]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/e1000/e1000_main.c
f777d37d8e66b1d0afcaf38438b63c606084d0ff
[mirror_ubuntu-artful-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50 static struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110 /* required last entry */
111 {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130 struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132 struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165 struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring,
170 int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172 struct e1000_rx_ring *rx_ring,
173 int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176 struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178 struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181 struct e1000_rx_ring *rx_ring,
182 int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184 struct e1000_rx_ring *rx_ring,
185 int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188 int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196 struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
218 module_param(copybreak, uint, 0644);
219 MODULE_PARM_DESC(copybreak,
220 "Maximum size of packet that is copied to a new buffer on receive");
221
222 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
223 pci_channel_state_t state);
224 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
225 static void e1000_io_resume(struct pci_dev *pdev);
226
227 static struct pci_error_handlers e1000_err_handler = {
228 .error_detected = e1000_io_error_detected,
229 .slot_reset = e1000_io_slot_reset,
230 .resume = e1000_io_resume,
231 };
232
233 static struct pci_driver e1000_driver = {
234 .name = e1000_driver_name,
235 .id_table = e1000_pci_tbl,
236 .probe = e1000_probe,
237 .remove = __devexit_p(e1000_remove),
238 #ifdef CONFIG_PM
239 /* Power Managment Hooks */
240 .suspend = e1000_suspend,
241 .resume = e1000_resume,
242 #endif
243 .shutdown = e1000_shutdown,
244 .err_handler = &e1000_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 /**
257 * e1000_init_module - Driver Registration Routine
258 *
259 * e1000_init_module is the first routine called when the driver is
260 * loaded. All it does is register with the PCI subsystem.
261 **/
262
263 static int __init
264 e1000_init_module(void)
265 {
266 int ret;
267 printk(KERN_INFO "%s - version %s\n",
268 e1000_driver_string, e1000_driver_version);
269
270 printk(KERN_INFO "%s\n", e1000_copyright);
271
272 ret = pci_register_driver(&e1000_driver);
273 if (copybreak != COPYBREAK_DEFAULT) {
274 if (copybreak == 0)
275 printk(KERN_INFO "e1000: copybreak disabled\n");
276 else
277 printk(KERN_INFO "e1000: copybreak enabled for "
278 "packets <= %u bytes\n", copybreak);
279 }
280 return ret;
281 }
282
283 module_init(e1000_init_module);
284
285 /**
286 * e1000_exit_module - Driver Exit Cleanup Routine
287 *
288 * e1000_exit_module is called just before the driver is removed
289 * from memory.
290 **/
291
292 static void __exit
293 e1000_exit_module(void)
294 {
295 pci_unregister_driver(&e1000_driver);
296 }
297
298 module_exit(e1000_exit_module);
299
300 static int e1000_request_irq(struct e1000_adapter *adapter)
301 {
302 struct net_device *netdev = adapter->netdev;
303 int flags, err = 0;
304
305 flags = IRQF_SHARED;
306 #ifdef CONFIG_PCI_MSI
307 if (adapter->hw.mac_type >= e1000_82571) {
308 adapter->have_msi = TRUE;
309 if ((err = pci_enable_msi(adapter->pdev))) {
310 DPRINTK(PROBE, ERR,
311 "Unable to allocate MSI interrupt Error: %d\n", err);
312 adapter->have_msi = FALSE;
313 }
314 }
315 if (adapter->have_msi) {
316 flags &= ~IRQF_SHARED;
317 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
318 netdev->name, netdev);
319 if (err)
320 DPRINTK(PROBE, ERR,
321 "Unable to allocate interrupt Error: %d\n", err);
322 } else
323 #endif
324 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
325 netdev->name, netdev)))
326 DPRINTK(PROBE, ERR,
327 "Unable to allocate interrupt Error: %d\n", err);
328
329 return err;
330 }
331
332 static void e1000_free_irq(struct e1000_adapter *adapter)
333 {
334 struct net_device *netdev = adapter->netdev;
335
336 free_irq(adapter->pdev->irq, netdev);
337
338 #ifdef CONFIG_PCI_MSI
339 if (adapter->have_msi)
340 pci_disable_msi(adapter->pdev);
341 #endif
342 }
343
344 /**
345 * e1000_irq_disable - Mask off interrupt generation on the NIC
346 * @adapter: board private structure
347 **/
348
349 static void
350 e1000_irq_disable(struct e1000_adapter *adapter)
351 {
352 atomic_inc(&adapter->irq_sem);
353 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
354 E1000_WRITE_FLUSH(&adapter->hw);
355 synchronize_irq(adapter->pdev->irq);
356 }
357
358 /**
359 * e1000_irq_enable - Enable default interrupt generation settings
360 * @adapter: board private structure
361 **/
362
363 static void
364 e1000_irq_enable(struct e1000_adapter *adapter)
365 {
366 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
367 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
368 E1000_WRITE_FLUSH(&adapter->hw);
369 }
370 }
371
372 static void
373 e1000_update_mng_vlan(struct e1000_adapter *adapter)
374 {
375 struct net_device *netdev = adapter->netdev;
376 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
377 uint16_t old_vid = adapter->mng_vlan_id;
378 if (adapter->vlgrp) {
379 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
380 if (adapter->hw.mng_cookie.status &
381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
382 e1000_vlan_rx_add_vid(netdev, vid);
383 adapter->mng_vlan_id = vid;
384 } else
385 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
386
387 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
388 (vid != old_vid) &&
389 !vlan_group_get_device(adapter->vlgrp, old_vid))
390 e1000_vlan_rx_kill_vid(netdev, old_vid);
391 } else
392 adapter->mng_vlan_id = vid;
393 }
394 }
395
396 /**
397 * e1000_release_hw_control - release control of the h/w to f/w
398 * @adapter: address of board private structure
399 *
400 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401 * For ASF and Pass Through versions of f/w this means that the
402 * driver is no longer loaded. For AMT version (only with 82573) i
403 * of the f/w this means that the network i/f is closed.
404 *
405 **/
406
407 static void
408 e1000_release_hw_control(struct e1000_adapter *adapter)
409 {
410 uint32_t ctrl_ext;
411 uint32_t swsm;
412 uint32_t extcnf;
413
414 /* Let firmware taken over control of h/w */
415 switch (adapter->hw.mac_type) {
416 case e1000_82571:
417 case e1000_82572:
418 case e1000_80003es2lan:
419 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
420 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
421 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
422 break;
423 case e1000_82573:
424 swsm = E1000_READ_REG(&adapter->hw, SWSM);
425 E1000_WRITE_REG(&adapter->hw, SWSM,
426 swsm & ~E1000_SWSM_DRV_LOAD);
427 case e1000_ich8lan:
428 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
429 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
430 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
431 break;
432 default:
433 break;
434 }
435 }
436
437 /**
438 * e1000_get_hw_control - get control of the h/w from f/w
439 * @adapter: address of board private structure
440 *
441 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
442 * For ASF and Pass Through versions of f/w this means that
443 * the driver is loaded. For AMT version (only with 82573)
444 * of the f/w this means that the network i/f is open.
445 *
446 **/
447
448 static void
449 e1000_get_hw_control(struct e1000_adapter *adapter)
450 {
451 uint32_t ctrl_ext;
452 uint32_t swsm;
453 uint32_t extcnf;
454
455 /* Let firmware know the driver has taken over */
456 switch (adapter->hw.mac_type) {
457 case e1000_82571:
458 case e1000_82572:
459 case e1000_80003es2lan:
460 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
461 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
462 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
463 break;
464 case e1000_82573:
465 swsm = E1000_READ_REG(&adapter->hw, SWSM);
466 E1000_WRITE_REG(&adapter->hw, SWSM,
467 swsm | E1000_SWSM_DRV_LOAD);
468 break;
469 case e1000_ich8lan:
470 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
471 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
472 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
473 break;
474 default:
475 break;
476 }
477 }
478
479 static void
480 e1000_init_manageability(struct e1000_adapter *adapter)
481 {
482 if (adapter->en_mng_pt) {
483 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
484
485 /* disable hardware interception of ARP */
486 manc &= ~(E1000_MANC_ARP_EN);
487
488 /* enable receiving management packets to the host */
489 /* this will probably generate destination unreachable messages
490 * from the host OS, but the packets will be handled on SMBUS */
491 if (adapter->hw.has_manc2h) {
492 uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
493
494 manc |= E1000_MANC_EN_MNG2HOST;
495 #define E1000_MNG2HOST_PORT_623 (1 << 5)
496 #define E1000_MNG2HOST_PORT_664 (1 << 6)
497 manc2h |= E1000_MNG2HOST_PORT_623;
498 manc2h |= E1000_MNG2HOST_PORT_664;
499 E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
500 }
501
502 E1000_WRITE_REG(&adapter->hw, MANC, manc);
503 }
504 }
505
506 static void
507 e1000_release_manageability(struct e1000_adapter *adapter)
508 {
509 if (adapter->en_mng_pt) {
510 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
511
512 /* re-enable hardware interception of ARP */
513 manc |= E1000_MANC_ARP_EN;
514
515 if (adapter->hw.has_manc2h)
516 manc &= ~E1000_MANC_EN_MNG2HOST;
517
518 /* don't explicitly have to mess with MANC2H since
519 * MANC has an enable disable that gates MANC2H */
520
521 E1000_WRITE_REG(&adapter->hw, MANC, manc);
522 }
523 }
524
525 /**
526 * e1000_configure - configure the hardware for RX and TX
527 * @adapter = private board structure
528 **/
529 static void e1000_configure(struct e1000_adapter *adapter)
530 {
531 struct net_device *netdev = adapter->netdev;
532 int i;
533
534 e1000_set_multi(netdev);
535
536 e1000_restore_vlan(adapter);
537 e1000_init_manageability(adapter);
538
539 e1000_configure_tx(adapter);
540 e1000_setup_rctl(adapter);
541 e1000_configure_rx(adapter);
542 /* call E1000_DESC_UNUSED which always leaves
543 * at least 1 descriptor unused to make sure
544 * next_to_use != next_to_clean */
545 for (i = 0; i < adapter->num_rx_queues; i++) {
546 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
547 adapter->alloc_rx_buf(adapter, ring,
548 E1000_DESC_UNUSED(ring));
549 }
550
551 adapter->tx_queue_len = netdev->tx_queue_len;
552 }
553
554 int e1000_up(struct e1000_adapter *adapter)
555 {
556 /* hardware has been reset, we need to reload some things */
557 e1000_configure(adapter);
558
559 clear_bit(__E1000_DOWN, &adapter->flags);
560
561 #ifdef CONFIG_E1000_NAPI
562 netif_poll_enable(adapter->netdev);
563 #endif
564 e1000_irq_enable(adapter);
565
566 /* fire a link change interrupt to start the watchdog */
567 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
568 return 0;
569 }
570
571 /**
572 * e1000_power_up_phy - restore link in case the phy was powered down
573 * @adapter: address of board private structure
574 *
575 * The phy may be powered down to save power and turn off link when the
576 * driver is unloaded and wake on lan is not enabled (among others)
577 * *** this routine MUST be followed by a call to e1000_reset ***
578 *
579 **/
580
581 void e1000_power_up_phy(struct e1000_adapter *adapter)
582 {
583 uint16_t mii_reg = 0;
584
585 /* Just clear the power down bit to wake the phy back up */
586 if (adapter->hw.media_type == e1000_media_type_copper) {
587 /* according to the manual, the phy will retain its
588 * settings across a power-down/up cycle */
589 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
590 mii_reg &= ~MII_CR_POWER_DOWN;
591 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
592 }
593 }
594
595 static void e1000_power_down_phy(struct e1000_adapter *adapter)
596 {
597 /* Power down the PHY so no link is implied when interface is down *
598 * The PHY cannot be powered down if any of the following is TRUE *
599 * (a) WoL is enabled
600 * (b) AMT is active
601 * (c) SoL/IDER session is active */
602 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
603 adapter->hw.media_type == e1000_media_type_copper) {
604 uint16_t mii_reg = 0;
605
606 switch (adapter->hw.mac_type) {
607 case e1000_82540:
608 case e1000_82545:
609 case e1000_82545_rev_3:
610 case e1000_82546:
611 case e1000_82546_rev_3:
612 case e1000_82541:
613 case e1000_82541_rev_2:
614 case e1000_82547:
615 case e1000_82547_rev_2:
616 if (E1000_READ_REG(&adapter->hw, MANC) &
617 E1000_MANC_SMBUS_EN)
618 goto out;
619 break;
620 case e1000_82571:
621 case e1000_82572:
622 case e1000_82573:
623 case e1000_80003es2lan:
624 case e1000_ich8lan:
625 if (e1000_check_mng_mode(&adapter->hw) ||
626 e1000_check_phy_reset_block(&adapter->hw))
627 goto out;
628 break;
629 default:
630 goto out;
631 }
632 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
633 mii_reg |= MII_CR_POWER_DOWN;
634 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
635 mdelay(1);
636 }
637 out:
638 return;
639 }
640
641 void
642 e1000_down(struct e1000_adapter *adapter)
643 {
644 struct net_device *netdev = adapter->netdev;
645
646 /* signal that we're down so the interrupt handler does not
647 * reschedule our watchdog timer */
648 set_bit(__E1000_DOWN, &adapter->flags);
649
650 #ifdef CONFIG_E1000_NAPI
651 netif_poll_disable(netdev);
652 #endif
653 e1000_irq_disable(adapter);
654
655 del_timer_sync(&adapter->tx_fifo_stall_timer);
656 del_timer_sync(&adapter->watchdog_timer);
657 del_timer_sync(&adapter->phy_info_timer);
658
659 netdev->tx_queue_len = adapter->tx_queue_len;
660 adapter->link_speed = 0;
661 adapter->link_duplex = 0;
662 netif_carrier_off(netdev);
663 netif_stop_queue(netdev);
664
665 e1000_reset(adapter);
666 e1000_clean_all_tx_rings(adapter);
667 e1000_clean_all_rx_rings(adapter);
668 }
669
670 void
671 e1000_reinit_locked(struct e1000_adapter *adapter)
672 {
673 WARN_ON(in_interrupt());
674 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
675 msleep(1);
676 e1000_down(adapter);
677 e1000_up(adapter);
678 clear_bit(__E1000_RESETTING, &adapter->flags);
679 }
680
681 void
682 e1000_reset(struct e1000_adapter *adapter)
683 {
684 uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
685 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
686 boolean_t legacy_pba_adjust = FALSE;
687
688 /* Repartition Pba for greater than 9k mtu
689 * To take effect CTRL.RST is required.
690 */
691
692 switch (adapter->hw.mac_type) {
693 case e1000_82542_rev2_0:
694 case e1000_82542_rev2_1:
695 case e1000_82543:
696 case e1000_82544:
697 case e1000_82540:
698 case e1000_82541:
699 case e1000_82541_rev_2:
700 legacy_pba_adjust = TRUE;
701 pba = E1000_PBA_48K;
702 break;
703 case e1000_82545:
704 case e1000_82545_rev_3:
705 case e1000_82546:
706 case e1000_82546_rev_3:
707 pba = E1000_PBA_48K;
708 break;
709 case e1000_82547:
710 case e1000_82547_rev_2:
711 legacy_pba_adjust = TRUE;
712 pba = E1000_PBA_30K;
713 break;
714 case e1000_82571:
715 case e1000_82572:
716 case e1000_80003es2lan:
717 pba = E1000_PBA_38K;
718 break;
719 case e1000_82573:
720 pba = E1000_PBA_20K;
721 break;
722 case e1000_ich8lan:
723 pba = E1000_PBA_8K;
724 case e1000_undefined:
725 case e1000_num_macs:
726 break;
727 }
728
729 if (legacy_pba_adjust == TRUE) {
730 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
731 pba -= 8; /* allocate more FIFO for Tx */
732
733 if (adapter->hw.mac_type == e1000_82547) {
734 adapter->tx_fifo_head = 0;
735 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
736 adapter->tx_fifo_size =
737 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
738 atomic_set(&adapter->tx_fifo_stall, 0);
739 }
740 } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
741 /* adjust PBA for jumbo frames */
742 E1000_WRITE_REG(&adapter->hw, PBA, pba);
743
744 /* To maintain wire speed transmits, the Tx FIFO should be
745 * large enough to accomodate two full transmit packets,
746 * rounded up to the next 1KB and expressed in KB. Likewise,
747 * the Rx FIFO should be large enough to accomodate at least
748 * one full receive packet and is similarly rounded up and
749 * expressed in KB. */
750 pba = E1000_READ_REG(&adapter->hw, PBA);
751 /* upper 16 bits has Tx packet buffer allocation size in KB */
752 tx_space = pba >> 16;
753 /* lower 16 bits has Rx packet buffer allocation size in KB */
754 pba &= 0xffff;
755 /* don't include ethernet FCS because hardware appends/strips */
756 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
757 VLAN_TAG_SIZE;
758 min_tx_space = min_rx_space;
759 min_tx_space *= 2;
760 E1000_ROUNDUP(min_tx_space, 1024);
761 min_tx_space >>= 10;
762 E1000_ROUNDUP(min_rx_space, 1024);
763 min_rx_space >>= 10;
764
765 /* If current Tx allocation is less than the min Tx FIFO size,
766 * and the min Tx FIFO size is less than the current Rx FIFO
767 * allocation, take space away from current Rx allocation */
768 if (tx_space < min_tx_space &&
769 ((min_tx_space - tx_space) < pba)) {
770 pba = pba - (min_tx_space - tx_space);
771
772 /* PCI/PCIx hardware has PBA alignment constraints */
773 switch (adapter->hw.mac_type) {
774 case e1000_82545 ... e1000_82546_rev_3:
775 pba &= ~(E1000_PBA_8K - 1);
776 break;
777 default:
778 break;
779 }
780
781 /* if short on rx space, rx wins and must trump tx
782 * adjustment or use Early Receive if available */
783 if (pba < min_rx_space) {
784 switch (adapter->hw.mac_type) {
785 case e1000_82573:
786 /* ERT enabled in e1000_configure_rx */
787 break;
788 default:
789 pba = min_rx_space;
790 break;
791 }
792 }
793 }
794 }
795
796 E1000_WRITE_REG(&adapter->hw, PBA, pba);
797
798 /* flow control settings */
799 /* Set the FC high water mark to 90% of the FIFO size.
800 * Required to clear last 3 LSB */
801 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
802 /* We can't use 90% on small FIFOs because the remainder
803 * would be less than 1 full frame. In this case, we size
804 * it to allow at least a full frame above the high water
805 * mark. */
806 if (pba < E1000_PBA_16K)
807 fc_high_water_mark = (pba * 1024) - 1600;
808
809 adapter->hw.fc_high_water = fc_high_water_mark;
810 adapter->hw.fc_low_water = fc_high_water_mark - 8;
811 if (adapter->hw.mac_type == e1000_80003es2lan)
812 adapter->hw.fc_pause_time = 0xFFFF;
813 else
814 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
815 adapter->hw.fc_send_xon = 1;
816 adapter->hw.fc = adapter->hw.original_fc;
817
818 /* Allow time for pending master requests to run */
819 e1000_reset_hw(&adapter->hw);
820 if (adapter->hw.mac_type >= e1000_82544)
821 E1000_WRITE_REG(&adapter->hw, WUC, 0);
822
823 if (e1000_init_hw(&adapter->hw))
824 DPRINTK(PROBE, ERR, "Hardware Error\n");
825 e1000_update_mng_vlan(adapter);
826
827 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
828 if (adapter->hw.mac_type >= e1000_82544 &&
829 adapter->hw.mac_type <= e1000_82547_rev_2 &&
830 adapter->hw.autoneg == 1 &&
831 adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
832 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
833 /* clear phy power management bit if we are in gig only mode,
834 * which if enabled will attempt negotiation to 100Mb, which
835 * can cause a loss of link at power off or driver unload */
836 ctrl &= ~E1000_CTRL_SWDPIN3;
837 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
838 }
839
840 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
841 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
842
843 e1000_reset_adaptive(&adapter->hw);
844 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
845
846 if (!adapter->smart_power_down &&
847 (adapter->hw.mac_type == e1000_82571 ||
848 adapter->hw.mac_type == e1000_82572)) {
849 uint16_t phy_data = 0;
850 /* speed up time to link by disabling smart power down, ignore
851 * the return value of this function because there is nothing
852 * different we would do if it failed */
853 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
854 &phy_data);
855 phy_data &= ~IGP02E1000_PM_SPD;
856 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
857 phy_data);
858 }
859
860 e1000_release_manageability(adapter);
861 }
862
863 /**
864 * e1000_probe - Device Initialization Routine
865 * @pdev: PCI device information struct
866 * @ent: entry in e1000_pci_tbl
867 *
868 * Returns 0 on success, negative on failure
869 *
870 * e1000_probe initializes an adapter identified by a pci_dev structure.
871 * The OS initialization, configuring of the adapter private structure,
872 * and a hardware reset occur.
873 **/
874
875 static int __devinit
876 e1000_probe(struct pci_dev *pdev,
877 const struct pci_device_id *ent)
878 {
879 struct net_device *netdev;
880 struct e1000_adapter *adapter;
881 unsigned long mmio_start, mmio_len;
882 unsigned long flash_start, flash_len;
883
884 static int cards_found = 0;
885 static int global_quad_port_a = 0; /* global ksp3 port a indication */
886 int i, err, pci_using_dac;
887 uint16_t eeprom_data = 0;
888 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
889 if ((err = pci_enable_device(pdev)))
890 return err;
891
892 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
893 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
894 pci_using_dac = 1;
895 } else {
896 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
897 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
898 E1000_ERR("No usable DMA configuration, aborting\n");
899 goto err_dma;
900 }
901 pci_using_dac = 0;
902 }
903
904 if ((err = pci_request_regions(pdev, e1000_driver_name)))
905 goto err_pci_reg;
906
907 pci_set_master(pdev);
908
909 err = -ENOMEM;
910 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
911 if (!netdev)
912 goto err_alloc_etherdev;
913
914 SET_MODULE_OWNER(netdev);
915 SET_NETDEV_DEV(netdev, &pdev->dev);
916
917 pci_set_drvdata(pdev, netdev);
918 adapter = netdev_priv(netdev);
919 adapter->netdev = netdev;
920 adapter->pdev = pdev;
921 adapter->hw.back = adapter;
922 adapter->msg_enable = (1 << debug) - 1;
923
924 mmio_start = pci_resource_start(pdev, BAR_0);
925 mmio_len = pci_resource_len(pdev, BAR_0);
926
927 err = -EIO;
928 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
929 if (!adapter->hw.hw_addr)
930 goto err_ioremap;
931
932 for (i = BAR_1; i <= BAR_5; i++) {
933 if (pci_resource_len(pdev, i) == 0)
934 continue;
935 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
936 adapter->hw.io_base = pci_resource_start(pdev, i);
937 break;
938 }
939 }
940
941 netdev->open = &e1000_open;
942 netdev->stop = &e1000_close;
943 netdev->hard_start_xmit = &e1000_xmit_frame;
944 netdev->get_stats = &e1000_get_stats;
945 netdev->set_multicast_list = &e1000_set_multi;
946 netdev->set_mac_address = &e1000_set_mac;
947 netdev->change_mtu = &e1000_change_mtu;
948 netdev->do_ioctl = &e1000_ioctl;
949 e1000_set_ethtool_ops(netdev);
950 netdev->tx_timeout = &e1000_tx_timeout;
951 netdev->watchdog_timeo = 5 * HZ;
952 #ifdef CONFIG_E1000_NAPI
953 netdev->poll = &e1000_clean;
954 netdev->weight = 64;
955 #endif
956 netdev->vlan_rx_register = e1000_vlan_rx_register;
957 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
958 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
959 #ifdef CONFIG_NET_POLL_CONTROLLER
960 netdev->poll_controller = e1000_netpoll;
961 #endif
962 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
963
964 netdev->mem_start = mmio_start;
965 netdev->mem_end = mmio_start + mmio_len;
966 netdev->base_addr = adapter->hw.io_base;
967
968 adapter->bd_number = cards_found;
969
970 /* setup the private structure */
971
972 if ((err = e1000_sw_init(adapter)))
973 goto err_sw_init;
974
975 err = -EIO;
976 /* Flash BAR mapping must happen after e1000_sw_init
977 * because it depends on mac_type */
978 if ((adapter->hw.mac_type == e1000_ich8lan) &&
979 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
980 flash_start = pci_resource_start(pdev, 1);
981 flash_len = pci_resource_len(pdev, 1);
982 adapter->hw.flash_address = ioremap(flash_start, flash_len);
983 if (!adapter->hw.flash_address)
984 goto err_flashmap;
985 }
986
987 if (e1000_check_phy_reset_block(&adapter->hw))
988 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
989
990 if (adapter->hw.mac_type >= e1000_82543) {
991 netdev->features = NETIF_F_SG |
992 NETIF_F_HW_CSUM |
993 NETIF_F_HW_VLAN_TX |
994 NETIF_F_HW_VLAN_RX |
995 NETIF_F_HW_VLAN_FILTER;
996 if (adapter->hw.mac_type == e1000_ich8lan)
997 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
998 }
999
1000 if ((adapter->hw.mac_type >= e1000_82544) &&
1001 (adapter->hw.mac_type != e1000_82547))
1002 netdev->features |= NETIF_F_TSO;
1003
1004 if (adapter->hw.mac_type > e1000_82547_rev_2)
1005 netdev->features |= NETIF_F_TSO6;
1006 if (pci_using_dac)
1007 netdev->features |= NETIF_F_HIGHDMA;
1008
1009 netdev->features |= NETIF_F_LLTX;
1010
1011 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1012
1013 /* initialize eeprom parameters */
1014
1015 if (e1000_init_eeprom_params(&adapter->hw)) {
1016 E1000_ERR("EEPROM initialization failed\n");
1017 goto err_eeprom;
1018 }
1019
1020 /* before reading the EEPROM, reset the controller to
1021 * put the device in a known good starting state */
1022
1023 e1000_reset_hw(&adapter->hw);
1024
1025 /* make sure the EEPROM is good */
1026
1027 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1028 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1029 goto err_eeprom;
1030 }
1031
1032 /* copy the MAC address out of the EEPROM */
1033
1034 if (e1000_read_mac_addr(&adapter->hw))
1035 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1036 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1037 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1038
1039 if (!is_valid_ether_addr(netdev->perm_addr)) {
1040 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1041 goto err_eeprom;
1042 }
1043
1044 e1000_get_bus_info(&adapter->hw);
1045
1046 init_timer(&adapter->tx_fifo_stall_timer);
1047 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1048 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1049
1050 init_timer(&adapter->watchdog_timer);
1051 adapter->watchdog_timer.function = &e1000_watchdog;
1052 adapter->watchdog_timer.data = (unsigned long) adapter;
1053
1054 init_timer(&adapter->phy_info_timer);
1055 adapter->phy_info_timer.function = &e1000_update_phy_info;
1056 adapter->phy_info_timer.data = (unsigned long) adapter;
1057
1058 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1059
1060 e1000_check_options(adapter);
1061
1062 /* Initial Wake on LAN setting
1063 * If APM wake is enabled in the EEPROM,
1064 * enable the ACPI Magic Packet filter
1065 */
1066
1067 switch (adapter->hw.mac_type) {
1068 case e1000_82542_rev2_0:
1069 case e1000_82542_rev2_1:
1070 case e1000_82543:
1071 break;
1072 case e1000_82544:
1073 e1000_read_eeprom(&adapter->hw,
1074 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1075 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1076 break;
1077 case e1000_ich8lan:
1078 e1000_read_eeprom(&adapter->hw,
1079 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1080 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1081 break;
1082 case e1000_82546:
1083 case e1000_82546_rev_3:
1084 case e1000_82571:
1085 case e1000_80003es2lan:
1086 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1087 e1000_read_eeprom(&adapter->hw,
1088 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1089 break;
1090 }
1091 /* Fall Through */
1092 default:
1093 e1000_read_eeprom(&adapter->hw,
1094 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1095 break;
1096 }
1097 if (eeprom_data & eeprom_apme_mask)
1098 adapter->eeprom_wol |= E1000_WUFC_MAG;
1099
1100 /* now that we have the eeprom settings, apply the special cases
1101 * where the eeprom may be wrong or the board simply won't support
1102 * wake on lan on a particular port */
1103 switch (pdev->device) {
1104 case E1000_DEV_ID_82546GB_PCIE:
1105 adapter->eeprom_wol = 0;
1106 break;
1107 case E1000_DEV_ID_82546EB_FIBER:
1108 case E1000_DEV_ID_82546GB_FIBER:
1109 case E1000_DEV_ID_82571EB_FIBER:
1110 /* Wake events only supported on port A for dual fiber
1111 * regardless of eeprom setting */
1112 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1113 adapter->eeprom_wol = 0;
1114 break;
1115 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1116 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1117 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1118 /* if quad port adapter, disable WoL on all but port A */
1119 if (global_quad_port_a != 0)
1120 adapter->eeprom_wol = 0;
1121 else
1122 adapter->quad_port_a = 1;
1123 /* Reset for multiple quad port adapters */
1124 if (++global_quad_port_a == 4)
1125 global_quad_port_a = 0;
1126 break;
1127 }
1128
1129 /* initialize the wol settings based on the eeprom settings */
1130 adapter->wol = adapter->eeprom_wol;
1131
1132 /* print bus type/speed/width info */
1133 {
1134 struct e1000_hw *hw = &adapter->hw;
1135 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1136 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1137 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1138 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1139 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1140 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1141 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1142 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1143 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1144 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1145 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1146 "32-bit"));
1147 }
1148
1149 for (i = 0; i < 6; i++)
1150 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1151
1152 /* reset the hardware with the new settings */
1153 e1000_reset(adapter);
1154
1155 /* If the controller is 82573 and f/w is AMT, do not set
1156 * DRV_LOAD until the interface is up. For all other cases,
1157 * let the f/w know that the h/w is now under the control
1158 * of the driver. */
1159 if (adapter->hw.mac_type != e1000_82573 ||
1160 !e1000_check_mng_mode(&adapter->hw))
1161 e1000_get_hw_control(adapter);
1162
1163 strcpy(netdev->name, "eth%d");
1164 if ((err = register_netdev(netdev)))
1165 goto err_register;
1166
1167 /* tell the stack to leave us alone until e1000_open() is called */
1168 netif_carrier_off(netdev);
1169 netif_stop_queue(netdev);
1170
1171 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1172
1173 cards_found++;
1174 return 0;
1175
1176 err_register:
1177 e1000_release_hw_control(adapter);
1178 err_eeprom:
1179 if (!e1000_check_phy_reset_block(&adapter->hw))
1180 e1000_phy_hw_reset(&adapter->hw);
1181
1182 if (adapter->hw.flash_address)
1183 iounmap(adapter->hw.flash_address);
1184 err_flashmap:
1185 #ifdef CONFIG_E1000_NAPI
1186 for (i = 0; i < adapter->num_rx_queues; i++)
1187 dev_put(&adapter->polling_netdev[i]);
1188 #endif
1189
1190 kfree(adapter->tx_ring);
1191 kfree(adapter->rx_ring);
1192 #ifdef CONFIG_E1000_NAPI
1193 kfree(adapter->polling_netdev);
1194 #endif
1195 err_sw_init:
1196 iounmap(adapter->hw.hw_addr);
1197 err_ioremap:
1198 free_netdev(netdev);
1199 err_alloc_etherdev:
1200 pci_release_regions(pdev);
1201 err_pci_reg:
1202 err_dma:
1203 pci_disable_device(pdev);
1204 return err;
1205 }
1206
1207 /**
1208 * e1000_remove - Device Removal Routine
1209 * @pdev: PCI device information struct
1210 *
1211 * e1000_remove is called by the PCI subsystem to alert the driver
1212 * that it should release a PCI device. The could be caused by a
1213 * Hot-Plug event, or because the driver is going to be removed from
1214 * memory.
1215 **/
1216
1217 static void __devexit
1218 e1000_remove(struct pci_dev *pdev)
1219 {
1220 struct net_device *netdev = pci_get_drvdata(pdev);
1221 struct e1000_adapter *adapter = netdev_priv(netdev);
1222 #ifdef CONFIG_E1000_NAPI
1223 int i;
1224 #endif
1225
1226 flush_scheduled_work();
1227
1228 e1000_release_manageability(adapter);
1229
1230 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1231 * would have already happened in close and is redundant. */
1232 e1000_release_hw_control(adapter);
1233
1234 unregister_netdev(netdev);
1235 #ifdef CONFIG_E1000_NAPI
1236 for (i = 0; i < adapter->num_rx_queues; i++)
1237 dev_put(&adapter->polling_netdev[i]);
1238 #endif
1239
1240 if (!e1000_check_phy_reset_block(&adapter->hw))
1241 e1000_phy_hw_reset(&adapter->hw);
1242
1243 kfree(adapter->tx_ring);
1244 kfree(adapter->rx_ring);
1245 #ifdef CONFIG_E1000_NAPI
1246 kfree(adapter->polling_netdev);
1247 #endif
1248
1249 iounmap(adapter->hw.hw_addr);
1250 if (adapter->hw.flash_address)
1251 iounmap(adapter->hw.flash_address);
1252 pci_release_regions(pdev);
1253
1254 free_netdev(netdev);
1255
1256 pci_disable_device(pdev);
1257 }
1258
1259 /**
1260 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1261 * @adapter: board private structure to initialize
1262 *
1263 * e1000_sw_init initializes the Adapter private data structure.
1264 * Fields are initialized based on PCI device information and
1265 * OS network device settings (MTU size).
1266 **/
1267
1268 static int __devinit
1269 e1000_sw_init(struct e1000_adapter *adapter)
1270 {
1271 struct e1000_hw *hw = &adapter->hw;
1272 struct net_device *netdev = adapter->netdev;
1273 struct pci_dev *pdev = adapter->pdev;
1274 #ifdef CONFIG_E1000_NAPI
1275 int i;
1276 #endif
1277
1278 /* PCI config space info */
1279
1280 hw->vendor_id = pdev->vendor;
1281 hw->device_id = pdev->device;
1282 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1283 hw->subsystem_id = pdev->subsystem_device;
1284
1285 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1286
1287 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1288
1289 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1290 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1291 hw->max_frame_size = netdev->mtu +
1292 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1293 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1294
1295 /* identify the MAC */
1296
1297 if (e1000_set_mac_type(hw)) {
1298 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1299 return -EIO;
1300 }
1301
1302 switch (hw->mac_type) {
1303 default:
1304 break;
1305 case e1000_82541:
1306 case e1000_82547:
1307 case e1000_82541_rev_2:
1308 case e1000_82547_rev_2:
1309 hw->phy_init_script = 1;
1310 break;
1311 }
1312
1313 e1000_set_media_type(hw);
1314
1315 hw->wait_autoneg_complete = FALSE;
1316 hw->tbi_compatibility_en = TRUE;
1317 hw->adaptive_ifs = TRUE;
1318
1319 /* Copper options */
1320
1321 if (hw->media_type == e1000_media_type_copper) {
1322 hw->mdix = AUTO_ALL_MODES;
1323 hw->disable_polarity_correction = FALSE;
1324 hw->master_slave = E1000_MASTER_SLAVE;
1325 }
1326
1327 adapter->num_tx_queues = 1;
1328 adapter->num_rx_queues = 1;
1329
1330 if (e1000_alloc_queues(adapter)) {
1331 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1332 return -ENOMEM;
1333 }
1334
1335 #ifdef CONFIG_E1000_NAPI
1336 for (i = 0; i < adapter->num_rx_queues; i++) {
1337 adapter->polling_netdev[i].priv = adapter;
1338 adapter->polling_netdev[i].poll = &e1000_clean;
1339 adapter->polling_netdev[i].weight = 64;
1340 dev_hold(&adapter->polling_netdev[i]);
1341 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1342 }
1343 spin_lock_init(&adapter->tx_queue_lock);
1344 #endif
1345
1346 atomic_set(&adapter->irq_sem, 1);
1347 spin_lock_init(&adapter->stats_lock);
1348
1349 set_bit(__E1000_DOWN, &adapter->flags);
1350
1351 return 0;
1352 }
1353
1354 /**
1355 * e1000_alloc_queues - Allocate memory for all rings
1356 * @adapter: board private structure to initialize
1357 *
1358 * We allocate one ring per queue at run-time since we don't know the
1359 * number of queues at compile-time. The polling_netdev array is
1360 * intended for Multiqueue, but should work fine with a single queue.
1361 **/
1362
1363 static int __devinit
1364 e1000_alloc_queues(struct e1000_adapter *adapter)
1365 {
1366 int size;
1367
1368 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1369 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1370 if (!adapter->tx_ring)
1371 return -ENOMEM;
1372 memset(adapter->tx_ring, 0, size);
1373
1374 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1375 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1376 if (!adapter->rx_ring) {
1377 kfree(adapter->tx_ring);
1378 return -ENOMEM;
1379 }
1380 memset(adapter->rx_ring, 0, size);
1381
1382 #ifdef CONFIG_E1000_NAPI
1383 size = sizeof(struct net_device) * adapter->num_rx_queues;
1384 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1385 if (!adapter->polling_netdev) {
1386 kfree(adapter->tx_ring);
1387 kfree(adapter->rx_ring);
1388 return -ENOMEM;
1389 }
1390 memset(adapter->polling_netdev, 0, size);
1391 #endif
1392
1393 return E1000_SUCCESS;
1394 }
1395
1396 /**
1397 * e1000_open - Called when a network interface is made active
1398 * @netdev: network interface device structure
1399 *
1400 * Returns 0 on success, negative value on failure
1401 *
1402 * The open entry point is called when a network interface is made
1403 * active by the system (IFF_UP). At this point all resources needed
1404 * for transmit and receive operations are allocated, the interrupt
1405 * handler is registered with the OS, the watchdog timer is started,
1406 * and the stack is notified that the interface is ready.
1407 **/
1408
1409 static int
1410 e1000_open(struct net_device *netdev)
1411 {
1412 struct e1000_adapter *adapter = netdev_priv(netdev);
1413 int err;
1414
1415 /* disallow open during test */
1416 if (test_bit(__E1000_TESTING, &adapter->flags))
1417 return -EBUSY;
1418
1419 /* allocate transmit descriptors */
1420 err = e1000_setup_all_tx_resources(adapter);
1421 if (err)
1422 goto err_setup_tx;
1423
1424 /* allocate receive descriptors */
1425 err = e1000_setup_all_rx_resources(adapter);
1426 if (err)
1427 goto err_setup_rx;
1428
1429 e1000_power_up_phy(adapter);
1430
1431 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1432 if ((adapter->hw.mng_cookie.status &
1433 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1434 e1000_update_mng_vlan(adapter);
1435 }
1436
1437 /* If AMT is enabled, let the firmware know that the network
1438 * interface is now open */
1439 if (adapter->hw.mac_type == e1000_82573 &&
1440 e1000_check_mng_mode(&adapter->hw))
1441 e1000_get_hw_control(adapter);
1442
1443 /* before we allocate an interrupt, we must be ready to handle it.
1444 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1445 * as soon as we call pci_request_irq, so we have to setup our
1446 * clean_rx handler before we do so. */
1447 e1000_configure(adapter);
1448
1449 err = e1000_request_irq(adapter);
1450 if (err)
1451 goto err_req_irq;
1452
1453 /* From here on the code is the same as e1000_up() */
1454 clear_bit(__E1000_DOWN, &adapter->flags);
1455
1456 #ifdef CONFIG_E1000_NAPI
1457 netif_poll_enable(netdev);
1458 #endif
1459
1460 e1000_irq_enable(adapter);
1461
1462 /* fire a link status change interrupt to start the watchdog */
1463 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1464
1465 return E1000_SUCCESS;
1466
1467 err_req_irq:
1468 e1000_release_hw_control(adapter);
1469 e1000_power_down_phy(adapter);
1470 e1000_free_all_rx_resources(adapter);
1471 err_setup_rx:
1472 e1000_free_all_tx_resources(adapter);
1473 err_setup_tx:
1474 e1000_reset(adapter);
1475
1476 return err;
1477 }
1478
1479 /**
1480 * e1000_close - Disables a network interface
1481 * @netdev: network interface device structure
1482 *
1483 * Returns 0, this is not allowed to fail
1484 *
1485 * The close entry point is called when an interface is de-activated
1486 * by the OS. The hardware is still under the drivers control, but
1487 * needs to be disabled. A global MAC reset is issued to stop the
1488 * hardware, and all transmit and receive resources are freed.
1489 **/
1490
1491 static int
1492 e1000_close(struct net_device *netdev)
1493 {
1494 struct e1000_adapter *adapter = netdev_priv(netdev);
1495
1496 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1497 e1000_down(adapter);
1498 e1000_power_down_phy(adapter);
1499 e1000_free_irq(adapter);
1500
1501 e1000_free_all_tx_resources(adapter);
1502 e1000_free_all_rx_resources(adapter);
1503
1504 /* kill manageability vlan ID if supported, but not if a vlan with
1505 * the same ID is registered on the host OS (let 8021q kill it) */
1506 if ((adapter->hw.mng_cookie.status &
1507 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1508 !(adapter->vlgrp &&
1509 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1510 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1511 }
1512
1513 /* If AMT is enabled, let the firmware know that the network
1514 * interface is now closed */
1515 if (adapter->hw.mac_type == e1000_82573 &&
1516 e1000_check_mng_mode(&adapter->hw))
1517 e1000_release_hw_control(adapter);
1518
1519 return 0;
1520 }
1521
1522 /**
1523 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1524 * @adapter: address of board private structure
1525 * @start: address of beginning of memory
1526 * @len: length of memory
1527 **/
1528 static boolean_t
1529 e1000_check_64k_bound(struct e1000_adapter *adapter,
1530 void *start, unsigned long len)
1531 {
1532 unsigned long begin = (unsigned long) start;
1533 unsigned long end = begin + len;
1534
1535 /* First rev 82545 and 82546 need to not allow any memory
1536 * write location to cross 64k boundary due to errata 23 */
1537 if (adapter->hw.mac_type == e1000_82545 ||
1538 adapter->hw.mac_type == e1000_82546) {
1539 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1540 }
1541
1542 return TRUE;
1543 }
1544
1545 /**
1546 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1547 * @adapter: board private structure
1548 * @txdr: tx descriptor ring (for a specific queue) to setup
1549 *
1550 * Return 0 on success, negative on failure
1551 **/
1552
1553 static int
1554 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1555 struct e1000_tx_ring *txdr)
1556 {
1557 struct pci_dev *pdev = adapter->pdev;
1558 int size;
1559
1560 size = sizeof(struct e1000_buffer) * txdr->count;
1561 txdr->buffer_info = vmalloc(size);
1562 if (!txdr->buffer_info) {
1563 DPRINTK(PROBE, ERR,
1564 "Unable to allocate memory for the transmit descriptor ring\n");
1565 return -ENOMEM;
1566 }
1567 memset(txdr->buffer_info, 0, size);
1568
1569 /* round up to nearest 4K */
1570
1571 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1572 E1000_ROUNDUP(txdr->size, 4096);
1573
1574 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1575 if (!txdr->desc) {
1576 setup_tx_desc_die:
1577 vfree(txdr->buffer_info);
1578 DPRINTK(PROBE, ERR,
1579 "Unable to allocate memory for the transmit descriptor ring\n");
1580 return -ENOMEM;
1581 }
1582
1583 /* Fix for errata 23, can't cross 64kB boundary */
1584 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1585 void *olddesc = txdr->desc;
1586 dma_addr_t olddma = txdr->dma;
1587 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1588 "at %p\n", txdr->size, txdr->desc);
1589 /* Try again, without freeing the previous */
1590 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1591 /* Failed allocation, critical failure */
1592 if (!txdr->desc) {
1593 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1594 goto setup_tx_desc_die;
1595 }
1596
1597 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1598 /* give up */
1599 pci_free_consistent(pdev, txdr->size, txdr->desc,
1600 txdr->dma);
1601 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1602 DPRINTK(PROBE, ERR,
1603 "Unable to allocate aligned memory "
1604 "for the transmit descriptor ring\n");
1605 vfree(txdr->buffer_info);
1606 return -ENOMEM;
1607 } else {
1608 /* Free old allocation, new allocation was successful */
1609 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1610 }
1611 }
1612 memset(txdr->desc, 0, txdr->size);
1613
1614 txdr->next_to_use = 0;
1615 txdr->next_to_clean = 0;
1616 spin_lock_init(&txdr->tx_lock);
1617
1618 return 0;
1619 }
1620
1621 /**
1622 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1623 * (Descriptors) for all queues
1624 * @adapter: board private structure
1625 *
1626 * Return 0 on success, negative on failure
1627 **/
1628
1629 int
1630 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1631 {
1632 int i, err = 0;
1633
1634 for (i = 0; i < adapter->num_tx_queues; i++) {
1635 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1636 if (err) {
1637 DPRINTK(PROBE, ERR,
1638 "Allocation for Tx Queue %u failed\n", i);
1639 for (i-- ; i >= 0; i--)
1640 e1000_free_tx_resources(adapter,
1641 &adapter->tx_ring[i]);
1642 break;
1643 }
1644 }
1645
1646 return err;
1647 }
1648
1649 /**
1650 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1651 * @adapter: board private structure
1652 *
1653 * Configure the Tx unit of the MAC after a reset.
1654 **/
1655
1656 static void
1657 e1000_configure_tx(struct e1000_adapter *adapter)
1658 {
1659 uint64_t tdba;
1660 struct e1000_hw *hw = &adapter->hw;
1661 uint32_t tdlen, tctl, tipg, tarc;
1662 uint32_t ipgr1, ipgr2;
1663
1664 /* Setup the HW Tx Head and Tail descriptor pointers */
1665
1666 switch (adapter->num_tx_queues) {
1667 case 1:
1668 default:
1669 tdba = adapter->tx_ring[0].dma;
1670 tdlen = adapter->tx_ring[0].count *
1671 sizeof(struct e1000_tx_desc);
1672 E1000_WRITE_REG(hw, TDLEN, tdlen);
1673 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1674 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1675 E1000_WRITE_REG(hw, TDT, 0);
1676 E1000_WRITE_REG(hw, TDH, 0);
1677 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1678 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1679 break;
1680 }
1681
1682 /* Set the default values for the Tx Inter Packet Gap timer */
1683 if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1684 (hw->media_type == e1000_media_type_fiber ||
1685 hw->media_type == e1000_media_type_internal_serdes))
1686 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1687 else
1688 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1689
1690 switch (hw->mac_type) {
1691 case e1000_82542_rev2_0:
1692 case e1000_82542_rev2_1:
1693 tipg = DEFAULT_82542_TIPG_IPGT;
1694 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1695 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1696 break;
1697 case e1000_80003es2lan:
1698 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1699 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1700 break;
1701 default:
1702 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1703 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1704 break;
1705 }
1706 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1707 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1708 E1000_WRITE_REG(hw, TIPG, tipg);
1709
1710 /* Set the Tx Interrupt Delay register */
1711
1712 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1713 if (hw->mac_type >= e1000_82540)
1714 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1715
1716 /* Program the Transmit Control Register */
1717
1718 tctl = E1000_READ_REG(hw, TCTL);
1719 tctl &= ~E1000_TCTL_CT;
1720 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1721 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1722
1723 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1724 tarc = E1000_READ_REG(hw, TARC0);
1725 /* set the speed mode bit, we'll clear it if we're not at
1726 * gigabit link later */
1727 tarc |= (1 << 21);
1728 E1000_WRITE_REG(hw, TARC0, tarc);
1729 } else if (hw->mac_type == e1000_80003es2lan) {
1730 tarc = E1000_READ_REG(hw, TARC0);
1731 tarc |= 1;
1732 E1000_WRITE_REG(hw, TARC0, tarc);
1733 tarc = E1000_READ_REG(hw, TARC1);
1734 tarc |= 1;
1735 E1000_WRITE_REG(hw, TARC1, tarc);
1736 }
1737
1738 e1000_config_collision_dist(hw);
1739
1740 /* Setup Transmit Descriptor Settings for eop descriptor */
1741 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1742
1743 /* only set IDE if we are delaying interrupts using the timers */
1744 if (adapter->tx_int_delay)
1745 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1746
1747 if (hw->mac_type < e1000_82543)
1748 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1749 else
1750 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1751
1752 /* Cache if we're 82544 running in PCI-X because we'll
1753 * need this to apply a workaround later in the send path. */
1754 if (hw->mac_type == e1000_82544 &&
1755 hw->bus_type == e1000_bus_type_pcix)
1756 adapter->pcix_82544 = 1;
1757
1758 E1000_WRITE_REG(hw, TCTL, tctl);
1759
1760 }
1761
1762 /**
1763 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1764 * @adapter: board private structure
1765 * @rxdr: rx descriptor ring (for a specific queue) to setup
1766 *
1767 * Returns 0 on success, negative on failure
1768 **/
1769
1770 static int
1771 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1772 struct e1000_rx_ring *rxdr)
1773 {
1774 struct pci_dev *pdev = adapter->pdev;
1775 int size, desc_len;
1776
1777 size = sizeof(struct e1000_buffer) * rxdr->count;
1778 rxdr->buffer_info = vmalloc(size);
1779 if (!rxdr->buffer_info) {
1780 DPRINTK(PROBE, ERR,
1781 "Unable to allocate memory for the receive descriptor ring\n");
1782 return -ENOMEM;
1783 }
1784 memset(rxdr->buffer_info, 0, size);
1785
1786 size = sizeof(struct e1000_ps_page) * rxdr->count;
1787 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1788 if (!rxdr->ps_page) {
1789 vfree(rxdr->buffer_info);
1790 DPRINTK(PROBE, ERR,
1791 "Unable to allocate memory for the receive descriptor ring\n");
1792 return -ENOMEM;
1793 }
1794 memset(rxdr->ps_page, 0, size);
1795
1796 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1797 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1798 if (!rxdr->ps_page_dma) {
1799 vfree(rxdr->buffer_info);
1800 kfree(rxdr->ps_page);
1801 DPRINTK(PROBE, ERR,
1802 "Unable to allocate memory for the receive descriptor ring\n");
1803 return -ENOMEM;
1804 }
1805 memset(rxdr->ps_page_dma, 0, size);
1806
1807 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1808 desc_len = sizeof(struct e1000_rx_desc);
1809 else
1810 desc_len = sizeof(union e1000_rx_desc_packet_split);
1811
1812 /* Round up to nearest 4K */
1813
1814 rxdr->size = rxdr->count * desc_len;
1815 E1000_ROUNDUP(rxdr->size, 4096);
1816
1817 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818
1819 if (!rxdr->desc) {
1820 DPRINTK(PROBE, ERR,
1821 "Unable to allocate memory for the receive descriptor ring\n");
1822 setup_rx_desc_die:
1823 vfree(rxdr->buffer_info);
1824 kfree(rxdr->ps_page);
1825 kfree(rxdr->ps_page_dma);
1826 return -ENOMEM;
1827 }
1828
1829 /* Fix for errata 23, can't cross 64kB boundary */
1830 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1831 void *olddesc = rxdr->desc;
1832 dma_addr_t olddma = rxdr->dma;
1833 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1834 "at %p\n", rxdr->size, rxdr->desc);
1835 /* Try again, without freeing the previous */
1836 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1837 /* Failed allocation, critical failure */
1838 if (!rxdr->desc) {
1839 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1840 DPRINTK(PROBE, ERR,
1841 "Unable to allocate memory "
1842 "for the receive descriptor ring\n");
1843 goto setup_rx_desc_die;
1844 }
1845
1846 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1847 /* give up */
1848 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1849 rxdr->dma);
1850 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1851 DPRINTK(PROBE, ERR,
1852 "Unable to allocate aligned memory "
1853 "for the receive descriptor ring\n");
1854 goto setup_rx_desc_die;
1855 } else {
1856 /* Free old allocation, new allocation was successful */
1857 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1858 }
1859 }
1860 memset(rxdr->desc, 0, rxdr->size);
1861
1862 rxdr->next_to_clean = 0;
1863 rxdr->next_to_use = 0;
1864
1865 return 0;
1866 }
1867
1868 /**
1869 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1870 * (Descriptors) for all queues
1871 * @adapter: board private structure
1872 *
1873 * Return 0 on success, negative on failure
1874 **/
1875
1876 int
1877 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1878 {
1879 int i, err = 0;
1880
1881 for (i = 0; i < adapter->num_rx_queues; i++) {
1882 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1883 if (err) {
1884 DPRINTK(PROBE, ERR,
1885 "Allocation for Rx Queue %u failed\n", i);
1886 for (i-- ; i >= 0; i--)
1887 e1000_free_rx_resources(adapter,
1888 &adapter->rx_ring[i]);
1889 break;
1890 }
1891 }
1892
1893 return err;
1894 }
1895
1896 /**
1897 * e1000_setup_rctl - configure the receive control registers
1898 * @adapter: Board private structure
1899 **/
1900 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1901 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1902 static void
1903 e1000_setup_rctl(struct e1000_adapter *adapter)
1904 {
1905 uint32_t rctl, rfctl;
1906 uint32_t psrctl = 0;
1907 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1908 uint32_t pages = 0;
1909 #endif
1910
1911 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1912
1913 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1914
1915 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1916 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1917 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1918
1919 if (adapter->hw.tbi_compatibility_on == 1)
1920 rctl |= E1000_RCTL_SBP;
1921 else
1922 rctl &= ~E1000_RCTL_SBP;
1923
1924 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1925 rctl &= ~E1000_RCTL_LPE;
1926 else
1927 rctl |= E1000_RCTL_LPE;
1928
1929 /* Setup buffer sizes */
1930 rctl &= ~E1000_RCTL_SZ_4096;
1931 rctl |= E1000_RCTL_BSEX;
1932 switch (adapter->rx_buffer_len) {
1933 case E1000_RXBUFFER_256:
1934 rctl |= E1000_RCTL_SZ_256;
1935 rctl &= ~E1000_RCTL_BSEX;
1936 break;
1937 case E1000_RXBUFFER_512:
1938 rctl |= E1000_RCTL_SZ_512;
1939 rctl &= ~E1000_RCTL_BSEX;
1940 break;
1941 case E1000_RXBUFFER_1024:
1942 rctl |= E1000_RCTL_SZ_1024;
1943 rctl &= ~E1000_RCTL_BSEX;
1944 break;
1945 case E1000_RXBUFFER_2048:
1946 default:
1947 rctl |= E1000_RCTL_SZ_2048;
1948 rctl &= ~E1000_RCTL_BSEX;
1949 break;
1950 case E1000_RXBUFFER_4096:
1951 rctl |= E1000_RCTL_SZ_4096;
1952 break;
1953 case E1000_RXBUFFER_8192:
1954 rctl |= E1000_RCTL_SZ_8192;
1955 break;
1956 case E1000_RXBUFFER_16384:
1957 rctl |= E1000_RCTL_SZ_16384;
1958 break;
1959 }
1960
1961 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1962 /* 82571 and greater support packet-split where the protocol
1963 * header is placed in skb->data and the packet data is
1964 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1965 * In the case of a non-split, skb->data is linearly filled,
1966 * followed by the page buffers. Therefore, skb->data is
1967 * sized to hold the largest protocol header.
1968 */
1969 /* allocations using alloc_page take too long for regular MTU
1970 * so only enable packet split for jumbo frames */
1971 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1972 if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1973 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1974 adapter->rx_ps_pages = pages;
1975 else
1976 adapter->rx_ps_pages = 0;
1977 #endif
1978 if (adapter->rx_ps_pages) {
1979 /* Configure extra packet-split registers */
1980 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1981 rfctl |= E1000_RFCTL_EXTEN;
1982 /* disable packet split support for IPv6 extension headers,
1983 * because some malformed IPv6 headers can hang the RX */
1984 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1985 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1986
1987 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1988
1989 rctl |= E1000_RCTL_DTYP_PS;
1990
1991 psrctl |= adapter->rx_ps_bsize0 >>
1992 E1000_PSRCTL_BSIZE0_SHIFT;
1993
1994 switch (adapter->rx_ps_pages) {
1995 case 3:
1996 psrctl |= PAGE_SIZE <<
1997 E1000_PSRCTL_BSIZE3_SHIFT;
1998 case 2:
1999 psrctl |= PAGE_SIZE <<
2000 E1000_PSRCTL_BSIZE2_SHIFT;
2001 case 1:
2002 psrctl |= PAGE_SIZE >>
2003 E1000_PSRCTL_BSIZE1_SHIFT;
2004 break;
2005 }
2006
2007 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
2008 }
2009
2010 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2011 }
2012
2013 /**
2014 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2015 * @adapter: board private structure
2016 *
2017 * Configure the Rx unit of the MAC after a reset.
2018 **/
2019
2020 static void
2021 e1000_configure_rx(struct e1000_adapter *adapter)
2022 {
2023 uint64_t rdba;
2024 struct e1000_hw *hw = &adapter->hw;
2025 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2026
2027 if (adapter->rx_ps_pages) {
2028 /* this is a 32 byte descriptor */
2029 rdlen = adapter->rx_ring[0].count *
2030 sizeof(union e1000_rx_desc_packet_split);
2031 adapter->clean_rx = e1000_clean_rx_irq_ps;
2032 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2033 } else {
2034 rdlen = adapter->rx_ring[0].count *
2035 sizeof(struct e1000_rx_desc);
2036 adapter->clean_rx = e1000_clean_rx_irq;
2037 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2038 }
2039
2040 /* disable receives while setting up the descriptors */
2041 rctl = E1000_READ_REG(hw, RCTL);
2042 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2043
2044 /* set the Receive Delay Timer Register */
2045 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2046
2047 if (hw->mac_type >= e1000_82540) {
2048 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2049 if (adapter->itr_setting != 0)
2050 E1000_WRITE_REG(hw, ITR,
2051 1000000000 / (adapter->itr * 256));
2052 }
2053
2054 if (hw->mac_type >= e1000_82571) {
2055 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2056 /* Reset delay timers after every interrupt */
2057 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2058 #ifdef CONFIG_E1000_NAPI
2059 /* Auto-Mask interrupts upon ICR access */
2060 ctrl_ext |= E1000_CTRL_EXT_IAME;
2061 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2062 #endif
2063 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2064 E1000_WRITE_FLUSH(hw);
2065 }
2066
2067 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2068 * the Base and Length of the Rx Descriptor Ring */
2069 switch (adapter->num_rx_queues) {
2070 case 1:
2071 default:
2072 rdba = adapter->rx_ring[0].dma;
2073 E1000_WRITE_REG(hw, RDLEN, rdlen);
2074 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2075 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2076 E1000_WRITE_REG(hw, RDT, 0);
2077 E1000_WRITE_REG(hw, RDH, 0);
2078 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2079 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2080 break;
2081 }
2082
2083 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2084 if (hw->mac_type >= e1000_82543) {
2085 rxcsum = E1000_READ_REG(hw, RXCSUM);
2086 if (adapter->rx_csum == TRUE) {
2087 rxcsum |= E1000_RXCSUM_TUOFL;
2088
2089 /* Enable 82571 IPv4 payload checksum for UDP fragments
2090 * Must be used in conjunction with packet-split. */
2091 if ((hw->mac_type >= e1000_82571) &&
2092 (adapter->rx_ps_pages)) {
2093 rxcsum |= E1000_RXCSUM_IPPCSE;
2094 }
2095 } else {
2096 rxcsum &= ~E1000_RXCSUM_TUOFL;
2097 /* don't need to clear IPPCSE as it defaults to 0 */
2098 }
2099 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2100 }
2101
2102 /* enable early receives on 82573, only takes effect if using > 2048
2103 * byte total frame size. for example only for jumbo frames */
2104 #define E1000_ERT_2048 0x100
2105 if (hw->mac_type == e1000_82573)
2106 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2107
2108 /* Enable Receives */
2109 E1000_WRITE_REG(hw, RCTL, rctl);
2110 }
2111
2112 /**
2113 * e1000_free_tx_resources - Free Tx Resources per Queue
2114 * @adapter: board private structure
2115 * @tx_ring: Tx descriptor ring for a specific queue
2116 *
2117 * Free all transmit software resources
2118 **/
2119
2120 static void
2121 e1000_free_tx_resources(struct e1000_adapter *adapter,
2122 struct e1000_tx_ring *tx_ring)
2123 {
2124 struct pci_dev *pdev = adapter->pdev;
2125
2126 e1000_clean_tx_ring(adapter, tx_ring);
2127
2128 vfree(tx_ring->buffer_info);
2129 tx_ring->buffer_info = NULL;
2130
2131 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2132
2133 tx_ring->desc = NULL;
2134 }
2135
2136 /**
2137 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2138 * @adapter: board private structure
2139 *
2140 * Free all transmit software resources
2141 **/
2142
2143 void
2144 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2145 {
2146 int i;
2147
2148 for (i = 0; i < adapter->num_tx_queues; i++)
2149 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2150 }
2151
2152 static void
2153 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2154 struct e1000_buffer *buffer_info)
2155 {
2156 if (buffer_info->dma) {
2157 pci_unmap_page(adapter->pdev,
2158 buffer_info->dma,
2159 buffer_info->length,
2160 PCI_DMA_TODEVICE);
2161 buffer_info->dma = 0;
2162 }
2163 if (buffer_info->skb) {
2164 dev_kfree_skb_any(buffer_info->skb);
2165 buffer_info->skb = NULL;
2166 }
2167 /* buffer_info must be completely set up in the transmit path */
2168 }
2169
2170 /**
2171 * e1000_clean_tx_ring - Free Tx Buffers
2172 * @adapter: board private structure
2173 * @tx_ring: ring to be cleaned
2174 **/
2175
2176 static void
2177 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2178 struct e1000_tx_ring *tx_ring)
2179 {
2180 struct e1000_buffer *buffer_info;
2181 unsigned long size;
2182 unsigned int i;
2183
2184 /* Free all the Tx ring sk_buffs */
2185
2186 for (i = 0; i < tx_ring->count; i++) {
2187 buffer_info = &tx_ring->buffer_info[i];
2188 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2189 }
2190
2191 size = sizeof(struct e1000_buffer) * tx_ring->count;
2192 memset(tx_ring->buffer_info, 0, size);
2193
2194 /* Zero out the descriptor ring */
2195
2196 memset(tx_ring->desc, 0, tx_ring->size);
2197
2198 tx_ring->next_to_use = 0;
2199 tx_ring->next_to_clean = 0;
2200 tx_ring->last_tx_tso = 0;
2201
2202 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2203 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2204 }
2205
2206 /**
2207 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2208 * @adapter: board private structure
2209 **/
2210
2211 static void
2212 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2213 {
2214 int i;
2215
2216 for (i = 0; i < adapter->num_tx_queues; i++)
2217 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2218 }
2219
2220 /**
2221 * e1000_free_rx_resources - Free Rx Resources
2222 * @adapter: board private structure
2223 * @rx_ring: ring to clean the resources from
2224 *
2225 * Free all receive software resources
2226 **/
2227
2228 static void
2229 e1000_free_rx_resources(struct e1000_adapter *adapter,
2230 struct e1000_rx_ring *rx_ring)
2231 {
2232 struct pci_dev *pdev = adapter->pdev;
2233
2234 e1000_clean_rx_ring(adapter, rx_ring);
2235
2236 vfree(rx_ring->buffer_info);
2237 rx_ring->buffer_info = NULL;
2238 kfree(rx_ring->ps_page);
2239 rx_ring->ps_page = NULL;
2240 kfree(rx_ring->ps_page_dma);
2241 rx_ring->ps_page_dma = NULL;
2242
2243 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2244
2245 rx_ring->desc = NULL;
2246 }
2247
2248 /**
2249 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2250 * @adapter: board private structure
2251 *
2252 * Free all receive software resources
2253 **/
2254
2255 void
2256 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2257 {
2258 int i;
2259
2260 for (i = 0; i < adapter->num_rx_queues; i++)
2261 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2262 }
2263
2264 /**
2265 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2266 * @adapter: board private structure
2267 * @rx_ring: ring to free buffers from
2268 **/
2269
2270 static void
2271 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2272 struct e1000_rx_ring *rx_ring)
2273 {
2274 struct e1000_buffer *buffer_info;
2275 struct e1000_ps_page *ps_page;
2276 struct e1000_ps_page_dma *ps_page_dma;
2277 struct pci_dev *pdev = adapter->pdev;
2278 unsigned long size;
2279 unsigned int i, j;
2280
2281 /* Free all the Rx ring sk_buffs */
2282 for (i = 0; i < rx_ring->count; i++) {
2283 buffer_info = &rx_ring->buffer_info[i];
2284 if (buffer_info->skb) {
2285 pci_unmap_single(pdev,
2286 buffer_info->dma,
2287 buffer_info->length,
2288 PCI_DMA_FROMDEVICE);
2289
2290 dev_kfree_skb(buffer_info->skb);
2291 buffer_info->skb = NULL;
2292 }
2293 ps_page = &rx_ring->ps_page[i];
2294 ps_page_dma = &rx_ring->ps_page_dma[i];
2295 for (j = 0; j < adapter->rx_ps_pages; j++) {
2296 if (!ps_page->ps_page[j]) break;
2297 pci_unmap_page(pdev,
2298 ps_page_dma->ps_page_dma[j],
2299 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2300 ps_page_dma->ps_page_dma[j] = 0;
2301 put_page(ps_page->ps_page[j]);
2302 ps_page->ps_page[j] = NULL;
2303 }
2304 }
2305
2306 size = sizeof(struct e1000_buffer) * rx_ring->count;
2307 memset(rx_ring->buffer_info, 0, size);
2308 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2309 memset(rx_ring->ps_page, 0, size);
2310 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2311 memset(rx_ring->ps_page_dma, 0, size);
2312
2313 /* Zero out the descriptor ring */
2314
2315 memset(rx_ring->desc, 0, rx_ring->size);
2316
2317 rx_ring->next_to_clean = 0;
2318 rx_ring->next_to_use = 0;
2319
2320 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2321 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2322 }
2323
2324 /**
2325 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2326 * @adapter: board private structure
2327 **/
2328
2329 static void
2330 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2331 {
2332 int i;
2333
2334 for (i = 0; i < adapter->num_rx_queues; i++)
2335 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2336 }
2337
2338 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2339 * and memory write and invalidate disabled for certain operations
2340 */
2341 static void
2342 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2343 {
2344 struct net_device *netdev = adapter->netdev;
2345 uint32_t rctl;
2346
2347 e1000_pci_clear_mwi(&adapter->hw);
2348
2349 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2350 rctl |= E1000_RCTL_RST;
2351 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2352 E1000_WRITE_FLUSH(&adapter->hw);
2353 mdelay(5);
2354
2355 if (netif_running(netdev))
2356 e1000_clean_all_rx_rings(adapter);
2357 }
2358
2359 static void
2360 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2361 {
2362 struct net_device *netdev = adapter->netdev;
2363 uint32_t rctl;
2364
2365 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2366 rctl &= ~E1000_RCTL_RST;
2367 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2368 E1000_WRITE_FLUSH(&adapter->hw);
2369 mdelay(5);
2370
2371 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2372 e1000_pci_set_mwi(&adapter->hw);
2373
2374 if (netif_running(netdev)) {
2375 /* No need to loop, because 82542 supports only 1 queue */
2376 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2377 e1000_configure_rx(adapter);
2378 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2379 }
2380 }
2381
2382 /**
2383 * e1000_set_mac - Change the Ethernet Address of the NIC
2384 * @netdev: network interface device structure
2385 * @p: pointer to an address structure
2386 *
2387 * Returns 0 on success, negative on failure
2388 **/
2389
2390 static int
2391 e1000_set_mac(struct net_device *netdev, void *p)
2392 {
2393 struct e1000_adapter *adapter = netdev_priv(netdev);
2394 struct sockaddr *addr = p;
2395
2396 if (!is_valid_ether_addr(addr->sa_data))
2397 return -EADDRNOTAVAIL;
2398
2399 /* 82542 2.0 needs to be in reset to write receive address registers */
2400
2401 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2402 e1000_enter_82542_rst(adapter);
2403
2404 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2405 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2406
2407 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2408
2409 /* With 82571 controllers, LAA may be overwritten (with the default)
2410 * due to controller reset from the other port. */
2411 if (adapter->hw.mac_type == e1000_82571) {
2412 /* activate the work around */
2413 adapter->hw.laa_is_present = 1;
2414
2415 /* Hold a copy of the LAA in RAR[14] This is done so that
2416 * between the time RAR[0] gets clobbered and the time it
2417 * gets fixed (in e1000_watchdog), the actual LAA is in one
2418 * of the RARs and no incoming packets directed to this port
2419 * are dropped. Eventaully the LAA will be in RAR[0] and
2420 * RAR[14] */
2421 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2422 E1000_RAR_ENTRIES - 1);
2423 }
2424
2425 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2426 e1000_leave_82542_rst(adapter);
2427
2428 return 0;
2429 }
2430
2431 /**
2432 * e1000_set_multi - Multicast and Promiscuous mode set
2433 * @netdev: network interface device structure
2434 *
2435 * The set_multi entry point is called whenever the multicast address
2436 * list or the network interface flags are updated. This routine is
2437 * responsible for configuring the hardware for proper multicast,
2438 * promiscuous mode, and all-multi behavior.
2439 **/
2440
2441 static void
2442 e1000_set_multi(struct net_device *netdev)
2443 {
2444 struct e1000_adapter *adapter = netdev_priv(netdev);
2445 struct e1000_hw *hw = &adapter->hw;
2446 struct dev_mc_list *mc_ptr;
2447 uint32_t rctl;
2448 uint32_t hash_value;
2449 int i, rar_entries = E1000_RAR_ENTRIES;
2450 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2451 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2452 E1000_NUM_MTA_REGISTERS;
2453
2454 if (adapter->hw.mac_type == e1000_ich8lan)
2455 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2456
2457 /* reserve RAR[14] for LAA over-write work-around */
2458 if (adapter->hw.mac_type == e1000_82571)
2459 rar_entries--;
2460
2461 /* Check for Promiscuous and All Multicast modes */
2462
2463 rctl = E1000_READ_REG(hw, RCTL);
2464
2465 if (netdev->flags & IFF_PROMISC) {
2466 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2467 } else if (netdev->flags & IFF_ALLMULTI) {
2468 rctl |= E1000_RCTL_MPE;
2469 rctl &= ~E1000_RCTL_UPE;
2470 } else {
2471 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2472 }
2473
2474 E1000_WRITE_REG(hw, RCTL, rctl);
2475
2476 /* 82542 2.0 needs to be in reset to write receive address registers */
2477
2478 if (hw->mac_type == e1000_82542_rev2_0)
2479 e1000_enter_82542_rst(adapter);
2480
2481 /* load the first 14 multicast address into the exact filters 1-14
2482 * RAR 0 is used for the station MAC adddress
2483 * if there are not 14 addresses, go ahead and clear the filters
2484 * -- with 82571 controllers only 0-13 entries are filled here
2485 */
2486 mc_ptr = netdev->mc_list;
2487
2488 for (i = 1; i < rar_entries; i++) {
2489 if (mc_ptr) {
2490 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2491 mc_ptr = mc_ptr->next;
2492 } else {
2493 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2494 E1000_WRITE_FLUSH(hw);
2495 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2496 E1000_WRITE_FLUSH(hw);
2497 }
2498 }
2499
2500 /* clear the old settings from the multicast hash table */
2501
2502 for (i = 0; i < mta_reg_count; i++) {
2503 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2504 E1000_WRITE_FLUSH(hw);
2505 }
2506
2507 /* load any remaining addresses into the hash table */
2508
2509 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2510 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2511 e1000_mta_set(hw, hash_value);
2512 }
2513
2514 if (hw->mac_type == e1000_82542_rev2_0)
2515 e1000_leave_82542_rst(adapter);
2516 }
2517
2518 /* Need to wait a few seconds after link up to get diagnostic information from
2519 * the phy */
2520
2521 static void
2522 e1000_update_phy_info(unsigned long data)
2523 {
2524 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2525 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2526 }
2527
2528 /**
2529 * e1000_82547_tx_fifo_stall - Timer Call-back
2530 * @data: pointer to adapter cast into an unsigned long
2531 **/
2532
2533 static void
2534 e1000_82547_tx_fifo_stall(unsigned long data)
2535 {
2536 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2537 struct net_device *netdev = adapter->netdev;
2538 uint32_t tctl;
2539
2540 if (atomic_read(&adapter->tx_fifo_stall)) {
2541 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2542 E1000_READ_REG(&adapter->hw, TDH)) &&
2543 (E1000_READ_REG(&adapter->hw, TDFT) ==
2544 E1000_READ_REG(&adapter->hw, TDFH)) &&
2545 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2546 E1000_READ_REG(&adapter->hw, TDFHS))) {
2547 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2548 E1000_WRITE_REG(&adapter->hw, TCTL,
2549 tctl & ~E1000_TCTL_EN);
2550 E1000_WRITE_REG(&adapter->hw, TDFT,
2551 adapter->tx_head_addr);
2552 E1000_WRITE_REG(&adapter->hw, TDFH,
2553 adapter->tx_head_addr);
2554 E1000_WRITE_REG(&adapter->hw, TDFTS,
2555 adapter->tx_head_addr);
2556 E1000_WRITE_REG(&adapter->hw, TDFHS,
2557 adapter->tx_head_addr);
2558 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2559 E1000_WRITE_FLUSH(&adapter->hw);
2560
2561 adapter->tx_fifo_head = 0;
2562 atomic_set(&adapter->tx_fifo_stall, 0);
2563 netif_wake_queue(netdev);
2564 } else {
2565 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2566 }
2567 }
2568 }
2569
2570 /**
2571 * e1000_watchdog - Timer Call-back
2572 * @data: pointer to adapter cast into an unsigned long
2573 **/
2574 static void
2575 e1000_watchdog(unsigned long data)
2576 {
2577 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2578 struct net_device *netdev = adapter->netdev;
2579 struct e1000_tx_ring *txdr = adapter->tx_ring;
2580 uint32_t link, tctl;
2581 int32_t ret_val;
2582
2583 ret_val = e1000_check_for_link(&adapter->hw);
2584 if ((ret_val == E1000_ERR_PHY) &&
2585 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2586 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2587 /* See e1000_kumeran_lock_loss_workaround() */
2588 DPRINTK(LINK, INFO,
2589 "Gigabit has been disabled, downgrading speed\n");
2590 }
2591
2592 if (adapter->hw.mac_type == e1000_82573) {
2593 e1000_enable_tx_pkt_filtering(&adapter->hw);
2594 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2595 e1000_update_mng_vlan(adapter);
2596 }
2597
2598 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2599 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2600 link = !adapter->hw.serdes_link_down;
2601 else
2602 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2603
2604 if (link) {
2605 if (!netif_carrier_ok(netdev)) {
2606 uint32_t ctrl;
2607 boolean_t txb2b = 1;
2608 e1000_get_speed_and_duplex(&adapter->hw,
2609 &adapter->link_speed,
2610 &adapter->link_duplex);
2611
2612 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2613 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2614 "Flow Control: %s\n",
2615 adapter->link_speed,
2616 adapter->link_duplex == FULL_DUPLEX ?
2617 "Full Duplex" : "Half Duplex",
2618 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2619 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2620 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2621 E1000_CTRL_TFCE) ? "TX" : "None" )));
2622
2623 /* tweak tx_queue_len according to speed/duplex
2624 * and adjust the timeout factor */
2625 netdev->tx_queue_len = adapter->tx_queue_len;
2626 adapter->tx_timeout_factor = 1;
2627 switch (adapter->link_speed) {
2628 case SPEED_10:
2629 txb2b = 0;
2630 netdev->tx_queue_len = 10;
2631 adapter->tx_timeout_factor = 8;
2632 break;
2633 case SPEED_100:
2634 txb2b = 0;
2635 netdev->tx_queue_len = 100;
2636 /* maybe add some timeout factor ? */
2637 break;
2638 }
2639
2640 if ((adapter->hw.mac_type == e1000_82571 ||
2641 adapter->hw.mac_type == e1000_82572) &&
2642 txb2b == 0) {
2643 uint32_t tarc0;
2644 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2645 tarc0 &= ~(1 << 21);
2646 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2647 }
2648
2649 /* disable TSO for pcie and 10/100 speeds, to avoid
2650 * some hardware issues */
2651 if (!adapter->tso_force &&
2652 adapter->hw.bus_type == e1000_bus_type_pci_express){
2653 switch (adapter->link_speed) {
2654 case SPEED_10:
2655 case SPEED_100:
2656 DPRINTK(PROBE,INFO,
2657 "10/100 speed: disabling TSO\n");
2658 netdev->features &= ~NETIF_F_TSO;
2659 netdev->features &= ~NETIF_F_TSO6;
2660 break;
2661 case SPEED_1000:
2662 netdev->features |= NETIF_F_TSO;
2663 netdev->features |= NETIF_F_TSO6;
2664 break;
2665 default:
2666 /* oops */
2667 break;
2668 }
2669 }
2670
2671 /* enable transmits in the hardware, need to do this
2672 * after setting TARC0 */
2673 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2674 tctl |= E1000_TCTL_EN;
2675 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2676
2677 netif_carrier_on(netdev);
2678 netif_wake_queue(netdev);
2679 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2680 adapter->smartspeed = 0;
2681 } else {
2682 /* make sure the receive unit is started */
2683 if (adapter->hw.rx_needs_kicking) {
2684 struct e1000_hw *hw = &adapter->hw;
2685 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2686 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2687 }
2688 }
2689 } else {
2690 if (netif_carrier_ok(netdev)) {
2691 adapter->link_speed = 0;
2692 adapter->link_duplex = 0;
2693 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2694 netif_carrier_off(netdev);
2695 netif_stop_queue(netdev);
2696 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2697
2698 /* 80003ES2LAN workaround--
2699 * For packet buffer work-around on link down event;
2700 * disable receives in the ISR and
2701 * reset device here in the watchdog
2702 */
2703 if (adapter->hw.mac_type == e1000_80003es2lan)
2704 /* reset device */
2705 schedule_work(&adapter->reset_task);
2706 }
2707
2708 e1000_smartspeed(adapter);
2709 }
2710
2711 e1000_update_stats(adapter);
2712
2713 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2714 adapter->tpt_old = adapter->stats.tpt;
2715 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2716 adapter->colc_old = adapter->stats.colc;
2717
2718 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2719 adapter->gorcl_old = adapter->stats.gorcl;
2720 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2721 adapter->gotcl_old = adapter->stats.gotcl;
2722
2723 e1000_update_adaptive(&adapter->hw);
2724
2725 if (!netif_carrier_ok(netdev)) {
2726 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2727 /* We've lost link, so the controller stops DMA,
2728 * but we've got queued Tx work that's never going
2729 * to get done, so reset controller to flush Tx.
2730 * (Do the reset outside of interrupt context). */
2731 adapter->tx_timeout_count++;
2732 schedule_work(&adapter->reset_task);
2733 }
2734 }
2735
2736 /* Cause software interrupt to ensure rx ring is cleaned */
2737 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2738
2739 /* Force detection of hung controller every watchdog period */
2740 adapter->detect_tx_hung = TRUE;
2741
2742 /* With 82571 controllers, LAA may be overwritten due to controller
2743 * reset from the other port. Set the appropriate LAA in RAR[0] */
2744 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2745 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2746
2747 /* Reset the timer */
2748 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2749 }
2750
2751 enum latency_range {
2752 lowest_latency = 0,
2753 low_latency = 1,
2754 bulk_latency = 2,
2755 latency_invalid = 255
2756 };
2757
2758 /**
2759 * e1000_update_itr - update the dynamic ITR value based on statistics
2760 * Stores a new ITR value based on packets and byte
2761 * counts during the last interrupt. The advantage of per interrupt
2762 * computation is faster updates and more accurate ITR for the current
2763 * traffic pattern. Constants in this function were computed
2764 * based on theoretical maximum wire speed and thresholds were set based
2765 * on testing data as well as attempting to minimize response time
2766 * while increasing bulk throughput.
2767 * this functionality is controlled by the InterruptThrottleRate module
2768 * parameter (see e1000_param.c)
2769 * @adapter: pointer to adapter
2770 * @itr_setting: current adapter->itr
2771 * @packets: the number of packets during this measurement interval
2772 * @bytes: the number of bytes during this measurement interval
2773 **/
2774 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2775 uint16_t itr_setting,
2776 int packets,
2777 int bytes)
2778 {
2779 unsigned int retval = itr_setting;
2780 struct e1000_hw *hw = &adapter->hw;
2781
2782 if (unlikely(hw->mac_type < e1000_82540))
2783 goto update_itr_done;
2784
2785 if (packets == 0)
2786 goto update_itr_done;
2787
2788 switch (itr_setting) {
2789 case lowest_latency:
2790 /* jumbo frames get bulk treatment*/
2791 if (bytes/packets > 8000)
2792 retval = bulk_latency;
2793 else if ((packets < 5) && (bytes > 512))
2794 retval = low_latency;
2795 break;
2796 case low_latency: /* 50 usec aka 20000 ints/s */
2797 if (bytes > 10000) {
2798 /* jumbo frames need bulk latency setting */
2799 if (bytes/packets > 8000)
2800 retval = bulk_latency;
2801 else if ((packets < 10) || ((bytes/packets) > 1200))
2802 retval = bulk_latency;
2803 else if ((packets > 35))
2804 retval = lowest_latency;
2805 } else if (bytes/packets > 2000)
2806 retval = bulk_latency;
2807 else if (packets <= 2 && bytes < 512)
2808 retval = lowest_latency;
2809 break;
2810 case bulk_latency: /* 250 usec aka 4000 ints/s */
2811 if (bytes > 25000) {
2812 if (packets > 35)
2813 retval = low_latency;
2814 } else if (bytes < 6000) {
2815 retval = low_latency;
2816 }
2817 break;
2818 }
2819
2820 update_itr_done:
2821 return retval;
2822 }
2823
2824 static void e1000_set_itr(struct e1000_adapter *adapter)
2825 {
2826 struct e1000_hw *hw = &adapter->hw;
2827 uint16_t current_itr;
2828 uint32_t new_itr = adapter->itr;
2829
2830 if (unlikely(hw->mac_type < e1000_82540))
2831 return;
2832
2833 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2834 if (unlikely(adapter->link_speed != SPEED_1000)) {
2835 current_itr = 0;
2836 new_itr = 4000;
2837 goto set_itr_now;
2838 }
2839
2840 adapter->tx_itr = e1000_update_itr(adapter,
2841 adapter->tx_itr,
2842 adapter->total_tx_packets,
2843 adapter->total_tx_bytes);
2844 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2845 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2846 adapter->tx_itr = low_latency;
2847
2848 adapter->rx_itr = e1000_update_itr(adapter,
2849 adapter->rx_itr,
2850 adapter->total_rx_packets,
2851 adapter->total_rx_bytes);
2852 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2853 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2854 adapter->rx_itr = low_latency;
2855
2856 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2857
2858 switch (current_itr) {
2859 /* counts and packets in update_itr are dependent on these numbers */
2860 case lowest_latency:
2861 new_itr = 70000;
2862 break;
2863 case low_latency:
2864 new_itr = 20000; /* aka hwitr = ~200 */
2865 break;
2866 case bulk_latency:
2867 new_itr = 4000;
2868 break;
2869 default:
2870 break;
2871 }
2872
2873 set_itr_now:
2874 if (new_itr != adapter->itr) {
2875 /* this attempts to bias the interrupt rate towards Bulk
2876 * by adding intermediate steps when interrupt rate is
2877 * increasing */
2878 new_itr = new_itr > adapter->itr ?
2879 min(adapter->itr + (new_itr >> 2), new_itr) :
2880 new_itr;
2881 adapter->itr = new_itr;
2882 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2883 }
2884
2885 return;
2886 }
2887
2888 #define E1000_TX_FLAGS_CSUM 0x00000001
2889 #define E1000_TX_FLAGS_VLAN 0x00000002
2890 #define E1000_TX_FLAGS_TSO 0x00000004
2891 #define E1000_TX_FLAGS_IPV4 0x00000008
2892 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2893 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2894
2895 static int
2896 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2897 struct sk_buff *skb)
2898 {
2899 struct e1000_context_desc *context_desc;
2900 struct e1000_buffer *buffer_info;
2901 unsigned int i;
2902 uint32_t cmd_length = 0;
2903 uint16_t ipcse = 0, tucse, mss;
2904 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2905 int err;
2906
2907 if (skb_is_gso(skb)) {
2908 if (skb_header_cloned(skb)) {
2909 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2910 if (err)
2911 return err;
2912 }
2913
2914 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2915 mss = skb_shinfo(skb)->gso_size;
2916 if (skb->protocol == htons(ETH_P_IP)) {
2917 skb->nh.iph->tot_len = 0;
2918 skb->nh.iph->check = 0;
2919 skb->h.th->check =
2920 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2921 skb->nh.iph->daddr,
2922 0,
2923 IPPROTO_TCP,
2924 0);
2925 cmd_length = E1000_TXD_CMD_IP;
2926 ipcse = skb->h.raw - skb->data - 1;
2927 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2928 skb->nh.ipv6h->payload_len = 0;
2929 skb->h.th->check =
2930 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2931 &skb->nh.ipv6h->daddr,
2932 0,
2933 IPPROTO_TCP,
2934 0);
2935 ipcse = 0;
2936 }
2937 ipcss = skb->nh.raw - skb->data;
2938 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2939 tucss = skb->h.raw - skb->data;
2940 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2941 tucse = 0;
2942
2943 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2944 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2945
2946 i = tx_ring->next_to_use;
2947 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2948 buffer_info = &tx_ring->buffer_info[i];
2949
2950 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2951 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2952 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2953 context_desc->upper_setup.tcp_fields.tucss = tucss;
2954 context_desc->upper_setup.tcp_fields.tucso = tucso;
2955 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2956 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2957 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2958 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2959
2960 buffer_info->time_stamp = jiffies;
2961 buffer_info->next_to_watch = i;
2962
2963 if (++i == tx_ring->count) i = 0;
2964 tx_ring->next_to_use = i;
2965
2966 return TRUE;
2967 }
2968 return FALSE;
2969 }
2970
2971 static boolean_t
2972 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2973 struct sk_buff *skb)
2974 {
2975 struct e1000_context_desc *context_desc;
2976 struct e1000_buffer *buffer_info;
2977 unsigned int i;
2978 uint8_t css;
2979
2980 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2981 css = skb->h.raw - skb->data;
2982
2983 i = tx_ring->next_to_use;
2984 buffer_info = &tx_ring->buffer_info[i];
2985 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2986
2987 context_desc->lower_setup.ip_config = 0;
2988 context_desc->upper_setup.tcp_fields.tucss = css;
2989 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2990 context_desc->upper_setup.tcp_fields.tucse = 0;
2991 context_desc->tcp_seg_setup.data = 0;
2992 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2993
2994 buffer_info->time_stamp = jiffies;
2995 buffer_info->next_to_watch = i;
2996
2997 if (unlikely(++i == tx_ring->count)) i = 0;
2998 tx_ring->next_to_use = i;
2999
3000 return TRUE;
3001 }
3002
3003 return FALSE;
3004 }
3005
3006 #define E1000_MAX_TXD_PWR 12
3007 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
3008
3009 static int
3010 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3011 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3012 unsigned int nr_frags, unsigned int mss)
3013 {
3014 struct e1000_buffer *buffer_info;
3015 unsigned int len = skb->len;
3016 unsigned int offset = 0, size, count = 0, i;
3017 unsigned int f;
3018 len -= skb->data_len;
3019
3020 i = tx_ring->next_to_use;
3021
3022 while (len) {
3023 buffer_info = &tx_ring->buffer_info[i];
3024 size = min(len, max_per_txd);
3025 /* Workaround for Controller erratum --
3026 * descriptor for non-tso packet in a linear SKB that follows a
3027 * tso gets written back prematurely before the data is fully
3028 * DMA'd to the controller */
3029 if (!skb->data_len && tx_ring->last_tx_tso &&
3030 !skb_is_gso(skb)) {
3031 tx_ring->last_tx_tso = 0;
3032 size -= 4;
3033 }
3034
3035 /* Workaround for premature desc write-backs
3036 * in TSO mode. Append 4-byte sentinel desc */
3037 if (unlikely(mss && !nr_frags && size == len && size > 8))
3038 size -= 4;
3039 /* work-around for errata 10 and it applies
3040 * to all controllers in PCI-X mode
3041 * The fix is to make sure that the first descriptor of a
3042 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3043 */
3044 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3045 (size > 2015) && count == 0))
3046 size = 2015;
3047
3048 /* Workaround for potential 82544 hang in PCI-X. Avoid
3049 * terminating buffers within evenly-aligned dwords. */
3050 if (unlikely(adapter->pcix_82544 &&
3051 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3052 size > 4))
3053 size -= 4;
3054
3055 buffer_info->length = size;
3056 buffer_info->dma =
3057 pci_map_single(adapter->pdev,
3058 skb->data + offset,
3059 size,
3060 PCI_DMA_TODEVICE);
3061 buffer_info->time_stamp = jiffies;
3062 buffer_info->next_to_watch = i;
3063
3064 len -= size;
3065 offset += size;
3066 count++;
3067 if (unlikely(++i == tx_ring->count)) i = 0;
3068 }
3069
3070 for (f = 0; f < nr_frags; f++) {
3071 struct skb_frag_struct *frag;
3072
3073 frag = &skb_shinfo(skb)->frags[f];
3074 len = frag->size;
3075 offset = frag->page_offset;
3076
3077 while (len) {
3078 buffer_info = &tx_ring->buffer_info[i];
3079 size = min(len, max_per_txd);
3080 /* Workaround for premature desc write-backs
3081 * in TSO mode. Append 4-byte sentinel desc */
3082 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3083 size -= 4;
3084 /* Workaround for potential 82544 hang in PCI-X.
3085 * Avoid terminating buffers within evenly-aligned
3086 * dwords. */
3087 if (unlikely(adapter->pcix_82544 &&
3088 !((unsigned long)(frag->page+offset+size-1) & 4) &&
3089 size > 4))
3090 size -= 4;
3091
3092 buffer_info->length = size;
3093 buffer_info->dma =
3094 pci_map_page(adapter->pdev,
3095 frag->page,
3096 offset,
3097 size,
3098 PCI_DMA_TODEVICE);
3099 buffer_info->time_stamp = jiffies;
3100 buffer_info->next_to_watch = i;
3101
3102 len -= size;
3103 offset += size;
3104 count++;
3105 if (unlikely(++i == tx_ring->count)) i = 0;
3106 }
3107 }
3108
3109 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3110 tx_ring->buffer_info[i].skb = skb;
3111 tx_ring->buffer_info[first].next_to_watch = i;
3112
3113 return count;
3114 }
3115
3116 static void
3117 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3118 int tx_flags, int count)
3119 {
3120 struct e1000_tx_desc *tx_desc = NULL;
3121 struct e1000_buffer *buffer_info;
3122 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3123 unsigned int i;
3124
3125 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3126 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3127 E1000_TXD_CMD_TSE;
3128 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3129
3130 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3131 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3132 }
3133
3134 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3135 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3136 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3137 }
3138
3139 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3140 txd_lower |= E1000_TXD_CMD_VLE;
3141 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3142 }
3143
3144 i = tx_ring->next_to_use;
3145
3146 while (count--) {
3147 buffer_info = &tx_ring->buffer_info[i];
3148 tx_desc = E1000_TX_DESC(*tx_ring, i);
3149 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3150 tx_desc->lower.data =
3151 cpu_to_le32(txd_lower | buffer_info->length);
3152 tx_desc->upper.data = cpu_to_le32(txd_upper);
3153 if (unlikely(++i == tx_ring->count)) i = 0;
3154 }
3155
3156 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3157
3158 /* Force memory writes to complete before letting h/w
3159 * know there are new descriptors to fetch. (Only
3160 * applicable for weak-ordered memory model archs,
3161 * such as IA-64). */
3162 wmb();
3163
3164 tx_ring->next_to_use = i;
3165 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3166 /* we need this if more than one processor can write to our tail
3167 * at a time, it syncronizes IO on IA64/Altix systems */
3168 mmiowb();
3169 }
3170
3171 /**
3172 * 82547 workaround to avoid controller hang in half-duplex environment.
3173 * The workaround is to avoid queuing a large packet that would span
3174 * the internal Tx FIFO ring boundary by notifying the stack to resend
3175 * the packet at a later time. This gives the Tx FIFO an opportunity to
3176 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3177 * to the beginning of the Tx FIFO.
3178 **/
3179
3180 #define E1000_FIFO_HDR 0x10
3181 #define E1000_82547_PAD_LEN 0x3E0
3182
3183 static int
3184 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3185 {
3186 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3187 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3188
3189 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3190
3191 if (adapter->link_duplex != HALF_DUPLEX)
3192 goto no_fifo_stall_required;
3193
3194 if (atomic_read(&adapter->tx_fifo_stall))
3195 return 1;
3196
3197 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3198 atomic_set(&adapter->tx_fifo_stall, 1);
3199 return 1;
3200 }
3201
3202 no_fifo_stall_required:
3203 adapter->tx_fifo_head += skb_fifo_len;
3204 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3205 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3206 return 0;
3207 }
3208
3209 #define MINIMUM_DHCP_PACKET_SIZE 282
3210 static int
3211 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3212 {
3213 struct e1000_hw *hw = &adapter->hw;
3214 uint16_t length, offset;
3215 if (vlan_tx_tag_present(skb)) {
3216 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3217 ( adapter->hw.mng_cookie.status &
3218 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3219 return 0;
3220 }
3221 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3222 struct ethhdr *eth = (struct ethhdr *) skb->data;
3223 if ((htons(ETH_P_IP) == eth->h_proto)) {
3224 const struct iphdr *ip =
3225 (struct iphdr *)((uint8_t *)skb->data+14);
3226 if (IPPROTO_UDP == ip->protocol) {
3227 struct udphdr *udp =
3228 (struct udphdr *)((uint8_t *)ip +
3229 (ip->ihl << 2));
3230 if (ntohs(udp->dest) == 67) {
3231 offset = (uint8_t *)udp + 8 - skb->data;
3232 length = skb->len - offset;
3233
3234 return e1000_mng_write_dhcp_info(hw,
3235 (uint8_t *)udp + 8,
3236 length);
3237 }
3238 }
3239 }
3240 }
3241 return 0;
3242 }
3243
3244 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3245 {
3246 struct e1000_adapter *adapter = netdev_priv(netdev);
3247 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3248
3249 netif_stop_queue(netdev);
3250 /* Herbert's original patch had:
3251 * smp_mb__after_netif_stop_queue();
3252 * but since that doesn't exist yet, just open code it. */
3253 smp_mb();
3254
3255 /* We need to check again in a case another CPU has just
3256 * made room available. */
3257 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3258 return -EBUSY;
3259
3260 /* A reprieve! */
3261 netif_start_queue(netdev);
3262 ++adapter->restart_queue;
3263 return 0;
3264 }
3265
3266 static int e1000_maybe_stop_tx(struct net_device *netdev,
3267 struct e1000_tx_ring *tx_ring, int size)
3268 {
3269 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3270 return 0;
3271 return __e1000_maybe_stop_tx(netdev, size);
3272 }
3273
3274 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3275 static int
3276 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3277 {
3278 struct e1000_adapter *adapter = netdev_priv(netdev);
3279 struct e1000_tx_ring *tx_ring;
3280 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3281 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3282 unsigned int tx_flags = 0;
3283 unsigned int len = skb->len;
3284 unsigned long flags;
3285 unsigned int nr_frags = 0;
3286 unsigned int mss = 0;
3287 int count = 0;
3288 int tso;
3289 unsigned int f;
3290 len -= skb->data_len;
3291
3292 /* This goes back to the question of how to logically map a tx queue
3293 * to a flow. Right now, performance is impacted slightly negatively
3294 * if using multiple tx queues. If the stack breaks away from a
3295 * single qdisc implementation, we can look at this again. */
3296 tx_ring = adapter->tx_ring;
3297
3298 if (unlikely(skb->len <= 0)) {
3299 dev_kfree_skb_any(skb);
3300 return NETDEV_TX_OK;
3301 }
3302
3303 /* 82571 and newer doesn't need the workaround that limited descriptor
3304 * length to 4kB */
3305 if (adapter->hw.mac_type >= e1000_82571)
3306 max_per_txd = 8192;
3307
3308 mss = skb_shinfo(skb)->gso_size;
3309 /* The controller does a simple calculation to
3310 * make sure there is enough room in the FIFO before
3311 * initiating the DMA for each buffer. The calc is:
3312 * 4 = ceil(buffer len/mss). To make sure we don't
3313 * overrun the FIFO, adjust the max buffer len if mss
3314 * drops. */
3315 if (mss) {
3316 uint8_t hdr_len;
3317 max_per_txd = min(mss << 2, max_per_txd);
3318 max_txd_pwr = fls(max_per_txd) - 1;
3319
3320 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3321 * points to just header, pull a few bytes of payload from
3322 * frags into skb->data */
3323 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3324 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3325 switch (adapter->hw.mac_type) {
3326 unsigned int pull_size;
3327 case e1000_82544:
3328 /* Make sure we have room to chop off 4 bytes,
3329 * and that the end alignment will work out to
3330 * this hardware's requirements
3331 * NOTE: this is a TSO only workaround
3332 * if end byte alignment not correct move us
3333 * into the next dword */
3334 if ((unsigned long)(skb->tail - 1) & 4)
3335 break;
3336 /* fall through */
3337 case e1000_82571:
3338 case e1000_82572:
3339 case e1000_82573:
3340 case e1000_ich8lan:
3341 pull_size = min((unsigned int)4, skb->data_len);
3342 if (!__pskb_pull_tail(skb, pull_size)) {
3343 DPRINTK(DRV, ERR,
3344 "__pskb_pull_tail failed.\n");
3345 dev_kfree_skb_any(skb);
3346 return NETDEV_TX_OK;
3347 }
3348 len = skb->len - skb->data_len;
3349 break;
3350 default:
3351 /* do nothing */
3352 break;
3353 }
3354 }
3355 }
3356
3357 /* reserve a descriptor for the offload context */
3358 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3359 count++;
3360 count++;
3361
3362 /* Controller Erratum workaround */
3363 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3364 count++;
3365
3366 count += TXD_USE_COUNT(len, max_txd_pwr);
3367
3368 if (adapter->pcix_82544)
3369 count++;
3370
3371 /* work-around for errata 10 and it applies to all controllers
3372 * in PCI-X mode, so add one more descriptor to the count
3373 */
3374 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3375 (len > 2015)))
3376 count++;
3377
3378 nr_frags = skb_shinfo(skb)->nr_frags;
3379 for (f = 0; f < nr_frags; f++)
3380 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3381 max_txd_pwr);
3382 if (adapter->pcix_82544)
3383 count += nr_frags;
3384
3385
3386 if (adapter->hw.tx_pkt_filtering &&
3387 (adapter->hw.mac_type == e1000_82573))
3388 e1000_transfer_dhcp_info(adapter, skb);
3389
3390 local_irq_save(flags);
3391 if (!spin_trylock(&tx_ring->tx_lock)) {
3392 /* Collision - tell upper layer to requeue */
3393 local_irq_restore(flags);
3394 return NETDEV_TX_LOCKED;
3395 }
3396
3397 /* need: count + 2 desc gap to keep tail from touching
3398 * head, otherwise try next time */
3399 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3400 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3401 return NETDEV_TX_BUSY;
3402 }
3403
3404 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3405 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3406 netif_stop_queue(netdev);
3407 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3408 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3409 return NETDEV_TX_BUSY;
3410 }
3411 }
3412
3413 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3414 tx_flags |= E1000_TX_FLAGS_VLAN;
3415 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3416 }
3417
3418 first = tx_ring->next_to_use;
3419
3420 tso = e1000_tso(adapter, tx_ring, skb);
3421 if (tso < 0) {
3422 dev_kfree_skb_any(skb);
3423 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3424 return NETDEV_TX_OK;
3425 }
3426
3427 if (likely(tso)) {
3428 tx_ring->last_tx_tso = 1;
3429 tx_flags |= E1000_TX_FLAGS_TSO;
3430 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3431 tx_flags |= E1000_TX_FLAGS_CSUM;
3432
3433 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3434 * 82571 hardware supports TSO capabilities for IPv6 as well...
3435 * no longer assume, we must. */
3436 if (likely(skb->protocol == htons(ETH_P_IP)))
3437 tx_flags |= E1000_TX_FLAGS_IPV4;
3438
3439 e1000_tx_queue(adapter, tx_ring, tx_flags,
3440 e1000_tx_map(adapter, tx_ring, skb, first,
3441 max_per_txd, nr_frags, mss));
3442
3443 netdev->trans_start = jiffies;
3444
3445 /* Make sure there is space in the ring for the next send. */
3446 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3447
3448 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3449 return NETDEV_TX_OK;
3450 }
3451
3452 /**
3453 * e1000_tx_timeout - Respond to a Tx Hang
3454 * @netdev: network interface device structure
3455 **/
3456
3457 static void
3458 e1000_tx_timeout(struct net_device *netdev)
3459 {
3460 struct e1000_adapter *adapter = netdev_priv(netdev);
3461
3462 /* Do the reset outside of interrupt context */
3463 adapter->tx_timeout_count++;
3464 schedule_work(&adapter->reset_task);
3465 }
3466
3467 static void
3468 e1000_reset_task(struct work_struct *work)
3469 {
3470 struct e1000_adapter *adapter =
3471 container_of(work, struct e1000_adapter, reset_task);
3472
3473 e1000_reinit_locked(adapter);
3474 }
3475
3476 /**
3477 * e1000_get_stats - Get System Network Statistics
3478 * @netdev: network interface device structure
3479 *
3480 * Returns the address of the device statistics structure.
3481 * The statistics are actually updated from the timer callback.
3482 **/
3483
3484 static struct net_device_stats *
3485 e1000_get_stats(struct net_device *netdev)
3486 {
3487 struct e1000_adapter *adapter = netdev_priv(netdev);
3488
3489 /* only return the current stats */
3490 return &adapter->net_stats;
3491 }
3492
3493 /**
3494 * e1000_change_mtu - Change the Maximum Transfer Unit
3495 * @netdev: network interface device structure
3496 * @new_mtu: new value for maximum frame size
3497 *
3498 * Returns 0 on success, negative on failure
3499 **/
3500
3501 static int
3502 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3503 {
3504 struct e1000_adapter *adapter = netdev_priv(netdev);
3505 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3506 uint16_t eeprom_data = 0;
3507
3508 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3509 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3510 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3511 return -EINVAL;
3512 }
3513
3514 /* Adapter-specific max frame size limits. */
3515 switch (adapter->hw.mac_type) {
3516 case e1000_undefined ... e1000_82542_rev2_1:
3517 case e1000_ich8lan:
3518 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3519 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3520 return -EINVAL;
3521 }
3522 break;
3523 case e1000_82573:
3524 /* Jumbo Frames not supported if:
3525 * - this is not an 82573L device
3526 * - ASPM is enabled in any way (0x1A bits 3:2) */
3527 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3528 &eeprom_data);
3529 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3530 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3531 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3532 DPRINTK(PROBE, ERR,
3533 "Jumbo Frames not supported.\n");
3534 return -EINVAL;
3535 }
3536 break;
3537 }
3538 /* ERT will be enabled later to enable wire speed receives */
3539
3540 /* fall through to get support */
3541 case e1000_82571:
3542 case e1000_82572:
3543 case e1000_80003es2lan:
3544 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3545 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3546 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3547 return -EINVAL;
3548 }
3549 break;
3550 default:
3551 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3552 break;
3553 }
3554
3555 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3556 * means we reserve 2 more, this pushes us to allocate from the next
3557 * larger slab size
3558 * i.e. RXBUFFER_2048 --> size-4096 slab */
3559
3560 if (max_frame <= E1000_RXBUFFER_256)
3561 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3562 else if (max_frame <= E1000_RXBUFFER_512)
3563 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3564 else if (max_frame <= E1000_RXBUFFER_1024)
3565 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3566 else if (max_frame <= E1000_RXBUFFER_2048)
3567 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3568 else if (max_frame <= E1000_RXBUFFER_4096)
3569 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3570 else if (max_frame <= E1000_RXBUFFER_8192)
3571 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3572 else if (max_frame <= E1000_RXBUFFER_16384)
3573 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3574
3575 /* adjust allocation if LPE protects us, and we aren't using SBP */
3576 if (!adapter->hw.tbi_compatibility_on &&
3577 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3578 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3579 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3580
3581 netdev->mtu = new_mtu;
3582 adapter->hw.max_frame_size = max_frame;
3583
3584 if (netif_running(netdev))
3585 e1000_reinit_locked(adapter);
3586
3587 return 0;
3588 }
3589
3590 /**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594
3595 void
3596 e1000_update_stats(struct e1000_adapter *adapter)
3597 {
3598 struct e1000_hw *hw = &adapter->hw;
3599 struct pci_dev *pdev = adapter->pdev;
3600 unsigned long flags;
3601 uint16_t phy_tmp;
3602
3603 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3604
3605 /*
3606 * Prevent stats update while adapter is being reset, or if the pci
3607 * connection is down.
3608 */
3609 if (adapter->link_speed == 0)
3610 return;
3611 if (pci_channel_offline(pdev))
3612 return;
3613
3614 spin_lock_irqsave(&adapter->stats_lock, flags);
3615
3616 /* these counters are modified from e1000_adjust_tbi_stats,
3617 * called from the interrupt context, so they must only
3618 * be written while holding adapter->stats_lock
3619 */
3620
3621 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3622 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3623 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3624 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3625 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3626 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3627 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3628
3629 if (adapter->hw.mac_type != e1000_ich8lan) {
3630 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3631 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3632 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3633 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3634 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3635 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3636 }
3637
3638 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3639 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3640 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3641 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3642 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3643 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3644 adapter->stats.dc += E1000_READ_REG(hw, DC);
3645 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3646 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3647 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3648 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3649 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3650 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3651 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3652 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3653 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3654 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3655 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3656 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3657 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3658 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3659 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3660 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3661 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3662 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3663 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3664
3665 if (adapter->hw.mac_type != e1000_ich8lan) {
3666 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3667 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3668 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3669 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3670 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3671 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3672 }
3673
3674 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3675 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3676
3677 /* used for adaptive IFS */
3678
3679 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3680 adapter->stats.tpt += hw->tx_packet_delta;
3681 hw->collision_delta = E1000_READ_REG(hw, COLC);
3682 adapter->stats.colc += hw->collision_delta;
3683
3684 if (hw->mac_type >= e1000_82543) {
3685 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3686 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3687 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3688 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3689 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3690 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3691 }
3692 if (hw->mac_type > e1000_82547_rev_2) {
3693 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3694 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3695
3696 if (adapter->hw.mac_type != e1000_ich8lan) {
3697 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3698 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3699 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3700 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3701 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3702 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3703 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3704 }
3705 }
3706
3707 /* Fill out the OS statistics structure */
3708 adapter->net_stats.rx_packets = adapter->stats.gprc;
3709 adapter->net_stats.tx_packets = adapter->stats.gptc;
3710 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3711 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3712 adapter->net_stats.multicast = adapter->stats.mprc;
3713 adapter->net_stats.collisions = adapter->stats.colc;
3714
3715 /* Rx Errors */
3716
3717 /* RLEC on some newer hardware can be incorrect so build
3718 * our own version based on RUC and ROC */
3719 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3720 adapter->stats.crcerrs + adapter->stats.algnerrc +
3721 adapter->stats.ruc + adapter->stats.roc +
3722 adapter->stats.cexterr;
3723 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3724 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3725 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3726 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3727 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3728
3729 /* Tx Errors */
3730 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3731 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3732 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3733 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3734 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3735 if (adapter->hw.bad_tx_carr_stats_fd &&
3736 adapter->link_duplex == FULL_DUPLEX) {
3737 adapter->net_stats.tx_carrier_errors = 0;
3738 adapter->stats.tncrs = 0;
3739 }
3740
3741 /* Tx Dropped needs to be maintained elsewhere */
3742
3743 /* Phy Stats */
3744 if (hw->media_type == e1000_media_type_copper) {
3745 if ((adapter->link_speed == SPEED_1000) &&
3746 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3747 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3748 adapter->phy_stats.idle_errors += phy_tmp;
3749 }
3750
3751 if ((hw->mac_type <= e1000_82546) &&
3752 (hw->phy_type == e1000_phy_m88) &&
3753 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3754 adapter->phy_stats.receive_errors += phy_tmp;
3755 }
3756
3757 /* Management Stats */
3758 if (adapter->hw.has_smbus) {
3759 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3760 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3761 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3762 }
3763
3764 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3765 }
3766 #ifdef CONFIG_PCI_MSI
3767
3768 /**
3769 * e1000_intr_msi - Interrupt Handler
3770 * @irq: interrupt number
3771 * @data: pointer to a network interface device structure
3772 **/
3773
3774 static irqreturn_t
3775 e1000_intr_msi(int irq, void *data)
3776 {
3777 struct net_device *netdev = data;
3778 struct e1000_adapter *adapter = netdev_priv(netdev);
3779 struct e1000_hw *hw = &adapter->hw;
3780 #ifndef CONFIG_E1000_NAPI
3781 int i;
3782 #endif
3783 uint32_t icr = E1000_READ_REG(hw, ICR);
3784
3785 #ifdef CONFIG_E1000_NAPI
3786 /* read ICR disables interrupts using IAM, so keep up with our
3787 * enable/disable accounting */
3788 atomic_inc(&adapter->irq_sem);
3789 #endif
3790 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3791 hw->get_link_status = 1;
3792 /* 80003ES2LAN workaround-- For packet buffer work-around on
3793 * link down event; disable receives here in the ISR and reset
3794 * adapter in watchdog */
3795 if (netif_carrier_ok(netdev) &&
3796 (adapter->hw.mac_type == e1000_80003es2lan)) {
3797 /* disable receives */
3798 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3799 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3800 }
3801 /* guard against interrupt when we're going down */
3802 if (!test_bit(__E1000_DOWN, &adapter->flags))
3803 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3804 }
3805
3806 #ifdef CONFIG_E1000_NAPI
3807 if (likely(netif_rx_schedule_prep(netdev))) {
3808 adapter->total_tx_bytes = 0;
3809 adapter->total_tx_packets = 0;
3810 adapter->total_rx_bytes = 0;
3811 adapter->total_rx_packets = 0;
3812 __netif_rx_schedule(netdev);
3813 } else
3814 e1000_irq_enable(adapter);
3815 #else
3816 adapter->total_tx_bytes = 0;
3817 adapter->total_rx_bytes = 0;
3818 adapter->total_tx_packets = 0;
3819 adapter->total_rx_packets = 0;
3820
3821 for (i = 0; i < E1000_MAX_INTR; i++)
3822 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3823 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3824 break;
3825
3826 if (likely(adapter->itr_setting & 3))
3827 e1000_set_itr(adapter);
3828 #endif
3829
3830 return IRQ_HANDLED;
3831 }
3832 #endif
3833
3834 /**
3835 * e1000_intr - Interrupt Handler
3836 * @irq: interrupt number
3837 * @data: pointer to a network interface device structure
3838 **/
3839
3840 static irqreturn_t
3841 e1000_intr(int irq, void *data)
3842 {
3843 struct net_device *netdev = data;
3844 struct e1000_adapter *adapter = netdev_priv(netdev);
3845 struct e1000_hw *hw = &adapter->hw;
3846 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3847 #ifndef CONFIG_E1000_NAPI
3848 int i;
3849 #endif
3850 if (unlikely(!icr))
3851 return IRQ_NONE; /* Not our interrupt */
3852
3853 #ifdef CONFIG_E1000_NAPI
3854 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3855 * not set, then the adapter didn't send an interrupt */
3856 if (unlikely(hw->mac_type >= e1000_82571 &&
3857 !(icr & E1000_ICR_INT_ASSERTED)))
3858 return IRQ_NONE;
3859
3860 /* Interrupt Auto-Mask...upon reading ICR,
3861 * interrupts are masked. No need for the
3862 * IMC write, but it does mean we should
3863 * account for it ASAP. */
3864 if (likely(hw->mac_type >= e1000_82571))
3865 atomic_inc(&adapter->irq_sem);
3866 #endif
3867
3868 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3869 hw->get_link_status = 1;
3870 /* 80003ES2LAN workaround--
3871 * For packet buffer work-around on link down event;
3872 * disable receives here in the ISR and
3873 * reset adapter in watchdog
3874 */
3875 if (netif_carrier_ok(netdev) &&
3876 (adapter->hw.mac_type == e1000_80003es2lan)) {
3877 /* disable receives */
3878 rctl = E1000_READ_REG(hw, RCTL);
3879 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3880 }
3881 /* guard against interrupt when we're going down */
3882 if (!test_bit(__E1000_DOWN, &adapter->flags))
3883 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3884 }
3885
3886 #ifdef CONFIG_E1000_NAPI
3887 if (unlikely(hw->mac_type < e1000_82571)) {
3888 /* disable interrupts, without the synchronize_irq bit */
3889 atomic_inc(&adapter->irq_sem);
3890 E1000_WRITE_REG(hw, IMC, ~0);
3891 E1000_WRITE_FLUSH(hw);
3892 }
3893 if (likely(netif_rx_schedule_prep(netdev))) {
3894 adapter->total_tx_bytes = 0;
3895 adapter->total_tx_packets = 0;
3896 adapter->total_rx_bytes = 0;
3897 adapter->total_rx_packets = 0;
3898 __netif_rx_schedule(netdev);
3899 } else
3900 /* this really should not happen! if it does it is basically a
3901 * bug, but not a hard error, so enable ints and continue */
3902 e1000_irq_enable(adapter);
3903 #else
3904 /* Writing IMC and IMS is needed for 82547.
3905 * Due to Hub Link bus being occupied, an interrupt
3906 * de-assertion message is not able to be sent.
3907 * When an interrupt assertion message is generated later,
3908 * two messages are re-ordered and sent out.
3909 * That causes APIC to think 82547 is in de-assertion
3910 * state, while 82547 is in assertion state, resulting
3911 * in dead lock. Writing IMC forces 82547 into
3912 * de-assertion state.
3913 */
3914 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3915 atomic_inc(&adapter->irq_sem);
3916 E1000_WRITE_REG(hw, IMC, ~0);
3917 }
3918
3919 adapter->total_tx_bytes = 0;
3920 adapter->total_rx_bytes = 0;
3921 adapter->total_tx_packets = 0;
3922 adapter->total_rx_packets = 0;
3923
3924 for (i = 0; i < E1000_MAX_INTR; i++)
3925 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3926 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3927 break;
3928
3929 if (likely(adapter->itr_setting & 3))
3930 e1000_set_itr(adapter);
3931
3932 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3933 e1000_irq_enable(adapter);
3934
3935 #endif
3936 return IRQ_HANDLED;
3937 }
3938
3939 #ifdef CONFIG_E1000_NAPI
3940 /**
3941 * e1000_clean - NAPI Rx polling callback
3942 * @adapter: board private structure
3943 **/
3944
3945 static int
3946 e1000_clean(struct net_device *poll_dev, int *budget)
3947 {
3948 struct e1000_adapter *adapter;
3949 int work_to_do = min(*budget, poll_dev->quota);
3950 int tx_cleaned = 0, work_done = 0;
3951
3952 /* Must NOT use netdev_priv macro here. */
3953 adapter = poll_dev->priv;
3954
3955 /* Keep link state information with original netdev */
3956 if (!netif_carrier_ok(poll_dev))
3957 goto quit_polling;
3958
3959 /* e1000_clean is called per-cpu. This lock protects
3960 * tx_ring[0] from being cleaned by multiple cpus
3961 * simultaneously. A failure obtaining the lock means
3962 * tx_ring[0] is currently being cleaned anyway. */
3963 if (spin_trylock(&adapter->tx_queue_lock)) {
3964 tx_cleaned = e1000_clean_tx_irq(adapter,
3965 &adapter->tx_ring[0]);
3966 spin_unlock(&adapter->tx_queue_lock);
3967 }
3968
3969 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3970 &work_done, work_to_do);
3971
3972 *budget -= work_done;
3973 poll_dev->quota -= work_done;
3974
3975 /* If no Tx and not enough Rx work done, exit the polling mode */
3976 if ((!tx_cleaned && (work_done == 0)) ||
3977 !netif_running(poll_dev)) {
3978 quit_polling:
3979 if (likely(adapter->itr_setting & 3))
3980 e1000_set_itr(adapter);
3981 netif_rx_complete(poll_dev);
3982 e1000_irq_enable(adapter);
3983 return 0;
3984 }
3985
3986 return 1;
3987 }
3988
3989 #endif
3990 /**
3991 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3992 * @adapter: board private structure
3993 **/
3994
3995 static boolean_t
3996 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3997 struct e1000_tx_ring *tx_ring)
3998 {
3999 struct net_device *netdev = adapter->netdev;
4000 struct e1000_tx_desc *tx_desc, *eop_desc;
4001 struct e1000_buffer *buffer_info;
4002 unsigned int i, eop;
4003 #ifdef CONFIG_E1000_NAPI
4004 unsigned int count = 0;
4005 #endif
4006 boolean_t cleaned = FALSE;
4007 unsigned int total_tx_bytes=0, total_tx_packets=0;
4008
4009 i = tx_ring->next_to_clean;
4010 eop = tx_ring->buffer_info[i].next_to_watch;
4011 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4012
4013 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4014 for (cleaned = FALSE; !cleaned; ) {
4015 tx_desc = E1000_TX_DESC(*tx_ring, i);
4016 buffer_info = &tx_ring->buffer_info[i];
4017 cleaned = (i == eop);
4018
4019 if (cleaned) {
4020 struct sk_buff *skb = buffer_info->skb;
4021 unsigned int segs, bytecount;
4022 segs = skb_shinfo(skb)->gso_segs ?: 1;
4023 /* multiply data chunks by size of headers */
4024 bytecount = ((segs - 1) * skb_headlen(skb)) +
4025 skb->len;
4026 total_tx_packets += segs;
4027 total_tx_bytes += bytecount;
4028 }
4029 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4030 tx_desc->upper.data = 0;
4031
4032 if (unlikely(++i == tx_ring->count)) i = 0;
4033 }
4034
4035 eop = tx_ring->buffer_info[i].next_to_watch;
4036 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4037 #ifdef CONFIG_E1000_NAPI
4038 #define E1000_TX_WEIGHT 64
4039 /* weight of a sort for tx, to avoid endless transmit cleanup */
4040 if (count++ == E1000_TX_WEIGHT) break;
4041 #endif
4042 }
4043
4044 tx_ring->next_to_clean = i;
4045
4046 #define TX_WAKE_THRESHOLD 32
4047 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4048 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4049 /* Make sure that anybody stopping the queue after this
4050 * sees the new next_to_clean.
4051 */
4052 smp_mb();
4053 if (netif_queue_stopped(netdev)) {
4054 netif_wake_queue(netdev);
4055 ++adapter->restart_queue;
4056 }
4057 }
4058
4059 if (adapter->detect_tx_hung) {
4060 /* Detect a transmit hang in hardware, this serializes the
4061 * check with the clearing of time_stamp and movement of i */
4062 adapter->detect_tx_hung = FALSE;
4063 if (tx_ring->buffer_info[eop].dma &&
4064 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4065 (adapter->tx_timeout_factor * HZ))
4066 && !(E1000_READ_REG(&adapter->hw, STATUS) &
4067 E1000_STATUS_TXOFF)) {
4068
4069 /* detected Tx unit hang */
4070 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4071 " Tx Queue <%lu>\n"
4072 " TDH <%x>\n"
4073 " TDT <%x>\n"
4074 " next_to_use <%x>\n"
4075 " next_to_clean <%x>\n"
4076 "buffer_info[next_to_clean]\n"
4077 " time_stamp <%lx>\n"
4078 " next_to_watch <%x>\n"
4079 " jiffies <%lx>\n"
4080 " next_to_watch.status <%x>\n",
4081 (unsigned long)((tx_ring - adapter->tx_ring) /
4082 sizeof(struct e1000_tx_ring)),
4083 readl(adapter->hw.hw_addr + tx_ring->tdh),
4084 readl(adapter->hw.hw_addr + tx_ring->tdt),
4085 tx_ring->next_to_use,
4086 tx_ring->next_to_clean,
4087 tx_ring->buffer_info[eop].time_stamp,
4088 eop,
4089 jiffies,
4090 eop_desc->upper.fields.status);
4091 netif_stop_queue(netdev);
4092 }
4093 }
4094 adapter->total_tx_bytes += total_tx_bytes;
4095 adapter->total_tx_packets += total_tx_packets;
4096 return cleaned;
4097 }
4098
4099 /**
4100 * e1000_rx_checksum - Receive Checksum Offload for 82543
4101 * @adapter: board private structure
4102 * @status_err: receive descriptor status and error fields
4103 * @csum: receive descriptor csum field
4104 * @sk_buff: socket buffer with received data
4105 **/
4106
4107 static void
4108 e1000_rx_checksum(struct e1000_adapter *adapter,
4109 uint32_t status_err, uint32_t csum,
4110 struct sk_buff *skb)
4111 {
4112 uint16_t status = (uint16_t)status_err;
4113 uint8_t errors = (uint8_t)(status_err >> 24);
4114 skb->ip_summed = CHECKSUM_NONE;
4115
4116 /* 82543 or newer only */
4117 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4118 /* Ignore Checksum bit is set */
4119 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4120 /* TCP/UDP checksum error bit is set */
4121 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4122 /* let the stack verify checksum errors */
4123 adapter->hw_csum_err++;
4124 return;
4125 }
4126 /* TCP/UDP Checksum has not been calculated */
4127 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4128 if (!(status & E1000_RXD_STAT_TCPCS))
4129 return;
4130 } else {
4131 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4132 return;
4133 }
4134 /* It must be a TCP or UDP packet with a valid checksum */
4135 if (likely(status & E1000_RXD_STAT_TCPCS)) {
4136 /* TCP checksum is good */
4137 skb->ip_summed = CHECKSUM_UNNECESSARY;
4138 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4139 /* IP fragment with UDP payload */
4140 /* Hardware complements the payload checksum, so we undo it
4141 * and then put the value in host order for further stack use.
4142 */
4143 csum = ntohl(csum ^ 0xFFFF);
4144 skb->csum = csum;
4145 skb->ip_summed = CHECKSUM_COMPLETE;
4146 }
4147 adapter->hw_csum_good++;
4148 }
4149
4150 /**
4151 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4152 * @adapter: board private structure
4153 **/
4154
4155 static boolean_t
4156 #ifdef CONFIG_E1000_NAPI
4157 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4158 struct e1000_rx_ring *rx_ring,
4159 int *work_done, int work_to_do)
4160 #else
4161 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4162 struct e1000_rx_ring *rx_ring)
4163 #endif
4164 {
4165 struct net_device *netdev = adapter->netdev;
4166 struct pci_dev *pdev = adapter->pdev;
4167 struct e1000_rx_desc *rx_desc, *next_rxd;
4168 struct e1000_buffer *buffer_info, *next_buffer;
4169 unsigned long flags;
4170 uint32_t length;
4171 uint8_t last_byte;
4172 unsigned int i;
4173 int cleaned_count = 0;
4174 boolean_t cleaned = FALSE;
4175 unsigned int total_rx_bytes=0, total_rx_packets=0;
4176
4177 i = rx_ring->next_to_clean;
4178 rx_desc = E1000_RX_DESC(*rx_ring, i);
4179 buffer_info = &rx_ring->buffer_info[i];
4180
4181 while (rx_desc->status & E1000_RXD_STAT_DD) {
4182 struct sk_buff *skb;
4183 u8 status;
4184
4185 #ifdef CONFIG_E1000_NAPI
4186 if (*work_done >= work_to_do)
4187 break;
4188 (*work_done)++;
4189 #endif
4190 status = rx_desc->status;
4191 skb = buffer_info->skb;
4192 buffer_info->skb = NULL;
4193
4194 prefetch(skb->data - NET_IP_ALIGN);
4195
4196 if (++i == rx_ring->count) i = 0;
4197 next_rxd = E1000_RX_DESC(*rx_ring, i);
4198 prefetch(next_rxd);
4199
4200 next_buffer = &rx_ring->buffer_info[i];
4201
4202 cleaned = TRUE;
4203 cleaned_count++;
4204 pci_unmap_single(pdev,
4205 buffer_info->dma,
4206 buffer_info->length,
4207 PCI_DMA_FROMDEVICE);
4208
4209 length = le16_to_cpu(rx_desc->length);
4210
4211 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4212 /* All receives must fit into a single buffer */
4213 E1000_DBG("%s: Receive packet consumed multiple"
4214 " buffers\n", netdev->name);
4215 /* recycle */
4216 buffer_info->skb = skb;
4217 goto next_desc;
4218 }
4219
4220 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4221 last_byte = *(skb->data + length - 1);
4222 if (TBI_ACCEPT(&adapter->hw, status,
4223 rx_desc->errors, length, last_byte)) {
4224 spin_lock_irqsave(&adapter->stats_lock, flags);
4225 e1000_tbi_adjust_stats(&adapter->hw,
4226 &adapter->stats,
4227 length, skb->data);
4228 spin_unlock_irqrestore(&adapter->stats_lock,
4229 flags);
4230 length--;
4231 } else {
4232 /* recycle */
4233 buffer_info->skb = skb;
4234 goto next_desc;
4235 }
4236 }
4237
4238 /* adjust length to remove Ethernet CRC, this must be
4239 * done after the TBI_ACCEPT workaround above */
4240 length -= 4;
4241
4242 /* probably a little skewed due to removing CRC */
4243 total_rx_bytes += length;
4244 total_rx_packets++;
4245
4246 /* code added for copybreak, this should improve
4247 * performance for small packets with large amounts
4248 * of reassembly being done in the stack */
4249 if (length < copybreak) {
4250 struct sk_buff *new_skb =
4251 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4252 if (new_skb) {
4253 skb_reserve(new_skb, NET_IP_ALIGN);
4254 memcpy(new_skb->data - NET_IP_ALIGN,
4255 skb->data - NET_IP_ALIGN,
4256 length + NET_IP_ALIGN);
4257 /* save the skb in buffer_info as good */
4258 buffer_info->skb = skb;
4259 skb = new_skb;
4260 }
4261 /* else just continue with the old one */
4262 }
4263 /* end copybreak code */
4264 skb_put(skb, length);
4265
4266 /* Receive Checksum Offload */
4267 e1000_rx_checksum(adapter,
4268 (uint32_t)(status) |
4269 ((uint32_t)(rx_desc->errors) << 24),
4270 le16_to_cpu(rx_desc->csum), skb);
4271
4272 skb->protocol = eth_type_trans(skb, netdev);
4273 #ifdef CONFIG_E1000_NAPI
4274 if (unlikely(adapter->vlgrp &&
4275 (status & E1000_RXD_STAT_VP))) {
4276 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4277 le16_to_cpu(rx_desc->special) &
4278 E1000_RXD_SPC_VLAN_MASK);
4279 } else {
4280 netif_receive_skb(skb);
4281 }
4282 #else /* CONFIG_E1000_NAPI */
4283 if (unlikely(adapter->vlgrp &&
4284 (status & E1000_RXD_STAT_VP))) {
4285 vlan_hwaccel_rx(skb, adapter->vlgrp,
4286 le16_to_cpu(rx_desc->special) &
4287 E1000_RXD_SPC_VLAN_MASK);
4288 } else {
4289 netif_rx(skb);
4290 }
4291 #endif /* CONFIG_E1000_NAPI */
4292 netdev->last_rx = jiffies;
4293
4294 next_desc:
4295 rx_desc->status = 0;
4296
4297 /* return some buffers to hardware, one at a time is too slow */
4298 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300 cleaned_count = 0;
4301 }
4302
4303 /* use prefetched values */
4304 rx_desc = next_rxd;
4305 buffer_info = next_buffer;
4306 }
4307 rx_ring->next_to_clean = i;
4308
4309 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310 if (cleaned_count)
4311 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313 adapter->total_rx_packets += total_rx_packets;
4314 adapter->total_rx_bytes += total_rx_bytes;
4315 return cleaned;
4316 }
4317
4318 /**
4319 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4320 * @adapter: board private structure
4321 **/
4322
4323 static boolean_t
4324 #ifdef CONFIG_E1000_NAPI
4325 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4326 struct e1000_rx_ring *rx_ring,
4327 int *work_done, int work_to_do)
4328 #else
4329 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4330 struct e1000_rx_ring *rx_ring)
4331 #endif
4332 {
4333 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4334 struct net_device *netdev = adapter->netdev;
4335 struct pci_dev *pdev = adapter->pdev;
4336 struct e1000_buffer *buffer_info, *next_buffer;
4337 struct e1000_ps_page *ps_page;
4338 struct e1000_ps_page_dma *ps_page_dma;
4339 struct sk_buff *skb;
4340 unsigned int i, j;
4341 uint32_t length, staterr;
4342 int cleaned_count = 0;
4343 boolean_t cleaned = FALSE;
4344 unsigned int total_rx_bytes=0, total_rx_packets=0;
4345
4346 i = rx_ring->next_to_clean;
4347 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4348 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4349 buffer_info = &rx_ring->buffer_info[i];
4350
4351 while (staterr & E1000_RXD_STAT_DD) {
4352 ps_page = &rx_ring->ps_page[i];
4353 ps_page_dma = &rx_ring->ps_page_dma[i];
4354 #ifdef CONFIG_E1000_NAPI
4355 if (unlikely(*work_done >= work_to_do))
4356 break;
4357 (*work_done)++;
4358 #endif
4359 skb = buffer_info->skb;
4360
4361 /* in the packet split case this is header only */
4362 prefetch(skb->data - NET_IP_ALIGN);
4363
4364 if (++i == rx_ring->count) i = 0;
4365 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4366 prefetch(next_rxd);
4367
4368 next_buffer = &rx_ring->buffer_info[i];
4369
4370 cleaned = TRUE;
4371 cleaned_count++;
4372 pci_unmap_single(pdev, buffer_info->dma,
4373 buffer_info->length,
4374 PCI_DMA_FROMDEVICE);
4375
4376 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4377 E1000_DBG("%s: Packet Split buffers didn't pick up"
4378 " the full packet\n", netdev->name);
4379 dev_kfree_skb_irq(skb);
4380 goto next_desc;
4381 }
4382
4383 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4384 dev_kfree_skb_irq(skb);
4385 goto next_desc;
4386 }
4387
4388 length = le16_to_cpu(rx_desc->wb.middle.length0);
4389
4390 if (unlikely(!length)) {
4391 E1000_DBG("%s: Last part of the packet spanning"
4392 " multiple descriptors\n", netdev->name);
4393 dev_kfree_skb_irq(skb);
4394 goto next_desc;
4395 }
4396
4397 /* Good Receive */
4398 skb_put(skb, length);
4399
4400 {
4401 /* this looks ugly, but it seems compiler issues make it
4402 more efficient than reusing j */
4403 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4404
4405 /* page alloc/put takes too long and effects small packet
4406 * throughput, so unsplit small packets and save the alloc/put*/
4407 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4408 u8 *vaddr;
4409 /* there is no documentation about how to call
4410 * kmap_atomic, so we can't hold the mapping
4411 * very long */
4412 pci_dma_sync_single_for_cpu(pdev,
4413 ps_page_dma->ps_page_dma[0],
4414 PAGE_SIZE,
4415 PCI_DMA_FROMDEVICE);
4416 vaddr = kmap_atomic(ps_page->ps_page[0],
4417 KM_SKB_DATA_SOFTIRQ);
4418 memcpy(skb->tail, vaddr, l1);
4419 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4420 pci_dma_sync_single_for_device(pdev,
4421 ps_page_dma->ps_page_dma[0],
4422 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4423 /* remove the CRC */
4424 l1 -= 4;
4425 skb_put(skb, l1);
4426 goto copydone;
4427 } /* if */
4428 }
4429
4430 for (j = 0; j < adapter->rx_ps_pages; j++) {
4431 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4432 break;
4433 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4434 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4435 ps_page_dma->ps_page_dma[j] = 0;
4436 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4437 length);
4438 ps_page->ps_page[j] = NULL;
4439 skb->len += length;
4440 skb->data_len += length;
4441 skb->truesize += length;
4442 }
4443
4444 /* strip the ethernet crc, problem is we're using pages now so
4445 * this whole operation can get a little cpu intensive */
4446 pskb_trim(skb, skb->len - 4);
4447
4448 copydone:
4449 total_rx_bytes += skb->len;
4450 total_rx_packets++;
4451
4452 e1000_rx_checksum(adapter, staterr,
4453 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4454 skb->protocol = eth_type_trans(skb, netdev);
4455
4456 if (likely(rx_desc->wb.upper.header_status &
4457 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4458 adapter->rx_hdr_split++;
4459 #ifdef CONFIG_E1000_NAPI
4460 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4461 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4462 le16_to_cpu(rx_desc->wb.middle.vlan) &
4463 E1000_RXD_SPC_VLAN_MASK);
4464 } else {
4465 netif_receive_skb(skb);
4466 }
4467 #else /* CONFIG_E1000_NAPI */
4468 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4469 vlan_hwaccel_rx(skb, adapter->vlgrp,
4470 le16_to_cpu(rx_desc->wb.middle.vlan) &
4471 E1000_RXD_SPC_VLAN_MASK);
4472 } else {
4473 netif_rx(skb);
4474 }
4475 #endif /* CONFIG_E1000_NAPI */
4476 netdev->last_rx = jiffies;
4477
4478 next_desc:
4479 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4480 buffer_info->skb = NULL;
4481
4482 /* return some buffers to hardware, one at a time is too slow */
4483 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4484 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485 cleaned_count = 0;
4486 }
4487
4488 /* use prefetched values */
4489 rx_desc = next_rxd;
4490 buffer_info = next_buffer;
4491
4492 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4493 }
4494 rx_ring->next_to_clean = i;
4495
4496 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4497 if (cleaned_count)
4498 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499
4500 adapter->total_rx_packets += total_rx_packets;
4501 adapter->total_rx_bytes += total_rx_bytes;
4502 return cleaned;
4503 }
4504
4505 /**
4506 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4507 * @adapter: address of board private structure
4508 **/
4509
4510 static void
4511 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4512 struct e1000_rx_ring *rx_ring,
4513 int cleaned_count)
4514 {
4515 struct net_device *netdev = adapter->netdev;
4516 struct pci_dev *pdev = adapter->pdev;
4517 struct e1000_rx_desc *rx_desc;
4518 struct e1000_buffer *buffer_info;
4519 struct sk_buff *skb;
4520 unsigned int i;
4521 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4522
4523 i = rx_ring->next_to_use;
4524 buffer_info = &rx_ring->buffer_info[i];
4525
4526 while (cleaned_count--) {
4527 skb = buffer_info->skb;
4528 if (skb) {
4529 skb_trim(skb, 0);
4530 goto map_skb;
4531 }
4532
4533 skb = netdev_alloc_skb(netdev, bufsz);
4534 if (unlikely(!skb)) {
4535 /* Better luck next round */
4536 adapter->alloc_rx_buff_failed++;
4537 break;
4538 }
4539
4540 /* Fix for errata 23, can't cross 64kB boundary */
4541 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4542 struct sk_buff *oldskb = skb;
4543 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4544 "at %p\n", bufsz, skb->data);
4545 /* Try again, without freeing the previous */
4546 skb = netdev_alloc_skb(netdev, bufsz);
4547 /* Failed allocation, critical failure */
4548 if (!skb) {
4549 dev_kfree_skb(oldskb);
4550 break;
4551 }
4552
4553 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4554 /* give up */
4555 dev_kfree_skb(skb);
4556 dev_kfree_skb(oldskb);
4557 break; /* while !buffer_info->skb */
4558 }
4559
4560 /* Use new allocation */
4561 dev_kfree_skb(oldskb);
4562 }
4563 /* Make buffer alignment 2 beyond a 16 byte boundary
4564 * this will result in a 16 byte aligned IP header after
4565 * the 14 byte MAC header is removed
4566 */
4567 skb_reserve(skb, NET_IP_ALIGN);
4568
4569 buffer_info->skb = skb;
4570 buffer_info->length = adapter->rx_buffer_len;
4571 map_skb:
4572 buffer_info->dma = pci_map_single(pdev,
4573 skb->data,
4574 adapter->rx_buffer_len,
4575 PCI_DMA_FROMDEVICE);
4576
4577 /* Fix for errata 23, can't cross 64kB boundary */
4578 if (!e1000_check_64k_bound(adapter,
4579 (void *)(unsigned long)buffer_info->dma,
4580 adapter->rx_buffer_len)) {
4581 DPRINTK(RX_ERR, ERR,
4582 "dma align check failed: %u bytes at %p\n",
4583 adapter->rx_buffer_len,
4584 (void *)(unsigned long)buffer_info->dma);
4585 dev_kfree_skb(skb);
4586 buffer_info->skb = NULL;
4587
4588 pci_unmap_single(pdev, buffer_info->dma,
4589 adapter->rx_buffer_len,
4590 PCI_DMA_FROMDEVICE);
4591
4592 break; /* while !buffer_info->skb */
4593 }
4594 rx_desc = E1000_RX_DESC(*rx_ring, i);
4595 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4596
4597 if (unlikely(++i == rx_ring->count))
4598 i = 0;
4599 buffer_info = &rx_ring->buffer_info[i];
4600 }
4601
4602 if (likely(rx_ring->next_to_use != i)) {
4603 rx_ring->next_to_use = i;
4604 if (unlikely(i-- == 0))
4605 i = (rx_ring->count - 1);
4606
4607 /* Force memory writes to complete before letting h/w
4608 * know there are new descriptors to fetch. (Only
4609 * applicable for weak-ordered memory model archs,
4610 * such as IA-64). */
4611 wmb();
4612 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4613 }
4614 }
4615
4616 /**
4617 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4618 * @adapter: address of board private structure
4619 **/
4620
4621 static void
4622 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4623 struct e1000_rx_ring *rx_ring,
4624 int cleaned_count)
4625 {
4626 struct net_device *netdev = adapter->netdev;
4627 struct pci_dev *pdev = adapter->pdev;
4628 union e1000_rx_desc_packet_split *rx_desc;
4629 struct e1000_buffer *buffer_info;
4630 struct e1000_ps_page *ps_page;
4631 struct e1000_ps_page_dma *ps_page_dma;
4632 struct sk_buff *skb;
4633 unsigned int i, j;
4634
4635 i = rx_ring->next_to_use;
4636 buffer_info = &rx_ring->buffer_info[i];
4637 ps_page = &rx_ring->ps_page[i];
4638 ps_page_dma = &rx_ring->ps_page_dma[i];
4639
4640 while (cleaned_count--) {
4641 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4642
4643 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4644 if (j < adapter->rx_ps_pages) {
4645 if (likely(!ps_page->ps_page[j])) {
4646 ps_page->ps_page[j] =
4647 alloc_page(GFP_ATOMIC);
4648 if (unlikely(!ps_page->ps_page[j])) {
4649 adapter->alloc_rx_buff_failed++;
4650 goto no_buffers;
4651 }
4652 ps_page_dma->ps_page_dma[j] =
4653 pci_map_page(pdev,
4654 ps_page->ps_page[j],
4655 0, PAGE_SIZE,
4656 PCI_DMA_FROMDEVICE);
4657 }
4658 /* Refresh the desc even if buffer_addrs didn't
4659 * change because each write-back erases
4660 * this info.
4661 */
4662 rx_desc->read.buffer_addr[j+1] =
4663 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4664 } else
4665 rx_desc->read.buffer_addr[j+1] = ~0;
4666 }
4667
4668 skb = netdev_alloc_skb(netdev,
4669 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4670
4671 if (unlikely(!skb)) {
4672 adapter->alloc_rx_buff_failed++;
4673 break;
4674 }
4675
4676 /* Make buffer alignment 2 beyond a 16 byte boundary
4677 * this will result in a 16 byte aligned IP header after
4678 * the 14 byte MAC header is removed
4679 */
4680 skb_reserve(skb, NET_IP_ALIGN);
4681
4682 buffer_info->skb = skb;
4683 buffer_info->length = adapter->rx_ps_bsize0;
4684 buffer_info->dma = pci_map_single(pdev, skb->data,
4685 adapter->rx_ps_bsize0,
4686 PCI_DMA_FROMDEVICE);
4687
4688 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4689
4690 if (unlikely(++i == rx_ring->count)) i = 0;
4691 buffer_info = &rx_ring->buffer_info[i];
4692 ps_page = &rx_ring->ps_page[i];
4693 ps_page_dma = &rx_ring->ps_page_dma[i];
4694 }
4695
4696 no_buffers:
4697 if (likely(rx_ring->next_to_use != i)) {
4698 rx_ring->next_to_use = i;
4699 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4700
4701 /* Force memory writes to complete before letting h/w
4702 * know there are new descriptors to fetch. (Only
4703 * applicable for weak-ordered memory model archs,
4704 * such as IA-64). */
4705 wmb();
4706 /* Hardware increments by 16 bytes, but packet split
4707 * descriptors are 32 bytes...so we increment tail
4708 * twice as much.
4709 */
4710 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4711 }
4712 }
4713
4714 /**
4715 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4716 * @adapter:
4717 **/
4718
4719 static void
4720 e1000_smartspeed(struct e1000_adapter *adapter)
4721 {
4722 uint16_t phy_status;
4723 uint16_t phy_ctrl;
4724
4725 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4726 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4727 return;
4728
4729 if (adapter->smartspeed == 0) {
4730 /* If Master/Slave config fault is asserted twice,
4731 * we assume back-to-back */
4732 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4733 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4734 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4735 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4736 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4737 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4738 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4739 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4740 phy_ctrl);
4741 adapter->smartspeed++;
4742 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4743 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4744 &phy_ctrl)) {
4745 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4746 MII_CR_RESTART_AUTO_NEG);
4747 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4748 phy_ctrl);
4749 }
4750 }
4751 return;
4752 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4753 /* If still no link, perhaps using 2/3 pair cable */
4754 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4755 phy_ctrl |= CR_1000T_MS_ENABLE;
4756 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4757 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4758 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4759 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4760 MII_CR_RESTART_AUTO_NEG);
4761 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4762 }
4763 }
4764 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4765 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4766 adapter->smartspeed = 0;
4767 }
4768
4769 /**
4770 * e1000_ioctl -
4771 * @netdev:
4772 * @ifreq:
4773 * @cmd:
4774 **/
4775
4776 static int
4777 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4778 {
4779 switch (cmd) {
4780 case SIOCGMIIPHY:
4781 case SIOCGMIIREG:
4782 case SIOCSMIIREG:
4783 return e1000_mii_ioctl(netdev, ifr, cmd);
4784 default:
4785 return -EOPNOTSUPP;
4786 }
4787 }
4788
4789 /**
4790 * e1000_mii_ioctl -
4791 * @netdev:
4792 * @ifreq:
4793 * @cmd:
4794 **/
4795
4796 static int
4797 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4798 {
4799 struct e1000_adapter *adapter = netdev_priv(netdev);
4800 struct mii_ioctl_data *data = if_mii(ifr);
4801 int retval;
4802 uint16_t mii_reg;
4803 uint16_t spddplx;
4804 unsigned long flags;
4805
4806 if (adapter->hw.media_type != e1000_media_type_copper)
4807 return -EOPNOTSUPP;
4808
4809 switch (cmd) {
4810 case SIOCGMIIPHY:
4811 data->phy_id = adapter->hw.phy_addr;
4812 break;
4813 case SIOCGMIIREG:
4814 if (!capable(CAP_NET_ADMIN))
4815 return -EPERM;
4816 spin_lock_irqsave(&adapter->stats_lock, flags);
4817 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4818 &data->val_out)) {
4819 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4820 return -EIO;
4821 }
4822 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4823 break;
4824 case SIOCSMIIREG:
4825 if (!capable(CAP_NET_ADMIN))
4826 return -EPERM;
4827 if (data->reg_num & ~(0x1F))
4828 return -EFAULT;
4829 mii_reg = data->val_in;
4830 spin_lock_irqsave(&adapter->stats_lock, flags);
4831 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4832 mii_reg)) {
4833 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4834 return -EIO;
4835 }
4836 if (adapter->hw.media_type == e1000_media_type_copper) {
4837 switch (data->reg_num) {
4838 case PHY_CTRL:
4839 if (mii_reg & MII_CR_POWER_DOWN)
4840 break;
4841 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4842 adapter->hw.autoneg = 1;
4843 adapter->hw.autoneg_advertised = 0x2F;
4844 } else {
4845 if (mii_reg & 0x40)
4846 spddplx = SPEED_1000;
4847 else if (mii_reg & 0x2000)
4848 spddplx = SPEED_100;
4849 else
4850 spddplx = SPEED_10;
4851 spddplx += (mii_reg & 0x100)
4852 ? DUPLEX_FULL :
4853 DUPLEX_HALF;
4854 retval = e1000_set_spd_dplx(adapter,
4855 spddplx);
4856 if (retval) {
4857 spin_unlock_irqrestore(
4858 &adapter->stats_lock,
4859 flags);
4860 return retval;
4861 }
4862 }
4863 if (netif_running(adapter->netdev))
4864 e1000_reinit_locked(adapter);
4865 else
4866 e1000_reset(adapter);
4867 break;
4868 case M88E1000_PHY_SPEC_CTRL:
4869 case M88E1000_EXT_PHY_SPEC_CTRL:
4870 if (e1000_phy_reset(&adapter->hw)) {
4871 spin_unlock_irqrestore(
4872 &adapter->stats_lock, flags);
4873 return -EIO;
4874 }
4875 break;
4876 }
4877 } else {
4878 switch (data->reg_num) {
4879 case PHY_CTRL:
4880 if (mii_reg & MII_CR_POWER_DOWN)
4881 break;
4882 if (netif_running(adapter->netdev))
4883 e1000_reinit_locked(adapter);
4884 else
4885 e1000_reset(adapter);
4886 break;
4887 }
4888 }
4889 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4890 break;
4891 default:
4892 return -EOPNOTSUPP;
4893 }
4894 return E1000_SUCCESS;
4895 }
4896
4897 void
4898 e1000_pci_set_mwi(struct e1000_hw *hw)
4899 {
4900 struct e1000_adapter *adapter = hw->back;
4901 int ret_val = pci_set_mwi(adapter->pdev);
4902
4903 if (ret_val)
4904 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4905 }
4906
4907 void
4908 e1000_pci_clear_mwi(struct e1000_hw *hw)
4909 {
4910 struct e1000_adapter *adapter = hw->back;
4911
4912 pci_clear_mwi(adapter->pdev);
4913 }
4914
4915 void
4916 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4917 {
4918 struct e1000_adapter *adapter = hw->back;
4919
4920 pci_read_config_word(adapter->pdev, reg, value);
4921 }
4922
4923 void
4924 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4925 {
4926 struct e1000_adapter *adapter = hw->back;
4927
4928 pci_write_config_word(adapter->pdev, reg, *value);
4929 }
4930
4931 int32_t
4932 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4933 {
4934 struct e1000_adapter *adapter = hw->back;
4935 uint16_t cap_offset;
4936
4937 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4938 if (!cap_offset)
4939 return -E1000_ERR_CONFIG;
4940
4941 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4942
4943 return E1000_SUCCESS;
4944 }
4945
4946 void
4947 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4948 {
4949 outl(value, port);
4950 }
4951
4952 static void
4953 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4954 {
4955 struct e1000_adapter *adapter = netdev_priv(netdev);
4956 uint32_t ctrl, rctl;
4957
4958 e1000_irq_disable(adapter);
4959 adapter->vlgrp = grp;
4960
4961 if (grp) {
4962 /* enable VLAN tag insert/strip */
4963 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4964 ctrl |= E1000_CTRL_VME;
4965 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4966
4967 if (adapter->hw.mac_type != e1000_ich8lan) {
4968 /* enable VLAN receive filtering */
4969 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4970 rctl |= E1000_RCTL_VFE;
4971 rctl &= ~E1000_RCTL_CFIEN;
4972 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4973 e1000_update_mng_vlan(adapter);
4974 }
4975 } else {
4976 /* disable VLAN tag insert/strip */
4977 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4978 ctrl &= ~E1000_CTRL_VME;
4979 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4980
4981 if (adapter->hw.mac_type != e1000_ich8lan) {
4982 /* disable VLAN filtering */
4983 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4984 rctl &= ~E1000_RCTL_VFE;
4985 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4986 if (adapter->mng_vlan_id !=
4987 (uint16_t)E1000_MNG_VLAN_NONE) {
4988 e1000_vlan_rx_kill_vid(netdev,
4989 adapter->mng_vlan_id);
4990 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4991 }
4992 }
4993 }
4994
4995 e1000_irq_enable(adapter);
4996 }
4997
4998 static void
4999 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
5000 {
5001 struct e1000_adapter *adapter = netdev_priv(netdev);
5002 uint32_t vfta, index;
5003
5004 if ((adapter->hw.mng_cookie.status &
5005 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5006 (vid == adapter->mng_vlan_id))
5007 return;
5008 /* add VID to filter table */
5009 index = (vid >> 5) & 0x7F;
5010 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5011 vfta |= (1 << (vid & 0x1F));
5012 e1000_write_vfta(&adapter->hw, index, vfta);
5013 }
5014
5015 static void
5016 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
5017 {
5018 struct e1000_adapter *adapter = netdev_priv(netdev);
5019 uint32_t vfta, index;
5020
5021 e1000_irq_disable(adapter);
5022 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5023 e1000_irq_enable(adapter);
5024
5025 if ((adapter->hw.mng_cookie.status &
5026 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5027 (vid == adapter->mng_vlan_id)) {
5028 /* release control to f/w */
5029 e1000_release_hw_control(adapter);
5030 return;
5031 }
5032
5033 /* remove VID from filter table */
5034 index = (vid >> 5) & 0x7F;
5035 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5036 vfta &= ~(1 << (vid & 0x1F));
5037 e1000_write_vfta(&adapter->hw, index, vfta);
5038 }
5039
5040 static void
5041 e1000_restore_vlan(struct e1000_adapter *adapter)
5042 {
5043 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5044
5045 if (adapter->vlgrp) {
5046 uint16_t vid;
5047 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5048 if (!vlan_group_get_device(adapter->vlgrp, vid))
5049 continue;
5050 e1000_vlan_rx_add_vid(adapter->netdev, vid);
5051 }
5052 }
5053 }
5054
5055 int
5056 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5057 {
5058 adapter->hw.autoneg = 0;
5059
5060 /* Fiber NICs only allow 1000 gbps Full duplex */
5061 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5062 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5063 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5064 return -EINVAL;
5065 }
5066
5067 switch (spddplx) {
5068 case SPEED_10 + DUPLEX_HALF:
5069 adapter->hw.forced_speed_duplex = e1000_10_half;
5070 break;
5071 case SPEED_10 + DUPLEX_FULL:
5072 adapter->hw.forced_speed_duplex = e1000_10_full;
5073 break;
5074 case SPEED_100 + DUPLEX_HALF:
5075 adapter->hw.forced_speed_duplex = e1000_100_half;
5076 break;
5077 case SPEED_100 + DUPLEX_FULL:
5078 adapter->hw.forced_speed_duplex = e1000_100_full;
5079 break;
5080 case SPEED_1000 + DUPLEX_FULL:
5081 adapter->hw.autoneg = 1;
5082 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5083 break;
5084 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5085 default:
5086 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5087 return -EINVAL;
5088 }
5089 return 0;
5090 }
5091
5092 static int
5093 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5094 {
5095 struct net_device *netdev = pci_get_drvdata(pdev);
5096 struct e1000_adapter *adapter = netdev_priv(netdev);
5097 uint32_t ctrl, ctrl_ext, rctl, status;
5098 uint32_t wufc = adapter->wol;
5099 #ifdef CONFIG_PM
5100 int retval = 0;
5101 #endif
5102
5103 netif_device_detach(netdev);
5104
5105 if (netif_running(netdev)) {
5106 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5107 e1000_down(adapter);
5108 }
5109
5110 #ifdef CONFIG_PM
5111 retval = pci_save_state(pdev);
5112 if (retval)
5113 return retval;
5114 #endif
5115
5116 status = E1000_READ_REG(&adapter->hw, STATUS);
5117 if (status & E1000_STATUS_LU)
5118 wufc &= ~E1000_WUFC_LNKC;
5119
5120 if (wufc) {
5121 e1000_setup_rctl(adapter);
5122 e1000_set_multi(netdev);
5123
5124 /* turn on all-multi mode if wake on multicast is enabled */
5125 if (wufc & E1000_WUFC_MC) {
5126 rctl = E1000_READ_REG(&adapter->hw, RCTL);
5127 rctl |= E1000_RCTL_MPE;
5128 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5129 }
5130
5131 if (adapter->hw.mac_type >= e1000_82540) {
5132 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5133 /* advertise wake from D3Cold */
5134 #define E1000_CTRL_ADVD3WUC 0x00100000
5135 /* phy power management enable */
5136 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5137 ctrl |= E1000_CTRL_ADVD3WUC |
5138 E1000_CTRL_EN_PHY_PWR_MGMT;
5139 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5140 }
5141
5142 if (adapter->hw.media_type == e1000_media_type_fiber ||
5143 adapter->hw.media_type == e1000_media_type_internal_serdes) {
5144 /* keep the laser running in D3 */
5145 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5146 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5147 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5148 }
5149
5150 /* Allow time for pending master requests to run */
5151 e1000_disable_pciex_master(&adapter->hw);
5152
5153 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5154 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5155 pci_enable_wake(pdev, PCI_D3hot, 1);
5156 pci_enable_wake(pdev, PCI_D3cold, 1);
5157 } else {
5158 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5159 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5160 pci_enable_wake(pdev, PCI_D3hot, 0);
5161 pci_enable_wake(pdev, PCI_D3cold, 0);
5162 }
5163
5164 e1000_release_manageability(adapter);
5165
5166 /* make sure adapter isn't asleep if manageability is enabled */
5167 if (adapter->en_mng_pt) {
5168 pci_enable_wake(pdev, PCI_D3hot, 1);
5169 pci_enable_wake(pdev, PCI_D3cold, 1);
5170 }
5171
5172 if (adapter->hw.phy_type == e1000_phy_igp_3)
5173 e1000_phy_powerdown_workaround(&adapter->hw);
5174
5175 if (netif_running(netdev))
5176 e1000_free_irq(adapter);
5177
5178 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5179 * would have already happened in close and is redundant. */
5180 e1000_release_hw_control(adapter);
5181
5182 pci_disable_device(pdev);
5183
5184 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5185
5186 return 0;
5187 }
5188
5189 #ifdef CONFIG_PM
5190 static int
5191 e1000_resume(struct pci_dev *pdev)
5192 {
5193 struct net_device *netdev = pci_get_drvdata(pdev);
5194 struct e1000_adapter *adapter = netdev_priv(netdev);
5195 uint32_t err;
5196
5197 pci_set_power_state(pdev, PCI_D0);
5198 pci_restore_state(pdev);
5199 if ((err = pci_enable_device(pdev))) {
5200 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5201 return err;
5202 }
5203 pci_set_master(pdev);
5204
5205 pci_enable_wake(pdev, PCI_D3hot, 0);
5206 pci_enable_wake(pdev, PCI_D3cold, 0);
5207
5208 if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5209 return err;
5210
5211 e1000_power_up_phy(adapter);
5212 e1000_reset(adapter);
5213 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5214
5215 e1000_init_manageability(adapter);
5216
5217 if (netif_running(netdev))
5218 e1000_up(adapter);
5219
5220 netif_device_attach(netdev);
5221
5222 /* If the controller is 82573 and f/w is AMT, do not set
5223 * DRV_LOAD until the interface is up. For all other cases,
5224 * let the f/w know that the h/w is now under the control
5225 * of the driver. */
5226 if (adapter->hw.mac_type != e1000_82573 ||
5227 !e1000_check_mng_mode(&adapter->hw))
5228 e1000_get_hw_control(adapter);
5229
5230 return 0;
5231 }
5232 #endif
5233
5234 static void e1000_shutdown(struct pci_dev *pdev)
5235 {
5236 e1000_suspend(pdev, PMSG_SUSPEND);
5237 }
5238
5239 #ifdef CONFIG_NET_POLL_CONTROLLER
5240 /*
5241 * Polling 'interrupt' - used by things like netconsole to send skbs
5242 * without having to re-enable interrupts. It's not called while
5243 * the interrupt routine is executing.
5244 */
5245 static void
5246 e1000_netpoll(struct net_device *netdev)
5247 {
5248 struct e1000_adapter *adapter = netdev_priv(netdev);
5249
5250 disable_irq(adapter->pdev->irq);
5251 e1000_intr(adapter->pdev->irq, netdev);
5252 e1000_clean_tx_irq(adapter, adapter->tx_ring);
5253 #ifndef CONFIG_E1000_NAPI
5254 adapter->clean_rx(adapter, adapter->rx_ring);
5255 #endif
5256 enable_irq(adapter->pdev->irq);
5257 }
5258 #endif
5259
5260 /**
5261 * e1000_io_error_detected - called when PCI error is detected
5262 * @pdev: Pointer to PCI device
5263 * @state: The current pci conneection state
5264 *
5265 * This function is called after a PCI bus error affecting
5266 * this device has been detected.
5267 */
5268 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5269 {
5270 struct net_device *netdev = pci_get_drvdata(pdev);
5271 struct e1000_adapter *adapter = netdev->priv;
5272
5273 netif_device_detach(netdev);
5274
5275 if (netif_running(netdev))
5276 e1000_down(adapter);
5277 pci_disable_device(pdev);
5278
5279 /* Request a slot slot reset. */
5280 return PCI_ERS_RESULT_NEED_RESET;
5281 }
5282
5283 /**
5284 * e1000_io_slot_reset - called after the pci bus has been reset.
5285 * @pdev: Pointer to PCI device
5286 *
5287 * Restart the card from scratch, as if from a cold-boot. Implementation
5288 * resembles the first-half of the e1000_resume routine.
5289 */
5290 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5291 {
5292 struct net_device *netdev = pci_get_drvdata(pdev);
5293 struct e1000_adapter *adapter = netdev->priv;
5294
5295 if (pci_enable_device(pdev)) {
5296 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5297 return PCI_ERS_RESULT_DISCONNECT;
5298 }
5299 pci_set_master(pdev);
5300
5301 pci_enable_wake(pdev, PCI_D3hot, 0);
5302 pci_enable_wake(pdev, PCI_D3cold, 0);
5303
5304 e1000_reset(adapter);
5305 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5306
5307 return PCI_ERS_RESULT_RECOVERED;
5308 }
5309
5310 /**
5311 * e1000_io_resume - called when traffic can start flowing again.
5312 * @pdev: Pointer to PCI device
5313 *
5314 * This callback is called when the error recovery driver tells us that
5315 * its OK to resume normal operation. Implementation resembles the
5316 * second-half of the e1000_resume routine.
5317 */
5318 static void e1000_io_resume(struct pci_dev *pdev)
5319 {
5320 struct net_device *netdev = pci_get_drvdata(pdev);
5321 struct e1000_adapter *adapter = netdev->priv;
5322
5323 e1000_init_manageability(adapter);
5324
5325 if (netif_running(netdev)) {
5326 if (e1000_up(adapter)) {
5327 printk("e1000: can't bring device back up after reset\n");
5328 return;
5329 }
5330 }
5331
5332 netif_device_attach(netdev);
5333
5334 /* If the controller is 82573 and f/w is AMT, do not set
5335 * DRV_LOAD until the interface is up. For all other cases,
5336 * let the f/w know that the h/w is now under the control
5337 * of the driver. */
5338 if (adapter->hw.mac_type != e1000_82573 ||
5339 !e1000_check_mng_mode(&adapter->hw))
5340 e1000_get_hw_control(adapter);
5341
5342 }
5343
5344 /* e1000_main.c */