */
16
17 #include <linux/delay.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if_bridge.h>
21 #include <linux/jiffies.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/of_mdio.h>
27 #include <linux/netdevice.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/phy.h>
30 #include <net/dsa.h>
31 #include <net/switchdev.h>
32 #include "mv88e6xxx.h"
33
34 static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35 {
36 if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
37 dev_err(chip->dev, "Switch registers lock not held!\n");
38 dump_stack();
39 }
40 }
41
42 /* The switch ADDR[4:1] configuration pins define the chip SMI device address
43 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
44 *
45 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
46 * is the only device connected to the SMI master. In this mode it responds to
47 * all 32 possible SMI addresses, and thus maps directly the internal devices.
48 *
49 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
50 * multiple devices to share the SMI interface. In this mode it responds to only
51 * 2 registers, used to indirectly access the internal SMI devices.
52 */
53
54 static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 int addr, int reg, u16 *val)
56 {
57 if (!chip->smi_ops)
58 return -EOPNOTSUPP;
59
60 return chip->smi_ops->read(chip, addr, reg, val);
61 }
62
63 static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 int addr, int reg, u16 val)
65 {
66 if (!chip->smi_ops)
67 return -EOPNOTSUPP;
68
69 return chip->smi_ops->write(chip, addr, reg, val);
70 }
71
72 static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 int addr, int reg, u16 *val)
74 {
75 int ret;
76
77 ret = mdiobus_read_nested(chip->bus, addr, reg);
78 if (ret < 0)
79 return ret;
80
81 *val = ret & 0xffff;
82
83 return 0;
84 }
85
86 static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 int addr, int reg, u16 val)
88 {
89 int ret;
90
91 ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 if (ret < 0)
93 return ret;
94
95 return 0;
96 }
97
98 static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
99 .read = mv88e6xxx_smi_single_chip_read,
100 .write = mv88e6xxx_smi_single_chip_write,
101 };
102
103 static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 {
105 int ret;
106 int i;
107
108 for (i = 0; i < 16; i++) {
109 ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 if (ret < 0)
111 return ret;
112
113 if ((ret & SMI_CMD_BUSY) == 0)
114 return 0;
115 }
116
117 return -ETIMEDOUT;
118 }
119
120 static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121 int addr, int reg, u16 *val)
122 {
123 int ret;
124
125 /* Wait for the bus to become free. */
126 ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 if (ret < 0)
128 return ret;
129
130 /* Transmit the read command. */
131 ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132 SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 if (ret < 0)
134 return ret;
135
136 /* Wait for the read command to complete. */
137 ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 if (ret < 0)
139 return ret;
140
141 /* Read the data. */
142 ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 if (ret < 0)
144 return ret;
145
146 *val = ret & 0xffff;
147
148 return 0;
149 }
150
151 static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152 int addr, int reg, u16 val)
153 {
154 int ret;
155
156 /* Wait for the bus to become free. */
157 ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 if (ret < 0)
159 return ret;
160
161 /* Transmit the data to write. */
162 ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 if (ret < 0)
164 return ret;
165
166 /* Transmit the write command. */
167 ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168 SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 if (ret < 0)
170 return ret;
171
172 /* Wait for the write command to complete. */
173 ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 if (ret < 0)
175 return ret;
176
177 return 0;
178 }
179
180 static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
181 .read = mv88e6xxx_smi_multi_chip_read,
182 .write = mv88e6xxx_smi_multi_chip_write,
183 };
184
185 static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 int addr, int reg, u16 *val)
187 {
188 int err;
189
190 assert_reg_lock(chip);
191
192 err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 if (err)
194 return err;
195
196 dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 addr, reg, *val);
198
199 return 0;
200 }
201
202 static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203 int addr, int reg, u16 val)
204 {
205 int err;
206
207 assert_reg_lock(chip);
208
209 err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 if (err)
211 return err;
212
213 dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 addr, reg, val);
215
216 return 0;
217 }
218
219 static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
220 u16 mask)
221 {
222 unsigned long timeout = jiffies + HZ / 10;
223
224 while (time_before(jiffies, timeout)) {
225 u16 val;
226 int err;
227
228 err = mv88e6xxx_read(chip, addr, reg, &val);
229 if (err)
230 return err;
231
232 if (!(val & mask))
233 return 0;
234
235 usleep_range(1000, 2000);
236 }
237
238 return -ETIMEDOUT;
239 }
240
241 /* Indirect write to single pointer-data register with an Update bit */
242 static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
243 u16 update)
244 {
245 u16 val;
246 int i, err;
247
248 /* Wait until the previous operation is completed */
249 for (i = 0; i < 16; ++i) {
250 err = mv88e6xxx_read(chip, addr, reg, &val);
251 if (err)
252 return err;
253
254 if (!(val & BIT(15)))
255 break;
256 }
257
258 if (i == 16)
259 return -ETIMEDOUT;
260
261 /* Set the Update bit to trigger a write operation */
262 val = BIT(15) | update;
263
264 return mv88e6xxx_write(chip, addr, reg, val);
265 }
266
267 static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
268 {
269 u16 val;
270 int err;
271
272 err = mv88e6xxx_read(chip, addr, reg, &val);
273 if (err)
274 return err;
275
276 return val;
277 }
278
279 static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
280 int reg, u16 val)
281 {
282 return mv88e6xxx_write(chip, addr, reg, val);
283 }
284
285 static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip,
286 int addr, int regnum)
287 {
288 if (addr >= 0)
289 return _mv88e6xxx_reg_read(chip, addr, regnum);
290 return 0xffff;
291 }
292
293 static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip,
294 int addr, int regnum, u16 val)
295 {
296 if (addr >= 0)
297 return _mv88e6xxx_reg_write(chip, addr, regnum, val);
298 return 0;
299 }
300
301 static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
302 {
303 int ret;
304 unsigned long timeout;
305
306 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
307 if (ret < 0)
308 return ret;
309
310 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
311 ret & ~GLOBAL_CONTROL_PPU_ENABLE);
312 if (ret)
313 return ret;
314
315 timeout = jiffies + 1 * HZ;
316 while (time_before(jiffies, timeout)) {
317 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
318 if (ret < 0)
319 return ret;
320
321 usleep_range(1000, 2000);
322 if ((ret & GLOBAL_STATUS_PPU_MASK) !=
323 GLOBAL_STATUS_PPU_POLLING)
324 return 0;
325 }
326
327 return -ETIMEDOUT;
328 }
329
330 static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
331 {
332 int ret, err;
333 unsigned long timeout;
334
335 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
336 if (ret < 0)
337 return ret;
338
339 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
340 ret | GLOBAL_CONTROL_PPU_ENABLE);
341 if (err)
342 return err;
343
344 timeout = jiffies + 1 * HZ;
345 while (time_before(jiffies, timeout)) {
346 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
347 if (ret < 0)
348 return ret;
349
350 usleep_range(1000, 2000);
351 if ((ret & GLOBAL_STATUS_PPU_MASK) ==
352 GLOBAL_STATUS_PPU_POLLING)
353 return 0;
354 }
355
356 return -ETIMEDOUT;
357 }
358
359 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
360 {
361 struct mv88e6xxx_chip *chip;
362
363 chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
364
365 mutex_lock(&chip->reg_lock);
366
367 if (mutex_trylock(&chip->ppu_mutex)) {
368 if (mv88e6xxx_ppu_enable(chip) == 0)
369 chip->ppu_disabled = 0;
370 mutex_unlock(&chip->ppu_mutex);
371 }
372
373 mutex_unlock(&chip->reg_lock);
374 }
375
376 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
377 {
378 struct mv88e6xxx_chip *chip = (void *)_ps;
379
380 schedule_work(&chip->ppu_work);
381 }
382
383 static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
384 {
385 int ret;
386
387 mutex_lock(&chip->ppu_mutex);
388
389 /* If the PHY polling unit is enabled, disable it so that
390 * we can access the PHY registers. If it was already
391 * disabled, cancel the timer that is going to re-enable
392 * it.
393 */
394 if (!chip->ppu_disabled) {
395 ret = mv88e6xxx_ppu_disable(chip);
396 if (ret < 0) {
397 mutex_unlock(&chip->ppu_mutex);
398 return ret;
399 }
400 chip->ppu_disabled = 1;
401 } else {
402 del_timer(&chip->ppu_timer);
403 ret = 0;
404 }
405
406 return ret;
407 }
408
409 static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
410 {
411 /* Schedule a timer to re-enable the PHY polling unit. */
412 mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
413 mutex_unlock(&chip->ppu_mutex);
414 }
415
416 static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
417 {
418 mutex_init(&chip->ppu_mutex);
419 INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
420 init_timer(&chip->ppu_timer);
421 chip->ppu_timer.data = (unsigned long)chip;
422 chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
423 }
424
425 static int mv88e6xxx_mdio_read_ppu(struct mv88e6xxx_chip *chip, int addr,
426 int regnum)
427 {
428 int ret;
429
430 ret = mv88e6xxx_ppu_access_get(chip);
431 if (ret >= 0) {
432 ret = _mv88e6xxx_reg_read(chip, addr, regnum);
433 mv88e6xxx_ppu_access_put(chip);
434 }
435
436 return ret;
437 }
438
439 static int mv88e6xxx_mdio_write_ppu(struct mv88e6xxx_chip *chip, int addr,
440 int regnum, u16 val)
441 {
442 int ret;
443
444 ret = mv88e6xxx_ppu_access_get(chip);
445 if (ret >= 0) {
446 ret = _mv88e6xxx_reg_write(chip, addr, regnum, val);
447 mv88e6xxx_ppu_access_put(chip);
448 }
449
450 return ret;
451 }
452
453 static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
454 {
455 return chip->info->family == MV88E6XXX_FAMILY_6065;
456 }
457
458 static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
459 {
460 return chip->info->family == MV88E6XXX_FAMILY_6095;
461 }
462
463 static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
464 {
465 return chip->info->family == MV88E6XXX_FAMILY_6097;
466 }
467
468 static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
469 {
470 return chip->info->family == MV88E6XXX_FAMILY_6165;
471 }
472
473 static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
474 {
475 return chip->info->family == MV88E6XXX_FAMILY_6185;
476 }
477
478 static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
479 {
480 return chip->info->family == MV88E6XXX_FAMILY_6320;
481 }
482
483 static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
484 {
485 return chip->info->family == MV88E6XXX_FAMILY_6351;
486 }
487
488 static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
489 {
490 return chip->info->family == MV88E6XXX_FAMILY_6352;
491 }
492
493 static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
494 {
495 return chip->info->num_databases;
496 }
497
498 static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
499 {
500 /* Does the device have dedicated FID registers for ATU and VTU ops? */
501 if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
502 mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
503 return true;
504
505 return false;
506 }
507
508 /* We expect the switch to perform auto negotiation if there is a real
509 * phy. However, in the case of a fixed link phy, we force the port
510 * settings from the fixed link settings.
511 */
512 static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
513 struct phy_device *phydev)
514 {
515 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
516 u32 reg;
517 int ret;
518
519 if (!phy_is_pseudo_fixed_link(phydev))
520 return;
521
522 mutex_lock(&chip->reg_lock);
523
524 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
525 if (ret < 0)
526 goto out;
527
528 reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
529 PORT_PCS_CTRL_FORCE_LINK |
530 PORT_PCS_CTRL_DUPLEX_FULL |
531 PORT_PCS_CTRL_FORCE_DUPLEX |
532 PORT_PCS_CTRL_UNFORCED);
533
534 reg |= PORT_PCS_CTRL_FORCE_LINK;
535 if (phydev->link)
536 reg |= PORT_PCS_CTRL_LINK_UP;
537
538 if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
539 goto out;
540
541 switch (phydev->speed) {
542 case SPEED_1000:
543 reg |= PORT_PCS_CTRL_1000;
544 break;
545 case SPEED_100:
546 reg |= PORT_PCS_CTRL_100;
547 break;
548 case SPEED_10:
549 reg |= PORT_PCS_CTRL_10;
550 break;
551 default:
552 pr_info("Unknown speed");
553 goto out;
554 }
555
556 reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
557 if (phydev->duplex == DUPLEX_FULL)
558 reg |= PORT_PCS_CTRL_DUPLEX_FULL;
559
560 if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
561 (port >= chip->info->num_ports - 2)) {
562 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
563 reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
564 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
565 reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
566 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
567 reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
568 PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
569 }
570 _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
571
572 out:
573 mutex_unlock(&chip->reg_lock);
574 }
575
576 static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
577 {
578 int ret;
579 int i;
580
581 for (i = 0; i < 10; i++) {
582 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
583 if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
584 return 0;
585 }
586
587 return -ETIMEDOUT;
588 }
589
590 static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
591 {
592 int ret;
593
594 if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
595 port = (port + 1) << 5;
596
597 /* Snapshot the hardware statistics counters for this port. */
598 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
599 GLOBAL_STATS_OP_CAPTURE_PORT |
600 GLOBAL_STATS_OP_HIST_RX_TX | port);
601 if (ret < 0)
602 return ret;
603
604 /* Wait for the snapshotting to complete. */
605 ret = _mv88e6xxx_stats_wait(chip);
606 if (ret < 0)
607 return ret;
608
609 return 0;
610 }
611
612 static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
613 int stat, u32 *val)
614 {
615 u32 _val;
616 int ret;
617
618 *val = 0;
619
620 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
621 GLOBAL_STATS_OP_READ_CAPTURED |
622 GLOBAL_STATS_OP_HIST_RX_TX | stat);
623 if (ret < 0)
624 return;
625
626 ret = _mv88e6xxx_stats_wait(chip);
627 if (ret < 0)
628 return;
629
630 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
631 if (ret < 0)
632 return;
633
634 _val = ret << 16;
635
636 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
637 if (ret < 0)
638 return;
639
640 *val = _val | ret;
641 }
642
643 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
644 { "in_good_octets", 8, 0x00, BANK0, },
645 { "in_bad_octets", 4, 0x02, BANK0, },
646 { "in_unicast", 4, 0x04, BANK0, },
647 { "in_broadcasts", 4, 0x06, BANK0, },
648 { "in_multicasts", 4, 0x07, BANK0, },
649 { "in_pause", 4, 0x16, BANK0, },
650 { "in_undersize", 4, 0x18, BANK0, },
651 { "in_fragments", 4, 0x19, BANK0, },
652 { "in_oversize", 4, 0x1a, BANK0, },
653 { "in_jabber", 4, 0x1b, BANK0, },
654 { "in_rx_error", 4, 0x1c, BANK0, },
655 { "in_fcs_error", 4, 0x1d, BANK0, },
656 { "out_octets", 8, 0x0e, BANK0, },
657 { "out_unicast", 4, 0x10, BANK0, },
658 { "out_broadcasts", 4, 0x13, BANK0, },
659 { "out_multicasts", 4, 0x12, BANK0, },
660 { "out_pause", 4, 0x15, BANK0, },
661 { "excessive", 4, 0x11, BANK0, },
662 { "collisions", 4, 0x1e, BANK0, },
663 { "deferred", 4, 0x05, BANK0, },
664 { "single", 4, 0x14, BANK0, },
665 { "multiple", 4, 0x17, BANK0, },
666 { "out_fcs_error", 4, 0x03, BANK0, },
667 { "late", 4, 0x1f, BANK0, },
668 { "hist_64bytes", 4, 0x08, BANK0, },
669 { "hist_65_127bytes", 4, 0x09, BANK0, },
670 { "hist_128_255bytes", 4, 0x0a, BANK0, },
671 { "hist_256_511bytes", 4, 0x0b, BANK0, },
672 { "hist_512_1023bytes", 4, 0x0c, BANK0, },
673 { "hist_1024_max_bytes", 4, 0x0d, BANK0, },
674 { "sw_in_discards", 4, 0x10, PORT, },
675 { "sw_in_filtered", 2, 0x12, PORT, },
676 { "sw_out_filtered", 2, 0x13, PORT, },
677 { "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
678 { "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
679 { "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
680 { "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
681 { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
682 { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
683 { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
684 { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
685 { "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
686 { "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
687 { "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
688 { "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
689 { "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
690 { "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
691 { "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
692 { "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
693 { "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
694 { "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
695 { "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
696 { "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
697 { "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
698 { "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
699 { "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
700 { "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
701 { "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
702 { "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
703 };
704
705 static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
706 struct mv88e6xxx_hw_stat *stat)
707 {
708 switch (stat->type) {
709 case BANK0:
710 return true;
711 case BANK1:
712 return mv88e6xxx_6320_family(chip);
713 case PORT:
714 return mv88e6xxx_6095_family(chip) ||
715 mv88e6xxx_6185_family(chip) ||
716 mv88e6xxx_6097_family(chip) ||
717 mv88e6xxx_6165_family(chip) ||
718 mv88e6xxx_6351_family(chip) ||
719 mv88e6xxx_6352_family(chip);
720 }
721 return false;
722 }
723
724 static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
725 struct mv88e6xxx_hw_stat *s,
726 int port)
727 {
728 u32 low;
729 u32 high = 0;
730 int ret;
731 u64 value;
732
733 switch (s->type) {
734 case PORT:
735 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
736 if (ret < 0)
737 return UINT64_MAX;
738
739 low = ret;
740 if (s->sizeof_stat == 4) {
741 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
742 s->reg + 1);
743 if (ret < 0)
744 return UINT64_MAX;
745 high = ret;
746 }
747 break;
748 case BANK0:
749 case BANK1:
750 _mv88e6xxx_stats_read(chip, s->reg, &low);
751 if (s->sizeof_stat == 8)
752 _mv88e6xxx_stats_read(chip, s->reg + 1, &high);
753 }
754 value = (((u64)high) << 16) | low;
755 return value;
756 }
757
758 static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
759 uint8_t *data)
760 {
761 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
762 struct mv88e6xxx_hw_stat *stat;
763 int i, j;
764
765 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
766 stat = &mv88e6xxx_hw_stats[i];
767 if (mv88e6xxx_has_stat(chip, stat)) {
768 memcpy(data + j * ETH_GSTRING_LEN, stat->string,
769 ETH_GSTRING_LEN);
770 j++;
771 }
772 }
773 }
774
775 static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
776 {
777 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
778 struct mv88e6xxx_hw_stat *stat;
779 int i, j;
780
781 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
782 stat = &mv88e6xxx_hw_stats[i];
783 if (mv88e6xxx_has_stat(chip, stat))
784 j++;
785 }
786 return j;
787 }
788
789 static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
790 uint64_t *data)
791 {
792 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
793 struct mv88e6xxx_hw_stat *stat;
794 int ret;
795 int i, j;
796
797 mutex_lock(&chip->reg_lock);
798
799 ret = _mv88e6xxx_stats_snapshot(chip, port);
800 if (ret < 0) {
801 mutex_unlock(&chip->reg_lock);
802 return;
803 }
804 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
805 stat = &mv88e6xxx_hw_stats[i];
806 if (mv88e6xxx_has_stat(chip, stat)) {
807 data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
808 j++;
809 }
810 }
811
812 mutex_unlock(&chip->reg_lock);
813 }
814
815 static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
816 {
817 return 32 * sizeof(u16);
818 }
819
820 static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
821 struct ethtool_regs *regs, void *_p)
822 {
823 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
824 u16 *p = _p;
825 int i;
826
827 regs->version = 0;
828
829 memset(p, 0xff, 32 * sizeof(u16));
830
831 mutex_lock(&chip->reg_lock);
832
833 for (i = 0; i < 32; i++) {
834 int ret;
835
836 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
837 if (ret >= 0)
838 p[i] = ret;
839 }
840
841 mutex_unlock(&chip->reg_lock);
842 }
843
844 static int mv88e6xxx_mdio_wait(struct mv88e6xxx_chip *chip)
845 {
846 return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
847 GLOBAL2_SMI_OP_BUSY);
848 }
849
850 static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
851 {
852 return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
853 GLOBAL_ATU_OP_BUSY);
854 }
855
856 static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip,
857 int addr, int regnum)
858 {
859 int ret;
860
861 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
862 GLOBAL2_SMI_OP_22_READ | (addr << 5) |
863 regnum);
864 if (ret < 0)
865 return ret;
866
867 ret = mv88e6xxx_mdio_wait(chip);
868 if (ret < 0)
869 return ret;
870
871 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA);
872
873 return ret;
874 }
875
876 static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip,
877 int addr, int regnum, u16 val)
878 {
879 int ret;
880
881 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
882 if (ret < 0)
883 return ret;
884
885 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
886 GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
887 regnum);
888
889 return mv88e6xxx_mdio_wait(chip);
890 }
891
892 static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
893 struct ethtool_eee *e)
894 {
895 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
896 int reg;
897
898 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
899 return -EOPNOTSUPP;
900
901 mutex_lock(&chip->reg_lock);
902
903 reg = mv88e6xxx_mdio_read_indirect(chip, port, 16);
904 if (reg < 0)
905 goto out;
906
907 e->eee_enabled = !!(reg & 0x0200);
908 e->tx_lpi_enabled = !!(reg & 0x0100);
909
910 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
911 if (reg < 0)
912 goto out;
913
914 e->eee_active = !!(reg & PORT_STATUS_EEE);
915 reg = 0;
916
917 out:
918 mutex_unlock(&chip->reg_lock);
919 return reg;
920 }
921
922 static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
923 struct phy_device *phydev, struct ethtool_eee *e)
924 {
925 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
926 int reg;
927 int ret;
928
929 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
930 return -EOPNOTSUPP;
931
932 mutex_lock(&chip->reg_lock);
933
934 ret = mv88e6xxx_mdio_read_indirect(chip, port, 16);
935 if (ret < 0)
936 goto out;
937
938 reg = ret & ~0x0300;
939 if (e->eee_enabled)
940 reg |= 0x0200;
941 if (e->tx_lpi_enabled)
942 reg |= 0x0100;
943
944 ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg);
945 out:
946 mutex_unlock(&chip->reg_lock);
947
948 return ret;
949 }
950
951 static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
952 {
953 int ret;
954
955 if (mv88e6xxx_has_fid_reg(chip)) {
956 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
957 fid);
958 if (ret < 0)
959 return ret;
960 } else if (mv88e6xxx_num_databases(chip) == 256) {
961 /* ATU DBNum[7:4] are located in ATU Control 15:12 */
962 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
963 if (ret < 0)
964 return ret;
965
966 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
967 (ret & 0xfff) |
968 ((fid << 8) & 0xf000));
969 if (ret < 0)
970 return ret;
971
972 /* ATU DBNum[3:0] are located in ATU Operation 3:0 */
973 cmd |= fid & 0xf;
974 }
975
976 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
977 if (ret < 0)
978 return ret;
979
980 return _mv88e6xxx_atu_wait(chip);
981 }
982
983 static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
984 struct mv88e6xxx_atu_entry *entry)
985 {
986 u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
987
988 if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
989 unsigned int mask, shift;
990
991 if (entry->trunk) {
992 data |= GLOBAL_ATU_DATA_TRUNK;
993 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
994 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
995 } else {
996 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
997 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
998 }
999
1000 data |= (entry->portv_trunkid << shift) & mask;
1001 }
1002
1003 return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1004 }
1005
1006 static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1007 struct mv88e6xxx_atu_entry *entry,
1008 bool static_too)
1009 {
1010 int op;
1011 int err;
1012
1013 err = _mv88e6xxx_atu_wait(chip);
1014 if (err)
1015 return err;
1016
1017 err = _mv88e6xxx_atu_data_write(chip, entry);
1018 if (err)
1019 return err;
1020
1021 if (entry->fid) {
1022 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
1023 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
1024 } else {
1025 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1026 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1027 }
1028
1029 return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1030 }
1031
1032 static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1033 u16 fid, bool static_too)
1034 {
1035 struct mv88e6xxx_atu_entry entry = {
1036 .fid = fid,
1037 .state = 0, /* EntryState bits must be 0 */
1038 };
1039
1040 return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1041 }
1042
1043 static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1044 int from_port, int to_port, bool static_too)
1045 {
1046 struct mv88e6xxx_atu_entry entry = {
1047 .trunk = false,
1048 .fid = fid,
1049 };
1050
1051 /* EntryState bits must be 0xF */
1052 entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1053
1054 /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1055 entry.portv_trunkid = (to_port & 0x0f) << 4;
1056 entry.portv_trunkid |= from_port & 0x0f;
1057
1058 return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1059 }
1060
1061 static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1062 int port, bool static_too)
1063 {
1064 /* Destination port 0xF means remove the entries */
1065 return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1066 }
1067
1068 static const char * const mv88e6xxx_port_state_names[] = {
1069 [PORT_CONTROL_STATE_DISABLED] = "Disabled",
1070 [PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
1071 [PORT_CONTROL_STATE_LEARNING] = "Learning",
1072 [PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
1073 };
1074
1075 static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1076 u8 state)
1077 {
1078 struct dsa_switch *ds = chip->ds;
1079 int reg, ret = 0;
1080 u8 oldstate;
1081
1082 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1083 if (reg < 0)
1084 return reg;
1085
1086 oldstate = reg & PORT_CONTROL_STATE_MASK;
1087
1088 if (oldstate != state) {
1089 /* Flush forwarding database if we're moving a port
1090 * from Learning or Forwarding state to Disabled or
1091 * Blocking or Listening state.
1092 */
1093 if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1094 oldstate == PORT_CONTROL_STATE_FORWARDING) &&
1095 (state == PORT_CONTROL_STATE_DISABLED ||
1096 state == PORT_CONTROL_STATE_BLOCKING)) {
1097 ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1098 if (ret)
1099 return ret;
1100 }
1101
1102 reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1103 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1104 reg);
1105 if (ret)
1106 return ret;
1107
1108 netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1109 mv88e6xxx_port_state_names[state],
1110 mv88e6xxx_port_state_names[oldstate]);
1111 }
1112
1113 return ret;
1114 }
1115
1116 static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1117 {
1118 struct net_device *bridge = chip->ports[port].bridge_dev;
1119 const u16 mask = (1 << chip->info->num_ports) - 1;
1120 struct dsa_switch *ds = chip->ds;
1121 u16 output_ports = 0;
1122 int reg;
1123 int i;
1124
1125 /* allow CPU port or DSA link(s) to send frames to every port */
1126 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1127 output_ports = mask;
1128 } else {
1129 for (i = 0; i < chip->info->num_ports; ++i) {
1130 /* allow sending frames to every group member */
1131 if (bridge && chip->ports[i].bridge_dev == bridge)
1132 output_ports |= BIT(i);
1133
1134 /* allow sending frames to CPU port and DSA link(s) */
1135 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1136 output_ports |= BIT(i);
1137 }
1138 }
1139
1140 /* prevent frames from going back out of the port they came in on */
1141 output_ports &= ~BIT(port);
1142
1143 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1144 if (reg < 0)
1145 return reg;
1146
1147 reg &= ~mask;
1148 reg |= output_ports & mask;
1149
1150 return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1151 }
1152
1153 static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
1154 u8 state)
1155 {
1156 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1157 int stp_state;
1158 int err;
1159
1160 switch (state) {
1161 case BR_STATE_DISABLED:
1162 stp_state = PORT_CONTROL_STATE_DISABLED;
1163 break;
1164 case BR_STATE_BLOCKING:
1165 case BR_STATE_LISTENING:
1166 stp_state = PORT_CONTROL_STATE_BLOCKING;
1167 break;
1168 case BR_STATE_LEARNING:
1169 stp_state = PORT_CONTROL_STATE_LEARNING;
1170 break;
1171 case BR_STATE_FORWARDING:
1172 default:
1173 stp_state = PORT_CONTROL_STATE_FORWARDING;
1174 break;
1175 }
1176
1177 mutex_lock(&chip->reg_lock);
1178 err = _mv88e6xxx_port_state(chip, port, stp_state);
1179 mutex_unlock(&chip->reg_lock);
1180
1181 if (err)
1182 netdev_err(ds->ports[port].netdev,
1183 "failed to update state to %s\n",
1184 mv88e6xxx_port_state_names[stp_state]);
1185 }
1186
1187 static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1188 u16 *new, u16 *old)
1189 {
1190 struct dsa_switch *ds = chip->ds;
1191 u16 pvid;
1192 int ret;
1193
1194 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1195 if (ret < 0)
1196 return ret;
1197
1198 pvid = ret & PORT_DEFAULT_VLAN_MASK;
1199
1200 if (new) {
1201 ret &= ~PORT_DEFAULT_VLAN_MASK;
1202 ret |= *new & PORT_DEFAULT_VLAN_MASK;
1203
1204 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1205 PORT_DEFAULT_VLAN, ret);
1206 if (ret < 0)
1207 return ret;
1208
1209 netdev_dbg(ds->ports[port].netdev,
1210 "DefaultVID %d (was %d)\n", *new, pvid);
1211 }
1212
1213 if (old)
1214 *old = pvid;
1215
1216 return 0;
1217 }
1218
1219 static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1220 int port, u16 *pvid)
1221 {
1222 return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1223 }
1224
1225 static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1226 int port, u16 pvid)
1227 {
1228 return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1229 }
1230
1231 static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1232 {
1233 return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
1234 GLOBAL_VTU_OP_BUSY);
1235 }
1236
1237 static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1238 {
1239 int ret;
1240
1241 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1242 if (ret < 0)
1243 return ret;
1244
1245 return _mv88e6xxx_vtu_wait(chip);
1246 }
1247
1248 static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1249 {
1250 int ret;
1251
1252 ret = _mv88e6xxx_vtu_wait(chip);
1253 if (ret < 0)
1254 return ret;
1255
1256 return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1257 }
1258
1259 static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1260 struct mv88e6xxx_vtu_stu_entry *entry,
1261 unsigned int nibble_offset)
1262 {
1263 u16 regs[3];
1264 int i;
1265 int ret;
1266
1267 for (i = 0; i < 3; ++i) {
1268 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1269 GLOBAL_VTU_DATA_0_3 + i);
1270 if (ret < 0)
1271 return ret;
1272
1273 regs[i] = ret;
1274 }
1275
1276 for (i = 0; i < chip->info->num_ports; ++i) {
1277 unsigned int shift = (i % 4) * 4 + nibble_offset;
1278 u16 reg = regs[i / 4];
1279
1280 entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1281 }
1282
1283 return 0;
1284 }
1285
1286 static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1287 struct mv88e6xxx_vtu_stu_entry *entry)
1288 {
1289 return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1290 }
1291
1292 static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1293 struct mv88e6xxx_vtu_stu_entry *entry)
1294 {
1295 return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1296 }
1297
1298 static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1299 struct mv88e6xxx_vtu_stu_entry *entry,
1300 unsigned int nibble_offset)
1301 {
1302 u16 regs[3] = { 0 };
1303 int i;
1304 int ret;
1305
1306 for (i = 0; i < chip->info->num_ports; ++i) {
1307 unsigned int shift = (i % 4) * 4 + nibble_offset;
1308 u8 data = entry->data[i];
1309
1310 regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1311 }
1312
1313 for (i = 0; i < 3; ++i) {
1314 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1315 GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1316 if (ret < 0)
1317 return ret;
1318 }
1319
1320 return 0;
1321 }
1322
1323 static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1324 struct mv88e6xxx_vtu_stu_entry *entry)
1325 {
1326 return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1327 }
1328
1329 static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1330 struct mv88e6xxx_vtu_stu_entry *entry)
1331 {
1332 return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1333 }
1334
1335 static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1336 {
1337 return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1338 vid & GLOBAL_VTU_VID_MASK);
1339 }
1340
1341 static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1342 struct mv88e6xxx_vtu_stu_entry *entry)
1343 {
1344 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1345 int ret;
1346
1347 ret = _mv88e6xxx_vtu_wait(chip);
1348 if (ret < 0)
1349 return ret;
1350
1351 ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1352 if (ret < 0)
1353 return ret;
1354
1355 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1356 if (ret < 0)
1357 return ret;
1358
1359 next.vid = ret & GLOBAL_VTU_VID_MASK;
1360 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1361
1362 if (next.valid) {
1363 ret = mv88e6xxx_vtu_data_read(chip, &next);
1364 if (ret < 0)
1365 return ret;
1366
1367 if (mv88e6xxx_has_fid_reg(chip)) {
1368 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1369 GLOBAL_VTU_FID);
1370 if (ret < 0)
1371 return ret;
1372
1373 next.fid = ret & GLOBAL_VTU_FID_MASK;
1374 } else if (mv88e6xxx_num_databases(chip) == 256) {
1375 /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1376 * VTU DBNum[3:0] are located in VTU Operation 3:0
1377 */
1378 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1379 GLOBAL_VTU_OP);
1380 if (ret < 0)
1381 return ret;
1382
1383 next.fid = (ret & 0xf00) >> 4;
1384 next.fid |= ret & 0xf;
1385 }
1386
1387 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1388 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1389 GLOBAL_VTU_SID);
1390 if (ret < 0)
1391 return ret;
1392
1393 next.sid = ret & GLOBAL_VTU_SID_MASK;
1394 }
1395 }
1396
1397 *entry = next;
1398 return 0;
1399 }
1400
1401 static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
1402 struct switchdev_obj_port_vlan *vlan,
1403 int (*cb)(struct switchdev_obj *obj))
1404 {
1405 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1406 struct mv88e6xxx_vtu_stu_entry next;
1407 u16 pvid;
1408 int err;
1409
1410 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1411 return -EOPNOTSUPP;
1412
1413 mutex_lock(&chip->reg_lock);
1414
1415 err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1416 if (err)
1417 goto unlock;
1418
1419 err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1420 if (err)
1421 goto unlock;
1422
1423 do {
1424 err = _mv88e6xxx_vtu_getnext(chip, &next);
1425 if (err)
1426 break;
1427
1428 if (!next.valid)
1429 break;
1430
1431 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1432 continue;
1433
1434 /* reinit and dump this VLAN obj */
1435 vlan->vid_begin = next.vid;
1436 vlan->vid_end = next.vid;
1437 vlan->flags = 0;
1438
1439 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1440 vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1441
1442 if (next.vid == pvid)
1443 vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1444
1445 err = cb(&vlan->obj);
1446 if (err)
1447 break;
1448 } while (next.vid < GLOBAL_VTU_VID_MASK);
1449
1450 unlock:
1451 mutex_unlock(&chip->reg_lock);
1452
1453 return err;
1454 }
1455
1456 static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1457 struct mv88e6xxx_vtu_stu_entry *entry)
1458 {
1459 u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1460 u16 reg = 0;
1461 int ret;
1462
1463 ret = _mv88e6xxx_vtu_wait(chip);
1464 if (ret < 0)
1465 return ret;
1466
1467 if (!entry->valid)
1468 goto loadpurge;
1469
1470 /* Write port member tags */
1471 ret = mv88e6xxx_vtu_data_write(chip, entry);
1472 if (ret < 0)
1473 return ret;
1474
1475 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1476 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1477 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1478 reg);
1479 if (ret < 0)
1480 return ret;
1481 }
1482
1483 if (mv88e6xxx_has_fid_reg(chip)) {
1484 reg = entry->fid & GLOBAL_VTU_FID_MASK;
1485 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
1486 reg);
1487 if (ret < 0)
1488 return ret;
1489 } else if (mv88e6xxx_num_databases(chip) == 256) {
1490 /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1491 * VTU DBNum[3:0] are located in VTU Operation 3:0
1492 */
1493 op |= (entry->fid & 0xf0) << 8;
1494 op |= entry->fid & 0xf;
1495 }
1496
1497 reg = GLOBAL_VTU_VID_VALID;
1498 loadpurge:
1499 reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1500 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1501 if (ret < 0)
1502 return ret;
1503
1504 return _mv88e6xxx_vtu_cmd(chip, op);
1505 }
1506
1507 static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1508 struct mv88e6xxx_vtu_stu_entry *entry)
1509 {
1510 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1511 int ret;
1512
1513 ret = _mv88e6xxx_vtu_wait(chip);
1514 if (ret < 0)
1515 return ret;
1516
1517 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1518 sid & GLOBAL_VTU_SID_MASK);
1519 if (ret < 0)
1520 return ret;
1521
1522 ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1523 if (ret < 0)
1524 return ret;
1525
1526 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1527 if (ret < 0)
1528 return ret;
1529
1530 next.sid = ret & GLOBAL_VTU_SID_MASK;
1531
1532 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1533 if (ret < 0)
1534 return ret;
1535
1536 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1537
1538 if (next.valid) {
1539 ret = mv88e6xxx_stu_data_read(chip, &next);
1540 if (ret < 0)
1541 return ret;
1542 }
1543
1544 *entry = next;
1545 return 0;
1546 }
1547
1548 static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1549 struct mv88e6xxx_vtu_stu_entry *entry)
1550 {
1551 u16 reg = 0;
1552 int ret;
1553
1554 ret = _mv88e6xxx_vtu_wait(chip);
1555 if (ret < 0)
1556 return ret;
1557
1558 if (!entry->valid)
1559 goto loadpurge;
1560
1561 /* Write port states */
1562 ret = mv88e6xxx_stu_data_write(chip, entry);
1563 if (ret < 0)
1564 return ret;
1565
1566 reg = GLOBAL_VTU_VID_VALID;
1567 loadpurge:
1568 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1569 if (ret < 0)
1570 return ret;
1571
1572 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1573 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1574 if (ret < 0)
1575 return ret;
1576
1577 return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1578 }
1579
1580 static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1581 u16 *new, u16 *old)
1582 {
1583 struct dsa_switch *ds = chip->ds;
1584 u16 upper_mask;
1585 u16 fid;
1586 int ret;
1587
1588 if (mv88e6xxx_num_databases(chip) == 4096)
1589 upper_mask = 0xff;
1590 else if (mv88e6xxx_num_databases(chip) == 256)
1591 upper_mask = 0xf;
1592 else
1593 return -EOPNOTSUPP;
1594
1595 /* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1596 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1597 if (ret < 0)
1598 return ret;
1599
1600 fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1601
1602 if (new) {
1603 ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
1604 ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1605
1606 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1607 ret);
1608 if (ret < 0)
1609 return ret;
1610 }
1611
1612 /* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1613 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1614 if (ret < 0)
1615 return ret;
1616
1617 fid |= (ret & upper_mask) << 4;
1618
1619 if (new) {
1620 ret &= ~upper_mask;
1621 ret |= (*new >> 4) & upper_mask;
1622
1623 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1624 ret);
1625 if (ret < 0)
1626 return ret;
1627
1628 netdev_dbg(ds->ports[port].netdev,
1629 "FID %d (was %d)\n", *new, fid);
1630 }
1631
1632 if (old)
1633 *old = fid;
1634
1635 return 0;
1636 }
1637
1638 static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1639 int port, u16 *fid)
1640 {
1641 return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1642 }
1643
1644 static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1645 int port, u16 fid)
1646 {
1647 return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1648 }
1649
1650 static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1651 {
1652 DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1653 struct mv88e6xxx_vtu_stu_entry vlan;
1654 int i, err;
1655
1656 bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
1657
1658 /* Set every FID bit used by the (un)bridged ports */
1659 for (i = 0; i < chip->info->num_ports; ++i) {
1660 err = _mv88e6xxx_port_fid_get(chip, i, fid);
1661 if (err)
1662 return err;
1663
1664 set_bit(*fid, fid_bitmap);
1665 }
1666
1667 /* Set every FID bit used by the VLAN entries */
1668 err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1669 if (err)
1670 return err;
1671
1672 do {
1673 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1674 if (err)
1675 return err;
1676
1677 if (!vlan.valid)
1678 break;
1679
1680 set_bit(vlan.fid, fid_bitmap);
1681 } while (vlan.vid < GLOBAL_VTU_VID_MASK);
1682
1683 /* The reset value 0x000 is used to indicate that multiple address
1684 * databases are not needed. Return the next positive available.
1685 */
1686 *fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1687 if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1688 return -ENOSPC;
1689
1690 /* Clear the database */
1691 return _mv88e6xxx_atu_flush(chip, *fid, true);
1692 }
1693
1694 static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1695 struct mv88e6xxx_vtu_stu_entry *entry)
1696 {
1697 struct dsa_switch *ds = chip->ds;
1698 struct mv88e6xxx_vtu_stu_entry vlan = {
1699 .valid = true,
1700 .vid = vid,
1701 };
1702 int i, err;
1703
1704 err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1705 if (err)
1706 return err;
1707
1708 /* exclude all ports except the CPU and DSA ports */
1709 for (i = 0; i < chip->info->num_ports; ++i)
1710 vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1711 ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1712 : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1713
1714 if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
1715 mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1716 struct mv88e6xxx_vtu_stu_entry vstp;
1717
1718 /* Adding a VTU entry requires a valid STU entry. As VSTP is not
1719 * implemented, only one STU entry is needed to cover all VTU
1720 * entries. Thus, validate the SID 0.
1721 */
1722 vlan.sid = 0;
1723 err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1724 if (err)
1725 return err;
1726
1727 if (vstp.sid != vlan.sid || !vstp.valid) {
1728 memset(&vstp, 0, sizeof(vstp));
1729 vstp.valid = true;
1730 vstp.sid = vlan.sid;
1731
1732 err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1733 if (err)
1734 return err;
1735 }
1736 }
1737
1738 *entry = vlan;
1739 return 0;
1740 }
1741
1742 static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1743 struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
1744 {
1745 int err;
1746
1747 if (!vid)
1748 return -EINVAL;
1749
1750 err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1751 if (err)
1752 return err;
1753
1754 err = _mv88e6xxx_vtu_getnext(chip, entry);
1755 if (err)
1756 return err;
1757
1758 if (entry->vid != vid || !entry->valid) {
1759 if (!creat)
1760 return -EOPNOTSUPP;
1761 /* -ENOENT would've been more appropriate, but switchdev expects
1762 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
1763 */
1764
1765 err = _mv88e6xxx_vtu_new(chip, vid, entry);
1766 }
1767
1768 return err;
1769 }
1770
1771 static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
1772 u16 vid_begin, u16 vid_end)
1773 {
1774 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1775 struct mv88e6xxx_vtu_stu_entry vlan;
1776 int i, err;
1777
1778 if (!vid_begin)
1779 return -EOPNOTSUPP;
1780
1781 mutex_lock(&chip->reg_lock);
1782
1783 err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1784 if (err)
1785 goto unlock;
1786
1787 do {
1788 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1789 if (err)
1790 goto unlock;
1791
1792 if (!vlan.valid)
1793 break;
1794
1795 if (vlan.vid > vid_end)
1796 break;
1797
1798 for (i = 0; i < chip->info->num_ports; ++i) {
1799 if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
1800 continue;
1801
1802 if (vlan.data[i] ==
1803 GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1804 continue;
1805
1806 if (chip->ports[i].bridge_dev ==
1807 chip->ports[port].bridge_dev)
1808 break; /* same bridge, check next VLAN */
1809
1810 netdev_warn(ds->ports[port].netdev,
1811 "hardware VLAN %d already used by %s\n",
1812 vlan.vid,
1813 netdev_name(chip->ports[i].bridge_dev));
1814 err = -EOPNOTSUPP;
1815 goto unlock;
1816 }
1817 } while (vlan.vid < vid_end);
1818
1819 unlock:
1820 mutex_unlock(&chip->reg_lock);
1821
1822 return err;
1823 }
1824
1825 static const char * const mv88e6xxx_port_8021q_mode_names[] = {
1826 [PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
1827 [PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
1828 [PORT_CONTROL_2_8021Q_CHECK] = "Check",
1829 [PORT_CONTROL_2_8021Q_SECURE] = "Secure",
1830 };
1831
1832 static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
1833 bool vlan_filtering)
1834 {
1835 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1836 u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1837 PORT_CONTROL_2_8021Q_DISABLED;
1838 int ret;
1839
1840 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1841 return -EOPNOTSUPP;
1842
1843 mutex_lock(&chip->reg_lock);
1844
1845 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1846 if (ret < 0)
1847 goto unlock;
1848
1849 old = ret & PORT_CONTROL_2_8021Q_MASK;
1850
1851 if (new != old) {
1852 ret &= ~PORT_CONTROL_2_8021Q_MASK;
1853 ret |= new & PORT_CONTROL_2_8021Q_MASK;
1854
1855 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1856 ret);
1857 if (ret < 0)
1858 goto unlock;
1859
1860 netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1861 mv88e6xxx_port_8021q_mode_names[new],
1862 mv88e6xxx_port_8021q_mode_names[old]);
1863 }
1864
1865 ret = 0;
1866 unlock:
1867 mutex_unlock(&chip->reg_lock);
1868
1869 return ret;
1870 }
1871
1872 static int
1873 mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1874 const struct switchdev_obj_port_vlan *vlan,
1875 struct switchdev_trans *trans)
1876 {
1877 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1878 int err;
1879
1880 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1881 return -EOPNOTSUPP;
1882
1883 /* If the requested port doesn't belong to the same bridge as the VLAN
1884 * members, do not support it (yet) and fallback to software VLAN.
1885 */
1886 err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
1887 vlan->vid_end);
1888 if (err)
1889 return err;
1890
1891 /* We don't need any dynamic resource from the kernel (yet),
1892 * so skip the prepare phase.
1893 */
1894 return 0;
1895 }
1896
1897 static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1898 u16 vid, bool untagged)
1899 {
1900 struct mv88e6xxx_vtu_stu_entry vlan;
1901 int err;
1902
1903 err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1904 if (err)
1905 return err;
1906
1907 vlan.data[port] = untagged ?
1908 GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1909 GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1910
1911 return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1912 }
1913
1914 static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1915 const struct switchdev_obj_port_vlan *vlan,
1916 struct switchdev_trans *trans)
1917 {
1918 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1919 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1920 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1921 u16 vid;
1922
1923 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1924 return;
1925
1926 mutex_lock(&chip->reg_lock);
1927
1928 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1929 if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1930 netdev_err(ds->ports[port].netdev,
1931 "failed to add VLAN %d%c\n",
1932 vid, untagged ? 'u' : 't');
1933
1934 if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1935 netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1936 vlan->vid_end);
1937
1938 mutex_unlock(&chip->reg_lock);
1939 }
1940
1941 static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1942 int port, u16 vid)
1943 {
1944 struct dsa_switch *ds = chip->ds;
1945 struct mv88e6xxx_vtu_stu_entry vlan;
1946 int i, err;
1947
1948 err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1949 if (err)
1950 return err;
1951
1952 /* Tell switchdev if this VLAN is handled in software */
1953 if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1954 return -EOPNOTSUPP;
1955
1956 vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1957
1958 /* keep the VLAN unless all ports are excluded */
1959 vlan.valid = false;
1960 for (i = 0; i < chip->info->num_ports; ++i) {
1961 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1962 continue;
1963
1964 if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1965 vlan.valid = true;
1966 break;
1967 }
1968 }
1969
1970 err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1971 if (err)
1972 return err;
1973
1974 return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1975 }
1976
1977 static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
1978 const struct switchdev_obj_port_vlan *vlan)
1979 {
1980 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1981 u16 pvid, vid;
1982 int err = 0;
1983
1984 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1985 return -EOPNOTSUPP;
1986
1987 mutex_lock(&chip->reg_lock);
1988
1989 err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1990 if (err)
1991 goto unlock;
1992
1993 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1994 err = _mv88e6xxx_port_vlan_del(chip, port, vid);
1995 if (err)
1996 goto unlock;
1997
1998 if (vid == pvid) {
1999 err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2000 if (err)
2001 goto unlock;
2002 }
2003 }
2004
2005 unlock:
2006 mutex_unlock(&chip->reg_lock);
2007
2008 return err;
2009 }
2010
2011 static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2012 const unsigned char *addr)
2013 {
2014 int i, ret;
2015
2016 for (i = 0; i < 3; i++) {
2017 ret = _mv88e6xxx_reg_write(
2018 chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2019 (addr[i * 2] << 8) | addr[i * 2 + 1]);
2020 if (ret < 0)
2021 return ret;
2022 }
2023
2024 return 0;
2025 }
2026
2027 static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2028 unsigned char *addr)
2029 {
2030 int i, ret;
2031
2032 for (i = 0; i < 3; i++) {
2033 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2034 GLOBAL_ATU_MAC_01 + i);
2035 if (ret < 0)
2036 return ret;
2037 addr[i * 2] = ret >> 8;
2038 addr[i * 2 + 1] = ret & 0xff;
2039 }
2040
2041 return 0;
2042 }
2043
2044 static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2045 struct mv88e6xxx_atu_entry *entry)
2046 {
2047 int ret;
2048
2049 ret = _mv88e6xxx_atu_wait(chip);
2050 if (ret < 0)
2051 return ret;
2052
2053 ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2054 if (ret < 0)
2055 return ret;
2056
2057 ret = _mv88e6xxx_atu_data_write(chip, entry);
2058 if (ret < 0)
2059 return ret;
2060
2061 return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2062 }
2063
2064 static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2065 const unsigned char *addr, u16 vid,
2066 u8 state)
2067 {
2068 struct mv88e6xxx_atu_entry entry = { 0 };
2069 struct mv88e6xxx_vtu_stu_entry vlan;
2070 int err;
2071
2072 /* Null VLAN ID corresponds to the port private database */
2073 if (vid == 0)
2074 err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2075 else
2076 err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2077 if (err)
2078 return err;
2079
2080 entry.fid = vlan.fid;
2081 entry.state = state;
2082 ether_addr_copy(entry.mac, addr);
2083 if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2084 entry.trunk = false;
2085 entry.portv_trunkid = BIT(port);
2086 }
2087
2088 return _mv88e6xxx_atu_load(chip, &entry);
2089 }
2090
2091 static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
2092 const struct switchdev_obj_port_fdb *fdb,
2093 struct switchdev_trans *trans)
2094 {
2095 /* We don't need any dynamic resource from the kernel (yet),
2096 * so skip the prepare phase.
2097 */
2098 return 0;
2099 }
2100
2101 static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2102 const struct switchdev_obj_port_fdb *fdb,
2103 struct switchdev_trans *trans)
2104 {
2105 int state = is_multicast_ether_addr(fdb->addr) ?
2106 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2107 GLOBAL_ATU_DATA_STATE_UC_STATIC;
2108 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2109
2110 mutex_lock(&chip->reg_lock);
2111 if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2112 netdev_err(ds->ports[port].netdev,
2113 "failed to load MAC address\n");
2114 mutex_unlock(&chip->reg_lock);
2115 }
2116
2117 static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2118 const struct switchdev_obj_port_fdb *fdb)
2119 {
2120 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2121 int ret;
2122
2123 mutex_lock(&chip->reg_lock);
2124 ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2125 GLOBAL_ATU_DATA_STATE_UNUSED);
2126 mutex_unlock(&chip->reg_lock);
2127
2128 return ret;
2129 }
2130
2131 static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2132 struct mv88e6xxx_atu_entry *entry)
2133 {
2134 struct mv88e6xxx_atu_entry next = { 0 };
2135 int ret;
2136
2137 next.fid = fid;
2138
2139 ret = _mv88e6xxx_atu_wait(chip);
2140 if (ret < 0)
2141 return ret;
2142
2143 ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2144 if (ret < 0)
2145 return ret;
2146
2147 ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2148 if (ret < 0)
2149 return ret;
2150
2151 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2152 if (ret < 0)
2153 return ret;
2154
2155 next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
2156 if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2157 unsigned int mask, shift;
2158
2159 if (ret & GLOBAL_ATU_DATA_TRUNK) {
2160 next.trunk = true;
2161 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
2162 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
2163 } else {
2164 next.trunk = false;
2165 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
2166 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
2167 }
2168
2169 next.portv_trunkid = (ret & mask) >> shift;
2170 }
2171
2172 *entry = next;
2173 return 0;
2174 }
2175
2176 static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2177 u16 fid, u16 vid, int port,
2178 struct switchdev_obj_port_fdb *fdb,
2179 int (*cb)(struct switchdev_obj *obj))
2180 {
2181 struct mv88e6xxx_atu_entry addr = {
2182 .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
2183 };
2184 int err;
2185
2186 err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2187 if (err)
2188 return err;
2189
2190 do {
2191 err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2192 if (err)
2193 break;
2194
2195 if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
2196 break;
2197
2198 if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
2199 bool is_static = addr.state ==
2200 (is_multicast_ether_addr(addr.mac) ?
2201 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2202 GLOBAL_ATU_DATA_STATE_UC_STATIC);
2203
2204 fdb->vid = vid;
2205 ether_addr_copy(fdb->addr, addr.mac);
2206 fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
2207
2208 err = cb(&fdb->obj);
2209 if (err)
2210 break;
2211 }
2212 } while (!is_broadcast_ether_addr(addr.mac));
2213
2214 return err;
2215 }
2216
2217 static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
2218 struct switchdev_obj_port_fdb *fdb,
2219 int (*cb)(struct switchdev_obj *obj))
2220 {
2221 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2222 struct mv88e6xxx_vtu_stu_entry vlan = {
2223 .vid = GLOBAL_VTU_VID_MASK, /* all ones */
2224 };
2225 u16 fid;
2226 int err;
2227
2228 mutex_lock(&chip->reg_lock);
2229
2230 /* Dump port's default Filtering Information Database (VLAN ID 0) */
2231 err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2232 if (err)
2233 goto unlock;
2234
2235 err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2236 if (err)
2237 goto unlock;
2238
2239 /* Dump VLANs' Filtering Information Databases */
2240 err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2241 if (err)
2242 goto unlock;
2243
2244 do {
2245 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2246 if (err)
2247 break;
2248
2249 if (!vlan.valid)
2250 break;
2251
2252 err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
2253 port, fdb, cb);
2254 if (err)
2255 break;
2256 } while (vlan.vid < GLOBAL_VTU_VID_MASK);
2257
2258 unlock:
2259 mutex_unlock(&chip->reg_lock);
2260
2261 return err;
2262 }
2263
2264 static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
2265 struct net_device *bridge)
2266 {
2267 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2268 int i, err = 0;
2269
2270 mutex_lock(&chip->reg_lock);
2271
2272 /* Assign the bridge and remap each port's VLANTable */
2273 chip->ports[port].bridge_dev = bridge;
2274
2275 for (i = 0; i < chip->info->num_ports; ++i) {
2276 if (chip->ports[i].bridge_dev == bridge) {
2277 err = _mv88e6xxx_port_based_vlan_map(chip, i);
2278 if (err)
2279 break;
2280 }
2281 }
2282
2283 mutex_unlock(&chip->reg_lock);
2284
2285 return err;
2286 }
2287
2288 static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2289 {
2290 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2291 struct net_device *bridge = chip->ports[port].bridge_dev;
2292 int i;
2293
2294 mutex_lock(&chip->reg_lock);
2295
2296 /* Unassign the bridge and remap each port's VLANTable */
2297 chip->ports[port].bridge_dev = NULL;
2298
2299 for (i = 0; i < chip->info->num_ports; ++i)
2300 if (i == port || chip->ports[i].bridge_dev == bridge)
2301 if (_mv88e6xxx_port_based_vlan_map(chip, i))
2302 netdev_warn(ds->ports[i].netdev,
2303 "failed to remap\n");
2304
2305 mutex_unlock(&chip->reg_lock);
2306 }
2307
2308 static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip,
2309 int port, int page, int reg, int val)
2310 {
2311 int ret;
2312
2313 ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2314 if (ret < 0)
2315 goto restore_page_0;
2316
2317 ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val);
2318 restore_page_0:
2319 mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2320
2321 return ret;
2322 }
2323
2324 static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip,
2325 int port, int page, int reg)
2326 {
2327 int ret;
2328
2329 ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2330 if (ret < 0)
2331 goto restore_page_0;
2332
2333 ret = mv88e6xxx_mdio_read_indirect(chip, port, reg);
2334 restore_page_0:
2335 mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2336
2337 return ret;
2338 }
2339
2340 static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2341 {
2342 bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2343 u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2344 struct gpio_desc *gpiod = chip->reset;
2345 unsigned long timeout;
2346 int ret;
2347 int i;
2348
2349 /* Set all ports to the disabled state. */
2350 for (i = 0; i < chip->info->num_ports; i++) {
2351 ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2352 if (ret < 0)
2353 return ret;
2354
2355 ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2356 ret & 0xfffc);
2357 if (ret)
2358 return ret;
2359 }
2360
2361 /* Wait for transmit queues to drain. */
2362 usleep_range(2000, 4000);
2363
2364 /* If there is a gpio connected to the reset pin, toggle it */
2365 if (gpiod) {
2366 gpiod_set_value_cansleep(gpiod, 1);
2367 usleep_range(10000, 20000);
2368 gpiod_set_value_cansleep(gpiod, 0);
2369 usleep_range(10000, 20000);
2370 }
2371
2372 /* Reset the switch. Keep the PPU active if requested. The PPU
2373 * needs to be active to support indirect phy register access
2374 * through global registers 0x18 and 0x19.
2375 */
2376 if (ppu_active)
2377 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2378 else
2379 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2380 if (ret)
2381 return ret;
2382
2383 /* Wait up to one second for reset to complete. */
2384 timeout = jiffies + 1 * HZ;
2385 while (time_before(jiffies, timeout)) {
2386 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2387 if (ret < 0)
2388 return ret;
2389
2390 if ((ret & is_reset) == is_reset)
2391 break;
2392 usleep_range(1000, 2000);
2393 }
2394 if (time_after(jiffies, timeout))
2395 ret = -ETIMEDOUT;
2396 else
2397 ret = 0;
2398
2399 return ret;
2400 }
2401
2402 static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_chip *chip)
2403 {
2404 int ret;
2405
2406 ret = _mv88e6xxx_mdio_page_read(chip, REG_FIBER_SERDES,
2407 PAGE_FIBER_SERDES, MII_BMCR);
2408 if (ret < 0)
2409 return ret;
2410
2411 if (ret & BMCR_PDOWN) {
2412 ret &= ~BMCR_PDOWN;
2413 ret = _mv88e6xxx_mdio_page_write(chip, REG_FIBER_SERDES,
2414 PAGE_FIBER_SERDES, MII_BMCR,
2415 ret);
2416 }
2417
2418 return ret;
2419 }
2420
2421 static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
2422 int reg, u16 *val)
2423 {
2424 int addr = chip->info->port_base_addr + port;
2425
2426 if (port >= chip->info->num_ports)
2427 return -EINVAL;
2428
2429 return mv88e6xxx_read(chip, addr, reg, val);
2430 }
2431
2432 static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2433 {
2434 struct dsa_switch *ds = chip->ds;
2435 int ret;
2436 u16 reg;
2437
2438 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2439 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2440 mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2441 mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2442 /* MAC Forcing register: don't force link, speed,
2443 * duplex or flow control state to any particular
2444 * values on physical ports, but force the CPU port
2445 * and all DSA ports to their maximum bandwidth and
2446 * full duplex.
2447 */
2448 reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2449 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2450 reg &= ~PORT_PCS_CTRL_UNFORCED;
2451 reg |= PORT_PCS_CTRL_FORCE_LINK |
2452 PORT_PCS_CTRL_LINK_UP |
2453 PORT_PCS_CTRL_DUPLEX_FULL |
2454 PORT_PCS_CTRL_FORCE_DUPLEX;
2455 if (mv88e6xxx_6065_family(chip))
2456 reg |= PORT_PCS_CTRL_100;
2457 else
2458 reg |= PORT_PCS_CTRL_1000;
2459 } else {
2460 reg |= PORT_PCS_CTRL_UNFORCED;
2461 }
2462
2463 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2464 PORT_PCS_CTRL, reg);
2465 if (ret)
2466 return ret;
2467 }
2468
2469 /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
2470 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
2471 * tunneling, determine priority by looking at 802.1p and IP
2472 * priority fields (IP prio has precedence), and set STP state
2473 * to Forwarding.
2474 *
2475 * If this is the CPU link, use DSA or EDSA tagging depending
2476 * on which tagging mode was configured.
2477 *
2478 * If this is a link to another switch, use DSA tagging mode.
2479 *
2480 * If this is the upstream port for this switch, enable
2481 * forwarding of unknown unicasts and multicasts.
2482 */
2483 reg = 0;
2484 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2485 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2486 mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
2487 mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2488 reg = PORT_CONTROL_IGMP_MLD_SNOOP |
2489 PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
2490 PORT_CONTROL_STATE_FORWARDING;
2491 if (dsa_is_cpu_port(ds, port)) {
2492 if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
2493 reg |= PORT_CONTROL_DSA_TAG;
2494 if (mv88e6xxx_6352_family(chip) ||
2495 mv88e6xxx_6351_family(chip) ||
2496 mv88e6xxx_6165_family(chip) ||
2497 mv88e6xxx_6097_family(chip) ||
2498 mv88e6xxx_6320_family(chip)) {
2499 reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2500 PORT_CONTROL_FORWARD_UNKNOWN |
2501 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2502 }
2503
2504 if (mv88e6xxx_6352_family(chip) ||
2505 mv88e6xxx_6351_family(chip) ||
2506 mv88e6xxx_6165_family(chip) ||
2507 mv88e6xxx_6097_family(chip) ||
2508 mv88e6xxx_6095_family(chip) ||
2509 mv88e6xxx_6065_family(chip) ||
2510 mv88e6xxx_6185_family(chip) ||
2511 mv88e6xxx_6320_family(chip)) {
2512 reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2513 }
2514 }
2515 if (dsa_is_dsa_port(ds, port)) {
2516 if (mv88e6xxx_6095_family(chip) ||
2517 mv88e6xxx_6185_family(chip))
2518 reg |= PORT_CONTROL_DSA_TAG;
2519 if (mv88e6xxx_6352_family(chip) ||
2520 mv88e6xxx_6351_family(chip) ||
2521 mv88e6xxx_6165_family(chip) ||
2522 mv88e6xxx_6097_family(chip) ||
2523 mv88e6xxx_6320_family(chip)) {
2524 reg |= PORT_CONTROL_FRAME_MODE_DSA;
2525 }
2526
2527 if (port == dsa_upstream_port(ds))
2528 reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2529 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2530 }
2531 if (reg) {
2532 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2533 PORT_CONTROL, reg);
2534 if (ret)
2535 return ret;
2536 }
2537
2538 /* If this port is connected to a SerDes, make sure the SerDes is not
2539 * powered down.
2540 */
2541 if (mv88e6xxx_6352_family(chip)) {
2542 ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2543 if (ret < 0)
2544 return ret;
2545 ret &= PORT_STATUS_CMODE_MASK;
2546 if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
2547 (ret == PORT_STATUS_CMODE_1000BASE_X) ||
2548 (ret == PORT_STATUS_CMODE_SGMII)) {
2549 ret = mv88e6xxx_power_on_serdes(chip);
2550 if (ret < 0)
2551 return ret;
2552 }
2553 }
2554
2555 /* Port Control 2: don't force a good FCS, set the maximum frame size to
2556 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2557 * untagged frames on this port, do a destination address lookup on all
2558 * received packets as usual, disable ARP mirroring and don't send a
2559 * copy of all transmitted/received frames on this port to the CPU.
2560 */
2561 reg = 0;
2562 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2563 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2564 mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
2565 mv88e6xxx_6185_family(chip))
2566 reg = PORT_CONTROL_2_MAP_DA;
2567
2568 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2569 mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2570 reg |= PORT_CONTROL_2_JUMBO_10240;
2571
2572 if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2573 /* Set the upstream port this port should use */
2574 reg |= dsa_upstream_port(ds);
2575 /* enable forwarding of unknown multicast addresses to
2576 * the upstream port
2577 */
2578 if (port == dsa_upstream_port(ds))
2579 reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2580 }
2581
2582 reg |= PORT_CONTROL_2_8021Q_DISABLED;
2583
2584 if (reg) {
2585 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2586 PORT_CONTROL_2, reg);
2587 if (ret)
2588 return ret;
2589 }
2590
2591 /* Port Association Vector: when learning source addresses
2592 * of packets, add the address to the address database using
2593 * a port bitmap that has only the bit for this port set and
2594 * the other bits clear.
2595 */
2596 reg = 1 << port;
2597 /* Disable learning for CPU port */
2598 if (dsa_is_cpu_port(ds, port))
2599 reg = 0;
2600
2601 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
2602 reg);
2603 if (ret)
2604 return ret;
2605
2606 /* Egress rate control 2: disable egress rate control. */
2607 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2608 0x0000);
2609 if (ret)
2610 return ret;
2611
2612 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2613 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2614 mv88e6xxx_6320_family(chip)) {
2615 /* Do not limit the period of time that this port can
2616 * be paused for by the remote end or the period of
2617 * time that this port can pause the remote end.
2618 */
2619 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2620 PORT_PAUSE_CTRL, 0x0000);
2621 if (ret)
2622 return ret;
2623
2624 /* Port ATU control: disable limiting the number of
2625 * address database entries that this port is allowed
2626 * to use.
2627 */
2628 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2629 PORT_ATU_CONTROL, 0x0000);
2630 /* Priority Override: disable DA, SA and VTU priority
2631 * override.
2632 */
2633 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2634 PORT_PRI_OVERRIDE, 0x0000);
2635 if (ret)
2636 return ret;
2637
2638 /* Port Ethertype: use the Ethertype DSA Ethertype
2639 * value.
2640 */
2641 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2642 PORT_ETH_TYPE, ETH_P_EDSA);
2643 if (ret)
2644 return ret;
2645 /* Tag Remap: use an identity 802.1p prio -> switch
2646 * prio mapping.
2647 */
2648 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2649 PORT_TAG_REGMAP_0123, 0x3210);
2650 if (ret)
2651 return ret;
2652
2653 /* Tag Remap 2: use an identity 802.1p prio -> switch
2654 * prio mapping.
2655 */
2656 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2657 PORT_TAG_REGMAP_4567, 0x7654);
2658 if (ret)
2659 return ret;
2660 }
2661
2662 if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2663 mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2664 mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2665 mv88e6xxx_6320_family(chip)) {
2666 /* Rate Control: disable ingress rate limiting. */
2667 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2668 PORT_RATE_CONTROL, 0x0001);
2669 if (ret)
2670 return ret;
2671 }
2672
2673 /* Port Control 1: disable trunking, disable sending
2674 * learning messages to this port.
2675 */
2676 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
2677 0x0000);
2678 if (ret)
2679 return ret;
2680
2681 /* Port based VLAN map: give each port the same default address
2682 * database, and allow bidirectional communication between the
2683 * CPU and DSA port(s), and the other ports.
2684 */
2685 ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2686 if (ret)
2687 return ret;
2688
2689 ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2690 if (ret)
2691 return ret;
2692
2693 /* Default VLAN ID and priority: don't set a default VLAN
2694 * ID, and set the default packet priority to zero.
2695 */
2696 ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2697 0x0000);
2698 if (ret)
2699 return ret;
2700
2701 return 0;
2702 }
2703
2704 static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2705 {
2706 int err;
2707
2708 err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
2709 (addr[0] << 8) | addr[1]);
2710 if (err)
2711 return err;
2712
2713 err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
2714 (addr[2] << 8) | addr[3]);
2715 if (err)
2716 return err;
2717
2718 return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
2719 (addr[4] << 8) | addr[5]);
2720 }
2721
2722 static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
2723 unsigned int msecs)
2724 {
2725 const unsigned int coeff = chip->info->age_time_coeff;
2726 const unsigned int min = 0x01 * coeff;
2727 const unsigned int max = 0xff * coeff;
2728 u8 age_time;
2729 u16 val;
2730 int err;
2731
2732 if (msecs < min || msecs > max)
2733 return -ERANGE;
2734
2735 /* Round to nearest multiple of coeff */
2736 age_time = (msecs + coeff / 2) / coeff;
2737
2738 err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
2739 if (err)
2740 return err;
2741
2742 /* AgeTime is 11:4 bits */
2743 val &= ~0xff0;
2744 val |= age_time << 4;
2745
2746 return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
2747 }
2748
2749 static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
2750 unsigned int ageing_time)
2751 {
2752 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2753 int err;
2754
2755 mutex_lock(&chip->reg_lock);
2756 err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
2757 mutex_unlock(&chip->reg_lock);
2758
2759 return err;
2760 }
2761
2762 static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2763 {
2764 struct dsa_switch *ds = chip->ds;
2765 u32 upstream_port = dsa_upstream_port(ds);
2766 u16 reg;
2767 int err;
2768
2769 /* Enable the PHY Polling Unit if present, don't discard any packets,
2770 * and mask all interrupt sources.
2771 */
2772 reg = 0;
2773 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
2774 mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2775 reg |= GLOBAL_CONTROL_PPU_ENABLE;
2776
2777 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2778 if (err)
2779 return err;
2780
2781 /* Configure the upstream port, and configure it as the port to which
2782 * ingress and egress and ARP monitor frames are to be sent.
2783 */
2784 reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
2785 upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
2786 upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2787 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
2788 reg);
2789 if (err)
2790 return err;
2791
2792 /* Disable remote management, and set the switch's DSA device number. */
2793 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2794 GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
2795 (ds->index & 0x1f));
2796 if (err)
2797 return err;
2798
2799 /* Clear all the VTU and STU entries */
2800 err = _mv88e6xxx_vtu_stu_flush(chip);
2801 if (err < 0)
2802 return err;
2803
2804 /* Set the default address aging time to 5 minutes, and
2805 * enable address learn messages to be sent to all message
2806 * ports.
2807 */
2808 err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
2809 GLOBAL_ATU_CONTROL_LEARN2ALL);
2810 if (err)
2811 return err;
2812
2813 err = mv88e6xxx_g1_set_age_time(chip, 300000);
2814 if (err)
2815 return err;
2816
2817 /* Clear all ATU entries */
2818 err = _mv88e6xxx_atu_flush(chip, 0, true);
2819 if (err)
2820 return err;
2821
2822 /* Configure the IP ToS mapping registers. */
2823 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2824 if (err)
2825 return err;
2826 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2827 if (err)
2828 return err;
2829 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2830 if (err)
2831 return err;
2832 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2833 if (err)
2834 return err;
2835 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2836 if (err)
2837 return err;
2838 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2839 if (err)
2840 return err;
2841 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2842 if (err)
2843 return err;
2844 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2845 if (err)
2846 return err;
2847
2848 /* Configure the IEEE 802.1p priority mapping register. */
2849 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2850 if (err)
2851 return err;
2852
2853 /* Clear the statistics counters for all ports */
2854 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
2855 GLOBAL_STATS_OP_FLUSH_ALL);
2856 if (err)
2857 return err;
2858
2859 /* Wait for the flush to complete. */
2860 err = _mv88e6xxx_stats_wait(chip);
2861 if (err)
2862 return err;
2863
2864 return 0;
2865 }
2866
2867 static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
2868 int target, int port)
2869 {
2870 u16 val = (target << 8) | (port & 0xf);
2871
2872 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
2873 }
2874
2875 static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
2876 {
2877 int target, port;
2878 int err;
2879
2880 /* Initialize the routing port to the 32 possible target devices */
2881 for (target = 0; target < 32; ++target) {
2882 port = 0xf;
2883
2884 if (target < DSA_MAX_SWITCHES) {
2885 port = chip->ds->rtable[target];
2886 if (port == DSA_RTABLE_NONE)
2887 port = 0xf;
2888 }
2889
2890 err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
2891 if (err)
2892 break;
2893 }
2894
2895 return err;
2896 }
2897
2898 static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
2899 bool hask, u16 mask)
2900 {
2901 const u16 port_mask = BIT(chip->info->num_ports) - 1;
2902 u16 val = (num << 12) | (mask & port_mask);
2903
2904 if (hask)
2905 val |= GLOBAL2_TRUNK_MASK_HASK;
2906
2907 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
2908 }
2909
2910 static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
2911 u16 map)
2912 {
2913 const u16 port_mask = BIT(chip->info->num_ports) - 1;
2914 u16 val = (id << 11) | (map & port_mask);
2915
2916 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
2917 }
2918
2919 static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
2920 {
2921 const u16 port_mask = BIT(chip->info->num_ports) - 1;
2922 int i, err;
2923
2924 /* Clear all eight possible Trunk Mask vectors */
2925 for (i = 0; i < 8; ++i) {
2926 err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
2927 if (err)
2928 return err;
2929 }
2930
2931 /* Clear all sixteen possible Trunk ID routing vectors */
2932 for (i = 0; i < 16; ++i) {
2933 err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
2934 if (err)
2935 return err;
2936 }
2937
2938 return 0;
2939 }
2940
2941 static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
2942 {
2943 int port, err;
2944
2945 /* Init all Ingress Rate Limit resources of all ports */
2946 for (port = 0; port < chip->info->num_ports; ++port) {
2947 /* XXX newer chips (like 88E6390) have different 2-bit ops */
2948 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2949 GLOBAL2_IRL_CMD_OP_INIT_ALL |
2950 (port << 8));
2951 if (err)
2952 break;
2953
2954 /* Wait for the operation to complete */
2955 err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2956 GLOBAL2_IRL_CMD_BUSY);
2957 if (err)
2958 break;
2959 }
2960
2961 return err;
2962 }
2963
2964 /* Indirect write to the Switch MAC/WoL/WoF register */
2965 static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
2966 unsigned int pointer, u8 data)
2967 {
2968 u16 val = (pointer << 8) | data;
2969
2970 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
2971 }
2972
2973 static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2974 {
2975 int i, err;
2976
2977 for (i = 0; i < 6; i++) {
2978 err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
2979 if (err)
2980 break;
2981 }
2982
2983 return err;
2984 }
2985
2986 static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
2987 u8 data)
2988 {
2989 u16 val = (pointer << 8) | (data & 0x7);
2990
2991 return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
2992 }
2993
2994 static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
2995 {
2996 int i, err;
2997
2998 /* Clear all sixteen possible Priority Override entries */
2999 for (i = 0; i < 16; i++) {
3000 err = mv88e6xxx_g2_pot_write(chip, i, 0);
3001 if (err)
3002 break;
3003 }
3004
3005 return err;
3006 }
3007
3008 static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
3009 {
3010 return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
3011 GLOBAL2_EEPROM_CMD_BUSY |
3012 GLOBAL2_EEPROM_CMD_RUNNING);
3013 }
3014
3015 static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
3016 {
3017 int err;
3018
3019 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
3020 if (err)
3021 return err;
3022
3023 return mv88e6xxx_g2_eeprom_wait(chip);
3024 }
3025
3026 static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
3027 u8 addr, u16 *data)
3028 {
3029 u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
3030 int err;
3031
3032 err = mv88e6xxx_g2_eeprom_wait(chip);
3033 if (err)
3034 return err;
3035
3036 err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3037 if (err)
3038 return err;
3039
3040 return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3041 }
3042
3043 static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
3044 u8 addr, u16 data)
3045 {
3046 u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
3047 int err;
3048
3049 err = mv88e6xxx_g2_eeprom_wait(chip);
3050 if (err)
3051 return err;
3052
3053 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3054 if (err)
3055 return err;
3056
3057 return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3058 }
3059
3060 static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
3061 {
3062 u16 reg;
3063 int err;
3064
3065 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
3066 /* Consider the frames with reserved multicast destination
3067 * addresses matching 01:80:c2:00:00:2x as MGMT.
3068 */
3069 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
3070 0xffff);
3071 if (err)
3072 return err;
3073 }
3074
3075 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
3076 /* Consider the frames with reserved multicast destination
3077 * addresses matching 01:80:c2:00:00:0x as MGMT.
3078 */
3079 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
3080 0xffff);
3081 if (err)
3082 return err;
3083 }
3084
3085 /* Ignore removed tag data on doubly tagged packets, disable
3086 * flow control messages, force flow control priority to the
3087 * highest, and send all special multicast frames to the CPU
3088 * port at the highest priority.
3089 */
3090 reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
3091 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
3092 mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
3093 reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
3094 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3095 if (err)
3096 return err;
3097
3098 /* Program the DSA routing table. */
3099 err = mv88e6xxx_g2_set_device_mapping(chip);
3100 if (err)
3101 return err;
3102
3103 /* Clear all trunk masks and mapping. */
3104 err = mv88e6xxx_g2_clear_trunk(chip);
3105 if (err)
3106 return err;
3107
3108 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
3109 /* Disable ingress rate limiting by resetting all per port
3110 * ingress rate limit resources to their initial state.
3111 */
3112 err = mv88e6xxx_g2_clear_irl(chip);
3113 if (err)
3114 return err;
3115 }
3116
3117 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
3118 /* Initialize Cross-chip Port VLAN Table to reset defaults */
3119 err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
3120 GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3121 if (err)
3122 return err;
3123 }
3124
3125 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3126 /* Clear the priority override table. */
3127 err = mv88e6xxx_g2_clear_pot(chip);
3128 if (err)
3129 return err;
3130 }
3131
3132 return 0;
3133 }
3134
3135 static int mv88e6xxx_setup(struct dsa_switch *ds)
3136 {
3137 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3138 int err;
3139 int i;
3140
3141 chip->ds = ds;
3142 ds->slave_mii_bus = chip->mdio_bus;
3143
3144 mutex_lock(&chip->reg_lock);
3145
3146 err = mv88e6xxx_switch_reset(chip);
3147 if (err)
3148 goto unlock;
3149
3150 /* Setup Switch Port Registers */
3151 for (i = 0; i < chip->info->num_ports; i++) {
3152 err = mv88e6xxx_setup_port(chip, i);
3153 if (err)
3154 goto unlock;
3155 }
3156
3157 /* Setup Switch Global 1 Registers */
3158 err = mv88e6xxx_g1_setup(chip);
3159 if (err)
3160 goto unlock;
3161
3162 /* Setup Switch Global 2 Registers */
3163 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
3164 err = mv88e6xxx_g2_setup(chip);
3165 if (err)
3166 goto unlock;
3167 }
3168
3169 unlock:
3170 mutex_unlock(&chip->reg_lock);
3171
3172 return err;
3173 }
3174
3175 static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
3176 {
3177 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3178 int err;
3179
3180 mutex_lock(&chip->reg_lock);
3181
3182 /* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
3183 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
3184 err = mv88e6xxx_g2_set_switch_mac(chip, addr);
3185 else
3186 err = mv88e6xxx_g1_set_switch_mac(chip, addr);
3187
3188 mutex_unlock(&chip->reg_lock);
3189
3190 return err;
3191 }
3192
3193 static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page,
3194 int reg)
3195 {
3196 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3197 int ret;
3198
3199 mutex_lock(&chip->reg_lock);
3200 ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg);
3201 mutex_unlock(&chip->reg_lock);
3202
3203 return ret;
3204 }
3205
3206 static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page,
3207 int reg, int val)
3208 {
3209 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3210 int ret;
3211
3212 mutex_lock(&chip->reg_lock);
3213 ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val);
3214 mutex_unlock(&chip->reg_lock);
3215
3216 return ret;
3217 }
3218
3219 static int mv88e6xxx_port_to_mdio_addr(struct mv88e6xxx_chip *chip, int port)
3220 {
3221 if (port >= 0 && port < chip->info->num_ports)
3222 return port;
3223 return -EINVAL;
3224 }
3225
3226 static int mv88e6xxx_mdio_read(struct mii_bus *bus, int port, int regnum)
3227 {
3228 struct mv88e6xxx_chip *chip = bus->priv;
3229 int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3230 int ret;
3231
3232 if (addr < 0)
3233 return 0xffff;
3234
3235 mutex_lock(&chip->reg_lock);
3236
3237 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3238 ret = mv88e6xxx_mdio_read_ppu(chip, addr, regnum);
3239 else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
3240 ret = mv88e6xxx_mdio_read_indirect(chip, addr, regnum);
3241 else
3242 ret = mv88e6xxx_mdio_read_direct(chip, addr, regnum);
3243
3244 mutex_unlock(&chip->reg_lock);
3245 return ret;
3246 }
3247
3248 static int mv88e6xxx_mdio_write(struct mii_bus *bus, int port, int regnum,
3249 u16 val)
3250 {
3251 struct mv88e6xxx_chip *chip = bus->priv;
3252 int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3253 int ret;
3254
3255 if (addr < 0)
3256 return 0xffff;
3257
3258 mutex_lock(&chip->reg_lock);
3259
3260 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3261 ret = mv88e6xxx_mdio_write_ppu(chip, addr, regnum, val);
3262 else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
3263 ret = mv88e6xxx_mdio_write_indirect(chip, addr, regnum, val);
3264 else
3265 ret = mv88e6xxx_mdio_write_direct(chip, addr, regnum, val);
3266
3267 mutex_unlock(&chip->reg_lock);
3268 return ret;
3269 }
3270
3271 static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3272 struct device_node *np)
3273 {
3274 static int index;
3275 struct mii_bus *bus;
3276 int err;
3277
3278 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3279 mv88e6xxx_ppu_state_init(chip);
3280
3281 if (np)
3282 chip->mdio_np = of_get_child_by_name(np, "mdio");
3283
3284 bus = devm_mdiobus_alloc(chip->dev);
3285 if (!bus)
3286 return -ENOMEM;
3287
3288 bus->priv = (void *)chip;
3289 if (np) {
3290 bus->name = np->full_name;
3291 snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
3292 } else {
3293 bus->name = "mv88e6xxx SMI";
3294 snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
3295 }
3296
3297 bus->read = mv88e6xxx_mdio_read;
3298 bus->write = mv88e6xxx_mdio_write;
3299 bus->parent = chip->dev;
3300
3301 if (chip->mdio_np)
3302 err = of_mdiobus_register(bus, chip->mdio_np);
3303 else
3304 err = mdiobus_register(bus);
3305 if (err) {
3306 dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3307 goto out;
3308 }
3309 chip->mdio_bus = bus;
3310
3311 return 0;
3312
3313 out:
3314 if (chip->mdio_np)
3315 of_node_put(chip->mdio_np);
3316
3317 return err;
3318 }
3319
3320 static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3321
3322 {
3323 struct mii_bus *bus = chip->mdio_bus;
3324
3325 mdiobus_unregister(bus);
3326
3327 if (chip->mdio_np)
3328 of_node_put(chip->mdio_np);
3329 }
3330
3331 #ifdef CONFIG_NET_DSA_HWMON
3332
3333 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
3334 {
3335 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3336 int ret;
3337 int val;
3338
3339 *temp = 0;
3340
3341 mutex_lock(&chip->reg_lock);
3342
3343 ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6);
3344 if (ret < 0)
3345 goto error;
3346
3347 /* Enable temperature sensor */
3348 ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3349 if (ret < 0)
3350 goto error;
3351
3352 ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5));
3353 if (ret < 0)
3354 goto error;
3355
3356 /* Wait for temperature to stabilize */
3357 usleep_range(10000, 12000);
3358
3359 val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3360 if (val < 0) {
3361 ret = val;
3362 goto error;
3363 }
3364
3365 /* Disable temperature sensor */
3366 ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5));
3367 if (ret < 0)
3368 goto error;
3369
3370 *temp = ((val & 0x1f) - 5) * 5;
3371
3372 error:
3373 mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0);
3374 mutex_unlock(&chip->reg_lock);
3375 return ret;
3376 }
3377
3378 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
3379 {
3380 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3381 int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3382 int ret;
3383
3384 *temp = 0;
3385
3386 ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27);
3387 if (ret < 0)
3388 return ret;
3389
3390 *temp = (ret & 0xff) - 25;
3391
3392 return 0;
3393 }
3394
3395 static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3396 {
3397 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3398
3399 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3400 return -EOPNOTSUPP;
3401
3402 if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3403 return mv88e63xx_get_temp(ds, temp);
3404
3405 return mv88e61xx_get_temp(ds, temp);
3406 }
3407
3408 static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3409 {
3410 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3411 int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3412 int ret;
3413
3414 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3415 return -EOPNOTSUPP;
3416
3417 *temp = 0;
3418
3419 ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3420 if (ret < 0)
3421 return ret;
3422
3423 *temp = (((ret >> 8) & 0x1f) * 5) - 25;
3424
3425 return 0;
3426 }
3427
3428 static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3429 {
3430 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3431 int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3432 int ret;
3433
3434 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3435 return -EOPNOTSUPP;
3436
3437 ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3438 if (ret < 0)
3439 return ret;
3440 temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3441 return mv88e6xxx_mdio_page_write(ds, phy, 6, 26,
3442 (ret & 0xe0ff) | (temp << 8));
3443 }
3444
3445 static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3446 {
3447 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3448 int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3449 int ret;
3450
3451 if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3452 return -EOPNOTSUPP;
3453
3454 *alarm = false;
3455
3456 ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3457 if (ret < 0)
3458 return ret;
3459
3460 *alarm = !!(ret & 0x40);
3461
3462 return 0;
3463 }
3464 #endif /* CONFIG_NET_DSA_HWMON */
3465
3466 static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
3467 {
3468 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3469
3470 return chip->eeprom_len;
3471 }
3472
3473 static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
3474 struct ethtool_eeprom *eeprom, u8 *data)
3475 {
3476 unsigned int offset = eeprom->offset;
3477 unsigned int len = eeprom->len;
3478 u16 val;
3479 int err;
3480
3481 eeprom->len = 0;
3482
3483 if (offset & 1) {
3484 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3485 if (err)
3486 return err;
3487
3488 *data++ = (val >> 8) & 0xff;
3489
3490 offset++;
3491 len--;
3492 eeprom->len++;
3493 }
3494
3495 while (len >= 2) {
3496 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3497 if (err)
3498 return err;
3499
3500 *data++ = val & 0xff;
3501 *data++ = (val >> 8) & 0xff;
3502
3503 offset += 2;
3504 len -= 2;
3505 eeprom->len += 2;
3506 }
3507
3508 if (len) {
3509 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3510 if (err)
3511 return err;
3512
3513 *data++ = val & 0xff;
3514
3515 offset++;
3516 len--;
3517 eeprom->len++;
3518 }
3519
3520 return 0;
3521 }
3522
3523 static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
3524 struct ethtool_eeprom *eeprom, u8 *data)
3525 {
3526 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3527 int err;
3528
3529 mutex_lock(&chip->reg_lock);
3530
3531 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3532 err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
3533 else
3534 err = -EOPNOTSUPP;
3535
3536 mutex_unlock(&chip->reg_lock);
3537
3538 if (err)
3539 return err;
3540
3541 eeprom->magic = 0xc3ec4951;
3542
3543 return 0;
3544 }
3545
3546 static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
3547 struct ethtool_eeprom *eeprom, u8 *data)
3548 {
3549 unsigned int offset = eeprom->offset;
3550 unsigned int len = eeprom->len;
3551 u16 val;
3552 int err;
3553
3554 /* Ensure the RO WriteEn bit is set */
3555 err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
3556 if (err)
3557 return err;
3558
3559 if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
3560 return -EROFS;
3561
3562 eeprom->len = 0;
3563
3564 if (offset & 1) {
3565 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3566 if (err)
3567 return err;
3568
3569 val = (*data++ << 8) | (val & 0xff);
3570
3571 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3572 if (err)
3573 return err;
3574
3575 offset++;
3576 len--;
3577 eeprom->len++;
3578 }
3579
3580 while (len >= 2) {
3581 val = *data++;
3582 val |= *data++ << 8;
3583
3584 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3585 if (err)
3586 return err;
3587
3588 offset += 2;
3589 len -= 2;
3590 eeprom->len += 2;
3591 }
3592
3593 if (len) {
3594 err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3595 if (err)
3596 return err;
3597
3598 val = (val & 0xff00) | *data++;
3599
3600 err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3601 if (err)
3602 return err;
3603
3604 offset++;
3605 len--;
3606 eeprom->len++;
3607 }
3608
3609 return 0;
3610 }
3611
3612 static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
3613 struct ethtool_eeprom *eeprom, u8 *data)
3614 {
3615 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3616 int err;
3617
3618 if (eeprom->magic != 0xc3ec4951)
3619 return -EINVAL;
3620
3621 mutex_lock(&chip->reg_lock);
3622
3623 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3624 err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
3625 else
3626 err = -EOPNOTSUPP;
3627
3628 mutex_unlock(&chip->reg_lock);
3629
3630 return err;
3631 }
3632
3633 static const struct mv88e6xxx_info mv88e6xxx_table[] = {
3634 [MV88E6085] = {
3635 .prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
3636 .family = MV88E6XXX_FAMILY_6097,
3637 .name = "Marvell 88E6085",
3638 .num_databases = 4096,
3639 .num_ports = 10,
3640 .port_base_addr = 0x10,
3641 .age_time_coeff = 15000,
3642 .flags = MV88E6XXX_FLAGS_FAMILY_6097,
3643 },
3644
3645 [MV88E6095] = {
3646 .prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
3647 .family = MV88E6XXX_FAMILY_6095,
3648 .name = "Marvell 88E6095/88E6095F",
3649 .num_databases = 256,
3650 .num_ports = 11,
3651 .port_base_addr = 0x10,
3652 .age_time_coeff = 15000,
3653 .flags = MV88E6XXX_FLAGS_FAMILY_6095,
3654 },
3655
3656 [MV88E6123] = {
3657 .prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
3658 .family = MV88E6XXX_FAMILY_6165,
3659 .name = "Marvell 88E6123",
3660 .num_databases = 4096,
3661 .num_ports = 3,
3662 .port_base_addr = 0x10,
3663 .age_time_coeff = 15000,
3664 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3665 },
3666
3667 [MV88E6131] = {
3668 .prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
3669 .family = MV88E6XXX_FAMILY_6185,
3670 .name = "Marvell 88E6131",
3671 .num_databases = 256,
3672 .num_ports = 8,
3673 .port_base_addr = 0x10,
3674 .age_time_coeff = 15000,
3675 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3676 },
3677
3678 [MV88E6161] = {
3679 .prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
3680 .family = MV88E6XXX_FAMILY_6165,
3681 .name = "Marvell 88E6161",
3682 .num_databases = 4096,
3683 .num_ports = 6,
3684 .port_base_addr = 0x10,
3685 .age_time_coeff = 15000,
3686 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3687 },
3688
3689 [MV88E6165] = {
3690 .prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
3691 .family = MV88E6XXX_FAMILY_6165,
3692 .name = "Marvell 88E6165",
3693 .num_databases = 4096,
3694 .num_ports = 6,
3695 .port_base_addr = 0x10,
3696 .age_time_coeff = 15000,
3697 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3698 },
3699
3700 [MV88E6171] = {
3701 .prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
3702 .family = MV88E6XXX_FAMILY_6351,
3703 .name = "Marvell 88E6171",
3704 .num_databases = 4096,
3705 .num_ports = 7,
3706 .port_base_addr = 0x10,
3707 .age_time_coeff = 15000,
3708 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3709 },
3710
3711 [MV88E6172] = {
3712 .prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
3713 .family = MV88E6XXX_FAMILY_6352,
3714 .name = "Marvell 88E6172",
3715 .num_databases = 4096,
3716 .num_ports = 7,
3717 .port_base_addr = 0x10,
3718 .age_time_coeff = 15000,
3719 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3720 },
3721
3722 [MV88E6175] = {
3723 .prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
3724 .family = MV88E6XXX_FAMILY_6351,
3725 .name = "Marvell 88E6175",
3726 .num_databases = 4096,
3727 .num_ports = 7,
3728 .port_base_addr = 0x10,
3729 .age_time_coeff = 15000,
3730 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3731 },
3732
3733 [MV88E6176] = {
3734 .prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
3735 .family = MV88E6XXX_FAMILY_6352,
3736 .name = "Marvell 88E6176",
3737 .num_databases = 4096,
3738 .num_ports = 7,
3739 .port_base_addr = 0x10,
3740 .age_time_coeff = 15000,
3741 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3742 },
3743
3744 [MV88E6185] = {
3745 .prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
3746 .family = MV88E6XXX_FAMILY_6185,
3747 .name = "Marvell 88E6185",
3748 .num_databases = 256,
3749 .num_ports = 10,
3750 .port_base_addr = 0x10,
3751 .age_time_coeff = 15000,
3752 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3753 },
3754
3755 [MV88E6240] = {
3756 .prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
3757 .family = MV88E6XXX_FAMILY_6352,
3758 .name = "Marvell 88E6240",
3759 .num_databases = 4096,
3760 .num_ports = 7,
3761 .port_base_addr = 0x10,
3762 .age_time_coeff = 15000,
3763 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3764 },
3765
3766 [MV88E6320] = {
3767 .prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
3768 .family = MV88E6XXX_FAMILY_6320,
3769 .name = "Marvell 88E6320",
3770 .num_databases = 4096,
3771 .num_ports = 7,
3772 .port_base_addr = 0x10,
3773 .age_time_coeff = 15000,
3774 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3775 },
3776
3777 [MV88E6321] = {
3778 .prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
3779 .family = MV88E6XXX_FAMILY_6320,
3780 .name = "Marvell 88E6321",
3781 .num_databases = 4096,
3782 .num_ports = 7,
3783 .port_base_addr = 0x10,
3784 .age_time_coeff = 15000,
3785 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3786 },
3787
3788 [MV88E6350] = {
3789 .prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
3790 .family = MV88E6XXX_FAMILY_6351,
3791 .name = "Marvell 88E6350",
3792 .num_databases = 4096,
3793 .num_ports = 7,
3794 .port_base_addr = 0x10,
3795 .age_time_coeff = 15000,
3796 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3797 },
3798
3799 [MV88E6351] = {
3800 .prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
3801 .family = MV88E6XXX_FAMILY_6351,
3802 .name = "Marvell 88E6351",
3803 .num_databases = 4096,
3804 .num_ports = 7,
3805 .port_base_addr = 0x10,
3806 .age_time_coeff = 15000,
3807 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3808 },
3809
3810 [MV88E6352] = {
3811 .prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
3812 .family = MV88E6XXX_FAMILY_6352,
3813 .name = "Marvell 88E6352",
3814 .num_databases = 4096,
3815 .num_ports = 7,
3816 .port_base_addr = 0x10,
3817 .age_time_coeff = 15000,
3818 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3819 },
3820 };
3821
3822 static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3823 {
3824 int i;
3825
3826 for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
3827 if (mv88e6xxx_table[i].prod_num == prod_num)
3828 return &mv88e6xxx_table[i];
3829
3830 return NULL;
3831 }
3832
3833 static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3834 {
3835 const struct mv88e6xxx_info *info;
3836 unsigned int prod_num, rev;
3837 u16 id;
3838 int err;
3839
3840 mutex_lock(&chip->reg_lock);
3841 err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
3842 mutex_unlock(&chip->reg_lock);
3843 if (err)
3844 return err;
3845
3846 prod_num = (id & 0xfff0) >> 4;
3847 rev = id & 0x000f;
3848
3849 info = mv88e6xxx_lookup_info(prod_num);
3850 if (!info)
3851 return -ENODEV;
3852
3853 /* Update the compatible info with the probed one */
3854 chip->info = info;
3855
3856 dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
3857 chip->info->prod_num, chip->info->name, rev);
3858
3859 return 0;
3860 }
3861
3862 static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3863 {
3864 struct mv88e6xxx_chip *chip;
3865
3866 chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
3867 if (!chip)
3868 return NULL;
3869
3870 chip->dev = dev;
3871
3872 mutex_init(&chip->reg_lock);
3873
3874 return chip;
3875 }
3876
3877 static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3878 struct mii_bus *bus, int sw_addr)
3879 {
3880 /* ADDR[0] pin is unavailable externally and considered zero */
3881 if (sw_addr & 0x1)
3882 return -EINVAL;
3883
3884 if (sw_addr == 0)
3885 chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3886 else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_MULTI_CHIP))
3887 chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3888 else
3889 return -EINVAL;
3890
3891 chip->bus = bus;
3892 chip->sw_addr = sw_addr;
3893
3894 return 0;
3895 }
3896
3897 static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
3898 struct device *host_dev, int sw_addr,
3899 void **priv)
3900 {
3901 struct mv88e6xxx_chip *chip;
3902 struct mii_bus *bus;
3903 int err;
3904
3905 bus = dsa_host_dev_to_mii_bus(host_dev);
3906 if (!bus)
3907 return NULL;
3908
3909 chip = mv88e6xxx_alloc_chip(dsa_dev);
3910 if (!chip)
3911 return NULL;
3912
3913 /* Legacy SMI probing will only support chips similar to 88E6085 */
3914 chip->info = &mv88e6xxx_table[MV88E6085];
3915
3916 err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3917 if (err)
3918 goto free;
3919
3920 err = mv88e6xxx_detect(chip);
3921 if (err)
3922 goto free;
3923
3924 err = mv88e6xxx_mdio_register(chip, NULL);
3925 if (err)
3926 goto free;
3927
3928 *priv = chip;
3929
3930 return chip->info->name;
3931 free:
3932 devm_kfree(dsa_dev, chip);
3933
3934 return NULL;
3935 }
3936
3937 static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3938 .tag_protocol = DSA_TAG_PROTO_EDSA,
3939 .probe = mv88e6xxx_drv_probe,
3940 .setup = mv88e6xxx_setup,
3941 .set_addr = mv88e6xxx_set_addr,
3942 .adjust_link = mv88e6xxx_adjust_link,
3943 .get_strings = mv88e6xxx_get_strings,
3944 .get_ethtool_stats = mv88e6xxx_get_ethtool_stats,
3945 .get_sset_count = mv88e6xxx_get_sset_count,
3946 .set_eee = mv88e6xxx_set_eee,
3947 .get_eee = mv88e6xxx_get_eee,
3948 #ifdef CONFIG_NET_DSA_HWMON
3949 .get_temp = mv88e6xxx_get_temp,
3950 .get_temp_limit = mv88e6xxx_get_temp_limit,
3951 .set_temp_limit = mv88e6xxx_set_temp_limit,
3952 .get_temp_alarm = mv88e6xxx_get_temp_alarm,
3953 #endif
3954 .get_eeprom_len = mv88e6xxx_get_eeprom_len,
3955 .get_eeprom = mv88e6xxx_get_eeprom,
3956 .set_eeprom = mv88e6xxx_set_eeprom,
3957 .get_regs_len = mv88e6xxx_get_regs_len,
3958 .get_regs = mv88e6xxx_get_regs,
3959 .set_ageing_time = mv88e6xxx_set_ageing_time,
3960 .port_bridge_join = mv88e6xxx_port_bridge_join,
3961 .port_bridge_leave = mv88e6xxx_port_bridge_leave,
3962 .port_stp_state_set = mv88e6xxx_port_stp_state_set,
3963 .port_vlan_filtering = mv88e6xxx_port_vlan_filtering,
3964 .port_vlan_prepare = mv88e6xxx_port_vlan_prepare,
3965 .port_vlan_add = mv88e6xxx_port_vlan_add,
3966 .port_vlan_del = mv88e6xxx_port_vlan_del,
3967 .port_vlan_dump = mv88e6xxx_port_vlan_dump,
3968 .port_fdb_prepare = mv88e6xxx_port_fdb_prepare,
3969 .port_fdb_add = mv88e6xxx_port_fdb_add,
3970 .port_fdb_del = mv88e6xxx_port_fdb_del,
3971 .port_fdb_dump = mv88e6xxx_port_fdb_dump,
3972 };
3973
3974 static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3975 struct device_node *np)
3976 {
3977 struct device *dev = chip->dev;
3978 struct dsa_switch *ds;
3979
3980 ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
3981 if (!ds)
3982 return -ENOMEM;
3983
3984 ds->dev = dev;
3985 ds->priv = chip;
3986 ds->drv = &mv88e6xxx_switch_driver;
3987
3988 dev_set_drvdata(dev, ds);
3989
3990 return dsa_register_switch(ds, np);
3991 }
3992
3993 static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
3994 {
3995 dsa_unregister_switch(chip->ds);
3996 }
3997
3998 static int mv88e6xxx_probe(struct mdio_device *mdiodev)
3999 {
4000 struct device *dev = &mdiodev->dev;
4001 struct device_node *np = dev->of_node;
4002 const struct mv88e6xxx_info *compat_info;
4003 struct mv88e6xxx_chip *chip;
4004 u32 eeprom_len;
4005 int err;
4006
4007 compat_info = of_device_get_match_data(dev);
4008 if (!compat_info)
4009 return -EINVAL;
4010
4011 chip = mv88e6xxx_alloc_chip(dev);
4012 if (!chip)
4013 return -ENOMEM;
4014
4015 chip->info = compat_info;
4016
4017 err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4018 if (err)
4019 return err;
4020
4021 err = mv88e6xxx_detect(chip);
4022 if (err)
4023 return err;
4024
4025 chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
4026 if (IS_ERR(chip->reset))
4027 return PTR_ERR(chip->reset);
4028
4029 if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4030 !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4031 chip->eeprom_len = eeprom_len;
4032
4033 err = mv88e6xxx_mdio_register(chip, np);
4034 if (err)
4035 return err;
4036
4037 err = mv88e6xxx_register_switch(chip, np);
4038 if (err) {
4039 mv88e6xxx_mdio_unregister(chip);
4040 return err;
4041 }
4042
4043 return 0;
4044 }
4045
4046 static void mv88e6xxx_remove(struct mdio_device *mdiodev)
4047 {
4048 struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4049 struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4050
4051 mv88e6xxx_unregister_switch(chip);
4052 mv88e6xxx_mdio_unregister(chip);
4053 }
4054
4055 static const struct of_device_id mv88e6xxx_of_match[] = {
4056 {
4057 .compatible = "marvell,mv88e6085",
4058 .data = &mv88e6xxx_table[MV88E6085],
4059 },
4060 { /* sentinel */ },
4061 };
4062
4063 MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
4064
4065 static struct mdio_driver mv88e6xxx_driver = {
4066 .probe = mv88e6xxx_probe,
4067 .remove = mv88e6xxx_remove,
4068 .mdiodrv.driver = {
4069 .name = "mv88e6085",
4070 .of_match_table = mv88e6xxx_of_match,
4071 },
4072 };
4073
4074 static int __init mv88e6xxx_init(void)
4075 {
4076 register_switch_driver(&mv88e6xxx_switch_driver);
4077 return mdio_driver_register(&mv88e6xxx_driver);
4078 }
4079 module_init(mv88e6xxx_init);
4080
4081 static void __exit mv88e6xxx_cleanup(void)
4082 {
4083 mdio_driver_unregister(&mv88e6xxx_driver);
4084 unregister_switch_driver(&mv88e6xxx_switch_driver);
4085 }
4086 module_exit(mv88e6xxx_cleanup);
4087
4088 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
4089 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
4090 MODULE_LICENSE("GPL");