]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/dsa/mv88e6xxx.c
net: dsa: mv88e6xxx: check hardware VLAN in use
[mirror_ubuntu-artful-kernel.git] / drivers / net / dsa / mv88e6xxx.c
1 /*
2 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3 * Copyright (c) 2008 Marvell Semiconductor
4 *
5 * Copyright (c) 2015 CMC Electronics, Inc.
6 * Added support for VLAN Table Unit operations
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/if_bridge.h>
18 #include <linux/jiffies.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/phy.h>
24 #include <net/dsa.h>
25 #include <net/switchdev.h>
26 #include "mv88e6xxx.h"
27
28 static void assert_smi_lock(struct dsa_switch *ds)
29 {
30 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
31
32 if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
33 dev_err(ds->master_dev, "SMI lock not held!\n");
34 dump_stack();
35 }
36 }
37
38 /* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
39 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
40 * will be directly accessible on some {device address,register address}
41 * pair. If the ADDR[4:0] pins are not strapped to zero, the switch
42 * will only respond to SMI transactions to that specific address, and
43 * an indirect addressing mechanism needs to be used to access its
44 * registers.
45 */
46 static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
47 {
48 int ret;
49 int i;
50
51 for (i = 0; i < 16; i++) {
52 ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
53 if (ret < 0)
54 return ret;
55
56 if ((ret & SMI_CMD_BUSY) == 0)
57 return 0;
58 }
59
60 return -ETIMEDOUT;
61 }
62
63 static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
64 int reg)
65 {
66 int ret;
67
68 if (sw_addr == 0)
69 return mdiobus_read_nested(bus, addr, reg);
70
71 /* Wait for the bus to become free. */
72 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
73 if (ret < 0)
74 return ret;
75
76 /* Transmit the read command. */
77 ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
78 SMI_CMD_OP_22_READ | (addr << 5) | reg);
79 if (ret < 0)
80 return ret;
81
82 /* Wait for the read command to complete. */
83 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
84 if (ret < 0)
85 return ret;
86
87 /* Read the data. */
88 ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
89 if (ret < 0)
90 return ret;
91
92 return ret & 0xffff;
93 }
94
95 static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
96 {
97 struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
98 int ret;
99
100 assert_smi_lock(ds);
101
102 if (bus == NULL)
103 return -EINVAL;
104
105 ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
106 if (ret < 0)
107 return ret;
108
109 dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
110 addr, reg, ret);
111
112 return ret;
113 }
114
115 int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
116 {
117 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
118 int ret;
119
120 mutex_lock(&ps->smi_mutex);
121 ret = _mv88e6xxx_reg_read(ds, addr, reg);
122 mutex_unlock(&ps->smi_mutex);
123
124 return ret;
125 }
126
127 static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
128 int reg, u16 val)
129 {
130 int ret;
131
132 if (sw_addr == 0)
133 return mdiobus_write_nested(bus, addr, reg, val);
134
135 /* Wait for the bus to become free. */
136 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
137 if (ret < 0)
138 return ret;
139
140 /* Transmit the data to write. */
141 ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
142 if (ret < 0)
143 return ret;
144
145 /* Transmit the write command. */
146 ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
147 SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
148 if (ret < 0)
149 return ret;
150
151 /* Wait for the write command to complete. */
152 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
153 if (ret < 0)
154 return ret;
155
156 return 0;
157 }
158
159 static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
160 u16 val)
161 {
162 struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
163
164 assert_smi_lock(ds);
165
166 if (bus == NULL)
167 return -EINVAL;
168
169 dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
170 addr, reg, val);
171
172 return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
173 }
174
175 int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
176 {
177 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
178 int ret;
179
180 mutex_lock(&ps->smi_mutex);
181 ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
182 mutex_unlock(&ps->smi_mutex);
183
184 return ret;
185 }
186
187 int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
188 {
189 REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
190 REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
191 REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
192
193 return 0;
194 }
195
196 int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
197 {
198 int i;
199 int ret;
200
201 for (i = 0; i < 6; i++) {
202 int j;
203
204 /* Write the MAC address byte. */
205 REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
206 GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
207
208 /* Wait for the write to complete. */
209 for (j = 0; j < 16; j++) {
210 ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
211 if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
212 break;
213 }
214 if (j == 16)
215 return -ETIMEDOUT;
216 }
217
218 return 0;
219 }
220
221 static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
222 {
223 if (addr >= 0)
224 return _mv88e6xxx_reg_read(ds, addr, regnum);
225 return 0xffff;
226 }
227
228 static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
229 u16 val)
230 {
231 if (addr >= 0)
232 return _mv88e6xxx_reg_write(ds, addr, regnum, val);
233 return 0;
234 }
235
236 #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
237 static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
238 {
239 int ret;
240 unsigned long timeout;
241
242 ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
243 REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
244 ret & ~GLOBAL_CONTROL_PPU_ENABLE);
245
246 timeout = jiffies + 1 * HZ;
247 while (time_before(jiffies, timeout)) {
248 ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
249 usleep_range(1000, 2000);
250 if ((ret & GLOBAL_STATUS_PPU_MASK) !=
251 GLOBAL_STATUS_PPU_POLLING)
252 return 0;
253 }
254
255 return -ETIMEDOUT;
256 }
257
258 static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
259 {
260 int ret;
261 unsigned long timeout;
262
263 ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
264 REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
265
266 timeout = jiffies + 1 * HZ;
267 while (time_before(jiffies, timeout)) {
268 ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
269 usleep_range(1000, 2000);
270 if ((ret & GLOBAL_STATUS_PPU_MASK) ==
271 GLOBAL_STATUS_PPU_POLLING)
272 return 0;
273 }
274
275 return -ETIMEDOUT;
276 }
277
278 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
279 {
280 struct mv88e6xxx_priv_state *ps;
281
282 ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
283 if (mutex_trylock(&ps->ppu_mutex)) {
284 struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
285
286 if (mv88e6xxx_ppu_enable(ds) == 0)
287 ps->ppu_disabled = 0;
288 mutex_unlock(&ps->ppu_mutex);
289 }
290 }
291
292 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
293 {
294 struct mv88e6xxx_priv_state *ps = (void *)_ps;
295
296 schedule_work(&ps->ppu_work);
297 }
298
299 static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
300 {
301 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
302 int ret;
303
304 mutex_lock(&ps->ppu_mutex);
305
306 /* If the PHY polling unit is enabled, disable it so that
307 * we can access the PHY registers. If it was already
308 * disabled, cancel the timer that is going to re-enable
309 * it.
310 */
311 if (!ps->ppu_disabled) {
312 ret = mv88e6xxx_ppu_disable(ds);
313 if (ret < 0) {
314 mutex_unlock(&ps->ppu_mutex);
315 return ret;
316 }
317 ps->ppu_disabled = 1;
318 } else {
319 del_timer(&ps->ppu_timer);
320 ret = 0;
321 }
322
323 return ret;
324 }
325
326 static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
327 {
328 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
329
330 /* Schedule a timer to re-enable the PHY polling unit. */
331 mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
332 mutex_unlock(&ps->ppu_mutex);
333 }
334
335 void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
336 {
337 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
338
339 mutex_init(&ps->ppu_mutex);
340 INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
341 init_timer(&ps->ppu_timer);
342 ps->ppu_timer.data = (unsigned long)ps;
343 ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
344 }
345
346 int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
347 {
348 int ret;
349
350 ret = mv88e6xxx_ppu_access_get(ds);
351 if (ret >= 0) {
352 ret = mv88e6xxx_reg_read(ds, addr, regnum);
353 mv88e6xxx_ppu_access_put(ds);
354 }
355
356 return ret;
357 }
358
359 int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
360 int regnum, u16 val)
361 {
362 int ret;
363
364 ret = mv88e6xxx_ppu_access_get(ds);
365 if (ret >= 0) {
366 ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
367 mv88e6xxx_ppu_access_put(ds);
368 }
369
370 return ret;
371 }
372 #endif
373
374 static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
375 {
376 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
377
378 switch (ps->id) {
379 case PORT_SWITCH_ID_6031:
380 case PORT_SWITCH_ID_6061:
381 case PORT_SWITCH_ID_6035:
382 case PORT_SWITCH_ID_6065:
383 return true;
384 }
385 return false;
386 }
387
388 static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
389 {
390 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
391
392 switch (ps->id) {
393 case PORT_SWITCH_ID_6092:
394 case PORT_SWITCH_ID_6095:
395 return true;
396 }
397 return false;
398 }
399
400 static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
401 {
402 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
403
404 switch (ps->id) {
405 case PORT_SWITCH_ID_6046:
406 case PORT_SWITCH_ID_6085:
407 case PORT_SWITCH_ID_6096:
408 case PORT_SWITCH_ID_6097:
409 return true;
410 }
411 return false;
412 }
413
414 static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
415 {
416 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
417
418 switch (ps->id) {
419 case PORT_SWITCH_ID_6123:
420 case PORT_SWITCH_ID_6161:
421 case PORT_SWITCH_ID_6165:
422 return true;
423 }
424 return false;
425 }
426
427 static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
428 {
429 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
430
431 switch (ps->id) {
432 case PORT_SWITCH_ID_6121:
433 case PORT_SWITCH_ID_6122:
434 case PORT_SWITCH_ID_6152:
435 case PORT_SWITCH_ID_6155:
436 case PORT_SWITCH_ID_6182:
437 case PORT_SWITCH_ID_6185:
438 case PORT_SWITCH_ID_6108:
439 case PORT_SWITCH_ID_6131:
440 return true;
441 }
442 return false;
443 }
444
445 static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
446 {
447 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
448
449 switch (ps->id) {
450 case PORT_SWITCH_ID_6320:
451 case PORT_SWITCH_ID_6321:
452 return true;
453 }
454 return false;
455 }
456
457 static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
458 {
459 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
460
461 switch (ps->id) {
462 case PORT_SWITCH_ID_6171:
463 case PORT_SWITCH_ID_6175:
464 case PORT_SWITCH_ID_6350:
465 case PORT_SWITCH_ID_6351:
466 return true;
467 }
468 return false;
469 }
470
471 static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
472 {
473 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
474
475 switch (ps->id) {
476 case PORT_SWITCH_ID_6172:
477 case PORT_SWITCH_ID_6176:
478 case PORT_SWITCH_ID_6240:
479 case PORT_SWITCH_ID_6352:
480 return true;
481 }
482 return false;
483 }
484
485 /* We expect the switch to perform auto negotiation if there is a real
486 * phy. However, in the case of a fixed link phy, we force the port
487 * settings from the fixed link settings.
488 */
489 void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
490 struct phy_device *phydev)
491 {
492 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
493 u32 reg;
494 int ret;
495
496 if (!phy_is_pseudo_fixed_link(phydev))
497 return;
498
499 mutex_lock(&ps->smi_mutex);
500
501 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
502 if (ret < 0)
503 goto out;
504
505 reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
506 PORT_PCS_CTRL_FORCE_LINK |
507 PORT_PCS_CTRL_DUPLEX_FULL |
508 PORT_PCS_CTRL_FORCE_DUPLEX |
509 PORT_PCS_CTRL_UNFORCED);
510
511 reg |= PORT_PCS_CTRL_FORCE_LINK;
512 if (phydev->link)
513 reg |= PORT_PCS_CTRL_LINK_UP;
514
515 if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
516 goto out;
517
518 switch (phydev->speed) {
519 case SPEED_1000:
520 reg |= PORT_PCS_CTRL_1000;
521 break;
522 case SPEED_100:
523 reg |= PORT_PCS_CTRL_100;
524 break;
525 case SPEED_10:
526 reg |= PORT_PCS_CTRL_10;
527 break;
528 default:
529 pr_info("Unknown speed");
530 goto out;
531 }
532
533 reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
534 if (phydev->duplex == DUPLEX_FULL)
535 reg |= PORT_PCS_CTRL_DUPLEX_FULL;
536
537 if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
538 (port >= ps->num_ports - 2)) {
539 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
540 reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
541 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
542 reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
543 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
544 reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
545 PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
546 }
547 _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);
548
549 out:
550 mutex_unlock(&ps->smi_mutex);
551 }
552
553 static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
554 {
555 int ret;
556 int i;
557
558 for (i = 0; i < 10; i++) {
559 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
560 if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
561 return 0;
562 }
563
564 return -ETIMEDOUT;
565 }
566
567 static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
568 {
569 int ret;
570
571 if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
572 port = (port + 1) << 5;
573
574 /* Snapshot the hardware statistics counters for this port. */
575 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
576 GLOBAL_STATS_OP_CAPTURE_PORT |
577 GLOBAL_STATS_OP_HIST_RX_TX | port);
578 if (ret < 0)
579 return ret;
580
581 /* Wait for the snapshotting to complete. */
582 ret = _mv88e6xxx_stats_wait(ds);
583 if (ret < 0)
584 return ret;
585
586 return 0;
587 }
588
589 static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
590 {
591 u32 _val;
592 int ret;
593
594 *val = 0;
595
596 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
597 GLOBAL_STATS_OP_READ_CAPTURED |
598 GLOBAL_STATS_OP_HIST_RX_TX | stat);
599 if (ret < 0)
600 return;
601
602 ret = _mv88e6xxx_stats_wait(ds);
603 if (ret < 0)
604 return;
605
606 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
607 if (ret < 0)
608 return;
609
610 _val = ret << 16;
611
612 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
613 if (ret < 0)
614 return;
615
616 *val = _val | ret;
617 }
618
619 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
620 { "in_good_octets", 8, 0x00, BANK0, },
621 { "in_bad_octets", 4, 0x02, BANK0, },
622 { "in_unicast", 4, 0x04, BANK0, },
623 { "in_broadcasts", 4, 0x06, BANK0, },
624 { "in_multicasts", 4, 0x07, BANK0, },
625 { "in_pause", 4, 0x16, BANK0, },
626 { "in_undersize", 4, 0x18, BANK0, },
627 { "in_fragments", 4, 0x19, BANK0, },
628 { "in_oversize", 4, 0x1a, BANK0, },
629 { "in_jabber", 4, 0x1b, BANK0, },
630 { "in_rx_error", 4, 0x1c, BANK0, },
631 { "in_fcs_error", 4, 0x1d, BANK0, },
632 { "out_octets", 8, 0x0e, BANK0, },
633 { "out_unicast", 4, 0x10, BANK0, },
634 { "out_broadcasts", 4, 0x13, BANK0, },
635 { "out_multicasts", 4, 0x12, BANK0, },
636 { "out_pause", 4, 0x15, BANK0, },
637 { "excessive", 4, 0x11, BANK0, },
638 { "collisions", 4, 0x1e, BANK0, },
639 { "deferred", 4, 0x05, BANK0, },
640 { "single", 4, 0x14, BANK0, },
641 { "multiple", 4, 0x17, BANK0, },
642 { "out_fcs_error", 4, 0x03, BANK0, },
643 { "late", 4, 0x1f, BANK0, },
644 { "hist_64bytes", 4, 0x08, BANK0, },
645 { "hist_65_127bytes", 4, 0x09, BANK0, },
646 { "hist_128_255bytes", 4, 0x0a, BANK0, },
647 { "hist_256_511bytes", 4, 0x0b, BANK0, },
648 { "hist_512_1023bytes", 4, 0x0c, BANK0, },
649 { "hist_1024_max_bytes", 4, 0x0d, BANK0, },
650 { "sw_in_discards", 4, 0x10, PORT, },
651 { "sw_in_filtered", 2, 0x12, PORT, },
652 { "sw_out_filtered", 2, 0x13, PORT, },
653 { "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
654 { "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
655 { "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
656 { "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
657 { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
658 { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
659 { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
660 { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
661 { "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
662 { "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
663 { "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
664 { "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
665 { "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
666 { "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
667 { "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
668 { "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
669 { "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
670 { "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
671 { "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
672 { "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
673 { "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
674 { "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
675 { "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
676 { "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
677 { "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
678 { "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
679 };
680
681 static bool mv88e6xxx_has_stat(struct dsa_switch *ds,
682 struct mv88e6xxx_hw_stat *stat)
683 {
684 switch (stat->type) {
685 case BANK0:
686 return true;
687 case BANK1:
688 return mv88e6xxx_6320_family(ds);
689 case PORT:
690 return mv88e6xxx_6095_family(ds) ||
691 mv88e6xxx_6185_family(ds) ||
692 mv88e6xxx_6097_family(ds) ||
693 mv88e6xxx_6165_family(ds) ||
694 mv88e6xxx_6351_family(ds) ||
695 mv88e6xxx_6352_family(ds);
696 }
697 return false;
698 }
699
700 static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
701 struct mv88e6xxx_hw_stat *s,
702 int port)
703 {
704 u32 low;
705 u32 high = 0;
706 int ret;
707 u64 value;
708
709 switch (s->type) {
710 case PORT:
711 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg);
712 if (ret < 0)
713 return UINT64_MAX;
714
715 low = ret;
716 if (s->sizeof_stat == 4) {
717 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
718 s->reg + 1);
719 if (ret < 0)
720 return UINT64_MAX;
721 high = ret;
722 }
723 break;
724 case BANK0:
725 case BANK1:
726 _mv88e6xxx_stats_read(ds, s->reg, &low);
727 if (s->sizeof_stat == 8)
728 _mv88e6xxx_stats_read(ds, s->reg + 1, &high);
729 }
730 value = (((u64)high) << 16) | low;
731 return value;
732 }
733
734 void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
735 {
736 struct mv88e6xxx_hw_stat *stat;
737 int i, j;
738
739 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
740 stat = &mv88e6xxx_hw_stats[i];
741 if (mv88e6xxx_has_stat(ds, stat)) {
742 memcpy(data + j * ETH_GSTRING_LEN, stat->string,
743 ETH_GSTRING_LEN);
744 j++;
745 }
746 }
747 }
748
749 int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
750 {
751 struct mv88e6xxx_hw_stat *stat;
752 int i, j;
753
754 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
755 stat = &mv88e6xxx_hw_stats[i];
756 if (mv88e6xxx_has_stat(ds, stat))
757 j++;
758 }
759 return j;
760 }
761
762 void
763 mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
764 int port, uint64_t *data)
765 {
766 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
767 struct mv88e6xxx_hw_stat *stat;
768 int ret;
769 int i, j;
770
771 mutex_lock(&ps->smi_mutex);
772
773 ret = _mv88e6xxx_stats_snapshot(ds, port);
774 if (ret < 0) {
775 mutex_unlock(&ps->smi_mutex);
776 return;
777 }
778 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
779 stat = &mv88e6xxx_hw_stats[i];
780 if (mv88e6xxx_has_stat(ds, stat)) {
781 data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port);
782 j++;
783 }
784 }
785
786 mutex_unlock(&ps->smi_mutex);
787 }
788
789 int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
790 {
791 return 32 * sizeof(u16);
792 }
793
794 void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
795 struct ethtool_regs *regs, void *_p)
796 {
797 u16 *p = _p;
798 int i;
799
800 regs->version = 0;
801
802 memset(p, 0xff, 32 * sizeof(u16));
803
804 for (i = 0; i < 32; i++) {
805 int ret;
806
807 ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
808 if (ret >= 0)
809 p[i] = ret;
810 }
811 }
812
813 static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
814 u16 mask)
815 {
816 unsigned long timeout = jiffies + HZ / 10;
817
818 while (time_before(jiffies, timeout)) {
819 int ret;
820
821 ret = _mv88e6xxx_reg_read(ds, reg, offset);
822 if (ret < 0)
823 return ret;
824 if (!(ret & mask))
825 return 0;
826
827 usleep_range(1000, 2000);
828 }
829 return -ETIMEDOUT;
830 }
831
832 static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
833 {
834 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
835 int ret;
836
837 mutex_lock(&ps->smi_mutex);
838 ret = _mv88e6xxx_wait(ds, reg, offset, mask);
839 mutex_unlock(&ps->smi_mutex);
840
841 return ret;
842 }
843
844 static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
845 {
846 return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
847 GLOBAL2_SMI_OP_BUSY);
848 }
849
850 int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
851 {
852 return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
853 GLOBAL2_EEPROM_OP_LOAD);
854 }
855
856 int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
857 {
858 return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
859 GLOBAL2_EEPROM_OP_BUSY);
860 }
861
862 static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
863 {
864 return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
865 GLOBAL_ATU_OP_BUSY);
866 }
867
868 static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
869 int regnum)
870 {
871 int ret;
872
873 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
874 GLOBAL2_SMI_OP_22_READ | (addr << 5) |
875 regnum);
876 if (ret < 0)
877 return ret;
878
879 ret = _mv88e6xxx_phy_wait(ds);
880 if (ret < 0)
881 return ret;
882
883 return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
884 }
885
886 static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
887 int regnum, u16 val)
888 {
889 int ret;
890
891 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
892 if (ret < 0)
893 return ret;
894
895 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
896 GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
897 regnum);
898
899 return _mv88e6xxx_phy_wait(ds);
900 }
901
902 int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
903 {
904 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
905 int reg;
906
907 mutex_lock(&ps->smi_mutex);
908
909 reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
910 if (reg < 0)
911 goto out;
912
913 e->eee_enabled = !!(reg & 0x0200);
914 e->tx_lpi_enabled = !!(reg & 0x0100);
915
916 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
917 if (reg < 0)
918 goto out;
919
920 e->eee_active = !!(reg & PORT_STATUS_EEE);
921 reg = 0;
922
923 out:
924 mutex_unlock(&ps->smi_mutex);
925 return reg;
926 }
927
928 int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
929 struct phy_device *phydev, struct ethtool_eee *e)
930 {
931 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
932 int reg;
933 int ret;
934
935 mutex_lock(&ps->smi_mutex);
936
937 ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
938 if (ret < 0)
939 goto out;
940
941 reg = ret & ~0x0300;
942 if (e->eee_enabled)
943 reg |= 0x0200;
944 if (e->tx_lpi_enabled)
945 reg |= 0x0100;
946
947 ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
948 out:
949 mutex_unlock(&ps->smi_mutex);
950
951 return ret;
952 }
953
954 static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 cmd)
955 {
956 int ret;
957
958 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
959 if (ret < 0)
960 return ret;
961
962 return _mv88e6xxx_atu_wait(ds);
963 }
964
965 static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
966 struct mv88e6xxx_atu_entry *entry)
967 {
968 u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
969
970 if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
971 unsigned int mask, shift;
972
973 if (entry->trunk) {
974 data |= GLOBAL_ATU_DATA_TRUNK;
975 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
976 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
977 } else {
978 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
979 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
980 }
981
982 data |= (entry->portv_trunkid << shift) & mask;
983 }
984
985 return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
986 }
987
988 static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
989 struct mv88e6xxx_atu_entry *entry,
990 bool static_too)
991 {
992 int op;
993 int err;
994
995 err = _mv88e6xxx_atu_wait(ds);
996 if (err)
997 return err;
998
999 err = _mv88e6xxx_atu_data_write(ds, entry);
1000 if (err)
1001 return err;
1002
1003 if (entry->fid) {
1004 err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID,
1005 entry->fid);
1006 if (err)
1007 return err;
1008
1009 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
1010 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
1011 } else {
1012 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1013 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1014 }
1015
1016 return _mv88e6xxx_atu_cmd(ds, op);
1017 }
1018
1019 static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
1020 {
1021 struct mv88e6xxx_atu_entry entry = {
1022 .fid = fid,
1023 .state = 0, /* EntryState bits must be 0 */
1024 };
1025
1026 return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
1027 }
1028
1029 static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
1030 int to_port, bool static_too)
1031 {
1032 struct mv88e6xxx_atu_entry entry = {
1033 .trunk = false,
1034 .fid = fid,
1035 };
1036
1037 /* EntryState bits must be 0xF */
1038 entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1039
1040 /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1041 entry.portv_trunkid = (to_port & 0x0f) << 4;
1042 entry.portv_trunkid |= from_port & 0x0f;
1043
1044 return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
1045 }
1046
1047 static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
1048 bool static_too)
1049 {
1050 /* Destination port 0xF means remove the entries */
1051 return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
1052 }
1053
1054 static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
1055 {
1056 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1057 int reg, ret = 0;
1058 u8 oldstate;
1059
1060 mutex_lock(&ps->smi_mutex);
1061
1062 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1063 if (reg < 0) {
1064 ret = reg;
1065 goto abort;
1066 }
1067
1068 oldstate = reg & PORT_CONTROL_STATE_MASK;
1069 if (oldstate != state) {
1070 /* Flush forwarding database if we're moving a port
1071 * from Learning or Forwarding state to Disabled or
1072 * Blocking or Listening state.
1073 */
1074 if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
1075 state <= PORT_CONTROL_STATE_BLOCKING) {
1076 ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
1077 if (ret)
1078 goto abort;
1079 }
1080 reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1081 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
1082 reg);
1083 }
1084
1085 abort:
1086 mutex_unlock(&ps->smi_mutex);
1087 return ret;
1088 }
1089
1090 static int _mv88e6xxx_port_vlan_map_set(struct dsa_switch *ds, int port,
1091 u16 output_ports)
1092 {
1093 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1094 const u16 mask = (1 << ps->num_ports) - 1;
1095 int reg;
1096
1097 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
1098 if (reg < 0)
1099 return reg;
1100
1101 reg &= ~mask;
1102 reg |= output_ports & mask;
1103
1104 return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1105 }
1106
1107 int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
1108 {
1109 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1110 int stp_state;
1111
1112 switch (state) {
1113 case BR_STATE_DISABLED:
1114 stp_state = PORT_CONTROL_STATE_DISABLED;
1115 break;
1116 case BR_STATE_BLOCKING:
1117 case BR_STATE_LISTENING:
1118 stp_state = PORT_CONTROL_STATE_BLOCKING;
1119 break;
1120 case BR_STATE_LEARNING:
1121 stp_state = PORT_CONTROL_STATE_LEARNING;
1122 break;
1123 case BR_STATE_FORWARDING:
1124 default:
1125 stp_state = PORT_CONTROL_STATE_FORWARDING;
1126 break;
1127 }
1128
1129 netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);
1130
1131 /* mv88e6xxx_port_stp_update may be called with softirqs disabled,
1132 * so we can not update the port state directly but need to schedule it.
1133 */
1134 ps->ports[port].state = stp_state;
1135 set_bit(port, &ps->port_state_update_mask);
1136 schedule_work(&ps->bridge_work);
1137
1138 return 0;
1139 }
1140
1141 static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
1142 {
1143 int ret;
1144
1145 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
1146 if (ret < 0)
1147 return ret;
1148
1149 *pvid = ret & PORT_DEFAULT_VLAN_MASK;
1150
1151 return 0;
1152 }
1153
1154 int mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
1155 {
1156 int ret;
1157
1158 ret = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
1159 if (ret < 0)
1160 return ret;
1161
1162 *pvid = ret & PORT_DEFAULT_VLAN_MASK;
1163
1164 return 0;
1165 }
1166
1167 static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
1168 {
1169 return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
1170 pvid & PORT_DEFAULT_VLAN_MASK);
1171 }
1172
1173 static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
1174 {
1175 return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
1176 GLOBAL_VTU_OP_BUSY);
1177 }
1178
1179 static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
1180 {
1181 int ret;
1182
1183 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
1184 if (ret < 0)
1185 return ret;
1186
1187 return _mv88e6xxx_vtu_wait(ds);
1188 }
1189
1190 static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
1191 {
1192 int ret;
1193
1194 ret = _mv88e6xxx_vtu_wait(ds);
1195 if (ret < 0)
1196 return ret;
1197
1198 return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
1199 }
1200
1201 static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
1202 struct mv88e6xxx_vtu_stu_entry *entry,
1203 unsigned int nibble_offset)
1204 {
1205 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1206 u16 regs[3];
1207 int i;
1208 int ret;
1209
1210 for (i = 0; i < 3; ++i) {
1211 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1212 GLOBAL_VTU_DATA_0_3 + i);
1213 if (ret < 0)
1214 return ret;
1215
1216 regs[i] = ret;
1217 }
1218
1219 for (i = 0; i < ps->num_ports; ++i) {
1220 unsigned int shift = (i % 4) * 4 + nibble_offset;
1221 u16 reg = regs[i / 4];
1222
1223 entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1224 }
1225
1226 return 0;
1227 }
1228
1229 static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
1230 struct mv88e6xxx_vtu_stu_entry *entry,
1231 unsigned int nibble_offset)
1232 {
1233 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1234 u16 regs[3] = { 0 };
1235 int i;
1236 int ret;
1237
1238 for (i = 0; i < ps->num_ports; ++i) {
1239 unsigned int shift = (i % 4) * 4 + nibble_offset;
1240 u8 data = entry->data[i];
1241
1242 regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1243 }
1244
1245 for (i = 0; i < 3; ++i) {
1246 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
1247 GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1248 if (ret < 0)
1249 return ret;
1250 }
1251
1252 return 0;
1253 }
1254
1255 static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
1256 {
1257 return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
1258 vid & GLOBAL_VTU_VID_MASK);
1259 }
1260
1261 static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
1262 struct mv88e6xxx_vtu_stu_entry *entry)
1263 {
1264 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1265 int ret;
1266
1267 ret = _mv88e6xxx_vtu_wait(ds);
1268 if (ret < 0)
1269 return ret;
1270
1271 ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
1272 if (ret < 0)
1273 return ret;
1274
1275 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
1276 if (ret < 0)
1277 return ret;
1278
1279 next.vid = ret & GLOBAL_VTU_VID_MASK;
1280 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1281
1282 if (next.valid) {
1283 ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
1284 if (ret < 0)
1285 return ret;
1286
1287 if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
1288 mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
1289 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1290 GLOBAL_VTU_FID);
1291 if (ret < 0)
1292 return ret;
1293
1294 next.fid = ret & GLOBAL_VTU_FID_MASK;
1295
1296 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1297 GLOBAL_VTU_SID);
1298 if (ret < 0)
1299 return ret;
1300
1301 next.sid = ret & GLOBAL_VTU_SID_MASK;
1302 }
1303 }
1304
1305 *entry = next;
1306 return 0;
1307 }
1308
1309 static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
1310 struct mv88e6xxx_vtu_stu_entry *entry)
1311 {
1312 u16 reg = 0;
1313 int ret;
1314
1315 ret = _mv88e6xxx_vtu_wait(ds);
1316 if (ret < 0)
1317 return ret;
1318
1319 if (!entry->valid)
1320 goto loadpurge;
1321
1322 /* Write port member tags */
1323 ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
1324 if (ret < 0)
1325 return ret;
1326
1327 if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
1328 mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
1329 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1330 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1331 if (ret < 0)
1332 return ret;
1333
1334 reg = entry->fid & GLOBAL_VTU_FID_MASK;
1335 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
1336 if (ret < 0)
1337 return ret;
1338 }
1339
1340 reg = GLOBAL_VTU_VID_VALID;
1341 loadpurge:
1342 reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1343 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1344 if (ret < 0)
1345 return ret;
1346
1347 return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
1348 }
1349
1350 static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
1351 struct mv88e6xxx_vtu_stu_entry *entry)
1352 {
1353 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1354 int ret;
1355
1356 ret = _mv88e6xxx_vtu_wait(ds);
1357 if (ret < 0)
1358 return ret;
1359
1360 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
1361 sid & GLOBAL_VTU_SID_MASK);
1362 if (ret < 0)
1363 return ret;
1364
1365 ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
1366 if (ret < 0)
1367 return ret;
1368
1369 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
1370 if (ret < 0)
1371 return ret;
1372
1373 next.sid = ret & GLOBAL_VTU_SID_MASK;
1374
1375 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
1376 if (ret < 0)
1377 return ret;
1378
1379 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1380
1381 if (next.valid) {
1382 ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
1383 if (ret < 0)
1384 return ret;
1385 }
1386
1387 *entry = next;
1388 return 0;
1389 }
1390
1391 static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
1392 struct mv88e6xxx_vtu_stu_entry *entry)
1393 {
1394 u16 reg = 0;
1395 int ret;
1396
1397 ret = _mv88e6xxx_vtu_wait(ds);
1398 if (ret < 0)
1399 return ret;
1400
1401 if (!entry->valid)
1402 goto loadpurge;
1403
1404 /* Write port states */
1405 ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
1406 if (ret < 0)
1407 return ret;
1408
1409 reg = GLOBAL_VTU_VID_VALID;
1410 loadpurge:
1411 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1412 if (ret < 0)
1413 return ret;
1414
1415 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1416 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1417 if (ret < 0)
1418 return ret;
1419
1420 return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1421 }
1422
1423 static int _mv88e6xxx_vlan_init(struct dsa_switch *ds, u16 vid,
1424 struct mv88e6xxx_vtu_stu_entry *entry)
1425 {
1426 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1427 struct mv88e6xxx_vtu_stu_entry vlan = {
1428 .valid = true,
1429 .vid = vid,
1430 .fid = vid, /* We use one FID per VLAN */
1431 };
1432 int i;
1433
1434 /* exclude all ports except the CPU and DSA ports */
1435 for (i = 0; i < ps->num_ports; ++i)
1436 vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1437 ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1438 : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1439
1440 if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
1441 mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
1442 struct mv88e6xxx_vtu_stu_entry vstp;
1443 int err;
1444
1445 /* Adding a VTU entry requires a valid STU entry. As VSTP is not
1446 * implemented, only one STU entry is needed to cover all VTU
1447 * entries. Thus, validate the SID 0.
1448 */
1449 vlan.sid = 0;
1450 err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
1451 if (err)
1452 return err;
1453
1454 if (vstp.sid != vlan.sid || !vstp.valid) {
1455 memset(&vstp, 0, sizeof(vstp));
1456 vstp.valid = true;
1457 vstp.sid = vlan.sid;
1458
1459 err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
1460 if (err)
1461 return err;
1462 }
1463
1464 /* Clear all MAC addresses from the new database */
1465 err = _mv88e6xxx_atu_flush(ds, vlan.fid, true);
1466 if (err)
1467 return err;
1468 }
1469
1470 *entry = vlan;
1471 return 0;
1472 }
1473
1474 static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
1475 u16 vid_begin, u16 vid_end)
1476 {
1477 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1478 struct mv88e6xxx_vtu_stu_entry vlan;
1479 int i, err;
1480
1481 if (!vid_begin)
1482 return -EOPNOTSUPP;
1483
1484 mutex_lock(&ps->smi_mutex);
1485
1486 err = _mv88e6xxx_vtu_vid_write(ds, vid_begin - 1);
1487 if (err)
1488 goto unlock;
1489
1490 do {
1491 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1492 if (err)
1493 goto unlock;
1494
1495 if (!vlan.valid)
1496 break;
1497
1498 if (vlan.vid > vid_end)
1499 break;
1500
1501 for (i = 0; i < ps->num_ports; ++i) {
1502 if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
1503 continue;
1504
1505 if (vlan.data[i] ==
1506 GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1507 continue;
1508
1509 if (ps->ports[i].bridge_dev ==
1510 ps->ports[port].bridge_dev)
1511 break; /* same bridge, check next VLAN */
1512
1513 netdev_warn(ds->ports[port],
1514 "hardware VLAN %d already used by %s\n",
1515 vlan.vid,
1516 netdev_name(ps->ports[i].bridge_dev));
1517 err = -EOPNOTSUPP;
1518 goto unlock;
1519 }
1520 } while (vlan.vid < vid_end);
1521
1522 unlock:
1523 mutex_unlock(&ps->smi_mutex);
1524
1525 return err;
1526 }
1527
1528 int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1529 const struct switchdev_obj_port_vlan *vlan,
1530 struct switchdev_trans *trans)
1531 {
1532 int err;
1533
1534 /* We reserve a few VLANs to isolate unbridged ports */
1535 if (vlan->vid_end >= 4000)
1536 return -EOPNOTSUPP;
1537
1538 /* If the requested port doesn't belong to the same bridge as the VLAN
1539 * members, do not support it (yet) and fallback to software VLAN.
1540 */
1541 err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
1542 vlan->vid_end);
1543 if (err)
1544 return err;
1545
1546 /* We don't need any dynamic resource from the kernel (yet),
1547 * so skip the prepare phase.
1548 */
1549 return 0;
1550 }
1551
1552 static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
1553 bool untagged)
1554 {
1555 struct mv88e6xxx_vtu_stu_entry vlan;
1556 int err;
1557
1558 err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
1559 if (err)
1560 return err;
1561
1562 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1563 if (err)
1564 return err;
1565
1566 if (vlan.vid != vid || !vlan.valid) {
1567 err = _mv88e6xxx_vlan_init(ds, vid, &vlan);
1568 if (err)
1569 return err;
1570 }
1571
1572 vlan.data[port] = untagged ?
1573 GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1574 GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1575
1576 return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1577 }
1578
1579 int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1580 const struct switchdev_obj_port_vlan *vlan,
1581 struct switchdev_trans *trans)
1582 {
1583 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1584 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1585 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1586 u16 vid;
1587 int err = 0;
1588
1589 mutex_lock(&ps->smi_mutex);
1590
1591 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1592 err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged);
1593 if (err)
1594 goto unlock;
1595 }
1596
1597 /* no PVID with ranges, otherwise it's a bug */
1598 if (pvid)
1599 err = _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end);
1600 unlock:
1601 mutex_unlock(&ps->smi_mutex);
1602
1603 return err;
1604 }
1605
1606 static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
1607 {
1608 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1609 struct mv88e6xxx_vtu_stu_entry vlan;
1610 int i, err;
1611
1612 err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
1613 if (err)
1614 return err;
1615
1616 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1617 if (err)
1618 return err;
1619
1620 if (vlan.vid != vid || !vlan.valid ||
1621 vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1622 return -EOPNOTSUPP;
1623
1624 vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1625
1626 /* keep the VLAN unless all ports are excluded */
1627 vlan.valid = false;
1628 for (i = 0; i < ps->num_ports; ++i) {
1629 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1630 continue;
1631
1632 if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1633 vlan.valid = true;
1634 break;
1635 }
1636 }
1637
1638 err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1639 if (err)
1640 return err;
1641
1642 return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
1643 }
1644
1645 int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
1646 const struct switchdev_obj_port_vlan *vlan)
1647 {
1648 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1649 const u16 defpvid = 4000 + ds->index * DSA_MAX_PORTS + port;
1650 u16 pvid, vid;
1651 int err = 0;
1652
1653 mutex_lock(&ps->smi_mutex);
1654
1655 err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1656 if (err)
1657 goto unlock;
1658
1659 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1660 err = _mv88e6xxx_port_vlan_del(ds, port, vid);
1661 if (err)
1662 goto unlock;
1663
1664 if (vid == pvid) {
1665 /* restore reserved VLAN ID */
1666 err = _mv88e6xxx_port_pvid_set(ds, port, defpvid);
1667 if (err)
1668 goto unlock;
1669 }
1670 }
1671
1672 unlock:
1673 mutex_unlock(&ps->smi_mutex);
1674
1675 return err;
1676 }
1677
1678 int mv88e6xxx_vlan_getnext(struct dsa_switch *ds, u16 *vid,
1679 unsigned long *ports, unsigned long *untagged)
1680 {
1681 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1682 struct mv88e6xxx_vtu_stu_entry next;
1683 int port;
1684 int err;
1685
1686 if (*vid == 4095)
1687 return -ENOENT;
1688
1689 mutex_lock(&ps->smi_mutex);
1690 err = _mv88e6xxx_vtu_vid_write(ds, *vid);
1691 if (err)
1692 goto unlock;
1693
1694 err = _mv88e6xxx_vtu_getnext(ds, &next);
1695 unlock:
1696 mutex_unlock(&ps->smi_mutex);
1697
1698 if (err)
1699 return err;
1700
1701 if (!next.valid)
1702 return -ENOENT;
1703
1704 *vid = next.vid;
1705
1706 for (port = 0; port < ps->num_ports; ++port) {
1707 clear_bit(port, ports);
1708 clear_bit(port, untagged);
1709
1710 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
1711 continue;
1712
1713 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED ||
1714 next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1715 set_bit(port, ports);
1716
1717 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1718 set_bit(port, untagged);
1719 }
1720
1721 return 0;
1722 }
1723
1724 static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
1725 const unsigned char *addr)
1726 {
1727 int i, ret;
1728
1729 for (i = 0; i < 3; i++) {
1730 ret = _mv88e6xxx_reg_write(
1731 ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
1732 (addr[i * 2] << 8) | addr[i * 2 + 1]);
1733 if (ret < 0)
1734 return ret;
1735 }
1736
1737 return 0;
1738 }
1739
1740 static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
1741 {
1742 int i, ret;
1743
1744 for (i = 0; i < 3; i++) {
1745 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1746 GLOBAL_ATU_MAC_01 + i);
1747 if (ret < 0)
1748 return ret;
1749 addr[i * 2] = ret >> 8;
1750 addr[i * 2 + 1] = ret & 0xff;
1751 }
1752
1753 return 0;
1754 }
1755
1756 static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
1757 struct mv88e6xxx_atu_entry *entry)
1758 {
1759 int ret;
1760
1761 ret = _mv88e6xxx_atu_wait(ds);
1762 if (ret < 0)
1763 return ret;
1764
1765 ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
1766 if (ret < 0)
1767 return ret;
1768
1769 ret = _mv88e6xxx_atu_data_write(ds, entry);
1770 if (ret < 0)
1771 return ret;
1772
1773 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid);
1774 if (ret < 0)
1775 return ret;
1776
1777 return _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_LOAD_DB);
1778 }
1779
1780 static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
1781 const unsigned char *addr, u16 vid,
1782 u8 state)
1783 {
1784 struct mv88e6xxx_atu_entry entry = { 0 };
1785
1786 entry.fid = vid; /* We use one FID per VLAN */
1787 entry.state = state;
1788 ether_addr_copy(entry.mac, addr);
1789 if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
1790 entry.trunk = false;
1791 entry.portv_trunkid = BIT(port);
1792 }
1793
1794 return _mv88e6xxx_atu_load(ds, &entry);
1795 }
1796
1797 int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
1798 const struct switchdev_obj_port_fdb *fdb,
1799 struct switchdev_trans *trans)
1800 {
1801 /* We don't use per-port FDB */
1802 if (fdb->vid == 0)
1803 return -EOPNOTSUPP;
1804
1805 /* We don't need any dynamic resource from the kernel (yet),
1806 * so skip the prepare phase.
1807 */
1808 return 0;
1809 }
1810
1811 int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
1812 const struct switchdev_obj_port_fdb *fdb,
1813 struct switchdev_trans *trans)
1814 {
1815 int state = is_multicast_ether_addr(fdb->addr) ?
1816 GLOBAL_ATU_DATA_STATE_MC_STATIC :
1817 GLOBAL_ATU_DATA_STATE_UC_STATIC;
1818 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1819 int ret;
1820
1821 mutex_lock(&ps->smi_mutex);
1822 ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state);
1823 mutex_unlock(&ps->smi_mutex);
1824
1825 return ret;
1826 }
1827
1828 int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
1829 const struct switchdev_obj_port_fdb *fdb)
1830 {
1831 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1832 int ret;
1833
1834 mutex_lock(&ps->smi_mutex);
1835 ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
1836 GLOBAL_ATU_DATA_STATE_UNUSED);
1837 mutex_unlock(&ps->smi_mutex);
1838
1839 return ret;
1840 }
1841
1842 static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
1843 struct mv88e6xxx_atu_entry *entry)
1844 {
1845 struct mv88e6xxx_atu_entry next = { 0 };
1846 int ret;
1847
1848 next.fid = fid;
1849
1850 ret = _mv88e6xxx_atu_wait(ds);
1851 if (ret < 0)
1852 return ret;
1853
1854 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
1855 if (ret < 0)
1856 return ret;
1857
1858 ret = _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_GET_NEXT_DB);
1859 if (ret < 0)
1860 return ret;
1861
1862 ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
1863 if (ret < 0)
1864 return ret;
1865
1866 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
1867 if (ret < 0)
1868 return ret;
1869
1870 next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
1871 if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
1872 unsigned int mask, shift;
1873
1874 if (ret & GLOBAL_ATU_DATA_TRUNK) {
1875 next.trunk = true;
1876 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
1877 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
1878 } else {
1879 next.trunk = false;
1880 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
1881 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
1882 }
1883
1884 next.portv_trunkid = (ret & mask) >> shift;
1885 }
1886
1887 *entry = next;
1888 return 0;
1889 }
1890
1891 int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
1892 struct switchdev_obj_port_fdb *fdb,
1893 int (*cb)(struct switchdev_obj *obj))
1894 {
1895 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1896 struct mv88e6xxx_vtu_stu_entry vlan = {
1897 .vid = GLOBAL_VTU_VID_MASK, /* all ones */
1898 };
1899 int err;
1900
1901 mutex_lock(&ps->smi_mutex);
1902
1903 err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
1904 if (err)
1905 goto unlock;
1906
1907 do {
1908 struct mv88e6xxx_atu_entry addr = {
1909 .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
1910 };
1911
1912 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1913 if (err)
1914 goto unlock;
1915
1916 if (!vlan.valid)
1917 break;
1918
1919 err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
1920 if (err)
1921 goto unlock;
1922
1923 do {
1924 err = _mv88e6xxx_atu_getnext(ds, vlan.fid, &addr);
1925 if (err)
1926 goto unlock;
1927
1928 if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
1929 break;
1930
1931 if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
1932 bool is_static = addr.state ==
1933 (is_multicast_ether_addr(addr.mac) ?
1934 GLOBAL_ATU_DATA_STATE_MC_STATIC :
1935 GLOBAL_ATU_DATA_STATE_UC_STATIC);
1936
1937 fdb->vid = vlan.vid;
1938 ether_addr_copy(fdb->addr, addr.mac);
1939 fdb->ndm_state = is_static ? NUD_NOARP :
1940 NUD_REACHABLE;
1941
1942 err = cb(&fdb->obj);
1943 if (err)
1944 goto unlock;
1945 }
1946 } while (!is_broadcast_ether_addr(addr.mac));
1947
1948 } while (vlan.vid < GLOBAL_VTU_VID_MASK);
1949
1950 unlock:
1951 mutex_unlock(&ps->smi_mutex);
1952
1953 return err;
1954 }
1955
1956 int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
1957 struct net_device *bridge)
1958 {
1959 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1960
1961 ps->ports[port].bridge_dev = bridge;
1962
1963 return 0;
1964 }
1965
1966 int mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
1967 {
1968 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1969
1970 ps->ports[port].bridge_dev = NULL;
1971
1972 return 0;
1973 }
1974
1975 static int mv88e6xxx_setup_port_default_vlan(struct dsa_switch *ds, int port)
1976 {
1977 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1978 const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port;
1979 int err;
1980
1981 mutex_lock(&ps->smi_mutex);
1982 err = _mv88e6xxx_port_vlan_add(ds, port, pvid, true);
1983 if (!err)
1984 err = _mv88e6xxx_port_pvid_set(ds, port, pvid);
1985 mutex_unlock(&ps->smi_mutex);
1986 return err;
1987 }
1988
1989 static void mv88e6xxx_bridge_work(struct work_struct *work)
1990 {
1991 struct mv88e6xxx_priv_state *ps;
1992 struct dsa_switch *ds;
1993 int port;
1994
1995 ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
1996 ds = ((struct dsa_switch *)ps) - 1;
1997
1998 while (ps->port_state_update_mask) {
1999 port = __ffs(ps->port_state_update_mask);
2000 clear_bit(port, &ps->port_state_update_mask);
2001 mv88e6xxx_set_port_state(ds, port, ps->ports[port].state);
2002 }
2003 }
2004
2005 static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
2006 {
2007 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2008 int ret;
2009 u16 reg;
2010
2011 mutex_lock(&ps->smi_mutex);
2012
2013 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2014 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2015 mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2016 mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
2017 /* MAC Forcing register: don't force link, speed,
2018 * duplex or flow control state to any particular
2019 * values on physical ports, but force the CPU port
2020 * and all DSA ports to their maximum bandwidth and
2021 * full duplex.
2022 */
2023 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
2024 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2025 reg &= ~PORT_PCS_CTRL_UNFORCED;
2026 reg |= PORT_PCS_CTRL_FORCE_LINK |
2027 PORT_PCS_CTRL_LINK_UP |
2028 PORT_PCS_CTRL_DUPLEX_FULL |
2029 PORT_PCS_CTRL_FORCE_DUPLEX;
2030 if (mv88e6xxx_6065_family(ds))
2031 reg |= PORT_PCS_CTRL_100;
2032 else
2033 reg |= PORT_PCS_CTRL_1000;
2034 } else {
2035 reg |= PORT_PCS_CTRL_UNFORCED;
2036 }
2037
2038 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2039 PORT_PCS_CTRL, reg);
2040 if (ret)
2041 goto abort;
2042 }
2043
2044 /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
2045 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
2046 * tunneling, determine priority by looking at 802.1p and IP
2047 * priority fields (IP prio has precedence), and set STP state
2048 * to Forwarding.
2049 *
2050 * If this is the CPU link, use DSA or EDSA tagging depending
2051 * on which tagging mode was configured.
2052 *
2053 * If this is a link to another switch, use DSA tagging mode.
2054 *
2055 * If this is the upstream port for this switch, enable
2056 * forwarding of unknown unicasts and multicasts.
2057 */
2058 reg = 0;
2059 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2060 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2061 mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2062 mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
2063 reg = PORT_CONTROL_IGMP_MLD_SNOOP |
2064 PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
2065 PORT_CONTROL_STATE_FORWARDING;
2066 if (dsa_is_cpu_port(ds, port)) {
2067 if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
2068 reg |= PORT_CONTROL_DSA_TAG;
2069 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2070 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2071 mv88e6xxx_6320_family(ds)) {
2072 if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
2073 reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
2074 else
2075 reg |= PORT_CONTROL_FRAME_MODE_DSA;
2076 reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2077 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2078 }
2079
2080 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2081 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2082 mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2083 mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
2084 if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
2085 reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2086 }
2087 }
2088 if (dsa_is_dsa_port(ds, port)) {
2089 if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
2090 reg |= PORT_CONTROL_DSA_TAG;
2091 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2092 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2093 mv88e6xxx_6320_family(ds)) {
2094 reg |= PORT_CONTROL_FRAME_MODE_DSA;
2095 }
2096
2097 if (port == dsa_upstream_port(ds))
2098 reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2099 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2100 }
2101 if (reg) {
2102 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2103 PORT_CONTROL, reg);
2104 if (ret)
2105 goto abort;
2106 }
2107
2108 /* Port Control 2: don't force a good FCS, set the maximum frame size to
2109 * 10240 bytes, enable secure 802.1q tags, don't discard tagged or
2110 * untagged frames on this port, do a destination address lookup on all
2111 * received packets as usual, disable ARP mirroring and don't send a
2112 * copy of all transmitted/received frames on this port to the CPU.
2113 */
2114 reg = 0;
2115 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2116 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2117 mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
2118 reg = PORT_CONTROL_2_MAP_DA;
2119
2120 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2121 mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2122 reg |= PORT_CONTROL_2_JUMBO_10240;
2123
2124 if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
2125 /* Set the upstream port this port should use */
2126 reg |= dsa_upstream_port(ds);
2127 /* enable forwarding of unknown multicast addresses to
2128 * the upstream port
2129 */
2130 if (port == dsa_upstream_port(ds))
2131 reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2132 }
2133
2134 reg |= PORT_CONTROL_2_8021Q_SECURE;
2135
2136 if (reg) {
2137 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2138 PORT_CONTROL_2, reg);
2139 if (ret)
2140 goto abort;
2141 }
2142
2143 /* Port Association Vector: when learning source addresses
2144 * of packets, add the address to the address database using
2145 * a port bitmap that has only the bit for this port set and
2146 * the other bits clear.
2147 */
2148 reg = 1 << port;
2149 /* Disable learning for DSA and CPU ports */
2150 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
2151 reg = PORT_ASSOC_VECTOR_LOCKED_PORT;
2152
2153 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
2154 if (ret)
2155 goto abort;
2156
2157 /* Egress rate control 2: disable egress rate control. */
2158 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
2159 0x0000);
2160 if (ret)
2161 goto abort;
2162
2163 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2164 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2165 mv88e6xxx_6320_family(ds)) {
2166 /* Do not limit the period of time that this port can
2167 * be paused for by the remote end or the period of
2168 * time that this port can pause the remote end.
2169 */
2170 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2171 PORT_PAUSE_CTRL, 0x0000);
2172 if (ret)
2173 goto abort;
2174
2175 /* Port ATU control: disable limiting the number of
2176 * address database entries that this port is allowed
2177 * to use.
2178 */
2179 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2180 PORT_ATU_CONTROL, 0x0000);
2181 /* Priority Override: disable DA, SA and VTU priority
2182 * override.
2183 */
2184 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2185 PORT_PRI_OVERRIDE, 0x0000);
2186 if (ret)
2187 goto abort;
2188
2189 /* Port Ethertype: use the Ethertype DSA Ethertype
2190 * value.
2191 */
2192 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2193 PORT_ETH_TYPE, ETH_P_EDSA);
2194 if (ret)
2195 goto abort;
2196 /* Tag Remap: use an identity 802.1p prio -> switch
2197 * prio mapping.
2198 */
2199 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2200 PORT_TAG_REGMAP_0123, 0x3210);
2201 if (ret)
2202 goto abort;
2203
2204 /* Tag Remap 2: use an identity 802.1p prio -> switch
2205 * prio mapping.
2206 */
2207 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2208 PORT_TAG_REGMAP_4567, 0x7654);
2209 if (ret)
2210 goto abort;
2211 }
2212
2213 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2214 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2215 mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2216 mv88e6xxx_6320_family(ds)) {
2217 /* Rate Control: disable ingress rate limiting. */
2218 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2219 PORT_RATE_CONTROL, 0x0001);
2220 if (ret)
2221 goto abort;
2222 }
2223
2224 /* Port Control 1: disable trunking, disable sending
2225 * learning messages to this port.
2226 */
2227 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2228 if (ret)
2229 goto abort;
2230
2231 /* Port based VLAN map: do not give each port its own address
2232 * database, and allow every port to egress frames on all other ports.
2233 */
2234 reg = BIT(ps->num_ports) - 1; /* all ports */
2235 reg &= ~BIT(port); /* except itself */
2236 ret = _mv88e6xxx_port_vlan_map_set(ds, port, reg);
2237 if (ret)
2238 goto abort;
2239
2240 /* Default VLAN ID and priority: don't set a default VLAN
2241 * ID, and set the default packet priority to zero.
2242 */
2243 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
2244 0x0000);
2245 abort:
2246 mutex_unlock(&ps->smi_mutex);
2247 return ret;
2248 }
2249
2250 int mv88e6xxx_setup_ports(struct dsa_switch *ds)
2251 {
2252 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2253 int ret;
2254 int i;
2255
2256 for (i = 0; i < ps->num_ports; i++) {
2257 ret = mv88e6xxx_setup_port(ds, i);
2258 if (ret < 0)
2259 return ret;
2260
2261 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
2262 continue;
2263
2264 ret = mv88e6xxx_setup_port_default_vlan(ds, i);
2265 if (ret < 0)
2266 return ret;
2267 }
2268 return 0;
2269 }
2270
2271 int mv88e6xxx_setup_common(struct dsa_switch *ds)
2272 {
2273 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2274
2275 mutex_init(&ps->smi_mutex);
2276
2277 ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
2278
2279 INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);
2280
2281 return 0;
2282 }
2283
2284 int mv88e6xxx_setup_global(struct dsa_switch *ds)
2285 {
2286 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2287 int ret;
2288 int i;
2289
2290 /* Set the default address aging time to 5 minutes, and
2291 * enable address learn messages to be sent to all message
2292 * ports.
2293 */
2294 REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
2295 0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
2296
2297 /* Configure the IP ToS mapping registers. */
2298 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2299 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2300 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2301 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2302 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2303 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2304 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2305 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2306
2307 /* Configure the IEEE 802.1p priority mapping register. */
2308 REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2309
2310 /* Send all frames with destination addresses matching
2311 * 01:80:c2:00:00:0x to the CPU port.
2312 */
2313 REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
2314
2315 /* Ignore removed tag data on doubly tagged packets, disable
2316 * flow control messages, force flow control priority to the
2317 * highest, and send all special multicast frames to the CPU
2318 * port at the highest priority.
2319 */
2320 REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
2321 0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
2322 GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
2323
2324 /* Program the DSA routing table. */
2325 for (i = 0; i < 32; i++) {
2326 int nexthop = 0x1f;
2327
2328 if (ds->pd->rtable &&
2329 i != ds->index && i < ds->dst->pd->nr_chips)
2330 nexthop = ds->pd->rtable[i] & 0x1f;
2331
2332 REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
2333 GLOBAL2_DEVICE_MAPPING_UPDATE |
2334 (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
2335 nexthop);
2336 }
2337
2338 /* Clear all trunk masks. */
2339 for (i = 0; i < 8; i++)
2340 REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
2341 0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
2342 ((1 << ps->num_ports) - 1));
2343
2344 /* Clear all trunk mappings. */
2345 for (i = 0; i < 16; i++)
2346 REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
2347 GLOBAL2_TRUNK_MAPPING_UPDATE |
2348 (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
2349
2350 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2351 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2352 mv88e6xxx_6320_family(ds)) {
2353 /* Send all frames with destination addresses matching
2354 * 01:80:c2:00:00:2x to the CPU port.
2355 */
2356 REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);
2357
2358 /* Initialise cross-chip port VLAN table to reset
2359 * defaults.
2360 */
2361 REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);
2362
2363 /* Clear the priority override table. */
2364 for (i = 0; i < 16; i++)
2365 REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
2366 0x8000 | (i << 8));
2367 }
2368
2369 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2370 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2371 mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2372 mv88e6xxx_6320_family(ds)) {
2373 /* Disable ingress rate limiting by resetting all
2374 * ingress rate limit registers to their initial
2375 * state.
2376 */
2377 for (i = 0; i < ps->num_ports; i++)
2378 REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
2379 0x9000 | (i << 8));
2380 }
2381
2382 /* Clear the statistics counters for all ports */
2383 REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);
2384
2385 /* Wait for the flush to complete. */
2386 mutex_lock(&ps->smi_mutex);
2387 ret = _mv88e6xxx_stats_wait(ds);
2388 if (ret < 0)
2389 goto unlock;
2390
2391 /* Clear all ATU entries */
2392 ret = _mv88e6xxx_atu_flush(ds, 0, true);
2393 if (ret < 0)
2394 goto unlock;
2395
2396 /* Clear all the VTU and STU entries */
2397 ret = _mv88e6xxx_vtu_stu_flush(ds);
2398 unlock:
2399 mutex_unlock(&ps->smi_mutex);
2400
2401 return ret;
2402 }
2403
2404 int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
2405 {
2406 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2407 u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2408 struct gpio_desc *gpiod = ds->pd->reset;
2409 unsigned long timeout;
2410 int ret;
2411 int i;
2412
2413 /* Set all ports to the disabled state. */
2414 for (i = 0; i < ps->num_ports; i++) {
2415 ret = REG_READ(REG_PORT(i), PORT_CONTROL);
2416 REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
2417 }
2418
2419 /* Wait for transmit queues to drain. */
2420 usleep_range(2000, 4000);
2421
2422 /* If there is a gpio connected to the reset pin, toggle it */
2423 if (gpiod) {
2424 gpiod_set_value_cansleep(gpiod, 1);
2425 usleep_range(10000, 20000);
2426 gpiod_set_value_cansleep(gpiod, 0);
2427 usleep_range(10000, 20000);
2428 }
2429
2430 /* Reset the switch. Keep the PPU active if requested. The PPU
2431 * needs to be active to support indirect phy register access
2432 * through global registers 0x18 and 0x19.
2433 */
2434 if (ppu_active)
2435 REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
2436 else
2437 REG_WRITE(REG_GLOBAL, 0x04, 0xc400);
2438
2439 /* Wait up to one second for reset to complete. */
2440 timeout = jiffies + 1 * HZ;
2441 while (time_before(jiffies, timeout)) {
2442 ret = REG_READ(REG_GLOBAL, 0x00);
2443 if ((ret & is_reset) == is_reset)
2444 break;
2445 usleep_range(1000, 2000);
2446 }
2447 if (time_after(jiffies, timeout))
2448 return -ETIMEDOUT;
2449
2450 return 0;
2451 }
2452
2453 int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
2454 {
2455 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2456 int ret;
2457
2458 mutex_lock(&ps->smi_mutex);
2459 ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2460 if (ret < 0)
2461 goto error;
2462 ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
2463 error:
2464 _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2465 mutex_unlock(&ps->smi_mutex);
2466 return ret;
2467 }
2468
2469 int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
2470 int reg, int val)
2471 {
2472 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2473 int ret;
2474
2475 mutex_lock(&ps->smi_mutex);
2476 ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2477 if (ret < 0)
2478 goto error;
2479
2480 ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
2481 error:
2482 _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2483 mutex_unlock(&ps->smi_mutex);
2484 return ret;
2485 }
2486
2487 static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
2488 {
2489 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2490
2491 if (port >= 0 && port < ps->num_ports)
2492 return port;
2493 return -EINVAL;
2494 }
2495
2496 int
2497 mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
2498 {
2499 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2500 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2501 int ret;
2502
2503 if (addr < 0)
2504 return addr;
2505
2506 mutex_lock(&ps->smi_mutex);
2507 ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2508 mutex_unlock(&ps->smi_mutex);
2509 return ret;
2510 }
2511
2512 int
2513 mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
2514 {
2515 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2516 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2517 int ret;
2518
2519 if (addr < 0)
2520 return addr;
2521
2522 mutex_lock(&ps->smi_mutex);
2523 ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2524 mutex_unlock(&ps->smi_mutex);
2525 return ret;
2526 }
2527
2528 int
2529 mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
2530 {
2531 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2532 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2533 int ret;
2534
2535 if (addr < 0)
2536 return addr;
2537
2538 mutex_lock(&ps->smi_mutex);
2539 ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2540 mutex_unlock(&ps->smi_mutex);
2541 return ret;
2542 }
2543
2544 int
2545 mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
2546 u16 val)
2547 {
2548 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2549 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2550 int ret;
2551
2552 if (addr < 0)
2553 return addr;
2554
2555 mutex_lock(&ps->smi_mutex);
2556 ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2557 mutex_unlock(&ps->smi_mutex);
2558 return ret;
2559 }
2560
2561 #ifdef CONFIG_NET_DSA_HWMON
2562
2563 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
2564 {
2565 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2566 int ret;
2567 int val;
2568
2569 *temp = 0;
2570
2571 mutex_lock(&ps->smi_mutex);
2572
2573 ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
2574 if (ret < 0)
2575 goto error;
2576
2577 /* Enable temperature sensor */
2578 ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
2579 if (ret < 0)
2580 goto error;
2581
2582 ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
2583 if (ret < 0)
2584 goto error;
2585
2586 /* Wait for temperature to stabilize */
2587 usleep_range(10000, 12000);
2588
2589 val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
2590 if (val < 0) {
2591 ret = val;
2592 goto error;
2593 }
2594
2595 /* Disable temperature sensor */
2596 ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
2597 if (ret < 0)
2598 goto error;
2599
2600 *temp = ((val & 0x1f) - 5) * 5;
2601
2602 error:
2603 _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
2604 mutex_unlock(&ps->smi_mutex);
2605 return ret;
2606 }
2607
2608 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
2609 {
2610 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2611 int ret;
2612
2613 *temp = 0;
2614
2615 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
2616 if (ret < 0)
2617 return ret;
2618
2619 *temp = (ret & 0xff) - 25;
2620
2621 return 0;
2622 }
2623
2624 int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
2625 {
2626 if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
2627 return mv88e63xx_get_temp(ds, temp);
2628
2629 return mv88e61xx_get_temp(ds, temp);
2630 }
2631
2632 int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
2633 {
2634 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2635 int ret;
2636
2637 if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
2638 return -EOPNOTSUPP;
2639
2640 *temp = 0;
2641
2642 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
2643 if (ret < 0)
2644 return ret;
2645
2646 *temp = (((ret >> 8) & 0x1f) * 5) - 25;
2647
2648 return 0;
2649 }
2650
2651 int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
2652 {
2653 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2654 int ret;
2655
2656 if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
2657 return -EOPNOTSUPP;
2658
2659 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
2660 if (ret < 0)
2661 return ret;
2662 temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
2663 return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
2664 (ret & 0xe0ff) | (temp << 8));
2665 }
2666
2667 int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
2668 {
2669 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2670 int ret;
2671
2672 if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
2673 return -EOPNOTSUPP;
2674
2675 *alarm = false;
2676
2677 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
2678 if (ret < 0)
2679 return ret;
2680
2681 *alarm = !!(ret & 0x40);
2682
2683 return 0;
2684 }
2685 #endif /* CONFIG_NET_DSA_HWMON */
2686
2687 char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr,
2688 const struct mv88e6xxx_switch_id *table,
2689 unsigned int num)
2690 {
2691 struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
2692 int i, ret;
2693
2694 if (!bus)
2695 return NULL;
2696
2697 ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
2698 if (ret < 0)
2699 return NULL;
2700
2701 /* Look up the exact switch ID */
2702 for (i = 0; i < num; ++i)
2703 if (table[i].id == ret)
2704 return table[i].name;
2705
2706 /* Look up only the product number */
2707 for (i = 0; i < num; ++i) {
2708 if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) {
2709 dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n",
2710 ret & PORT_SWITCH_ID_REV_MASK,
2711 ret & PORT_SWITCH_ID_PROD_NUM_MASK);
2712 return table[i].name;
2713 }
2714 }
2715
2716 return NULL;
2717 }
2718
2719 static int __init mv88e6xxx_init(void)
2720 {
2721 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
2722 register_switch_driver(&mv88e6131_switch_driver);
2723 #endif
2724 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
2725 register_switch_driver(&mv88e6123_61_65_switch_driver);
2726 #endif
2727 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
2728 register_switch_driver(&mv88e6352_switch_driver);
2729 #endif
2730 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
2731 register_switch_driver(&mv88e6171_switch_driver);
2732 #endif
2733 return 0;
2734 }
2735 module_init(mv88e6xxx_init);
2736
2737 static void __exit mv88e6xxx_cleanup(void)
2738 {
2739 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
2740 unregister_switch_driver(&mv88e6171_switch_driver);
2741 #endif
2742 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
2743 unregister_switch_driver(&mv88e6352_switch_driver);
2744 #endif
2745 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
2746 unregister_switch_driver(&mv88e6123_61_65_switch_driver);
2747 #endif
2748 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
2749 unregister_switch_driver(&mv88e6131_switch_driver);
2750 #endif
2751 }
2752 module_exit(mv88e6xxx_cleanup);
2753
2754 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
2755 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
2756 MODULE_LICENSE("GPL");