]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/e1000/e1000_hw.c
[PATCH] r8169: avoid conflict between revisions 2 and 3 of the Linksys EG1032
[mirror_ubuntu-bionic-kernel.git] / drivers / net / e1000 / e1000_hw.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
33 #include "e1000_hw.h"
34
35 static int32_t e1000_set_phy_type(struct e1000_hw *hw);
36 static void e1000_phy_init_script(struct e1000_hw *hw);
37 static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
38 static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
39 static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
40 static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
41 static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
42 static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
43 static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
44 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
45 uint16_t count);
46 static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
47 static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
48 static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
49 uint16_t words, uint16_t *data);
50 static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
51 uint16_t offset, uint16_t words,
52 uint16_t *data);
53 static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
54 static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
55 static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
56 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
57 uint16_t count);
58 static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
59 uint16_t phy_data);
60 static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
61 uint16_t *phy_data);
62 static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
63 static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
64 static void e1000_release_eeprom(struct e1000_hw *hw);
65 static void e1000_standby_eeprom(struct e1000_hw *hw);
66 static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
67 static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
68 static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
69 static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
70 static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
71
72 /* IGP cable length table */
73 static const
74 uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
75 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
76 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
77 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
78 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
79 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
80 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
81 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
82 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
83
84 static const
85 uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
86 { 8, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43,
87 22, 24, 27, 30, 32, 35, 37, 40, 42, 44, 47, 49, 51, 54, 56, 58,
88 32, 35, 38, 41, 44, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74,
89 43, 47, 51, 54, 58, 61, 64, 67, 71, 74, 77, 80, 82, 85, 88, 90,
90 57, 62, 66, 70, 74, 77, 81, 85, 88, 91, 94, 97, 100, 103, 106, 108,
91 73, 78, 82, 87, 91, 95, 98, 102, 105, 109, 112, 114, 117, 119, 122, 124,
92 91, 96, 101, 105, 109, 113, 116, 119, 122, 125, 127, 128, 128, 128, 128, 128,
93 108, 113, 117, 121, 124, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128};
94
95
96 /******************************************************************************
97 * Set the phy type member in the hw struct.
98 *
99 * hw - Struct containing variables accessed by shared code
100 *****************************************************************************/
101 int32_t
102 e1000_set_phy_type(struct e1000_hw *hw)
103 {
104 DEBUGFUNC("e1000_set_phy_type");
105
106 if(hw->mac_type == e1000_undefined)
107 return -E1000_ERR_PHY_TYPE;
108
109 switch(hw->phy_id) {
110 case M88E1000_E_PHY_ID:
111 case M88E1000_I_PHY_ID:
112 case M88E1011_I_PHY_ID:
113 case M88E1111_I_PHY_ID:
114 hw->phy_type = e1000_phy_m88;
115 break;
116 case IGP01E1000_I_PHY_ID:
117 if(hw->mac_type == e1000_82541 ||
118 hw->mac_type == e1000_82541_rev_2 ||
119 hw->mac_type == e1000_82547 ||
120 hw->mac_type == e1000_82547_rev_2) {
121 hw->phy_type = e1000_phy_igp;
122 break;
123 }
124 /* Fall Through */
125 default:
126 /* Should never have loaded on this device */
127 hw->phy_type = e1000_phy_undefined;
128 return -E1000_ERR_PHY_TYPE;
129 }
130
131 return E1000_SUCCESS;
132 }
133
134 /******************************************************************************
135 * IGP phy init script - initializes the GbE PHY
136 *
137 * hw - Struct containing variables accessed by shared code
138 *****************************************************************************/
139 static void
140 e1000_phy_init_script(struct e1000_hw *hw)
141 {
142 uint32_t ret_val;
143 uint16_t phy_saved_data;
144
145 DEBUGFUNC("e1000_phy_init_script");
146
147 if(hw->phy_init_script) {
148 msec_delay(20);
149
150 /* Save off the current value of register 0x2F5B to be restored at
151 * the end of this routine. */
152 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
153
154 /* Disabled the PHY transmitter */
155 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
156
157 msec_delay(20);
158
159 e1000_write_phy_reg(hw,0x0000,0x0140);
160
161 msec_delay(5);
162
163 switch(hw->mac_type) {
164 case e1000_82541:
165 case e1000_82547:
166 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
167
168 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
169
170 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
171
172 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
173
174 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
175
176 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
177
178 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
179
180 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
181
182 e1000_write_phy_reg(hw, 0x2010, 0x0008);
183 break;
184
185 case e1000_82541_rev_2:
186 case e1000_82547_rev_2:
187 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
188 break;
189 default:
190 break;
191 }
192
193 e1000_write_phy_reg(hw, 0x0000, 0x3300);
194
195 msec_delay(20);
196
197 /* Now enable the transmitter */
198 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
199
200 if(hw->mac_type == e1000_82547) {
201 uint16_t fused, fine, coarse;
202
203 /* Move to analog registers page */
204 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
205
206 if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
207 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
208
209 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
210 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
211
212 if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
213 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
214 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
215 } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
216 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
217
218 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
219 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
220 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
221
222 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
223 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
224 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
225 }
226 }
227 }
228 }
229
230 /******************************************************************************
231 * Set the mac type member in the hw struct.
232 *
233 * hw - Struct containing variables accessed by shared code
234 *****************************************************************************/
235 int32_t
236 e1000_set_mac_type(struct e1000_hw *hw)
237 {
238 DEBUGFUNC("e1000_set_mac_type");
239
240 switch (hw->device_id) {
241 case E1000_DEV_ID_82542:
242 switch (hw->revision_id) {
243 case E1000_82542_2_0_REV_ID:
244 hw->mac_type = e1000_82542_rev2_0;
245 break;
246 case E1000_82542_2_1_REV_ID:
247 hw->mac_type = e1000_82542_rev2_1;
248 break;
249 default:
250 /* Invalid 82542 revision ID */
251 return -E1000_ERR_MAC_TYPE;
252 }
253 break;
254 case E1000_DEV_ID_82543GC_FIBER:
255 case E1000_DEV_ID_82543GC_COPPER:
256 hw->mac_type = e1000_82543;
257 break;
258 case E1000_DEV_ID_82544EI_COPPER:
259 case E1000_DEV_ID_82544EI_FIBER:
260 case E1000_DEV_ID_82544GC_COPPER:
261 case E1000_DEV_ID_82544GC_LOM:
262 hw->mac_type = e1000_82544;
263 break;
264 case E1000_DEV_ID_82540EM:
265 case E1000_DEV_ID_82540EM_LOM:
266 case E1000_DEV_ID_82540EP:
267 case E1000_DEV_ID_82540EP_LOM:
268 case E1000_DEV_ID_82540EP_LP:
269 hw->mac_type = e1000_82540;
270 break;
271 case E1000_DEV_ID_82545EM_COPPER:
272 case E1000_DEV_ID_82545EM_FIBER:
273 hw->mac_type = e1000_82545;
274 break;
275 case E1000_DEV_ID_82545GM_COPPER:
276 case E1000_DEV_ID_82545GM_FIBER:
277 case E1000_DEV_ID_82545GM_SERDES:
278 hw->mac_type = e1000_82545_rev_3;
279 break;
280 case E1000_DEV_ID_82546EB_COPPER:
281 case E1000_DEV_ID_82546EB_FIBER:
282 case E1000_DEV_ID_82546EB_QUAD_COPPER:
283 hw->mac_type = e1000_82546;
284 break;
285 case E1000_DEV_ID_82546GB_COPPER:
286 case E1000_DEV_ID_82546GB_FIBER:
287 case E1000_DEV_ID_82546GB_SERDES:
288 case E1000_DEV_ID_82546GB_PCIE:
289 case E1000_DEV_ID_82546GB_QUAD_COPPER:
290 hw->mac_type = e1000_82546_rev_3;
291 break;
292 case E1000_DEV_ID_82541EI:
293 case E1000_DEV_ID_82541EI_MOBILE:
294 hw->mac_type = e1000_82541;
295 break;
296 case E1000_DEV_ID_82541ER:
297 case E1000_DEV_ID_82541GI:
298 case E1000_DEV_ID_82541GI_LF:
299 case E1000_DEV_ID_82541GI_MOBILE:
300 hw->mac_type = e1000_82541_rev_2;
301 break;
302 case E1000_DEV_ID_82547EI:
303 hw->mac_type = e1000_82547;
304 break;
305 case E1000_DEV_ID_82547GI:
306 hw->mac_type = e1000_82547_rev_2;
307 break;
308 case E1000_DEV_ID_82573E:
309 case E1000_DEV_ID_82573E_IAMT:
310 hw->mac_type = e1000_82573;
311 break;
312 default:
313 /* Should never have loaded on this device */
314 return -E1000_ERR_MAC_TYPE;
315 }
316
317 switch(hw->mac_type) {
318 case e1000_82573:
319 hw->eeprom_semaphore_present = TRUE;
320 /* fall through */
321 case e1000_82541:
322 case e1000_82547:
323 case e1000_82541_rev_2:
324 case e1000_82547_rev_2:
325 hw->asf_firmware_present = TRUE;
326 break;
327 default:
328 break;
329 }
330
331 return E1000_SUCCESS;
332 }
333
334 /*****************************************************************************
335 * Set media type and TBI compatibility.
336 *
337 * hw - Struct containing variables accessed by shared code
338 * **************************************************************************/
339 void
340 e1000_set_media_type(struct e1000_hw *hw)
341 {
342 uint32_t status;
343
344 DEBUGFUNC("e1000_set_media_type");
345
346 if(hw->mac_type != e1000_82543) {
347 /* tbi_compatibility is only valid on 82543 */
348 hw->tbi_compatibility_en = FALSE;
349 }
350
351 switch (hw->device_id) {
352 case E1000_DEV_ID_82545GM_SERDES:
353 case E1000_DEV_ID_82546GB_SERDES:
354 hw->media_type = e1000_media_type_internal_serdes;
355 break;
356 default:
357 switch (hw->mac_type) {
358 case e1000_82542_rev2_0:
359 case e1000_82542_rev2_1:
360 hw->media_type = e1000_media_type_fiber;
361 break;
362 case e1000_82573:
363 /* The STATUS_TBIMODE bit is reserved or reused for the this
364 * device.
365 */
366 hw->media_type = e1000_media_type_copper;
367 break;
368 default:
369 status = E1000_READ_REG(hw, STATUS);
370 if (status & E1000_STATUS_TBIMODE) {
371 hw->media_type = e1000_media_type_fiber;
372 /* tbi_compatibility not valid on fiber */
373 hw->tbi_compatibility_en = FALSE;
374 } else {
375 hw->media_type = e1000_media_type_copper;
376 }
377 break;
378 }
379 }
380 }
381
382 /******************************************************************************
383 * Reset the transmit and receive units; mask and clear all interrupts.
384 *
385 * hw - Struct containing variables accessed by shared code
386 *****************************************************************************/
387 int32_t
388 e1000_reset_hw(struct e1000_hw *hw)
389 {
390 uint32_t ctrl;
391 uint32_t ctrl_ext;
392 uint32_t icr;
393 uint32_t manc;
394 uint32_t led_ctrl;
395 uint32_t timeout;
396 uint32_t extcnf_ctrl;
397 int32_t ret_val;
398
399 DEBUGFUNC("e1000_reset_hw");
400
401 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
402 if(hw->mac_type == e1000_82542_rev2_0) {
403 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
404 e1000_pci_clear_mwi(hw);
405 }
406
407 if(hw->bus_type == e1000_bus_type_pci_express) {
408 /* Prevent the PCI-E bus from sticking if there is no TLP connection
409 * on the last TLP read/write transaction when MAC is reset.
410 */
411 if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
412 DEBUGOUT("PCI-E Master disable polling has failed.\n");
413 }
414 }
415
416 /* Clear interrupt mask to stop board from generating interrupts */
417 DEBUGOUT("Masking off all interrupts\n");
418 E1000_WRITE_REG(hw, IMC, 0xffffffff);
419
420 /* Disable the Transmit and Receive units. Then delay to allow
421 * any pending transactions to complete before we hit the MAC with
422 * the global reset.
423 */
424 E1000_WRITE_REG(hw, RCTL, 0);
425 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
426 E1000_WRITE_FLUSH(hw);
427
428 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
429 hw->tbi_compatibility_on = FALSE;
430
431 /* Delay to allow any outstanding PCI transactions to complete before
432 * resetting the device
433 */
434 msec_delay(10);
435
436 ctrl = E1000_READ_REG(hw, CTRL);
437
438 /* Must reset the PHY before resetting the MAC */
439 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
440 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
441 msec_delay(5);
442 }
443
444 /* Must acquire the MDIO ownership before MAC reset.
445 * Ownership defaults to firmware after a reset. */
446 if(hw->mac_type == e1000_82573) {
447 timeout = 10;
448
449 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
450 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
451
452 do {
453 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
454 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
455
456 if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
457 break;
458 else
459 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
460
461 msec_delay(2);
462 timeout--;
463 } while(timeout);
464 }
465
466 /* Issue a global reset to the MAC. This will reset the chip's
467 * transmit, receive, DMA, and link units. It will not effect
468 * the current PCI configuration. The global reset bit is self-
469 * clearing, and should clear within a microsecond.
470 */
471 DEBUGOUT("Issuing a global reset to MAC\n");
472
473 switch(hw->mac_type) {
474 case e1000_82544:
475 case e1000_82540:
476 case e1000_82545:
477 case e1000_82546:
478 case e1000_82541:
479 case e1000_82541_rev_2:
480 /* These controllers can't ack the 64-bit write when issuing the
481 * reset, so use IO-mapping as a workaround to issue the reset */
482 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
483 break;
484 case e1000_82545_rev_3:
485 case e1000_82546_rev_3:
486 /* Reset is performed on a shadow of the control register */
487 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
488 break;
489 default:
490 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
491 break;
492 }
493
494 /* After MAC reset, force reload of EEPROM to restore power-on settings to
495 * device. Later controllers reload the EEPROM automatically, so just wait
496 * for reload to complete.
497 */
498 switch(hw->mac_type) {
499 case e1000_82542_rev2_0:
500 case e1000_82542_rev2_1:
501 case e1000_82543:
502 case e1000_82544:
503 /* Wait for reset to complete */
504 udelay(10);
505 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
506 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
507 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
508 E1000_WRITE_FLUSH(hw);
509 /* Wait for EEPROM reload */
510 msec_delay(2);
511 break;
512 case e1000_82541:
513 case e1000_82541_rev_2:
514 case e1000_82547:
515 case e1000_82547_rev_2:
516 /* Wait for EEPROM reload */
517 msec_delay(20);
518 break;
519 case e1000_82573:
520 udelay(10);
521 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
522 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
523 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
524 E1000_WRITE_FLUSH(hw);
525 /* fall through */
526 ret_val = e1000_get_auto_rd_done(hw);
527 if(ret_val)
528 /* We don't want to continue accessing MAC registers. */
529 return ret_val;
530 break;
531 default:
532 /* Wait for EEPROM reload (it happens automatically) */
533 msec_delay(5);
534 break;
535 }
536
537 /* Disable HW ARPs on ASF enabled adapters */
538 if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
539 manc = E1000_READ_REG(hw, MANC);
540 manc &= ~(E1000_MANC_ARP_EN);
541 E1000_WRITE_REG(hw, MANC, manc);
542 }
543
544 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
545 e1000_phy_init_script(hw);
546
547 /* Configure activity LED after PHY reset */
548 led_ctrl = E1000_READ_REG(hw, LEDCTL);
549 led_ctrl &= IGP_ACTIVITY_LED_MASK;
550 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
551 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
552 }
553
554 /* Clear interrupt mask to stop board from generating interrupts */
555 DEBUGOUT("Masking off all interrupts\n");
556 E1000_WRITE_REG(hw, IMC, 0xffffffff);
557
558 /* Clear any pending interrupt events. */
559 icr = E1000_READ_REG(hw, ICR);
560
561 /* If MWI was previously enabled, reenable it. */
562 if(hw->mac_type == e1000_82542_rev2_0) {
563 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
564 e1000_pci_set_mwi(hw);
565 }
566
567 return E1000_SUCCESS;
568 }
569
570 /******************************************************************************
571 * Performs basic configuration of the adapter.
572 *
573 * hw - Struct containing variables accessed by shared code
574 *
575 * Assumes that the controller has previously been reset and is in a
576 * post-reset uninitialized state. Initializes the receive address registers,
577 * multicast table, and VLAN filter table. Calls routines to setup link
578 * configuration and flow control settings. Clears all on-chip counters. Leaves
579 * the transmit and receive units disabled and uninitialized.
580 *****************************************************************************/
581 int32_t
582 e1000_init_hw(struct e1000_hw *hw)
583 {
584 uint32_t ctrl;
585 uint32_t i;
586 int32_t ret_val;
587 uint16_t pcix_cmd_word;
588 uint16_t pcix_stat_hi_word;
589 uint16_t cmd_mmrbc;
590 uint16_t stat_mmrbc;
591 uint32_t mta_size;
592
593 DEBUGFUNC("e1000_init_hw");
594
595 /* Initialize Identification LED */
596 ret_val = e1000_id_led_init(hw);
597 if(ret_val) {
598 DEBUGOUT("Error Initializing Identification LED\n");
599 return ret_val;
600 }
601
602 /* Set the media type and TBI compatibility */
603 e1000_set_media_type(hw);
604
605 /* Disabling VLAN filtering. */
606 DEBUGOUT("Initializing the IEEE VLAN\n");
607 if (hw->mac_type < e1000_82545_rev_3)
608 E1000_WRITE_REG(hw, VET, 0);
609 e1000_clear_vfta(hw);
610
611 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
612 if(hw->mac_type == e1000_82542_rev2_0) {
613 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
614 e1000_pci_clear_mwi(hw);
615 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
616 E1000_WRITE_FLUSH(hw);
617 msec_delay(5);
618 }
619
620 /* Setup the receive address. This involves initializing all of the Receive
621 * Address Registers (RARs 0 - 15).
622 */
623 e1000_init_rx_addrs(hw);
624
625 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
626 if(hw->mac_type == e1000_82542_rev2_0) {
627 E1000_WRITE_REG(hw, RCTL, 0);
628 E1000_WRITE_FLUSH(hw);
629 msec_delay(1);
630 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
631 e1000_pci_set_mwi(hw);
632 }
633
634 /* Zero out the Multicast HASH table */
635 DEBUGOUT("Zeroing the MTA\n");
636 mta_size = E1000_MC_TBL_SIZE;
637 for(i = 0; i < mta_size; i++)
638 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
639
640 /* Set the PCI priority bit correctly in the CTRL register. This
641 * determines if the adapter gives priority to receives, or if it
642 * gives equal priority to transmits and receives. Valid only on
643 * 82542 and 82543 silicon.
644 */
645 if(hw->dma_fairness && hw->mac_type <= e1000_82543) {
646 ctrl = E1000_READ_REG(hw, CTRL);
647 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
648 }
649
650 switch(hw->mac_type) {
651 case e1000_82545_rev_3:
652 case e1000_82546_rev_3:
653 break;
654 default:
655 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
656 if(hw->bus_type == e1000_bus_type_pcix) {
657 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
658 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
659 &pcix_stat_hi_word);
660 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
661 PCIX_COMMAND_MMRBC_SHIFT;
662 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
663 PCIX_STATUS_HI_MMRBC_SHIFT;
664 if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
665 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
666 if(cmd_mmrbc > stat_mmrbc) {
667 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
668 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
669 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
670 &pcix_cmd_word);
671 }
672 }
673 break;
674 }
675
676 /* Call a subroutine to configure the link and setup flow control. */
677 ret_val = e1000_setup_link(hw);
678
679 /* Set the transmit descriptor write-back policy */
680 if(hw->mac_type > e1000_82544) {
681 ctrl = E1000_READ_REG(hw, TXDCTL);
682 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
683 switch (hw->mac_type) {
684 default:
685 break;
686 case e1000_82573:
687 ctrl |= E1000_TXDCTL_COUNT_DESC;
688 break;
689 }
690 E1000_WRITE_REG(hw, TXDCTL, ctrl);
691 }
692
693 if (hw->mac_type == e1000_82573) {
694 e1000_enable_tx_pkt_filtering(hw);
695 }
696
697
698 /* Clear all of the statistics registers (clear on read). It is
699 * important that we do this after we have tried to establish link
700 * because the symbol error count will increment wildly if there
701 * is no link.
702 */
703 e1000_clear_hw_cntrs(hw);
704
705 return ret_val;
706 }
707
708 /******************************************************************************
709 * Adjust SERDES output amplitude based on EEPROM setting.
710 *
711 * hw - Struct containing variables accessed by shared code.
712 *****************************************************************************/
713 static int32_t
714 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
715 {
716 uint16_t eeprom_data;
717 int32_t ret_val;
718
719 DEBUGFUNC("e1000_adjust_serdes_amplitude");
720
721 if(hw->media_type != e1000_media_type_internal_serdes)
722 return E1000_SUCCESS;
723
724 switch(hw->mac_type) {
725 case e1000_82545_rev_3:
726 case e1000_82546_rev_3:
727 break;
728 default:
729 return E1000_SUCCESS;
730 }
731
732 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
733 if (ret_val) {
734 return ret_val;
735 }
736
737 if(eeprom_data != EEPROM_RESERVED_WORD) {
738 /* Adjust SERDES output amplitude only. */
739 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
740 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
741 if(ret_val)
742 return ret_val;
743 }
744
745 return E1000_SUCCESS;
746 }
747
748 /******************************************************************************
749 * Configures flow control and link settings.
750 *
751 * hw - Struct containing variables accessed by shared code
752 *
753 * Determines which flow control settings to use. Calls the apropriate media-
754 * specific link configuration function. Configures the flow control settings.
755 * Assuming the adapter has a valid link partner, a valid link should be
756 * established. Assumes the hardware has previously been reset and the
757 * transmitter and receiver are not enabled.
758 *****************************************************************************/
759 int32_t
760 e1000_setup_link(struct e1000_hw *hw)
761 {
762 uint32_t ctrl_ext;
763 int32_t ret_val;
764 uint16_t eeprom_data;
765
766 DEBUGFUNC("e1000_setup_link");
767
768 /* Read and store word 0x0F of the EEPROM. This word contains bits
769 * that determine the hardware's default PAUSE (flow control) mode,
770 * a bit that determines whether the HW defaults to enabling or
771 * disabling auto-negotiation, and the direction of the
772 * SW defined pins. If there is no SW over-ride of the flow
773 * control setting, then the variable hw->fc will
774 * be initialized based on a value in the EEPROM.
775 */
776 if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) {
777 DEBUGOUT("EEPROM Read Error\n");
778 return -E1000_ERR_EEPROM;
779 }
780
781 if(hw->fc == e1000_fc_default) {
782 if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
783 hw->fc = e1000_fc_none;
784 else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
785 EEPROM_WORD0F_ASM_DIR)
786 hw->fc = e1000_fc_tx_pause;
787 else
788 hw->fc = e1000_fc_full;
789 }
790
791 /* We want to save off the original Flow Control configuration just
792 * in case we get disconnected and then reconnected into a different
793 * hub or switch with different Flow Control capabilities.
794 */
795 if(hw->mac_type == e1000_82542_rev2_0)
796 hw->fc &= (~e1000_fc_tx_pause);
797
798 if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
799 hw->fc &= (~e1000_fc_rx_pause);
800
801 hw->original_fc = hw->fc;
802
803 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
804
805 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
806 * polarity value for the SW controlled pins, and setup the
807 * Extended Device Control reg with that info.
808 * This is needed because one of the SW controlled pins is used for
809 * signal detection. So this should be done before e1000_setup_pcs_link()
810 * or e1000_phy_setup() is called.
811 */
812 if(hw->mac_type == e1000_82543) {
813 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
814 SWDPIO__EXT_SHIFT);
815 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
816 }
817
818 /* Call the necessary subroutine to configure the link. */
819 ret_val = (hw->media_type == e1000_media_type_copper) ?
820 e1000_setup_copper_link(hw) :
821 e1000_setup_fiber_serdes_link(hw);
822
823 /* Initialize the flow control address, type, and PAUSE timer
824 * registers to their default values. This is done even if flow
825 * control is disabled, because it does not hurt anything to
826 * initialize these registers.
827 */
828 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
829
830 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
831 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
832 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
833
834 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
835
836 /* Set the flow control receive threshold registers. Normally,
837 * these registers will be set to a default threshold that may be
838 * adjusted later by the driver's runtime code. However, if the
839 * ability to transmit pause frames in not enabled, then these
840 * registers will be set to 0.
841 */
842 if(!(hw->fc & e1000_fc_tx_pause)) {
843 E1000_WRITE_REG(hw, FCRTL, 0);
844 E1000_WRITE_REG(hw, FCRTH, 0);
845 } else {
846 /* We need to set up the Receive Threshold high and low water marks
847 * as well as (optionally) enabling the transmission of XON frames.
848 */
849 if(hw->fc_send_xon) {
850 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
851 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
852 } else {
853 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
854 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
855 }
856 }
857 return ret_val;
858 }
859
860 /******************************************************************************
861 * Sets up link for a fiber based or serdes based adapter
862 *
863 * hw - Struct containing variables accessed by shared code
864 *
865 * Manipulates Physical Coding Sublayer functions in order to configure
866 * link. Assumes the hardware has been previously reset and the transmitter
867 * and receiver are not enabled.
868 *****************************************************************************/
869 static int32_t
870 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
871 {
872 uint32_t ctrl;
873 uint32_t status;
874 uint32_t txcw = 0;
875 uint32_t i;
876 uint32_t signal = 0;
877 int32_t ret_val;
878
879 DEBUGFUNC("e1000_setup_fiber_serdes_link");
880
881 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
882 * set when the optics detect a signal. On older adapters, it will be
883 * cleared when there is a signal. This applies to fiber media only.
884 * If we're on serdes media, adjust the output amplitude to value set in
885 * the EEPROM.
886 */
887 ctrl = E1000_READ_REG(hw, CTRL);
888 if(hw->media_type == e1000_media_type_fiber)
889 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
890
891 ret_val = e1000_adjust_serdes_amplitude(hw);
892 if(ret_val)
893 return ret_val;
894
895 /* Take the link out of reset */
896 ctrl &= ~(E1000_CTRL_LRST);
897
898 /* Adjust VCO speed to improve BER performance */
899 ret_val = e1000_set_vco_speed(hw);
900 if(ret_val)
901 return ret_val;
902
903 e1000_config_collision_dist(hw);
904
905 /* Check for a software override of the flow control settings, and setup
906 * the device accordingly. If auto-negotiation is enabled, then software
907 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
908 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
909 * auto-negotiation is disabled, then software will have to manually
910 * configure the two flow control enable bits in the CTRL register.
911 *
912 * The possible values of the "fc" parameter are:
913 * 0: Flow control is completely disabled
914 * 1: Rx flow control is enabled (we can receive pause frames, but
915 * not send pause frames).
916 * 2: Tx flow control is enabled (we can send pause frames but we do
917 * not support receiving pause frames).
918 * 3: Both Rx and TX flow control (symmetric) are enabled.
919 */
920 switch (hw->fc) {
921 case e1000_fc_none:
922 /* Flow control is completely disabled by a software over-ride. */
923 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
924 break;
925 case e1000_fc_rx_pause:
926 /* RX Flow control is enabled and TX Flow control is disabled by a
927 * software over-ride. Since there really isn't a way to advertise
928 * that we are capable of RX Pause ONLY, we will advertise that we
929 * support both symmetric and asymmetric RX PAUSE. Later, we will
930 * disable the adapter's ability to send PAUSE frames.
931 */
932 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
933 break;
934 case e1000_fc_tx_pause:
935 /* TX Flow control is enabled, and RX Flow control is disabled, by a
936 * software over-ride.
937 */
938 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
939 break;
940 case e1000_fc_full:
941 /* Flow control (both RX and TX) is enabled by a software over-ride. */
942 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
943 break;
944 default:
945 DEBUGOUT("Flow control param set incorrectly\n");
946 return -E1000_ERR_CONFIG;
947 break;
948 }
949
950 /* Since auto-negotiation is enabled, take the link out of reset (the link
951 * will be in reset, because we previously reset the chip). This will
952 * restart auto-negotiation. If auto-neogtiation is successful then the
953 * link-up status bit will be set and the flow control enable bits (RFCE
954 * and TFCE) will be set according to their negotiated value.
955 */
956 DEBUGOUT("Auto-negotiation enabled\n");
957
958 E1000_WRITE_REG(hw, TXCW, txcw);
959 E1000_WRITE_REG(hw, CTRL, ctrl);
960 E1000_WRITE_FLUSH(hw);
961
962 hw->txcw = txcw;
963 msec_delay(1);
964
965 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
966 * indication in the Device Status Register. Time-out if a link isn't
967 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
968 * less than 500 milliseconds even if the other end is doing it in SW).
969 * For internal serdes, we just assume a signal is present, then poll.
970 */
971 if(hw->media_type == e1000_media_type_internal_serdes ||
972 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
973 DEBUGOUT("Looking for Link\n");
974 for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
975 msec_delay(10);
976 status = E1000_READ_REG(hw, STATUS);
977 if(status & E1000_STATUS_LU) break;
978 }
979 if(i == (LINK_UP_TIMEOUT / 10)) {
980 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
981 hw->autoneg_failed = 1;
982 /* AutoNeg failed to achieve a link, so we'll call
983 * e1000_check_for_link. This routine will force the link up if
984 * we detect a signal. This will allow us to communicate with
985 * non-autonegotiating link partners.
986 */
987 ret_val = e1000_check_for_link(hw);
988 if(ret_val) {
989 DEBUGOUT("Error while checking for link\n");
990 return ret_val;
991 }
992 hw->autoneg_failed = 0;
993 } else {
994 hw->autoneg_failed = 0;
995 DEBUGOUT("Valid Link Found\n");
996 }
997 } else {
998 DEBUGOUT("No Signal Detected\n");
999 }
1000 return E1000_SUCCESS;
1001 }
1002
1003 /******************************************************************************
1004 * Make sure we have a valid PHY and change PHY mode before link setup.
1005 *
1006 * hw - Struct containing variables accessed by shared code
1007 ******************************************************************************/
1008 static int32_t
1009 e1000_copper_link_preconfig(struct e1000_hw *hw)
1010 {
1011 uint32_t ctrl;
1012 int32_t ret_val;
1013 uint16_t phy_data;
1014
1015 DEBUGFUNC("e1000_copper_link_preconfig");
1016
1017 ctrl = E1000_READ_REG(hw, CTRL);
1018 /* With 82543, we need to force speed and duplex on the MAC equal to what
1019 * the PHY speed and duplex configuration is. In addition, we need to
1020 * perform a hardware reset on the PHY to take it out of reset.
1021 */
1022 if(hw->mac_type > e1000_82543) {
1023 ctrl |= E1000_CTRL_SLU;
1024 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1025 E1000_WRITE_REG(hw, CTRL, ctrl);
1026 } else {
1027 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1028 E1000_WRITE_REG(hw, CTRL, ctrl);
1029 ret_val = e1000_phy_hw_reset(hw);
1030 if(ret_val)
1031 return ret_val;
1032 }
1033
1034 /* Make sure we have a valid PHY */
1035 ret_val = e1000_detect_gig_phy(hw);
1036 if(ret_val) {
1037 DEBUGOUT("Error, did not detect valid phy.\n");
1038 return ret_val;
1039 }
1040 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1041
1042 /* Set PHY to class A mode (if necessary) */
1043 ret_val = e1000_set_phy_mode(hw);
1044 if(ret_val)
1045 return ret_val;
1046
1047 if((hw->mac_type == e1000_82545_rev_3) ||
1048 (hw->mac_type == e1000_82546_rev_3)) {
1049 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1050 phy_data |= 0x00000008;
1051 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1052 }
1053
1054 if(hw->mac_type <= e1000_82543 ||
1055 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1056 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1057 hw->phy_reset_disable = FALSE;
1058
1059 return E1000_SUCCESS;
1060 }
1061
1062
1063 /********************************************************************
1064 * Copper link setup for e1000_phy_igp series.
1065 *
1066 * hw - Struct containing variables accessed by shared code
1067 *********************************************************************/
1068 static int32_t
1069 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1070 {
1071 uint32_t led_ctrl;
1072 int32_t ret_val;
1073 uint16_t phy_data;
1074
1075 DEBUGFUNC("e1000_copper_link_igp_setup");
1076
1077 if (hw->phy_reset_disable)
1078 return E1000_SUCCESS;
1079
1080 ret_val = e1000_phy_reset(hw);
1081 if (ret_val) {
1082 DEBUGOUT("Error Resetting the PHY\n");
1083 return ret_val;
1084 }
1085
1086 /* Wait 10ms for MAC to configure PHY from eeprom settings */
1087 msec_delay(15);
1088
1089 /* Configure activity LED after PHY reset */
1090 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1091 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1092 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1093 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1094
1095 /* disable lplu d3 during driver init */
1096 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1097 if (ret_val) {
1098 DEBUGOUT("Error Disabling LPLU D3\n");
1099 return ret_val;
1100 }
1101
1102 /* disable lplu d0 during driver init */
1103 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1104 if (ret_val) {
1105 DEBUGOUT("Error Disabling LPLU D0\n");
1106 return ret_val;
1107 }
1108 /* Configure mdi-mdix settings */
1109 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1110 if (ret_val)
1111 return ret_val;
1112
1113 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1114 hw->dsp_config_state = e1000_dsp_config_disabled;
1115 /* Force MDI for earlier revs of the IGP PHY */
1116 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1117 hw->mdix = 1;
1118
1119 } else {
1120 hw->dsp_config_state = e1000_dsp_config_enabled;
1121 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1122
1123 switch (hw->mdix) {
1124 case 1:
1125 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1126 break;
1127 case 2:
1128 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1129 break;
1130 case 0:
1131 default:
1132 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1133 break;
1134 }
1135 }
1136 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1137 if(ret_val)
1138 return ret_val;
1139
1140 /* set auto-master slave resolution settings */
1141 if(hw->autoneg) {
1142 e1000_ms_type phy_ms_setting = hw->master_slave;
1143
1144 if(hw->ffe_config_state == e1000_ffe_config_active)
1145 hw->ffe_config_state = e1000_ffe_config_enabled;
1146
1147 if(hw->dsp_config_state == e1000_dsp_config_activated)
1148 hw->dsp_config_state = e1000_dsp_config_enabled;
1149
1150 /* when autonegotiation advertisment is only 1000Mbps then we
1151 * should disable SmartSpeed and enable Auto MasterSlave
1152 * resolution as hardware default. */
1153 if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1154 /* Disable SmartSpeed */
1155 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
1156 if(ret_val)
1157 return ret_val;
1158 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1159 ret_val = e1000_write_phy_reg(hw,
1160 IGP01E1000_PHY_PORT_CONFIG,
1161 phy_data);
1162 if(ret_val)
1163 return ret_val;
1164 /* Set auto Master/Slave resolution process */
1165 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1166 if(ret_val)
1167 return ret_val;
1168 phy_data &= ~CR_1000T_MS_ENABLE;
1169 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1170 if(ret_val)
1171 return ret_val;
1172 }
1173
1174 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1175 if(ret_val)
1176 return ret_val;
1177
1178 /* load defaults for future use */
1179 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1180 ((phy_data & CR_1000T_MS_VALUE) ?
1181 e1000_ms_force_master :
1182 e1000_ms_force_slave) :
1183 e1000_ms_auto;
1184
1185 switch (phy_ms_setting) {
1186 case e1000_ms_force_master:
1187 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1188 break;
1189 case e1000_ms_force_slave:
1190 phy_data |= CR_1000T_MS_ENABLE;
1191 phy_data &= ~(CR_1000T_MS_VALUE);
1192 break;
1193 case e1000_ms_auto:
1194 phy_data &= ~CR_1000T_MS_ENABLE;
1195 default:
1196 break;
1197 }
1198 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1199 if(ret_val)
1200 return ret_val;
1201 }
1202
1203 return E1000_SUCCESS;
1204 }
1205
1206
1207 /********************************************************************
1208 * Copper link setup for e1000_phy_m88 series.
1209 *
1210 * hw - Struct containing variables accessed by shared code
1211 *********************************************************************/
1212 static int32_t
1213 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1214 {
1215 int32_t ret_val;
1216 uint16_t phy_data;
1217
1218 DEBUGFUNC("e1000_copper_link_mgp_setup");
1219
1220 if(hw->phy_reset_disable)
1221 return E1000_SUCCESS;
1222
1223 /* Enable CRS on TX. This must be set for half-duplex operation. */
1224 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1225 if(ret_val)
1226 return ret_val;
1227
1228 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1229
1230 /* Options:
1231 * MDI/MDI-X = 0 (default)
1232 * 0 - Auto for all speeds
1233 * 1 - MDI mode
1234 * 2 - MDI-X mode
1235 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1236 */
1237 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1238
1239 switch (hw->mdix) {
1240 case 1:
1241 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1242 break;
1243 case 2:
1244 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1245 break;
1246 case 3:
1247 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1248 break;
1249 case 0:
1250 default:
1251 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1252 break;
1253 }
1254
1255 /* Options:
1256 * disable_polarity_correction = 0 (default)
1257 * Automatic Correction for Reversed Cable Polarity
1258 * 0 - Disabled
1259 * 1 - Enabled
1260 */
1261 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1262 if(hw->disable_polarity_correction == 1)
1263 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1264 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1265 if(ret_val)
1266 return ret_val;
1267
1268 /* Force TX_CLK in the Extended PHY Specific Control Register
1269 * to 25MHz clock.
1270 */
1271 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1272 if(ret_val)
1273 return ret_val;
1274
1275 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1276
1277 if (hw->phy_revision < M88E1011_I_REV_4) {
1278 /* Configure Master and Slave downshift values */
1279 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1280 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1281 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1282 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1283 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1284 if(ret_val)
1285 return ret_val;
1286 }
1287
1288 /* SW Reset the PHY so all changes take effect */
1289 ret_val = e1000_phy_reset(hw);
1290 if(ret_val) {
1291 DEBUGOUT("Error Resetting the PHY\n");
1292 return ret_val;
1293 }
1294
1295 return E1000_SUCCESS;
1296 }
1297
1298 /********************************************************************
1299 * Setup auto-negotiation and flow control advertisements,
1300 * and then perform auto-negotiation.
1301 *
1302 * hw - Struct containing variables accessed by shared code
1303 *********************************************************************/
1304 static int32_t
1305 e1000_copper_link_autoneg(struct e1000_hw *hw)
1306 {
1307 int32_t ret_val;
1308 uint16_t phy_data;
1309
1310 DEBUGFUNC("e1000_copper_link_autoneg");
1311
1312 /* Perform some bounds checking on the hw->autoneg_advertised
1313 * parameter. If this variable is zero, then set it to the default.
1314 */
1315 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1316
1317 /* If autoneg_advertised is zero, we assume it was not defaulted
1318 * by the calling code so we set to advertise full capability.
1319 */
1320 if(hw->autoneg_advertised == 0)
1321 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1322
1323 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1324 ret_val = e1000_phy_setup_autoneg(hw);
1325 if(ret_val) {
1326 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1327 return ret_val;
1328 }
1329 DEBUGOUT("Restarting Auto-Neg\n");
1330
1331 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1332 * the Auto Neg Restart bit in the PHY control register.
1333 */
1334 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1335 if(ret_val)
1336 return ret_val;
1337
1338 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1339 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1340 if(ret_val)
1341 return ret_val;
1342
1343 /* Does the user want to wait for Auto-Neg to complete here, or
1344 * check at a later time (for example, callback routine).
1345 */
1346 if(hw->wait_autoneg_complete) {
1347 ret_val = e1000_wait_autoneg(hw);
1348 if(ret_val) {
1349 DEBUGOUT("Error while waiting for autoneg to complete\n");
1350 return ret_val;
1351 }
1352 }
1353
1354 hw->get_link_status = TRUE;
1355
1356 return E1000_SUCCESS;
1357 }
1358
1359
1360 /******************************************************************************
1361 * Config the MAC and the PHY after link is up.
1362 * 1) Set up the MAC to the current PHY speed/duplex
1363 * if we are on 82543. If we
1364 * are on newer silicon, we only need to configure
1365 * collision distance in the Transmit Control Register.
1366 * 2) Set up flow control on the MAC to that established with
1367 * the link partner.
1368 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1369 *
1370 * hw - Struct containing variables accessed by shared code
1371 ******************************************************************************/
1372 static int32_t
1373 e1000_copper_link_postconfig(struct e1000_hw *hw)
1374 {
1375 int32_t ret_val;
1376 DEBUGFUNC("e1000_copper_link_postconfig");
1377
1378 if(hw->mac_type >= e1000_82544) {
1379 e1000_config_collision_dist(hw);
1380 } else {
1381 ret_val = e1000_config_mac_to_phy(hw);
1382 if(ret_val) {
1383 DEBUGOUT("Error configuring MAC to PHY settings\n");
1384 return ret_val;
1385 }
1386 }
1387 ret_val = e1000_config_fc_after_link_up(hw);
1388 if(ret_val) {
1389 DEBUGOUT("Error Configuring Flow Control\n");
1390 return ret_val;
1391 }
1392
1393 /* Config DSP to improve Giga link quality */
1394 if(hw->phy_type == e1000_phy_igp) {
1395 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1396 if(ret_val) {
1397 DEBUGOUT("Error Configuring DSP after link up\n");
1398 return ret_val;
1399 }
1400 }
1401
1402 return E1000_SUCCESS;
1403 }
1404
1405 /******************************************************************************
1406 * Detects which PHY is present and setup the speed and duplex
1407 *
1408 * hw - Struct containing variables accessed by shared code
1409 ******************************************************************************/
1410 static int32_t
1411 e1000_setup_copper_link(struct e1000_hw *hw)
1412 {
1413 int32_t ret_val;
1414 uint16_t i;
1415 uint16_t phy_data;
1416
1417 DEBUGFUNC("e1000_setup_copper_link");
1418
1419 /* Check if it is a valid PHY and set PHY mode if necessary. */
1420 ret_val = e1000_copper_link_preconfig(hw);
1421 if(ret_val)
1422 return ret_val;
1423
1424 if (hw->phy_type == e1000_phy_igp ||
1425 hw->phy_type == e1000_phy_igp_2) {
1426 ret_val = e1000_copper_link_igp_setup(hw);
1427 if(ret_val)
1428 return ret_val;
1429 } else if (hw->phy_type == e1000_phy_m88) {
1430 ret_val = e1000_copper_link_mgp_setup(hw);
1431 if(ret_val)
1432 return ret_val;
1433 }
1434
1435 if(hw->autoneg) {
1436 /* Setup autoneg and flow control advertisement
1437 * and perform autonegotiation */
1438 ret_val = e1000_copper_link_autoneg(hw);
1439 if(ret_val)
1440 return ret_val;
1441 } else {
1442 /* PHY will be set to 10H, 10F, 100H,or 100F
1443 * depending on value from forced_speed_duplex. */
1444 DEBUGOUT("Forcing speed and duplex\n");
1445 ret_val = e1000_phy_force_speed_duplex(hw);
1446 if(ret_val) {
1447 DEBUGOUT("Error Forcing Speed and Duplex\n");
1448 return ret_val;
1449 }
1450 }
1451
1452 /* Check link status. Wait up to 100 microseconds for link to become
1453 * valid.
1454 */
1455 for(i = 0; i < 10; i++) {
1456 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1457 if(ret_val)
1458 return ret_val;
1459 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1460 if(ret_val)
1461 return ret_val;
1462
1463 if(phy_data & MII_SR_LINK_STATUS) {
1464 /* Config the MAC and PHY after link is up */
1465 ret_val = e1000_copper_link_postconfig(hw);
1466 if(ret_val)
1467 return ret_val;
1468
1469 DEBUGOUT("Valid link established!!!\n");
1470 return E1000_SUCCESS;
1471 }
1472 udelay(10);
1473 }
1474
1475 DEBUGOUT("Unable to establish link!!!\n");
1476 return E1000_SUCCESS;
1477 }
1478
1479 /******************************************************************************
1480 * Configures PHY autoneg and flow control advertisement settings
1481 *
1482 * hw - Struct containing variables accessed by shared code
1483 ******************************************************************************/
1484 int32_t
1485 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1486 {
1487 int32_t ret_val;
1488 uint16_t mii_autoneg_adv_reg;
1489 uint16_t mii_1000t_ctrl_reg;
1490
1491 DEBUGFUNC("e1000_phy_setup_autoneg");
1492
1493 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1494 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1495 if(ret_val)
1496 return ret_val;
1497
1498 /* Read the MII 1000Base-T Control Register (Address 9). */
1499 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1500 if(ret_val)
1501 return ret_val;
1502
1503 /* Need to parse both autoneg_advertised and fc and set up
1504 * the appropriate PHY registers. First we will parse for
1505 * autoneg_advertised software override. Since we can advertise
1506 * a plethora of combinations, we need to check each bit
1507 * individually.
1508 */
1509
1510 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1511 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1512 * the 1000Base-T Control Register (Address 9).
1513 */
1514 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1515 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1516
1517 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
1518
1519 /* Do we want to advertise 10 Mb Half Duplex? */
1520 if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
1521 DEBUGOUT("Advertise 10mb Half duplex\n");
1522 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1523 }
1524
1525 /* Do we want to advertise 10 Mb Full Duplex? */
1526 if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
1527 DEBUGOUT("Advertise 10mb Full duplex\n");
1528 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1529 }
1530
1531 /* Do we want to advertise 100 Mb Half Duplex? */
1532 if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
1533 DEBUGOUT("Advertise 100mb Half duplex\n");
1534 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1535 }
1536
1537 /* Do we want to advertise 100 Mb Full Duplex? */
1538 if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
1539 DEBUGOUT("Advertise 100mb Full duplex\n");
1540 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1541 }
1542
1543 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1544 if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1545 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
1546 }
1547
1548 /* Do we want to advertise 1000 Mb Full Duplex? */
1549 if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1550 DEBUGOUT("Advertise 1000mb Full duplex\n");
1551 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1552 }
1553
1554 /* Check for a software override of the flow control settings, and
1555 * setup the PHY advertisement registers accordingly. If
1556 * auto-negotiation is enabled, then software will have to set the
1557 * "PAUSE" bits to the correct value in the Auto-Negotiation
1558 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1559 *
1560 * The possible values of the "fc" parameter are:
1561 * 0: Flow control is completely disabled
1562 * 1: Rx flow control is enabled (we can receive pause frames
1563 * but not send pause frames).
1564 * 2: Tx flow control is enabled (we can send pause frames
1565 * but we do not support receiving pause frames).
1566 * 3: Both Rx and TX flow control (symmetric) are enabled.
1567 * other: No software override. The flow control configuration
1568 * in the EEPROM is used.
1569 */
1570 switch (hw->fc) {
1571 case e1000_fc_none: /* 0 */
1572 /* Flow control (RX & TX) is completely disabled by a
1573 * software over-ride.
1574 */
1575 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1576 break;
1577 case e1000_fc_rx_pause: /* 1 */
1578 /* RX Flow control is enabled, and TX Flow control is
1579 * disabled, by a software over-ride.
1580 */
1581 /* Since there really isn't a way to advertise that we are
1582 * capable of RX Pause ONLY, we will advertise that we
1583 * support both symmetric and asymmetric RX PAUSE. Later
1584 * (in e1000_config_fc_after_link_up) we will disable the
1585 *hw's ability to send PAUSE frames.
1586 */
1587 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1588 break;
1589 case e1000_fc_tx_pause: /* 2 */
1590 /* TX Flow control is enabled, and RX Flow control is
1591 * disabled, by a software over-ride.
1592 */
1593 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1594 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1595 break;
1596 case e1000_fc_full: /* 3 */
1597 /* Flow control (both RX and TX) is enabled by a software
1598 * over-ride.
1599 */
1600 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1601 break;
1602 default:
1603 DEBUGOUT("Flow control param set incorrectly\n");
1604 return -E1000_ERR_CONFIG;
1605 }
1606
1607 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1608 if(ret_val)
1609 return ret_val;
1610
1611 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1612
1613 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1614 if(ret_val)
1615 return ret_val;
1616
1617 return E1000_SUCCESS;
1618 }
1619
1620 /******************************************************************************
1621 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1622 *
1623 * hw - Struct containing variables accessed by shared code
1624 ******************************************************************************/
1625 static int32_t
1626 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1627 {
1628 uint32_t ctrl;
1629 int32_t ret_val;
1630 uint16_t mii_ctrl_reg;
1631 uint16_t mii_status_reg;
1632 uint16_t phy_data;
1633 uint16_t i;
1634
1635 DEBUGFUNC("e1000_phy_force_speed_duplex");
1636
1637 /* Turn off Flow control if we are forcing speed and duplex. */
1638 hw->fc = e1000_fc_none;
1639
1640 DEBUGOUT1("hw->fc = %d\n", hw->fc);
1641
1642 /* Read the Device Control Register. */
1643 ctrl = E1000_READ_REG(hw, CTRL);
1644
1645 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1646 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1647 ctrl &= ~(DEVICE_SPEED_MASK);
1648
1649 /* Clear the Auto Speed Detect Enable bit. */
1650 ctrl &= ~E1000_CTRL_ASDE;
1651
1652 /* Read the MII Control Register. */
1653 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1654 if(ret_val)
1655 return ret_val;
1656
1657 /* We need to disable autoneg in order to force link and duplex. */
1658
1659 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1660
1661 /* Are we forcing Full or Half Duplex? */
1662 if(hw->forced_speed_duplex == e1000_100_full ||
1663 hw->forced_speed_duplex == e1000_10_full) {
1664 /* We want to force full duplex so we SET the full duplex bits in the
1665 * Device and MII Control Registers.
1666 */
1667 ctrl |= E1000_CTRL_FD;
1668 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1669 DEBUGOUT("Full Duplex\n");
1670 } else {
1671 /* We want to force half duplex so we CLEAR the full duplex bits in
1672 * the Device and MII Control Registers.
1673 */
1674 ctrl &= ~E1000_CTRL_FD;
1675 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1676 DEBUGOUT("Half Duplex\n");
1677 }
1678
1679 /* Are we forcing 100Mbps??? */
1680 if(hw->forced_speed_duplex == e1000_100_full ||
1681 hw->forced_speed_duplex == e1000_100_half) {
1682 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1683 ctrl |= E1000_CTRL_SPD_100;
1684 mii_ctrl_reg |= MII_CR_SPEED_100;
1685 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1686 DEBUGOUT("Forcing 100mb ");
1687 } else {
1688 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1689 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1690 mii_ctrl_reg |= MII_CR_SPEED_10;
1691 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1692 DEBUGOUT("Forcing 10mb ");
1693 }
1694
1695 e1000_config_collision_dist(hw);
1696
1697 /* Write the configured values back to the Device Control Reg. */
1698 E1000_WRITE_REG(hw, CTRL, ctrl);
1699
1700 if (hw->phy_type == e1000_phy_m88) {
1701 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1702 if(ret_val)
1703 return ret_val;
1704
1705 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1706 * forced whenever speed are duplex are forced.
1707 */
1708 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1709 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1710 if(ret_val)
1711 return ret_val;
1712
1713 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
1714
1715 /* Need to reset the PHY or these changes will be ignored */
1716 mii_ctrl_reg |= MII_CR_RESET;
1717 } else {
1718 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1719 * forced whenever speed or duplex are forced.
1720 */
1721 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1722 if(ret_val)
1723 return ret_val;
1724
1725 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1726 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1727
1728 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1729 if(ret_val)
1730 return ret_val;
1731 }
1732
1733 /* Write back the modified PHY MII control register. */
1734 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1735 if(ret_val)
1736 return ret_val;
1737
1738 udelay(1);
1739
1740 /* The wait_autoneg_complete flag may be a little misleading here.
1741 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1742 * But we do want to delay for a period while forcing only so we
1743 * don't generate false No Link messages. So we will wait here
1744 * only if the user has set wait_autoneg_complete to 1, which is
1745 * the default.
1746 */
1747 if(hw->wait_autoneg_complete) {
1748 /* We will wait for autoneg to complete. */
1749 DEBUGOUT("Waiting for forced speed/duplex link.\n");
1750 mii_status_reg = 0;
1751
1752 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
1753 for(i = PHY_FORCE_TIME; i > 0; i--) {
1754 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1755 * to be set.
1756 */
1757 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1758 if(ret_val)
1759 return ret_val;
1760
1761 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1762 if(ret_val)
1763 return ret_val;
1764
1765 if(mii_status_reg & MII_SR_LINK_STATUS) break;
1766 msec_delay(100);
1767 }
1768 if((i == 0) &&
1769 (hw->phy_type == e1000_phy_m88)) {
1770 /* We didn't get link. Reset the DSP and wait again for link. */
1771 ret_val = e1000_phy_reset_dsp(hw);
1772 if(ret_val) {
1773 DEBUGOUT("Error Resetting PHY DSP\n");
1774 return ret_val;
1775 }
1776 }
1777 /* This loop will early-out if the link condition has been met. */
1778 for(i = PHY_FORCE_TIME; i > 0; i--) {
1779 if(mii_status_reg & MII_SR_LINK_STATUS) break;
1780 msec_delay(100);
1781 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1782 * to be set.
1783 */
1784 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1785 if(ret_val)
1786 return ret_val;
1787
1788 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1789 if(ret_val)
1790 return ret_val;
1791 }
1792 }
1793
1794 if (hw->phy_type == e1000_phy_m88) {
1795 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1796 * Extended PHY Specific Control Register to 25MHz clock. This value
1797 * defaults back to a 2.5MHz clock when the PHY is reset.
1798 */
1799 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1800 if(ret_val)
1801 return ret_val;
1802
1803 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1804 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1805 if(ret_val)
1806 return ret_val;
1807
1808 /* In addition, because of the s/w reset above, we need to enable CRS on
1809 * TX. This must be set for both full and half duplex operation.
1810 */
1811 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1812 if(ret_val)
1813 return ret_val;
1814
1815 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1816 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1817 if(ret_val)
1818 return ret_val;
1819
1820 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
1821 (!hw->autoneg) &&
1822 (hw->forced_speed_duplex == e1000_10_full ||
1823 hw->forced_speed_duplex == e1000_10_half)) {
1824 ret_val = e1000_polarity_reversal_workaround(hw);
1825 if(ret_val)
1826 return ret_val;
1827 }
1828 }
1829 return E1000_SUCCESS;
1830 }
1831
1832 /******************************************************************************
1833 * Sets the collision distance in the Transmit Control register
1834 *
1835 * hw - Struct containing variables accessed by shared code
1836 *
1837 * Link should have been established previously. Reads the speed and duplex
1838 * information from the Device Status register.
1839 ******************************************************************************/
1840 void
1841 e1000_config_collision_dist(struct e1000_hw *hw)
1842 {
1843 uint32_t tctl;
1844
1845 DEBUGFUNC("e1000_config_collision_dist");
1846
1847 tctl = E1000_READ_REG(hw, TCTL);
1848
1849 tctl &= ~E1000_TCTL_COLD;
1850 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1851
1852 E1000_WRITE_REG(hw, TCTL, tctl);
1853 E1000_WRITE_FLUSH(hw);
1854 }
1855
1856 /******************************************************************************
1857 * Sets MAC speed and duplex settings to reflect the those in the PHY
1858 *
1859 * hw - Struct containing variables accessed by shared code
1860 * mii_reg - data to write to the MII control register
1861 *
1862 * The contents of the PHY register containing the needed information need to
1863 * be passed in.
1864 ******************************************************************************/
1865 static int32_t
1866 e1000_config_mac_to_phy(struct e1000_hw *hw)
1867 {
1868 uint32_t ctrl;
1869 int32_t ret_val;
1870 uint16_t phy_data;
1871
1872 DEBUGFUNC("e1000_config_mac_to_phy");
1873
1874 /* 82544 or newer MAC, Auto Speed Detection takes care of
1875 * MAC speed/duplex configuration.*/
1876 if (hw->mac_type >= e1000_82544)
1877 return E1000_SUCCESS;
1878
1879 /* Read the Device Control Register and set the bits to Force Speed
1880 * and Duplex.
1881 */
1882 ctrl = E1000_READ_REG(hw, CTRL);
1883 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1884 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1885
1886 /* Set up duplex in the Device Control and Transmit Control
1887 * registers depending on negotiated values.
1888 */
1889 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1890 if(ret_val)
1891 return ret_val;
1892
1893 if(phy_data & M88E1000_PSSR_DPLX)
1894 ctrl |= E1000_CTRL_FD;
1895 else
1896 ctrl &= ~E1000_CTRL_FD;
1897
1898 e1000_config_collision_dist(hw);
1899
1900 /* Set up speed in the Device Control register depending on
1901 * negotiated values.
1902 */
1903 if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1904 ctrl |= E1000_CTRL_SPD_1000;
1905 else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1906 ctrl |= E1000_CTRL_SPD_100;
1907
1908 /* Write the configured values back to the Device Control Reg. */
1909 E1000_WRITE_REG(hw, CTRL, ctrl);
1910 return E1000_SUCCESS;
1911 }
1912
1913 /******************************************************************************
1914 * Forces the MAC's flow control settings.
1915 *
1916 * hw - Struct containing variables accessed by shared code
1917 *
1918 * Sets the TFCE and RFCE bits in the device control register to reflect
1919 * the adapter settings. TFCE and RFCE need to be explicitly set by
1920 * software when a Copper PHY is used because autonegotiation is managed
1921 * by the PHY rather than the MAC. Software must also configure these
1922 * bits when link is forced on a fiber connection.
1923 *****************************************************************************/
1924 int32_t
1925 e1000_force_mac_fc(struct e1000_hw *hw)
1926 {
1927 uint32_t ctrl;
1928
1929 DEBUGFUNC("e1000_force_mac_fc");
1930
1931 /* Get the current configuration of the Device Control Register */
1932 ctrl = E1000_READ_REG(hw, CTRL);
1933
1934 /* Because we didn't get link via the internal auto-negotiation
1935 * mechanism (we either forced link or we got link via PHY
1936 * auto-neg), we have to manually enable/disable transmit an
1937 * receive flow control.
1938 *
1939 * The "Case" statement below enables/disable flow control
1940 * according to the "hw->fc" parameter.
1941 *
1942 * The possible values of the "fc" parameter are:
1943 * 0: Flow control is completely disabled
1944 * 1: Rx flow control is enabled (we can receive pause
1945 * frames but not send pause frames).
1946 * 2: Tx flow control is enabled (we can send pause frames
1947 * frames but we do not receive pause frames).
1948 * 3: Both Rx and TX flow control (symmetric) is enabled.
1949 * other: No other values should be possible at this point.
1950 */
1951
1952 switch (hw->fc) {
1953 case e1000_fc_none:
1954 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1955 break;
1956 case e1000_fc_rx_pause:
1957 ctrl &= (~E1000_CTRL_TFCE);
1958 ctrl |= E1000_CTRL_RFCE;
1959 break;
1960 case e1000_fc_tx_pause:
1961 ctrl &= (~E1000_CTRL_RFCE);
1962 ctrl |= E1000_CTRL_TFCE;
1963 break;
1964 case e1000_fc_full:
1965 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1966 break;
1967 default:
1968 DEBUGOUT("Flow control param set incorrectly\n");
1969 return -E1000_ERR_CONFIG;
1970 }
1971
1972 /* Disable TX Flow Control for 82542 (rev 2.0) */
1973 if(hw->mac_type == e1000_82542_rev2_0)
1974 ctrl &= (~E1000_CTRL_TFCE);
1975
1976 E1000_WRITE_REG(hw, CTRL, ctrl);
1977 return E1000_SUCCESS;
1978 }
1979
1980 /******************************************************************************
1981 * Configures flow control settings after link is established
1982 *
1983 * hw - Struct containing variables accessed by shared code
1984 *
1985 * Should be called immediately after a valid link has been established.
1986 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1987 * and autonegotiation is enabled, the MAC flow control settings will be set
1988 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1989 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1990 *****************************************************************************/
1991 int32_t
1992 e1000_config_fc_after_link_up(struct e1000_hw *hw)
1993 {
1994 int32_t ret_val;
1995 uint16_t mii_status_reg;
1996 uint16_t mii_nway_adv_reg;
1997 uint16_t mii_nway_lp_ability_reg;
1998 uint16_t speed;
1999 uint16_t duplex;
2000
2001 DEBUGFUNC("e1000_config_fc_after_link_up");
2002
2003 /* Check for the case where we have fiber media and auto-neg failed
2004 * so we had to force link. In this case, we need to force the
2005 * configuration of the MAC to match the "fc" parameter.
2006 */
2007 if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2008 ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) ||
2009 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2010 ret_val = e1000_force_mac_fc(hw);
2011 if(ret_val) {
2012 DEBUGOUT("Error forcing flow control settings\n");
2013 return ret_val;
2014 }
2015 }
2016
2017 /* Check for the case where we have copper media and auto-neg is
2018 * enabled. In this case, we need to check and see if Auto-Neg
2019 * has completed, and if so, how the PHY and link partner has
2020 * flow control configured.
2021 */
2022 if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2023 /* Read the MII Status Register and check to see if AutoNeg
2024 * has completed. We read this twice because this reg has
2025 * some "sticky" (latched) bits.
2026 */
2027 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2028 if(ret_val)
2029 return ret_val;
2030 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2031 if(ret_val)
2032 return ret_val;
2033
2034 if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2035 /* The AutoNeg process has completed, so we now need to
2036 * read both the Auto Negotiation Advertisement Register
2037 * (Address 4) and the Auto_Negotiation Base Page Ability
2038 * Register (Address 5) to determine how flow control was
2039 * negotiated.
2040 */
2041 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2042 &mii_nway_adv_reg);
2043 if(ret_val)
2044 return ret_val;
2045 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2046 &mii_nway_lp_ability_reg);
2047 if(ret_val)
2048 return ret_val;
2049
2050 /* Two bits in the Auto Negotiation Advertisement Register
2051 * (Address 4) and two bits in the Auto Negotiation Base
2052 * Page Ability Register (Address 5) determine flow control
2053 * for both the PHY and the link partner. The following
2054 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2055 * 1999, describes these PAUSE resolution bits and how flow
2056 * control is determined based upon these settings.
2057 * NOTE: DC = Don't Care
2058 *
2059 * LOCAL DEVICE | LINK PARTNER
2060 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2061 *-------|---------|-------|---------|--------------------
2062 * 0 | 0 | DC | DC | e1000_fc_none
2063 * 0 | 1 | 0 | DC | e1000_fc_none
2064 * 0 | 1 | 1 | 0 | e1000_fc_none
2065 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2066 * 1 | 0 | 0 | DC | e1000_fc_none
2067 * 1 | DC | 1 | DC | e1000_fc_full
2068 * 1 | 1 | 0 | 0 | e1000_fc_none
2069 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2070 *
2071 */
2072 /* Are both PAUSE bits set to 1? If so, this implies
2073 * Symmetric Flow Control is enabled at both ends. The
2074 * ASM_DIR bits are irrelevant per the spec.
2075 *
2076 * For Symmetric Flow Control:
2077 *
2078 * LOCAL DEVICE | LINK PARTNER
2079 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2080 *-------|---------|-------|---------|--------------------
2081 * 1 | DC | 1 | DC | e1000_fc_full
2082 *
2083 */
2084 if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2085 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2086 /* Now we need to check if the user selected RX ONLY
2087 * of pause frames. In this case, we had to advertise
2088 * FULL flow control because we could not advertise RX
2089 * ONLY. Hence, we must now check to see if we need to
2090 * turn OFF the TRANSMISSION of PAUSE frames.
2091 */
2092 if(hw->original_fc == e1000_fc_full) {
2093 hw->fc = e1000_fc_full;
2094 DEBUGOUT("Flow Control = FULL.\r\n");
2095 } else {
2096 hw->fc = e1000_fc_rx_pause;
2097 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2098 }
2099 }
2100 /* For receiving PAUSE frames ONLY.
2101 *
2102 * LOCAL DEVICE | LINK PARTNER
2103 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2104 *-------|---------|-------|---------|--------------------
2105 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2106 *
2107 */
2108 else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2109 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2110 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2111 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2112 hw->fc = e1000_fc_tx_pause;
2113 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
2114 }
2115 /* For transmitting PAUSE frames ONLY.
2116 *
2117 * LOCAL DEVICE | LINK PARTNER
2118 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2119 *-------|---------|-------|---------|--------------------
2120 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2121 *
2122 */
2123 else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2124 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2125 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2126 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2127 hw->fc = e1000_fc_rx_pause;
2128 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2129 }
2130 /* Per the IEEE spec, at this point flow control should be
2131 * disabled. However, we want to consider that we could
2132 * be connected to a legacy switch that doesn't advertise
2133 * desired flow control, but can be forced on the link
2134 * partner. So if we advertised no flow control, that is
2135 * what we will resolve to. If we advertised some kind of
2136 * receive capability (Rx Pause Only or Full Flow Control)
2137 * and the link partner advertised none, we will configure
2138 * ourselves to enable Rx Flow Control only. We can do
2139 * this safely for two reasons: If the link partner really
2140 * didn't want flow control enabled, and we enable Rx, no
2141 * harm done since we won't be receiving any PAUSE frames
2142 * anyway. If the intent on the link partner was to have
2143 * flow control enabled, then by us enabling RX only, we
2144 * can at least receive pause frames and process them.
2145 * This is a good idea because in most cases, since we are
2146 * predominantly a server NIC, more times than not we will
2147 * be asked to delay transmission of packets than asking
2148 * our link partner to pause transmission of frames.
2149 */
2150 else if((hw->original_fc == e1000_fc_none ||
2151 hw->original_fc == e1000_fc_tx_pause) ||
2152 hw->fc_strict_ieee) {
2153 hw->fc = e1000_fc_none;
2154 DEBUGOUT("Flow Control = NONE.\r\n");
2155 } else {
2156 hw->fc = e1000_fc_rx_pause;
2157 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2158 }
2159
2160 /* Now we need to do one last check... If we auto-
2161 * negotiated to HALF DUPLEX, flow control should not be
2162 * enabled per IEEE 802.3 spec.
2163 */
2164 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2165 if(ret_val) {
2166 DEBUGOUT("Error getting link speed and duplex\n");
2167 return ret_val;
2168 }
2169
2170 if(duplex == HALF_DUPLEX)
2171 hw->fc = e1000_fc_none;
2172
2173 /* Now we call a subroutine to actually force the MAC
2174 * controller to use the correct flow control settings.
2175 */
2176 ret_val = e1000_force_mac_fc(hw);
2177 if(ret_val) {
2178 DEBUGOUT("Error forcing flow control settings\n");
2179 return ret_val;
2180 }
2181 } else {
2182 DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
2183 }
2184 }
2185 return E1000_SUCCESS;
2186 }
2187
2188 /******************************************************************************
2189 * Checks to see if the link status of the hardware has changed.
2190 *
2191 * hw - Struct containing variables accessed by shared code
2192 *
2193 * Called by any function that needs to check the link status of the adapter.
2194 *****************************************************************************/
2195 int32_t
2196 e1000_check_for_link(struct e1000_hw *hw)
2197 {
2198 uint32_t rxcw = 0;
2199 uint32_t ctrl;
2200 uint32_t status;
2201 uint32_t rctl;
2202 uint32_t icr;
2203 uint32_t signal = 0;
2204 int32_t ret_val;
2205 uint16_t phy_data;
2206
2207 DEBUGFUNC("e1000_check_for_link");
2208
2209 ctrl = E1000_READ_REG(hw, CTRL);
2210 status = E1000_READ_REG(hw, STATUS);
2211
2212 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2213 * set when the optics detect a signal. On older adapters, it will be
2214 * cleared when there is a signal. This applies to fiber media only.
2215 */
2216 if((hw->media_type == e1000_media_type_fiber) ||
2217 (hw->media_type == e1000_media_type_internal_serdes)) {
2218 rxcw = E1000_READ_REG(hw, RXCW);
2219
2220 if(hw->media_type == e1000_media_type_fiber) {
2221 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2222 if(status & E1000_STATUS_LU)
2223 hw->get_link_status = FALSE;
2224 }
2225 }
2226
2227 /* If we have a copper PHY then we only want to go out to the PHY
2228 * registers to see if Auto-Neg has completed and/or if our link
2229 * status has changed. The get_link_status flag will be set if we
2230 * receive a Link Status Change interrupt or we have Rx Sequence
2231 * Errors.
2232 */
2233 if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2234 /* First we want to see if the MII Status Register reports
2235 * link. If so, then we want to get the current speed/duplex
2236 * of the PHY.
2237 * Read the register twice since the link bit is sticky.
2238 */
2239 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2240 if(ret_val)
2241 return ret_val;
2242 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2243 if(ret_val)
2244 return ret_val;
2245
2246 if(phy_data & MII_SR_LINK_STATUS) {
2247 hw->get_link_status = FALSE;
2248 /* Check if there was DownShift, must be checked immediately after
2249 * link-up */
2250 e1000_check_downshift(hw);
2251
2252 /* If we are on 82544 or 82543 silicon and speed/duplex
2253 * are forced to 10H or 10F, then we will implement the polarity
2254 * reversal workaround. We disable interrupts first, and upon
2255 * returning, place the devices interrupt state to its previous
2256 * value except for the link status change interrupt which will
2257 * happen due to the execution of this workaround.
2258 */
2259
2260 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2261 (!hw->autoneg) &&
2262 (hw->forced_speed_duplex == e1000_10_full ||
2263 hw->forced_speed_duplex == e1000_10_half)) {
2264 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2265 ret_val = e1000_polarity_reversal_workaround(hw);
2266 icr = E1000_READ_REG(hw, ICR);
2267 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2268 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2269 }
2270
2271 } else {
2272 /* No link detected */
2273 e1000_config_dsp_after_link_change(hw, FALSE);
2274 return 0;
2275 }
2276
2277 /* If we are forcing speed/duplex, then we simply return since
2278 * we have already determined whether we have link or not.
2279 */
2280 if(!hw->autoneg) return -E1000_ERR_CONFIG;
2281
2282 /* optimize the dsp settings for the igp phy */
2283 e1000_config_dsp_after_link_change(hw, TRUE);
2284
2285 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2286 * have Si on board that is 82544 or newer, Auto
2287 * Speed Detection takes care of MAC speed/duplex
2288 * configuration. So we only need to configure Collision
2289 * Distance in the MAC. Otherwise, we need to force
2290 * speed/duplex on the MAC to the current PHY speed/duplex
2291 * settings.
2292 */
2293 if(hw->mac_type >= e1000_82544)
2294 e1000_config_collision_dist(hw);
2295 else {
2296 ret_val = e1000_config_mac_to_phy(hw);
2297 if(ret_val) {
2298 DEBUGOUT("Error configuring MAC to PHY settings\n");
2299 return ret_val;
2300 }
2301 }
2302
2303 /* Configure Flow Control now that Auto-Neg has completed. First, we
2304 * need to restore the desired flow control settings because we may
2305 * have had to re-autoneg with a different link partner.
2306 */
2307 ret_val = e1000_config_fc_after_link_up(hw);
2308 if(ret_val) {
2309 DEBUGOUT("Error configuring flow control\n");
2310 return ret_val;
2311 }
2312
2313 /* At this point we know that we are on copper and we have
2314 * auto-negotiated link. These are conditions for checking the link
2315 * partner capability register. We use the link speed to determine if
2316 * TBI compatibility needs to be turned on or off. If the link is not
2317 * at gigabit speed, then TBI compatibility is not needed. If we are
2318 * at gigabit speed, we turn on TBI compatibility.
2319 */
2320 if(hw->tbi_compatibility_en) {
2321 uint16_t speed, duplex;
2322 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2323 if(speed != SPEED_1000) {
2324 /* If link speed is not set to gigabit speed, we do not need
2325 * to enable TBI compatibility.
2326 */
2327 if(hw->tbi_compatibility_on) {
2328 /* If we previously were in the mode, turn it off. */
2329 rctl = E1000_READ_REG(hw, RCTL);
2330 rctl &= ~E1000_RCTL_SBP;
2331 E1000_WRITE_REG(hw, RCTL, rctl);
2332 hw->tbi_compatibility_on = FALSE;
2333 }
2334 } else {
2335 /* If TBI compatibility is was previously off, turn it on. For
2336 * compatibility with a TBI link partner, we will store bad
2337 * packets. Some frames have an additional byte on the end and
2338 * will look like CRC errors to to the hardware.
2339 */
2340 if(!hw->tbi_compatibility_on) {
2341 hw->tbi_compatibility_on = TRUE;
2342 rctl = E1000_READ_REG(hw, RCTL);
2343 rctl |= E1000_RCTL_SBP;
2344 E1000_WRITE_REG(hw, RCTL, rctl);
2345 }
2346 }
2347 }
2348 }
2349 /* If we don't have link (auto-negotiation failed or link partner cannot
2350 * auto-negotiate), the cable is plugged in (we have signal), and our
2351 * link partner is not trying to auto-negotiate with us (we are receiving
2352 * idles or data), we need to force link up. We also need to give
2353 * auto-negotiation time to complete, in case the cable was just plugged
2354 * in. The autoneg_failed flag does this.
2355 */
2356 else if((((hw->media_type == e1000_media_type_fiber) &&
2357 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
2358 (hw->media_type == e1000_media_type_internal_serdes)) &&
2359 (!(status & E1000_STATUS_LU)) &&
2360 (!(rxcw & E1000_RXCW_C))) {
2361 if(hw->autoneg_failed == 0) {
2362 hw->autoneg_failed = 1;
2363 return 0;
2364 }
2365 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2366
2367 /* Disable auto-negotiation in the TXCW register */
2368 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2369
2370 /* Force link-up and also force full-duplex. */
2371 ctrl = E1000_READ_REG(hw, CTRL);
2372 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2373 E1000_WRITE_REG(hw, CTRL, ctrl);
2374
2375 /* Configure Flow Control after forcing link up. */
2376 ret_val = e1000_config_fc_after_link_up(hw);
2377 if(ret_val) {
2378 DEBUGOUT("Error configuring flow control\n");
2379 return ret_val;
2380 }
2381 }
2382 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2383 * auto-negotiation in the TXCW register and disable forced link in the
2384 * Device Control register in an attempt to auto-negotiate with our link
2385 * partner.
2386 */
2387 else if(((hw->media_type == e1000_media_type_fiber) ||
2388 (hw->media_type == e1000_media_type_internal_serdes)) &&
2389 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2390 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2391 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2392 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2393
2394 hw->serdes_link_down = FALSE;
2395 }
2396 /* If we force link for non-auto-negotiation switch, check link status
2397 * based on MAC synchronization for internal serdes media type.
2398 */
2399 else if((hw->media_type == e1000_media_type_internal_serdes) &&
2400 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2401 /* SYNCH bit and IV bit are sticky. */
2402 udelay(10);
2403 if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
2404 if(!(rxcw & E1000_RXCW_IV)) {
2405 hw->serdes_link_down = FALSE;
2406 DEBUGOUT("SERDES: Link is up.\n");
2407 }
2408 } else {
2409 hw->serdes_link_down = TRUE;
2410 DEBUGOUT("SERDES: Link is down.\n");
2411 }
2412 }
2413 if((hw->media_type == e1000_media_type_internal_serdes) &&
2414 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2415 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
2416 }
2417 return E1000_SUCCESS;
2418 }
2419
2420 /******************************************************************************
2421 * Detects the current speed and duplex settings of the hardware.
2422 *
2423 * hw - Struct containing variables accessed by shared code
2424 * speed - Speed of the connection
2425 * duplex - Duplex setting of the connection
2426 *****************************************************************************/
2427 int32_t
2428 e1000_get_speed_and_duplex(struct e1000_hw *hw,
2429 uint16_t *speed,
2430 uint16_t *duplex)
2431 {
2432 uint32_t status;
2433 int32_t ret_val;
2434 uint16_t phy_data;
2435
2436 DEBUGFUNC("e1000_get_speed_and_duplex");
2437
2438 if(hw->mac_type >= e1000_82543) {
2439 status = E1000_READ_REG(hw, STATUS);
2440 if(status & E1000_STATUS_SPEED_1000) {
2441 *speed = SPEED_1000;
2442 DEBUGOUT("1000 Mbs, ");
2443 } else if(status & E1000_STATUS_SPEED_100) {
2444 *speed = SPEED_100;
2445 DEBUGOUT("100 Mbs, ");
2446 } else {
2447 *speed = SPEED_10;
2448 DEBUGOUT("10 Mbs, ");
2449 }
2450
2451 if(status & E1000_STATUS_FD) {
2452 *duplex = FULL_DUPLEX;
2453 DEBUGOUT("Full Duplex\r\n");
2454 } else {
2455 *duplex = HALF_DUPLEX;
2456 DEBUGOUT(" Half Duplex\r\n");
2457 }
2458 } else {
2459 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2460 *speed = SPEED_1000;
2461 *duplex = FULL_DUPLEX;
2462 }
2463
2464 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
2465 * if it is operating at half duplex. Here we set the duplex settings to
2466 * match the duplex in the link partner's capabilities.
2467 */
2468 if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2469 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2470 if(ret_val)
2471 return ret_val;
2472
2473 if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2474 *duplex = HALF_DUPLEX;
2475 else {
2476 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2477 if(ret_val)
2478 return ret_val;
2479 if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2480 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2481 *duplex = HALF_DUPLEX;
2482 }
2483 }
2484
2485 return E1000_SUCCESS;
2486 }
2487
2488 /******************************************************************************
2489 * Blocks until autoneg completes or times out (~4.5 seconds)
2490 *
2491 * hw - Struct containing variables accessed by shared code
2492 ******************************************************************************/
2493 int32_t
2494 e1000_wait_autoneg(struct e1000_hw *hw)
2495 {
2496 int32_t ret_val;
2497 uint16_t i;
2498 uint16_t phy_data;
2499
2500 DEBUGFUNC("e1000_wait_autoneg");
2501 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2502
2503 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2504 for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2505 /* Read the MII Status Register and wait for Auto-Neg
2506 * Complete bit to be set.
2507 */
2508 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2509 if(ret_val)
2510 return ret_val;
2511 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2512 if(ret_val)
2513 return ret_val;
2514 if(phy_data & MII_SR_AUTONEG_COMPLETE) {
2515 return E1000_SUCCESS;
2516 }
2517 msec_delay(100);
2518 }
2519 return E1000_SUCCESS;
2520 }
2521
2522 /******************************************************************************
2523 * Raises the Management Data Clock
2524 *
2525 * hw - Struct containing variables accessed by shared code
2526 * ctrl - Device control register's current value
2527 ******************************************************************************/
2528 static void
2529 e1000_raise_mdi_clk(struct e1000_hw *hw,
2530 uint32_t *ctrl)
2531 {
2532 /* Raise the clock input to the Management Data Clock (by setting the MDC
2533 * bit), and then delay 10 microseconds.
2534 */
2535 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2536 E1000_WRITE_FLUSH(hw);
2537 udelay(10);
2538 }
2539
2540 /******************************************************************************
2541 * Lowers the Management Data Clock
2542 *
2543 * hw - Struct containing variables accessed by shared code
2544 * ctrl - Device control register's current value
2545 ******************************************************************************/
2546 static void
2547 e1000_lower_mdi_clk(struct e1000_hw *hw,
2548 uint32_t *ctrl)
2549 {
2550 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2551 * bit), and then delay 10 microseconds.
2552 */
2553 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2554 E1000_WRITE_FLUSH(hw);
2555 udelay(10);
2556 }
2557
2558 /******************************************************************************
2559 * Shifts data bits out to the PHY
2560 *
2561 * hw - Struct containing variables accessed by shared code
2562 * data - Data to send out to the PHY
2563 * count - Number of bits to shift out
2564 *
2565 * Bits are shifted out in MSB to LSB order.
2566 ******************************************************************************/
2567 static void
2568 e1000_shift_out_mdi_bits(struct e1000_hw *hw,
2569 uint32_t data,
2570 uint16_t count)
2571 {
2572 uint32_t ctrl;
2573 uint32_t mask;
2574
2575 /* We need to shift "count" number of bits out to the PHY. So, the value
2576 * in the "data" parameter will be shifted out to the PHY one bit at a
2577 * time. In order to do this, "data" must be broken down into bits.
2578 */
2579 mask = 0x01;
2580 mask <<= (count - 1);
2581
2582 ctrl = E1000_READ_REG(hw, CTRL);
2583
2584 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2585 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2586
2587 while(mask) {
2588 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2589 * then raising and lowering the Management Data Clock. A "0" is
2590 * shifted out to the PHY by setting the MDIO bit to "0" and then
2591 * raising and lowering the clock.
2592 */
2593 if(data & mask) ctrl |= E1000_CTRL_MDIO;
2594 else ctrl &= ~E1000_CTRL_MDIO;
2595
2596 E1000_WRITE_REG(hw, CTRL, ctrl);
2597 E1000_WRITE_FLUSH(hw);
2598
2599 udelay(10);
2600
2601 e1000_raise_mdi_clk(hw, &ctrl);
2602 e1000_lower_mdi_clk(hw, &ctrl);
2603
2604 mask = mask >> 1;
2605 }
2606 }
2607
2608 /******************************************************************************
2609 * Shifts data bits in from the PHY
2610 *
2611 * hw - Struct containing variables accessed by shared code
2612 *
2613 * Bits are shifted in in MSB to LSB order.
2614 ******************************************************************************/
2615 static uint16_t
2616 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2617 {
2618 uint32_t ctrl;
2619 uint16_t data = 0;
2620 uint8_t i;
2621
2622 /* In order to read a register from the PHY, we need to shift in a total
2623 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2624 * to avoid contention on the MDIO pin when a read operation is performed.
2625 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2626 * by raising the input to the Management Data Clock (setting the MDC bit),
2627 * and then reading the value of the MDIO bit.
2628 */
2629 ctrl = E1000_READ_REG(hw, CTRL);
2630
2631 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2632 ctrl &= ~E1000_CTRL_MDIO_DIR;
2633 ctrl &= ~E1000_CTRL_MDIO;
2634
2635 E1000_WRITE_REG(hw, CTRL, ctrl);
2636 E1000_WRITE_FLUSH(hw);
2637
2638 /* Raise and Lower the clock before reading in the data. This accounts for
2639 * the turnaround bits. The first clock occurred when we clocked out the
2640 * last bit of the Register Address.
2641 */
2642 e1000_raise_mdi_clk(hw, &ctrl);
2643 e1000_lower_mdi_clk(hw, &ctrl);
2644
2645 for(data = 0, i = 0; i < 16; i++) {
2646 data = data << 1;
2647 e1000_raise_mdi_clk(hw, &ctrl);
2648 ctrl = E1000_READ_REG(hw, CTRL);
2649 /* Check to see if we shifted in a "1". */
2650 if(ctrl & E1000_CTRL_MDIO) data |= 1;
2651 e1000_lower_mdi_clk(hw, &ctrl);
2652 }
2653
2654 e1000_raise_mdi_clk(hw, &ctrl);
2655 e1000_lower_mdi_clk(hw, &ctrl);
2656
2657 return data;
2658 }
2659
2660 /*****************************************************************************
2661 * Reads the value from a PHY register, if the value is on a specific non zero
2662 * page, sets the page first.
2663 * hw - Struct containing variables accessed by shared code
2664 * reg_addr - address of the PHY register to read
2665 ******************************************************************************/
2666 int32_t
2667 e1000_read_phy_reg(struct e1000_hw *hw,
2668 uint32_t reg_addr,
2669 uint16_t *phy_data)
2670 {
2671 uint32_t ret_val;
2672
2673 DEBUGFUNC("e1000_read_phy_reg");
2674
2675 if((hw->phy_type == e1000_phy_igp ||
2676 hw->phy_type == e1000_phy_igp_2) &&
2677 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2678 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2679 (uint16_t)reg_addr);
2680 if(ret_val) {
2681 return ret_val;
2682 }
2683 }
2684
2685 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2686 phy_data);
2687
2688 return ret_val;
2689 }
2690
2691 int32_t
2692 e1000_read_phy_reg_ex(struct e1000_hw *hw,
2693 uint32_t reg_addr,
2694 uint16_t *phy_data)
2695 {
2696 uint32_t i;
2697 uint32_t mdic = 0;
2698 const uint32_t phy_addr = 1;
2699
2700 DEBUGFUNC("e1000_read_phy_reg_ex");
2701
2702 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2703 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2704 return -E1000_ERR_PARAM;
2705 }
2706
2707 if(hw->mac_type > e1000_82543) {
2708 /* Set up Op-code, Phy Address, and register address in the MDI
2709 * Control register. The MAC will take care of interfacing with the
2710 * PHY to retrieve the desired data.
2711 */
2712 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2713 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2714 (E1000_MDIC_OP_READ));
2715
2716 E1000_WRITE_REG(hw, MDIC, mdic);
2717
2718 /* Poll the ready bit to see if the MDI read completed */
2719 for(i = 0; i < 64; i++) {
2720 udelay(50);
2721 mdic = E1000_READ_REG(hw, MDIC);
2722 if(mdic & E1000_MDIC_READY) break;
2723 }
2724 if(!(mdic & E1000_MDIC_READY)) {
2725 DEBUGOUT("MDI Read did not complete\n");
2726 return -E1000_ERR_PHY;
2727 }
2728 if(mdic & E1000_MDIC_ERROR) {
2729 DEBUGOUT("MDI Error\n");
2730 return -E1000_ERR_PHY;
2731 }
2732 *phy_data = (uint16_t) mdic;
2733 } else {
2734 /* We must first send a preamble through the MDIO pin to signal the
2735 * beginning of an MII instruction. This is done by sending 32
2736 * consecutive "1" bits.
2737 */
2738 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2739
2740 /* Now combine the next few fields that are required for a read
2741 * operation. We use this method instead of calling the
2742 * e1000_shift_out_mdi_bits routine five different times. The format of
2743 * a MII read instruction consists of a shift out of 14 bits and is
2744 * defined as follows:
2745 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2746 * followed by a shift in of 18 bits. This first two bits shifted in
2747 * are TurnAround bits used to avoid contention on the MDIO pin when a
2748 * READ operation is performed. These two bits are thrown away
2749 * followed by a shift in of 16 bits which contains the desired data.
2750 */
2751 mdic = ((reg_addr) | (phy_addr << 5) |
2752 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2753
2754 e1000_shift_out_mdi_bits(hw, mdic, 14);
2755
2756 /* Now that we've shifted out the read command to the MII, we need to
2757 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2758 * register address.
2759 */
2760 *phy_data = e1000_shift_in_mdi_bits(hw);
2761 }
2762 return E1000_SUCCESS;
2763 }
2764
2765 /******************************************************************************
2766 * Writes a value to a PHY register
2767 *
2768 * hw - Struct containing variables accessed by shared code
2769 * reg_addr - address of the PHY register to write
2770 * data - data to write to the PHY
2771 ******************************************************************************/
2772 int32_t
2773 e1000_write_phy_reg(struct e1000_hw *hw,
2774 uint32_t reg_addr,
2775 uint16_t phy_data)
2776 {
2777 uint32_t ret_val;
2778
2779 DEBUGFUNC("e1000_write_phy_reg");
2780
2781 if((hw->phy_type == e1000_phy_igp ||
2782 hw->phy_type == e1000_phy_igp_2) &&
2783 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2784 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2785 (uint16_t)reg_addr);
2786 if(ret_val) {
2787 return ret_val;
2788 }
2789 }
2790
2791 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2792 phy_data);
2793
2794 return ret_val;
2795 }
2796
2797 int32_t
2798 e1000_write_phy_reg_ex(struct e1000_hw *hw,
2799 uint32_t reg_addr,
2800 uint16_t phy_data)
2801 {
2802 uint32_t i;
2803 uint32_t mdic = 0;
2804 const uint32_t phy_addr = 1;
2805
2806 DEBUGFUNC("e1000_write_phy_reg_ex");
2807
2808 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2809 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2810 return -E1000_ERR_PARAM;
2811 }
2812
2813 if(hw->mac_type > e1000_82543) {
2814 /* Set up Op-code, Phy Address, register address, and data intended
2815 * for the PHY register in the MDI Control register. The MAC will take
2816 * care of interfacing with the PHY to send the desired data.
2817 */
2818 mdic = (((uint32_t) phy_data) |
2819 (reg_addr << E1000_MDIC_REG_SHIFT) |
2820 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2821 (E1000_MDIC_OP_WRITE));
2822
2823 E1000_WRITE_REG(hw, MDIC, mdic);
2824
2825 /* Poll the ready bit to see if the MDI read completed */
2826 for(i = 0; i < 640; i++) {
2827 udelay(5);
2828 mdic = E1000_READ_REG(hw, MDIC);
2829 if(mdic & E1000_MDIC_READY) break;
2830 }
2831 if(!(mdic & E1000_MDIC_READY)) {
2832 DEBUGOUT("MDI Write did not complete\n");
2833 return -E1000_ERR_PHY;
2834 }
2835 } else {
2836 /* We'll need to use the SW defined pins to shift the write command
2837 * out to the PHY. We first send a preamble to the PHY to signal the
2838 * beginning of the MII instruction. This is done by sending 32
2839 * consecutive "1" bits.
2840 */
2841 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2842
2843 /* Now combine the remaining required fields that will indicate a
2844 * write operation. We use this method instead of calling the
2845 * e1000_shift_out_mdi_bits routine for each field in the command. The
2846 * format of a MII write instruction is as follows:
2847 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2848 */
2849 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2850 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2851 mdic <<= 16;
2852 mdic |= (uint32_t) phy_data;
2853
2854 e1000_shift_out_mdi_bits(hw, mdic, 32);
2855 }
2856
2857 return E1000_SUCCESS;
2858 }
2859
2860
2861 /******************************************************************************
2862 * Returns the PHY to the power-on reset state
2863 *
2864 * hw - Struct containing variables accessed by shared code
2865 ******************************************************************************/
2866 int32_t
2867 e1000_phy_hw_reset(struct e1000_hw *hw)
2868 {
2869 uint32_t ctrl, ctrl_ext;
2870 uint32_t led_ctrl;
2871 int32_t ret_val;
2872
2873 DEBUGFUNC("e1000_phy_hw_reset");
2874
2875 /* In the case of the phy reset being blocked, it's not an error, we
2876 * simply return success without performing the reset. */
2877 ret_val = e1000_check_phy_reset_block(hw);
2878 if (ret_val)
2879 return E1000_SUCCESS;
2880
2881 DEBUGOUT("Resetting Phy...\n");
2882
2883 if(hw->mac_type > e1000_82543) {
2884 /* Read the device control register and assert the E1000_CTRL_PHY_RST
2885 * bit. Then, take it out of reset.
2886 */
2887 ctrl = E1000_READ_REG(hw, CTRL);
2888 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2889 E1000_WRITE_FLUSH(hw);
2890 msec_delay(10);
2891 E1000_WRITE_REG(hw, CTRL, ctrl);
2892 E1000_WRITE_FLUSH(hw);
2893 } else {
2894 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2895 * bit to put the PHY into reset. Then, take it out of reset.
2896 */
2897 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2898 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2899 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2900 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2901 E1000_WRITE_FLUSH(hw);
2902 msec_delay(10);
2903 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2904 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2905 E1000_WRITE_FLUSH(hw);
2906 }
2907 udelay(150);
2908
2909 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2910 /* Configure activity LED after PHY reset */
2911 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2912 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2913 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2914 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2915 }
2916
2917 /* Wait for FW to finish PHY configuration. */
2918 ret_val = e1000_get_phy_cfg_done(hw);
2919
2920 return ret_val;
2921 }
2922
2923 /******************************************************************************
2924 * Resets the PHY
2925 *
2926 * hw - Struct containing variables accessed by shared code
2927 *
2928 * Sets bit 15 of the MII Control regiser
2929 ******************************************************************************/
2930 int32_t
2931 e1000_phy_reset(struct e1000_hw *hw)
2932 {
2933 int32_t ret_val;
2934 uint16_t phy_data;
2935
2936 DEBUGFUNC("e1000_phy_reset");
2937
2938 /* In the case of the phy reset being blocked, it's not an error, we
2939 * simply return success without performing the reset. */
2940 ret_val = e1000_check_phy_reset_block(hw);
2941 if (ret_val)
2942 return E1000_SUCCESS;
2943
2944 switch (hw->mac_type) {
2945 case e1000_82541_rev_2:
2946 ret_val = e1000_phy_hw_reset(hw);
2947 if(ret_val)
2948 return ret_val;
2949 break;
2950 default:
2951 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2952 if(ret_val)
2953 return ret_val;
2954
2955 phy_data |= MII_CR_RESET;
2956 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2957 if(ret_val)
2958 return ret_val;
2959
2960 udelay(1);
2961 break;
2962 }
2963
2964 if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
2965 e1000_phy_init_script(hw);
2966
2967 return E1000_SUCCESS;
2968 }
2969
2970 /******************************************************************************
2971 * Probes the expected PHY address for known PHY IDs
2972 *
2973 * hw - Struct containing variables accessed by shared code
2974 ******************************************************************************/
2975 int32_t
2976 e1000_detect_gig_phy(struct e1000_hw *hw)
2977 {
2978 int32_t phy_init_status, ret_val;
2979 uint16_t phy_id_high, phy_id_low;
2980 boolean_t match = FALSE;
2981
2982 DEBUGFUNC("e1000_detect_gig_phy");
2983
2984 /* Read the PHY ID Registers to identify which PHY is onboard. */
2985 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
2986 if(ret_val)
2987 return ret_val;
2988
2989 hw->phy_id = (uint32_t) (phy_id_high << 16);
2990 udelay(20);
2991 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
2992 if(ret_val)
2993 return ret_val;
2994
2995 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2996 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
2997
2998 switch(hw->mac_type) {
2999 case e1000_82543:
3000 if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
3001 break;
3002 case e1000_82544:
3003 if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
3004 break;
3005 case e1000_82540:
3006 case e1000_82545:
3007 case e1000_82545_rev_3:
3008 case e1000_82546:
3009 case e1000_82546_rev_3:
3010 if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
3011 break;
3012 case e1000_82541:
3013 case e1000_82541_rev_2:
3014 case e1000_82547:
3015 case e1000_82547_rev_2:
3016 if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
3017 break;
3018 case e1000_82573:
3019 if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
3020 break;
3021 default:
3022 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
3023 return -E1000_ERR_CONFIG;
3024 }
3025 phy_init_status = e1000_set_phy_type(hw);
3026
3027 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3028 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
3029 return E1000_SUCCESS;
3030 }
3031 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
3032 return -E1000_ERR_PHY;
3033 }
3034
3035 /******************************************************************************
3036 * Resets the PHY's DSP
3037 *
3038 * hw - Struct containing variables accessed by shared code
3039 ******************************************************************************/
3040 static int32_t
3041 e1000_phy_reset_dsp(struct e1000_hw *hw)
3042 {
3043 int32_t ret_val;
3044 DEBUGFUNC("e1000_phy_reset_dsp");
3045
3046 do {
3047 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3048 if(ret_val) break;
3049 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3050 if(ret_val) break;
3051 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3052 if(ret_val) break;
3053 ret_val = E1000_SUCCESS;
3054 } while(0);
3055
3056 return ret_val;
3057 }
3058
3059 /******************************************************************************
3060 * Get PHY information from various PHY registers for igp PHY only.
3061 *
3062 * hw - Struct containing variables accessed by shared code
3063 * phy_info - PHY information structure
3064 ******************************************************************************/
3065 int32_t
3066 e1000_phy_igp_get_info(struct e1000_hw *hw,
3067 struct e1000_phy_info *phy_info)
3068 {
3069 int32_t ret_val;
3070 uint16_t phy_data, polarity, min_length, max_length, average;
3071
3072 DEBUGFUNC("e1000_phy_igp_get_info");
3073
3074 /* The downshift status is checked only once, after link is established,
3075 * and it stored in the hw->speed_downgraded parameter. */
3076 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
3077
3078 /* IGP01E1000 does not need to support it. */
3079 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3080
3081 /* IGP01E1000 always correct polarity reversal */
3082 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3083
3084 /* Check polarity status */
3085 ret_val = e1000_check_polarity(hw, &polarity);
3086 if(ret_val)
3087 return ret_val;
3088
3089 phy_info->cable_polarity = polarity;
3090
3091 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3092 if(ret_val)
3093 return ret_val;
3094
3095 phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
3096 IGP01E1000_PSSR_MDIX_SHIFT;
3097
3098 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3099 IGP01E1000_PSSR_SPEED_1000MBPS) {
3100 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
3101 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3102 if(ret_val)
3103 return ret_val;
3104
3105 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3106 SR_1000T_LOCAL_RX_STATUS_SHIFT;
3107 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3108 SR_1000T_REMOTE_RX_STATUS_SHIFT;
3109
3110 /* Get cable length */
3111 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3112 if(ret_val)
3113 return ret_val;
3114
3115 /* Translate to old method */
3116 average = (max_length + min_length) / 2;
3117
3118 if(average <= e1000_igp_cable_length_50)
3119 phy_info->cable_length = e1000_cable_length_50;
3120 else if(average <= e1000_igp_cable_length_80)
3121 phy_info->cable_length = e1000_cable_length_50_80;
3122 else if(average <= e1000_igp_cable_length_110)
3123 phy_info->cable_length = e1000_cable_length_80_110;
3124 else if(average <= e1000_igp_cable_length_140)
3125 phy_info->cable_length = e1000_cable_length_110_140;
3126 else
3127 phy_info->cable_length = e1000_cable_length_140;
3128 }
3129
3130 return E1000_SUCCESS;
3131 }
3132
3133 /******************************************************************************
3134 * Get PHY information from various PHY registers fot m88 PHY only.
3135 *
3136 * hw - Struct containing variables accessed by shared code
3137 * phy_info - PHY information structure
3138 ******************************************************************************/
3139 int32_t
3140 e1000_phy_m88_get_info(struct e1000_hw *hw,
3141 struct e1000_phy_info *phy_info)
3142 {
3143 int32_t ret_val;
3144 uint16_t phy_data, polarity;
3145
3146 DEBUGFUNC("e1000_phy_m88_get_info");
3147
3148 /* The downshift status is checked only once, after link is established,
3149 * and it stored in the hw->speed_downgraded parameter. */
3150 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
3151
3152 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3153 if(ret_val)
3154 return ret_val;
3155
3156 phy_info->extended_10bt_distance =
3157 (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3158 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
3159 phy_info->polarity_correction =
3160 (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3161 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
3162
3163 /* Check polarity status */
3164 ret_val = e1000_check_polarity(hw, &polarity);
3165 if(ret_val)
3166 return ret_val;
3167 phy_info->cable_polarity = polarity;
3168
3169 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3170 if(ret_val)
3171 return ret_val;
3172
3173 phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
3174 M88E1000_PSSR_MDIX_SHIFT;
3175
3176 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3177 /* Cable Length Estimation and Local/Remote Receiver Information
3178 * are only valid at 1000 Mbps.
3179 */
3180 phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
3181 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3182
3183 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3184 if(ret_val)
3185 return ret_val;
3186
3187 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3188 SR_1000T_LOCAL_RX_STATUS_SHIFT;
3189
3190 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3191 SR_1000T_REMOTE_RX_STATUS_SHIFT;
3192 }
3193
3194 return E1000_SUCCESS;
3195 }
3196
3197 /******************************************************************************
3198 * Get PHY information from various PHY registers
3199 *
3200 * hw - Struct containing variables accessed by shared code
3201 * phy_info - PHY information structure
3202 ******************************************************************************/
3203 int32_t
3204 e1000_phy_get_info(struct e1000_hw *hw,
3205 struct e1000_phy_info *phy_info)
3206 {
3207 int32_t ret_val;
3208 uint16_t phy_data;
3209
3210 DEBUGFUNC("e1000_phy_get_info");
3211
3212 phy_info->cable_length = e1000_cable_length_undefined;
3213 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3214 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3215 phy_info->downshift = e1000_downshift_undefined;
3216 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3217 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3218 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3219 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3220
3221 if(hw->media_type != e1000_media_type_copper) {
3222 DEBUGOUT("PHY info is only valid for copper media\n");
3223 return -E1000_ERR_CONFIG;
3224 }
3225
3226 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3227 if(ret_val)
3228 return ret_val;
3229
3230 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3231 if(ret_val)
3232 return ret_val;
3233
3234 if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3235 DEBUGOUT("PHY info is only valid if link is up\n");
3236 return -E1000_ERR_CONFIG;
3237 }
3238
3239 if(hw->phy_type == e1000_phy_igp ||
3240 hw->phy_type == e1000_phy_igp_2)
3241 return e1000_phy_igp_get_info(hw, phy_info);
3242 else
3243 return e1000_phy_m88_get_info(hw, phy_info);
3244 }
3245
3246 int32_t
3247 e1000_validate_mdi_setting(struct e1000_hw *hw)
3248 {
3249 DEBUGFUNC("e1000_validate_mdi_settings");
3250
3251 if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3252 DEBUGOUT("Invalid MDI setting detected\n");
3253 hw->mdix = 1;
3254 return -E1000_ERR_CONFIG;
3255 }
3256 return E1000_SUCCESS;
3257 }
3258
3259
3260 /******************************************************************************
3261 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3262 * is configured.
3263 *
3264 * hw - Struct containing variables accessed by shared code
3265 *****************************************************************************/
3266 int32_t
3267 e1000_init_eeprom_params(struct e1000_hw *hw)
3268 {
3269 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3270 uint32_t eecd = E1000_READ_REG(hw, EECD);
3271 int32_t ret_val = E1000_SUCCESS;
3272 uint16_t eeprom_size;
3273
3274 DEBUGFUNC("e1000_init_eeprom_params");
3275
3276 switch (hw->mac_type) {
3277 case e1000_82542_rev2_0:
3278 case e1000_82542_rev2_1:
3279 case e1000_82543:
3280 case e1000_82544:
3281 eeprom->type = e1000_eeprom_microwire;
3282 eeprom->word_size = 64;
3283 eeprom->opcode_bits = 3;
3284 eeprom->address_bits = 6;
3285 eeprom->delay_usec = 50;
3286 eeprom->use_eerd = FALSE;
3287 eeprom->use_eewr = FALSE;
3288 break;
3289 case e1000_82540:
3290 case e1000_82545:
3291 case e1000_82545_rev_3:
3292 case e1000_82546:
3293 case e1000_82546_rev_3:
3294 eeprom->type = e1000_eeprom_microwire;
3295 eeprom->opcode_bits = 3;
3296 eeprom->delay_usec = 50;
3297 if(eecd & E1000_EECD_SIZE) {
3298 eeprom->word_size = 256;
3299 eeprom->address_bits = 8;
3300 } else {
3301 eeprom->word_size = 64;
3302 eeprom->address_bits = 6;
3303 }
3304 eeprom->use_eerd = FALSE;
3305 eeprom->use_eewr = FALSE;
3306 break;
3307 case e1000_82541:
3308 case e1000_82541_rev_2:
3309 case e1000_82547:
3310 case e1000_82547_rev_2:
3311 if (eecd & E1000_EECD_TYPE) {
3312 eeprom->type = e1000_eeprom_spi;
3313 eeprom->opcode_bits = 8;
3314 eeprom->delay_usec = 1;
3315 if (eecd & E1000_EECD_ADDR_BITS) {
3316 eeprom->page_size = 32;
3317 eeprom->address_bits = 16;
3318 } else {
3319 eeprom->page_size = 8;
3320 eeprom->address_bits = 8;
3321 }
3322 } else {
3323 eeprom->type = e1000_eeprom_microwire;
3324 eeprom->opcode_bits = 3;
3325 eeprom->delay_usec = 50;
3326 if (eecd & E1000_EECD_ADDR_BITS) {
3327 eeprom->word_size = 256;
3328 eeprom->address_bits = 8;
3329 } else {
3330 eeprom->word_size = 64;
3331 eeprom->address_bits = 6;
3332 }
3333 }
3334 eeprom->use_eerd = FALSE;
3335 eeprom->use_eewr = FALSE;
3336 break;
3337 case e1000_82573:
3338 eeprom->type = e1000_eeprom_spi;
3339 eeprom->opcode_bits = 8;
3340 eeprom->delay_usec = 1;
3341 if (eecd & E1000_EECD_ADDR_BITS) {
3342 eeprom->page_size = 32;
3343 eeprom->address_bits = 16;
3344 } else {
3345 eeprom->page_size = 8;
3346 eeprom->address_bits = 8;
3347 }
3348 eeprom->use_eerd = TRUE;
3349 eeprom->use_eewr = TRUE;
3350 if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
3351 eeprom->type = e1000_eeprom_flash;
3352 eeprom->word_size = 2048;
3353
3354 /* Ensure that the Autonomous FLASH update bit is cleared due to
3355 * Flash update issue on parts which use a FLASH for NVM. */
3356 eecd &= ~E1000_EECD_AUPDEN;
3357 E1000_WRITE_REG(hw, EECD, eecd);
3358 }
3359 break;
3360 default:
3361 break;
3362 }
3363
3364 if (eeprom->type == e1000_eeprom_spi) {
3365 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3366 * 32KB (incremented by powers of 2).
3367 */
3368 if(hw->mac_type <= e1000_82547_rev_2) {
3369 /* Set to default value for initial eeprom read. */
3370 eeprom->word_size = 64;
3371 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3372 if(ret_val)
3373 return ret_val;
3374 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3375 /* 256B eeprom size was not supported in earlier hardware, so we
3376 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3377 * is never the result used in the shifting logic below. */
3378 if(eeprom_size)
3379 eeprom_size++;
3380 } else {
3381 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
3382 E1000_EECD_SIZE_EX_SHIFT);
3383 }
3384
3385 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3386 }
3387 return ret_val;
3388 }
3389
3390 /******************************************************************************
3391 * Raises the EEPROM's clock input.
3392 *
3393 * hw - Struct containing variables accessed by shared code
3394 * eecd - EECD's current value
3395 *****************************************************************************/
3396 static void
3397 e1000_raise_ee_clk(struct e1000_hw *hw,
3398 uint32_t *eecd)
3399 {
3400 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3401 * wait <delay> microseconds.
3402 */
3403 *eecd = *eecd | E1000_EECD_SK;
3404 E1000_WRITE_REG(hw, EECD, *eecd);
3405 E1000_WRITE_FLUSH(hw);
3406 udelay(hw->eeprom.delay_usec);
3407 }
3408
3409 /******************************************************************************
3410 * Lowers the EEPROM's clock input.
3411 *
3412 * hw - Struct containing variables accessed by shared code
3413 * eecd - EECD's current value
3414 *****************************************************************************/
3415 static void
3416 e1000_lower_ee_clk(struct e1000_hw *hw,
3417 uint32_t *eecd)
3418 {
3419 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3420 * wait 50 microseconds.
3421 */
3422 *eecd = *eecd & ~E1000_EECD_SK;
3423 E1000_WRITE_REG(hw, EECD, *eecd);
3424 E1000_WRITE_FLUSH(hw);
3425 udelay(hw->eeprom.delay_usec);
3426 }
3427
3428 /******************************************************************************
3429 * Shift data bits out to the EEPROM.
3430 *
3431 * hw - Struct containing variables accessed by shared code
3432 * data - data to send to the EEPROM
3433 * count - number of bits to shift out
3434 *****************************************************************************/
3435 static void
3436 e1000_shift_out_ee_bits(struct e1000_hw *hw,
3437 uint16_t data,
3438 uint16_t count)
3439 {
3440 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3441 uint32_t eecd;
3442 uint32_t mask;
3443
3444 /* We need to shift "count" bits out to the EEPROM. So, value in the
3445 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3446 * In order to do this, "data" must be broken down into bits.
3447 */
3448 mask = 0x01 << (count - 1);
3449 eecd = E1000_READ_REG(hw, EECD);
3450 if (eeprom->type == e1000_eeprom_microwire) {
3451 eecd &= ~E1000_EECD_DO;
3452 } else if (eeprom->type == e1000_eeprom_spi) {
3453 eecd |= E1000_EECD_DO;
3454 }
3455 do {
3456 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3457 * and then raising and then lowering the clock (the SK bit controls
3458 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
3459 * by setting "DI" to "0" and then raising and then lowering the clock.
3460 */
3461 eecd &= ~E1000_EECD_DI;
3462
3463 if(data & mask)
3464 eecd |= E1000_EECD_DI;
3465
3466 E1000_WRITE_REG(hw, EECD, eecd);
3467 E1000_WRITE_FLUSH(hw);
3468
3469 udelay(eeprom->delay_usec);
3470
3471 e1000_raise_ee_clk(hw, &eecd);
3472 e1000_lower_ee_clk(hw, &eecd);
3473
3474 mask = mask >> 1;
3475
3476 } while(mask);
3477
3478 /* We leave the "DI" bit set to "0" when we leave this routine. */
3479 eecd &= ~E1000_EECD_DI;
3480 E1000_WRITE_REG(hw, EECD, eecd);
3481 }
3482
3483 /******************************************************************************
3484 * Shift data bits in from the EEPROM
3485 *
3486 * hw - Struct containing variables accessed by shared code
3487 *****************************************************************************/
3488 static uint16_t
3489 e1000_shift_in_ee_bits(struct e1000_hw *hw,
3490 uint16_t count)
3491 {
3492 uint32_t eecd;
3493 uint32_t i;
3494 uint16_t data;
3495
3496 /* In order to read a register from the EEPROM, we need to shift 'count'
3497 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3498 * input to the EEPROM (setting the SK bit), and then reading the value of
3499 * the "DO" bit. During this "shifting in" process the "DI" bit should
3500 * always be clear.
3501 */
3502
3503 eecd = E1000_READ_REG(hw, EECD);
3504
3505 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3506 data = 0;
3507
3508 for(i = 0; i < count; i++) {
3509 data = data << 1;
3510 e1000_raise_ee_clk(hw, &eecd);
3511
3512 eecd = E1000_READ_REG(hw, EECD);
3513
3514 eecd &= ~(E1000_EECD_DI);
3515 if(eecd & E1000_EECD_DO)
3516 data |= 1;
3517
3518 e1000_lower_ee_clk(hw, &eecd);
3519 }
3520
3521 return data;
3522 }
3523
3524 /******************************************************************************
3525 * Prepares EEPROM for access
3526 *
3527 * hw - Struct containing variables accessed by shared code
3528 *
3529 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3530 * function should be called before issuing a command to the EEPROM.
3531 *****************************************************************************/
3532 static int32_t
3533 e1000_acquire_eeprom(struct e1000_hw *hw)
3534 {
3535 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3536 uint32_t eecd, i=0;
3537
3538 DEBUGFUNC("e1000_acquire_eeprom");
3539
3540 if(e1000_get_hw_eeprom_semaphore(hw))
3541 return -E1000_ERR_EEPROM;
3542
3543 eecd = E1000_READ_REG(hw, EECD);
3544
3545 if (hw->mac_type != e1000_82573) {
3546 /* Request EEPROM Access */
3547 if(hw->mac_type > e1000_82544) {
3548 eecd |= E1000_EECD_REQ;
3549 E1000_WRITE_REG(hw, EECD, eecd);
3550 eecd = E1000_READ_REG(hw, EECD);
3551 while((!(eecd & E1000_EECD_GNT)) &&
3552 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3553 i++;
3554 udelay(5);
3555 eecd = E1000_READ_REG(hw, EECD);
3556 }
3557 if(!(eecd & E1000_EECD_GNT)) {
3558 eecd &= ~E1000_EECD_REQ;
3559 E1000_WRITE_REG(hw, EECD, eecd);
3560 DEBUGOUT("Could not acquire EEPROM grant\n");
3561 return -E1000_ERR_EEPROM;
3562 }
3563 }
3564 }
3565
3566 /* Setup EEPROM for Read/Write */
3567
3568 if (eeprom->type == e1000_eeprom_microwire) {
3569 /* Clear SK and DI */
3570 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3571 E1000_WRITE_REG(hw, EECD, eecd);
3572
3573 /* Set CS */
3574 eecd |= E1000_EECD_CS;
3575 E1000_WRITE_REG(hw, EECD, eecd);
3576 } else if (eeprom->type == e1000_eeprom_spi) {
3577 /* Clear SK and CS */
3578 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3579 E1000_WRITE_REG(hw, EECD, eecd);
3580 udelay(1);
3581 }
3582
3583 return E1000_SUCCESS;
3584 }
3585
3586 /******************************************************************************
3587 * Returns EEPROM to a "standby" state
3588 *
3589 * hw - Struct containing variables accessed by shared code
3590 *****************************************************************************/
3591 static void
3592 e1000_standby_eeprom(struct e1000_hw *hw)
3593 {
3594 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3595 uint32_t eecd;
3596
3597 eecd = E1000_READ_REG(hw, EECD);
3598
3599 if(eeprom->type == e1000_eeprom_microwire) {
3600 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3601 E1000_WRITE_REG(hw, EECD, eecd);
3602 E1000_WRITE_FLUSH(hw);
3603 udelay(eeprom->delay_usec);
3604
3605 /* Clock high */
3606 eecd |= E1000_EECD_SK;
3607 E1000_WRITE_REG(hw, EECD, eecd);
3608 E1000_WRITE_FLUSH(hw);
3609 udelay(eeprom->delay_usec);
3610
3611 /* Select EEPROM */
3612 eecd |= E1000_EECD_CS;
3613 E1000_WRITE_REG(hw, EECD, eecd);
3614 E1000_WRITE_FLUSH(hw);
3615 udelay(eeprom->delay_usec);
3616
3617 /* Clock low */
3618 eecd &= ~E1000_EECD_SK;
3619 E1000_WRITE_REG(hw, EECD, eecd);
3620 E1000_WRITE_FLUSH(hw);
3621 udelay(eeprom->delay_usec);
3622 } else if(eeprom->type == e1000_eeprom_spi) {
3623 /* Toggle CS to flush commands */
3624 eecd |= E1000_EECD_CS;
3625 E1000_WRITE_REG(hw, EECD, eecd);
3626 E1000_WRITE_FLUSH(hw);
3627 udelay(eeprom->delay_usec);
3628 eecd &= ~E1000_EECD_CS;
3629 E1000_WRITE_REG(hw, EECD, eecd);
3630 E1000_WRITE_FLUSH(hw);
3631 udelay(eeprom->delay_usec);
3632 }
3633 }
3634
3635 /******************************************************************************
3636 * Terminates a command by inverting the EEPROM's chip select pin
3637 *
3638 * hw - Struct containing variables accessed by shared code
3639 *****************************************************************************/
3640 static void
3641 e1000_release_eeprom(struct e1000_hw *hw)
3642 {
3643 uint32_t eecd;
3644
3645 DEBUGFUNC("e1000_release_eeprom");
3646
3647 eecd = E1000_READ_REG(hw, EECD);
3648
3649 if (hw->eeprom.type == e1000_eeprom_spi) {
3650 eecd |= E1000_EECD_CS; /* Pull CS high */
3651 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3652
3653 E1000_WRITE_REG(hw, EECD, eecd);
3654
3655 udelay(hw->eeprom.delay_usec);
3656 } else if(hw->eeprom.type == e1000_eeprom_microwire) {
3657 /* cleanup eeprom */
3658
3659 /* CS on Microwire is active-high */
3660 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3661
3662 E1000_WRITE_REG(hw, EECD, eecd);
3663
3664 /* Rising edge of clock */
3665 eecd |= E1000_EECD_SK;
3666 E1000_WRITE_REG(hw, EECD, eecd);
3667 E1000_WRITE_FLUSH(hw);
3668 udelay(hw->eeprom.delay_usec);
3669
3670 /* Falling edge of clock */
3671 eecd &= ~E1000_EECD_SK;
3672 E1000_WRITE_REG(hw, EECD, eecd);
3673 E1000_WRITE_FLUSH(hw);
3674 udelay(hw->eeprom.delay_usec);
3675 }
3676
3677 /* Stop requesting EEPROM access */
3678 if(hw->mac_type > e1000_82544) {
3679 eecd &= ~E1000_EECD_REQ;
3680 E1000_WRITE_REG(hw, EECD, eecd);
3681 }
3682
3683 e1000_put_hw_eeprom_semaphore(hw);
3684 }
3685
3686 /******************************************************************************
3687 * Reads a 16 bit word from the EEPROM.
3688 *
3689 * hw - Struct containing variables accessed by shared code
3690 *****************************************************************************/
3691 int32_t
3692 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3693 {
3694 uint16_t retry_count = 0;
3695 uint8_t spi_stat_reg;
3696
3697 DEBUGFUNC("e1000_spi_eeprom_ready");
3698
3699 /* Read "Status Register" repeatedly until the LSB is cleared. The
3700 * EEPROM will signal that the command has been completed by clearing
3701 * bit 0 of the internal status register. If it's not cleared within
3702 * 5 milliseconds, then error out.
3703 */
3704 retry_count = 0;
3705 do {
3706 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3707 hw->eeprom.opcode_bits);
3708 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
3709 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3710 break;
3711
3712 udelay(5);
3713 retry_count += 5;
3714
3715 e1000_standby_eeprom(hw);
3716 } while(retry_count < EEPROM_MAX_RETRY_SPI);
3717
3718 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3719 * only 0-5mSec on 5V devices)
3720 */
3721 if(retry_count >= EEPROM_MAX_RETRY_SPI) {
3722 DEBUGOUT("SPI EEPROM Status error\n");
3723 return -E1000_ERR_EEPROM;
3724 }
3725
3726 return E1000_SUCCESS;
3727 }
3728
3729 /******************************************************************************
3730 * Reads a 16 bit word from the EEPROM.
3731 *
3732 * hw - Struct containing variables accessed by shared code
3733 * offset - offset of word in the EEPROM to read
3734 * data - word read from the EEPROM
3735 * words - number of words to read
3736 *****************************************************************************/
3737 int32_t
3738 e1000_read_eeprom(struct e1000_hw *hw,
3739 uint16_t offset,
3740 uint16_t words,
3741 uint16_t *data)
3742 {
3743 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3744 uint32_t i = 0;
3745 int32_t ret_val;
3746
3747 DEBUGFUNC("e1000_read_eeprom");
3748
3749 /* A check for invalid values: offset too large, too many words, and not
3750 * enough words.
3751 */
3752 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
3753 (words == 0)) {
3754 DEBUGOUT("\"words\" parameter out of bounds\n");
3755 return -E1000_ERR_EEPROM;
3756 }
3757
3758 /* FLASH reads without acquiring the semaphore are safe in 82573-based
3759 * controllers.
3760 */
3761 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
3762 (hw->mac_type != e1000_82573)) {
3763 /* Prepare the EEPROM for reading */
3764 if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3765 return -E1000_ERR_EEPROM;
3766 }
3767
3768 if(eeprom->use_eerd == TRUE) {
3769 ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
3770 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
3771 (hw->mac_type != e1000_82573))
3772 e1000_release_eeprom(hw);
3773 return ret_val;
3774 }
3775
3776 if(eeprom->type == e1000_eeprom_spi) {
3777 uint16_t word_in;
3778 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
3779
3780 if(e1000_spi_eeprom_ready(hw)) {
3781 e1000_release_eeprom(hw);
3782 return -E1000_ERR_EEPROM;
3783 }
3784
3785 e1000_standby_eeprom(hw);
3786
3787 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
3788 if((eeprom->address_bits == 8) && (offset >= 128))
3789 read_opcode |= EEPROM_A8_OPCODE_SPI;
3790
3791 /* Send the READ command (opcode + addr) */
3792 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3793 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
3794
3795 /* Read the data. The address of the eeprom internally increments with
3796 * each byte (spi) being read, saving on the overhead of eeprom setup
3797 * and tear-down. The address counter will roll over if reading beyond
3798 * the size of the eeprom, thus allowing the entire memory to be read
3799 * starting from any offset. */
3800 for (i = 0; i < words; i++) {
3801 word_in = e1000_shift_in_ee_bits(hw, 16);
3802 data[i] = (word_in >> 8) | (word_in << 8);
3803 }
3804 } else if(eeprom->type == e1000_eeprom_microwire) {
3805 for (i = 0; i < words; i++) {
3806 /* Send the READ command (opcode + addr) */
3807 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
3808 eeprom->opcode_bits);
3809 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
3810 eeprom->address_bits);
3811
3812 /* Read the data. For microwire, each word requires the overhead
3813 * of eeprom setup and tear-down. */
3814 data[i] = e1000_shift_in_ee_bits(hw, 16);
3815 e1000_standby_eeprom(hw);
3816 }
3817 }
3818
3819 /* End this read operation */
3820 e1000_release_eeprom(hw);
3821
3822 return E1000_SUCCESS;
3823 }
3824
3825 /******************************************************************************
3826 * Reads a 16 bit word from the EEPROM using the EERD register.
3827 *
3828 * hw - Struct containing variables accessed by shared code
3829 * offset - offset of word in the EEPROM to read
3830 * data - word read from the EEPROM
3831 * words - number of words to read
3832 *****************************************************************************/
3833 int32_t
3834 e1000_read_eeprom_eerd(struct e1000_hw *hw,
3835 uint16_t offset,
3836 uint16_t words,
3837 uint16_t *data)
3838 {
3839 uint32_t i, eerd = 0;
3840 int32_t error = 0;
3841
3842 for (i = 0; i < words; i++) {
3843 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
3844 E1000_EEPROM_RW_REG_START;
3845
3846 E1000_WRITE_REG(hw, EERD, eerd);
3847 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
3848
3849 if(error) {
3850 break;
3851 }
3852 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
3853
3854 }
3855
3856 return error;
3857 }
3858
3859 /******************************************************************************
3860 * Writes a 16 bit word from the EEPROM using the EEWR register.
3861 *
3862 * hw - Struct containing variables accessed by shared code
3863 * offset - offset of word in the EEPROM to read
3864 * data - word read from the EEPROM
3865 * words - number of words to read
3866 *****************************************************************************/
3867 int32_t
3868 e1000_write_eeprom_eewr(struct e1000_hw *hw,
3869 uint16_t offset,
3870 uint16_t words,
3871 uint16_t *data)
3872 {
3873 uint32_t register_value = 0;
3874 uint32_t i = 0;
3875 int32_t error = 0;
3876
3877 for (i = 0; i < words; i++) {
3878 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
3879 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
3880 E1000_EEPROM_RW_REG_START;
3881
3882 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
3883 if(error) {
3884 break;
3885 }
3886
3887 E1000_WRITE_REG(hw, EEWR, register_value);
3888
3889 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
3890
3891 if(error) {
3892 break;
3893 }
3894 }
3895
3896 return error;
3897 }
3898
3899 /******************************************************************************
3900 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
3901 *
3902 * hw - Struct containing variables accessed by shared code
3903 *****************************************************************************/
3904 int32_t
3905 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
3906 {
3907 uint32_t attempts = 100000;
3908 uint32_t i, reg = 0;
3909 int32_t done = E1000_ERR_EEPROM;
3910
3911 for(i = 0; i < attempts; i++) {
3912 if(eerd == E1000_EEPROM_POLL_READ)
3913 reg = E1000_READ_REG(hw, EERD);
3914 else
3915 reg = E1000_READ_REG(hw, EEWR);
3916
3917 if(reg & E1000_EEPROM_RW_REG_DONE) {
3918 done = E1000_SUCCESS;
3919 break;
3920 }
3921 udelay(5);
3922 }
3923
3924 return done;
3925 }
3926
3927 /***************************************************************************
3928 * Description: Determines if the onboard NVM is FLASH or EEPROM.
3929 *
3930 * hw - Struct containing variables accessed by shared code
3931 ****************************************************************************/
3932 boolean_t
3933 e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
3934 {
3935 uint32_t eecd = 0;
3936
3937 if(hw->mac_type == e1000_82573) {
3938 eecd = E1000_READ_REG(hw, EECD);
3939
3940 /* Isolate bits 15 & 16 */
3941 eecd = ((eecd >> 15) & 0x03);
3942
3943 /* If both bits are set, device is Flash type */
3944 if(eecd == 0x03) {
3945 return FALSE;
3946 }
3947 }
3948 return TRUE;
3949 }
3950
3951 /******************************************************************************
3952 * Verifies that the EEPROM has a valid checksum
3953 *
3954 * hw - Struct containing variables accessed by shared code
3955 *
3956 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3957 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3958 * valid.
3959 *****************************************************************************/
3960 int32_t
3961 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3962 {
3963 uint16_t checksum = 0;
3964 uint16_t i, eeprom_data;
3965
3966 DEBUGFUNC("e1000_validate_eeprom_checksum");
3967
3968 if ((hw->mac_type == e1000_82573) &&
3969 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
3970 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
3971 * 10h-12h. Checksum may need to be fixed. */
3972 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
3973 if ((eeprom_data & 0x10) == 0) {
3974 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
3975 * has already been fixed. If the checksum is still wrong and this
3976 * bit is a 1, we need to return bad checksum. Otherwise, we need
3977 * to set this bit to a 1 and update the checksum. */
3978 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
3979 if ((eeprom_data & 0x8000) == 0) {
3980 eeprom_data |= 0x8000;
3981 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
3982 e1000_update_eeprom_checksum(hw);
3983 }
3984 }
3985 }
3986
3987 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3988 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3989 DEBUGOUT("EEPROM Read Error\n");
3990 return -E1000_ERR_EEPROM;
3991 }
3992 checksum += eeprom_data;
3993 }
3994
3995 if(checksum == (uint16_t) EEPROM_SUM)
3996 return E1000_SUCCESS;
3997 else {
3998 DEBUGOUT("EEPROM Checksum Invalid\n");
3999 return -E1000_ERR_EEPROM;
4000 }
4001 }
4002
4003 /******************************************************************************
4004 * Calculates the EEPROM checksum and writes it to the EEPROM
4005 *
4006 * hw - Struct containing variables accessed by shared code
4007 *
4008 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4009 * Writes the difference to word offset 63 of the EEPROM.
4010 *****************************************************************************/
4011 int32_t
4012 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4013 {
4014 uint16_t checksum = 0;
4015 uint16_t i, eeprom_data;
4016
4017 DEBUGFUNC("e1000_update_eeprom_checksum");
4018
4019 for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4020 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4021 DEBUGOUT("EEPROM Read Error\n");
4022 return -E1000_ERR_EEPROM;
4023 }
4024 checksum += eeprom_data;
4025 }
4026 checksum = (uint16_t) EEPROM_SUM - checksum;
4027 if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4028 DEBUGOUT("EEPROM Write Error\n");
4029 return -E1000_ERR_EEPROM;
4030 } else if (hw->eeprom.type == e1000_eeprom_flash) {
4031 e1000_commit_shadow_ram(hw);
4032 }
4033 return E1000_SUCCESS;
4034 }
4035
4036 /******************************************************************************
4037 * Parent function for writing words to the different EEPROM types.
4038 *
4039 * hw - Struct containing variables accessed by shared code
4040 * offset - offset within the EEPROM to be written to
4041 * words - number of words to write
4042 * data - 16 bit word to be written to the EEPROM
4043 *
4044 * If e1000_update_eeprom_checksum is not called after this function, the
4045 * EEPROM will most likely contain an invalid checksum.
4046 *****************************************************************************/
4047 int32_t
4048 e1000_write_eeprom(struct e1000_hw *hw,
4049 uint16_t offset,
4050 uint16_t words,
4051 uint16_t *data)
4052 {
4053 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4054 int32_t status = 0;
4055
4056 DEBUGFUNC("e1000_write_eeprom");
4057
4058 /* A check for invalid values: offset too large, too many words, and not
4059 * enough words.
4060 */
4061 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4062 (words == 0)) {
4063 DEBUGOUT("\"words\" parameter out of bounds\n");
4064 return -E1000_ERR_EEPROM;
4065 }
4066
4067 /* 82573 reads only through eerd */
4068 if(eeprom->use_eewr == TRUE)
4069 return e1000_write_eeprom_eewr(hw, offset, words, data);
4070
4071 /* Prepare the EEPROM for writing */
4072 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4073 return -E1000_ERR_EEPROM;
4074
4075 if(eeprom->type == e1000_eeprom_microwire) {
4076 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4077 } else {
4078 status = e1000_write_eeprom_spi(hw, offset, words, data);
4079 msec_delay(10);
4080 }
4081
4082 /* Done with writing */
4083 e1000_release_eeprom(hw);
4084
4085 return status;
4086 }
4087
4088 /******************************************************************************
4089 * Writes a 16 bit word to a given offset in an SPI EEPROM.
4090 *
4091 * hw - Struct containing variables accessed by shared code
4092 * offset - offset within the EEPROM to be written to
4093 * words - number of words to write
4094 * data - pointer to array of 8 bit words to be written to the EEPROM
4095 *
4096 *****************************************************************************/
4097 int32_t
4098 e1000_write_eeprom_spi(struct e1000_hw *hw,
4099 uint16_t offset,
4100 uint16_t words,
4101 uint16_t *data)
4102 {
4103 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4104 uint16_t widx = 0;
4105
4106 DEBUGFUNC("e1000_write_eeprom_spi");
4107
4108 while (widx < words) {
4109 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
4110
4111 if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
4112
4113 e1000_standby_eeprom(hw);
4114
4115 /* Send the WRITE ENABLE command (8 bit opcode ) */
4116 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4117 eeprom->opcode_bits);
4118
4119 e1000_standby_eeprom(hw);
4120
4121 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4122 if((eeprom->address_bits == 8) && (offset >= 128))
4123 write_opcode |= EEPROM_A8_OPCODE_SPI;
4124
4125 /* Send the Write command (8-bit opcode + addr) */
4126 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4127
4128 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
4129 eeprom->address_bits);
4130
4131 /* Send the data */
4132
4133 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
4134 while (widx < words) {
4135 uint16_t word_out = data[widx];
4136 word_out = (word_out >> 8) | (word_out << 8);
4137 e1000_shift_out_ee_bits(hw, word_out, 16);
4138 widx++;
4139
4140 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4141 * operation, while the smaller eeproms are capable of an 8-byte
4142 * PAGE WRITE operation. Break the inner loop to pass new address
4143 */
4144 if((((offset + widx)*2) % eeprom->page_size) == 0) {
4145 e1000_standby_eeprom(hw);
4146 break;
4147 }
4148 }
4149 }
4150
4151 return E1000_SUCCESS;
4152 }
4153
4154 /******************************************************************************
4155 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
4156 *
4157 * hw - Struct containing variables accessed by shared code
4158 * offset - offset within the EEPROM to be written to
4159 * words - number of words to write
4160 * data - pointer to array of 16 bit words to be written to the EEPROM
4161 *
4162 *****************************************************************************/
4163 int32_t
4164 e1000_write_eeprom_microwire(struct e1000_hw *hw,
4165 uint16_t offset,
4166 uint16_t words,
4167 uint16_t *data)
4168 {
4169 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4170 uint32_t eecd;
4171 uint16_t words_written = 0;
4172 uint16_t i = 0;
4173
4174 DEBUGFUNC("e1000_write_eeprom_microwire");
4175
4176 /* Send the write enable command to the EEPROM (3-bit opcode plus
4177 * 6/8-bit dummy address beginning with 11). It's less work to include
4178 * the 11 of the dummy address as part of the opcode than it is to shift
4179 * it over the correct number of bits for the address. This puts the
4180 * EEPROM into write/erase mode.
4181 */
4182 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4183 (uint16_t)(eeprom->opcode_bits + 2));
4184
4185 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
4186
4187 /* Prepare the EEPROM */
4188 e1000_standby_eeprom(hw);
4189
4190 while (words_written < words) {
4191 /* Send the Write command (3-bit opcode + addr) */
4192 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4193 eeprom->opcode_bits);
4194
4195 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
4196 eeprom->address_bits);
4197
4198 /* Send the data */
4199 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4200
4201 /* Toggle the CS line. This in effect tells the EEPROM to execute
4202 * the previous command.
4203 */
4204 e1000_standby_eeprom(hw);
4205
4206 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
4207 * signal that the command has been completed by raising the DO signal.
4208 * If DO does not go high in 10 milliseconds, then error out.
4209 */
4210 for(i = 0; i < 200; i++) {
4211 eecd = E1000_READ_REG(hw, EECD);
4212 if(eecd & E1000_EECD_DO) break;
4213 udelay(50);
4214 }
4215 if(i == 200) {
4216 DEBUGOUT("EEPROM Write did not complete\n");
4217 return -E1000_ERR_EEPROM;
4218 }
4219
4220 /* Recover from write */
4221 e1000_standby_eeprom(hw);
4222
4223 words_written++;
4224 }
4225
4226 /* Send the write disable command to the EEPROM (3-bit opcode plus
4227 * 6/8-bit dummy address beginning with 10). It's less work to include
4228 * the 10 of the dummy address as part of the opcode than it is to shift
4229 * it over the correct number of bits for the address. This takes the
4230 * EEPROM out of write/erase mode.
4231 */
4232 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4233 (uint16_t)(eeprom->opcode_bits + 2));
4234
4235 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
4236
4237 return E1000_SUCCESS;
4238 }
4239
4240 /******************************************************************************
4241 * Flushes the cached eeprom to NVM. This is done by saving the modified values
4242 * in the eeprom cache and the non modified values in the currently active bank
4243 * to the new bank.
4244 *
4245 * hw - Struct containing variables accessed by shared code
4246 * offset - offset of word in the EEPROM to read
4247 * data - word read from the EEPROM
4248 * words - number of words to read
4249 *****************************************************************************/
4250 int32_t
4251 e1000_commit_shadow_ram(struct e1000_hw *hw)
4252 {
4253 uint32_t attempts = 100000;
4254 uint32_t eecd = 0;
4255 uint32_t flop = 0;
4256 uint32_t i = 0;
4257 int32_t error = E1000_SUCCESS;
4258
4259 /* The flop register will be used to determine if flash type is STM */
4260 flop = E1000_READ_REG(hw, FLOP);
4261
4262 if (hw->mac_type == e1000_82573) {
4263 for (i=0; i < attempts; i++) {
4264 eecd = E1000_READ_REG(hw, EECD);
4265 if ((eecd & E1000_EECD_FLUPD) == 0) {
4266 break;
4267 }
4268 udelay(5);
4269 }
4270
4271 if (i == attempts) {
4272 return -E1000_ERR_EEPROM;
4273 }
4274
4275 /* If STM opcode located in bits 15:8 of flop, reset firmware */
4276 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
4277 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
4278 }
4279
4280 /* Perform the flash update */
4281 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
4282
4283 for (i=0; i < attempts; i++) {
4284 eecd = E1000_READ_REG(hw, EECD);
4285 if ((eecd & E1000_EECD_FLUPD) == 0) {
4286 break;
4287 }
4288 udelay(5);
4289 }
4290
4291 if (i == attempts) {
4292 return -E1000_ERR_EEPROM;
4293 }
4294 }
4295
4296 return error;
4297 }
4298
4299 /******************************************************************************
4300 * Reads the adapter's part number from the EEPROM
4301 *
4302 * hw - Struct containing variables accessed by shared code
4303 * part_num - Adapter's part number
4304 *****************************************************************************/
4305 int32_t
4306 e1000_read_part_num(struct e1000_hw *hw,
4307 uint32_t *part_num)
4308 {
4309 uint16_t offset = EEPROM_PBA_BYTE_1;
4310 uint16_t eeprom_data;
4311
4312 DEBUGFUNC("e1000_read_part_num");
4313
4314 /* Get word 0 from EEPROM */
4315 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4316 DEBUGOUT("EEPROM Read Error\n");
4317 return -E1000_ERR_EEPROM;
4318 }
4319 /* Save word 0 in upper half of part_num */
4320 *part_num = (uint32_t) (eeprom_data << 16);
4321
4322 /* Get word 1 from EEPROM */
4323 if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
4324 DEBUGOUT("EEPROM Read Error\n");
4325 return -E1000_ERR_EEPROM;
4326 }
4327 /* Save word 1 in lower half of part_num */
4328 *part_num |= eeprom_data;
4329
4330 return E1000_SUCCESS;
4331 }
4332
4333 /******************************************************************************
4334 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4335 * second function of dual function devices
4336 *
4337 * hw - Struct containing variables accessed by shared code
4338 *****************************************************************************/
4339 int32_t
4340 e1000_read_mac_addr(struct e1000_hw * hw)
4341 {
4342 uint16_t offset;
4343 uint16_t eeprom_data, i;
4344
4345 DEBUGFUNC("e1000_read_mac_addr");
4346
4347 for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4348 offset = i >> 1;
4349 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4350 DEBUGOUT("EEPROM Read Error\n");
4351 return -E1000_ERR_EEPROM;
4352 }
4353 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
4354 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
4355 }
4356 if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) &&
4357 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
4358 hw->perm_mac_addr[5] ^= 0x01;
4359
4360 for(i = 0; i < NODE_ADDRESS_SIZE; i++)
4361 hw->mac_addr[i] = hw->perm_mac_addr[i];
4362 return E1000_SUCCESS;
4363 }
4364
4365 /******************************************************************************
4366 * Initializes receive address filters.
4367 *
4368 * hw - Struct containing variables accessed by shared code
4369 *
4370 * Places the MAC address in receive address register 0 and clears the rest
4371 * of the receive addresss registers. Clears the multicast table. Assumes
4372 * the receiver is in reset when the routine is called.
4373 *****************************************************************************/
4374 void
4375 e1000_init_rx_addrs(struct e1000_hw *hw)
4376 {
4377 uint32_t i;
4378 uint32_t rar_num;
4379
4380 DEBUGFUNC("e1000_init_rx_addrs");
4381
4382 /* Setup the receive address. */
4383 DEBUGOUT("Programming MAC Address into RAR[0]\n");
4384
4385 e1000_rar_set(hw, hw->mac_addr, 0);
4386
4387 rar_num = E1000_RAR_ENTRIES;
4388 /* Zero out the other 15 receive addresses. */
4389 DEBUGOUT("Clearing RAR[1-15]\n");
4390 for(i = 1; i < rar_num; i++) {
4391 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4392 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4393 }
4394 }
4395
4396 /******************************************************************************
4397 * Updates the MAC's list of multicast addresses.
4398 *
4399 * hw - Struct containing variables accessed by shared code
4400 * mc_addr_list - the list of new multicast addresses
4401 * mc_addr_count - number of addresses
4402 * pad - number of bytes between addresses in the list
4403 * rar_used_count - offset where to start adding mc addresses into the RAR's
4404 *
4405 * The given list replaces any existing list. Clears the last 15 receive
4406 * address registers and the multicast table. Uses receive address registers
4407 * for the first 15 multicast addresses, and hashes the rest into the
4408 * multicast table.
4409 *****************************************************************************/
4410 void
4411 e1000_mc_addr_list_update(struct e1000_hw *hw,
4412 uint8_t *mc_addr_list,
4413 uint32_t mc_addr_count,
4414 uint32_t pad,
4415 uint32_t rar_used_count)
4416 {
4417 uint32_t hash_value;
4418 uint32_t i;
4419 uint32_t num_rar_entry;
4420 uint32_t num_mta_entry;
4421
4422 DEBUGFUNC("e1000_mc_addr_list_update");
4423
4424 /* Set the new number of MC addresses that we are being requested to use. */
4425 hw->num_mc_addrs = mc_addr_count;
4426
4427 /* Clear RAR[1-15] */
4428 DEBUGOUT(" Clearing RAR[1-15]\n");
4429 num_rar_entry = E1000_RAR_ENTRIES;
4430 for(i = rar_used_count; i < num_rar_entry; i++) {
4431 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4432 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4433 }
4434
4435 /* Clear the MTA */
4436 DEBUGOUT(" Clearing MTA\n");
4437 num_mta_entry = E1000_NUM_MTA_REGISTERS;
4438 for(i = 0; i < num_mta_entry; i++) {
4439 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
4440 }
4441
4442 /* Add the new addresses */
4443 for(i = 0; i < mc_addr_count; i++) {
4444 DEBUGOUT(" Adding the multicast addresses:\n");
4445 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
4446 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
4447 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
4448 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
4449 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
4450 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
4451 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
4452
4453 hash_value = e1000_hash_mc_addr(hw,
4454 mc_addr_list +
4455 (i * (ETH_LENGTH_OF_ADDRESS + pad)));
4456
4457 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
4458
4459 /* Place this multicast address in the RAR if there is room, *
4460 * else put it in the MTA
4461 */
4462 if (rar_used_count < num_rar_entry) {
4463 e1000_rar_set(hw,
4464 mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
4465 rar_used_count);
4466 rar_used_count++;
4467 } else {
4468 e1000_mta_set(hw, hash_value);
4469 }
4470 }
4471 DEBUGOUT("MC Update Complete\n");
4472 }
4473
4474 /******************************************************************************
4475 * Hashes an address to determine its location in the multicast table
4476 *
4477 * hw - Struct containing variables accessed by shared code
4478 * mc_addr - the multicast address to hash
4479 *****************************************************************************/
4480 uint32_t
4481 e1000_hash_mc_addr(struct e1000_hw *hw,
4482 uint8_t *mc_addr)
4483 {
4484 uint32_t hash_value = 0;
4485
4486 /* The portion of the address that is used for the hash table is
4487 * determined by the mc_filter_type setting.
4488 */
4489 switch (hw->mc_filter_type) {
4490 /* [0] [1] [2] [3] [4] [5]
4491 * 01 AA 00 12 34 56
4492 * LSB MSB
4493 */
4494 case 0:
4495 /* [47:36] i.e. 0x563 for above example address */
4496 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
4497 break;
4498 case 1:
4499 /* [46:35] i.e. 0xAC6 for above example address */
4500 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
4501 break;
4502 case 2:
4503 /* [45:34] i.e. 0x5D8 for above example address */
4504 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
4505 break;
4506 case 3:
4507 /* [43:32] i.e. 0x634 for above example address */
4508 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
4509 break;
4510 }
4511
4512 hash_value &= 0xFFF;
4513
4514 return hash_value;
4515 }
4516
4517 /******************************************************************************
4518 * Sets the bit in the multicast table corresponding to the hash value.
4519 *
4520 * hw - Struct containing variables accessed by shared code
4521 * hash_value - Multicast address hash value
4522 *****************************************************************************/
4523 void
4524 e1000_mta_set(struct e1000_hw *hw,
4525 uint32_t hash_value)
4526 {
4527 uint32_t hash_bit, hash_reg;
4528 uint32_t mta;
4529 uint32_t temp;
4530
4531 /* The MTA is a register array of 128 32-bit registers.
4532 * It is treated like an array of 4096 bits. We want to set
4533 * bit BitArray[hash_value]. So we figure out what register
4534 * the bit is in, read it, OR in the new bit, then write
4535 * back the new value. The register is determined by the
4536 * upper 7 bits of the hash value and the bit within that
4537 * register are determined by the lower 5 bits of the value.
4538 */
4539 hash_reg = (hash_value >> 5) & 0x7F;
4540 hash_bit = hash_value & 0x1F;
4541
4542 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
4543
4544 mta |= (1 << hash_bit);
4545
4546 /* If we are on an 82544 and we are trying to write an odd offset
4547 * in the MTA, save off the previous entry before writing and
4548 * restore the old value after writing.
4549 */
4550 if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
4551 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
4552 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
4553 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
4554 } else {
4555 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
4556 }
4557 }
4558
4559 /******************************************************************************
4560 * Puts an ethernet address into a receive address register.
4561 *
4562 * hw - Struct containing variables accessed by shared code
4563 * addr - Address to put into receive address register
4564 * index - Receive address register to write
4565 *****************************************************************************/
4566 void
4567 e1000_rar_set(struct e1000_hw *hw,
4568 uint8_t *addr,
4569 uint32_t index)
4570 {
4571 uint32_t rar_low, rar_high;
4572
4573 /* HW expects these in little endian so we reverse the byte order
4574 * from network order (big endian) to little endian
4575 */
4576 rar_low = ((uint32_t) addr[0] |
4577 ((uint32_t) addr[1] << 8) |
4578 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
4579
4580 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
4581
4582 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4583 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4584 }
4585
4586 /******************************************************************************
4587 * Writes a value to the specified offset in the VLAN filter table.
4588 *
4589 * hw - Struct containing variables accessed by shared code
4590 * offset - Offset in VLAN filer table to write
4591 * value - Value to write into VLAN filter table
4592 *****************************************************************************/
4593 void
4594 e1000_write_vfta(struct e1000_hw *hw,
4595 uint32_t offset,
4596 uint32_t value)
4597 {
4598 uint32_t temp;
4599
4600 if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4601 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4602 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4603 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4604 } else {
4605 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4606 }
4607 }
4608
4609 /******************************************************************************
4610 * Clears the VLAN filer table
4611 *
4612 * hw - Struct containing variables accessed by shared code
4613 *****************************************************************************/
4614 void
4615 e1000_clear_vfta(struct e1000_hw *hw)
4616 {
4617 uint32_t offset;
4618 uint32_t vfta_value = 0;
4619 uint32_t vfta_offset = 0;
4620 uint32_t vfta_bit_in_reg = 0;
4621
4622 if (hw->mac_type == e1000_82573) {
4623 if (hw->mng_cookie.vlan_id != 0) {
4624 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
4625 * ID. The following operations determine which 32b entry
4626 * (i.e. offset) into the array we want to set the VLAN ID
4627 * (i.e. bit) of the manageability unit. */
4628 vfta_offset = (hw->mng_cookie.vlan_id >>
4629 E1000_VFTA_ENTRY_SHIFT) &
4630 E1000_VFTA_ENTRY_MASK;
4631 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
4632 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
4633 }
4634 }
4635 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4636 /* If the offset we want to clear is the same offset of the
4637 * manageability VLAN ID, then clear all bits except that of the
4638 * manageability unit */
4639 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4640 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4641 }
4642 }
4643
4644 int32_t
4645 e1000_id_led_init(struct e1000_hw * hw)
4646 {
4647 uint32_t ledctl;
4648 const uint32_t ledctl_mask = 0x000000FF;
4649 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4650 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4651 uint16_t eeprom_data, i, temp;
4652 const uint16_t led_mask = 0x0F;
4653
4654 DEBUGFUNC("e1000_id_led_init");
4655
4656 if(hw->mac_type < e1000_82540) {
4657 /* Nothing to do */
4658 return E1000_SUCCESS;
4659 }
4660
4661 ledctl = E1000_READ_REG(hw, LEDCTL);
4662 hw->ledctl_default = ledctl;
4663 hw->ledctl_mode1 = hw->ledctl_default;
4664 hw->ledctl_mode2 = hw->ledctl_default;
4665
4666 if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4667 DEBUGOUT("EEPROM Read Error\n");
4668 return -E1000_ERR_EEPROM;
4669 }
4670 if((eeprom_data== ID_LED_RESERVED_0000) ||
4671 (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
4672 for(i = 0; i < 4; i++) {
4673 temp = (eeprom_data >> (i << 2)) & led_mask;
4674 switch(temp) {
4675 case ID_LED_ON1_DEF2:
4676 case ID_LED_ON1_ON2:
4677 case ID_LED_ON1_OFF2:
4678 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4679 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4680 break;
4681 case ID_LED_OFF1_DEF2:
4682 case ID_LED_OFF1_ON2:
4683 case ID_LED_OFF1_OFF2:
4684 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4685 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4686 break;
4687 default:
4688 /* Do nothing */
4689 break;
4690 }
4691 switch(temp) {
4692 case ID_LED_DEF1_ON2:
4693 case ID_LED_ON1_ON2:
4694 case ID_LED_OFF1_ON2:
4695 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4696 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4697 break;
4698 case ID_LED_DEF1_OFF2:
4699 case ID_LED_ON1_OFF2:
4700 case ID_LED_OFF1_OFF2:
4701 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4702 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4703 break;
4704 default:
4705 /* Do nothing */
4706 break;
4707 }
4708 }
4709 return E1000_SUCCESS;
4710 }
4711
4712 /******************************************************************************
4713 * Prepares SW controlable LED for use and saves the current state of the LED.
4714 *
4715 * hw - Struct containing variables accessed by shared code
4716 *****************************************************************************/
4717 int32_t
4718 e1000_setup_led(struct e1000_hw *hw)
4719 {
4720 uint32_t ledctl;
4721 int32_t ret_val = E1000_SUCCESS;
4722
4723 DEBUGFUNC("e1000_setup_led");
4724
4725 switch(hw->mac_type) {
4726 case e1000_82542_rev2_0:
4727 case e1000_82542_rev2_1:
4728 case e1000_82543:
4729 case e1000_82544:
4730 /* No setup necessary */
4731 break;
4732 case e1000_82541:
4733 case e1000_82547:
4734 case e1000_82541_rev_2:
4735 case e1000_82547_rev_2:
4736 /* Turn off PHY Smart Power Down (if enabled) */
4737 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4738 &hw->phy_spd_default);
4739 if(ret_val)
4740 return ret_val;
4741 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4742 (uint16_t)(hw->phy_spd_default &
4743 ~IGP01E1000_GMII_SPD));
4744 if(ret_val)
4745 return ret_val;
4746 /* Fall Through */
4747 default:
4748 if(hw->media_type == e1000_media_type_fiber) {
4749 ledctl = E1000_READ_REG(hw, LEDCTL);
4750 /* Save current LEDCTL settings */
4751 hw->ledctl_default = ledctl;
4752 /* Turn off LED0 */
4753 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4754 E1000_LEDCTL_LED0_BLINK |
4755 E1000_LEDCTL_LED0_MODE_MASK);
4756 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4757 E1000_LEDCTL_LED0_MODE_SHIFT);
4758 E1000_WRITE_REG(hw, LEDCTL, ledctl);
4759 } else if(hw->media_type == e1000_media_type_copper)
4760 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
4761 break;
4762 }
4763
4764 return E1000_SUCCESS;
4765 }
4766
4767 /******************************************************************************
4768 * Restores the saved state of the SW controlable LED.
4769 *
4770 * hw - Struct containing variables accessed by shared code
4771 *****************************************************************************/
4772 int32_t
4773 e1000_cleanup_led(struct e1000_hw *hw)
4774 {
4775 int32_t ret_val = E1000_SUCCESS;
4776
4777 DEBUGFUNC("e1000_cleanup_led");
4778
4779 switch(hw->mac_type) {
4780 case e1000_82542_rev2_0:
4781 case e1000_82542_rev2_1:
4782 case e1000_82543:
4783 case e1000_82544:
4784 /* No cleanup necessary */
4785 break;
4786 case e1000_82541:
4787 case e1000_82547:
4788 case e1000_82541_rev_2:
4789 case e1000_82547_rev_2:
4790 /* Turn on PHY Smart Power Down (if previously enabled) */
4791 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4792 hw->phy_spd_default);
4793 if(ret_val)
4794 return ret_val;
4795 /* Fall Through */
4796 default:
4797 /* Restore LEDCTL settings */
4798 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
4799 break;
4800 }
4801
4802 return E1000_SUCCESS;
4803 }
4804
4805 /******************************************************************************
4806 * Turns on the software controllable LED
4807 *
4808 * hw - Struct containing variables accessed by shared code
4809 *****************************************************************************/
4810 int32_t
4811 e1000_led_on(struct e1000_hw *hw)
4812 {
4813 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
4814
4815 DEBUGFUNC("e1000_led_on");
4816
4817 switch(hw->mac_type) {
4818 case e1000_82542_rev2_0:
4819 case e1000_82542_rev2_1:
4820 case e1000_82543:
4821 /* Set SW Defineable Pin 0 to turn on the LED */
4822 ctrl |= E1000_CTRL_SWDPIN0;
4823 ctrl |= E1000_CTRL_SWDPIO0;
4824 break;
4825 case e1000_82544:
4826 if(hw->media_type == e1000_media_type_fiber) {
4827 /* Set SW Defineable Pin 0 to turn on the LED */
4828 ctrl |= E1000_CTRL_SWDPIN0;
4829 ctrl |= E1000_CTRL_SWDPIO0;
4830 } else {
4831 /* Clear SW Defineable Pin 0 to turn on the LED */
4832 ctrl &= ~E1000_CTRL_SWDPIN0;
4833 ctrl |= E1000_CTRL_SWDPIO0;
4834 }
4835 break;
4836 default:
4837 if(hw->media_type == e1000_media_type_fiber) {
4838 /* Clear SW Defineable Pin 0 to turn on the LED */
4839 ctrl &= ~E1000_CTRL_SWDPIN0;
4840 ctrl |= E1000_CTRL_SWDPIO0;
4841 } else if(hw->media_type == e1000_media_type_copper) {
4842 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
4843 return E1000_SUCCESS;
4844 }
4845 break;
4846 }
4847
4848 E1000_WRITE_REG(hw, CTRL, ctrl);
4849
4850 return E1000_SUCCESS;
4851 }
4852
4853 /******************************************************************************
4854 * Turns off the software controllable LED
4855 *
4856 * hw - Struct containing variables accessed by shared code
4857 *****************************************************************************/
4858 int32_t
4859 e1000_led_off(struct e1000_hw *hw)
4860 {
4861 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
4862
4863 DEBUGFUNC("e1000_led_off");
4864
4865 switch(hw->mac_type) {
4866 case e1000_82542_rev2_0:
4867 case e1000_82542_rev2_1:
4868 case e1000_82543:
4869 /* Clear SW Defineable Pin 0 to turn off the LED */
4870 ctrl &= ~E1000_CTRL_SWDPIN0;
4871 ctrl |= E1000_CTRL_SWDPIO0;
4872 break;
4873 case e1000_82544:
4874 if(hw->media_type == e1000_media_type_fiber) {
4875 /* Clear SW Defineable Pin 0 to turn off the LED */
4876 ctrl &= ~E1000_CTRL_SWDPIN0;
4877 ctrl |= E1000_CTRL_SWDPIO0;
4878 } else {
4879 /* Set SW Defineable Pin 0 to turn off the LED */
4880 ctrl |= E1000_CTRL_SWDPIN0;
4881 ctrl |= E1000_CTRL_SWDPIO0;
4882 }
4883 break;
4884 default:
4885 if(hw->media_type == e1000_media_type_fiber) {
4886 /* Set SW Defineable Pin 0 to turn off the LED */
4887 ctrl |= E1000_CTRL_SWDPIN0;
4888 ctrl |= E1000_CTRL_SWDPIO0;
4889 } else if(hw->media_type == e1000_media_type_copper) {
4890 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
4891 return E1000_SUCCESS;
4892 }
4893 break;
4894 }
4895
4896 E1000_WRITE_REG(hw, CTRL, ctrl);
4897
4898 return E1000_SUCCESS;
4899 }
4900
4901 /******************************************************************************
4902 * Clears all hardware statistics counters.
4903 *
4904 * hw - Struct containing variables accessed by shared code
4905 *****************************************************************************/
4906 void
4907 e1000_clear_hw_cntrs(struct e1000_hw *hw)
4908 {
4909 volatile uint32_t temp;
4910
4911 temp = E1000_READ_REG(hw, CRCERRS);
4912 temp = E1000_READ_REG(hw, SYMERRS);
4913 temp = E1000_READ_REG(hw, MPC);
4914 temp = E1000_READ_REG(hw, SCC);
4915 temp = E1000_READ_REG(hw, ECOL);
4916 temp = E1000_READ_REG(hw, MCC);
4917 temp = E1000_READ_REG(hw, LATECOL);
4918 temp = E1000_READ_REG(hw, COLC);
4919 temp = E1000_READ_REG(hw, DC);
4920 temp = E1000_READ_REG(hw, SEC);
4921 temp = E1000_READ_REG(hw, RLEC);
4922 temp = E1000_READ_REG(hw, XONRXC);
4923 temp = E1000_READ_REG(hw, XONTXC);
4924 temp = E1000_READ_REG(hw, XOFFRXC);
4925 temp = E1000_READ_REG(hw, XOFFTXC);
4926 temp = E1000_READ_REG(hw, FCRUC);
4927 temp = E1000_READ_REG(hw, PRC64);
4928 temp = E1000_READ_REG(hw, PRC127);
4929 temp = E1000_READ_REG(hw, PRC255);
4930 temp = E1000_READ_REG(hw, PRC511);
4931 temp = E1000_READ_REG(hw, PRC1023);
4932 temp = E1000_READ_REG(hw, PRC1522);
4933 temp = E1000_READ_REG(hw, GPRC);
4934 temp = E1000_READ_REG(hw, BPRC);
4935 temp = E1000_READ_REG(hw, MPRC);
4936 temp = E1000_READ_REG(hw, GPTC);
4937 temp = E1000_READ_REG(hw, GORCL);
4938 temp = E1000_READ_REG(hw, GORCH);
4939 temp = E1000_READ_REG(hw, GOTCL);
4940 temp = E1000_READ_REG(hw, GOTCH);
4941 temp = E1000_READ_REG(hw, RNBC);
4942 temp = E1000_READ_REG(hw, RUC);
4943 temp = E1000_READ_REG(hw, RFC);
4944 temp = E1000_READ_REG(hw, ROC);
4945 temp = E1000_READ_REG(hw, RJC);
4946 temp = E1000_READ_REG(hw, TORL);
4947 temp = E1000_READ_REG(hw, TORH);
4948 temp = E1000_READ_REG(hw, TOTL);
4949 temp = E1000_READ_REG(hw, TOTH);
4950 temp = E1000_READ_REG(hw, TPR);
4951 temp = E1000_READ_REG(hw, TPT);
4952 temp = E1000_READ_REG(hw, PTC64);
4953 temp = E1000_READ_REG(hw, PTC127);
4954 temp = E1000_READ_REG(hw, PTC255);
4955 temp = E1000_READ_REG(hw, PTC511);
4956 temp = E1000_READ_REG(hw, PTC1023);
4957 temp = E1000_READ_REG(hw, PTC1522);
4958 temp = E1000_READ_REG(hw, MPTC);
4959 temp = E1000_READ_REG(hw, BPTC);
4960
4961 if(hw->mac_type < e1000_82543) return;
4962
4963 temp = E1000_READ_REG(hw, ALGNERRC);
4964 temp = E1000_READ_REG(hw, RXERRC);
4965 temp = E1000_READ_REG(hw, TNCRS);
4966 temp = E1000_READ_REG(hw, CEXTERR);
4967 temp = E1000_READ_REG(hw, TSCTC);
4968 temp = E1000_READ_REG(hw, TSCTFC);
4969
4970 if(hw->mac_type <= e1000_82544) return;
4971
4972 temp = E1000_READ_REG(hw, MGTPRC);
4973 temp = E1000_READ_REG(hw, MGTPDC);
4974 temp = E1000_READ_REG(hw, MGTPTC);
4975
4976 if(hw->mac_type <= e1000_82547_rev_2) return;
4977
4978 temp = E1000_READ_REG(hw, IAC);
4979 temp = E1000_READ_REG(hw, ICRXOC);
4980 temp = E1000_READ_REG(hw, ICRXPTC);
4981 temp = E1000_READ_REG(hw, ICRXATC);
4982 temp = E1000_READ_REG(hw, ICTXPTC);
4983 temp = E1000_READ_REG(hw, ICTXATC);
4984 temp = E1000_READ_REG(hw, ICTXQEC);
4985 temp = E1000_READ_REG(hw, ICTXQMTC);
4986 temp = E1000_READ_REG(hw, ICRXDMTC);
4987
4988 }
4989
4990 /******************************************************************************
4991 * Resets Adaptive IFS to its default state.
4992 *
4993 * hw - Struct containing variables accessed by shared code
4994 *
4995 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4996 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
4997 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4998 * before calling this function.
4999 *****************************************************************************/
5000 void
5001 e1000_reset_adaptive(struct e1000_hw *hw)
5002 {
5003 DEBUGFUNC("e1000_reset_adaptive");
5004
5005 if(hw->adaptive_ifs) {
5006 if(!hw->ifs_params_forced) {
5007 hw->current_ifs_val = 0;
5008 hw->ifs_min_val = IFS_MIN;
5009 hw->ifs_max_val = IFS_MAX;
5010 hw->ifs_step_size = IFS_STEP;
5011 hw->ifs_ratio = IFS_RATIO;
5012 }
5013 hw->in_ifs_mode = FALSE;
5014 E1000_WRITE_REG(hw, AIT, 0);
5015 } else {
5016 DEBUGOUT("Not in Adaptive IFS mode!\n");
5017 }
5018 }
5019
5020 /******************************************************************************
5021 * Called during the callback/watchdog routine to update IFS value based on
5022 * the ratio of transmits to collisions.
5023 *
5024 * hw - Struct containing variables accessed by shared code
5025 * tx_packets - Number of transmits since last callback
5026 * total_collisions - Number of collisions since last callback
5027 *****************************************************************************/
5028 void
5029 e1000_update_adaptive(struct e1000_hw *hw)
5030 {
5031 DEBUGFUNC("e1000_update_adaptive");
5032
5033 if(hw->adaptive_ifs) {
5034 if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
5035 if(hw->tx_packet_delta > MIN_NUM_XMITS) {
5036 hw->in_ifs_mode = TRUE;
5037 if(hw->current_ifs_val < hw->ifs_max_val) {
5038 if(hw->current_ifs_val == 0)
5039 hw->current_ifs_val = hw->ifs_min_val;
5040 else
5041 hw->current_ifs_val += hw->ifs_step_size;
5042 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
5043 }
5044 }
5045 } else {
5046 if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
5047 hw->current_ifs_val = 0;
5048 hw->in_ifs_mode = FALSE;
5049 E1000_WRITE_REG(hw, AIT, 0);
5050 }
5051 }
5052 } else {
5053 DEBUGOUT("Not in Adaptive IFS mode!\n");
5054 }
5055 }
5056
5057 /******************************************************************************
5058 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
5059 *
5060 * hw - Struct containing variables accessed by shared code
5061 * frame_len - The length of the frame in question
5062 * mac_addr - The Ethernet destination address of the frame in question
5063 *****************************************************************************/
5064 void
5065 e1000_tbi_adjust_stats(struct e1000_hw *hw,
5066 struct e1000_hw_stats *stats,
5067 uint32_t frame_len,
5068 uint8_t *mac_addr)
5069 {
5070 uint64_t carry_bit;
5071
5072 /* First adjust the frame length. */
5073 frame_len--;
5074 /* We need to adjust the statistics counters, since the hardware
5075 * counters overcount this packet as a CRC error and undercount
5076 * the packet as a good packet
5077 */
5078 /* This packet should not be counted as a CRC error. */
5079 stats->crcerrs--;
5080 /* This packet does count as a Good Packet Received. */
5081 stats->gprc++;
5082
5083 /* Adjust the Good Octets received counters */
5084 carry_bit = 0x80000000 & stats->gorcl;
5085 stats->gorcl += frame_len;
5086 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
5087 * Received Count) was one before the addition,
5088 * AND it is zero after, then we lost the carry out,
5089 * need to add one to Gorch (Good Octets Received Count High).
5090 * This could be simplified if all environments supported
5091 * 64-bit integers.
5092 */
5093 if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
5094 stats->gorch++;
5095 /* Is this a broadcast or multicast? Check broadcast first,
5096 * since the test for a multicast frame will test positive on
5097 * a broadcast frame.
5098 */
5099 if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
5100 /* Broadcast packet */
5101 stats->bprc++;
5102 else if(*mac_addr & 0x01)
5103 /* Multicast packet */
5104 stats->mprc++;
5105
5106 if(frame_len == hw->max_frame_size) {
5107 /* In this case, the hardware has overcounted the number of
5108 * oversize frames.
5109 */
5110 if(stats->roc > 0)
5111 stats->roc--;
5112 }
5113
5114 /* Adjust the bin counters when the extra byte put the frame in the
5115 * wrong bin. Remember that the frame_len was adjusted above.
5116 */
5117 if(frame_len == 64) {
5118 stats->prc64++;
5119 stats->prc127--;
5120 } else if(frame_len == 127) {
5121 stats->prc127++;
5122 stats->prc255--;
5123 } else if(frame_len == 255) {
5124 stats->prc255++;
5125 stats->prc511--;
5126 } else if(frame_len == 511) {
5127 stats->prc511++;
5128 stats->prc1023--;
5129 } else if(frame_len == 1023) {
5130 stats->prc1023++;
5131 stats->prc1522--;
5132 } else if(frame_len == 1522) {
5133 stats->prc1522++;
5134 }
5135 }
5136
5137 /******************************************************************************
5138 * Gets the current PCI bus type, speed, and width of the hardware
5139 *
5140 * hw - Struct containing variables accessed by shared code
5141 *****************************************************************************/
5142 void
5143 e1000_get_bus_info(struct e1000_hw *hw)
5144 {
5145 uint32_t status;
5146
5147 switch (hw->mac_type) {
5148 case e1000_82542_rev2_0:
5149 case e1000_82542_rev2_1:
5150 hw->bus_type = e1000_bus_type_unknown;
5151 hw->bus_speed = e1000_bus_speed_unknown;
5152 hw->bus_width = e1000_bus_width_unknown;
5153 break;
5154 case e1000_82573:
5155 hw->bus_type = e1000_bus_type_pci_express;
5156 hw->bus_speed = e1000_bus_speed_2500;
5157 hw->bus_width = e1000_bus_width_pciex_4;
5158 break;
5159 default:
5160 status = E1000_READ_REG(hw, STATUS);
5161 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5162 e1000_bus_type_pcix : e1000_bus_type_pci;
5163
5164 if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
5165 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
5166 e1000_bus_speed_66 : e1000_bus_speed_120;
5167 } else if(hw->bus_type == e1000_bus_type_pci) {
5168 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
5169 e1000_bus_speed_66 : e1000_bus_speed_33;
5170 } else {
5171 switch (status & E1000_STATUS_PCIX_SPEED) {
5172 case E1000_STATUS_PCIX_SPEED_66:
5173 hw->bus_speed = e1000_bus_speed_66;
5174 break;
5175 case E1000_STATUS_PCIX_SPEED_100:
5176 hw->bus_speed = e1000_bus_speed_100;
5177 break;
5178 case E1000_STATUS_PCIX_SPEED_133:
5179 hw->bus_speed = e1000_bus_speed_133;
5180 break;
5181 default:
5182 hw->bus_speed = e1000_bus_speed_reserved;
5183 break;
5184 }
5185 }
5186 hw->bus_width = (status & E1000_STATUS_BUS64) ?
5187 e1000_bus_width_64 : e1000_bus_width_32;
5188 break;
5189 }
5190 }
5191 /******************************************************************************
5192 * Reads a value from one of the devices registers using port I/O (as opposed
5193 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5194 *
5195 * hw - Struct containing variables accessed by shared code
5196 * offset - offset to read from
5197 *****************************************************************************/
5198 uint32_t
5199 e1000_read_reg_io(struct e1000_hw *hw,
5200 uint32_t offset)
5201 {
5202 unsigned long io_addr = hw->io_base;
5203 unsigned long io_data = hw->io_base + 4;
5204
5205 e1000_io_write(hw, io_addr, offset);
5206 return e1000_io_read(hw, io_data);
5207 }
5208
5209 /******************************************************************************
5210 * Writes a value to one of the devices registers using port I/O (as opposed to
5211 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5212 *
5213 * hw - Struct containing variables accessed by shared code
5214 * offset - offset to write to
5215 * value - value to write
5216 *****************************************************************************/
5217 void
5218 e1000_write_reg_io(struct e1000_hw *hw,
5219 uint32_t offset,
5220 uint32_t value)
5221 {
5222 unsigned long io_addr = hw->io_base;
5223 unsigned long io_data = hw->io_base + 4;
5224
5225 e1000_io_write(hw, io_addr, offset);
5226 e1000_io_write(hw, io_data, value);
5227 }
5228
5229
5230 /******************************************************************************
5231 * Estimates the cable length.
5232 *
5233 * hw - Struct containing variables accessed by shared code
5234 * min_length - The estimated minimum length
5235 * max_length - The estimated maximum length
5236 *
5237 * returns: - E1000_ERR_XXX
5238 * E1000_SUCCESS
5239 *
5240 * This function always returns a ranged length (minimum & maximum).
5241 * So for M88 phy's, this function interprets the one value returned from the
5242 * register to the minimum and maximum range.
5243 * For IGP phy's, the function calculates the range by the AGC registers.
5244 *****************************************************************************/
5245 int32_t
5246 e1000_get_cable_length(struct e1000_hw *hw,
5247 uint16_t *min_length,
5248 uint16_t *max_length)
5249 {
5250 int32_t ret_val;
5251 uint16_t agc_value = 0;
5252 uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5253 uint16_t i, phy_data;
5254 uint16_t cable_length;
5255
5256 DEBUGFUNC("e1000_get_cable_length");
5257
5258 *min_length = *max_length = 0;
5259
5260 /* Use old method for Phy older than IGP */
5261 if(hw->phy_type == e1000_phy_m88) {
5262
5263 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5264 &phy_data);
5265 if(ret_val)
5266 return ret_val;
5267 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5268 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5269
5270 /* Convert the enum value to ranged values */
5271 switch (cable_length) {
5272 case e1000_cable_length_50:
5273 *min_length = 0;
5274 *max_length = e1000_igp_cable_length_50;
5275 break;
5276 case e1000_cable_length_50_80:
5277 *min_length = e1000_igp_cable_length_50;
5278 *max_length = e1000_igp_cable_length_80;
5279 break;
5280 case e1000_cable_length_80_110:
5281 *min_length = e1000_igp_cable_length_80;
5282 *max_length = e1000_igp_cable_length_110;
5283 break;
5284 case e1000_cable_length_110_140:
5285 *min_length = e1000_igp_cable_length_110;
5286 *max_length = e1000_igp_cable_length_140;
5287 break;
5288 case e1000_cable_length_140:
5289 *min_length = e1000_igp_cable_length_140;
5290 *max_length = e1000_igp_cable_length_170;
5291 break;
5292 default:
5293 return -E1000_ERR_PHY;
5294 break;
5295 }
5296 } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
5297 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
5298 {IGP01E1000_PHY_AGC_A,
5299 IGP01E1000_PHY_AGC_B,
5300 IGP01E1000_PHY_AGC_C,
5301 IGP01E1000_PHY_AGC_D};
5302 /* Read the AGC registers for all channels */
5303 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5304
5305 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5306 if(ret_val)
5307 return ret_val;
5308
5309 cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5310
5311 /* Array bound check. */
5312 if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
5313 (cur_agc == 0))
5314 return -E1000_ERR_PHY;
5315
5316 agc_value += cur_agc;
5317
5318 /* Update minimal AGC value. */
5319 if(min_agc > cur_agc)
5320 min_agc = cur_agc;
5321 }
5322
5323 /* Remove the minimal AGC result for length < 50m */
5324 if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5325 agc_value -= min_agc;
5326
5327 /* Get the average length of the remaining 3 channels */
5328 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5329 } else {
5330 /* Get the average length of all the 4 channels. */
5331 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5332 }
5333
5334 /* Set the range of the calculated length. */
5335 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5336 IGP01E1000_AGC_RANGE) > 0) ?
5337 (e1000_igp_cable_length_table[agc_value] -
5338 IGP01E1000_AGC_RANGE) : 0;
5339 *max_length = e1000_igp_cable_length_table[agc_value] +
5340 IGP01E1000_AGC_RANGE;
5341 }
5342
5343 return E1000_SUCCESS;
5344 }
5345
5346 /******************************************************************************
5347 * Check the cable polarity
5348 *
5349 * hw - Struct containing variables accessed by shared code
5350 * polarity - output parameter : 0 - Polarity is not reversed
5351 * 1 - Polarity is reversed.
5352 *
5353 * returns: - E1000_ERR_XXX
5354 * E1000_SUCCESS
5355 *
5356 * For phy's older then IGP, this function simply reads the polarity bit in the
5357 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5358 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5359 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5360 * IGP01E1000_PHY_PCS_INIT_REG.
5361 *****************************************************************************/
5362 int32_t
5363 e1000_check_polarity(struct e1000_hw *hw,
5364 uint16_t *polarity)
5365 {
5366 int32_t ret_val;
5367 uint16_t phy_data;
5368
5369 DEBUGFUNC("e1000_check_polarity");
5370
5371 if(hw->phy_type == e1000_phy_m88) {
5372 /* return the Polarity bit in the Status register. */
5373 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5374 &phy_data);
5375 if(ret_val)
5376 return ret_val;
5377 *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
5378 M88E1000_PSSR_REV_POLARITY_SHIFT;
5379 } else if(hw->phy_type == e1000_phy_igp ||
5380 hw->phy_type == e1000_phy_igp_2) {
5381 /* Read the Status register to check the speed */
5382 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5383 &phy_data);
5384 if(ret_val)
5385 return ret_val;
5386
5387 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5388 * find the polarity status */
5389 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5390 IGP01E1000_PSSR_SPEED_1000MBPS) {
5391
5392 /* Read the GIG initialization PCS register (0x00B4) */
5393 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5394 &phy_data);
5395 if(ret_val)
5396 return ret_val;
5397
5398 /* Check the polarity bits */
5399 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
5400 } else {
5401 /* For 10 Mbps, read the polarity bit in the status register. (for
5402 * 100 Mbps this bit is always 0) */
5403 *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
5404 }
5405 }
5406 return E1000_SUCCESS;
5407 }
5408
5409 /******************************************************************************
5410 * Check if Downshift occured
5411 *
5412 * hw - Struct containing variables accessed by shared code
5413 * downshift - output parameter : 0 - No Downshift ocured.
5414 * 1 - Downshift ocured.
5415 *
5416 * returns: - E1000_ERR_XXX
5417 * E1000_SUCCESS
5418 *
5419 * For phy's older then IGP, this function reads the Downshift bit in the Phy
5420 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5421 * Link Health register. In IGP this bit is latched high, so the driver must
5422 * read it immediately after link is established.
5423 *****************************************************************************/
5424 int32_t
5425 e1000_check_downshift(struct e1000_hw *hw)
5426 {
5427 int32_t ret_val;
5428 uint16_t phy_data;
5429
5430 DEBUGFUNC("e1000_check_downshift");
5431
5432 if(hw->phy_type == e1000_phy_igp ||
5433 hw->phy_type == e1000_phy_igp_2) {
5434 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5435 &phy_data);
5436 if(ret_val)
5437 return ret_val;
5438
5439 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5440 } else if(hw->phy_type == e1000_phy_m88) {
5441 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5442 &phy_data);
5443 if(ret_val)
5444 return ret_val;
5445
5446 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5447 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5448 }
5449
5450 return E1000_SUCCESS;
5451 }
5452
5453 /*****************************************************************************
5454 *
5455 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5456 * gigabit link is achieved to improve link quality.
5457 *
5458 * hw: Struct containing variables accessed by shared code
5459 *
5460 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5461 * E1000_SUCCESS at any other case.
5462 *
5463 ****************************************************************************/
5464
5465 int32_t
5466 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
5467 boolean_t link_up)
5468 {
5469 int32_t ret_val;
5470 uint16_t phy_data, phy_saved_data, speed, duplex, i;
5471 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
5472 {IGP01E1000_PHY_AGC_PARAM_A,
5473 IGP01E1000_PHY_AGC_PARAM_B,
5474 IGP01E1000_PHY_AGC_PARAM_C,
5475 IGP01E1000_PHY_AGC_PARAM_D};
5476 uint16_t min_length, max_length;
5477
5478 DEBUGFUNC("e1000_config_dsp_after_link_change");
5479
5480 if(hw->phy_type != e1000_phy_igp)
5481 return E1000_SUCCESS;
5482
5483 if(link_up) {
5484 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5485 if(ret_val) {
5486 DEBUGOUT("Error getting link speed and duplex\n");
5487 return ret_val;
5488 }
5489
5490 if(speed == SPEED_1000) {
5491
5492 e1000_get_cable_length(hw, &min_length, &max_length);
5493
5494 if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
5495 min_length >= e1000_igp_cable_length_50) {
5496
5497 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5498 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5499 &phy_data);
5500 if(ret_val)
5501 return ret_val;
5502
5503 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5504
5505 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5506 phy_data);
5507 if(ret_val)
5508 return ret_val;
5509 }
5510 hw->dsp_config_state = e1000_dsp_config_activated;
5511 }
5512
5513 if((hw->ffe_config_state == e1000_ffe_config_enabled) &&
5514 (min_length < e1000_igp_cable_length_50)) {
5515
5516 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5517 uint32_t idle_errs = 0;
5518
5519 /* clear previous idle error counts */
5520 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5521 &phy_data);
5522 if(ret_val)
5523 return ret_val;
5524
5525 for(i = 0; i < ffe_idle_err_timeout; i++) {
5526 udelay(1000);
5527 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5528 &phy_data);
5529 if(ret_val)
5530 return ret_val;
5531
5532 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5533 if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5534 hw->ffe_config_state = e1000_ffe_config_active;
5535
5536 ret_val = e1000_write_phy_reg(hw,
5537 IGP01E1000_PHY_DSP_FFE,
5538 IGP01E1000_PHY_DSP_FFE_CM_CP);
5539 if(ret_val)
5540 return ret_val;
5541 break;
5542 }
5543
5544 if(idle_errs)
5545 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5546 }
5547 }
5548 }
5549 } else {
5550 if(hw->dsp_config_state == e1000_dsp_config_activated) {
5551 /* Save off the current value of register 0x2F5B to be restored at
5552 * the end of the routines. */
5553 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5554
5555 if(ret_val)
5556 return ret_val;
5557
5558 /* Disable the PHY transmitter */
5559 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5560
5561 if(ret_val)
5562 return ret_val;
5563
5564 msec_delay_irq(20);
5565
5566 ret_val = e1000_write_phy_reg(hw, 0x0000,
5567 IGP01E1000_IEEE_FORCE_GIGA);
5568 if(ret_val)
5569 return ret_val;
5570 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5571 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
5572 if(ret_val)
5573 return ret_val;
5574
5575 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5576 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5577
5578 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
5579 if(ret_val)
5580 return ret_val;
5581 }
5582
5583 ret_val = e1000_write_phy_reg(hw, 0x0000,
5584 IGP01E1000_IEEE_RESTART_AUTONEG);
5585 if(ret_val)
5586 return ret_val;
5587
5588 msec_delay_irq(20);
5589
5590 /* Now enable the transmitter */
5591 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5592
5593 if(ret_val)
5594 return ret_val;
5595
5596 hw->dsp_config_state = e1000_dsp_config_enabled;
5597 }
5598
5599 if(hw->ffe_config_state == e1000_ffe_config_active) {
5600 /* Save off the current value of register 0x2F5B to be restored at
5601 * the end of the routines. */
5602 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5603
5604 if(ret_val)
5605 return ret_val;
5606
5607 /* Disable the PHY transmitter */
5608 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5609
5610 if(ret_val)
5611 return ret_val;
5612
5613 msec_delay_irq(20);
5614
5615 ret_val = e1000_write_phy_reg(hw, 0x0000,
5616 IGP01E1000_IEEE_FORCE_GIGA);
5617 if(ret_val)
5618 return ret_val;
5619 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5620 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5621 if(ret_val)
5622 return ret_val;
5623
5624 ret_val = e1000_write_phy_reg(hw, 0x0000,
5625 IGP01E1000_IEEE_RESTART_AUTONEG);
5626 if(ret_val)
5627 return ret_val;
5628
5629 msec_delay_irq(20);
5630
5631 /* Now enable the transmitter */
5632 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5633
5634 if(ret_val)
5635 return ret_val;
5636
5637 hw->ffe_config_state = e1000_ffe_config_enabled;
5638 }
5639 }
5640 return E1000_SUCCESS;
5641 }
5642
5643 /*****************************************************************************
5644 * Set PHY to class A mode
5645 * Assumes the following operations will follow to enable the new class mode.
5646 * 1. Do a PHY soft reset
5647 * 2. Restart auto-negotiation or force link.
5648 *
5649 * hw - Struct containing variables accessed by shared code
5650 ****************************************************************************/
5651 static int32_t
5652 e1000_set_phy_mode(struct e1000_hw *hw)
5653 {
5654 int32_t ret_val;
5655 uint16_t eeprom_data;
5656
5657 DEBUGFUNC("e1000_set_phy_mode");
5658
5659 if((hw->mac_type == e1000_82545_rev_3) &&
5660 (hw->media_type == e1000_media_type_copper)) {
5661 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
5662 if(ret_val) {
5663 return ret_val;
5664 }
5665
5666 if((eeprom_data != EEPROM_RESERVED_WORD) &&
5667 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5668 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
5669 if(ret_val)
5670 return ret_val;
5671 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
5672 if(ret_val)
5673 return ret_val;
5674
5675 hw->phy_reset_disable = FALSE;
5676 }
5677 }
5678
5679 return E1000_SUCCESS;
5680 }
5681
5682 /*****************************************************************************
5683 *
5684 * This function sets the lplu state according to the active flag. When
5685 * activating lplu this function also disables smart speed and vise versa.
5686 * lplu will not be activated unless the device autonegotiation advertisment
5687 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5688 * hw: Struct containing variables accessed by shared code
5689 * active - true to enable lplu false to disable lplu.
5690 *
5691 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5692 * E1000_SUCCESS at any other case.
5693 *
5694 ****************************************************************************/
5695
5696 int32_t
5697 e1000_set_d3_lplu_state(struct e1000_hw *hw,
5698 boolean_t active)
5699 {
5700 int32_t ret_val;
5701 uint16_t phy_data;
5702 DEBUGFUNC("e1000_set_d3_lplu_state");
5703
5704 if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2)
5705 return E1000_SUCCESS;
5706
5707 /* During driver activity LPLU should not be used or it will attain link
5708 * from the lowest speeds starting from 10Mbps. The capability is used for
5709 * Dx transitions and states */
5710 if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
5711 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5712 if(ret_val)
5713 return ret_val;
5714 } else {
5715 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
5716 if(ret_val)
5717 return ret_val;
5718 }
5719
5720 if(!active) {
5721 if(hw->mac_type == e1000_82541_rev_2 ||
5722 hw->mac_type == e1000_82547_rev_2) {
5723 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5724 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
5725 if(ret_val)
5726 return ret_val;
5727 } else {
5728 phy_data &= ~IGP02E1000_PM_D3_LPLU;
5729 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
5730 phy_data);
5731 if (ret_val)
5732 return ret_val;
5733 }
5734
5735 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
5736 * Dx states where the power conservation is most important. During
5737 * driver activity we should enable SmartSpeed, so performance is
5738 * maintained. */
5739 if (hw->smart_speed == e1000_smart_speed_on) {
5740 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5741 &phy_data);
5742 if(ret_val)
5743 return ret_val;
5744
5745 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5746 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5747 phy_data);
5748 if(ret_val)
5749 return ret_val;
5750 } else if (hw->smart_speed == e1000_smart_speed_off) {
5751 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5752 &phy_data);
5753 if (ret_val)
5754 return ret_val;
5755
5756 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5757 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5758 phy_data);
5759 if(ret_val)
5760 return ret_val;
5761 }
5762
5763 } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5764 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
5765 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5766
5767 if(hw->mac_type == e1000_82541_rev_2 ||
5768 hw->mac_type == e1000_82547_rev_2) {
5769 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5770 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
5771 if(ret_val)
5772 return ret_val;
5773 } else {
5774 phy_data |= IGP02E1000_PM_D3_LPLU;
5775 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
5776 phy_data);
5777 if (ret_val)
5778 return ret_val;
5779 }
5780
5781 /* When LPLU is enabled we should disable SmartSpeed */
5782 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
5783 if(ret_val)
5784 return ret_val;
5785
5786 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5787 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
5788 if(ret_val)
5789 return ret_val;
5790
5791 }
5792 return E1000_SUCCESS;
5793 }
5794
5795 /*****************************************************************************
5796 *
5797 * This function sets the lplu d0 state according to the active flag. When
5798 * activating lplu this function also disables smart speed and vise versa.
5799 * lplu will not be activated unless the device autonegotiation advertisment
5800 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5801 * hw: Struct containing variables accessed by shared code
5802 * active - true to enable lplu false to disable lplu.
5803 *
5804 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5805 * E1000_SUCCESS at any other case.
5806 *
5807 ****************************************************************************/
5808
5809 int32_t
5810 e1000_set_d0_lplu_state(struct e1000_hw *hw,
5811 boolean_t active)
5812 {
5813 int32_t ret_val;
5814 uint16_t phy_data;
5815 DEBUGFUNC("e1000_set_d0_lplu_state");
5816
5817 if(hw->mac_type <= e1000_82547_rev_2)
5818 return E1000_SUCCESS;
5819
5820 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
5821 if(ret_val)
5822 return ret_val;
5823
5824 if (!active) {
5825 phy_data &= ~IGP02E1000_PM_D0_LPLU;
5826 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
5827 if (ret_val)
5828 return ret_val;
5829
5830 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
5831 * Dx states where the power conservation is most important. During
5832 * driver activity we should enable SmartSpeed, so performance is
5833 * maintained. */
5834 if (hw->smart_speed == e1000_smart_speed_on) {
5835 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5836 &phy_data);
5837 if(ret_val)
5838 return ret_val;
5839
5840 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5841 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5842 phy_data);
5843 if(ret_val)
5844 return ret_val;
5845 } else if (hw->smart_speed == e1000_smart_speed_off) {
5846 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5847 &phy_data);
5848 if (ret_val)
5849 return ret_val;
5850
5851 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5852 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5853 phy_data);
5854 if(ret_val)
5855 return ret_val;
5856 }
5857
5858
5859 } else {
5860
5861 phy_data |= IGP02E1000_PM_D0_LPLU;
5862 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
5863 if (ret_val)
5864 return ret_val;
5865
5866 /* When LPLU is enabled we should disable SmartSpeed */
5867 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
5868 if(ret_val)
5869 return ret_val;
5870
5871 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5872 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
5873 if(ret_val)
5874 return ret_val;
5875
5876 }
5877 return E1000_SUCCESS;
5878 }
5879
5880 /******************************************************************************
5881 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5882 *
5883 * hw - Struct containing variables accessed by shared code
5884 *****************************************************************************/
5885 static int32_t
5886 e1000_set_vco_speed(struct e1000_hw *hw)
5887 {
5888 int32_t ret_val;
5889 uint16_t default_page = 0;
5890 uint16_t phy_data;
5891
5892 DEBUGFUNC("e1000_set_vco_speed");
5893
5894 switch(hw->mac_type) {
5895 case e1000_82545_rev_3:
5896 case e1000_82546_rev_3:
5897 break;
5898 default:
5899 return E1000_SUCCESS;
5900 }
5901
5902 /* Set PHY register 30, page 5, bit 8 to 0 */
5903
5904 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5905 if(ret_val)
5906 return ret_val;
5907
5908 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5909 if(ret_val)
5910 return ret_val;
5911
5912 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5913 if(ret_val)
5914 return ret_val;
5915
5916 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5917 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5918 if(ret_val)
5919 return ret_val;
5920
5921 /* Set PHY register 30, page 4, bit 11 to 1 */
5922
5923 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5924 if(ret_val)
5925 return ret_val;
5926
5927 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5928 if(ret_val)
5929 return ret_val;
5930
5931 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5932 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5933 if(ret_val)
5934 return ret_val;
5935
5936 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5937 if(ret_val)
5938 return ret_val;
5939
5940 return E1000_SUCCESS;
5941 }
5942
5943
5944 /*****************************************************************************
5945 * This function reads the cookie from ARC ram.
5946 *
5947 * returns: - E1000_SUCCESS .
5948 ****************************************************************************/
5949 int32_t
5950 e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
5951 {
5952 uint8_t i;
5953 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
5954 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
5955
5956 length = (length >> 2);
5957 offset = (offset >> 2);
5958
5959 for (i = 0; i < length; i++) {
5960 *((uint32_t *) buffer + i) =
5961 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
5962 }
5963 return E1000_SUCCESS;
5964 }
5965
5966
5967 /*****************************************************************************
5968 * This function checks whether the HOST IF is enabled for command operaton
5969 * and also checks whether the previous command is completed.
5970 * It busy waits in case of previous command is not completed.
5971 *
5972 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
5973 * timeout
5974 * - E1000_SUCCESS for success.
5975 ****************************************************************************/
5976 int32_t
5977 e1000_mng_enable_host_if(struct e1000_hw * hw)
5978 {
5979 uint32_t hicr;
5980 uint8_t i;
5981
5982 /* Check that the host interface is enabled. */
5983 hicr = E1000_READ_REG(hw, HICR);
5984 if ((hicr & E1000_HICR_EN) == 0) {
5985 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
5986 return -E1000_ERR_HOST_INTERFACE_COMMAND;
5987 }
5988 /* check the previous command is completed */
5989 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
5990 hicr = E1000_READ_REG(hw, HICR);
5991 if (!(hicr & E1000_HICR_C))
5992 break;
5993 msec_delay_irq(1);
5994 }
5995
5996 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
5997 DEBUGOUT("Previous command timeout failed .\n");
5998 return -E1000_ERR_HOST_INTERFACE_COMMAND;
5999 }
6000 return E1000_SUCCESS;
6001 }
6002
6003 /*****************************************************************************
6004 * This function writes the buffer content at the offset given on the host if.
6005 * It also does alignment considerations to do the writes in most efficient way.
6006 * Also fills up the sum of the buffer in *buffer parameter.
6007 *
6008 * returns - E1000_SUCCESS for success.
6009 ****************************************************************************/
6010 int32_t
6011 e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
6012 uint16_t length, uint16_t offset, uint8_t *sum)
6013 {
6014 uint8_t *tmp;
6015 uint8_t *bufptr = buffer;
6016 uint32_t data;
6017 uint16_t remaining, i, j, prev_bytes;
6018
6019 /* sum = only sum of the data and it is not checksum */
6020
6021 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
6022 return -E1000_ERR_PARAM;
6023 }
6024
6025 tmp = (uint8_t *)&data;
6026 prev_bytes = offset & 0x3;
6027 offset &= 0xFFFC;
6028 offset >>= 2;
6029
6030 if (prev_bytes) {
6031 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
6032 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
6033 *(tmp + j) = *bufptr++;
6034 *sum += *(tmp + j);
6035 }
6036 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
6037 length -= j - prev_bytes;
6038 offset++;
6039 }
6040
6041 remaining = length & 0x3;
6042 length -= remaining;
6043
6044 /* Calculate length in DWORDs */
6045 length >>= 2;
6046
6047 /* The device driver writes the relevant command block into the
6048 * ram area. */
6049 for (i = 0; i < length; i++) {
6050 for (j = 0; j < sizeof(uint32_t); j++) {
6051 *(tmp + j) = *bufptr++;
6052 *sum += *(tmp + j);
6053 }
6054
6055 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
6056 }
6057 if (remaining) {
6058 for (j = 0; j < sizeof(uint32_t); j++) {
6059 if (j < remaining)
6060 *(tmp + j) = *bufptr++;
6061 else
6062 *(tmp + j) = 0;
6063
6064 *sum += *(tmp + j);
6065 }
6066 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
6067 }
6068
6069 return E1000_SUCCESS;
6070 }
6071
6072
6073 /*****************************************************************************
6074 * This function writes the command header after does the checksum calculation.
6075 *
6076 * returns - E1000_SUCCESS for success.
6077 ****************************************************************************/
6078 int32_t
6079 e1000_mng_write_cmd_header(struct e1000_hw * hw,
6080 struct e1000_host_mng_command_header * hdr)
6081 {
6082 uint16_t i;
6083 uint8_t sum;
6084 uint8_t *buffer;
6085
6086 /* Write the whole command header structure which includes sum of
6087 * the buffer */
6088
6089 uint16_t length = sizeof(struct e1000_host_mng_command_header);
6090
6091 sum = hdr->checksum;
6092 hdr->checksum = 0;
6093
6094 buffer = (uint8_t *) hdr;
6095 i = length;
6096 while(i--)
6097 sum += buffer[i];
6098
6099 hdr->checksum = 0 - sum;
6100
6101 length >>= 2;
6102 /* The device driver writes the relevant command block into the ram area. */
6103 for (i = 0; i < length; i++)
6104 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
6105
6106 return E1000_SUCCESS;
6107 }
6108
6109
6110 /*****************************************************************************
6111 * This function indicates to ARC that a new command is pending which completes
6112 * one write operation by the driver.
6113 *
6114 * returns - E1000_SUCCESS for success.
6115 ****************************************************************************/
6116 int32_t
6117 e1000_mng_write_commit(
6118 struct e1000_hw * hw)
6119 {
6120 uint32_t hicr;
6121
6122 hicr = E1000_READ_REG(hw, HICR);
6123 /* Setting this bit tells the ARC that a new command is pending. */
6124 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
6125
6126 return E1000_SUCCESS;
6127 }
6128
6129
6130 /*****************************************************************************
6131 * This function checks the mode of the firmware.
6132 *
6133 * returns - TRUE when the mode is IAMT or FALSE.
6134 ****************************************************************************/
6135 boolean_t
6136 e1000_check_mng_mode(
6137 struct e1000_hw *hw)
6138 {
6139 uint32_t fwsm;
6140
6141 fwsm = E1000_READ_REG(hw, FWSM);
6142
6143 if((fwsm & E1000_FWSM_MODE_MASK) ==
6144 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
6145 return TRUE;
6146
6147 return FALSE;
6148 }
6149
6150
6151 /*****************************************************************************
6152 * This function writes the dhcp info .
6153 ****************************************************************************/
6154 int32_t
6155 e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
6156 uint16_t length)
6157 {
6158 int32_t ret_val;
6159 struct e1000_host_mng_command_header hdr;
6160
6161 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
6162 hdr.command_length = length;
6163 hdr.reserved1 = 0;
6164 hdr.reserved2 = 0;
6165 hdr.checksum = 0;
6166
6167 ret_val = e1000_mng_enable_host_if(hw);
6168 if (ret_val == E1000_SUCCESS) {
6169 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
6170 &(hdr.checksum));
6171 if (ret_val == E1000_SUCCESS) {
6172 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
6173 if (ret_val == E1000_SUCCESS)
6174 ret_val = e1000_mng_write_commit(hw);
6175 }
6176 }
6177 return ret_val;
6178 }
6179
6180
6181 /*****************************************************************************
6182 * This function calculates the checksum.
6183 *
6184 * returns - checksum of buffer contents.
6185 ****************************************************************************/
6186 uint8_t
6187 e1000_calculate_mng_checksum(char *buffer, uint32_t length)
6188 {
6189 uint8_t sum = 0;
6190 uint32_t i;
6191
6192 if (!buffer)
6193 return 0;
6194
6195 for (i=0; i < length; i++)
6196 sum += buffer[i];
6197
6198 return (uint8_t) (0 - sum);
6199 }
6200
6201 /*****************************************************************************
6202 * This function checks whether tx pkt filtering needs to be enabled or not.
6203 *
6204 * returns - TRUE for packet filtering or FALSE.
6205 ****************************************************************************/
6206 boolean_t
6207 e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
6208 {
6209 /* called in init as well as watchdog timer functions */
6210
6211 int32_t ret_val, checksum;
6212 boolean_t tx_filter = FALSE;
6213 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
6214 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
6215
6216 if (e1000_check_mng_mode(hw)) {
6217 ret_val = e1000_mng_enable_host_if(hw);
6218 if (ret_val == E1000_SUCCESS) {
6219 ret_val = e1000_host_if_read_cookie(hw, buffer);
6220 if (ret_val == E1000_SUCCESS) {
6221 checksum = hdr->checksum;
6222 hdr->checksum = 0;
6223 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
6224 checksum == e1000_calculate_mng_checksum((char *)buffer,
6225 E1000_MNG_DHCP_COOKIE_LENGTH)) {
6226 if (hdr->status &
6227 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
6228 tx_filter = TRUE;
6229 } else
6230 tx_filter = TRUE;
6231 } else
6232 tx_filter = TRUE;
6233 }
6234 }
6235
6236 hw->tx_pkt_filtering = tx_filter;
6237 return tx_filter;
6238 }
6239
6240 /******************************************************************************
6241 * Verifies the hardware needs to allow ARPs to be processed by the host
6242 *
6243 * hw - Struct containing variables accessed by shared code
6244 *
6245 * returns: - TRUE/FALSE
6246 *
6247 *****************************************************************************/
6248 uint32_t
6249 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
6250 {
6251 uint32_t manc;
6252 uint32_t fwsm, factps;
6253
6254 if (hw->asf_firmware_present) {
6255 manc = E1000_READ_REG(hw, MANC);
6256
6257 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
6258 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
6259 return FALSE;
6260 if (e1000_arc_subsystem_valid(hw) == TRUE) {
6261 fwsm = E1000_READ_REG(hw, FWSM);
6262 factps = E1000_READ_REG(hw, FACTPS);
6263
6264 if (((fwsm & E1000_FWSM_MODE_MASK) ==
6265 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
6266 (factps & E1000_FACTPS_MNGCG))
6267 return TRUE;
6268 } else
6269 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
6270 return TRUE;
6271 }
6272 return FALSE;
6273 }
6274
6275 static int32_t
6276 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
6277 {
6278 int32_t ret_val;
6279 uint16_t mii_status_reg;
6280 uint16_t i;
6281
6282 /* Polarity reversal workaround for forced 10F/10H links. */
6283
6284 /* Disable the transmitter on the PHY */
6285
6286 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
6287 if(ret_val)
6288 return ret_val;
6289 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
6290 if(ret_val)
6291 return ret_val;
6292
6293 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
6294 if(ret_val)
6295 return ret_val;
6296
6297 /* This loop will early-out if the NO link condition has been met. */
6298 for(i = PHY_FORCE_TIME; i > 0; i--) {
6299 /* Read the MII Status Register and wait for Link Status bit
6300 * to be clear.
6301 */
6302
6303 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6304 if(ret_val)
6305 return ret_val;
6306
6307 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6308 if(ret_val)
6309 return ret_val;
6310
6311 if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
6312 msec_delay_irq(100);
6313 }
6314
6315 /* Recommended delay time after link has been lost */
6316 msec_delay_irq(1000);
6317
6318 /* Now we will re-enable th transmitter on the PHY */
6319
6320 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
6321 if(ret_val)
6322 return ret_val;
6323 msec_delay_irq(50);
6324 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
6325 if(ret_val)
6326 return ret_val;
6327 msec_delay_irq(50);
6328 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
6329 if(ret_val)
6330 return ret_val;
6331 msec_delay_irq(50);
6332 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
6333 if(ret_val)
6334 return ret_val;
6335
6336 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
6337 if(ret_val)
6338 return ret_val;
6339
6340 /* This loop will early-out if the link condition has been met. */
6341 for(i = PHY_FORCE_TIME; i > 0; i--) {
6342 /* Read the MII Status Register and wait for Link Status bit
6343 * to be set.
6344 */
6345
6346 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6347 if(ret_val)
6348 return ret_val;
6349
6350 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6351 if(ret_val)
6352 return ret_val;
6353
6354 if(mii_status_reg & MII_SR_LINK_STATUS) break;
6355 msec_delay_irq(100);
6356 }
6357 return E1000_SUCCESS;
6358 }
6359
6360 /***************************************************************************
6361 *
6362 * Disables PCI-Express master access.
6363 *
6364 * hw: Struct containing variables accessed by shared code
6365 *
6366 * returns: - none.
6367 *
6368 ***************************************************************************/
6369 void
6370 e1000_set_pci_express_master_disable(struct e1000_hw *hw)
6371 {
6372 uint32_t ctrl;
6373
6374 DEBUGFUNC("e1000_set_pci_express_master_disable");
6375
6376 if (hw->bus_type != e1000_bus_type_pci_express)
6377 return;
6378
6379 ctrl = E1000_READ_REG(hw, CTRL);
6380 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
6381 E1000_WRITE_REG(hw, CTRL, ctrl);
6382 }
6383
6384 /***************************************************************************
6385 *
6386 * Enables PCI-Express master access.
6387 *
6388 * hw: Struct containing variables accessed by shared code
6389 *
6390 * returns: - none.
6391 *
6392 ***************************************************************************/
6393 void
6394 e1000_enable_pciex_master(struct e1000_hw *hw)
6395 {
6396 uint32_t ctrl;
6397
6398 DEBUGFUNC("e1000_enable_pciex_master");
6399
6400 if (hw->bus_type != e1000_bus_type_pci_express)
6401 return;
6402
6403 ctrl = E1000_READ_REG(hw, CTRL);
6404 ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
6405 E1000_WRITE_REG(hw, CTRL, ctrl);
6406 }
6407
6408 /*******************************************************************************
6409 *
6410 * Disables PCI-Express master access and verifies there are no pending requests
6411 *
6412 * hw: Struct containing variables accessed by shared code
6413 *
6414 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
6415 * caused the master requests to be disabled.
6416 * E1000_SUCCESS master requests disabled.
6417 *
6418 ******************************************************************************/
6419 int32_t
6420 e1000_disable_pciex_master(struct e1000_hw *hw)
6421 {
6422 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
6423
6424 DEBUGFUNC("e1000_disable_pciex_master");
6425
6426 if (hw->bus_type != e1000_bus_type_pci_express)
6427 return E1000_SUCCESS;
6428
6429 e1000_set_pci_express_master_disable(hw);
6430
6431 while(timeout) {
6432 if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
6433 break;
6434 else
6435 udelay(100);
6436 timeout--;
6437 }
6438
6439 if(!timeout) {
6440 DEBUGOUT("Master requests are pending.\n");
6441 return -E1000_ERR_MASTER_REQUESTS_PENDING;
6442 }
6443
6444 return E1000_SUCCESS;
6445 }
6446
6447 /*******************************************************************************
6448 *
6449 * Check for EEPROM Auto Read bit done.
6450 *
6451 * hw: Struct containing variables accessed by shared code
6452 *
6453 * returns: - E1000_ERR_RESET if fail to reset MAC
6454 * E1000_SUCCESS at any other case.
6455 *
6456 ******************************************************************************/
6457 int32_t
6458 e1000_get_auto_rd_done(struct e1000_hw *hw)
6459 {
6460 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
6461
6462 DEBUGFUNC("e1000_get_auto_rd_done");
6463
6464 switch (hw->mac_type) {
6465 default:
6466 msec_delay(5);
6467 break;
6468 case e1000_82573:
6469 while(timeout) {
6470 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
6471 else msec_delay(1);
6472 timeout--;
6473 }
6474
6475 if(!timeout) {
6476 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
6477 return -E1000_ERR_RESET;
6478 }
6479 break;
6480 }
6481
6482 return E1000_SUCCESS;
6483 }
6484
6485 /***************************************************************************
6486 * Checks if the PHY configuration is done
6487 *
6488 * hw: Struct containing variables accessed by shared code
6489 *
6490 * returns: - E1000_ERR_RESET if fail to reset MAC
6491 * E1000_SUCCESS at any other case.
6492 *
6493 ***************************************************************************/
6494 int32_t
6495 e1000_get_phy_cfg_done(struct e1000_hw *hw)
6496 {
6497 DEBUGFUNC("e1000_get_phy_cfg_done");
6498
6499 /* Simply wait for 10ms */
6500 msec_delay(10);
6501
6502 return E1000_SUCCESS;
6503 }
6504
6505 /***************************************************************************
6506 *
6507 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
6508 * adapter or Eeprom access.
6509 *
6510 * hw: Struct containing variables accessed by shared code
6511 *
6512 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
6513 * E1000_SUCCESS at any other case.
6514 *
6515 ***************************************************************************/
6516 int32_t
6517 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
6518 {
6519 int32_t timeout;
6520 uint32_t swsm;
6521
6522 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
6523
6524 if(!hw->eeprom_semaphore_present)
6525 return E1000_SUCCESS;
6526
6527
6528 /* Get the FW semaphore. */
6529 timeout = hw->eeprom.word_size + 1;
6530 while(timeout) {
6531 swsm = E1000_READ_REG(hw, SWSM);
6532 swsm |= E1000_SWSM_SWESMBI;
6533 E1000_WRITE_REG(hw, SWSM, swsm);
6534 /* if we managed to set the bit we got the semaphore. */
6535 swsm = E1000_READ_REG(hw, SWSM);
6536 if(swsm & E1000_SWSM_SWESMBI)
6537 break;
6538
6539 udelay(50);
6540 timeout--;
6541 }
6542
6543 if(!timeout) {
6544 /* Release semaphores */
6545 e1000_put_hw_eeprom_semaphore(hw);
6546 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
6547 return -E1000_ERR_EEPROM;
6548 }
6549
6550 return E1000_SUCCESS;
6551 }
6552
6553 /***************************************************************************
6554 * This function clears HW semaphore bits.
6555 *
6556 * hw: Struct containing variables accessed by shared code
6557 *
6558 * returns: - None.
6559 *
6560 ***************************************************************************/
6561 void
6562 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
6563 {
6564 uint32_t swsm;
6565
6566 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
6567
6568 if(!hw->eeprom_semaphore_present)
6569 return;
6570
6571 swsm = E1000_READ_REG(hw, SWSM);
6572 /* Release both semaphores. */
6573 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
6574 E1000_WRITE_REG(hw, SWSM, swsm);
6575 }
6576
6577 /******************************************************************************
6578 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
6579 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
6580 * the caller to figure out how to deal with it.
6581 *
6582 * hw - Struct containing variables accessed by shared code
6583 *
6584 * returns: - E1000_BLK_PHY_RESET
6585 * E1000_SUCCESS
6586 *
6587 *****************************************************************************/
6588 int32_t
6589 e1000_check_phy_reset_block(struct e1000_hw *hw)
6590 {
6591 uint32_t manc = 0;
6592 if(hw->mac_type > e1000_82547_rev_2)
6593 manc = E1000_READ_REG(hw, MANC);
6594 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
6595 E1000_BLK_PHY_RESET : E1000_SUCCESS;
6596 }
6597
6598 uint8_t
6599 e1000_arc_subsystem_valid(struct e1000_hw *hw)
6600 {
6601 uint32_t fwsm;
6602
6603 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
6604 * may not be provided a DMA clock when no manageability features are
6605 * enabled. We do not want to perform any reads/writes to these registers
6606 * if this is the case. We read FWSM to determine the manageability mode.
6607 */
6608 switch (hw->mac_type) {
6609 case e1000_82573:
6610 fwsm = E1000_READ_REG(hw, FWSM);
6611 if((fwsm & E1000_FWSM_MODE_MASK) != 0)
6612 return TRUE;
6613 break;
6614 default:
6615 break;
6616 }
6617 return FALSE;
6618 }
6619
6620
6621