]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/dummy.c
Merge tag 'jfs-4.13' of git://github.com/kleikamp/linux-shaggy
[mirror_ubuntu-artful-kernel.git] / drivers / net / dummy.c
1 /* dummy.c: a dummy net driver
2
3 The purpose of this driver is to provide a device to point a
4 route through, but not to actually transmit packets.
5
6 Why? If you have a machine whose only connection is an occasional
7 PPP/SLIP/PLIP link, you can only connect to your own hostname
8 when the link is up. Otherwise you have to use localhost.
9 This isn't very consistent.
10
11 One solution is to set up a dummy link using PPP/SLIP/PLIP,
12 but this seems (to me) too much overhead for too little gain.
13 This driver provides a small alternative. Thus you can do
14
15 [when not running slip]
16 ifconfig dummy slip.addr.ess.here up
17 [to go to slip]
18 ifconfig dummy down
19 dip whatever
20
21 This was written by looking at Donald Becker's skeleton driver
22 and the loopback driver. I then threw away anything that didn't
23 apply! Thanks to Alan Cox for the key clue on what to do with
24 misguided packets.
25
26 Nick Holloway, 27th May 1994
27 [I tweaked this explanation a little but that's all]
28 Alan Cox, 30th May 1994
29 */
30
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/init.h>
36 #include <linux/moduleparam.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/net_tstamp.h>
39 #include <net/rtnetlink.h>
40 #include <linux/u64_stats_sync.h>
41
42 #define DRV_NAME "dummy"
43 #define DRV_VERSION "1.0"
44
45 #undef pr_fmt
46 #define pr_fmt(fmt) DRV_NAME ": " fmt
47
48 static int numdummies = 1;
49 static int num_vfs;
50
51 struct vf_data_storage {
52 u8 vf_mac[ETH_ALEN];
53 u16 pf_vlan; /* When set, guest VLAN config not allowed. */
54 u16 pf_qos;
55 __be16 vlan_proto;
56 u16 min_tx_rate;
57 u16 max_tx_rate;
58 u8 spoofchk_enabled;
59 bool rss_query_enabled;
60 u8 trusted;
61 int link_state;
62 };
63
64 struct dummy_priv {
65 struct vf_data_storage *vfinfo;
66 };
67
68 static int dummy_num_vf(struct device *dev)
69 {
70 return num_vfs;
71 }
72
73 static struct bus_type dummy_bus = {
74 .name = "dummy",
75 .num_vf = dummy_num_vf,
76 };
77
78 static void release_dummy_parent(struct device *dev)
79 {
80 }
81
82 static struct device dummy_parent = {
83 .init_name = "dummy",
84 .bus = &dummy_bus,
85 .release = release_dummy_parent,
86 };
87
88 /* fake multicast ability */
89 static void set_multicast_list(struct net_device *dev)
90 {
91 }
92
93 struct pcpu_dstats {
94 u64 tx_packets;
95 u64 tx_bytes;
96 struct u64_stats_sync syncp;
97 };
98
99 static void dummy_get_stats64(struct net_device *dev,
100 struct rtnl_link_stats64 *stats)
101 {
102 int i;
103
104 for_each_possible_cpu(i) {
105 const struct pcpu_dstats *dstats;
106 u64 tbytes, tpackets;
107 unsigned int start;
108
109 dstats = per_cpu_ptr(dev->dstats, i);
110 do {
111 start = u64_stats_fetch_begin_irq(&dstats->syncp);
112 tbytes = dstats->tx_bytes;
113 tpackets = dstats->tx_packets;
114 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
115 stats->tx_bytes += tbytes;
116 stats->tx_packets += tpackets;
117 }
118 }
119
120 static netdev_tx_t dummy_xmit(struct sk_buff *skb, struct net_device *dev)
121 {
122 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
123
124 u64_stats_update_begin(&dstats->syncp);
125 dstats->tx_packets++;
126 dstats->tx_bytes += skb->len;
127 u64_stats_update_end(&dstats->syncp);
128
129 skb_tx_timestamp(skb);
130 dev_kfree_skb(skb);
131 return NETDEV_TX_OK;
132 }
133
134 static int dummy_dev_init(struct net_device *dev)
135 {
136 struct dummy_priv *priv = netdev_priv(dev);
137
138 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
139 if (!dev->dstats)
140 return -ENOMEM;
141
142 priv->vfinfo = NULL;
143
144 if (!num_vfs)
145 return 0;
146
147 dev->dev.parent = &dummy_parent;
148 priv->vfinfo = kcalloc(num_vfs, sizeof(struct vf_data_storage),
149 GFP_KERNEL);
150 if (!priv->vfinfo) {
151 free_percpu(dev->dstats);
152 return -ENOMEM;
153 }
154
155 return 0;
156 }
157
158 static void dummy_dev_uninit(struct net_device *dev)
159 {
160 free_percpu(dev->dstats);
161 }
162
163 static int dummy_change_carrier(struct net_device *dev, bool new_carrier)
164 {
165 if (new_carrier)
166 netif_carrier_on(dev);
167 else
168 netif_carrier_off(dev);
169 return 0;
170 }
171
172 static int dummy_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
173 {
174 struct dummy_priv *priv = netdev_priv(dev);
175
176 if (!is_valid_ether_addr(mac) || (vf >= num_vfs))
177 return -EINVAL;
178
179 memcpy(priv->vfinfo[vf].vf_mac, mac, ETH_ALEN);
180
181 return 0;
182 }
183
184 static int dummy_set_vf_vlan(struct net_device *dev, int vf,
185 u16 vlan, u8 qos, __be16 vlan_proto)
186 {
187 struct dummy_priv *priv = netdev_priv(dev);
188
189 if ((vf >= num_vfs) || (vlan > 4095) || (qos > 7))
190 return -EINVAL;
191
192 priv->vfinfo[vf].pf_vlan = vlan;
193 priv->vfinfo[vf].pf_qos = qos;
194 priv->vfinfo[vf].vlan_proto = vlan_proto;
195
196 return 0;
197 }
198
199 static int dummy_set_vf_rate(struct net_device *dev, int vf, int min, int max)
200 {
201 struct dummy_priv *priv = netdev_priv(dev);
202
203 if (vf >= num_vfs)
204 return -EINVAL;
205
206 priv->vfinfo[vf].min_tx_rate = min;
207 priv->vfinfo[vf].max_tx_rate = max;
208
209 return 0;
210 }
211
212 static int dummy_set_vf_spoofchk(struct net_device *dev, int vf, bool val)
213 {
214 struct dummy_priv *priv = netdev_priv(dev);
215
216 if (vf >= num_vfs)
217 return -EINVAL;
218
219 priv->vfinfo[vf].spoofchk_enabled = val;
220
221 return 0;
222 }
223
224 static int dummy_set_vf_rss_query_en(struct net_device *dev, int vf, bool val)
225 {
226 struct dummy_priv *priv = netdev_priv(dev);
227
228 if (vf >= num_vfs)
229 return -EINVAL;
230
231 priv->vfinfo[vf].rss_query_enabled = val;
232
233 return 0;
234 }
235
236 static int dummy_set_vf_trust(struct net_device *dev, int vf, bool val)
237 {
238 struct dummy_priv *priv = netdev_priv(dev);
239
240 if (vf >= num_vfs)
241 return -EINVAL;
242
243 priv->vfinfo[vf].trusted = val;
244
245 return 0;
246 }
247
248 static int dummy_get_vf_config(struct net_device *dev,
249 int vf, struct ifla_vf_info *ivi)
250 {
251 struct dummy_priv *priv = netdev_priv(dev);
252
253 if (vf >= num_vfs)
254 return -EINVAL;
255
256 ivi->vf = vf;
257 memcpy(&ivi->mac, priv->vfinfo[vf].vf_mac, ETH_ALEN);
258 ivi->vlan = priv->vfinfo[vf].pf_vlan;
259 ivi->qos = priv->vfinfo[vf].pf_qos;
260 ivi->spoofchk = priv->vfinfo[vf].spoofchk_enabled;
261 ivi->linkstate = priv->vfinfo[vf].link_state;
262 ivi->min_tx_rate = priv->vfinfo[vf].min_tx_rate;
263 ivi->max_tx_rate = priv->vfinfo[vf].max_tx_rate;
264 ivi->rss_query_en = priv->vfinfo[vf].rss_query_enabled;
265 ivi->trusted = priv->vfinfo[vf].trusted;
266 ivi->vlan_proto = priv->vfinfo[vf].vlan_proto;
267
268 return 0;
269 }
270
271 static int dummy_set_vf_link_state(struct net_device *dev, int vf, int state)
272 {
273 struct dummy_priv *priv = netdev_priv(dev);
274
275 if (vf >= num_vfs)
276 return -EINVAL;
277
278 priv->vfinfo[vf].link_state = state;
279
280 return 0;
281 }
282
283 static const struct net_device_ops dummy_netdev_ops = {
284 .ndo_init = dummy_dev_init,
285 .ndo_uninit = dummy_dev_uninit,
286 .ndo_start_xmit = dummy_xmit,
287 .ndo_validate_addr = eth_validate_addr,
288 .ndo_set_rx_mode = set_multicast_list,
289 .ndo_set_mac_address = eth_mac_addr,
290 .ndo_get_stats64 = dummy_get_stats64,
291 .ndo_change_carrier = dummy_change_carrier,
292 .ndo_set_vf_mac = dummy_set_vf_mac,
293 .ndo_set_vf_vlan = dummy_set_vf_vlan,
294 .ndo_set_vf_rate = dummy_set_vf_rate,
295 .ndo_set_vf_spoofchk = dummy_set_vf_spoofchk,
296 .ndo_set_vf_trust = dummy_set_vf_trust,
297 .ndo_get_vf_config = dummy_get_vf_config,
298 .ndo_set_vf_link_state = dummy_set_vf_link_state,
299 .ndo_set_vf_rss_query_en = dummy_set_vf_rss_query_en,
300 };
301
302 static void dummy_get_drvinfo(struct net_device *dev,
303 struct ethtool_drvinfo *info)
304 {
305 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
306 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
307 }
308
309 static int dummy_get_ts_info(struct net_device *dev,
310 struct ethtool_ts_info *ts_info)
311 {
312 ts_info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
313 SOF_TIMESTAMPING_RX_SOFTWARE |
314 SOF_TIMESTAMPING_SOFTWARE;
315
316 ts_info->phc_index = -1;
317
318 return 0;
319 };
320
321 static const struct ethtool_ops dummy_ethtool_ops = {
322 .get_drvinfo = dummy_get_drvinfo,
323 .get_ts_info = dummy_get_ts_info,
324 };
325
326 static void dummy_free_netdev(struct net_device *dev)
327 {
328 struct dummy_priv *priv = netdev_priv(dev);
329
330 kfree(priv->vfinfo);
331 }
332
333 static void dummy_setup(struct net_device *dev)
334 {
335 ether_setup(dev);
336
337 /* Initialize the device structure. */
338 dev->netdev_ops = &dummy_netdev_ops;
339 dev->ethtool_ops = &dummy_ethtool_ops;
340 dev->needs_free_netdev = true;
341 dev->priv_destructor = dummy_free_netdev;
342
343 /* Fill in device structure with ethernet-generic values. */
344 dev->flags |= IFF_NOARP;
345 dev->flags &= ~IFF_MULTICAST;
346 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE | IFF_NO_QUEUE;
347 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST;
348 dev->features |= NETIF_F_ALL_TSO | NETIF_F_UFO;
349 dev->features |= NETIF_F_HW_CSUM | NETIF_F_HIGHDMA | NETIF_F_LLTX;
350 dev->features |= NETIF_F_GSO_ENCAP_ALL;
351 dev->hw_features |= dev->features;
352 dev->hw_enc_features |= dev->features;
353 eth_hw_addr_random(dev);
354
355 dev->min_mtu = 0;
356 dev->max_mtu = ETH_MAX_MTU;
357 }
358
359 static int dummy_validate(struct nlattr *tb[], struct nlattr *data[],
360 struct netlink_ext_ack *extack)
361 {
362 if (tb[IFLA_ADDRESS]) {
363 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
364 return -EINVAL;
365 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
366 return -EADDRNOTAVAIL;
367 }
368 return 0;
369 }
370
371 static struct rtnl_link_ops dummy_link_ops __read_mostly = {
372 .kind = DRV_NAME,
373 .priv_size = sizeof(struct dummy_priv),
374 .setup = dummy_setup,
375 .validate = dummy_validate,
376 };
377
378 /* Number of dummy devices to be set up by this module. */
379 module_param(numdummies, int, 0);
380 MODULE_PARM_DESC(numdummies, "Number of dummy pseudo devices");
381
382 module_param(num_vfs, int, 0);
383 MODULE_PARM_DESC(num_vfs, "Number of dummy VFs per dummy device");
384
385 static int __init dummy_init_one(void)
386 {
387 struct net_device *dev_dummy;
388 int err;
389
390 dev_dummy = alloc_netdev(sizeof(struct dummy_priv),
391 "dummy%d", NET_NAME_UNKNOWN, dummy_setup);
392 if (!dev_dummy)
393 return -ENOMEM;
394
395 dev_dummy->rtnl_link_ops = &dummy_link_ops;
396 err = register_netdevice(dev_dummy);
397 if (err < 0)
398 goto err;
399 return 0;
400
401 err:
402 free_netdev(dev_dummy);
403 return err;
404 }
405
406 static int __init dummy_init_module(void)
407 {
408 int i, err = 0;
409
410 if (num_vfs) {
411 err = bus_register(&dummy_bus);
412 if (err < 0) {
413 pr_err("registering dummy bus failed\n");
414 return err;
415 }
416
417 err = device_register(&dummy_parent);
418 if (err < 0) {
419 pr_err("registering dummy parent device failed\n");
420 bus_unregister(&dummy_bus);
421 return err;
422 }
423 }
424
425 rtnl_lock();
426 err = __rtnl_link_register(&dummy_link_ops);
427 if (err < 0)
428 goto out;
429
430 for (i = 0; i < numdummies && !err; i++) {
431 err = dummy_init_one();
432 cond_resched();
433 }
434 if (err < 0)
435 __rtnl_link_unregister(&dummy_link_ops);
436
437 out:
438 rtnl_unlock();
439
440 if (err && num_vfs) {
441 device_unregister(&dummy_parent);
442 bus_unregister(&dummy_bus);
443 }
444
445 return err;
446 }
447
448 static void __exit dummy_cleanup_module(void)
449 {
450 rtnl_link_unregister(&dummy_link_ops);
451
452 if (num_vfs) {
453 device_unregister(&dummy_parent);
454 bus_unregister(&dummy_bus);
455 }
456 }
457
458 module_init(dummy_init_module);
459 module_exit(dummy_cleanup_module);
460 MODULE_LICENSE("GPL");
461 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
462 MODULE_VERSION(DRV_VERSION);