]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/e1000/e1000_main.c
Linux-2.6.12-rc2
[mirror_ubuntu-bionic-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32 * 5.3.12 6/7/04
33 * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
34 * - if_mii support and associated kcompat for older kernels
35 * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
36 * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
37 *
38 * 5.7.1 12/16/04
39 * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
40 * fix was removed as it caused system instability. The suspected cause of
41 * this is the called to e1000_irq_disable in e1000_intr. Inlined the
42 * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
43 * 5.7.0 12/10/04
44 * - include fix to the condition that determines when to quit NAPI - Robert Olsson
45 * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
46 * 5.6.5 11/01/04
47 * - Enabling NETIF_F_SG without checksum offload is illegal -
48 John Mason <jdmason@us.ibm.com>
49 * 5.6.3 10/26/04
50 * - Remove redundant initialization - Jamal Hadi
51 * - Reset buffer_info->dma in tx resource cleanup logic
52 * 5.6.2 10/12/04
53 * - Avoid filling tx_ring completely - shemminger@osdl.org
54 * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
55 * nacc@us.ibm.com
56 * - Sparse cleanup - shemminger@osdl.org
57 * - Fix tx resource cleanup logic
58 * - LLTX support - ak@suse.de and hadi@cyberus.ca
59 */
60
61 char e1000_driver_name[] = "e1000";
62 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
63 #ifndef CONFIG_E1000_NAPI
64 #define DRIVERNAPI
65 #else
66 #define DRIVERNAPI "-NAPI"
67 #endif
68 #define DRV_VERSION "5.7.6-k2"DRIVERNAPI
69 char e1000_driver_version[] = DRV_VERSION;
70 char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
71
72 /* e1000_pci_tbl - PCI Device ID Table
73 *
74 * Last entry must be all 0s
75 *
76 * Macro expands to...
77 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
78 */
79 static struct pci_device_id e1000_pci_tbl[] = {
80 INTEL_E1000_ETHERNET_DEVICE(0x1000),
81 INTEL_E1000_ETHERNET_DEVICE(0x1001),
82 INTEL_E1000_ETHERNET_DEVICE(0x1004),
83 INTEL_E1000_ETHERNET_DEVICE(0x1008),
84 INTEL_E1000_ETHERNET_DEVICE(0x1009),
85 INTEL_E1000_ETHERNET_DEVICE(0x100C),
86 INTEL_E1000_ETHERNET_DEVICE(0x100D),
87 INTEL_E1000_ETHERNET_DEVICE(0x100E),
88 INTEL_E1000_ETHERNET_DEVICE(0x100F),
89 INTEL_E1000_ETHERNET_DEVICE(0x1010),
90 INTEL_E1000_ETHERNET_DEVICE(0x1011),
91 INTEL_E1000_ETHERNET_DEVICE(0x1012),
92 INTEL_E1000_ETHERNET_DEVICE(0x1013),
93 INTEL_E1000_ETHERNET_DEVICE(0x1014),
94 INTEL_E1000_ETHERNET_DEVICE(0x1015),
95 INTEL_E1000_ETHERNET_DEVICE(0x1016),
96 INTEL_E1000_ETHERNET_DEVICE(0x1017),
97 INTEL_E1000_ETHERNET_DEVICE(0x1018),
98 INTEL_E1000_ETHERNET_DEVICE(0x1019),
99 INTEL_E1000_ETHERNET_DEVICE(0x101D),
100 INTEL_E1000_ETHERNET_DEVICE(0x101E),
101 INTEL_E1000_ETHERNET_DEVICE(0x1026),
102 INTEL_E1000_ETHERNET_DEVICE(0x1027),
103 INTEL_E1000_ETHERNET_DEVICE(0x1028),
104 INTEL_E1000_ETHERNET_DEVICE(0x1075),
105 INTEL_E1000_ETHERNET_DEVICE(0x1076),
106 INTEL_E1000_ETHERNET_DEVICE(0x1077),
107 INTEL_E1000_ETHERNET_DEVICE(0x1078),
108 INTEL_E1000_ETHERNET_DEVICE(0x1079),
109 INTEL_E1000_ETHERNET_DEVICE(0x107A),
110 INTEL_E1000_ETHERNET_DEVICE(0x107B),
111 INTEL_E1000_ETHERNET_DEVICE(0x107C),
112 INTEL_E1000_ETHERNET_DEVICE(0x108A),
113 /* required last entry */
114 {0,}
115 };
116
117 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
118
119 int e1000_up(struct e1000_adapter *adapter);
120 void e1000_down(struct e1000_adapter *adapter);
121 void e1000_reset(struct e1000_adapter *adapter);
122 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
123 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
124 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
125 void e1000_free_tx_resources(struct e1000_adapter *adapter);
126 void e1000_free_rx_resources(struct e1000_adapter *adapter);
127 void e1000_update_stats(struct e1000_adapter *adapter);
128
129 /* Local Function Prototypes */
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
142 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
143 static void e1000_set_multi(struct net_device *netdev);
144 static void e1000_update_phy_info(unsigned long data);
145 static void e1000_watchdog(unsigned long data);
146 static void e1000_watchdog_task(struct e1000_adapter *adapter);
147 static void e1000_82547_tx_fifo_stall(unsigned long data);
148 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
149 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
150 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
151 static int e1000_set_mac(struct net_device *netdev, void *p);
152 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
153 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
154 #ifdef CONFIG_E1000_NAPI
155 static int e1000_clean(struct net_device *netdev, int *budget);
156 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
157 int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
160 #endif
161 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
162 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
163 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
164 int cmd);
165 void e1000_set_ethtool_ops(struct net_device *netdev);
166 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
167 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
168 static void e1000_tx_timeout(struct net_device *dev);
169 static void e1000_tx_timeout_task(struct net_device *dev);
170 static void e1000_smartspeed(struct e1000_adapter *adapter);
171 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
172 struct sk_buff *skb);
173
174 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
175 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
176 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
177 static void e1000_restore_vlan(struct e1000_adapter *adapter);
178
179 static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
180 static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
181 #ifdef CONFIG_PM
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void e1000_netpoll (struct net_device *netdev);
188 #endif
189
190 struct notifier_block e1000_notifier_reboot = {
191 .notifier_call = e1000_notify_reboot,
192 .next = NULL,
193 .priority = 0
194 };
195
196 /* Exported from other modules */
197
198 extern void e1000_check_options(struct e1000_adapter *adapter);
199
200 static struct pci_driver e1000_driver = {
201 .name = e1000_driver_name,
202 .id_table = e1000_pci_tbl,
203 .probe = e1000_probe,
204 .remove = __devexit_p(e1000_remove),
205 /* Power Managment Hooks */
206 #ifdef CONFIG_PM
207 .suspend = e1000_suspend,
208 .resume = e1000_resume
209 #endif
210 };
211
212 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
213 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
214 MODULE_LICENSE("GPL");
215 MODULE_VERSION(DRV_VERSION);
216
217 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
218 module_param(debug, int, 0);
219 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
220
221 /**
222 * e1000_init_module - Driver Registration Routine
223 *
224 * e1000_init_module is the first routine called when the driver is
225 * loaded. All it does is register with the PCI subsystem.
226 **/
227
228 static int __init
229 e1000_init_module(void)
230 {
231 int ret;
232 printk(KERN_INFO "%s - version %s\n",
233 e1000_driver_string, e1000_driver_version);
234
235 printk(KERN_INFO "%s\n", e1000_copyright);
236
237 ret = pci_module_init(&e1000_driver);
238 if(ret >= 0) {
239 register_reboot_notifier(&e1000_notifier_reboot);
240 }
241 return ret;
242 }
243
244 module_init(e1000_init_module);
245
246 /**
247 * e1000_exit_module - Driver Exit Cleanup Routine
248 *
249 * e1000_exit_module is called just before the driver is removed
250 * from memory.
251 **/
252
253 static void __exit
254 e1000_exit_module(void)
255 {
256 unregister_reboot_notifier(&e1000_notifier_reboot);
257 pci_unregister_driver(&e1000_driver);
258 }
259
260 module_exit(e1000_exit_module);
261
262 /**
263 * e1000_irq_disable - Mask off interrupt generation on the NIC
264 * @adapter: board private structure
265 **/
266
267 static inline void
268 e1000_irq_disable(struct e1000_adapter *adapter)
269 {
270 atomic_inc(&adapter->irq_sem);
271 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
272 E1000_WRITE_FLUSH(&adapter->hw);
273 synchronize_irq(adapter->pdev->irq);
274 }
275
276 /**
277 * e1000_irq_enable - Enable default interrupt generation settings
278 * @adapter: board private structure
279 **/
280
281 static inline void
282 e1000_irq_enable(struct e1000_adapter *adapter)
283 {
284 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
285 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
286 E1000_WRITE_FLUSH(&adapter->hw);
287 }
288 }
289
290 int
291 e1000_up(struct e1000_adapter *adapter)
292 {
293 struct net_device *netdev = adapter->netdev;
294 int err;
295
296 /* hardware has been reset, we need to reload some things */
297
298 /* Reset the PHY if it was previously powered down */
299 if(adapter->hw.media_type == e1000_media_type_copper) {
300 uint16_t mii_reg;
301 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
302 if(mii_reg & MII_CR_POWER_DOWN)
303 e1000_phy_reset(&adapter->hw);
304 }
305
306 e1000_set_multi(netdev);
307
308 e1000_restore_vlan(adapter);
309
310 e1000_configure_tx(adapter);
311 e1000_setup_rctl(adapter);
312 e1000_configure_rx(adapter);
313 e1000_alloc_rx_buffers(adapter);
314
315 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
316 SA_SHIRQ | SA_SAMPLE_RANDOM,
317 netdev->name, netdev)))
318 return err;
319
320 mod_timer(&adapter->watchdog_timer, jiffies);
321 e1000_irq_enable(adapter);
322
323 #ifdef CONFIG_E1000_NAPI
324 netif_poll_enable(netdev);
325 #endif
326 return 0;
327 }
328
329 void
330 e1000_down(struct e1000_adapter *adapter)
331 {
332 struct net_device *netdev = adapter->netdev;
333
334 e1000_irq_disable(adapter);
335 free_irq(adapter->pdev->irq, netdev);
336 del_timer_sync(&adapter->tx_fifo_stall_timer);
337 del_timer_sync(&adapter->watchdog_timer);
338 del_timer_sync(&adapter->phy_info_timer);
339
340 #ifdef CONFIG_E1000_NAPI
341 netif_poll_disable(netdev);
342 #endif
343 adapter->link_speed = 0;
344 adapter->link_duplex = 0;
345 netif_carrier_off(netdev);
346 netif_stop_queue(netdev);
347
348 e1000_reset(adapter);
349 e1000_clean_tx_ring(adapter);
350 e1000_clean_rx_ring(adapter);
351
352 /* If WoL is not enabled
353 * Power down the PHY so no link is implied when interface is down */
354 if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
355 uint16_t mii_reg;
356 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
357 mii_reg |= MII_CR_POWER_DOWN;
358 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
359 }
360 }
361
362 void
363 e1000_reset(struct e1000_adapter *adapter)
364 {
365 uint32_t pba;
366
367 /* Repartition Pba for greater than 9k mtu
368 * To take effect CTRL.RST is required.
369 */
370
371 if(adapter->hw.mac_type < e1000_82547) {
372 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
373 pba = E1000_PBA_40K;
374 else
375 pba = E1000_PBA_48K;
376 } else {
377 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
378 pba = E1000_PBA_22K;
379 else
380 pba = E1000_PBA_30K;
381 adapter->tx_fifo_head = 0;
382 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
383 adapter->tx_fifo_size =
384 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
385 atomic_set(&adapter->tx_fifo_stall, 0);
386 }
387 E1000_WRITE_REG(&adapter->hw, PBA, pba);
388
389 /* flow control settings */
390 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
391 E1000_FC_HIGH_DIFF;
392 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
393 E1000_FC_LOW_DIFF;
394 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
395 adapter->hw.fc_send_xon = 1;
396 adapter->hw.fc = adapter->hw.original_fc;
397
398 e1000_reset_hw(&adapter->hw);
399 if(adapter->hw.mac_type >= e1000_82544)
400 E1000_WRITE_REG(&adapter->hw, WUC, 0);
401 if(e1000_init_hw(&adapter->hw))
402 DPRINTK(PROBE, ERR, "Hardware Error\n");
403
404 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
405 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
406
407 e1000_reset_adaptive(&adapter->hw);
408 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
409 }
410
411 /**
412 * e1000_probe - Device Initialization Routine
413 * @pdev: PCI device information struct
414 * @ent: entry in e1000_pci_tbl
415 *
416 * Returns 0 on success, negative on failure
417 *
418 * e1000_probe initializes an adapter identified by a pci_dev structure.
419 * The OS initialization, configuring of the adapter private structure,
420 * and a hardware reset occur.
421 **/
422
423 static int __devinit
424 e1000_probe(struct pci_dev *pdev,
425 const struct pci_device_id *ent)
426 {
427 struct net_device *netdev;
428 struct e1000_adapter *adapter;
429 static int cards_found = 0;
430 unsigned long mmio_start;
431 int mmio_len;
432 int pci_using_dac;
433 int i;
434 int err;
435 uint16_t eeprom_data;
436 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
437
438 if((err = pci_enable_device(pdev)))
439 return err;
440
441 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
442 pci_using_dac = 1;
443 } else {
444 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
445 E1000_ERR("No usable DMA configuration, aborting\n");
446 return err;
447 }
448 pci_using_dac = 0;
449 }
450
451 if((err = pci_request_regions(pdev, e1000_driver_name)))
452 return err;
453
454 pci_set_master(pdev);
455
456 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
457 if(!netdev) {
458 err = -ENOMEM;
459 goto err_alloc_etherdev;
460 }
461
462 SET_MODULE_OWNER(netdev);
463 SET_NETDEV_DEV(netdev, &pdev->dev);
464
465 pci_set_drvdata(pdev, netdev);
466 adapter = netdev->priv;
467 adapter->netdev = netdev;
468 adapter->pdev = pdev;
469 adapter->hw.back = adapter;
470 adapter->msg_enable = (1 << debug) - 1;
471
472 mmio_start = pci_resource_start(pdev, BAR_0);
473 mmio_len = pci_resource_len(pdev, BAR_0);
474
475 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
476 if(!adapter->hw.hw_addr) {
477 err = -EIO;
478 goto err_ioremap;
479 }
480
481 for(i = BAR_1; i <= BAR_5; i++) {
482 if(pci_resource_len(pdev, i) == 0)
483 continue;
484 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
485 adapter->hw.io_base = pci_resource_start(pdev, i);
486 break;
487 }
488 }
489
490 netdev->open = &e1000_open;
491 netdev->stop = &e1000_close;
492 netdev->hard_start_xmit = &e1000_xmit_frame;
493 netdev->get_stats = &e1000_get_stats;
494 netdev->set_multicast_list = &e1000_set_multi;
495 netdev->set_mac_address = &e1000_set_mac;
496 netdev->change_mtu = &e1000_change_mtu;
497 netdev->do_ioctl = &e1000_ioctl;
498 e1000_set_ethtool_ops(netdev);
499 netdev->tx_timeout = &e1000_tx_timeout;
500 netdev->watchdog_timeo = 5 * HZ;
501 #ifdef CONFIG_E1000_NAPI
502 netdev->poll = &e1000_clean;
503 netdev->weight = 64;
504 #endif
505 netdev->vlan_rx_register = e1000_vlan_rx_register;
506 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
507 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
508 #ifdef CONFIG_NET_POLL_CONTROLLER
509 netdev->poll_controller = e1000_netpoll;
510 #endif
511 strcpy(netdev->name, pci_name(pdev));
512
513 netdev->mem_start = mmio_start;
514 netdev->mem_end = mmio_start + mmio_len;
515 netdev->base_addr = adapter->hw.io_base;
516
517 adapter->bd_number = cards_found;
518
519 /* setup the private structure */
520
521 if((err = e1000_sw_init(adapter)))
522 goto err_sw_init;
523
524 if(adapter->hw.mac_type >= e1000_82543) {
525 netdev->features = NETIF_F_SG |
526 NETIF_F_HW_CSUM |
527 NETIF_F_HW_VLAN_TX |
528 NETIF_F_HW_VLAN_RX |
529 NETIF_F_HW_VLAN_FILTER;
530 }
531
532 #ifdef NETIF_F_TSO
533 if((adapter->hw.mac_type >= e1000_82544) &&
534 (adapter->hw.mac_type != e1000_82547))
535 netdev->features |= NETIF_F_TSO;
536 #endif
537 if(pci_using_dac)
538 netdev->features |= NETIF_F_HIGHDMA;
539
540 /* hard_start_xmit is safe against parallel locking */
541 netdev->features |= NETIF_F_LLTX;
542
543 /* before reading the EEPROM, reset the controller to
544 * put the device in a known good starting state */
545
546 e1000_reset_hw(&adapter->hw);
547
548 /* make sure the EEPROM is good */
549
550 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
551 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
552 err = -EIO;
553 goto err_eeprom;
554 }
555
556 /* copy the MAC address out of the EEPROM */
557
558 if (e1000_read_mac_addr(&adapter->hw))
559 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
560 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
561
562 if(!is_valid_ether_addr(netdev->dev_addr)) {
563 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
564 err = -EIO;
565 goto err_eeprom;
566 }
567
568 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
569
570 e1000_get_bus_info(&adapter->hw);
571
572 init_timer(&adapter->tx_fifo_stall_timer);
573 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
574 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
575
576 init_timer(&adapter->watchdog_timer);
577 adapter->watchdog_timer.function = &e1000_watchdog;
578 adapter->watchdog_timer.data = (unsigned long) adapter;
579
580 INIT_WORK(&adapter->watchdog_task,
581 (void (*)(void *))e1000_watchdog_task, adapter);
582
583 init_timer(&adapter->phy_info_timer);
584 adapter->phy_info_timer.function = &e1000_update_phy_info;
585 adapter->phy_info_timer.data = (unsigned long) adapter;
586
587 INIT_WORK(&adapter->tx_timeout_task,
588 (void (*)(void *))e1000_tx_timeout_task, netdev);
589
590 /* we're going to reset, so assume we have no link for now */
591
592 netif_carrier_off(netdev);
593 netif_stop_queue(netdev);
594
595 e1000_check_options(adapter);
596
597 /* Initial Wake on LAN setting
598 * If APM wake is enabled in the EEPROM,
599 * enable the ACPI Magic Packet filter
600 */
601
602 switch(adapter->hw.mac_type) {
603 case e1000_82542_rev2_0:
604 case e1000_82542_rev2_1:
605 case e1000_82543:
606 break;
607 case e1000_82544:
608 e1000_read_eeprom(&adapter->hw,
609 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
610 eeprom_apme_mask = E1000_EEPROM_82544_APM;
611 break;
612 case e1000_82546:
613 case e1000_82546_rev_3:
614 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
615 && (adapter->hw.media_type == e1000_media_type_copper)) {
616 e1000_read_eeprom(&adapter->hw,
617 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
618 break;
619 }
620 /* Fall Through */
621 default:
622 e1000_read_eeprom(&adapter->hw,
623 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
624 break;
625 }
626 if(eeprom_data & eeprom_apme_mask)
627 adapter->wol |= E1000_WUFC_MAG;
628
629 /* reset the hardware with the new settings */
630 e1000_reset(adapter);
631
632 strcpy(netdev->name, "eth%d");
633 if((err = register_netdev(netdev)))
634 goto err_register;
635
636 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
637
638 cards_found++;
639 return 0;
640
641 err_register:
642 err_sw_init:
643 err_eeprom:
644 iounmap(adapter->hw.hw_addr);
645 err_ioremap:
646 free_netdev(netdev);
647 err_alloc_etherdev:
648 pci_release_regions(pdev);
649 return err;
650 }
651
652 /**
653 * e1000_remove - Device Removal Routine
654 * @pdev: PCI device information struct
655 *
656 * e1000_remove is called by the PCI subsystem to alert the driver
657 * that it should release a PCI device. The could be caused by a
658 * Hot-Plug event, or because the driver is going to be removed from
659 * memory.
660 **/
661
662 static void __devexit
663 e1000_remove(struct pci_dev *pdev)
664 {
665 struct net_device *netdev = pci_get_drvdata(pdev);
666 struct e1000_adapter *adapter = netdev->priv;
667 uint32_t manc;
668
669 flush_scheduled_work();
670
671 if(adapter->hw.mac_type >= e1000_82540 &&
672 adapter->hw.media_type == e1000_media_type_copper) {
673 manc = E1000_READ_REG(&adapter->hw, MANC);
674 if(manc & E1000_MANC_SMBUS_EN) {
675 manc |= E1000_MANC_ARP_EN;
676 E1000_WRITE_REG(&adapter->hw, MANC, manc);
677 }
678 }
679
680 unregister_netdev(netdev);
681
682 e1000_phy_hw_reset(&adapter->hw);
683
684 iounmap(adapter->hw.hw_addr);
685 pci_release_regions(pdev);
686
687 free_netdev(netdev);
688
689 pci_disable_device(pdev);
690 }
691
692 /**
693 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
694 * @adapter: board private structure to initialize
695 *
696 * e1000_sw_init initializes the Adapter private data structure.
697 * Fields are initialized based on PCI device information and
698 * OS network device settings (MTU size).
699 **/
700
701 static int __devinit
702 e1000_sw_init(struct e1000_adapter *adapter)
703 {
704 struct e1000_hw *hw = &adapter->hw;
705 struct net_device *netdev = adapter->netdev;
706 struct pci_dev *pdev = adapter->pdev;
707
708 /* PCI config space info */
709
710 hw->vendor_id = pdev->vendor;
711 hw->device_id = pdev->device;
712 hw->subsystem_vendor_id = pdev->subsystem_vendor;
713 hw->subsystem_id = pdev->subsystem_device;
714
715 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
716
717 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
718
719 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
720 hw->max_frame_size = netdev->mtu +
721 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
722 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
723
724 /* identify the MAC */
725
726 if(e1000_set_mac_type(hw)) {
727 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
728 return -EIO;
729 }
730
731 /* initialize eeprom parameters */
732
733 e1000_init_eeprom_params(hw);
734
735 switch(hw->mac_type) {
736 default:
737 break;
738 case e1000_82541:
739 case e1000_82547:
740 case e1000_82541_rev_2:
741 case e1000_82547_rev_2:
742 hw->phy_init_script = 1;
743 break;
744 }
745
746 e1000_set_media_type(hw);
747
748 hw->wait_autoneg_complete = FALSE;
749 hw->tbi_compatibility_en = TRUE;
750 hw->adaptive_ifs = TRUE;
751
752 /* Copper options */
753
754 if(hw->media_type == e1000_media_type_copper) {
755 hw->mdix = AUTO_ALL_MODES;
756 hw->disable_polarity_correction = FALSE;
757 hw->master_slave = E1000_MASTER_SLAVE;
758 }
759
760 atomic_set(&adapter->irq_sem, 1);
761 spin_lock_init(&adapter->stats_lock);
762 spin_lock_init(&adapter->tx_lock);
763
764 return 0;
765 }
766
767 /**
768 * e1000_open - Called when a network interface is made active
769 * @netdev: network interface device structure
770 *
771 * Returns 0 on success, negative value on failure
772 *
773 * The open entry point is called when a network interface is made
774 * active by the system (IFF_UP). At this point all resources needed
775 * for transmit and receive operations are allocated, the interrupt
776 * handler is registered with the OS, the watchdog timer is started,
777 * and the stack is notified that the interface is ready.
778 **/
779
780 static int
781 e1000_open(struct net_device *netdev)
782 {
783 struct e1000_adapter *adapter = netdev->priv;
784 int err;
785
786 /* allocate transmit descriptors */
787
788 if((err = e1000_setup_tx_resources(adapter)))
789 goto err_setup_tx;
790
791 /* allocate receive descriptors */
792
793 if((err = e1000_setup_rx_resources(adapter)))
794 goto err_setup_rx;
795
796 if((err = e1000_up(adapter)))
797 goto err_up;
798
799 return E1000_SUCCESS;
800
801 err_up:
802 e1000_free_rx_resources(adapter);
803 err_setup_rx:
804 e1000_free_tx_resources(adapter);
805 err_setup_tx:
806 e1000_reset(adapter);
807
808 return err;
809 }
810
811 /**
812 * e1000_close - Disables a network interface
813 * @netdev: network interface device structure
814 *
815 * Returns 0, this is not allowed to fail
816 *
817 * The close entry point is called when an interface is de-activated
818 * by the OS. The hardware is still under the drivers control, but
819 * needs to be disabled. A global MAC reset is issued to stop the
820 * hardware, and all transmit and receive resources are freed.
821 **/
822
823 static int
824 e1000_close(struct net_device *netdev)
825 {
826 struct e1000_adapter *adapter = netdev->priv;
827
828 e1000_down(adapter);
829
830 e1000_free_tx_resources(adapter);
831 e1000_free_rx_resources(adapter);
832
833 return 0;
834 }
835
836 /**
837 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
838 * @adapter: address of board private structure
839 * @begin: address of beginning of memory
840 * @end: address of end of memory
841 **/
842 static inline boolean_t
843 e1000_check_64k_bound(struct e1000_adapter *adapter,
844 void *start, unsigned long len)
845 {
846 unsigned long begin = (unsigned long) start;
847 unsigned long end = begin + len;
848
849 /* first rev 82545 and 82546 need to not allow any memory
850 * write location to cross a 64k boundary due to errata 23 */
851 if (adapter->hw.mac_type == e1000_82545 ||
852 adapter->hw.mac_type == e1000_82546 ) {
853
854 /* check buffer doesn't cross 64kB */
855 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
856 }
857
858 return TRUE;
859 }
860
861 /**
862 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
863 * @adapter: board private structure
864 *
865 * Return 0 on success, negative on failure
866 **/
867
868 int
869 e1000_setup_tx_resources(struct e1000_adapter *adapter)
870 {
871 struct e1000_desc_ring *txdr = &adapter->tx_ring;
872 struct pci_dev *pdev = adapter->pdev;
873 int size;
874
875 size = sizeof(struct e1000_buffer) * txdr->count;
876 txdr->buffer_info = vmalloc(size);
877 if(!txdr->buffer_info) {
878 DPRINTK(PROBE, ERR,
879 "Unable to Allocate Memory for the Transmit descriptor ring\n");
880 return -ENOMEM;
881 }
882 memset(txdr->buffer_info, 0, size);
883
884 /* round up to nearest 4K */
885
886 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
887 E1000_ROUNDUP(txdr->size, 4096);
888
889 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
890 if(!txdr->desc) {
891 setup_tx_desc_die:
892 DPRINTK(PROBE, ERR,
893 "Unable to Allocate Memory for the Transmit descriptor ring\n");
894 vfree(txdr->buffer_info);
895 return -ENOMEM;
896 }
897
898 /* fix for errata 23, cant cross 64kB boundary */
899 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
900 void *olddesc = txdr->desc;
901 dma_addr_t olddma = txdr->dma;
902 DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
903 txdr->size, txdr->desc);
904 /* try again, without freeing the previous */
905 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
906 /* failed allocation, critial failure */
907 if(!txdr->desc) {
908 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
909 goto setup_tx_desc_die;
910 }
911
912 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
913 /* give up */
914 pci_free_consistent(pdev, txdr->size,
915 txdr->desc, txdr->dma);
916 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
917 DPRINTK(PROBE, ERR,
918 "Unable to Allocate aligned Memory for the Transmit"
919 " descriptor ring\n");
920 vfree(txdr->buffer_info);
921 return -ENOMEM;
922 } else {
923 /* free old, move on with the new one since its okay */
924 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
925 }
926 }
927 memset(txdr->desc, 0, txdr->size);
928
929 txdr->next_to_use = 0;
930 txdr->next_to_clean = 0;
931
932 return 0;
933 }
934
935 /**
936 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
937 * @adapter: board private structure
938 *
939 * Configure the Tx unit of the MAC after a reset.
940 **/
941
942 static void
943 e1000_configure_tx(struct e1000_adapter *adapter)
944 {
945 uint64_t tdba = adapter->tx_ring.dma;
946 uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
947 uint32_t tctl, tipg;
948
949 E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
950 E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
951
952 E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
953
954 /* Setup the HW Tx Head and Tail descriptor pointers */
955
956 E1000_WRITE_REG(&adapter->hw, TDH, 0);
957 E1000_WRITE_REG(&adapter->hw, TDT, 0);
958
959 /* Set the default values for the Tx Inter Packet Gap timer */
960
961 switch (adapter->hw.mac_type) {
962 case e1000_82542_rev2_0:
963 case e1000_82542_rev2_1:
964 tipg = DEFAULT_82542_TIPG_IPGT;
965 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
966 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
967 break;
968 default:
969 if(adapter->hw.media_type == e1000_media_type_fiber ||
970 adapter->hw.media_type == e1000_media_type_internal_serdes)
971 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
972 else
973 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
974 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
975 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
976 }
977 E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
978
979 /* Set the Tx Interrupt Delay register */
980
981 E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
982 if(adapter->hw.mac_type >= e1000_82540)
983 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
984
985 /* Program the Transmit Control Register */
986
987 tctl = E1000_READ_REG(&adapter->hw, TCTL);
988
989 tctl &= ~E1000_TCTL_CT;
990 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
991 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
992
993 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
994
995 e1000_config_collision_dist(&adapter->hw);
996
997 /* Setup Transmit Descriptor Settings for eop descriptor */
998 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
999 E1000_TXD_CMD_IFCS;
1000
1001 if(adapter->hw.mac_type < e1000_82543)
1002 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1003 else
1004 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1005
1006 /* Cache if we're 82544 running in PCI-X because we'll
1007 * need this to apply a workaround later in the send path. */
1008 if(adapter->hw.mac_type == e1000_82544 &&
1009 adapter->hw.bus_type == e1000_bus_type_pcix)
1010 adapter->pcix_82544 = 1;
1011 }
1012
1013 /**
1014 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1015 * @adapter: board private structure
1016 *
1017 * Returns 0 on success, negative on failure
1018 **/
1019
1020 int
1021 e1000_setup_rx_resources(struct e1000_adapter *adapter)
1022 {
1023 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1024 struct pci_dev *pdev = adapter->pdev;
1025 int size;
1026
1027 size = sizeof(struct e1000_buffer) * rxdr->count;
1028 rxdr->buffer_info = vmalloc(size);
1029 if(!rxdr->buffer_info) {
1030 DPRINTK(PROBE, ERR,
1031 "Unable to Allocate Memory for the Recieve descriptor ring\n");
1032 return -ENOMEM;
1033 }
1034 memset(rxdr->buffer_info, 0, size);
1035
1036 /* Round up to nearest 4K */
1037
1038 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1039 E1000_ROUNDUP(rxdr->size, 4096);
1040
1041 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1042
1043 if(!rxdr->desc) {
1044 setup_rx_desc_die:
1045 DPRINTK(PROBE, ERR,
1046 "Unble to Allocate Memory for the Recieve descriptor ring\n");
1047 vfree(rxdr->buffer_info);
1048 return -ENOMEM;
1049 }
1050
1051 /* fix for errata 23, cant cross 64kB boundary */
1052 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1053 void *olddesc = rxdr->desc;
1054 dma_addr_t olddma = rxdr->dma;
1055 DPRINTK(RX_ERR,ERR,
1056 "rxdr align check failed: %u bytes at %p\n",
1057 rxdr->size, rxdr->desc);
1058 /* try again, without freeing the previous */
1059 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1060 /* failed allocation, critial failure */
1061 if(!rxdr->desc) {
1062 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1063 goto setup_rx_desc_die;
1064 }
1065
1066 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1067 /* give up */
1068 pci_free_consistent(pdev, rxdr->size,
1069 rxdr->desc, rxdr->dma);
1070 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1071 DPRINTK(PROBE, ERR,
1072 "Unable to Allocate aligned Memory for the"
1073 " Receive descriptor ring\n");
1074 vfree(rxdr->buffer_info);
1075 return -ENOMEM;
1076 } else {
1077 /* free old, move on with the new one since its okay */
1078 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1079 }
1080 }
1081 memset(rxdr->desc, 0, rxdr->size);
1082
1083 rxdr->next_to_clean = 0;
1084 rxdr->next_to_use = 0;
1085
1086 return 0;
1087 }
1088
1089 /**
1090 * e1000_setup_rctl - configure the receive control register
1091 * @adapter: Board private structure
1092 **/
1093
1094 static void
1095 e1000_setup_rctl(struct e1000_adapter *adapter)
1096 {
1097 uint32_t rctl;
1098
1099 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1100
1101 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1102
1103 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1104 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1105 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1106
1107 if(adapter->hw.tbi_compatibility_on == 1)
1108 rctl |= E1000_RCTL_SBP;
1109 else
1110 rctl &= ~E1000_RCTL_SBP;
1111
1112 /* Setup buffer sizes */
1113 rctl &= ~(E1000_RCTL_SZ_4096);
1114 rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
1115 switch (adapter->rx_buffer_len) {
1116 case E1000_RXBUFFER_2048:
1117 default:
1118 rctl |= E1000_RCTL_SZ_2048;
1119 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
1120 break;
1121 case E1000_RXBUFFER_4096:
1122 rctl |= E1000_RCTL_SZ_4096;
1123 break;
1124 case E1000_RXBUFFER_8192:
1125 rctl |= E1000_RCTL_SZ_8192;
1126 break;
1127 case E1000_RXBUFFER_16384:
1128 rctl |= E1000_RCTL_SZ_16384;
1129 break;
1130 }
1131
1132 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1133 }
1134
1135 /**
1136 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1137 * @adapter: board private structure
1138 *
1139 * Configure the Rx unit of the MAC after a reset.
1140 **/
1141
1142 static void
1143 e1000_configure_rx(struct e1000_adapter *adapter)
1144 {
1145 uint64_t rdba = adapter->rx_ring.dma;
1146 uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1147 uint32_t rctl;
1148 uint32_t rxcsum;
1149
1150 /* disable receives while setting up the descriptors */
1151 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1152 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1153
1154 /* set the Receive Delay Timer Register */
1155 E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1156
1157 if(adapter->hw.mac_type >= e1000_82540) {
1158 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1159 if(adapter->itr > 1)
1160 E1000_WRITE_REG(&adapter->hw, ITR,
1161 1000000000 / (adapter->itr * 256));
1162 }
1163
1164 /* Setup the Base and Length of the Rx Descriptor Ring */
1165 E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1166 E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1167
1168 E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1169
1170 /* Setup the HW Rx Head and Tail Descriptor Pointers */
1171 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1172 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1173
1174 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1175 if((adapter->hw.mac_type >= e1000_82543) &&
1176 (adapter->rx_csum == TRUE)) {
1177 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1178 rxcsum |= E1000_RXCSUM_TUOFL;
1179 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1180 }
1181
1182 /* Enable Receives */
1183 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1184 }
1185
1186 /**
1187 * e1000_free_tx_resources - Free Tx Resources
1188 * @adapter: board private structure
1189 *
1190 * Free all transmit software resources
1191 **/
1192
1193 void
1194 e1000_free_tx_resources(struct e1000_adapter *adapter)
1195 {
1196 struct pci_dev *pdev = adapter->pdev;
1197
1198 e1000_clean_tx_ring(adapter);
1199
1200 vfree(adapter->tx_ring.buffer_info);
1201 adapter->tx_ring.buffer_info = NULL;
1202
1203 pci_free_consistent(pdev, adapter->tx_ring.size,
1204 adapter->tx_ring.desc, adapter->tx_ring.dma);
1205
1206 adapter->tx_ring.desc = NULL;
1207 }
1208
1209 static inline void
1210 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1211 struct e1000_buffer *buffer_info)
1212 {
1213 struct pci_dev *pdev = adapter->pdev;
1214
1215 if(buffer_info->dma) {
1216 pci_unmap_page(pdev,
1217 buffer_info->dma,
1218 buffer_info->length,
1219 PCI_DMA_TODEVICE);
1220 buffer_info->dma = 0;
1221 }
1222 if(buffer_info->skb) {
1223 dev_kfree_skb_any(buffer_info->skb);
1224 buffer_info->skb = NULL;
1225 }
1226 }
1227
1228 /**
1229 * e1000_clean_tx_ring - Free Tx Buffers
1230 * @adapter: board private structure
1231 **/
1232
1233 static void
1234 e1000_clean_tx_ring(struct e1000_adapter *adapter)
1235 {
1236 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1237 struct e1000_buffer *buffer_info;
1238 unsigned long size;
1239 unsigned int i;
1240
1241 /* Free all the Tx ring sk_buffs */
1242
1243 if (likely(adapter->previous_buffer_info.skb != NULL)) {
1244 e1000_unmap_and_free_tx_resource(adapter,
1245 &adapter->previous_buffer_info);
1246 }
1247
1248 for(i = 0; i < tx_ring->count; i++) {
1249 buffer_info = &tx_ring->buffer_info[i];
1250 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1251 }
1252
1253 size = sizeof(struct e1000_buffer) * tx_ring->count;
1254 memset(tx_ring->buffer_info, 0, size);
1255
1256 /* Zero out the descriptor ring */
1257
1258 memset(tx_ring->desc, 0, tx_ring->size);
1259
1260 tx_ring->next_to_use = 0;
1261 tx_ring->next_to_clean = 0;
1262
1263 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1264 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1265 }
1266
1267 /**
1268 * e1000_free_rx_resources - Free Rx Resources
1269 * @adapter: board private structure
1270 *
1271 * Free all receive software resources
1272 **/
1273
1274 void
1275 e1000_free_rx_resources(struct e1000_adapter *adapter)
1276 {
1277 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1278 struct pci_dev *pdev = adapter->pdev;
1279
1280 e1000_clean_rx_ring(adapter);
1281
1282 vfree(rx_ring->buffer_info);
1283 rx_ring->buffer_info = NULL;
1284
1285 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1286
1287 rx_ring->desc = NULL;
1288 }
1289
1290 /**
1291 * e1000_clean_rx_ring - Free Rx Buffers
1292 * @adapter: board private structure
1293 **/
1294
1295 static void
1296 e1000_clean_rx_ring(struct e1000_adapter *adapter)
1297 {
1298 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1299 struct e1000_buffer *buffer_info;
1300 struct pci_dev *pdev = adapter->pdev;
1301 unsigned long size;
1302 unsigned int i;
1303
1304 /* Free all the Rx ring sk_buffs */
1305
1306 for(i = 0; i < rx_ring->count; i++) {
1307 buffer_info = &rx_ring->buffer_info[i];
1308 if(buffer_info->skb) {
1309
1310 pci_unmap_single(pdev,
1311 buffer_info->dma,
1312 buffer_info->length,
1313 PCI_DMA_FROMDEVICE);
1314
1315 dev_kfree_skb(buffer_info->skb);
1316 buffer_info->skb = NULL;
1317 }
1318 }
1319
1320 size = sizeof(struct e1000_buffer) * rx_ring->count;
1321 memset(rx_ring->buffer_info, 0, size);
1322
1323 /* Zero out the descriptor ring */
1324
1325 memset(rx_ring->desc, 0, rx_ring->size);
1326
1327 rx_ring->next_to_clean = 0;
1328 rx_ring->next_to_use = 0;
1329
1330 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1331 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1332 }
1333
1334 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1335 * and memory write and invalidate disabled for certain operations
1336 */
1337 static void
1338 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1339 {
1340 struct net_device *netdev = adapter->netdev;
1341 uint32_t rctl;
1342
1343 e1000_pci_clear_mwi(&adapter->hw);
1344
1345 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1346 rctl |= E1000_RCTL_RST;
1347 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1348 E1000_WRITE_FLUSH(&adapter->hw);
1349 mdelay(5);
1350
1351 if(netif_running(netdev))
1352 e1000_clean_rx_ring(adapter);
1353 }
1354
1355 static void
1356 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1357 {
1358 struct net_device *netdev = adapter->netdev;
1359 uint32_t rctl;
1360
1361 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1362 rctl &= ~E1000_RCTL_RST;
1363 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1364 E1000_WRITE_FLUSH(&adapter->hw);
1365 mdelay(5);
1366
1367 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1368 e1000_pci_set_mwi(&adapter->hw);
1369
1370 if(netif_running(netdev)) {
1371 e1000_configure_rx(adapter);
1372 e1000_alloc_rx_buffers(adapter);
1373 }
1374 }
1375
1376 /**
1377 * e1000_set_mac - Change the Ethernet Address of the NIC
1378 * @netdev: network interface device structure
1379 * @p: pointer to an address structure
1380 *
1381 * Returns 0 on success, negative on failure
1382 **/
1383
1384 static int
1385 e1000_set_mac(struct net_device *netdev, void *p)
1386 {
1387 struct e1000_adapter *adapter = netdev->priv;
1388 struct sockaddr *addr = p;
1389
1390 if(!is_valid_ether_addr(addr->sa_data))
1391 return -EADDRNOTAVAIL;
1392
1393 /* 82542 2.0 needs to be in reset to write receive address registers */
1394
1395 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1396 e1000_enter_82542_rst(adapter);
1397
1398 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1399 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1400
1401 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1402
1403 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1404 e1000_leave_82542_rst(adapter);
1405
1406 return 0;
1407 }
1408
1409 /**
1410 * e1000_set_multi - Multicast and Promiscuous mode set
1411 * @netdev: network interface device structure
1412 *
1413 * The set_multi entry point is called whenever the multicast address
1414 * list or the network interface flags are updated. This routine is
1415 * responsible for configuring the hardware for proper multicast,
1416 * promiscuous mode, and all-multi behavior.
1417 **/
1418
1419 static void
1420 e1000_set_multi(struct net_device *netdev)
1421 {
1422 struct e1000_adapter *adapter = netdev->priv;
1423 struct e1000_hw *hw = &adapter->hw;
1424 struct dev_mc_list *mc_ptr;
1425 uint32_t rctl;
1426 uint32_t hash_value;
1427 int i;
1428 unsigned long flags;
1429
1430 /* Check for Promiscuous and All Multicast modes */
1431
1432 spin_lock_irqsave(&adapter->tx_lock, flags);
1433
1434 rctl = E1000_READ_REG(hw, RCTL);
1435
1436 if(netdev->flags & IFF_PROMISC) {
1437 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1438 } else if(netdev->flags & IFF_ALLMULTI) {
1439 rctl |= E1000_RCTL_MPE;
1440 rctl &= ~E1000_RCTL_UPE;
1441 } else {
1442 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1443 }
1444
1445 E1000_WRITE_REG(hw, RCTL, rctl);
1446
1447 /* 82542 2.0 needs to be in reset to write receive address registers */
1448
1449 if(hw->mac_type == e1000_82542_rev2_0)
1450 e1000_enter_82542_rst(adapter);
1451
1452 /* load the first 14 multicast address into the exact filters 1-14
1453 * RAR 0 is used for the station MAC adddress
1454 * if there are not 14 addresses, go ahead and clear the filters
1455 */
1456 mc_ptr = netdev->mc_list;
1457
1458 for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1459 if(mc_ptr) {
1460 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1461 mc_ptr = mc_ptr->next;
1462 } else {
1463 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1464 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1465 }
1466 }
1467
1468 /* clear the old settings from the multicast hash table */
1469
1470 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1471 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1472
1473 /* load any remaining addresses into the hash table */
1474
1475 for(; mc_ptr; mc_ptr = mc_ptr->next) {
1476 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1477 e1000_mta_set(hw, hash_value);
1478 }
1479
1480 if(hw->mac_type == e1000_82542_rev2_0)
1481 e1000_leave_82542_rst(adapter);
1482
1483 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1484 }
1485
1486 /* Need to wait a few seconds after link up to get diagnostic information from
1487 * the phy */
1488
1489 static void
1490 e1000_update_phy_info(unsigned long data)
1491 {
1492 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1493 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1494 }
1495
1496 /**
1497 * e1000_82547_tx_fifo_stall - Timer Call-back
1498 * @data: pointer to adapter cast into an unsigned long
1499 **/
1500
1501 static void
1502 e1000_82547_tx_fifo_stall(unsigned long data)
1503 {
1504 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1505 struct net_device *netdev = adapter->netdev;
1506 uint32_t tctl;
1507
1508 if(atomic_read(&adapter->tx_fifo_stall)) {
1509 if((E1000_READ_REG(&adapter->hw, TDT) ==
1510 E1000_READ_REG(&adapter->hw, TDH)) &&
1511 (E1000_READ_REG(&adapter->hw, TDFT) ==
1512 E1000_READ_REG(&adapter->hw, TDFH)) &&
1513 (E1000_READ_REG(&adapter->hw, TDFTS) ==
1514 E1000_READ_REG(&adapter->hw, TDFHS))) {
1515 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1516 E1000_WRITE_REG(&adapter->hw, TCTL,
1517 tctl & ~E1000_TCTL_EN);
1518 E1000_WRITE_REG(&adapter->hw, TDFT,
1519 adapter->tx_head_addr);
1520 E1000_WRITE_REG(&adapter->hw, TDFH,
1521 adapter->tx_head_addr);
1522 E1000_WRITE_REG(&adapter->hw, TDFTS,
1523 adapter->tx_head_addr);
1524 E1000_WRITE_REG(&adapter->hw, TDFHS,
1525 adapter->tx_head_addr);
1526 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1527 E1000_WRITE_FLUSH(&adapter->hw);
1528
1529 adapter->tx_fifo_head = 0;
1530 atomic_set(&adapter->tx_fifo_stall, 0);
1531 netif_wake_queue(netdev);
1532 } else {
1533 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1534 }
1535 }
1536 }
1537
1538 /**
1539 * e1000_watchdog - Timer Call-back
1540 * @data: pointer to adapter cast into an unsigned long
1541 **/
1542 static void
1543 e1000_watchdog(unsigned long data)
1544 {
1545 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1546
1547 /* Do the rest outside of interrupt context */
1548 schedule_work(&adapter->watchdog_task);
1549 }
1550
1551 static void
1552 e1000_watchdog_task(struct e1000_adapter *adapter)
1553 {
1554 struct net_device *netdev = adapter->netdev;
1555 struct e1000_desc_ring *txdr = &adapter->tx_ring;
1556 uint32_t link;
1557
1558 e1000_check_for_link(&adapter->hw);
1559
1560 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1561 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1562 link = !adapter->hw.serdes_link_down;
1563 else
1564 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1565
1566 if(link) {
1567 if(!netif_carrier_ok(netdev)) {
1568 e1000_get_speed_and_duplex(&adapter->hw,
1569 &adapter->link_speed,
1570 &adapter->link_duplex);
1571
1572 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1573 adapter->link_speed,
1574 adapter->link_duplex == FULL_DUPLEX ?
1575 "Full Duplex" : "Half Duplex");
1576
1577 netif_carrier_on(netdev);
1578 netif_wake_queue(netdev);
1579 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1580 adapter->smartspeed = 0;
1581 }
1582 } else {
1583 if(netif_carrier_ok(netdev)) {
1584 adapter->link_speed = 0;
1585 adapter->link_duplex = 0;
1586 DPRINTK(LINK, INFO, "NIC Link is Down\n");
1587 netif_carrier_off(netdev);
1588 netif_stop_queue(netdev);
1589 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1590 }
1591
1592 e1000_smartspeed(adapter);
1593 }
1594
1595 e1000_update_stats(adapter);
1596
1597 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1598 adapter->tpt_old = adapter->stats.tpt;
1599 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1600 adapter->colc_old = adapter->stats.colc;
1601
1602 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1603 adapter->gorcl_old = adapter->stats.gorcl;
1604 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1605 adapter->gotcl_old = adapter->stats.gotcl;
1606
1607 e1000_update_adaptive(&adapter->hw);
1608
1609 if(!netif_carrier_ok(netdev)) {
1610 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1611 /* We've lost link, so the controller stops DMA,
1612 * but we've got queued Tx work that's never going
1613 * to get done, so reset controller to flush Tx.
1614 * (Do the reset outside of interrupt context). */
1615 schedule_work(&adapter->tx_timeout_task);
1616 }
1617 }
1618
1619 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1620 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1621 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1622 * asymmetrical Tx or Rx gets ITR=8000; everyone
1623 * else is between 2000-8000. */
1624 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1625 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
1626 adapter->gotcl - adapter->gorcl :
1627 adapter->gorcl - adapter->gotcl) / 10000;
1628 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1629 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1630 }
1631
1632 /* Cause software interrupt to ensure rx ring is cleaned */
1633 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1634
1635 /* Force detection of hung controller every watchdog period*/
1636 adapter->detect_tx_hung = TRUE;
1637
1638 /* Reset the timer */
1639 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1640 }
1641
1642 #define E1000_TX_FLAGS_CSUM 0x00000001
1643 #define E1000_TX_FLAGS_VLAN 0x00000002
1644 #define E1000_TX_FLAGS_TSO 0x00000004
1645 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
1646 #define E1000_TX_FLAGS_VLAN_SHIFT 16
1647
1648 static inline int
1649 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1650 {
1651 #ifdef NETIF_F_TSO
1652 struct e1000_context_desc *context_desc;
1653 unsigned int i;
1654 uint32_t cmd_length = 0;
1655 uint16_t ipcse, tucse, mss;
1656 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1657 int err;
1658
1659 if(skb_shinfo(skb)->tso_size) {
1660 if (skb_header_cloned(skb)) {
1661 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1662 if (err)
1663 return err;
1664 }
1665
1666 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1667 mss = skb_shinfo(skb)->tso_size;
1668 skb->nh.iph->tot_len = 0;
1669 skb->nh.iph->check = 0;
1670 skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
1671 skb->nh.iph->daddr,
1672 0,
1673 IPPROTO_TCP,
1674 0);
1675 ipcss = skb->nh.raw - skb->data;
1676 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1677 ipcse = skb->h.raw - skb->data - 1;
1678 tucss = skb->h.raw - skb->data;
1679 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1680 tucse = 0;
1681
1682 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1683 E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
1684 (skb->len - (hdr_len)));
1685
1686 i = adapter->tx_ring.next_to_use;
1687 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1688
1689 context_desc->lower_setup.ip_fields.ipcss = ipcss;
1690 context_desc->lower_setup.ip_fields.ipcso = ipcso;
1691 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
1692 context_desc->upper_setup.tcp_fields.tucss = tucss;
1693 context_desc->upper_setup.tcp_fields.tucso = tucso;
1694 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1695 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
1696 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1697 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1698
1699 if(++i == adapter->tx_ring.count) i = 0;
1700 adapter->tx_ring.next_to_use = i;
1701
1702 return 1;
1703 }
1704 #endif
1705
1706 return 0;
1707 }
1708
1709 static inline boolean_t
1710 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1711 {
1712 struct e1000_context_desc *context_desc;
1713 unsigned int i;
1714 uint8_t css;
1715
1716 if(likely(skb->ip_summed == CHECKSUM_HW)) {
1717 css = skb->h.raw - skb->data;
1718
1719 i = adapter->tx_ring.next_to_use;
1720 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1721
1722 context_desc->upper_setup.tcp_fields.tucss = css;
1723 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1724 context_desc->upper_setup.tcp_fields.tucse = 0;
1725 context_desc->tcp_seg_setup.data = 0;
1726 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1727
1728 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1729 adapter->tx_ring.next_to_use = i;
1730
1731 return TRUE;
1732 }
1733
1734 return FALSE;
1735 }
1736
1737 #define E1000_MAX_TXD_PWR 12
1738 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
1739
1740 static inline int
1741 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1742 unsigned int first, unsigned int max_per_txd,
1743 unsigned int nr_frags, unsigned int mss)
1744 {
1745 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1746 struct e1000_buffer *buffer_info;
1747 unsigned int len = skb->len;
1748 unsigned int offset = 0, size, count = 0, i;
1749 unsigned int f;
1750 len -= skb->data_len;
1751
1752 i = tx_ring->next_to_use;
1753
1754 while(len) {
1755 buffer_info = &tx_ring->buffer_info[i];
1756 size = min(len, max_per_txd);
1757 #ifdef NETIF_F_TSO
1758 /* Workaround for premature desc write-backs
1759 * in TSO mode. Append 4-byte sentinel desc */
1760 if(unlikely(mss && !nr_frags && size == len && size > 8))
1761 size -= 4;
1762 #endif
1763 /* Workaround for potential 82544 hang in PCI-X. Avoid
1764 * terminating buffers within evenly-aligned dwords. */
1765 if(unlikely(adapter->pcix_82544 &&
1766 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
1767 size > 4))
1768 size -= 4;
1769
1770 buffer_info->length = size;
1771 buffer_info->dma =
1772 pci_map_single(adapter->pdev,
1773 skb->data + offset,
1774 size,
1775 PCI_DMA_TODEVICE);
1776 buffer_info->time_stamp = jiffies;
1777
1778 len -= size;
1779 offset += size;
1780 count++;
1781 if(unlikely(++i == tx_ring->count)) i = 0;
1782 }
1783
1784 for(f = 0; f < nr_frags; f++) {
1785 struct skb_frag_struct *frag;
1786
1787 frag = &skb_shinfo(skb)->frags[f];
1788 len = frag->size;
1789 offset = frag->page_offset;
1790
1791 while(len) {
1792 buffer_info = &tx_ring->buffer_info[i];
1793 size = min(len, max_per_txd);
1794 #ifdef NETIF_F_TSO
1795 /* Workaround for premature desc write-backs
1796 * in TSO mode. Append 4-byte sentinel desc */
1797 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
1798 size -= 4;
1799 #endif
1800 /* Workaround for potential 82544 hang in PCI-X.
1801 * Avoid terminating buffers within evenly-aligned
1802 * dwords. */
1803 if(unlikely(adapter->pcix_82544 &&
1804 !((unsigned long)(frag->page+offset+size-1) & 4) &&
1805 size > 4))
1806 size -= 4;
1807
1808 buffer_info->length = size;
1809 buffer_info->dma =
1810 pci_map_page(adapter->pdev,
1811 frag->page,
1812 offset,
1813 size,
1814 PCI_DMA_TODEVICE);
1815 buffer_info->time_stamp = jiffies;
1816
1817 len -= size;
1818 offset += size;
1819 count++;
1820 if(unlikely(++i == tx_ring->count)) i = 0;
1821 }
1822 }
1823
1824 i = (i == 0) ? tx_ring->count - 1 : i - 1;
1825 tx_ring->buffer_info[i].skb = skb;
1826 tx_ring->buffer_info[first].next_to_watch = i;
1827
1828 return count;
1829 }
1830
1831 static inline void
1832 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
1833 {
1834 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1835 struct e1000_tx_desc *tx_desc = NULL;
1836 struct e1000_buffer *buffer_info;
1837 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1838 unsigned int i;
1839
1840 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1841 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
1842 E1000_TXD_CMD_TSE;
1843 txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
1844 }
1845
1846 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1847 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
1848 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
1849 }
1850
1851 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1852 txd_lower |= E1000_TXD_CMD_VLE;
1853 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
1854 }
1855
1856 i = tx_ring->next_to_use;
1857
1858 while(count--) {
1859 buffer_info = &tx_ring->buffer_info[i];
1860 tx_desc = E1000_TX_DESC(*tx_ring, i);
1861 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1862 tx_desc->lower.data =
1863 cpu_to_le32(txd_lower | buffer_info->length);
1864 tx_desc->upper.data = cpu_to_le32(txd_upper);
1865 if(unlikely(++i == tx_ring->count)) i = 0;
1866 }
1867
1868 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
1869
1870 /* Force memory writes to complete before letting h/w
1871 * know there are new descriptors to fetch. (Only
1872 * applicable for weak-ordered memory model archs,
1873 * such as IA-64). */
1874 wmb();
1875
1876 tx_ring->next_to_use = i;
1877 E1000_WRITE_REG(&adapter->hw, TDT, i);
1878 }
1879
1880 /**
1881 * 82547 workaround to avoid controller hang in half-duplex environment.
1882 * The workaround is to avoid queuing a large packet that would span
1883 * the internal Tx FIFO ring boundary by notifying the stack to resend
1884 * the packet at a later time. This gives the Tx FIFO an opportunity to
1885 * flush all packets. When that occurs, we reset the Tx FIFO pointers
1886 * to the beginning of the Tx FIFO.
1887 **/
1888
1889 #define E1000_FIFO_HDR 0x10
1890 #define E1000_82547_PAD_LEN 0x3E0
1891
1892 static inline int
1893 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
1894 {
1895 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1896 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
1897
1898 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
1899
1900 if(adapter->link_duplex != HALF_DUPLEX)
1901 goto no_fifo_stall_required;
1902
1903 if(atomic_read(&adapter->tx_fifo_stall))
1904 return 1;
1905
1906 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1907 atomic_set(&adapter->tx_fifo_stall, 1);
1908 return 1;
1909 }
1910
1911 no_fifo_stall_required:
1912 adapter->tx_fifo_head += skb_fifo_len;
1913 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
1914 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1915 return 0;
1916 }
1917
1918 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
1919 static int
1920 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1921 {
1922 struct e1000_adapter *adapter = netdev->priv;
1923 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
1924 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
1925 unsigned int tx_flags = 0;
1926 unsigned int len = skb->len;
1927 unsigned long flags;
1928 unsigned int nr_frags = 0;
1929 unsigned int mss = 0;
1930 int count = 0;
1931 int tso;
1932 unsigned int f;
1933 len -= skb->data_len;
1934
1935 if(unlikely(skb->len <= 0)) {
1936 dev_kfree_skb_any(skb);
1937 return NETDEV_TX_OK;
1938 }
1939
1940 #ifdef NETIF_F_TSO
1941 mss = skb_shinfo(skb)->tso_size;
1942 /* The controller does a simple calculation to
1943 * make sure there is enough room in the FIFO before
1944 * initiating the DMA for each buffer. The calc is:
1945 * 4 = ceil(buffer len/mss). To make sure we don't
1946 * overrun the FIFO, adjust the max buffer len if mss
1947 * drops. */
1948 if(mss) {
1949 max_per_txd = min(mss << 2, max_per_txd);
1950 max_txd_pwr = fls(max_per_txd) - 1;
1951 }
1952
1953 if((mss) || (skb->ip_summed == CHECKSUM_HW))
1954 count++;
1955 count++; /* for sentinel desc */
1956 #else
1957 if(skb->ip_summed == CHECKSUM_HW)
1958 count++;
1959 #endif
1960 count += TXD_USE_COUNT(len, max_txd_pwr);
1961
1962 if(adapter->pcix_82544)
1963 count++;
1964
1965 nr_frags = skb_shinfo(skb)->nr_frags;
1966 for(f = 0; f < nr_frags; f++)
1967 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
1968 max_txd_pwr);
1969 if(adapter->pcix_82544)
1970 count += nr_frags;
1971
1972 local_irq_save(flags);
1973 if (!spin_trylock(&adapter->tx_lock)) {
1974 /* Collision - tell upper layer to requeue */
1975 local_irq_restore(flags);
1976 return NETDEV_TX_LOCKED;
1977 }
1978
1979 /* need: count + 2 desc gap to keep tail from touching
1980 * head, otherwise try next time */
1981 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
1982 netif_stop_queue(netdev);
1983 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1984 return NETDEV_TX_BUSY;
1985 }
1986
1987 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
1988 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
1989 netif_stop_queue(netdev);
1990 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
1991 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1992 return NETDEV_TX_BUSY;
1993 }
1994 }
1995
1996 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
1997 tx_flags |= E1000_TX_FLAGS_VLAN;
1998 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
1999 }
2000
2001 first = adapter->tx_ring.next_to_use;
2002
2003 tso = e1000_tso(adapter, skb);
2004 if (tso < 0) {
2005 dev_kfree_skb_any(skb);
2006 return NETDEV_TX_OK;
2007 }
2008
2009 if (likely(tso))
2010 tx_flags |= E1000_TX_FLAGS_TSO;
2011 else if(likely(e1000_tx_csum(adapter, skb)))
2012 tx_flags |= E1000_TX_FLAGS_CSUM;
2013
2014 e1000_tx_queue(adapter,
2015 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2016 tx_flags);
2017
2018 netdev->trans_start = jiffies;
2019
2020 /* Make sure there is space in the ring for the next send. */
2021 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2022 netif_stop_queue(netdev);
2023
2024 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2025 return NETDEV_TX_OK;
2026 }
2027
2028 /**
2029 * e1000_tx_timeout - Respond to a Tx Hang
2030 * @netdev: network interface device structure
2031 **/
2032
2033 static void
2034 e1000_tx_timeout(struct net_device *netdev)
2035 {
2036 struct e1000_adapter *adapter = netdev->priv;
2037
2038 /* Do the reset outside of interrupt context */
2039 schedule_work(&adapter->tx_timeout_task);
2040 }
2041
2042 static void
2043 e1000_tx_timeout_task(struct net_device *netdev)
2044 {
2045 struct e1000_adapter *adapter = netdev->priv;
2046
2047 e1000_down(adapter);
2048 e1000_up(adapter);
2049 }
2050
2051 /**
2052 * e1000_get_stats - Get System Network Statistics
2053 * @netdev: network interface device structure
2054 *
2055 * Returns the address of the device statistics structure.
2056 * The statistics are actually updated from the timer callback.
2057 **/
2058
2059 static struct net_device_stats *
2060 e1000_get_stats(struct net_device *netdev)
2061 {
2062 struct e1000_adapter *adapter = netdev->priv;
2063
2064 e1000_update_stats(adapter);
2065 return &adapter->net_stats;
2066 }
2067
2068 /**
2069 * e1000_change_mtu - Change the Maximum Transfer Unit
2070 * @netdev: network interface device structure
2071 * @new_mtu: new value for maximum frame size
2072 *
2073 * Returns 0 on success, negative on failure
2074 **/
2075
2076 static int
2077 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2078 {
2079 struct e1000_adapter *adapter = netdev->priv;
2080 int old_mtu = adapter->rx_buffer_len;
2081 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2082
2083 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2084 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2085 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2086 return -EINVAL;
2087 }
2088
2089 if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
2090 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2091
2092 } else if(adapter->hw.mac_type < e1000_82543) {
2093 DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
2094 return -EINVAL;
2095
2096 } else if(max_frame <= E1000_RXBUFFER_4096) {
2097 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2098
2099 } else if(max_frame <= E1000_RXBUFFER_8192) {
2100 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2101
2102 } else {
2103 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2104 }
2105
2106 if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
2107 e1000_down(adapter);
2108 e1000_up(adapter);
2109 }
2110
2111 netdev->mtu = new_mtu;
2112 adapter->hw.max_frame_size = max_frame;
2113
2114 return 0;
2115 }
2116
2117 /**
2118 * e1000_update_stats - Update the board statistics counters
2119 * @adapter: board private structure
2120 **/
2121
2122 void
2123 e1000_update_stats(struct e1000_adapter *adapter)
2124 {
2125 struct e1000_hw *hw = &adapter->hw;
2126 unsigned long flags;
2127 uint16_t phy_tmp;
2128
2129 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2130
2131 spin_lock_irqsave(&adapter->stats_lock, flags);
2132
2133 /* these counters are modified from e1000_adjust_tbi_stats,
2134 * called from the interrupt context, so they must only
2135 * be written while holding adapter->stats_lock
2136 */
2137
2138 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2139 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2140 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2141 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2142 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2143 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2144 adapter->stats.roc += E1000_READ_REG(hw, ROC);
2145 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2146 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2147 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2148 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2149 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2150 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2151
2152 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2153 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2154 adapter->stats.scc += E1000_READ_REG(hw, SCC);
2155 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2156 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2157 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2158 adapter->stats.dc += E1000_READ_REG(hw, DC);
2159 adapter->stats.sec += E1000_READ_REG(hw, SEC);
2160 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2161 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2162 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2163 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2164 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2165 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2166 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2167 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2168 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2169 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2170 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2171 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2172 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2173 adapter->stats.torl += E1000_READ_REG(hw, TORL);
2174 adapter->stats.torh += E1000_READ_REG(hw, TORH);
2175 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2176 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2177 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2178 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2179 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2180 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2181 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2182 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2183 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2184 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2185 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2186
2187 /* used for adaptive IFS */
2188
2189 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2190 adapter->stats.tpt += hw->tx_packet_delta;
2191 hw->collision_delta = E1000_READ_REG(hw, COLC);
2192 adapter->stats.colc += hw->collision_delta;
2193
2194 if(hw->mac_type >= e1000_82543) {
2195 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2196 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2197 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2198 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2199 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2200 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2201 }
2202
2203 /* Fill out the OS statistics structure */
2204
2205 adapter->net_stats.rx_packets = adapter->stats.gprc;
2206 adapter->net_stats.tx_packets = adapter->stats.gptc;
2207 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2208 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2209 adapter->net_stats.multicast = adapter->stats.mprc;
2210 adapter->net_stats.collisions = adapter->stats.colc;
2211
2212 /* Rx Errors */
2213
2214 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2215 adapter->stats.crcerrs + adapter->stats.algnerrc +
2216 adapter->stats.rlec + adapter->stats.rnbc +
2217 adapter->stats.mpc + adapter->stats.cexterr;
2218 adapter->net_stats.rx_dropped = adapter->stats.rnbc;
2219 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2220 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2221 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2222 adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2223 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2224
2225 /* Tx Errors */
2226
2227 adapter->net_stats.tx_errors = adapter->stats.ecol +
2228 adapter->stats.latecol;
2229 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2230 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2231 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2232
2233 /* Tx Dropped needs to be maintained elsewhere */
2234
2235 /* Phy Stats */
2236
2237 if(hw->media_type == e1000_media_type_copper) {
2238 if((adapter->link_speed == SPEED_1000) &&
2239 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2240 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2241 adapter->phy_stats.idle_errors += phy_tmp;
2242 }
2243
2244 if((hw->mac_type <= e1000_82546) &&
2245 (hw->phy_type == e1000_phy_m88) &&
2246 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2247 adapter->phy_stats.receive_errors += phy_tmp;
2248 }
2249
2250 spin_unlock_irqrestore(&adapter->stats_lock, flags);
2251 }
2252
2253 /**
2254 * e1000_intr - Interrupt Handler
2255 * @irq: interrupt number
2256 * @data: pointer to a network interface device structure
2257 * @pt_regs: CPU registers structure
2258 **/
2259
2260 static irqreturn_t
2261 e1000_intr(int irq, void *data, struct pt_regs *regs)
2262 {
2263 struct net_device *netdev = data;
2264 struct e1000_adapter *adapter = netdev->priv;
2265 struct e1000_hw *hw = &adapter->hw;
2266 uint32_t icr = E1000_READ_REG(hw, ICR);
2267 #ifndef CONFIG_E1000_NAPI
2268 unsigned int i;
2269 #endif
2270
2271 if(unlikely(!icr))
2272 return IRQ_NONE; /* Not our interrupt */
2273
2274 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2275 hw->get_link_status = 1;
2276 mod_timer(&adapter->watchdog_timer, jiffies);
2277 }
2278
2279 #ifdef CONFIG_E1000_NAPI
2280 if(likely(netif_rx_schedule_prep(netdev))) {
2281
2282 /* Disable interrupts and register for poll. The flush
2283 of the posted write is intentionally left out.
2284 */
2285
2286 atomic_inc(&adapter->irq_sem);
2287 E1000_WRITE_REG(hw, IMC, ~0);
2288 __netif_rx_schedule(netdev);
2289 }
2290 #else
2291 /* Writing IMC and IMS is needed for 82547.
2292 Due to Hub Link bus being occupied, an interrupt
2293 de-assertion message is not able to be sent.
2294 When an interrupt assertion message is generated later,
2295 two messages are re-ordered and sent out.
2296 That causes APIC to think 82547 is in de-assertion
2297 state, while 82547 is in assertion state, resulting
2298 in dead lock. Writing IMC forces 82547 into
2299 de-assertion state.
2300 */
2301 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2302 atomic_inc(&adapter->irq_sem);
2303 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
2304 }
2305
2306 for(i = 0; i < E1000_MAX_INTR; i++)
2307 if(unlikely(!e1000_clean_rx_irq(adapter) &
2308 !e1000_clean_tx_irq(adapter)))
2309 break;
2310
2311 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2312 e1000_irq_enable(adapter);
2313 #endif
2314
2315 return IRQ_HANDLED;
2316 }
2317
2318 #ifdef CONFIG_E1000_NAPI
2319 /**
2320 * e1000_clean - NAPI Rx polling callback
2321 * @adapter: board private structure
2322 **/
2323
2324 static int
2325 e1000_clean(struct net_device *netdev, int *budget)
2326 {
2327 struct e1000_adapter *adapter = netdev->priv;
2328 int work_to_do = min(*budget, netdev->quota);
2329 int tx_cleaned;
2330 int work_done = 0;
2331
2332 tx_cleaned = e1000_clean_tx_irq(adapter);
2333 e1000_clean_rx_irq(adapter, &work_done, work_to_do);
2334
2335 *budget -= work_done;
2336 netdev->quota -= work_done;
2337
2338 /* if no Tx and not enough Rx work done, exit the polling mode */
2339 if((!tx_cleaned && (work_done < work_to_do)) ||
2340 !netif_running(netdev)) {
2341 netif_rx_complete(netdev);
2342 e1000_irq_enable(adapter);
2343 return 0;
2344 }
2345
2346 return 1;
2347 }
2348
2349 #endif
2350 /**
2351 * e1000_clean_tx_irq - Reclaim resources after transmit completes
2352 * @adapter: board private structure
2353 **/
2354
2355 static boolean_t
2356 e1000_clean_tx_irq(struct e1000_adapter *adapter)
2357 {
2358 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2359 struct net_device *netdev = adapter->netdev;
2360 struct e1000_tx_desc *tx_desc, *eop_desc;
2361 struct e1000_buffer *buffer_info;
2362 unsigned int i, eop;
2363 boolean_t cleaned = FALSE;
2364
2365 i = tx_ring->next_to_clean;
2366 eop = tx_ring->buffer_info[i].next_to_watch;
2367 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2368
2369 while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2370 /* pre-mature writeback of Tx descriptors */
2371 /* clear (free buffers and unmap pci_mapping) */
2372 /* previous_buffer_info */
2373 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2374 e1000_unmap_and_free_tx_resource(adapter,
2375 &adapter->previous_buffer_info);
2376 }
2377
2378 for(cleaned = FALSE; !cleaned; ) {
2379 tx_desc = E1000_TX_DESC(*tx_ring, i);
2380 buffer_info = &tx_ring->buffer_info[i];
2381 cleaned = (i == eop);
2382
2383 /* pre-mature writeback of Tx descriptors */
2384 /* save the cleaning of the this for the */
2385 /* next iteration */
2386 if (cleaned) {
2387 memcpy(&adapter->previous_buffer_info,
2388 buffer_info,
2389 sizeof(struct e1000_buffer));
2390 memset(buffer_info,
2391 0,
2392 sizeof(struct e1000_buffer));
2393 } else {
2394 e1000_unmap_and_free_tx_resource(adapter,
2395 buffer_info);
2396 }
2397
2398 tx_desc->buffer_addr = 0;
2399 tx_desc->lower.data = 0;
2400 tx_desc->upper.data = 0;
2401
2402 cleaned = (i == eop);
2403 if(unlikely(++i == tx_ring->count)) i = 0;
2404 }
2405
2406 eop = tx_ring->buffer_info[i].next_to_watch;
2407 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2408 }
2409
2410 tx_ring->next_to_clean = i;
2411
2412 spin_lock(&adapter->tx_lock);
2413
2414 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2415 netif_carrier_ok(netdev)))
2416 netif_wake_queue(netdev);
2417
2418 spin_unlock(&adapter->tx_lock);
2419
2420 if(adapter->detect_tx_hung) {
2421 /* detect a transmit hang in hardware, this serializes the
2422 * check with the clearing of time_stamp and movement of i */
2423 adapter->detect_tx_hung = FALSE;
2424 if(tx_ring->buffer_info[i].dma &&
2425 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) &&
2426 !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
2427 netif_stop_queue(netdev);
2428 }
2429
2430 return cleaned;
2431 }
2432
2433 /**
2434 * e1000_rx_checksum - Receive Checksum Offload for 82543
2435 * @adapter: board private structure
2436 * @rx_desc: receive descriptor
2437 * @sk_buff: socket buffer with received data
2438 **/
2439
2440 static inline void
2441 e1000_rx_checksum(struct e1000_adapter *adapter,
2442 struct e1000_rx_desc *rx_desc,
2443 struct sk_buff *skb)
2444 {
2445 /* 82543 or newer only */
2446 if(unlikely((adapter->hw.mac_type < e1000_82543) ||
2447 /* Ignore Checksum bit is set */
2448 (rx_desc->status & E1000_RXD_STAT_IXSM) ||
2449 /* TCP Checksum has not been calculated */
2450 (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
2451 skb->ip_summed = CHECKSUM_NONE;
2452 return;
2453 }
2454
2455 /* At this point we know the hardware did the TCP checksum */
2456 /* now look at the TCP checksum error bit */
2457 if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
2458 /* let the stack verify checksum errors */
2459 skb->ip_summed = CHECKSUM_NONE;
2460 adapter->hw_csum_err++;
2461 } else {
2462 /* TCP checksum is good */
2463 skb->ip_summed = CHECKSUM_UNNECESSARY;
2464 adapter->hw_csum_good++;
2465 }
2466 }
2467
2468 /**
2469 * e1000_clean_rx_irq - Send received data up the network stack
2470 * @adapter: board private structure
2471 **/
2472
2473 static boolean_t
2474 #ifdef CONFIG_E1000_NAPI
2475 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2476 int work_to_do)
2477 #else
2478 e1000_clean_rx_irq(struct e1000_adapter *adapter)
2479 #endif
2480 {
2481 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2482 struct net_device *netdev = adapter->netdev;
2483 struct pci_dev *pdev = adapter->pdev;
2484 struct e1000_rx_desc *rx_desc;
2485 struct e1000_buffer *buffer_info;
2486 struct sk_buff *skb;
2487 unsigned long flags;
2488 uint32_t length;
2489 uint8_t last_byte;
2490 unsigned int i;
2491 boolean_t cleaned = FALSE;
2492
2493 i = rx_ring->next_to_clean;
2494 rx_desc = E1000_RX_DESC(*rx_ring, i);
2495
2496 while(rx_desc->status & E1000_RXD_STAT_DD) {
2497 buffer_info = &rx_ring->buffer_info[i];
2498 #ifdef CONFIG_E1000_NAPI
2499 if(*work_done >= work_to_do)
2500 break;
2501 (*work_done)++;
2502 #endif
2503 cleaned = TRUE;
2504
2505 pci_unmap_single(pdev,
2506 buffer_info->dma,
2507 buffer_info->length,
2508 PCI_DMA_FROMDEVICE);
2509
2510 skb = buffer_info->skb;
2511 length = le16_to_cpu(rx_desc->length);
2512
2513 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2514 /* All receives must fit into a single buffer */
2515 E1000_DBG("%s: Receive packet consumed multiple"
2516 " buffers\n", netdev->name);
2517 dev_kfree_skb_irq(skb);
2518 goto next_desc;
2519 }
2520
2521 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2522 last_byte = *(skb->data + length - 1);
2523 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2524 rx_desc->errors, length, last_byte)) {
2525 spin_lock_irqsave(&adapter->stats_lock, flags);
2526 e1000_tbi_adjust_stats(&adapter->hw,
2527 &adapter->stats,
2528 length, skb->data);
2529 spin_unlock_irqrestore(&adapter->stats_lock,
2530 flags);
2531 length--;
2532 } else {
2533 dev_kfree_skb_irq(skb);
2534 goto next_desc;
2535 }
2536 }
2537
2538 /* Good Receive */
2539 skb_put(skb, length - ETHERNET_FCS_SIZE);
2540
2541 /* Receive Checksum Offload */
2542 e1000_rx_checksum(adapter, rx_desc, skb);
2543
2544 skb->protocol = eth_type_trans(skb, netdev);
2545 #ifdef CONFIG_E1000_NAPI
2546 if(unlikely(adapter->vlgrp &&
2547 (rx_desc->status & E1000_RXD_STAT_VP))) {
2548 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2549 le16_to_cpu(rx_desc->special) &
2550 E1000_RXD_SPC_VLAN_MASK);
2551 } else {
2552 netif_receive_skb(skb);
2553 }
2554 #else /* CONFIG_E1000_NAPI */
2555 if(unlikely(adapter->vlgrp &&
2556 (rx_desc->status & E1000_RXD_STAT_VP))) {
2557 vlan_hwaccel_rx(skb, adapter->vlgrp,
2558 le16_to_cpu(rx_desc->special) &
2559 E1000_RXD_SPC_VLAN_MASK);
2560 } else {
2561 netif_rx(skb);
2562 }
2563 #endif /* CONFIG_E1000_NAPI */
2564 netdev->last_rx = jiffies;
2565
2566 next_desc:
2567 rx_desc->status = 0;
2568 buffer_info->skb = NULL;
2569 if(unlikely(++i == rx_ring->count)) i = 0;
2570
2571 rx_desc = E1000_RX_DESC(*rx_ring, i);
2572 }
2573
2574 rx_ring->next_to_clean = i;
2575
2576 e1000_alloc_rx_buffers(adapter);
2577
2578 return cleaned;
2579 }
2580
2581 /**
2582 * e1000_alloc_rx_buffers - Replace used receive buffers
2583 * @adapter: address of board private structure
2584 **/
2585
2586 static void
2587 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
2588 {
2589 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2590 struct net_device *netdev = adapter->netdev;
2591 struct pci_dev *pdev = adapter->pdev;
2592 struct e1000_rx_desc *rx_desc;
2593 struct e1000_buffer *buffer_info;
2594 struct sk_buff *skb;
2595 unsigned int i, bufsz;
2596
2597 i = rx_ring->next_to_use;
2598 buffer_info = &rx_ring->buffer_info[i];
2599
2600 while(!buffer_info->skb) {
2601 bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
2602
2603 skb = dev_alloc_skb(bufsz);
2604 if(unlikely(!skb)) {
2605 /* Better luck next round */
2606 break;
2607 }
2608
2609 /* fix for errata 23, cant cross 64kB boundary */
2610 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2611 struct sk_buff *oldskb = skb;
2612 DPRINTK(RX_ERR,ERR,
2613 "skb align check failed: %u bytes at %p\n",
2614 bufsz, skb->data);
2615 /* try again, without freeing the previous */
2616 skb = dev_alloc_skb(bufsz);
2617 if (!skb) {
2618 dev_kfree_skb(oldskb);
2619 break;
2620 }
2621 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2622 /* give up */
2623 dev_kfree_skb(skb);
2624 dev_kfree_skb(oldskb);
2625 break; /* while !buffer_info->skb */
2626 } else {
2627 /* move on with the new one */
2628 dev_kfree_skb(oldskb);
2629 }
2630 }
2631
2632 /* Make buffer alignment 2 beyond a 16 byte boundary
2633 * this will result in a 16 byte aligned IP header after
2634 * the 14 byte MAC header is removed
2635 */
2636 skb_reserve(skb, NET_IP_ALIGN);
2637
2638 skb->dev = netdev;
2639
2640 buffer_info->skb = skb;
2641 buffer_info->length = adapter->rx_buffer_len;
2642 buffer_info->dma = pci_map_single(pdev,
2643 skb->data,
2644 adapter->rx_buffer_len,
2645 PCI_DMA_FROMDEVICE);
2646
2647 /* fix for errata 23, cant cross 64kB boundary */
2648 if(!e1000_check_64k_bound(adapter,
2649 (void *)(unsigned long)buffer_info->dma,
2650 adapter->rx_buffer_len)) {
2651 DPRINTK(RX_ERR,ERR,
2652 "dma align check failed: %u bytes at %ld\n",
2653 adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
2654
2655 dev_kfree_skb(skb);
2656 buffer_info->skb = NULL;
2657
2658 pci_unmap_single(pdev,
2659 buffer_info->dma,
2660 adapter->rx_buffer_len,
2661 PCI_DMA_FROMDEVICE);
2662
2663 break; /* while !buffer_info->skb */
2664 }
2665
2666 rx_desc = E1000_RX_DESC(*rx_ring, i);
2667 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2668
2669 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
2670 /* Force memory writes to complete before letting h/w
2671 * know there are new descriptors to fetch. (Only
2672 * applicable for weak-ordered memory model archs,
2673 * such as IA-64). */
2674 wmb();
2675
2676 E1000_WRITE_REG(&adapter->hw, RDT, i);
2677 }
2678
2679 if(unlikely(++i == rx_ring->count)) i = 0;
2680 buffer_info = &rx_ring->buffer_info[i];
2681 }
2682
2683 rx_ring->next_to_use = i;
2684 }
2685
2686 /**
2687 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
2688 * @adapter:
2689 **/
2690
2691 static void
2692 e1000_smartspeed(struct e1000_adapter *adapter)
2693 {
2694 uint16_t phy_status;
2695 uint16_t phy_ctrl;
2696
2697 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
2698 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2699 return;
2700
2701 if(adapter->smartspeed == 0) {
2702 /* If Master/Slave config fault is asserted twice,
2703 * we assume back-to-back */
2704 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2705 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2706 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2707 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2708 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2709 if(phy_ctrl & CR_1000T_MS_ENABLE) {
2710 phy_ctrl &= ~CR_1000T_MS_ENABLE;
2711 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
2712 phy_ctrl);
2713 adapter->smartspeed++;
2714 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2715 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
2716 &phy_ctrl)) {
2717 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2718 MII_CR_RESTART_AUTO_NEG);
2719 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
2720 phy_ctrl);
2721 }
2722 }
2723 return;
2724 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
2725 /* If still no link, perhaps using 2/3 pair cable */
2726 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2727 phy_ctrl |= CR_1000T_MS_ENABLE;
2728 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
2729 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2730 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
2731 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2732 MII_CR_RESTART_AUTO_NEG);
2733 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
2734 }
2735 }
2736 /* Restart process after E1000_SMARTSPEED_MAX iterations */
2737 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
2738 adapter->smartspeed = 0;
2739 }
2740
2741 /**
2742 * e1000_ioctl -
2743 * @netdev:
2744 * @ifreq:
2745 * @cmd:
2746 **/
2747
2748 static int
2749 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2750 {
2751 switch (cmd) {
2752 case SIOCGMIIPHY:
2753 case SIOCGMIIREG:
2754 case SIOCSMIIREG:
2755 return e1000_mii_ioctl(netdev, ifr, cmd);
2756 default:
2757 return -EOPNOTSUPP;
2758 }
2759 }
2760
2761 /**
2762 * e1000_mii_ioctl -
2763 * @netdev:
2764 * @ifreq:
2765 * @cmd:
2766 **/
2767
2768 static int
2769 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2770 {
2771 struct e1000_adapter *adapter = netdev->priv;
2772 struct mii_ioctl_data *data = if_mii(ifr);
2773 int retval;
2774 uint16_t mii_reg;
2775 uint16_t spddplx;
2776
2777 if(adapter->hw.media_type != e1000_media_type_copper)
2778 return -EOPNOTSUPP;
2779
2780 switch (cmd) {
2781 case SIOCGMIIPHY:
2782 data->phy_id = adapter->hw.phy_addr;
2783 break;
2784 case SIOCGMIIREG:
2785 if (!capable(CAP_NET_ADMIN))
2786 return -EPERM;
2787 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
2788 &data->val_out))
2789 return -EIO;
2790 break;
2791 case SIOCSMIIREG:
2792 if (!capable(CAP_NET_ADMIN))
2793 return -EPERM;
2794 if (data->reg_num & ~(0x1F))
2795 return -EFAULT;
2796 mii_reg = data->val_in;
2797 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
2798 mii_reg))
2799 return -EIO;
2800 if (adapter->hw.phy_type == e1000_phy_m88) {
2801 switch (data->reg_num) {
2802 case PHY_CTRL:
2803 if(mii_reg & MII_CR_POWER_DOWN)
2804 break;
2805 if(mii_reg & MII_CR_AUTO_NEG_EN) {
2806 adapter->hw.autoneg = 1;
2807 adapter->hw.autoneg_advertised = 0x2F;
2808 } else {
2809 if (mii_reg & 0x40)
2810 spddplx = SPEED_1000;
2811 else if (mii_reg & 0x2000)
2812 spddplx = SPEED_100;
2813 else
2814 spddplx = SPEED_10;
2815 spddplx += (mii_reg & 0x100)
2816 ? FULL_DUPLEX :
2817 HALF_DUPLEX;
2818 retval = e1000_set_spd_dplx(adapter,
2819 spddplx);
2820 if(retval)
2821 return retval;
2822 }
2823 if(netif_running(adapter->netdev)) {
2824 e1000_down(adapter);
2825 e1000_up(adapter);
2826 } else
2827 e1000_reset(adapter);
2828 break;
2829 case M88E1000_PHY_SPEC_CTRL:
2830 case M88E1000_EXT_PHY_SPEC_CTRL:
2831 if (e1000_phy_reset(&adapter->hw))
2832 return -EIO;
2833 break;
2834 }
2835 } else {
2836 switch (data->reg_num) {
2837 case PHY_CTRL:
2838 if(mii_reg & MII_CR_POWER_DOWN)
2839 break;
2840 if(netif_running(adapter->netdev)) {
2841 e1000_down(adapter);
2842 e1000_up(adapter);
2843 } else
2844 e1000_reset(adapter);
2845 break;
2846 }
2847 }
2848 break;
2849 default:
2850 return -EOPNOTSUPP;
2851 }
2852 return E1000_SUCCESS;
2853 }
2854
2855 void
2856 e1000_pci_set_mwi(struct e1000_hw *hw)
2857 {
2858 struct e1000_adapter *adapter = hw->back;
2859
2860 int ret;
2861 ret = pci_set_mwi(adapter->pdev);
2862 }
2863
2864 void
2865 e1000_pci_clear_mwi(struct e1000_hw *hw)
2866 {
2867 struct e1000_adapter *adapter = hw->back;
2868
2869 pci_clear_mwi(adapter->pdev);
2870 }
2871
2872 void
2873 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2874 {
2875 struct e1000_adapter *adapter = hw->back;
2876
2877 pci_read_config_word(adapter->pdev, reg, value);
2878 }
2879
2880 void
2881 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2882 {
2883 struct e1000_adapter *adapter = hw->back;
2884
2885 pci_write_config_word(adapter->pdev, reg, *value);
2886 }
2887
2888 uint32_t
2889 e1000_io_read(struct e1000_hw *hw, unsigned long port)
2890 {
2891 return inl(port);
2892 }
2893
2894 void
2895 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
2896 {
2897 outl(value, port);
2898 }
2899
2900 static void
2901 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
2902 {
2903 struct e1000_adapter *adapter = netdev->priv;
2904 uint32_t ctrl, rctl;
2905
2906 e1000_irq_disable(adapter);
2907 adapter->vlgrp = grp;
2908
2909 if(grp) {
2910 /* enable VLAN tag insert/strip */
2911 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2912 ctrl |= E1000_CTRL_VME;
2913 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2914
2915 /* enable VLAN receive filtering */
2916 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2917 rctl |= E1000_RCTL_VFE;
2918 rctl &= ~E1000_RCTL_CFIEN;
2919 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2920 } else {
2921 /* disable VLAN tag insert/strip */
2922 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2923 ctrl &= ~E1000_CTRL_VME;
2924 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2925
2926 /* disable VLAN filtering */
2927 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2928 rctl &= ~E1000_RCTL_VFE;
2929 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2930 }
2931
2932 e1000_irq_enable(adapter);
2933 }
2934
2935 static void
2936 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
2937 {
2938 struct e1000_adapter *adapter = netdev->priv;
2939 uint32_t vfta, index;
2940
2941 /* add VID to filter table */
2942 index = (vid >> 5) & 0x7F;
2943 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2944 vfta |= (1 << (vid & 0x1F));
2945 e1000_write_vfta(&adapter->hw, index, vfta);
2946 }
2947
2948 static void
2949 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
2950 {
2951 struct e1000_adapter *adapter = netdev->priv;
2952 uint32_t vfta, index;
2953
2954 e1000_irq_disable(adapter);
2955
2956 if(adapter->vlgrp)
2957 adapter->vlgrp->vlan_devices[vid] = NULL;
2958
2959 e1000_irq_enable(adapter);
2960
2961 /* remove VID from filter table */
2962 index = (vid >> 5) & 0x7F;
2963 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2964 vfta &= ~(1 << (vid & 0x1F));
2965 e1000_write_vfta(&adapter->hw, index, vfta);
2966 }
2967
2968 static void
2969 e1000_restore_vlan(struct e1000_adapter *adapter)
2970 {
2971 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2972
2973 if(adapter->vlgrp) {
2974 uint16_t vid;
2975 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2976 if(!adapter->vlgrp->vlan_devices[vid])
2977 continue;
2978 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2979 }
2980 }
2981 }
2982
2983 int
2984 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
2985 {
2986 adapter->hw.autoneg = 0;
2987
2988 switch(spddplx) {
2989 case SPEED_10 + DUPLEX_HALF:
2990 adapter->hw.forced_speed_duplex = e1000_10_half;
2991 break;
2992 case SPEED_10 + DUPLEX_FULL:
2993 adapter->hw.forced_speed_duplex = e1000_10_full;
2994 break;
2995 case SPEED_100 + DUPLEX_HALF:
2996 adapter->hw.forced_speed_duplex = e1000_100_half;
2997 break;
2998 case SPEED_100 + DUPLEX_FULL:
2999 adapter->hw.forced_speed_duplex = e1000_100_full;
3000 break;
3001 case SPEED_1000 + DUPLEX_FULL:
3002 adapter->hw.autoneg = 1;
3003 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3004 break;
3005 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3006 default:
3007 DPRINTK(PROBE, ERR,
3008 "Unsupported Speed/Duplexity configuration\n");
3009 return -EINVAL;
3010 }
3011 return 0;
3012 }
3013
3014 static int
3015 e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
3016 {
3017 struct pci_dev *pdev = NULL;
3018
3019 switch(event) {
3020 case SYS_DOWN:
3021 case SYS_HALT:
3022 case SYS_POWER_OFF:
3023 while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
3024 if(pci_dev_driver(pdev) == &e1000_driver)
3025 e1000_suspend(pdev, 3);
3026 }
3027 }
3028 return NOTIFY_DONE;
3029 }
3030
3031 static int
3032 e1000_suspend(struct pci_dev *pdev, uint32_t state)
3033 {
3034 struct net_device *netdev = pci_get_drvdata(pdev);
3035 struct e1000_adapter *adapter = netdev->priv;
3036 uint32_t ctrl, ctrl_ext, rctl, manc, status;
3037 uint32_t wufc = adapter->wol;
3038
3039 netif_device_detach(netdev);
3040
3041 if(netif_running(netdev))
3042 e1000_down(adapter);
3043
3044 status = E1000_READ_REG(&adapter->hw, STATUS);
3045 if(status & E1000_STATUS_LU)
3046 wufc &= ~E1000_WUFC_LNKC;
3047
3048 if(wufc) {
3049 e1000_setup_rctl(adapter);
3050 e1000_set_multi(netdev);
3051
3052 /* turn on all-multi mode if wake on multicast is enabled */
3053 if(adapter->wol & E1000_WUFC_MC) {
3054 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3055 rctl |= E1000_RCTL_MPE;
3056 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3057 }
3058
3059 if(adapter->hw.mac_type >= e1000_82540) {
3060 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3061 /* advertise wake from D3Cold */
3062 #define E1000_CTRL_ADVD3WUC 0x00100000
3063 /* phy power management enable */
3064 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3065 ctrl |= E1000_CTRL_ADVD3WUC |
3066 E1000_CTRL_EN_PHY_PWR_MGMT;
3067 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3068 }
3069
3070 if(adapter->hw.media_type == e1000_media_type_fiber ||
3071 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3072 /* keep the laser running in D3 */
3073 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3074 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3075 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3076 }
3077
3078 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3079 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3080 pci_enable_wake(pdev, 3, 1);
3081 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3082 } else {
3083 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3084 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3085 pci_enable_wake(pdev, 3, 0);
3086 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3087 }
3088
3089 pci_save_state(pdev);
3090
3091 if(adapter->hw.mac_type >= e1000_82540 &&
3092 adapter->hw.media_type == e1000_media_type_copper) {
3093 manc = E1000_READ_REG(&adapter->hw, MANC);
3094 if(manc & E1000_MANC_SMBUS_EN) {
3095 manc |= E1000_MANC_ARP_EN;
3096 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3097 pci_enable_wake(pdev, 3, 1);
3098 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3099 }
3100 }
3101
3102 pci_disable_device(pdev);
3103
3104 state = (state > 0) ? 3 : 0;
3105 pci_set_power_state(pdev, state);
3106
3107 return 0;
3108 }
3109
3110 #ifdef CONFIG_PM
3111 static int
3112 e1000_resume(struct pci_dev *pdev)
3113 {
3114 struct net_device *netdev = pci_get_drvdata(pdev);
3115 struct e1000_adapter *adapter = netdev->priv;
3116 uint32_t manc, ret;
3117
3118 pci_set_power_state(pdev, 0);
3119 pci_restore_state(pdev);
3120 ret = pci_enable_device(pdev);
3121 if (pdev->is_busmaster)
3122 pci_set_master(pdev);
3123
3124 pci_enable_wake(pdev, 3, 0);
3125 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3126
3127 e1000_reset(adapter);
3128 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3129
3130 if(netif_running(netdev))
3131 e1000_up(adapter);
3132
3133 netif_device_attach(netdev);
3134
3135 if(adapter->hw.mac_type >= e1000_82540 &&
3136 adapter->hw.media_type == e1000_media_type_copper) {
3137 manc = E1000_READ_REG(&adapter->hw, MANC);
3138 manc &= ~(E1000_MANC_ARP_EN);
3139 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3140 }
3141
3142 return 0;
3143 }
3144 #endif
3145
3146 #ifdef CONFIG_NET_POLL_CONTROLLER
3147 /*
3148 * Polling 'interrupt' - used by things like netconsole to send skbs
3149 * without having to re-enable interrupts. It's not called while
3150 * the interrupt routine is executing.
3151 */
3152 static void
3153 e1000_netpoll (struct net_device *netdev)
3154 {
3155 struct e1000_adapter *adapter = netdev->priv;
3156 disable_irq(adapter->pdev->irq);
3157 e1000_intr(adapter->pdev->irq, netdev, NULL);
3158 enable_irq(adapter->pdev->irq);
3159 }
3160 #endif
3161
3162 /* e1000_main.c */