]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/dsa/mv88e6xxx.c
Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[mirror_ubuntu-artful-kernel.git] / drivers / net / dsa / mv88e6xxx.c
1 /*
2 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3 * Copyright (c) 2008 Marvell Semiconductor
4 *
5 * Copyright (c) 2015 CMC Electronics, Inc.
6 * Added support for VLAN Table Unit operations
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/if_bridge.h>
18 #include <linux/jiffies.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <linux/phy.h>
23 #include <net/dsa.h>
24 #include <net/switchdev.h>
25 #include "mv88e6xxx.h"
26
27 static void assert_smi_lock(struct dsa_switch *ds)
28 {
29 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
30
31 if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
32 dev_err(ds->master_dev, "SMI lock not held!\n");
33 dump_stack();
34 }
35 }
36
37 /* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
38 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
39 * will be directly accessible on some {device address,register address}
40 * pair. If the ADDR[4:0] pins are not strapped to zero, the switch
41 * will only respond to SMI transactions to that specific address, and
42 * an indirect addressing mechanism needs to be used to access its
43 * registers.
44 */
45 static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
46 {
47 int ret;
48 int i;
49
50 for (i = 0; i < 16; i++) {
51 ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
52 if (ret < 0)
53 return ret;
54
55 if ((ret & SMI_CMD_BUSY) == 0)
56 return 0;
57 }
58
59 return -ETIMEDOUT;
60 }
61
62 static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
63 int reg)
64 {
65 int ret;
66
67 if (sw_addr == 0)
68 return mdiobus_read_nested(bus, addr, reg);
69
70 /* Wait for the bus to become free. */
71 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
72 if (ret < 0)
73 return ret;
74
75 /* Transmit the read command. */
76 ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
77 SMI_CMD_OP_22_READ | (addr << 5) | reg);
78 if (ret < 0)
79 return ret;
80
81 /* Wait for the read command to complete. */
82 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
83 if (ret < 0)
84 return ret;
85
86 /* Read the data. */
87 ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
88 if (ret < 0)
89 return ret;
90
91 return ret & 0xffff;
92 }
93
94 static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
95 {
96 struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
97 int ret;
98
99 assert_smi_lock(ds);
100
101 if (bus == NULL)
102 return -EINVAL;
103
104 ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
105 if (ret < 0)
106 return ret;
107
108 dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
109 addr, reg, ret);
110
111 return ret;
112 }
113
114 int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
115 {
116 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
117 int ret;
118
119 mutex_lock(&ps->smi_mutex);
120 ret = _mv88e6xxx_reg_read(ds, addr, reg);
121 mutex_unlock(&ps->smi_mutex);
122
123 return ret;
124 }
125
126 static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
127 int reg, u16 val)
128 {
129 int ret;
130
131 if (sw_addr == 0)
132 return mdiobus_write_nested(bus, addr, reg, val);
133
134 /* Wait for the bus to become free. */
135 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
136 if (ret < 0)
137 return ret;
138
139 /* Transmit the data to write. */
140 ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
141 if (ret < 0)
142 return ret;
143
144 /* Transmit the write command. */
145 ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
146 SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
147 if (ret < 0)
148 return ret;
149
150 /* Wait for the write command to complete. */
151 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
152 if (ret < 0)
153 return ret;
154
155 return 0;
156 }
157
158 static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
159 u16 val)
160 {
161 struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
162
163 assert_smi_lock(ds);
164
165 if (bus == NULL)
166 return -EINVAL;
167
168 dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
169 addr, reg, val);
170
171 return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
172 }
173
174 int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
175 {
176 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
177 int ret;
178
179 mutex_lock(&ps->smi_mutex);
180 ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
181 mutex_unlock(&ps->smi_mutex);
182
183 return ret;
184 }
185
186 int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
187 {
188 REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
189 REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
190 REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
191
192 return 0;
193 }
194
195 int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
196 {
197 int i;
198 int ret;
199
200 for (i = 0; i < 6; i++) {
201 int j;
202
203 /* Write the MAC address byte. */
204 REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
205 GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
206
207 /* Wait for the write to complete. */
208 for (j = 0; j < 16; j++) {
209 ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
210 if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
211 break;
212 }
213 if (j == 16)
214 return -ETIMEDOUT;
215 }
216
217 return 0;
218 }
219
220 static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
221 {
222 if (addr >= 0)
223 return _mv88e6xxx_reg_read(ds, addr, regnum);
224 return 0xffff;
225 }
226
227 static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
228 u16 val)
229 {
230 if (addr >= 0)
231 return _mv88e6xxx_reg_write(ds, addr, regnum, val);
232 return 0;
233 }
234
235 #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
236 static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
237 {
238 int ret;
239 unsigned long timeout;
240
241 ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
242 REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
243 ret & ~GLOBAL_CONTROL_PPU_ENABLE);
244
245 timeout = jiffies + 1 * HZ;
246 while (time_before(jiffies, timeout)) {
247 ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
248 usleep_range(1000, 2000);
249 if ((ret & GLOBAL_STATUS_PPU_MASK) !=
250 GLOBAL_STATUS_PPU_POLLING)
251 return 0;
252 }
253
254 return -ETIMEDOUT;
255 }
256
257 static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
258 {
259 int ret;
260 unsigned long timeout;
261
262 ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
263 REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
264
265 timeout = jiffies + 1 * HZ;
266 while (time_before(jiffies, timeout)) {
267 ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
268 usleep_range(1000, 2000);
269 if ((ret & GLOBAL_STATUS_PPU_MASK) ==
270 GLOBAL_STATUS_PPU_POLLING)
271 return 0;
272 }
273
274 return -ETIMEDOUT;
275 }
276
277 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
278 {
279 struct mv88e6xxx_priv_state *ps;
280
281 ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
282 if (mutex_trylock(&ps->ppu_mutex)) {
283 struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
284
285 if (mv88e6xxx_ppu_enable(ds) == 0)
286 ps->ppu_disabled = 0;
287 mutex_unlock(&ps->ppu_mutex);
288 }
289 }
290
291 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
292 {
293 struct mv88e6xxx_priv_state *ps = (void *)_ps;
294
295 schedule_work(&ps->ppu_work);
296 }
297
298 static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
299 {
300 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
301 int ret;
302
303 mutex_lock(&ps->ppu_mutex);
304
305 /* If the PHY polling unit is enabled, disable it so that
306 * we can access the PHY registers. If it was already
307 * disabled, cancel the timer that is going to re-enable
308 * it.
309 */
310 if (!ps->ppu_disabled) {
311 ret = mv88e6xxx_ppu_disable(ds);
312 if (ret < 0) {
313 mutex_unlock(&ps->ppu_mutex);
314 return ret;
315 }
316 ps->ppu_disabled = 1;
317 } else {
318 del_timer(&ps->ppu_timer);
319 ret = 0;
320 }
321
322 return ret;
323 }
324
325 static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
326 {
327 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
328
329 /* Schedule a timer to re-enable the PHY polling unit. */
330 mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
331 mutex_unlock(&ps->ppu_mutex);
332 }
333
334 void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
335 {
336 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
337
338 mutex_init(&ps->ppu_mutex);
339 INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
340 init_timer(&ps->ppu_timer);
341 ps->ppu_timer.data = (unsigned long)ps;
342 ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
343 }
344
345 int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
346 {
347 int ret;
348
349 ret = mv88e6xxx_ppu_access_get(ds);
350 if (ret >= 0) {
351 ret = mv88e6xxx_reg_read(ds, addr, regnum);
352 mv88e6xxx_ppu_access_put(ds);
353 }
354
355 return ret;
356 }
357
358 int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
359 int regnum, u16 val)
360 {
361 int ret;
362
363 ret = mv88e6xxx_ppu_access_get(ds);
364 if (ret >= 0) {
365 ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
366 mv88e6xxx_ppu_access_put(ds);
367 }
368
369 return ret;
370 }
371 #endif
372
373 static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
374 {
375 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
376
377 switch (ps->id) {
378 case PORT_SWITCH_ID_6031:
379 case PORT_SWITCH_ID_6061:
380 case PORT_SWITCH_ID_6035:
381 case PORT_SWITCH_ID_6065:
382 return true;
383 }
384 return false;
385 }
386
387 static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
388 {
389 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
390
391 switch (ps->id) {
392 case PORT_SWITCH_ID_6092:
393 case PORT_SWITCH_ID_6095:
394 return true;
395 }
396 return false;
397 }
398
399 static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
400 {
401 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
402
403 switch (ps->id) {
404 case PORT_SWITCH_ID_6046:
405 case PORT_SWITCH_ID_6085:
406 case PORT_SWITCH_ID_6096:
407 case PORT_SWITCH_ID_6097:
408 return true;
409 }
410 return false;
411 }
412
413 static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
414 {
415 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
416
417 switch (ps->id) {
418 case PORT_SWITCH_ID_6123:
419 case PORT_SWITCH_ID_6161:
420 case PORT_SWITCH_ID_6165:
421 return true;
422 }
423 return false;
424 }
425
426 static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
427 {
428 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
429
430 switch (ps->id) {
431 case PORT_SWITCH_ID_6121:
432 case PORT_SWITCH_ID_6122:
433 case PORT_SWITCH_ID_6152:
434 case PORT_SWITCH_ID_6155:
435 case PORT_SWITCH_ID_6182:
436 case PORT_SWITCH_ID_6185:
437 case PORT_SWITCH_ID_6108:
438 case PORT_SWITCH_ID_6131:
439 return true;
440 }
441 return false;
442 }
443
444 static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
445 {
446 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
447
448 switch (ps->id) {
449 case PORT_SWITCH_ID_6320:
450 case PORT_SWITCH_ID_6321:
451 return true;
452 }
453 return false;
454 }
455
456 static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
457 {
458 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
459
460 switch (ps->id) {
461 case PORT_SWITCH_ID_6171:
462 case PORT_SWITCH_ID_6175:
463 case PORT_SWITCH_ID_6350:
464 case PORT_SWITCH_ID_6351:
465 return true;
466 }
467 return false;
468 }
469
470 static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
471 {
472 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
473
474 switch (ps->id) {
475 case PORT_SWITCH_ID_6172:
476 case PORT_SWITCH_ID_6176:
477 case PORT_SWITCH_ID_6240:
478 case PORT_SWITCH_ID_6352:
479 return true;
480 }
481 return false;
482 }
483
484 /* We expect the switch to perform auto negotiation if there is a real
485 * phy. However, in the case of a fixed link phy, we force the port
486 * settings from the fixed link settings.
487 */
488 void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
489 struct phy_device *phydev)
490 {
491 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
492 u32 reg;
493 int ret;
494
495 if (!phy_is_pseudo_fixed_link(phydev))
496 return;
497
498 mutex_lock(&ps->smi_mutex);
499
500 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
501 if (ret < 0)
502 goto out;
503
504 reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
505 PORT_PCS_CTRL_FORCE_LINK |
506 PORT_PCS_CTRL_DUPLEX_FULL |
507 PORT_PCS_CTRL_FORCE_DUPLEX |
508 PORT_PCS_CTRL_UNFORCED);
509
510 reg |= PORT_PCS_CTRL_FORCE_LINK;
511 if (phydev->link)
512 reg |= PORT_PCS_CTRL_LINK_UP;
513
514 if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
515 goto out;
516
517 switch (phydev->speed) {
518 case SPEED_1000:
519 reg |= PORT_PCS_CTRL_1000;
520 break;
521 case SPEED_100:
522 reg |= PORT_PCS_CTRL_100;
523 break;
524 case SPEED_10:
525 reg |= PORT_PCS_CTRL_10;
526 break;
527 default:
528 pr_info("Unknown speed");
529 goto out;
530 }
531
532 reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
533 if (phydev->duplex == DUPLEX_FULL)
534 reg |= PORT_PCS_CTRL_DUPLEX_FULL;
535
536 if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
537 (port >= ps->num_ports - 2)) {
538 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
539 reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
540 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
541 reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
542 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
543 reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
544 PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
545 }
546 _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);
547
548 out:
549 mutex_unlock(&ps->smi_mutex);
550 }
551
552 static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
553 {
554 int ret;
555 int i;
556
557 for (i = 0; i < 10; i++) {
558 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
559 if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
560 return 0;
561 }
562
563 return -ETIMEDOUT;
564 }
565
566 static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
567 {
568 int ret;
569
570 if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
571 port = (port + 1) << 5;
572
573 /* Snapshot the hardware statistics counters for this port. */
574 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
575 GLOBAL_STATS_OP_CAPTURE_PORT |
576 GLOBAL_STATS_OP_HIST_RX_TX | port);
577 if (ret < 0)
578 return ret;
579
580 /* Wait for the snapshotting to complete. */
581 ret = _mv88e6xxx_stats_wait(ds);
582 if (ret < 0)
583 return ret;
584
585 return 0;
586 }
587
588 static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
589 {
590 u32 _val;
591 int ret;
592
593 *val = 0;
594
595 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
596 GLOBAL_STATS_OP_READ_CAPTURED |
597 GLOBAL_STATS_OP_HIST_RX_TX | stat);
598 if (ret < 0)
599 return;
600
601 ret = _mv88e6xxx_stats_wait(ds);
602 if (ret < 0)
603 return;
604
605 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
606 if (ret < 0)
607 return;
608
609 _val = ret << 16;
610
611 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
612 if (ret < 0)
613 return;
614
615 *val = _val | ret;
616 }
617
618 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
619 { "in_good_octets", 8, 0x00, },
620 { "in_bad_octets", 4, 0x02, },
621 { "in_unicast", 4, 0x04, },
622 { "in_broadcasts", 4, 0x06, },
623 { "in_multicasts", 4, 0x07, },
624 { "in_pause", 4, 0x16, },
625 { "in_undersize", 4, 0x18, },
626 { "in_fragments", 4, 0x19, },
627 { "in_oversize", 4, 0x1a, },
628 { "in_jabber", 4, 0x1b, },
629 { "in_rx_error", 4, 0x1c, },
630 { "in_fcs_error", 4, 0x1d, },
631 { "out_octets", 8, 0x0e, },
632 { "out_unicast", 4, 0x10, },
633 { "out_broadcasts", 4, 0x13, },
634 { "out_multicasts", 4, 0x12, },
635 { "out_pause", 4, 0x15, },
636 { "excessive", 4, 0x11, },
637 { "collisions", 4, 0x1e, },
638 { "deferred", 4, 0x05, },
639 { "single", 4, 0x14, },
640 { "multiple", 4, 0x17, },
641 { "out_fcs_error", 4, 0x03, },
642 { "late", 4, 0x1f, },
643 { "hist_64bytes", 4, 0x08, },
644 { "hist_65_127bytes", 4, 0x09, },
645 { "hist_128_255bytes", 4, 0x0a, },
646 { "hist_256_511bytes", 4, 0x0b, },
647 { "hist_512_1023bytes", 4, 0x0c, },
648 { "hist_1024_max_bytes", 4, 0x0d, },
649 /* Not all devices have the following counters */
650 { "sw_in_discards", 4, 0x110, },
651 { "sw_in_filtered", 2, 0x112, },
652 { "sw_out_filtered", 2, 0x113, },
653
654 };
655
656 static bool have_sw_in_discards(struct dsa_switch *ds)
657 {
658 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
659
660 switch (ps->id) {
661 case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
662 case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
663 case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
664 case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
665 case PORT_SWITCH_ID_6352:
666 return true;
667 default:
668 return false;
669 }
670 }
671
672 static void _mv88e6xxx_get_strings(struct dsa_switch *ds,
673 int nr_stats,
674 struct mv88e6xxx_hw_stat *stats,
675 int port, uint8_t *data)
676 {
677 int i;
678
679 for (i = 0; i < nr_stats; i++) {
680 memcpy(data + i * ETH_GSTRING_LEN,
681 stats[i].string, ETH_GSTRING_LEN);
682 }
683 }
684
685 static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
686 int stat,
687 struct mv88e6xxx_hw_stat *stats,
688 int port)
689 {
690 struct mv88e6xxx_hw_stat *s = stats + stat;
691 u32 low;
692 u32 high = 0;
693 int ret;
694 u64 value;
695
696 if (s->reg >= 0x100) {
697 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
698 s->reg - 0x100);
699 if (ret < 0)
700 return UINT64_MAX;
701
702 low = ret;
703 if (s->sizeof_stat == 4) {
704 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
705 s->reg - 0x100 + 1);
706 if (ret < 0)
707 return UINT64_MAX;
708 high = ret;
709 }
710 } else {
711 _mv88e6xxx_stats_read(ds, s->reg, &low);
712 if (s->sizeof_stat == 8)
713 _mv88e6xxx_stats_read(ds, s->reg + 1, &high);
714 }
715 value = (((u64)high) << 16) | low;
716 return value;
717 }
718
719 static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
720 int nr_stats,
721 struct mv88e6xxx_hw_stat *stats,
722 int port, uint64_t *data)
723 {
724 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
725 int ret;
726 int i;
727
728 mutex_lock(&ps->smi_mutex);
729
730 ret = _mv88e6xxx_stats_snapshot(ds, port);
731 if (ret < 0) {
732 mutex_unlock(&ps->smi_mutex);
733 return;
734 }
735
736 /* Read each of the counters. */
737 for (i = 0; i < nr_stats; i++)
738 data[i] = _mv88e6xxx_get_ethtool_stat(ds, i, stats, port);
739
740 mutex_unlock(&ps->smi_mutex);
741 }
742
743 /* All the statistics in the table */
744 void
745 mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
746 {
747 if (have_sw_in_discards(ds))
748 _mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
749 mv88e6xxx_hw_stats, port, data);
750 else
751 _mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
752 mv88e6xxx_hw_stats, port, data);
753 }
754
755 int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
756 {
757 if (have_sw_in_discards(ds))
758 return ARRAY_SIZE(mv88e6xxx_hw_stats);
759 return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
760 }
761
762 void
763 mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
764 int port, uint64_t *data)
765 {
766 if (have_sw_in_discards(ds))
767 _mv88e6xxx_get_ethtool_stats(
768 ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
769 mv88e6xxx_hw_stats, port, data);
770 else
771 _mv88e6xxx_get_ethtool_stats(
772 ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
773 mv88e6xxx_hw_stats, port, data);
774 }
775
776 int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
777 {
778 return 32 * sizeof(u16);
779 }
780
781 void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
782 struct ethtool_regs *regs, void *_p)
783 {
784 u16 *p = _p;
785 int i;
786
787 regs->version = 0;
788
789 memset(p, 0xff, 32 * sizeof(u16));
790
791 for (i = 0; i < 32; i++) {
792 int ret;
793
794 ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
795 if (ret >= 0)
796 p[i] = ret;
797 }
798 }
799
800 static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
801 u16 mask)
802 {
803 unsigned long timeout = jiffies + HZ / 10;
804
805 while (time_before(jiffies, timeout)) {
806 int ret;
807
808 ret = _mv88e6xxx_reg_read(ds, reg, offset);
809 if (ret < 0)
810 return ret;
811 if (!(ret & mask))
812 return 0;
813
814 usleep_range(1000, 2000);
815 }
816 return -ETIMEDOUT;
817 }
818
819 static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
820 {
821 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
822 int ret;
823
824 mutex_lock(&ps->smi_mutex);
825 ret = _mv88e6xxx_wait(ds, reg, offset, mask);
826 mutex_unlock(&ps->smi_mutex);
827
828 return ret;
829 }
830
831 static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
832 {
833 return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
834 GLOBAL2_SMI_OP_BUSY);
835 }
836
837 int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
838 {
839 return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
840 GLOBAL2_EEPROM_OP_LOAD);
841 }
842
843 int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
844 {
845 return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
846 GLOBAL2_EEPROM_OP_BUSY);
847 }
848
849 static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
850 {
851 return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
852 GLOBAL_ATU_OP_BUSY);
853 }
854
855 static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
856 int regnum)
857 {
858 int ret;
859
860 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
861 GLOBAL2_SMI_OP_22_READ | (addr << 5) |
862 regnum);
863 if (ret < 0)
864 return ret;
865
866 ret = _mv88e6xxx_phy_wait(ds);
867 if (ret < 0)
868 return ret;
869
870 return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
871 }
872
873 static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
874 int regnum, u16 val)
875 {
876 int ret;
877
878 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
879 if (ret < 0)
880 return ret;
881
882 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
883 GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
884 regnum);
885
886 return _mv88e6xxx_phy_wait(ds);
887 }
888
889 int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
890 {
891 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
892 int reg;
893
894 mutex_lock(&ps->smi_mutex);
895
896 reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
897 if (reg < 0)
898 goto out;
899
900 e->eee_enabled = !!(reg & 0x0200);
901 e->tx_lpi_enabled = !!(reg & 0x0100);
902
903 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
904 if (reg < 0)
905 goto out;
906
907 e->eee_active = !!(reg & PORT_STATUS_EEE);
908 reg = 0;
909
910 out:
911 mutex_unlock(&ps->smi_mutex);
912 return reg;
913 }
914
915 int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
916 struct phy_device *phydev, struct ethtool_eee *e)
917 {
918 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
919 int reg;
920 int ret;
921
922 mutex_lock(&ps->smi_mutex);
923
924 ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
925 if (ret < 0)
926 goto out;
927
928 reg = ret & ~0x0300;
929 if (e->eee_enabled)
930 reg |= 0x0200;
931 if (e->tx_lpi_enabled)
932 reg |= 0x0100;
933
934 ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
935 out:
936 mutex_unlock(&ps->smi_mutex);
937
938 return ret;
939 }
940
941 static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 cmd)
942 {
943 int ret;
944
945 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
946 if (ret < 0)
947 return ret;
948
949 return _mv88e6xxx_atu_wait(ds);
950 }
951
952 static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
953 struct mv88e6xxx_atu_entry *entry)
954 {
955 u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
956
957 if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
958 unsigned int mask, shift;
959
960 if (entry->trunk) {
961 data |= GLOBAL_ATU_DATA_TRUNK;
962 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
963 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
964 } else {
965 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
966 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
967 }
968
969 data |= (entry->portv_trunkid << shift) & mask;
970 }
971
972 return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
973 }
974
975 static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
976 struct mv88e6xxx_atu_entry *entry,
977 bool static_too)
978 {
979 int op;
980 int err;
981
982 err = _mv88e6xxx_atu_wait(ds);
983 if (err)
984 return err;
985
986 err = _mv88e6xxx_atu_data_write(ds, entry);
987 if (err)
988 return err;
989
990 if (entry->fid) {
991 err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID,
992 entry->fid);
993 if (err)
994 return err;
995
996 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
997 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
998 } else {
999 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1000 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1001 }
1002
1003 return _mv88e6xxx_atu_cmd(ds, op);
1004 }
1005
1006 static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
1007 {
1008 struct mv88e6xxx_atu_entry entry = {
1009 .fid = fid,
1010 .state = 0, /* EntryState bits must be 0 */
1011 };
1012
1013 return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
1014 }
1015
1016 static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
1017 int to_port, bool static_too)
1018 {
1019 struct mv88e6xxx_atu_entry entry = {
1020 .trunk = false,
1021 .fid = fid,
1022 };
1023
1024 /* EntryState bits must be 0xF */
1025 entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1026
1027 /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1028 entry.portv_trunkid = (to_port & 0x0f) << 4;
1029 entry.portv_trunkid |= from_port & 0x0f;
1030
1031 return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
1032 }
1033
1034 static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
1035 bool static_too)
1036 {
1037 /* Destination port 0xF means remove the entries */
1038 return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
1039 }
1040
1041 static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
1042 {
1043 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1044 int reg, ret = 0;
1045 u8 oldstate;
1046
1047 mutex_lock(&ps->smi_mutex);
1048
1049 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1050 if (reg < 0) {
1051 ret = reg;
1052 goto abort;
1053 }
1054
1055 oldstate = reg & PORT_CONTROL_STATE_MASK;
1056 if (oldstate != state) {
1057 /* Flush forwarding database if we're moving a port
1058 * from Learning or Forwarding state to Disabled or
1059 * Blocking or Listening state.
1060 */
1061 if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
1062 state <= PORT_CONTROL_STATE_BLOCKING) {
1063 ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
1064 if (ret)
1065 goto abort;
1066 }
1067 reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1068 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
1069 reg);
1070 }
1071
1072 abort:
1073 mutex_unlock(&ps->smi_mutex);
1074 return ret;
1075 }
1076
1077 static int _mv88e6xxx_port_vlan_map_set(struct dsa_switch *ds, int port,
1078 u16 output_ports)
1079 {
1080 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1081 const u16 mask = (1 << ps->num_ports) - 1;
1082 int reg;
1083
1084 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
1085 if (reg < 0)
1086 return reg;
1087
1088 reg &= ~mask;
1089 reg |= output_ports & mask;
1090
1091 return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1092 }
1093
1094 int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
1095 {
1096 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1097 int stp_state;
1098
1099 switch (state) {
1100 case BR_STATE_DISABLED:
1101 stp_state = PORT_CONTROL_STATE_DISABLED;
1102 break;
1103 case BR_STATE_BLOCKING:
1104 case BR_STATE_LISTENING:
1105 stp_state = PORT_CONTROL_STATE_BLOCKING;
1106 break;
1107 case BR_STATE_LEARNING:
1108 stp_state = PORT_CONTROL_STATE_LEARNING;
1109 break;
1110 case BR_STATE_FORWARDING:
1111 default:
1112 stp_state = PORT_CONTROL_STATE_FORWARDING;
1113 break;
1114 }
1115
1116 netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);
1117
1118 /* mv88e6xxx_port_stp_update may be called with softirqs disabled,
1119 * so we can not update the port state directly but need to schedule it.
1120 */
1121 ps->port_state[port] = stp_state;
1122 set_bit(port, &ps->port_state_update_mask);
1123 schedule_work(&ps->bridge_work);
1124
1125 return 0;
1126 }
1127
1128 static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
1129 {
1130 int ret;
1131
1132 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
1133 if (ret < 0)
1134 return ret;
1135
1136 *pvid = ret & PORT_DEFAULT_VLAN_MASK;
1137
1138 return 0;
1139 }
1140
1141 int mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
1142 {
1143 int ret;
1144
1145 ret = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
1146 if (ret < 0)
1147 return ret;
1148
1149 *pvid = ret & PORT_DEFAULT_VLAN_MASK;
1150
1151 return 0;
1152 }
1153
1154 static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
1155 {
1156 return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
1157 pvid & PORT_DEFAULT_VLAN_MASK);
1158 }
1159
1160 static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
1161 {
1162 return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
1163 GLOBAL_VTU_OP_BUSY);
1164 }
1165
1166 static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
1167 {
1168 int ret;
1169
1170 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
1171 if (ret < 0)
1172 return ret;
1173
1174 return _mv88e6xxx_vtu_wait(ds);
1175 }
1176
1177 static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
1178 {
1179 int ret;
1180
1181 ret = _mv88e6xxx_vtu_wait(ds);
1182 if (ret < 0)
1183 return ret;
1184
1185 return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
1186 }
1187
1188 static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
1189 struct mv88e6xxx_vtu_stu_entry *entry,
1190 unsigned int nibble_offset)
1191 {
1192 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1193 u16 regs[3];
1194 int i;
1195 int ret;
1196
1197 for (i = 0; i < 3; ++i) {
1198 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1199 GLOBAL_VTU_DATA_0_3 + i);
1200 if (ret < 0)
1201 return ret;
1202
1203 regs[i] = ret;
1204 }
1205
1206 for (i = 0; i < ps->num_ports; ++i) {
1207 unsigned int shift = (i % 4) * 4 + nibble_offset;
1208 u16 reg = regs[i / 4];
1209
1210 entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1211 }
1212
1213 return 0;
1214 }
1215
1216 static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
1217 struct mv88e6xxx_vtu_stu_entry *entry,
1218 unsigned int nibble_offset)
1219 {
1220 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1221 u16 regs[3] = { 0 };
1222 int i;
1223 int ret;
1224
1225 for (i = 0; i < ps->num_ports; ++i) {
1226 unsigned int shift = (i % 4) * 4 + nibble_offset;
1227 u8 data = entry->data[i];
1228
1229 regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1230 }
1231
1232 for (i = 0; i < 3; ++i) {
1233 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
1234 GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1235 if (ret < 0)
1236 return ret;
1237 }
1238
1239 return 0;
1240 }
1241
1242 static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
1243 {
1244 return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
1245 vid & GLOBAL_VTU_VID_MASK);
1246 }
1247
1248 static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
1249 struct mv88e6xxx_vtu_stu_entry *entry)
1250 {
1251 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1252 int ret;
1253
1254 ret = _mv88e6xxx_vtu_wait(ds);
1255 if (ret < 0)
1256 return ret;
1257
1258 ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
1259 if (ret < 0)
1260 return ret;
1261
1262 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
1263 if (ret < 0)
1264 return ret;
1265
1266 next.vid = ret & GLOBAL_VTU_VID_MASK;
1267 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1268
1269 if (next.valid) {
1270 ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
1271 if (ret < 0)
1272 return ret;
1273
1274 if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
1275 mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
1276 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1277 GLOBAL_VTU_FID);
1278 if (ret < 0)
1279 return ret;
1280
1281 next.fid = ret & GLOBAL_VTU_FID_MASK;
1282
1283 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1284 GLOBAL_VTU_SID);
1285 if (ret < 0)
1286 return ret;
1287
1288 next.sid = ret & GLOBAL_VTU_SID_MASK;
1289 }
1290 }
1291
1292 *entry = next;
1293 return 0;
1294 }
1295
1296 static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
1297 struct mv88e6xxx_vtu_stu_entry *entry)
1298 {
1299 u16 reg = 0;
1300 int ret;
1301
1302 ret = _mv88e6xxx_vtu_wait(ds);
1303 if (ret < 0)
1304 return ret;
1305
1306 if (!entry->valid)
1307 goto loadpurge;
1308
1309 /* Write port member tags */
1310 ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
1311 if (ret < 0)
1312 return ret;
1313
1314 if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
1315 mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
1316 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1317 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1318 if (ret < 0)
1319 return ret;
1320
1321 reg = entry->fid & GLOBAL_VTU_FID_MASK;
1322 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
1323 if (ret < 0)
1324 return ret;
1325 }
1326
1327 reg = GLOBAL_VTU_VID_VALID;
1328 loadpurge:
1329 reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1330 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1331 if (ret < 0)
1332 return ret;
1333
1334 return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
1335 }
1336
1337 static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
1338 struct mv88e6xxx_vtu_stu_entry *entry)
1339 {
1340 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1341 int ret;
1342
1343 ret = _mv88e6xxx_vtu_wait(ds);
1344 if (ret < 0)
1345 return ret;
1346
1347 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
1348 sid & GLOBAL_VTU_SID_MASK);
1349 if (ret < 0)
1350 return ret;
1351
1352 ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
1353 if (ret < 0)
1354 return ret;
1355
1356 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
1357 if (ret < 0)
1358 return ret;
1359
1360 next.sid = ret & GLOBAL_VTU_SID_MASK;
1361
1362 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
1363 if (ret < 0)
1364 return ret;
1365
1366 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1367
1368 if (next.valid) {
1369 ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
1370 if (ret < 0)
1371 return ret;
1372 }
1373
1374 *entry = next;
1375 return 0;
1376 }
1377
1378 static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
1379 struct mv88e6xxx_vtu_stu_entry *entry)
1380 {
1381 u16 reg = 0;
1382 int ret;
1383
1384 ret = _mv88e6xxx_vtu_wait(ds);
1385 if (ret < 0)
1386 return ret;
1387
1388 if (!entry->valid)
1389 goto loadpurge;
1390
1391 /* Write port states */
1392 ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
1393 if (ret < 0)
1394 return ret;
1395
1396 reg = GLOBAL_VTU_VID_VALID;
1397 loadpurge:
1398 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1399 if (ret < 0)
1400 return ret;
1401
1402 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1403 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1404 if (ret < 0)
1405 return ret;
1406
1407 return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1408 }
1409
1410 static int _mv88e6xxx_vlan_init(struct dsa_switch *ds, u16 vid,
1411 struct mv88e6xxx_vtu_stu_entry *entry)
1412 {
1413 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1414 struct mv88e6xxx_vtu_stu_entry vlan = {
1415 .valid = true,
1416 .vid = vid,
1417 .fid = vid, /* We use one FID per VLAN */
1418 };
1419 int i;
1420
1421 /* exclude all ports except the CPU and DSA ports */
1422 for (i = 0; i < ps->num_ports; ++i)
1423 vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1424 ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1425 : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1426
1427 if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
1428 mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
1429 struct mv88e6xxx_vtu_stu_entry vstp;
1430 int err;
1431
1432 /* Adding a VTU entry requires a valid STU entry. As VSTP is not
1433 * implemented, only one STU entry is needed to cover all VTU
1434 * entries. Thus, validate the SID 0.
1435 */
1436 vlan.sid = 0;
1437 err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
1438 if (err)
1439 return err;
1440
1441 if (vstp.sid != vlan.sid || !vstp.valid) {
1442 memset(&vstp, 0, sizeof(vstp));
1443 vstp.valid = true;
1444 vstp.sid = vlan.sid;
1445
1446 err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
1447 if (err)
1448 return err;
1449 }
1450
1451 /* Clear all MAC addresses from the new database */
1452 err = _mv88e6xxx_atu_flush(ds, vlan.fid, true);
1453 if (err)
1454 return err;
1455 }
1456
1457 *entry = vlan;
1458 return 0;
1459 }
1460
1461 int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1462 const struct switchdev_obj_port_vlan *vlan,
1463 struct switchdev_trans *trans)
1464 {
1465 /* We reserve a few VLANs to isolate unbridged ports */
1466 if (vlan->vid_end >= 4000)
1467 return -EOPNOTSUPP;
1468
1469 /* We don't need any dynamic resource from the kernel (yet),
1470 * so skip the prepare phase.
1471 */
1472 return 0;
1473 }
1474
1475 static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
1476 bool untagged)
1477 {
1478 struct mv88e6xxx_vtu_stu_entry vlan;
1479 int err;
1480
1481 err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
1482 if (err)
1483 return err;
1484
1485 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1486 if (err)
1487 return err;
1488
1489 if (vlan.vid != vid || !vlan.valid) {
1490 err = _mv88e6xxx_vlan_init(ds, vid, &vlan);
1491 if (err)
1492 return err;
1493 }
1494
1495 vlan.data[port] = untagged ?
1496 GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1497 GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1498
1499 return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1500 }
1501
1502 int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1503 const struct switchdev_obj_port_vlan *vlan,
1504 struct switchdev_trans *trans)
1505 {
1506 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1507 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1508 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1509 u16 vid;
1510 int err = 0;
1511
1512 mutex_lock(&ps->smi_mutex);
1513
1514 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1515 err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged);
1516 if (err)
1517 goto unlock;
1518 }
1519
1520 /* no PVID with ranges, otherwise it's a bug */
1521 if (pvid)
1522 err = _mv88e6xxx_port_pvid_set(ds, port, vid);
1523 unlock:
1524 mutex_unlock(&ps->smi_mutex);
1525
1526 return err;
1527 }
1528
1529 static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
1530 {
1531 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1532 struct mv88e6xxx_vtu_stu_entry vlan;
1533 int i, err;
1534
1535 err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
1536 if (err)
1537 return err;
1538
1539 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1540 if (err)
1541 return err;
1542
1543 if (vlan.vid != vid || !vlan.valid ||
1544 vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1545 return -ENOENT;
1546
1547 vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1548
1549 /* keep the VLAN unless all ports are excluded */
1550 vlan.valid = false;
1551 for (i = 0; i < ps->num_ports; ++i) {
1552 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1553 continue;
1554
1555 if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1556 vlan.valid = true;
1557 break;
1558 }
1559 }
1560
1561 err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1562 if (err)
1563 return err;
1564
1565 return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
1566 }
1567
1568 int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
1569 const struct switchdev_obj_port_vlan *vlan)
1570 {
1571 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1572 u16 pvid, vid;
1573 int err = 0;
1574
1575 mutex_lock(&ps->smi_mutex);
1576
1577 err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1578 if (err)
1579 goto unlock;
1580
1581 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1582 err = _mv88e6xxx_port_vlan_del(ds, port, vid);
1583 if (err)
1584 goto unlock;
1585
1586 if (vid == pvid) {
1587 err = _mv88e6xxx_port_pvid_set(ds, port, 0);
1588 if (err)
1589 goto unlock;
1590 }
1591 }
1592
1593 unlock:
1594 mutex_unlock(&ps->smi_mutex);
1595
1596 return err;
1597 }
1598
1599 int mv88e6xxx_vlan_getnext(struct dsa_switch *ds, u16 *vid,
1600 unsigned long *ports, unsigned long *untagged)
1601 {
1602 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1603 struct mv88e6xxx_vtu_stu_entry next;
1604 int port;
1605 int err;
1606
1607 if (*vid == 4095)
1608 return -ENOENT;
1609
1610 mutex_lock(&ps->smi_mutex);
1611 err = _mv88e6xxx_vtu_vid_write(ds, *vid);
1612 if (err)
1613 goto unlock;
1614
1615 err = _mv88e6xxx_vtu_getnext(ds, &next);
1616 unlock:
1617 mutex_unlock(&ps->smi_mutex);
1618
1619 if (err)
1620 return err;
1621
1622 if (!next.valid)
1623 return -ENOENT;
1624
1625 *vid = next.vid;
1626
1627 for (port = 0; port < ps->num_ports; ++port) {
1628 clear_bit(port, ports);
1629 clear_bit(port, untagged);
1630
1631 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
1632 continue;
1633
1634 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED ||
1635 next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1636 set_bit(port, ports);
1637
1638 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1639 set_bit(port, untagged);
1640 }
1641
1642 return 0;
1643 }
1644
1645 static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
1646 const unsigned char *addr)
1647 {
1648 int i, ret;
1649
1650 for (i = 0; i < 3; i++) {
1651 ret = _mv88e6xxx_reg_write(
1652 ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
1653 (addr[i * 2] << 8) | addr[i * 2 + 1]);
1654 if (ret < 0)
1655 return ret;
1656 }
1657
1658 return 0;
1659 }
1660
1661 static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
1662 {
1663 int i, ret;
1664
1665 for (i = 0; i < 3; i++) {
1666 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1667 GLOBAL_ATU_MAC_01 + i);
1668 if (ret < 0)
1669 return ret;
1670 addr[i * 2] = ret >> 8;
1671 addr[i * 2 + 1] = ret & 0xff;
1672 }
1673
1674 return 0;
1675 }
1676
1677 static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
1678 struct mv88e6xxx_atu_entry *entry)
1679 {
1680 int ret;
1681
1682 ret = _mv88e6xxx_atu_wait(ds);
1683 if (ret < 0)
1684 return ret;
1685
1686 ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
1687 if (ret < 0)
1688 return ret;
1689
1690 ret = _mv88e6xxx_atu_data_write(ds, entry);
1691 if (ret < 0)
1692 return ret;
1693
1694 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid);
1695 if (ret < 0)
1696 return ret;
1697
1698 return _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_LOAD_DB);
1699 }
1700
1701 static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
1702 const unsigned char *addr, u16 vid,
1703 u8 state)
1704 {
1705 struct mv88e6xxx_atu_entry entry = { 0 };
1706
1707 entry.fid = vid; /* We use one FID per VLAN */
1708 entry.state = state;
1709 ether_addr_copy(entry.mac, addr);
1710 if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
1711 entry.trunk = false;
1712 entry.portv_trunkid = BIT(port);
1713 }
1714
1715 return _mv88e6xxx_atu_load(ds, &entry);
1716 }
1717
1718 int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
1719 const struct switchdev_obj_port_fdb *fdb,
1720 struct switchdev_trans *trans)
1721 {
1722 /* We don't use per-port FDB */
1723 if (fdb->vid == 0)
1724 return -EOPNOTSUPP;
1725
1726 /* We don't need any dynamic resource from the kernel (yet),
1727 * so skip the prepare phase.
1728 */
1729 return 0;
1730 }
1731
1732 int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
1733 const struct switchdev_obj_port_fdb *fdb,
1734 struct switchdev_trans *trans)
1735 {
1736 int state = is_multicast_ether_addr(fdb->addr) ?
1737 GLOBAL_ATU_DATA_STATE_MC_STATIC :
1738 GLOBAL_ATU_DATA_STATE_UC_STATIC;
1739 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1740 int ret;
1741
1742 mutex_lock(&ps->smi_mutex);
1743 ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state);
1744 mutex_unlock(&ps->smi_mutex);
1745
1746 return ret;
1747 }
1748
1749 int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
1750 const struct switchdev_obj_port_fdb *fdb)
1751 {
1752 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1753 int ret;
1754
1755 mutex_lock(&ps->smi_mutex);
1756 ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
1757 GLOBAL_ATU_DATA_STATE_UNUSED);
1758 mutex_unlock(&ps->smi_mutex);
1759
1760 return ret;
1761 }
1762
1763 static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
1764 struct mv88e6xxx_atu_entry *entry)
1765 {
1766 struct mv88e6xxx_atu_entry next = { 0 };
1767 int ret;
1768
1769 next.fid = fid;
1770
1771 ret = _mv88e6xxx_atu_wait(ds);
1772 if (ret < 0)
1773 return ret;
1774
1775 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
1776 if (ret < 0)
1777 return ret;
1778
1779 ret = _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_GET_NEXT_DB);
1780 if (ret < 0)
1781 return ret;
1782
1783 ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
1784 if (ret < 0)
1785 return ret;
1786
1787 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
1788 if (ret < 0)
1789 return ret;
1790
1791 next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
1792 if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
1793 unsigned int mask, shift;
1794
1795 if (ret & GLOBAL_ATU_DATA_TRUNK) {
1796 next.trunk = true;
1797 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
1798 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
1799 } else {
1800 next.trunk = false;
1801 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
1802 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
1803 }
1804
1805 next.portv_trunkid = (ret & mask) >> shift;
1806 }
1807
1808 *entry = next;
1809 return 0;
1810 }
1811
1812 int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
1813 struct switchdev_obj_port_fdb *fdb,
1814 int (*cb)(struct switchdev_obj *obj))
1815 {
1816 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1817 struct mv88e6xxx_vtu_stu_entry vlan = {
1818 .vid = GLOBAL_VTU_VID_MASK, /* all ones */
1819 };
1820 int err;
1821
1822 mutex_lock(&ps->smi_mutex);
1823
1824 err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
1825 if (err)
1826 goto unlock;
1827
1828 do {
1829 struct mv88e6xxx_atu_entry addr = {
1830 .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
1831 };
1832
1833 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1834 if (err)
1835 goto unlock;
1836
1837 if (!vlan.valid)
1838 break;
1839
1840 err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
1841 if (err)
1842 goto unlock;
1843
1844 do {
1845 err = _mv88e6xxx_atu_getnext(ds, vlan.fid, &addr);
1846 if (err)
1847 goto unlock;
1848
1849 if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
1850 break;
1851
1852 if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
1853 bool is_static = addr.state ==
1854 (is_multicast_ether_addr(addr.mac) ?
1855 GLOBAL_ATU_DATA_STATE_MC_STATIC :
1856 GLOBAL_ATU_DATA_STATE_UC_STATIC);
1857
1858 fdb->vid = vlan.vid;
1859 ether_addr_copy(fdb->addr, addr.mac);
1860 fdb->ndm_state = is_static ? NUD_NOARP :
1861 NUD_REACHABLE;
1862
1863 err = cb(&fdb->obj);
1864 if (err)
1865 goto unlock;
1866 }
1867 } while (!is_broadcast_ether_addr(addr.mac));
1868
1869 } while (vlan.vid < GLOBAL_VTU_VID_MASK);
1870
1871 unlock:
1872 mutex_unlock(&ps->smi_mutex);
1873
1874 return err;
1875 }
1876
1877 int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port, u32 members)
1878 {
1879 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1880 const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port;
1881 int err;
1882
1883 /* The port joined a bridge, so leave its reserved VLAN */
1884 mutex_lock(&ps->smi_mutex);
1885 err = _mv88e6xxx_port_vlan_del(ds, port, pvid);
1886 if (!err)
1887 err = _mv88e6xxx_port_pvid_set(ds, port, 0);
1888 mutex_unlock(&ps->smi_mutex);
1889 return err;
1890 }
1891
1892 int mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port, u32 members)
1893 {
1894 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1895 const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port;
1896 int err;
1897
1898 /* The port left the bridge, so join its reserved VLAN */
1899 mutex_lock(&ps->smi_mutex);
1900 err = _mv88e6xxx_port_vlan_add(ds, port, pvid, true);
1901 if (!err)
1902 err = _mv88e6xxx_port_pvid_set(ds, port, pvid);
1903 mutex_unlock(&ps->smi_mutex);
1904 return err;
1905 }
1906
1907 static void mv88e6xxx_bridge_work(struct work_struct *work)
1908 {
1909 struct mv88e6xxx_priv_state *ps;
1910 struct dsa_switch *ds;
1911 int port;
1912
1913 ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
1914 ds = ((struct dsa_switch *)ps) - 1;
1915
1916 while (ps->port_state_update_mask) {
1917 port = __ffs(ps->port_state_update_mask);
1918 clear_bit(port, &ps->port_state_update_mask);
1919 mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
1920 }
1921 }
1922
1923 static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
1924 {
1925 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1926 int ret;
1927 u16 reg;
1928
1929 mutex_lock(&ps->smi_mutex);
1930
1931 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
1932 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
1933 mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
1934 mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
1935 /* MAC Forcing register: don't force link, speed,
1936 * duplex or flow control state to any particular
1937 * values on physical ports, but force the CPU port
1938 * and all DSA ports to their maximum bandwidth and
1939 * full duplex.
1940 */
1941 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
1942 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1943 reg &= ~PORT_PCS_CTRL_UNFORCED;
1944 reg |= PORT_PCS_CTRL_FORCE_LINK |
1945 PORT_PCS_CTRL_LINK_UP |
1946 PORT_PCS_CTRL_DUPLEX_FULL |
1947 PORT_PCS_CTRL_FORCE_DUPLEX;
1948 if (mv88e6xxx_6065_family(ds))
1949 reg |= PORT_PCS_CTRL_100;
1950 else
1951 reg |= PORT_PCS_CTRL_1000;
1952 } else {
1953 reg |= PORT_PCS_CTRL_UNFORCED;
1954 }
1955
1956 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
1957 PORT_PCS_CTRL, reg);
1958 if (ret)
1959 goto abort;
1960 }
1961
1962 /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
1963 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
1964 * tunneling, determine priority by looking at 802.1p and IP
1965 * priority fields (IP prio has precedence), and set STP state
1966 * to Forwarding.
1967 *
1968 * If this is the CPU link, use DSA or EDSA tagging depending
1969 * on which tagging mode was configured.
1970 *
1971 * If this is a link to another switch, use DSA tagging mode.
1972 *
1973 * If this is the upstream port for this switch, enable
1974 * forwarding of unknown unicasts and multicasts.
1975 */
1976 reg = 0;
1977 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
1978 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
1979 mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
1980 mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
1981 reg = PORT_CONTROL_IGMP_MLD_SNOOP |
1982 PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
1983 PORT_CONTROL_STATE_FORWARDING;
1984 if (dsa_is_cpu_port(ds, port)) {
1985 if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
1986 reg |= PORT_CONTROL_DSA_TAG;
1987 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
1988 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
1989 mv88e6xxx_6320_family(ds)) {
1990 if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
1991 reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
1992 else
1993 reg |= PORT_CONTROL_FRAME_MODE_DSA;
1994 reg |= PORT_CONTROL_FORWARD_UNKNOWN |
1995 PORT_CONTROL_FORWARD_UNKNOWN_MC;
1996 }
1997
1998 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
1999 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2000 mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2001 mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
2002 if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
2003 reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2004 }
2005 }
2006 if (dsa_is_dsa_port(ds, port)) {
2007 if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
2008 reg |= PORT_CONTROL_DSA_TAG;
2009 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2010 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2011 mv88e6xxx_6320_family(ds)) {
2012 reg |= PORT_CONTROL_FRAME_MODE_DSA;
2013 }
2014
2015 if (port == dsa_upstream_port(ds))
2016 reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2017 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2018 }
2019 if (reg) {
2020 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2021 PORT_CONTROL, reg);
2022 if (ret)
2023 goto abort;
2024 }
2025
2026 /* Port Control 2: don't force a good FCS, set the maximum frame size to
2027 * 10240 bytes, enable secure 802.1q tags, don't discard tagged or
2028 * untagged frames on this port, do a destination address lookup on all
2029 * received packets as usual, disable ARP mirroring and don't send a
2030 * copy of all transmitted/received frames on this port to the CPU.
2031 */
2032 reg = 0;
2033 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2034 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2035 mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
2036 reg = PORT_CONTROL_2_MAP_DA;
2037
2038 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2039 mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2040 reg |= PORT_CONTROL_2_JUMBO_10240;
2041
2042 if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
2043 /* Set the upstream port this port should use */
2044 reg |= dsa_upstream_port(ds);
2045 /* enable forwarding of unknown multicast addresses to
2046 * the upstream port
2047 */
2048 if (port == dsa_upstream_port(ds))
2049 reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2050 }
2051
2052 reg |= PORT_CONTROL_2_8021Q_SECURE;
2053
2054 if (reg) {
2055 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2056 PORT_CONTROL_2, reg);
2057 if (ret)
2058 goto abort;
2059 }
2060
2061 /* Port Association Vector: when learning source addresses
2062 * of packets, add the address to the address database using
2063 * a port bitmap that has only the bit for this port set and
2064 * the other bits clear.
2065 */
2066 reg = 1 << port;
2067 /* Disable learning for DSA and CPU ports */
2068 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
2069 reg = PORT_ASSOC_VECTOR_LOCKED_PORT;
2070
2071 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
2072 if (ret)
2073 goto abort;
2074
2075 /* Egress rate control 2: disable egress rate control. */
2076 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
2077 0x0000);
2078 if (ret)
2079 goto abort;
2080
2081 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2082 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2083 mv88e6xxx_6320_family(ds)) {
2084 /* Do not limit the period of time that this port can
2085 * be paused for by the remote end or the period of
2086 * time that this port can pause the remote end.
2087 */
2088 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2089 PORT_PAUSE_CTRL, 0x0000);
2090 if (ret)
2091 goto abort;
2092
2093 /* Port ATU control: disable limiting the number of
2094 * address database entries that this port is allowed
2095 * to use.
2096 */
2097 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2098 PORT_ATU_CONTROL, 0x0000);
2099 /* Priority Override: disable DA, SA and VTU priority
2100 * override.
2101 */
2102 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2103 PORT_PRI_OVERRIDE, 0x0000);
2104 if (ret)
2105 goto abort;
2106
2107 /* Port Ethertype: use the Ethertype DSA Ethertype
2108 * value.
2109 */
2110 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2111 PORT_ETH_TYPE, ETH_P_EDSA);
2112 if (ret)
2113 goto abort;
2114 /* Tag Remap: use an identity 802.1p prio -> switch
2115 * prio mapping.
2116 */
2117 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2118 PORT_TAG_REGMAP_0123, 0x3210);
2119 if (ret)
2120 goto abort;
2121
2122 /* Tag Remap 2: use an identity 802.1p prio -> switch
2123 * prio mapping.
2124 */
2125 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2126 PORT_TAG_REGMAP_4567, 0x7654);
2127 if (ret)
2128 goto abort;
2129 }
2130
2131 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2132 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2133 mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2134 mv88e6xxx_6320_family(ds)) {
2135 /* Rate Control: disable ingress rate limiting. */
2136 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2137 PORT_RATE_CONTROL, 0x0001);
2138 if (ret)
2139 goto abort;
2140 }
2141
2142 /* Port Control 1: disable trunking, disable sending
2143 * learning messages to this port.
2144 */
2145 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2146 if (ret)
2147 goto abort;
2148
2149 /* Port based VLAN map: do not give each port its own address
2150 * database, and allow every port to egress frames on all other ports.
2151 */
2152 reg = BIT(ps->num_ports) - 1; /* all ports */
2153 ret = _mv88e6xxx_port_vlan_map_set(ds, port, reg & ~port);
2154 if (ret)
2155 goto abort;
2156
2157 /* Default VLAN ID and priority: don't set a default VLAN
2158 * ID, and set the default packet priority to zero.
2159 */
2160 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
2161 0x0000);
2162 abort:
2163 mutex_unlock(&ps->smi_mutex);
2164 return ret;
2165 }
2166
2167 int mv88e6xxx_setup_ports(struct dsa_switch *ds)
2168 {
2169 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2170 int ret;
2171 int i;
2172
2173 for (i = 0; i < ps->num_ports; i++) {
2174 ret = mv88e6xxx_setup_port(ds, i);
2175 if (ret < 0)
2176 return ret;
2177
2178 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
2179 continue;
2180
2181 /* setup the unbridged state */
2182 ret = mv88e6xxx_port_bridge_leave(ds, i, 0);
2183 if (ret < 0)
2184 return ret;
2185 }
2186 return 0;
2187 }
2188
2189 int mv88e6xxx_setup_common(struct dsa_switch *ds)
2190 {
2191 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2192
2193 mutex_init(&ps->smi_mutex);
2194
2195 ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
2196
2197 INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);
2198
2199 return 0;
2200 }
2201
2202 int mv88e6xxx_setup_global(struct dsa_switch *ds)
2203 {
2204 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2205 int ret;
2206 int i;
2207
2208 /* Set the default address aging time to 5 minutes, and
2209 * enable address learn messages to be sent to all message
2210 * ports.
2211 */
2212 REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
2213 0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
2214
2215 /* Configure the IP ToS mapping registers. */
2216 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2217 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2218 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2219 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2220 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2221 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2222 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2223 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2224
2225 /* Configure the IEEE 802.1p priority mapping register. */
2226 REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2227
2228 /* Send all frames with destination addresses matching
2229 * 01:80:c2:00:00:0x to the CPU port.
2230 */
2231 REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
2232
2233 /* Ignore removed tag data on doubly tagged packets, disable
2234 * flow control messages, force flow control priority to the
2235 * highest, and send all special multicast frames to the CPU
2236 * port at the highest priority.
2237 */
2238 REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
2239 0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
2240 GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
2241
2242 /* Program the DSA routing table. */
2243 for (i = 0; i < 32; i++) {
2244 int nexthop = 0x1f;
2245
2246 if (ds->pd->rtable &&
2247 i != ds->index && i < ds->dst->pd->nr_chips)
2248 nexthop = ds->pd->rtable[i] & 0x1f;
2249
2250 REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
2251 GLOBAL2_DEVICE_MAPPING_UPDATE |
2252 (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
2253 nexthop);
2254 }
2255
2256 /* Clear all trunk masks. */
2257 for (i = 0; i < 8; i++)
2258 REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
2259 0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
2260 ((1 << ps->num_ports) - 1));
2261
2262 /* Clear all trunk mappings. */
2263 for (i = 0; i < 16; i++)
2264 REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
2265 GLOBAL2_TRUNK_MAPPING_UPDATE |
2266 (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
2267
2268 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2269 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2270 mv88e6xxx_6320_family(ds)) {
2271 /* Send all frames with destination addresses matching
2272 * 01:80:c2:00:00:2x to the CPU port.
2273 */
2274 REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);
2275
2276 /* Initialise cross-chip port VLAN table to reset
2277 * defaults.
2278 */
2279 REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);
2280
2281 /* Clear the priority override table. */
2282 for (i = 0; i < 16; i++)
2283 REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
2284 0x8000 | (i << 8));
2285 }
2286
2287 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2288 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2289 mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2290 mv88e6xxx_6320_family(ds)) {
2291 /* Disable ingress rate limiting by resetting all
2292 * ingress rate limit registers to their initial
2293 * state.
2294 */
2295 for (i = 0; i < ps->num_ports; i++)
2296 REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
2297 0x9000 | (i << 8));
2298 }
2299
2300 /* Clear the statistics counters for all ports */
2301 REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);
2302
2303 /* Wait for the flush to complete. */
2304 mutex_lock(&ps->smi_mutex);
2305 ret = _mv88e6xxx_stats_wait(ds);
2306 if (ret < 0)
2307 goto unlock;
2308
2309 /* Clear all ATU entries */
2310 ret = _mv88e6xxx_atu_flush(ds, 0, true);
2311 if (ret < 0)
2312 goto unlock;
2313
2314 /* Clear all the VTU and STU entries */
2315 ret = _mv88e6xxx_vtu_stu_flush(ds);
2316 unlock:
2317 mutex_unlock(&ps->smi_mutex);
2318
2319 return ret;
2320 }
2321
2322 int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
2323 {
2324 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2325 u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2326 unsigned long timeout;
2327 int ret;
2328 int i;
2329
2330 /* Set all ports to the disabled state. */
2331 for (i = 0; i < ps->num_ports; i++) {
2332 ret = REG_READ(REG_PORT(i), PORT_CONTROL);
2333 REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
2334 }
2335
2336 /* Wait for transmit queues to drain. */
2337 usleep_range(2000, 4000);
2338
2339 /* Reset the switch. Keep the PPU active if requested. The PPU
2340 * needs to be active to support indirect phy register access
2341 * through global registers 0x18 and 0x19.
2342 */
2343 if (ppu_active)
2344 REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
2345 else
2346 REG_WRITE(REG_GLOBAL, 0x04, 0xc400);
2347
2348 /* Wait up to one second for reset to complete. */
2349 timeout = jiffies + 1 * HZ;
2350 while (time_before(jiffies, timeout)) {
2351 ret = REG_READ(REG_GLOBAL, 0x00);
2352 if ((ret & is_reset) == is_reset)
2353 break;
2354 usleep_range(1000, 2000);
2355 }
2356 if (time_after(jiffies, timeout))
2357 return -ETIMEDOUT;
2358
2359 return 0;
2360 }
2361
2362 int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
2363 {
2364 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2365 int ret;
2366
2367 mutex_lock(&ps->smi_mutex);
2368 ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2369 if (ret < 0)
2370 goto error;
2371 ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
2372 error:
2373 _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2374 mutex_unlock(&ps->smi_mutex);
2375 return ret;
2376 }
2377
2378 int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
2379 int reg, int val)
2380 {
2381 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2382 int ret;
2383
2384 mutex_lock(&ps->smi_mutex);
2385 ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2386 if (ret < 0)
2387 goto error;
2388
2389 ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
2390 error:
2391 _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2392 mutex_unlock(&ps->smi_mutex);
2393 return ret;
2394 }
2395
2396 static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
2397 {
2398 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2399
2400 if (port >= 0 && port < ps->num_ports)
2401 return port;
2402 return -EINVAL;
2403 }
2404
2405 int
2406 mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
2407 {
2408 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2409 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2410 int ret;
2411
2412 if (addr < 0)
2413 return addr;
2414
2415 mutex_lock(&ps->smi_mutex);
2416 ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2417 mutex_unlock(&ps->smi_mutex);
2418 return ret;
2419 }
2420
2421 int
2422 mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
2423 {
2424 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2425 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2426 int ret;
2427
2428 if (addr < 0)
2429 return addr;
2430
2431 mutex_lock(&ps->smi_mutex);
2432 ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2433 mutex_unlock(&ps->smi_mutex);
2434 return ret;
2435 }
2436
2437 int
2438 mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
2439 {
2440 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2441 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2442 int ret;
2443
2444 if (addr < 0)
2445 return addr;
2446
2447 mutex_lock(&ps->smi_mutex);
2448 ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2449 mutex_unlock(&ps->smi_mutex);
2450 return ret;
2451 }
2452
2453 int
2454 mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
2455 u16 val)
2456 {
2457 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2458 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2459 int ret;
2460
2461 if (addr < 0)
2462 return addr;
2463
2464 mutex_lock(&ps->smi_mutex);
2465 ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2466 mutex_unlock(&ps->smi_mutex);
2467 return ret;
2468 }
2469
2470 #ifdef CONFIG_NET_DSA_HWMON
2471
2472 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
2473 {
2474 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2475 int ret;
2476 int val;
2477
2478 *temp = 0;
2479
2480 mutex_lock(&ps->smi_mutex);
2481
2482 ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
2483 if (ret < 0)
2484 goto error;
2485
2486 /* Enable temperature sensor */
2487 ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
2488 if (ret < 0)
2489 goto error;
2490
2491 ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
2492 if (ret < 0)
2493 goto error;
2494
2495 /* Wait for temperature to stabilize */
2496 usleep_range(10000, 12000);
2497
2498 val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
2499 if (val < 0) {
2500 ret = val;
2501 goto error;
2502 }
2503
2504 /* Disable temperature sensor */
2505 ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
2506 if (ret < 0)
2507 goto error;
2508
2509 *temp = ((val & 0x1f) - 5) * 5;
2510
2511 error:
2512 _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
2513 mutex_unlock(&ps->smi_mutex);
2514 return ret;
2515 }
2516
2517 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
2518 {
2519 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2520 int ret;
2521
2522 *temp = 0;
2523
2524 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
2525 if (ret < 0)
2526 return ret;
2527
2528 *temp = (ret & 0xff) - 25;
2529
2530 return 0;
2531 }
2532
2533 int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
2534 {
2535 if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
2536 return mv88e63xx_get_temp(ds, temp);
2537
2538 return mv88e61xx_get_temp(ds, temp);
2539 }
2540
2541 int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
2542 {
2543 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2544 int ret;
2545
2546 if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
2547 return -EOPNOTSUPP;
2548
2549 *temp = 0;
2550
2551 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
2552 if (ret < 0)
2553 return ret;
2554
2555 *temp = (((ret >> 8) & 0x1f) * 5) - 25;
2556
2557 return 0;
2558 }
2559
2560 int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
2561 {
2562 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2563 int ret;
2564
2565 if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
2566 return -EOPNOTSUPP;
2567
2568 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
2569 if (ret < 0)
2570 return ret;
2571 temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
2572 return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
2573 (ret & 0xe0ff) | (temp << 8));
2574 }
2575
2576 int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
2577 {
2578 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2579 int ret;
2580
2581 if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
2582 return -EOPNOTSUPP;
2583
2584 *alarm = false;
2585
2586 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
2587 if (ret < 0)
2588 return ret;
2589
2590 *alarm = !!(ret & 0x40);
2591
2592 return 0;
2593 }
2594 #endif /* CONFIG_NET_DSA_HWMON */
2595
2596 char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr,
2597 const struct mv88e6xxx_switch_id *table,
2598 unsigned int num)
2599 {
2600 struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
2601 int i, ret;
2602
2603 if (!bus)
2604 return NULL;
2605
2606 ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
2607 if (ret < 0)
2608 return NULL;
2609
2610 /* Look up the exact switch ID */
2611 for (i = 0; i < num; ++i)
2612 if (table[i].id == ret)
2613 return table[i].name;
2614
2615 /* Look up only the product number */
2616 for (i = 0; i < num; ++i) {
2617 if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) {
2618 dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n",
2619 ret & PORT_SWITCH_ID_REV_MASK,
2620 ret & PORT_SWITCH_ID_PROD_NUM_MASK);
2621 return table[i].name;
2622 }
2623 }
2624
2625 return NULL;
2626 }
2627
2628 static int __init mv88e6xxx_init(void)
2629 {
2630 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
2631 register_switch_driver(&mv88e6131_switch_driver);
2632 #endif
2633 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
2634 register_switch_driver(&mv88e6123_61_65_switch_driver);
2635 #endif
2636 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
2637 register_switch_driver(&mv88e6352_switch_driver);
2638 #endif
2639 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
2640 register_switch_driver(&mv88e6171_switch_driver);
2641 #endif
2642 return 0;
2643 }
2644 module_init(mv88e6xxx_init);
2645
2646 static void __exit mv88e6xxx_cleanup(void)
2647 {
2648 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
2649 unregister_switch_driver(&mv88e6171_switch_driver);
2650 #endif
2651 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
2652 unregister_switch_driver(&mv88e6352_switch_driver);
2653 #endif
2654 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
2655 unregister_switch_driver(&mv88e6123_61_65_switch_driver);
2656 #endif
2657 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
2658 unregister_switch_driver(&mv88e6131_switch_driver);
2659 #endif
2660 }
2661 module_exit(mv88e6xxx_cleanup);
2662
2663 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
2664 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
2665 MODULE_LICENSE("GPL");