]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/e1000/e1000_main.c
Merge branch 'thermal-2.6.33' into release
[mirror_ubuntu-jammy-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39 *
40 * Last entry must be all 0s
41 *
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44 */
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129 struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int *work_done, int work_to_do);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
144 struct e1000_rx_ring *rx_ring,
145 int cleaned_count);
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring,
148 int cleaned_count);
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
151 int cmd);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_reset_task(struct work_struct *work);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
159
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
164
165 #ifdef CONFIG_PM
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169 static void e1000_shutdown(struct pci_dev *pdev);
170
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device *netdev);
174 #endif
175
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
178 module_param(copybreak, uint, 0644);
179 MODULE_PARM_DESC(copybreak,
180 "Maximum size of packet that is copied to a new buffer on receive");
181
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
183 pci_channel_state_t state);
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
185 static void e1000_io_resume(struct pci_dev *pdev);
186
187 static struct pci_error_handlers e1000_err_handler = {
188 .error_detected = e1000_io_error_detected,
189 .slot_reset = e1000_io_slot_reset,
190 .resume = e1000_io_resume,
191 };
192
193 static struct pci_driver e1000_driver = {
194 .name = e1000_driver_name,
195 .id_table = e1000_pci_tbl,
196 .probe = e1000_probe,
197 .remove = __devexit_p(e1000_remove),
198 #ifdef CONFIG_PM
199 /* Power Managment Hooks */
200 .suspend = e1000_suspend,
201 .resume = e1000_resume,
202 #endif
203 .shutdown = e1000_shutdown,
204 .err_handler = &e1000_err_handler
205 };
206
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION);
211
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
215
216 /**
217 * e1000_init_module - Driver Registration Routine
218 *
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
221 **/
222
223 static int __init e1000_init_module(void)
224 {
225 int ret;
226 printk(KERN_INFO "%s - version %s\n",
227 e1000_driver_string, e1000_driver_version);
228
229 printk(KERN_INFO "%s\n", e1000_copyright);
230
231 ret = pci_register_driver(&e1000_driver);
232 if (copybreak != COPYBREAK_DEFAULT) {
233 if (copybreak == 0)
234 printk(KERN_INFO "e1000: copybreak disabled\n");
235 else
236 printk(KERN_INFO "e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak);
238 }
239 return ret;
240 }
241
242 module_init(e1000_init_module);
243
244 /**
245 * e1000_exit_module - Driver Exit Cleanup Routine
246 *
247 * e1000_exit_module is called just before the driver is removed
248 * from memory.
249 **/
250
251 static void __exit e1000_exit_module(void)
252 {
253 pci_unregister_driver(&e1000_driver);
254 }
255
256 module_exit(e1000_exit_module);
257
258 static int e1000_request_irq(struct e1000_adapter *adapter)
259 {
260 struct net_device *netdev = adapter->netdev;
261 irq_handler_t handler = e1000_intr;
262 int irq_flags = IRQF_SHARED;
263 int err;
264
265 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
266 netdev);
267 if (err) {
268 DPRINTK(PROBE, ERR,
269 "Unable to allocate interrupt Error: %d\n", err);
270 }
271
272 return err;
273 }
274
275 static void e1000_free_irq(struct e1000_adapter *adapter)
276 {
277 struct net_device *netdev = adapter->netdev;
278
279 free_irq(adapter->pdev->irq, netdev);
280 }
281
282 /**
283 * e1000_irq_disable - Mask off interrupt generation on the NIC
284 * @adapter: board private structure
285 **/
286
287 static void e1000_irq_disable(struct e1000_adapter *adapter)
288 {
289 struct e1000_hw *hw = &adapter->hw;
290
291 ew32(IMC, ~0);
292 E1000_WRITE_FLUSH();
293 synchronize_irq(adapter->pdev->irq);
294 }
295
296 /**
297 * e1000_irq_enable - Enable default interrupt generation settings
298 * @adapter: board private structure
299 **/
300
301 static void e1000_irq_enable(struct e1000_adapter *adapter)
302 {
303 struct e1000_hw *hw = &adapter->hw;
304
305 ew32(IMS, IMS_ENABLE_MASK);
306 E1000_WRITE_FLUSH();
307 }
308
309 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
310 {
311 struct e1000_hw *hw = &adapter->hw;
312 struct net_device *netdev = adapter->netdev;
313 u16 vid = hw->mng_cookie.vlan_id;
314 u16 old_vid = adapter->mng_vlan_id;
315 if (adapter->vlgrp) {
316 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
317 if (hw->mng_cookie.status &
318 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
319 e1000_vlan_rx_add_vid(netdev, vid);
320 adapter->mng_vlan_id = vid;
321 } else
322 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
323
324 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
325 (vid != old_vid) &&
326 !vlan_group_get_device(adapter->vlgrp, old_vid))
327 e1000_vlan_rx_kill_vid(netdev, old_vid);
328 } else
329 adapter->mng_vlan_id = vid;
330 }
331 }
332
333 static void e1000_init_manageability(struct e1000_adapter *adapter)
334 {
335 struct e1000_hw *hw = &adapter->hw;
336
337 if (adapter->en_mng_pt) {
338 u32 manc = er32(MANC);
339
340 /* disable hardware interception of ARP */
341 manc &= ~(E1000_MANC_ARP_EN);
342
343 ew32(MANC, manc);
344 }
345 }
346
347 static void e1000_release_manageability(struct e1000_adapter *adapter)
348 {
349 struct e1000_hw *hw = &adapter->hw;
350
351 if (adapter->en_mng_pt) {
352 u32 manc = er32(MANC);
353
354 /* re-enable hardware interception of ARP */
355 manc |= E1000_MANC_ARP_EN;
356
357 ew32(MANC, manc);
358 }
359 }
360
361 /**
362 * e1000_configure - configure the hardware for RX and TX
363 * @adapter = private board structure
364 **/
365 static void e1000_configure(struct e1000_adapter *adapter)
366 {
367 struct net_device *netdev = adapter->netdev;
368 int i;
369
370 e1000_set_rx_mode(netdev);
371
372 e1000_restore_vlan(adapter);
373 e1000_init_manageability(adapter);
374
375 e1000_configure_tx(adapter);
376 e1000_setup_rctl(adapter);
377 e1000_configure_rx(adapter);
378 /* call E1000_DESC_UNUSED which always leaves
379 * at least 1 descriptor unused to make sure
380 * next_to_use != next_to_clean */
381 for (i = 0; i < adapter->num_rx_queues; i++) {
382 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383 adapter->alloc_rx_buf(adapter, ring,
384 E1000_DESC_UNUSED(ring));
385 }
386
387 adapter->tx_queue_len = netdev->tx_queue_len;
388 }
389
390 int e1000_up(struct e1000_adapter *adapter)
391 {
392 struct e1000_hw *hw = &adapter->hw;
393
394 /* hardware has been reset, we need to reload some things */
395 e1000_configure(adapter);
396
397 clear_bit(__E1000_DOWN, &adapter->flags);
398
399 napi_enable(&adapter->napi);
400
401 e1000_irq_enable(adapter);
402
403 netif_wake_queue(adapter->netdev);
404
405 /* fire a link change interrupt to start the watchdog */
406 ew32(ICS, E1000_ICS_LSC);
407 return 0;
408 }
409
410 /**
411 * e1000_power_up_phy - restore link in case the phy was powered down
412 * @adapter: address of board private structure
413 *
414 * The phy may be powered down to save power and turn off link when the
415 * driver is unloaded and wake on lan is not enabled (among others)
416 * *** this routine MUST be followed by a call to e1000_reset ***
417 *
418 **/
419
420 void e1000_power_up_phy(struct e1000_adapter *adapter)
421 {
422 struct e1000_hw *hw = &adapter->hw;
423 u16 mii_reg = 0;
424
425 /* Just clear the power down bit to wake the phy back up */
426 if (hw->media_type == e1000_media_type_copper) {
427 /* according to the manual, the phy will retain its
428 * settings across a power-down/up cycle */
429 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
430 mii_reg &= ~MII_CR_POWER_DOWN;
431 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
432 }
433 }
434
435 static void e1000_power_down_phy(struct e1000_adapter *adapter)
436 {
437 struct e1000_hw *hw = &adapter->hw;
438
439 /* Power down the PHY so no link is implied when interface is down *
440 * The PHY cannot be powered down if any of the following is true *
441 * (a) WoL is enabled
442 * (b) AMT is active
443 * (c) SoL/IDER session is active */
444 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
445 hw->media_type == e1000_media_type_copper) {
446 u16 mii_reg = 0;
447
448 switch (hw->mac_type) {
449 case e1000_82540:
450 case e1000_82545:
451 case e1000_82545_rev_3:
452 case e1000_82546:
453 case e1000_82546_rev_3:
454 case e1000_82541:
455 case e1000_82541_rev_2:
456 case e1000_82547:
457 case e1000_82547_rev_2:
458 if (er32(MANC) & E1000_MANC_SMBUS_EN)
459 goto out;
460 break;
461 default:
462 goto out;
463 }
464 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
465 mii_reg |= MII_CR_POWER_DOWN;
466 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
467 mdelay(1);
468 }
469 out:
470 return;
471 }
472
473 void e1000_down(struct e1000_adapter *adapter)
474 {
475 struct e1000_hw *hw = &adapter->hw;
476 struct net_device *netdev = adapter->netdev;
477 u32 rctl, tctl;
478
479 /* signal that we're down so the interrupt handler does not
480 * reschedule our watchdog timer */
481 set_bit(__E1000_DOWN, &adapter->flags);
482
483 /* disable receives in the hardware */
484 rctl = er32(RCTL);
485 ew32(RCTL, rctl & ~E1000_RCTL_EN);
486 /* flush and sleep below */
487
488 netif_tx_disable(netdev);
489
490 /* disable transmits in the hardware */
491 tctl = er32(TCTL);
492 tctl &= ~E1000_TCTL_EN;
493 ew32(TCTL, tctl);
494 /* flush both disables and wait for them to finish */
495 E1000_WRITE_FLUSH();
496 msleep(10);
497
498 napi_disable(&adapter->napi);
499
500 e1000_irq_disable(adapter);
501
502 del_timer_sync(&adapter->tx_fifo_stall_timer);
503 del_timer_sync(&adapter->watchdog_timer);
504 del_timer_sync(&adapter->phy_info_timer);
505
506 netdev->tx_queue_len = adapter->tx_queue_len;
507 adapter->link_speed = 0;
508 adapter->link_duplex = 0;
509 netif_carrier_off(netdev);
510
511 e1000_reset(adapter);
512 e1000_clean_all_tx_rings(adapter);
513 e1000_clean_all_rx_rings(adapter);
514 }
515
516 void e1000_reinit_locked(struct e1000_adapter *adapter)
517 {
518 WARN_ON(in_interrupt());
519 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
520 msleep(1);
521 e1000_down(adapter);
522 e1000_up(adapter);
523 clear_bit(__E1000_RESETTING, &adapter->flags);
524 }
525
526 void e1000_reset(struct e1000_adapter *adapter)
527 {
528 struct e1000_hw *hw = &adapter->hw;
529 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
530 bool legacy_pba_adjust = false;
531 u16 hwm;
532
533 /* Repartition Pba for greater than 9k mtu
534 * To take effect CTRL.RST is required.
535 */
536
537 switch (hw->mac_type) {
538 case e1000_82542_rev2_0:
539 case e1000_82542_rev2_1:
540 case e1000_82543:
541 case e1000_82544:
542 case e1000_82540:
543 case e1000_82541:
544 case e1000_82541_rev_2:
545 legacy_pba_adjust = true;
546 pba = E1000_PBA_48K;
547 break;
548 case e1000_82545:
549 case e1000_82545_rev_3:
550 case e1000_82546:
551 case e1000_82546_rev_3:
552 pba = E1000_PBA_48K;
553 break;
554 case e1000_82547:
555 case e1000_82547_rev_2:
556 legacy_pba_adjust = true;
557 pba = E1000_PBA_30K;
558 break;
559 case e1000_undefined:
560 case e1000_num_macs:
561 break;
562 }
563
564 if (legacy_pba_adjust) {
565 if (hw->max_frame_size > E1000_RXBUFFER_8192)
566 pba -= 8; /* allocate more FIFO for Tx */
567
568 if (hw->mac_type == e1000_82547) {
569 adapter->tx_fifo_head = 0;
570 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
571 adapter->tx_fifo_size =
572 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
573 atomic_set(&adapter->tx_fifo_stall, 0);
574 }
575 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
576 /* adjust PBA for jumbo frames */
577 ew32(PBA, pba);
578
579 /* To maintain wire speed transmits, the Tx FIFO should be
580 * large enough to accommodate two full transmit packets,
581 * rounded up to the next 1KB and expressed in KB. Likewise,
582 * the Rx FIFO should be large enough to accommodate at least
583 * one full receive packet and is similarly rounded up and
584 * expressed in KB. */
585 pba = er32(PBA);
586 /* upper 16 bits has Tx packet buffer allocation size in KB */
587 tx_space = pba >> 16;
588 /* lower 16 bits has Rx packet buffer allocation size in KB */
589 pba &= 0xffff;
590 /*
591 * the tx fifo also stores 16 bytes of information about the tx
592 * but don't include ethernet FCS because hardware appends it
593 */
594 min_tx_space = (hw->max_frame_size +
595 sizeof(struct e1000_tx_desc) -
596 ETH_FCS_LEN) * 2;
597 min_tx_space = ALIGN(min_tx_space, 1024);
598 min_tx_space >>= 10;
599 /* software strips receive CRC, so leave room for it */
600 min_rx_space = hw->max_frame_size;
601 min_rx_space = ALIGN(min_rx_space, 1024);
602 min_rx_space >>= 10;
603
604 /* If current Tx allocation is less than the min Tx FIFO size,
605 * and the min Tx FIFO size is less than the current Rx FIFO
606 * allocation, take space away from current Rx allocation */
607 if (tx_space < min_tx_space &&
608 ((min_tx_space - tx_space) < pba)) {
609 pba = pba - (min_tx_space - tx_space);
610
611 /* PCI/PCIx hardware has PBA alignment constraints */
612 switch (hw->mac_type) {
613 case e1000_82545 ... e1000_82546_rev_3:
614 pba &= ~(E1000_PBA_8K - 1);
615 break;
616 default:
617 break;
618 }
619
620 /* if short on rx space, rx wins and must trump tx
621 * adjustment or use Early Receive if available */
622 if (pba < min_rx_space)
623 pba = min_rx_space;
624 }
625 }
626
627 ew32(PBA, pba);
628
629 /*
630 * flow control settings:
631 * The high water mark must be low enough to fit one full frame
632 * (or the size used for early receive) above it in the Rx FIFO.
633 * Set it to the lower of:
634 * - 90% of the Rx FIFO size, and
635 * - the full Rx FIFO size minus the early receive size (for parts
636 * with ERT support assuming ERT set to E1000_ERT_2048), or
637 * - the full Rx FIFO size minus one full frame
638 */
639 hwm = min(((pba << 10) * 9 / 10),
640 ((pba << 10) - hw->max_frame_size));
641
642 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
643 hw->fc_low_water = hw->fc_high_water - 8;
644 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
645 hw->fc_send_xon = 1;
646 hw->fc = hw->original_fc;
647
648 /* Allow time for pending master requests to run */
649 e1000_reset_hw(hw);
650 if (hw->mac_type >= e1000_82544)
651 ew32(WUC, 0);
652
653 if (e1000_init_hw(hw))
654 DPRINTK(PROBE, ERR, "Hardware Error\n");
655 e1000_update_mng_vlan(adapter);
656
657 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
658 if (hw->mac_type >= e1000_82544 &&
659 hw->autoneg == 1 &&
660 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
661 u32 ctrl = er32(CTRL);
662 /* clear phy power management bit if we are in gig only mode,
663 * which if enabled will attempt negotiation to 100Mb, which
664 * can cause a loss of link at power off or driver unload */
665 ctrl &= ~E1000_CTRL_SWDPIN3;
666 ew32(CTRL, ctrl);
667 }
668
669 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
670 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
671
672 e1000_reset_adaptive(hw);
673 e1000_phy_get_info(hw, &adapter->phy_info);
674
675 e1000_release_manageability(adapter);
676 }
677
678 /**
679 * Dump the eeprom for users having checksum issues
680 **/
681 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
682 {
683 struct net_device *netdev = adapter->netdev;
684 struct ethtool_eeprom eeprom;
685 const struct ethtool_ops *ops = netdev->ethtool_ops;
686 u8 *data;
687 int i;
688 u16 csum_old, csum_new = 0;
689
690 eeprom.len = ops->get_eeprom_len(netdev);
691 eeprom.offset = 0;
692
693 data = kmalloc(eeprom.len, GFP_KERNEL);
694 if (!data) {
695 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
696 " data\n");
697 return;
698 }
699
700 ops->get_eeprom(netdev, &eeprom, data);
701
702 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
703 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
704 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
705 csum_new += data[i] + (data[i + 1] << 8);
706 csum_new = EEPROM_SUM - csum_new;
707
708 printk(KERN_ERR "/*********************/\n");
709 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
710 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
711
712 printk(KERN_ERR "Offset Values\n");
713 printk(KERN_ERR "======== ======\n");
714 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
715
716 printk(KERN_ERR "Include this output when contacting your support "
717 "provider.\n");
718 printk(KERN_ERR "This is not a software error! Something bad "
719 "happened to your hardware or\n");
720 printk(KERN_ERR "EEPROM image. Ignoring this "
721 "problem could result in further problems,\n");
722 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
723 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
724 "which is invalid\n");
725 printk(KERN_ERR "and requires you to set the proper MAC "
726 "address manually before continuing\n");
727 printk(KERN_ERR "to enable this network device.\n");
728 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
729 "to your hardware vendor\n");
730 printk(KERN_ERR "or Intel Customer Support.\n");
731 printk(KERN_ERR "/*********************/\n");
732
733 kfree(data);
734 }
735
736 /**
737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
738 * @pdev: PCI device information struct
739 *
740 * Return true if an adapter needs ioport resources
741 **/
742 static int e1000_is_need_ioport(struct pci_dev *pdev)
743 {
744 switch (pdev->device) {
745 case E1000_DEV_ID_82540EM:
746 case E1000_DEV_ID_82540EM_LOM:
747 case E1000_DEV_ID_82540EP:
748 case E1000_DEV_ID_82540EP_LOM:
749 case E1000_DEV_ID_82540EP_LP:
750 case E1000_DEV_ID_82541EI:
751 case E1000_DEV_ID_82541EI_MOBILE:
752 case E1000_DEV_ID_82541ER:
753 case E1000_DEV_ID_82541ER_LOM:
754 case E1000_DEV_ID_82541GI:
755 case E1000_DEV_ID_82541GI_LF:
756 case E1000_DEV_ID_82541GI_MOBILE:
757 case E1000_DEV_ID_82544EI_COPPER:
758 case E1000_DEV_ID_82544EI_FIBER:
759 case E1000_DEV_ID_82544GC_COPPER:
760 case E1000_DEV_ID_82544GC_LOM:
761 case E1000_DEV_ID_82545EM_COPPER:
762 case E1000_DEV_ID_82545EM_FIBER:
763 case E1000_DEV_ID_82546EB_COPPER:
764 case E1000_DEV_ID_82546EB_FIBER:
765 case E1000_DEV_ID_82546EB_QUAD_COPPER:
766 return true;
767 default:
768 return false;
769 }
770 }
771
772 static const struct net_device_ops e1000_netdev_ops = {
773 .ndo_open = e1000_open,
774 .ndo_stop = e1000_close,
775 .ndo_start_xmit = e1000_xmit_frame,
776 .ndo_get_stats = e1000_get_stats,
777 .ndo_set_rx_mode = e1000_set_rx_mode,
778 .ndo_set_mac_address = e1000_set_mac,
779 .ndo_tx_timeout = e1000_tx_timeout,
780 .ndo_change_mtu = e1000_change_mtu,
781 .ndo_do_ioctl = e1000_ioctl,
782 .ndo_validate_addr = eth_validate_addr,
783
784 .ndo_vlan_rx_register = e1000_vlan_rx_register,
785 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
786 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
787 #ifdef CONFIG_NET_POLL_CONTROLLER
788 .ndo_poll_controller = e1000_netpoll,
789 #endif
790 };
791
792 /**
793 * e1000_probe - Device Initialization Routine
794 * @pdev: PCI device information struct
795 * @ent: entry in e1000_pci_tbl
796 *
797 * Returns 0 on success, negative on failure
798 *
799 * e1000_probe initializes an adapter identified by a pci_dev structure.
800 * The OS initialization, configuring of the adapter private structure,
801 * and a hardware reset occur.
802 **/
803 static int __devinit e1000_probe(struct pci_dev *pdev,
804 const struct pci_device_id *ent)
805 {
806 struct net_device *netdev;
807 struct e1000_adapter *adapter;
808 struct e1000_hw *hw;
809
810 static int cards_found = 0;
811 static int global_quad_port_a = 0; /* global ksp3 port a indication */
812 int i, err, pci_using_dac;
813 u16 eeprom_data = 0;
814 u16 eeprom_apme_mask = E1000_EEPROM_APME;
815 int bars, need_ioport;
816
817 /* do not allocate ioport bars when not needed */
818 need_ioport = e1000_is_need_ioport(pdev);
819 if (need_ioport) {
820 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
821 err = pci_enable_device(pdev);
822 } else {
823 bars = pci_select_bars(pdev, IORESOURCE_MEM);
824 err = pci_enable_device_mem(pdev);
825 }
826 if (err)
827 return err;
828
829 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
830 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
831 pci_using_dac = 1;
832 } else {
833 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
834 if (err) {
835 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
836 if (err) {
837 E1000_ERR("No usable DMA configuration, "
838 "aborting\n");
839 goto err_dma;
840 }
841 }
842 pci_using_dac = 0;
843 }
844
845 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
846 if (err)
847 goto err_pci_reg;
848
849 pci_set_master(pdev);
850
851 err = -ENOMEM;
852 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
853 if (!netdev)
854 goto err_alloc_etherdev;
855
856 SET_NETDEV_DEV(netdev, &pdev->dev);
857
858 pci_set_drvdata(pdev, netdev);
859 adapter = netdev_priv(netdev);
860 adapter->netdev = netdev;
861 adapter->pdev = pdev;
862 adapter->msg_enable = (1 << debug) - 1;
863 adapter->bars = bars;
864 adapter->need_ioport = need_ioport;
865
866 hw = &adapter->hw;
867 hw->back = adapter;
868
869 err = -EIO;
870 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
871 if (!hw->hw_addr)
872 goto err_ioremap;
873
874 if (adapter->need_ioport) {
875 for (i = BAR_1; i <= BAR_5; i++) {
876 if (pci_resource_len(pdev, i) == 0)
877 continue;
878 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
879 hw->io_base = pci_resource_start(pdev, i);
880 break;
881 }
882 }
883 }
884
885 netdev->netdev_ops = &e1000_netdev_ops;
886 e1000_set_ethtool_ops(netdev);
887 netdev->watchdog_timeo = 5 * HZ;
888 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
889
890 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
891
892 adapter->bd_number = cards_found;
893
894 /* setup the private structure */
895
896 err = e1000_sw_init(adapter);
897 if (err)
898 goto err_sw_init;
899
900 err = -EIO;
901
902 if (hw->mac_type >= e1000_82543) {
903 netdev->features = NETIF_F_SG |
904 NETIF_F_HW_CSUM |
905 NETIF_F_HW_VLAN_TX |
906 NETIF_F_HW_VLAN_RX |
907 NETIF_F_HW_VLAN_FILTER;
908 }
909
910 if ((hw->mac_type >= e1000_82544) &&
911 (hw->mac_type != e1000_82547))
912 netdev->features |= NETIF_F_TSO;
913
914 if (pci_using_dac)
915 netdev->features |= NETIF_F_HIGHDMA;
916
917 netdev->vlan_features |= NETIF_F_TSO;
918 netdev->vlan_features |= NETIF_F_HW_CSUM;
919 netdev->vlan_features |= NETIF_F_SG;
920
921 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
922
923 /* initialize eeprom parameters */
924 if (e1000_init_eeprom_params(hw)) {
925 E1000_ERR("EEPROM initialization failed\n");
926 goto err_eeprom;
927 }
928
929 /* before reading the EEPROM, reset the controller to
930 * put the device in a known good starting state */
931
932 e1000_reset_hw(hw);
933
934 /* make sure the EEPROM is good */
935 if (e1000_validate_eeprom_checksum(hw) < 0) {
936 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
937 e1000_dump_eeprom(adapter);
938 /*
939 * set MAC address to all zeroes to invalidate and temporary
940 * disable this device for the user. This blocks regular
941 * traffic while still permitting ethtool ioctls from reaching
942 * the hardware as well as allowing the user to run the
943 * interface after manually setting a hw addr using
944 * `ip set address`
945 */
946 memset(hw->mac_addr, 0, netdev->addr_len);
947 } else {
948 /* copy the MAC address out of the EEPROM */
949 if (e1000_read_mac_addr(hw))
950 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
951 }
952 /* don't block initalization here due to bad MAC address */
953 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
954 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
955
956 if (!is_valid_ether_addr(netdev->perm_addr))
957 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
958
959 e1000_get_bus_info(hw);
960
961 init_timer(&adapter->tx_fifo_stall_timer);
962 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
963 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
964
965 init_timer(&adapter->watchdog_timer);
966 adapter->watchdog_timer.function = &e1000_watchdog;
967 adapter->watchdog_timer.data = (unsigned long) adapter;
968
969 init_timer(&adapter->phy_info_timer);
970 adapter->phy_info_timer.function = &e1000_update_phy_info;
971 adapter->phy_info_timer.data = (unsigned long)adapter;
972
973 INIT_WORK(&adapter->reset_task, e1000_reset_task);
974
975 e1000_check_options(adapter);
976
977 /* Initial Wake on LAN setting
978 * If APM wake is enabled in the EEPROM,
979 * enable the ACPI Magic Packet filter
980 */
981
982 switch (hw->mac_type) {
983 case e1000_82542_rev2_0:
984 case e1000_82542_rev2_1:
985 case e1000_82543:
986 break;
987 case e1000_82544:
988 e1000_read_eeprom(hw,
989 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
990 eeprom_apme_mask = E1000_EEPROM_82544_APM;
991 break;
992 case e1000_82546:
993 case e1000_82546_rev_3:
994 if (er32(STATUS) & E1000_STATUS_FUNC_1){
995 e1000_read_eeprom(hw,
996 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
997 break;
998 }
999 /* Fall Through */
1000 default:
1001 e1000_read_eeprom(hw,
1002 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1003 break;
1004 }
1005 if (eeprom_data & eeprom_apme_mask)
1006 adapter->eeprom_wol |= E1000_WUFC_MAG;
1007
1008 /* now that we have the eeprom settings, apply the special cases
1009 * where the eeprom may be wrong or the board simply won't support
1010 * wake on lan on a particular port */
1011 switch (pdev->device) {
1012 case E1000_DEV_ID_82546GB_PCIE:
1013 adapter->eeprom_wol = 0;
1014 break;
1015 case E1000_DEV_ID_82546EB_FIBER:
1016 case E1000_DEV_ID_82546GB_FIBER:
1017 /* Wake events only supported on port A for dual fiber
1018 * regardless of eeprom setting */
1019 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1020 adapter->eeprom_wol = 0;
1021 break;
1022 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1023 /* if quad port adapter, disable WoL on all but port A */
1024 if (global_quad_port_a != 0)
1025 adapter->eeprom_wol = 0;
1026 else
1027 adapter->quad_port_a = 1;
1028 /* Reset for multiple quad port adapters */
1029 if (++global_quad_port_a == 4)
1030 global_quad_port_a = 0;
1031 break;
1032 }
1033
1034 /* initialize the wol settings based on the eeprom settings */
1035 adapter->wol = adapter->eeprom_wol;
1036 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1037
1038 /* print bus type/speed/width info */
1039 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1040 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1041 ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1042 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1043 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1044 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1045 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
1046
1047 printk("%pM\n", netdev->dev_addr);
1048
1049 /* reset the hardware with the new settings */
1050 e1000_reset(adapter);
1051
1052 strcpy(netdev->name, "eth%d");
1053 err = register_netdev(netdev);
1054 if (err)
1055 goto err_register;
1056
1057 /* carrier off reporting is important to ethtool even BEFORE open */
1058 netif_carrier_off(netdev);
1059
1060 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1061
1062 cards_found++;
1063 return 0;
1064
1065 err_register:
1066 err_eeprom:
1067 e1000_phy_hw_reset(hw);
1068
1069 if (hw->flash_address)
1070 iounmap(hw->flash_address);
1071 kfree(adapter->tx_ring);
1072 kfree(adapter->rx_ring);
1073 err_sw_init:
1074 iounmap(hw->hw_addr);
1075 err_ioremap:
1076 free_netdev(netdev);
1077 err_alloc_etherdev:
1078 pci_release_selected_regions(pdev, bars);
1079 err_pci_reg:
1080 err_dma:
1081 pci_disable_device(pdev);
1082 return err;
1083 }
1084
1085 /**
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1088 *
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device. The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1092 * memory.
1093 **/
1094
1095 static void __devexit e1000_remove(struct pci_dev *pdev)
1096 {
1097 struct net_device *netdev = pci_get_drvdata(pdev);
1098 struct e1000_adapter *adapter = netdev_priv(netdev);
1099 struct e1000_hw *hw = &adapter->hw;
1100
1101 set_bit(__E1000_DOWN, &adapter->flags);
1102 del_timer_sync(&adapter->tx_fifo_stall_timer);
1103 del_timer_sync(&adapter->watchdog_timer);
1104 del_timer_sync(&adapter->phy_info_timer);
1105
1106 cancel_work_sync(&adapter->reset_task);
1107
1108 e1000_release_manageability(adapter);
1109
1110 unregister_netdev(netdev);
1111
1112 e1000_phy_hw_reset(hw);
1113
1114 kfree(adapter->tx_ring);
1115 kfree(adapter->rx_ring);
1116
1117 iounmap(hw->hw_addr);
1118 if (hw->flash_address)
1119 iounmap(hw->flash_address);
1120 pci_release_selected_regions(pdev, adapter->bars);
1121
1122 free_netdev(netdev);
1123
1124 pci_disable_device(pdev);
1125 }
1126
1127 /**
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1130 *
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1134 **/
1135
1136 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1137 {
1138 struct e1000_hw *hw = &adapter->hw;
1139 struct net_device *netdev = adapter->netdev;
1140 struct pci_dev *pdev = adapter->pdev;
1141
1142 /* PCI config space info */
1143
1144 hw->vendor_id = pdev->vendor;
1145 hw->device_id = pdev->device;
1146 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1147 hw->subsystem_id = pdev->subsystem_device;
1148 hw->revision_id = pdev->revision;
1149
1150 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1151
1152 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1153 hw->max_frame_size = netdev->mtu +
1154 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1155 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1156
1157 /* identify the MAC */
1158
1159 if (e1000_set_mac_type(hw)) {
1160 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1161 return -EIO;
1162 }
1163
1164 switch (hw->mac_type) {
1165 default:
1166 break;
1167 case e1000_82541:
1168 case e1000_82547:
1169 case e1000_82541_rev_2:
1170 case e1000_82547_rev_2:
1171 hw->phy_init_script = 1;
1172 break;
1173 }
1174
1175 e1000_set_media_type(hw);
1176
1177 hw->wait_autoneg_complete = false;
1178 hw->tbi_compatibility_en = true;
1179 hw->adaptive_ifs = true;
1180
1181 /* Copper options */
1182
1183 if (hw->media_type == e1000_media_type_copper) {
1184 hw->mdix = AUTO_ALL_MODES;
1185 hw->disable_polarity_correction = false;
1186 hw->master_slave = E1000_MASTER_SLAVE;
1187 }
1188
1189 adapter->num_tx_queues = 1;
1190 adapter->num_rx_queues = 1;
1191
1192 if (e1000_alloc_queues(adapter)) {
1193 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1194 return -ENOMEM;
1195 }
1196
1197 /* Explicitly disable IRQ since the NIC can be in any state. */
1198 e1000_irq_disable(adapter);
1199
1200 spin_lock_init(&adapter->stats_lock);
1201
1202 set_bit(__E1000_DOWN, &adapter->flags);
1203
1204 return 0;
1205 }
1206
1207 /**
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1210 *
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1213 **/
1214
1215 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1216 {
1217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1218 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1219 if (!adapter->tx_ring)
1220 return -ENOMEM;
1221
1222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1223 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1224 if (!adapter->rx_ring) {
1225 kfree(adapter->tx_ring);
1226 return -ENOMEM;
1227 }
1228
1229 return E1000_SUCCESS;
1230 }
1231
1232 /**
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1235 *
1236 * Returns 0 on success, negative value on failure
1237 *
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP). At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1243 **/
1244
1245 static int e1000_open(struct net_device *netdev)
1246 {
1247 struct e1000_adapter *adapter = netdev_priv(netdev);
1248 struct e1000_hw *hw = &adapter->hw;
1249 int err;
1250
1251 /* disallow open during test */
1252 if (test_bit(__E1000_TESTING, &adapter->flags))
1253 return -EBUSY;
1254
1255 netif_carrier_off(netdev);
1256
1257 /* allocate transmit descriptors */
1258 err = e1000_setup_all_tx_resources(adapter);
1259 if (err)
1260 goto err_setup_tx;
1261
1262 /* allocate receive descriptors */
1263 err = e1000_setup_all_rx_resources(adapter);
1264 if (err)
1265 goto err_setup_rx;
1266
1267 e1000_power_up_phy(adapter);
1268
1269 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1270 if ((hw->mng_cookie.status &
1271 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1272 e1000_update_mng_vlan(adapter);
1273 }
1274
1275 /* before we allocate an interrupt, we must be ready to handle it.
1276 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277 * as soon as we call pci_request_irq, so we have to setup our
1278 * clean_rx handler before we do so. */
1279 e1000_configure(adapter);
1280
1281 err = e1000_request_irq(adapter);
1282 if (err)
1283 goto err_req_irq;
1284
1285 /* From here on the code is the same as e1000_up() */
1286 clear_bit(__E1000_DOWN, &adapter->flags);
1287
1288 napi_enable(&adapter->napi);
1289
1290 e1000_irq_enable(adapter);
1291
1292 netif_start_queue(netdev);
1293
1294 /* fire a link status change interrupt to start the watchdog */
1295 ew32(ICS, E1000_ICS_LSC);
1296
1297 return E1000_SUCCESS;
1298
1299 err_req_irq:
1300 e1000_power_down_phy(adapter);
1301 e1000_free_all_rx_resources(adapter);
1302 err_setup_rx:
1303 e1000_free_all_tx_resources(adapter);
1304 err_setup_tx:
1305 e1000_reset(adapter);
1306
1307 return err;
1308 }
1309
1310 /**
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1313 *
1314 * Returns 0, this is not allowed to fail
1315 *
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS. The hardware is still under the drivers control, but
1318 * needs to be disabled. A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1320 **/
1321
1322 static int e1000_close(struct net_device *netdev)
1323 {
1324 struct e1000_adapter *adapter = netdev_priv(netdev);
1325 struct e1000_hw *hw = &adapter->hw;
1326
1327 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1328 e1000_down(adapter);
1329 e1000_power_down_phy(adapter);
1330 e1000_free_irq(adapter);
1331
1332 e1000_free_all_tx_resources(adapter);
1333 e1000_free_all_rx_resources(adapter);
1334
1335 /* kill manageability vlan ID if supported, but not if a vlan with
1336 * the same ID is registered on the host OS (let 8021q kill it) */
1337 if ((hw->mng_cookie.status &
1338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1339 !(adapter->vlgrp &&
1340 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1341 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1342 }
1343
1344 return 0;
1345 }
1346
1347 /**
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1352 **/
1353 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1354 unsigned long len)
1355 {
1356 struct e1000_hw *hw = &adapter->hw;
1357 unsigned long begin = (unsigned long)start;
1358 unsigned long end = begin + len;
1359
1360 /* First rev 82545 and 82546 need to not allow any memory
1361 * write location to cross 64k boundary due to errata 23 */
1362 if (hw->mac_type == e1000_82545 ||
1363 hw->mac_type == e1000_82546) {
1364 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1365 }
1366
1367 return true;
1368 }
1369
1370 /**
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr: tx descriptor ring (for a specific queue) to setup
1374 *
1375 * Return 0 on success, negative on failure
1376 **/
1377
1378 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1379 struct e1000_tx_ring *txdr)
1380 {
1381 struct pci_dev *pdev = adapter->pdev;
1382 int size;
1383
1384 size = sizeof(struct e1000_buffer) * txdr->count;
1385 txdr->buffer_info = vmalloc(size);
1386 if (!txdr->buffer_info) {
1387 DPRINTK(PROBE, ERR,
1388 "Unable to allocate memory for the transmit descriptor ring\n");
1389 return -ENOMEM;
1390 }
1391 memset(txdr->buffer_info, 0, size);
1392
1393 /* round up to nearest 4K */
1394
1395 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1396 txdr->size = ALIGN(txdr->size, 4096);
1397
1398 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1399 if (!txdr->desc) {
1400 setup_tx_desc_die:
1401 vfree(txdr->buffer_info);
1402 DPRINTK(PROBE, ERR,
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1404 return -ENOMEM;
1405 }
1406
1407 /* Fix for errata 23, can't cross 64kB boundary */
1408 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1409 void *olddesc = txdr->desc;
1410 dma_addr_t olddma = txdr->dma;
1411 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1412 "at %p\n", txdr->size, txdr->desc);
1413 /* Try again, without freeing the previous */
1414 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1415 /* Failed allocation, critical failure */
1416 if (!txdr->desc) {
1417 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1418 goto setup_tx_desc_die;
1419 }
1420
1421 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1422 /* give up */
1423 pci_free_consistent(pdev, txdr->size, txdr->desc,
1424 txdr->dma);
1425 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1426 DPRINTK(PROBE, ERR,
1427 "Unable to allocate aligned memory "
1428 "for the transmit descriptor ring\n");
1429 vfree(txdr->buffer_info);
1430 return -ENOMEM;
1431 } else {
1432 /* Free old allocation, new allocation was successful */
1433 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1434 }
1435 }
1436 memset(txdr->desc, 0, txdr->size);
1437
1438 txdr->next_to_use = 0;
1439 txdr->next_to_clean = 0;
1440
1441 return 0;
1442 }
1443
1444 /**
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 * (Descriptors) for all queues
1447 * @adapter: board private structure
1448 *
1449 * Return 0 on success, negative on failure
1450 **/
1451
1452 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1453 {
1454 int i, err = 0;
1455
1456 for (i = 0; i < adapter->num_tx_queues; i++) {
1457 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1458 if (err) {
1459 DPRINTK(PROBE, ERR,
1460 "Allocation for Tx Queue %u failed\n", i);
1461 for (i-- ; i >= 0; i--)
1462 e1000_free_tx_resources(adapter,
1463 &adapter->tx_ring[i]);
1464 break;
1465 }
1466 }
1467
1468 return err;
1469 }
1470
1471 /**
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1474 *
1475 * Configure the Tx unit of the MAC after a reset.
1476 **/
1477
1478 static void e1000_configure_tx(struct e1000_adapter *adapter)
1479 {
1480 u64 tdba;
1481 struct e1000_hw *hw = &adapter->hw;
1482 u32 tdlen, tctl, tipg;
1483 u32 ipgr1, ipgr2;
1484
1485 /* Setup the HW Tx Head and Tail descriptor pointers */
1486
1487 switch (adapter->num_tx_queues) {
1488 case 1:
1489 default:
1490 tdba = adapter->tx_ring[0].dma;
1491 tdlen = adapter->tx_ring[0].count *
1492 sizeof(struct e1000_tx_desc);
1493 ew32(TDLEN, tdlen);
1494 ew32(TDBAH, (tdba >> 32));
1495 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1496 ew32(TDT, 0);
1497 ew32(TDH, 0);
1498 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1499 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1500 break;
1501 }
1502
1503 /* Set the default values for the Tx Inter Packet Gap timer */
1504 if ((hw->media_type == e1000_media_type_fiber ||
1505 hw->media_type == e1000_media_type_internal_serdes))
1506 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1507 else
1508 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1509
1510 switch (hw->mac_type) {
1511 case e1000_82542_rev2_0:
1512 case e1000_82542_rev2_1:
1513 tipg = DEFAULT_82542_TIPG_IPGT;
1514 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1515 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1516 break;
1517 default:
1518 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1519 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1520 break;
1521 }
1522 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1523 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1524 ew32(TIPG, tipg);
1525
1526 /* Set the Tx Interrupt Delay register */
1527
1528 ew32(TIDV, adapter->tx_int_delay);
1529 if (hw->mac_type >= e1000_82540)
1530 ew32(TADV, adapter->tx_abs_int_delay);
1531
1532 /* Program the Transmit Control Register */
1533
1534 tctl = er32(TCTL);
1535 tctl &= ~E1000_TCTL_CT;
1536 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1537 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1538
1539 e1000_config_collision_dist(hw);
1540
1541 /* Setup Transmit Descriptor Settings for eop descriptor */
1542 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1543
1544 /* only set IDE if we are delaying interrupts using the timers */
1545 if (adapter->tx_int_delay)
1546 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1547
1548 if (hw->mac_type < e1000_82543)
1549 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1550 else
1551 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1552
1553 /* Cache if we're 82544 running in PCI-X because we'll
1554 * need this to apply a workaround later in the send path. */
1555 if (hw->mac_type == e1000_82544 &&
1556 hw->bus_type == e1000_bus_type_pcix)
1557 adapter->pcix_82544 = 1;
1558
1559 ew32(TCTL, tctl);
1560
1561 }
1562
1563 /**
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr: rx descriptor ring (for a specific queue) to setup
1567 *
1568 * Returns 0 on success, negative on failure
1569 **/
1570
1571 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1572 struct e1000_rx_ring *rxdr)
1573 {
1574 struct pci_dev *pdev = adapter->pdev;
1575 int size, desc_len;
1576
1577 size = sizeof(struct e1000_buffer) * rxdr->count;
1578 rxdr->buffer_info = vmalloc(size);
1579 if (!rxdr->buffer_info) {
1580 DPRINTK(PROBE, ERR,
1581 "Unable to allocate memory for the receive descriptor ring\n");
1582 return -ENOMEM;
1583 }
1584 memset(rxdr->buffer_info, 0, size);
1585
1586 desc_len = sizeof(struct e1000_rx_desc);
1587
1588 /* Round up to nearest 4K */
1589
1590 rxdr->size = rxdr->count * desc_len;
1591 rxdr->size = ALIGN(rxdr->size, 4096);
1592
1593 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1594
1595 if (!rxdr->desc) {
1596 DPRINTK(PROBE, ERR,
1597 "Unable to allocate memory for the receive descriptor ring\n");
1598 setup_rx_desc_die:
1599 vfree(rxdr->buffer_info);
1600 return -ENOMEM;
1601 }
1602
1603 /* Fix for errata 23, can't cross 64kB boundary */
1604 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1605 void *olddesc = rxdr->desc;
1606 dma_addr_t olddma = rxdr->dma;
1607 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1608 "at %p\n", rxdr->size, rxdr->desc);
1609 /* Try again, without freeing the previous */
1610 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1611 /* Failed allocation, critical failure */
1612 if (!rxdr->desc) {
1613 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1614 DPRINTK(PROBE, ERR,
1615 "Unable to allocate memory "
1616 "for the receive descriptor ring\n");
1617 goto setup_rx_desc_die;
1618 }
1619
1620 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1621 /* give up */
1622 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1623 rxdr->dma);
1624 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1625 DPRINTK(PROBE, ERR,
1626 "Unable to allocate aligned memory "
1627 "for the receive descriptor ring\n");
1628 goto setup_rx_desc_die;
1629 } else {
1630 /* Free old allocation, new allocation was successful */
1631 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1632 }
1633 }
1634 memset(rxdr->desc, 0, rxdr->size);
1635
1636 rxdr->next_to_clean = 0;
1637 rxdr->next_to_use = 0;
1638 rxdr->rx_skb_top = NULL;
1639
1640 return 0;
1641 }
1642
1643 /**
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 * (Descriptors) for all queues
1646 * @adapter: board private structure
1647 *
1648 * Return 0 on success, negative on failure
1649 **/
1650
1651 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1652 {
1653 int i, err = 0;
1654
1655 for (i = 0; i < adapter->num_rx_queues; i++) {
1656 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1657 if (err) {
1658 DPRINTK(PROBE, ERR,
1659 "Allocation for Rx Queue %u failed\n", i);
1660 for (i-- ; i >= 0; i--)
1661 e1000_free_rx_resources(adapter,
1662 &adapter->rx_ring[i]);
1663 break;
1664 }
1665 }
1666
1667 return err;
1668 }
1669
1670 /**
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1673 **/
1674 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1675 {
1676 struct e1000_hw *hw = &adapter->hw;
1677 u32 rctl;
1678
1679 rctl = er32(RCTL);
1680
1681 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1682
1683 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1684 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1685 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1686
1687 if (hw->tbi_compatibility_on == 1)
1688 rctl |= E1000_RCTL_SBP;
1689 else
1690 rctl &= ~E1000_RCTL_SBP;
1691
1692 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1693 rctl &= ~E1000_RCTL_LPE;
1694 else
1695 rctl |= E1000_RCTL_LPE;
1696
1697 /* Setup buffer sizes */
1698 rctl &= ~E1000_RCTL_SZ_4096;
1699 rctl |= E1000_RCTL_BSEX;
1700 switch (adapter->rx_buffer_len) {
1701 case E1000_RXBUFFER_256:
1702 rctl |= E1000_RCTL_SZ_256;
1703 rctl &= ~E1000_RCTL_BSEX;
1704 break;
1705 case E1000_RXBUFFER_512:
1706 rctl |= E1000_RCTL_SZ_512;
1707 rctl &= ~E1000_RCTL_BSEX;
1708 break;
1709 case E1000_RXBUFFER_1024:
1710 rctl |= E1000_RCTL_SZ_1024;
1711 rctl &= ~E1000_RCTL_BSEX;
1712 break;
1713 case E1000_RXBUFFER_2048:
1714 default:
1715 rctl |= E1000_RCTL_SZ_2048;
1716 rctl &= ~E1000_RCTL_BSEX;
1717 break;
1718 case E1000_RXBUFFER_4096:
1719 rctl |= E1000_RCTL_SZ_4096;
1720 break;
1721 case E1000_RXBUFFER_8192:
1722 rctl |= E1000_RCTL_SZ_8192;
1723 break;
1724 case E1000_RXBUFFER_16384:
1725 rctl |= E1000_RCTL_SZ_16384;
1726 break;
1727 }
1728
1729 ew32(RCTL, rctl);
1730 }
1731
1732 /**
1733 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1734 * @adapter: board private structure
1735 *
1736 * Configure the Rx unit of the MAC after a reset.
1737 **/
1738
1739 static void e1000_configure_rx(struct e1000_adapter *adapter)
1740 {
1741 u64 rdba;
1742 struct e1000_hw *hw = &adapter->hw;
1743 u32 rdlen, rctl, rxcsum;
1744
1745 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1746 rdlen = adapter->rx_ring[0].count *
1747 sizeof(struct e1000_rx_desc);
1748 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1749 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1750 } else {
1751 rdlen = adapter->rx_ring[0].count *
1752 sizeof(struct e1000_rx_desc);
1753 adapter->clean_rx = e1000_clean_rx_irq;
1754 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1755 }
1756
1757 /* disable receives while setting up the descriptors */
1758 rctl = er32(RCTL);
1759 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1760
1761 /* set the Receive Delay Timer Register */
1762 ew32(RDTR, adapter->rx_int_delay);
1763
1764 if (hw->mac_type >= e1000_82540) {
1765 ew32(RADV, adapter->rx_abs_int_delay);
1766 if (adapter->itr_setting != 0)
1767 ew32(ITR, 1000000000 / (adapter->itr * 256));
1768 }
1769
1770 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1771 * the Base and Length of the Rx Descriptor Ring */
1772 switch (adapter->num_rx_queues) {
1773 case 1:
1774 default:
1775 rdba = adapter->rx_ring[0].dma;
1776 ew32(RDLEN, rdlen);
1777 ew32(RDBAH, (rdba >> 32));
1778 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1779 ew32(RDT, 0);
1780 ew32(RDH, 0);
1781 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1782 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1783 break;
1784 }
1785
1786 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1787 if (hw->mac_type >= e1000_82543) {
1788 rxcsum = er32(RXCSUM);
1789 if (adapter->rx_csum)
1790 rxcsum |= E1000_RXCSUM_TUOFL;
1791 else
1792 /* don't need to clear IPPCSE as it defaults to 0 */
1793 rxcsum &= ~E1000_RXCSUM_TUOFL;
1794 ew32(RXCSUM, rxcsum);
1795 }
1796
1797 /* Enable Receives */
1798 ew32(RCTL, rctl);
1799 }
1800
1801 /**
1802 * e1000_free_tx_resources - Free Tx Resources per Queue
1803 * @adapter: board private structure
1804 * @tx_ring: Tx descriptor ring for a specific queue
1805 *
1806 * Free all transmit software resources
1807 **/
1808
1809 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1810 struct e1000_tx_ring *tx_ring)
1811 {
1812 struct pci_dev *pdev = adapter->pdev;
1813
1814 e1000_clean_tx_ring(adapter, tx_ring);
1815
1816 vfree(tx_ring->buffer_info);
1817 tx_ring->buffer_info = NULL;
1818
1819 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1820
1821 tx_ring->desc = NULL;
1822 }
1823
1824 /**
1825 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1826 * @adapter: board private structure
1827 *
1828 * Free all transmit software resources
1829 **/
1830
1831 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1832 {
1833 int i;
1834
1835 for (i = 0; i < adapter->num_tx_queues; i++)
1836 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1837 }
1838
1839 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1840 struct e1000_buffer *buffer_info)
1841 {
1842 if (buffer_info->dma) {
1843 if (buffer_info->mapped_as_page)
1844 pci_unmap_page(adapter->pdev, buffer_info->dma,
1845 buffer_info->length, PCI_DMA_TODEVICE);
1846 else
1847 pci_unmap_single(adapter->pdev, buffer_info->dma,
1848 buffer_info->length,
1849 PCI_DMA_TODEVICE);
1850 buffer_info->dma = 0;
1851 }
1852 if (buffer_info->skb) {
1853 dev_kfree_skb_any(buffer_info->skb);
1854 buffer_info->skb = NULL;
1855 }
1856 buffer_info->time_stamp = 0;
1857 /* buffer_info must be completely set up in the transmit path */
1858 }
1859
1860 /**
1861 * e1000_clean_tx_ring - Free Tx Buffers
1862 * @adapter: board private structure
1863 * @tx_ring: ring to be cleaned
1864 **/
1865
1866 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1867 struct e1000_tx_ring *tx_ring)
1868 {
1869 struct e1000_hw *hw = &adapter->hw;
1870 struct e1000_buffer *buffer_info;
1871 unsigned long size;
1872 unsigned int i;
1873
1874 /* Free all the Tx ring sk_buffs */
1875
1876 for (i = 0; i < tx_ring->count; i++) {
1877 buffer_info = &tx_ring->buffer_info[i];
1878 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1879 }
1880
1881 size = sizeof(struct e1000_buffer) * tx_ring->count;
1882 memset(tx_ring->buffer_info, 0, size);
1883
1884 /* Zero out the descriptor ring */
1885
1886 memset(tx_ring->desc, 0, tx_ring->size);
1887
1888 tx_ring->next_to_use = 0;
1889 tx_ring->next_to_clean = 0;
1890 tx_ring->last_tx_tso = 0;
1891
1892 writel(0, hw->hw_addr + tx_ring->tdh);
1893 writel(0, hw->hw_addr + tx_ring->tdt);
1894 }
1895
1896 /**
1897 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1898 * @adapter: board private structure
1899 **/
1900
1901 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1902 {
1903 int i;
1904
1905 for (i = 0; i < adapter->num_tx_queues; i++)
1906 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1907 }
1908
1909 /**
1910 * e1000_free_rx_resources - Free Rx Resources
1911 * @adapter: board private structure
1912 * @rx_ring: ring to clean the resources from
1913 *
1914 * Free all receive software resources
1915 **/
1916
1917 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1918 struct e1000_rx_ring *rx_ring)
1919 {
1920 struct pci_dev *pdev = adapter->pdev;
1921
1922 e1000_clean_rx_ring(adapter, rx_ring);
1923
1924 vfree(rx_ring->buffer_info);
1925 rx_ring->buffer_info = NULL;
1926
1927 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1928
1929 rx_ring->desc = NULL;
1930 }
1931
1932 /**
1933 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1934 * @adapter: board private structure
1935 *
1936 * Free all receive software resources
1937 **/
1938
1939 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1940 {
1941 int i;
1942
1943 for (i = 0; i < adapter->num_rx_queues; i++)
1944 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1945 }
1946
1947 /**
1948 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1949 * @adapter: board private structure
1950 * @rx_ring: ring to free buffers from
1951 **/
1952
1953 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1954 struct e1000_rx_ring *rx_ring)
1955 {
1956 struct e1000_hw *hw = &adapter->hw;
1957 struct e1000_buffer *buffer_info;
1958 struct pci_dev *pdev = adapter->pdev;
1959 unsigned long size;
1960 unsigned int i;
1961
1962 /* Free all the Rx ring sk_buffs */
1963 for (i = 0; i < rx_ring->count; i++) {
1964 buffer_info = &rx_ring->buffer_info[i];
1965 if (buffer_info->dma &&
1966 adapter->clean_rx == e1000_clean_rx_irq) {
1967 pci_unmap_single(pdev, buffer_info->dma,
1968 buffer_info->length,
1969 PCI_DMA_FROMDEVICE);
1970 } else if (buffer_info->dma &&
1971 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1972 pci_unmap_page(pdev, buffer_info->dma,
1973 buffer_info->length,
1974 PCI_DMA_FROMDEVICE);
1975 }
1976
1977 buffer_info->dma = 0;
1978 if (buffer_info->page) {
1979 put_page(buffer_info->page);
1980 buffer_info->page = NULL;
1981 }
1982 if (buffer_info->skb) {
1983 dev_kfree_skb(buffer_info->skb);
1984 buffer_info->skb = NULL;
1985 }
1986 }
1987
1988 /* there also may be some cached data from a chained receive */
1989 if (rx_ring->rx_skb_top) {
1990 dev_kfree_skb(rx_ring->rx_skb_top);
1991 rx_ring->rx_skb_top = NULL;
1992 }
1993
1994 size = sizeof(struct e1000_buffer) * rx_ring->count;
1995 memset(rx_ring->buffer_info, 0, size);
1996
1997 /* Zero out the descriptor ring */
1998 memset(rx_ring->desc, 0, rx_ring->size);
1999
2000 rx_ring->next_to_clean = 0;
2001 rx_ring->next_to_use = 0;
2002
2003 writel(0, hw->hw_addr + rx_ring->rdh);
2004 writel(0, hw->hw_addr + rx_ring->rdt);
2005 }
2006
2007 /**
2008 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2009 * @adapter: board private structure
2010 **/
2011
2012 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2013 {
2014 int i;
2015
2016 for (i = 0; i < adapter->num_rx_queues; i++)
2017 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2018 }
2019
2020 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2021 * and memory write and invalidate disabled for certain operations
2022 */
2023 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2024 {
2025 struct e1000_hw *hw = &adapter->hw;
2026 struct net_device *netdev = adapter->netdev;
2027 u32 rctl;
2028
2029 e1000_pci_clear_mwi(hw);
2030
2031 rctl = er32(RCTL);
2032 rctl |= E1000_RCTL_RST;
2033 ew32(RCTL, rctl);
2034 E1000_WRITE_FLUSH();
2035 mdelay(5);
2036
2037 if (netif_running(netdev))
2038 e1000_clean_all_rx_rings(adapter);
2039 }
2040
2041 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2042 {
2043 struct e1000_hw *hw = &adapter->hw;
2044 struct net_device *netdev = adapter->netdev;
2045 u32 rctl;
2046
2047 rctl = er32(RCTL);
2048 rctl &= ~E1000_RCTL_RST;
2049 ew32(RCTL, rctl);
2050 E1000_WRITE_FLUSH();
2051 mdelay(5);
2052
2053 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2054 e1000_pci_set_mwi(hw);
2055
2056 if (netif_running(netdev)) {
2057 /* No need to loop, because 82542 supports only 1 queue */
2058 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2059 e1000_configure_rx(adapter);
2060 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2061 }
2062 }
2063
2064 /**
2065 * e1000_set_mac - Change the Ethernet Address of the NIC
2066 * @netdev: network interface device structure
2067 * @p: pointer to an address structure
2068 *
2069 * Returns 0 on success, negative on failure
2070 **/
2071
2072 static int e1000_set_mac(struct net_device *netdev, void *p)
2073 {
2074 struct e1000_adapter *adapter = netdev_priv(netdev);
2075 struct e1000_hw *hw = &adapter->hw;
2076 struct sockaddr *addr = p;
2077
2078 if (!is_valid_ether_addr(addr->sa_data))
2079 return -EADDRNOTAVAIL;
2080
2081 /* 82542 2.0 needs to be in reset to write receive address registers */
2082
2083 if (hw->mac_type == e1000_82542_rev2_0)
2084 e1000_enter_82542_rst(adapter);
2085
2086 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2087 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2088
2089 e1000_rar_set(hw, hw->mac_addr, 0);
2090
2091 if (hw->mac_type == e1000_82542_rev2_0)
2092 e1000_leave_82542_rst(adapter);
2093
2094 return 0;
2095 }
2096
2097 /**
2098 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2099 * @netdev: network interface device structure
2100 *
2101 * The set_rx_mode entry point is called whenever the unicast or multicast
2102 * address lists or the network interface flags are updated. This routine is
2103 * responsible for configuring the hardware for proper unicast, multicast,
2104 * promiscuous mode, and all-multi behavior.
2105 **/
2106
2107 static void e1000_set_rx_mode(struct net_device *netdev)
2108 {
2109 struct e1000_adapter *adapter = netdev_priv(netdev);
2110 struct e1000_hw *hw = &adapter->hw;
2111 struct netdev_hw_addr *ha;
2112 bool use_uc = false;
2113 struct dev_addr_list *mc_ptr;
2114 u32 rctl;
2115 u32 hash_value;
2116 int i, rar_entries = E1000_RAR_ENTRIES;
2117 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2118 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2119
2120 if (!mcarray) {
2121 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2122 return;
2123 }
2124
2125 /* Check for Promiscuous and All Multicast modes */
2126
2127 rctl = er32(RCTL);
2128
2129 if (netdev->flags & IFF_PROMISC) {
2130 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2131 rctl &= ~E1000_RCTL_VFE;
2132 } else {
2133 if (netdev->flags & IFF_ALLMULTI)
2134 rctl |= E1000_RCTL_MPE;
2135 else
2136 rctl &= ~E1000_RCTL_MPE;
2137 /* Enable VLAN filter if there is a VLAN */
2138 if (adapter->vlgrp)
2139 rctl |= E1000_RCTL_VFE;
2140 }
2141
2142 if (netdev->uc.count > rar_entries - 1) {
2143 rctl |= E1000_RCTL_UPE;
2144 } else if (!(netdev->flags & IFF_PROMISC)) {
2145 rctl &= ~E1000_RCTL_UPE;
2146 use_uc = true;
2147 }
2148
2149 ew32(RCTL, rctl);
2150
2151 /* 82542 2.0 needs to be in reset to write receive address registers */
2152
2153 if (hw->mac_type == e1000_82542_rev2_0)
2154 e1000_enter_82542_rst(adapter);
2155
2156 /* load the first 14 addresses into the exact filters 1-14. Unicast
2157 * addresses take precedence to avoid disabling unicast filtering
2158 * when possible.
2159 *
2160 * RAR 0 is used for the station MAC adddress
2161 * if there are not 14 addresses, go ahead and clear the filters
2162 */
2163 i = 1;
2164 if (use_uc)
2165 list_for_each_entry(ha, &netdev->uc.list, list) {
2166 if (i == rar_entries)
2167 break;
2168 e1000_rar_set(hw, ha->addr, i++);
2169 }
2170
2171 WARN_ON(i == rar_entries);
2172
2173 mc_ptr = netdev->mc_list;
2174
2175 for (; i < rar_entries; i++) {
2176 if (mc_ptr) {
2177 e1000_rar_set(hw, mc_ptr->da_addr, i);
2178 mc_ptr = mc_ptr->next;
2179 } else {
2180 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2181 E1000_WRITE_FLUSH();
2182 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2183 E1000_WRITE_FLUSH();
2184 }
2185 }
2186
2187 /* load any remaining addresses into the hash table */
2188
2189 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2190 u32 hash_reg, hash_bit, mta;
2191 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2192 hash_reg = (hash_value >> 5) & 0x7F;
2193 hash_bit = hash_value & 0x1F;
2194 mta = (1 << hash_bit);
2195 mcarray[hash_reg] |= mta;
2196 }
2197
2198 /* write the hash table completely, write from bottom to avoid
2199 * both stupid write combining chipsets, and flushing each write */
2200 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2201 /*
2202 * If we are on an 82544 has an errata where writing odd
2203 * offsets overwrites the previous even offset, but writing
2204 * backwards over the range solves the issue by always
2205 * writing the odd offset first
2206 */
2207 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2208 }
2209 E1000_WRITE_FLUSH();
2210
2211 if (hw->mac_type == e1000_82542_rev2_0)
2212 e1000_leave_82542_rst(adapter);
2213
2214 kfree(mcarray);
2215 }
2216
2217 /* Need to wait a few seconds after link up to get diagnostic information from
2218 * the phy */
2219
2220 static void e1000_update_phy_info(unsigned long data)
2221 {
2222 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2223 struct e1000_hw *hw = &adapter->hw;
2224 e1000_phy_get_info(hw, &adapter->phy_info);
2225 }
2226
2227 /**
2228 * e1000_82547_tx_fifo_stall - Timer Call-back
2229 * @data: pointer to adapter cast into an unsigned long
2230 **/
2231
2232 static void e1000_82547_tx_fifo_stall(unsigned long data)
2233 {
2234 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2235 struct e1000_hw *hw = &adapter->hw;
2236 struct net_device *netdev = adapter->netdev;
2237 u32 tctl;
2238
2239 if (atomic_read(&adapter->tx_fifo_stall)) {
2240 if ((er32(TDT) == er32(TDH)) &&
2241 (er32(TDFT) == er32(TDFH)) &&
2242 (er32(TDFTS) == er32(TDFHS))) {
2243 tctl = er32(TCTL);
2244 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2245 ew32(TDFT, adapter->tx_head_addr);
2246 ew32(TDFH, adapter->tx_head_addr);
2247 ew32(TDFTS, adapter->tx_head_addr);
2248 ew32(TDFHS, adapter->tx_head_addr);
2249 ew32(TCTL, tctl);
2250 E1000_WRITE_FLUSH();
2251
2252 adapter->tx_fifo_head = 0;
2253 atomic_set(&adapter->tx_fifo_stall, 0);
2254 netif_wake_queue(netdev);
2255 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2256 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2257 }
2258 }
2259 }
2260
2261 static bool e1000_has_link(struct e1000_adapter *adapter)
2262 {
2263 struct e1000_hw *hw = &adapter->hw;
2264 bool link_active = false;
2265
2266 /* get_link_status is set on LSC (link status) interrupt or
2267 * rx sequence error interrupt. get_link_status will stay
2268 * false until the e1000_check_for_link establishes link
2269 * for copper adapters ONLY
2270 */
2271 switch (hw->media_type) {
2272 case e1000_media_type_copper:
2273 if (hw->get_link_status) {
2274 e1000_check_for_link(hw);
2275 link_active = !hw->get_link_status;
2276 } else {
2277 link_active = true;
2278 }
2279 break;
2280 case e1000_media_type_fiber:
2281 e1000_check_for_link(hw);
2282 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2283 break;
2284 case e1000_media_type_internal_serdes:
2285 e1000_check_for_link(hw);
2286 link_active = hw->serdes_has_link;
2287 break;
2288 default:
2289 break;
2290 }
2291
2292 return link_active;
2293 }
2294
2295 /**
2296 * e1000_watchdog - Timer Call-back
2297 * @data: pointer to adapter cast into an unsigned long
2298 **/
2299 static void e1000_watchdog(unsigned long data)
2300 {
2301 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2302 struct e1000_hw *hw = &adapter->hw;
2303 struct net_device *netdev = adapter->netdev;
2304 struct e1000_tx_ring *txdr = adapter->tx_ring;
2305 u32 link, tctl;
2306
2307 link = e1000_has_link(adapter);
2308 if ((netif_carrier_ok(netdev)) && link)
2309 goto link_up;
2310
2311 if (link) {
2312 if (!netif_carrier_ok(netdev)) {
2313 u32 ctrl;
2314 bool txb2b = true;
2315 /* update snapshot of PHY registers on LSC */
2316 e1000_get_speed_and_duplex(hw,
2317 &adapter->link_speed,
2318 &adapter->link_duplex);
2319
2320 ctrl = er32(CTRL);
2321 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2322 "Flow Control: %s\n",
2323 netdev->name,
2324 adapter->link_speed,
2325 adapter->link_duplex == FULL_DUPLEX ?
2326 "Full Duplex" : "Half Duplex",
2327 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2328 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2329 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2330 E1000_CTRL_TFCE) ? "TX" : "None" )));
2331
2332 /* tweak tx_queue_len according to speed/duplex
2333 * and adjust the timeout factor */
2334 netdev->tx_queue_len = adapter->tx_queue_len;
2335 adapter->tx_timeout_factor = 1;
2336 switch (adapter->link_speed) {
2337 case SPEED_10:
2338 txb2b = false;
2339 netdev->tx_queue_len = 10;
2340 adapter->tx_timeout_factor = 16;
2341 break;
2342 case SPEED_100:
2343 txb2b = false;
2344 netdev->tx_queue_len = 100;
2345 /* maybe add some timeout factor ? */
2346 break;
2347 }
2348
2349 /* enable transmits in the hardware */
2350 tctl = er32(TCTL);
2351 tctl |= E1000_TCTL_EN;
2352 ew32(TCTL, tctl);
2353
2354 netif_carrier_on(netdev);
2355 if (!test_bit(__E1000_DOWN, &adapter->flags))
2356 mod_timer(&adapter->phy_info_timer,
2357 round_jiffies(jiffies + 2 * HZ));
2358 adapter->smartspeed = 0;
2359 }
2360 } else {
2361 if (netif_carrier_ok(netdev)) {
2362 adapter->link_speed = 0;
2363 adapter->link_duplex = 0;
2364 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2365 netdev->name);
2366 netif_carrier_off(netdev);
2367
2368 if (!test_bit(__E1000_DOWN, &adapter->flags))
2369 mod_timer(&adapter->phy_info_timer,
2370 round_jiffies(jiffies + 2 * HZ));
2371 }
2372
2373 e1000_smartspeed(adapter);
2374 }
2375
2376 link_up:
2377 e1000_update_stats(adapter);
2378
2379 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2380 adapter->tpt_old = adapter->stats.tpt;
2381 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2382 adapter->colc_old = adapter->stats.colc;
2383
2384 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2385 adapter->gorcl_old = adapter->stats.gorcl;
2386 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2387 adapter->gotcl_old = adapter->stats.gotcl;
2388
2389 e1000_update_adaptive(hw);
2390
2391 if (!netif_carrier_ok(netdev)) {
2392 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2393 /* We've lost link, so the controller stops DMA,
2394 * but we've got queued Tx work that's never going
2395 * to get done, so reset controller to flush Tx.
2396 * (Do the reset outside of interrupt context). */
2397 adapter->tx_timeout_count++;
2398 schedule_work(&adapter->reset_task);
2399 /* return immediately since reset is imminent */
2400 return;
2401 }
2402 }
2403
2404 /* Cause software interrupt to ensure rx ring is cleaned */
2405 ew32(ICS, E1000_ICS_RXDMT0);
2406
2407 /* Force detection of hung controller every watchdog period */
2408 adapter->detect_tx_hung = true;
2409
2410 /* Reset the timer */
2411 if (!test_bit(__E1000_DOWN, &adapter->flags))
2412 mod_timer(&adapter->watchdog_timer,
2413 round_jiffies(jiffies + 2 * HZ));
2414 }
2415
2416 enum latency_range {
2417 lowest_latency = 0,
2418 low_latency = 1,
2419 bulk_latency = 2,
2420 latency_invalid = 255
2421 };
2422
2423 /**
2424 * e1000_update_itr - update the dynamic ITR value based on statistics
2425 * @adapter: pointer to adapter
2426 * @itr_setting: current adapter->itr
2427 * @packets: the number of packets during this measurement interval
2428 * @bytes: the number of bytes during this measurement interval
2429 *
2430 * Stores a new ITR value based on packets and byte
2431 * counts during the last interrupt. The advantage of per interrupt
2432 * computation is faster updates and more accurate ITR for the current
2433 * traffic pattern. Constants in this function were computed
2434 * based on theoretical maximum wire speed and thresholds were set based
2435 * on testing data as well as attempting to minimize response time
2436 * while increasing bulk throughput.
2437 * this functionality is controlled by the InterruptThrottleRate module
2438 * parameter (see e1000_param.c)
2439 **/
2440 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2441 u16 itr_setting, int packets, int bytes)
2442 {
2443 unsigned int retval = itr_setting;
2444 struct e1000_hw *hw = &adapter->hw;
2445
2446 if (unlikely(hw->mac_type < e1000_82540))
2447 goto update_itr_done;
2448
2449 if (packets == 0)
2450 goto update_itr_done;
2451
2452 switch (itr_setting) {
2453 case lowest_latency:
2454 /* jumbo frames get bulk treatment*/
2455 if (bytes/packets > 8000)
2456 retval = bulk_latency;
2457 else if ((packets < 5) && (bytes > 512))
2458 retval = low_latency;
2459 break;
2460 case low_latency: /* 50 usec aka 20000 ints/s */
2461 if (bytes > 10000) {
2462 /* jumbo frames need bulk latency setting */
2463 if (bytes/packets > 8000)
2464 retval = bulk_latency;
2465 else if ((packets < 10) || ((bytes/packets) > 1200))
2466 retval = bulk_latency;
2467 else if ((packets > 35))
2468 retval = lowest_latency;
2469 } else if (bytes/packets > 2000)
2470 retval = bulk_latency;
2471 else if (packets <= 2 && bytes < 512)
2472 retval = lowest_latency;
2473 break;
2474 case bulk_latency: /* 250 usec aka 4000 ints/s */
2475 if (bytes > 25000) {
2476 if (packets > 35)
2477 retval = low_latency;
2478 } else if (bytes < 6000) {
2479 retval = low_latency;
2480 }
2481 break;
2482 }
2483
2484 update_itr_done:
2485 return retval;
2486 }
2487
2488 static void e1000_set_itr(struct e1000_adapter *adapter)
2489 {
2490 struct e1000_hw *hw = &adapter->hw;
2491 u16 current_itr;
2492 u32 new_itr = adapter->itr;
2493
2494 if (unlikely(hw->mac_type < e1000_82540))
2495 return;
2496
2497 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2498 if (unlikely(adapter->link_speed != SPEED_1000)) {
2499 current_itr = 0;
2500 new_itr = 4000;
2501 goto set_itr_now;
2502 }
2503
2504 adapter->tx_itr = e1000_update_itr(adapter,
2505 adapter->tx_itr,
2506 adapter->total_tx_packets,
2507 adapter->total_tx_bytes);
2508 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2509 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2510 adapter->tx_itr = low_latency;
2511
2512 adapter->rx_itr = e1000_update_itr(adapter,
2513 adapter->rx_itr,
2514 adapter->total_rx_packets,
2515 adapter->total_rx_bytes);
2516 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2517 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2518 adapter->rx_itr = low_latency;
2519
2520 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2521
2522 switch (current_itr) {
2523 /* counts and packets in update_itr are dependent on these numbers */
2524 case lowest_latency:
2525 new_itr = 70000;
2526 break;
2527 case low_latency:
2528 new_itr = 20000; /* aka hwitr = ~200 */
2529 break;
2530 case bulk_latency:
2531 new_itr = 4000;
2532 break;
2533 default:
2534 break;
2535 }
2536
2537 set_itr_now:
2538 if (new_itr != adapter->itr) {
2539 /* this attempts to bias the interrupt rate towards Bulk
2540 * by adding intermediate steps when interrupt rate is
2541 * increasing */
2542 new_itr = new_itr > adapter->itr ?
2543 min(adapter->itr + (new_itr >> 2), new_itr) :
2544 new_itr;
2545 adapter->itr = new_itr;
2546 ew32(ITR, 1000000000 / (new_itr * 256));
2547 }
2548
2549 return;
2550 }
2551
2552 #define E1000_TX_FLAGS_CSUM 0x00000001
2553 #define E1000_TX_FLAGS_VLAN 0x00000002
2554 #define E1000_TX_FLAGS_TSO 0x00000004
2555 #define E1000_TX_FLAGS_IPV4 0x00000008
2556 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2557 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2558
2559 static int e1000_tso(struct e1000_adapter *adapter,
2560 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2561 {
2562 struct e1000_context_desc *context_desc;
2563 struct e1000_buffer *buffer_info;
2564 unsigned int i;
2565 u32 cmd_length = 0;
2566 u16 ipcse = 0, tucse, mss;
2567 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2568 int err;
2569
2570 if (skb_is_gso(skb)) {
2571 if (skb_header_cloned(skb)) {
2572 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2573 if (err)
2574 return err;
2575 }
2576
2577 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2578 mss = skb_shinfo(skb)->gso_size;
2579 if (skb->protocol == htons(ETH_P_IP)) {
2580 struct iphdr *iph = ip_hdr(skb);
2581 iph->tot_len = 0;
2582 iph->check = 0;
2583 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2584 iph->daddr, 0,
2585 IPPROTO_TCP,
2586 0);
2587 cmd_length = E1000_TXD_CMD_IP;
2588 ipcse = skb_transport_offset(skb) - 1;
2589 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2590 ipv6_hdr(skb)->payload_len = 0;
2591 tcp_hdr(skb)->check =
2592 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2593 &ipv6_hdr(skb)->daddr,
2594 0, IPPROTO_TCP, 0);
2595 ipcse = 0;
2596 }
2597 ipcss = skb_network_offset(skb);
2598 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2599 tucss = skb_transport_offset(skb);
2600 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2601 tucse = 0;
2602
2603 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2604 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2605
2606 i = tx_ring->next_to_use;
2607 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2608 buffer_info = &tx_ring->buffer_info[i];
2609
2610 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2611 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2612 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2613 context_desc->upper_setup.tcp_fields.tucss = tucss;
2614 context_desc->upper_setup.tcp_fields.tucso = tucso;
2615 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2616 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2617 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2618 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2619
2620 buffer_info->time_stamp = jiffies;
2621 buffer_info->next_to_watch = i;
2622
2623 if (++i == tx_ring->count) i = 0;
2624 tx_ring->next_to_use = i;
2625
2626 return true;
2627 }
2628 return false;
2629 }
2630
2631 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2632 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2633 {
2634 struct e1000_context_desc *context_desc;
2635 struct e1000_buffer *buffer_info;
2636 unsigned int i;
2637 u8 css;
2638 u32 cmd_len = E1000_TXD_CMD_DEXT;
2639
2640 if (skb->ip_summed != CHECKSUM_PARTIAL)
2641 return false;
2642
2643 switch (skb->protocol) {
2644 case cpu_to_be16(ETH_P_IP):
2645 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2646 cmd_len |= E1000_TXD_CMD_TCP;
2647 break;
2648 case cpu_to_be16(ETH_P_IPV6):
2649 /* XXX not handling all IPV6 headers */
2650 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2651 cmd_len |= E1000_TXD_CMD_TCP;
2652 break;
2653 default:
2654 if (unlikely(net_ratelimit()))
2655 DPRINTK(DRV, WARNING,
2656 "checksum_partial proto=%x!\n", skb->protocol);
2657 break;
2658 }
2659
2660 css = skb_transport_offset(skb);
2661
2662 i = tx_ring->next_to_use;
2663 buffer_info = &tx_ring->buffer_info[i];
2664 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2665
2666 context_desc->lower_setup.ip_config = 0;
2667 context_desc->upper_setup.tcp_fields.tucss = css;
2668 context_desc->upper_setup.tcp_fields.tucso =
2669 css + skb->csum_offset;
2670 context_desc->upper_setup.tcp_fields.tucse = 0;
2671 context_desc->tcp_seg_setup.data = 0;
2672 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2673
2674 buffer_info->time_stamp = jiffies;
2675 buffer_info->next_to_watch = i;
2676
2677 if (unlikely(++i == tx_ring->count)) i = 0;
2678 tx_ring->next_to_use = i;
2679
2680 return true;
2681 }
2682
2683 #define E1000_MAX_TXD_PWR 12
2684 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2685
2686 static int e1000_tx_map(struct e1000_adapter *adapter,
2687 struct e1000_tx_ring *tx_ring,
2688 struct sk_buff *skb, unsigned int first,
2689 unsigned int max_per_txd, unsigned int nr_frags,
2690 unsigned int mss)
2691 {
2692 struct e1000_hw *hw = &adapter->hw;
2693 struct pci_dev *pdev = adapter->pdev;
2694 struct e1000_buffer *buffer_info;
2695 unsigned int len = skb_headlen(skb);
2696 unsigned int offset = 0, size, count = 0, i;
2697 unsigned int f;
2698
2699 i = tx_ring->next_to_use;
2700
2701 while (len) {
2702 buffer_info = &tx_ring->buffer_info[i];
2703 size = min(len, max_per_txd);
2704 /* Workaround for Controller erratum --
2705 * descriptor for non-tso packet in a linear SKB that follows a
2706 * tso gets written back prematurely before the data is fully
2707 * DMA'd to the controller */
2708 if (!skb->data_len && tx_ring->last_tx_tso &&
2709 !skb_is_gso(skb)) {
2710 tx_ring->last_tx_tso = 0;
2711 size -= 4;
2712 }
2713
2714 /* Workaround for premature desc write-backs
2715 * in TSO mode. Append 4-byte sentinel desc */
2716 if (unlikely(mss && !nr_frags && size == len && size > 8))
2717 size -= 4;
2718 /* work-around for errata 10 and it applies
2719 * to all controllers in PCI-X mode
2720 * The fix is to make sure that the first descriptor of a
2721 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2722 */
2723 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2724 (size > 2015) && count == 0))
2725 size = 2015;
2726
2727 /* Workaround for potential 82544 hang in PCI-X. Avoid
2728 * terminating buffers within evenly-aligned dwords. */
2729 if (unlikely(adapter->pcix_82544 &&
2730 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2731 size > 4))
2732 size -= 4;
2733
2734 buffer_info->length = size;
2735 /* set time_stamp *before* dma to help avoid a possible race */
2736 buffer_info->time_stamp = jiffies;
2737 buffer_info->mapped_as_page = false;
2738 buffer_info->dma = pci_map_single(pdev, skb->data + offset,
2739 size, PCI_DMA_TODEVICE);
2740 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2741 goto dma_error;
2742 buffer_info->next_to_watch = i;
2743
2744 len -= size;
2745 offset += size;
2746 count++;
2747 if (len) {
2748 i++;
2749 if (unlikely(i == tx_ring->count))
2750 i = 0;
2751 }
2752 }
2753
2754 for (f = 0; f < nr_frags; f++) {
2755 struct skb_frag_struct *frag;
2756
2757 frag = &skb_shinfo(skb)->frags[f];
2758 len = frag->size;
2759 offset = frag->page_offset;
2760
2761 while (len) {
2762 i++;
2763 if (unlikely(i == tx_ring->count))
2764 i = 0;
2765
2766 buffer_info = &tx_ring->buffer_info[i];
2767 size = min(len, max_per_txd);
2768 /* Workaround for premature desc write-backs
2769 * in TSO mode. Append 4-byte sentinel desc */
2770 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2771 size -= 4;
2772 /* Workaround for potential 82544 hang in PCI-X.
2773 * Avoid terminating buffers within evenly-aligned
2774 * dwords. */
2775 if (unlikely(adapter->pcix_82544 &&
2776 !((unsigned long)(page_to_phys(frag->page) + offset
2777 + size - 1) & 4) &&
2778 size > 4))
2779 size -= 4;
2780
2781 buffer_info->length = size;
2782 buffer_info->time_stamp = jiffies;
2783 buffer_info->mapped_as_page = true;
2784 buffer_info->dma = pci_map_page(pdev, frag->page,
2785 offset, size,
2786 PCI_DMA_TODEVICE);
2787 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2788 goto dma_error;
2789 buffer_info->next_to_watch = i;
2790
2791 len -= size;
2792 offset += size;
2793 count++;
2794 }
2795 }
2796
2797 tx_ring->buffer_info[i].skb = skb;
2798 tx_ring->buffer_info[first].next_to_watch = i;
2799
2800 return count;
2801
2802 dma_error:
2803 dev_err(&pdev->dev, "TX DMA map failed\n");
2804 buffer_info->dma = 0;
2805 count--;
2806
2807 while (count >= 0) {
2808 count--;
2809 i--;
2810 if (i < 0)
2811 i += tx_ring->count;
2812 buffer_info = &tx_ring->buffer_info[i];
2813 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2814 }
2815
2816 return 0;
2817 }
2818
2819 static void e1000_tx_queue(struct e1000_adapter *adapter,
2820 struct e1000_tx_ring *tx_ring, int tx_flags,
2821 int count)
2822 {
2823 struct e1000_hw *hw = &adapter->hw;
2824 struct e1000_tx_desc *tx_desc = NULL;
2825 struct e1000_buffer *buffer_info;
2826 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2827 unsigned int i;
2828
2829 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2830 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2831 E1000_TXD_CMD_TSE;
2832 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2833
2834 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2835 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2836 }
2837
2838 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2839 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2840 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2841 }
2842
2843 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2844 txd_lower |= E1000_TXD_CMD_VLE;
2845 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2846 }
2847
2848 i = tx_ring->next_to_use;
2849
2850 while (count--) {
2851 buffer_info = &tx_ring->buffer_info[i];
2852 tx_desc = E1000_TX_DESC(*tx_ring, i);
2853 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2854 tx_desc->lower.data =
2855 cpu_to_le32(txd_lower | buffer_info->length);
2856 tx_desc->upper.data = cpu_to_le32(txd_upper);
2857 if (unlikely(++i == tx_ring->count)) i = 0;
2858 }
2859
2860 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2861
2862 /* Force memory writes to complete before letting h/w
2863 * know there are new descriptors to fetch. (Only
2864 * applicable for weak-ordered memory model archs,
2865 * such as IA-64). */
2866 wmb();
2867
2868 tx_ring->next_to_use = i;
2869 writel(i, hw->hw_addr + tx_ring->tdt);
2870 /* we need this if more than one processor can write to our tail
2871 * at a time, it syncronizes IO on IA64/Altix systems */
2872 mmiowb();
2873 }
2874
2875 /**
2876 * 82547 workaround to avoid controller hang in half-duplex environment.
2877 * The workaround is to avoid queuing a large packet that would span
2878 * the internal Tx FIFO ring boundary by notifying the stack to resend
2879 * the packet at a later time. This gives the Tx FIFO an opportunity to
2880 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2881 * to the beginning of the Tx FIFO.
2882 **/
2883
2884 #define E1000_FIFO_HDR 0x10
2885 #define E1000_82547_PAD_LEN 0x3E0
2886
2887 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2888 struct sk_buff *skb)
2889 {
2890 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2891 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2892
2893 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2894
2895 if (adapter->link_duplex != HALF_DUPLEX)
2896 goto no_fifo_stall_required;
2897
2898 if (atomic_read(&adapter->tx_fifo_stall))
2899 return 1;
2900
2901 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2902 atomic_set(&adapter->tx_fifo_stall, 1);
2903 return 1;
2904 }
2905
2906 no_fifo_stall_required:
2907 adapter->tx_fifo_head += skb_fifo_len;
2908 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2909 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2910 return 0;
2911 }
2912
2913 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2914 {
2915 struct e1000_adapter *adapter = netdev_priv(netdev);
2916 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2917
2918 netif_stop_queue(netdev);
2919 /* Herbert's original patch had:
2920 * smp_mb__after_netif_stop_queue();
2921 * but since that doesn't exist yet, just open code it. */
2922 smp_mb();
2923
2924 /* We need to check again in a case another CPU has just
2925 * made room available. */
2926 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2927 return -EBUSY;
2928
2929 /* A reprieve! */
2930 netif_start_queue(netdev);
2931 ++adapter->restart_queue;
2932 return 0;
2933 }
2934
2935 static int e1000_maybe_stop_tx(struct net_device *netdev,
2936 struct e1000_tx_ring *tx_ring, int size)
2937 {
2938 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2939 return 0;
2940 return __e1000_maybe_stop_tx(netdev, size);
2941 }
2942
2943 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2944 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2945 struct net_device *netdev)
2946 {
2947 struct e1000_adapter *adapter = netdev_priv(netdev);
2948 struct e1000_hw *hw = &adapter->hw;
2949 struct e1000_tx_ring *tx_ring;
2950 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2951 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2952 unsigned int tx_flags = 0;
2953 unsigned int len = skb->len - skb->data_len;
2954 unsigned int nr_frags;
2955 unsigned int mss;
2956 int count = 0;
2957 int tso;
2958 unsigned int f;
2959
2960 /* This goes back to the question of how to logically map a tx queue
2961 * to a flow. Right now, performance is impacted slightly negatively
2962 * if using multiple tx queues. If the stack breaks away from a
2963 * single qdisc implementation, we can look at this again. */
2964 tx_ring = adapter->tx_ring;
2965
2966 if (unlikely(skb->len <= 0)) {
2967 dev_kfree_skb_any(skb);
2968 return NETDEV_TX_OK;
2969 }
2970
2971 mss = skb_shinfo(skb)->gso_size;
2972 /* The controller does a simple calculation to
2973 * make sure there is enough room in the FIFO before
2974 * initiating the DMA for each buffer. The calc is:
2975 * 4 = ceil(buffer len/mss). To make sure we don't
2976 * overrun the FIFO, adjust the max buffer len if mss
2977 * drops. */
2978 if (mss) {
2979 u8 hdr_len;
2980 max_per_txd = min(mss << 2, max_per_txd);
2981 max_txd_pwr = fls(max_per_txd) - 1;
2982
2983 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2984 if (skb->data_len && hdr_len == len) {
2985 switch (hw->mac_type) {
2986 unsigned int pull_size;
2987 case e1000_82544:
2988 /* Make sure we have room to chop off 4 bytes,
2989 * and that the end alignment will work out to
2990 * this hardware's requirements
2991 * NOTE: this is a TSO only workaround
2992 * if end byte alignment not correct move us
2993 * into the next dword */
2994 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2995 break;
2996 /* fall through */
2997 pull_size = min((unsigned int)4, skb->data_len);
2998 if (!__pskb_pull_tail(skb, pull_size)) {
2999 DPRINTK(DRV, ERR,
3000 "__pskb_pull_tail failed.\n");
3001 dev_kfree_skb_any(skb);
3002 return NETDEV_TX_OK;
3003 }
3004 len = skb->len - skb->data_len;
3005 break;
3006 default:
3007 /* do nothing */
3008 break;
3009 }
3010 }
3011 }
3012
3013 /* reserve a descriptor for the offload context */
3014 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3015 count++;
3016 count++;
3017
3018 /* Controller Erratum workaround */
3019 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3020 count++;
3021
3022 count += TXD_USE_COUNT(len, max_txd_pwr);
3023
3024 if (adapter->pcix_82544)
3025 count++;
3026
3027 /* work-around for errata 10 and it applies to all controllers
3028 * in PCI-X mode, so add one more descriptor to the count
3029 */
3030 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3031 (len > 2015)))
3032 count++;
3033
3034 nr_frags = skb_shinfo(skb)->nr_frags;
3035 for (f = 0; f < nr_frags; f++)
3036 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3037 max_txd_pwr);
3038 if (adapter->pcix_82544)
3039 count += nr_frags;
3040
3041 /* need: count + 2 desc gap to keep tail from touching
3042 * head, otherwise try next time */
3043 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3044 return NETDEV_TX_BUSY;
3045
3046 if (unlikely(hw->mac_type == e1000_82547)) {
3047 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3048 netif_stop_queue(netdev);
3049 if (!test_bit(__E1000_DOWN, &adapter->flags))
3050 mod_timer(&adapter->tx_fifo_stall_timer,
3051 jiffies + 1);
3052 return NETDEV_TX_BUSY;
3053 }
3054 }
3055
3056 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3057 tx_flags |= E1000_TX_FLAGS_VLAN;
3058 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3059 }
3060
3061 first = tx_ring->next_to_use;
3062
3063 tso = e1000_tso(adapter, tx_ring, skb);
3064 if (tso < 0) {
3065 dev_kfree_skb_any(skb);
3066 return NETDEV_TX_OK;
3067 }
3068
3069 if (likely(tso)) {
3070 if (likely(hw->mac_type != e1000_82544))
3071 tx_ring->last_tx_tso = 1;
3072 tx_flags |= E1000_TX_FLAGS_TSO;
3073 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3074 tx_flags |= E1000_TX_FLAGS_CSUM;
3075
3076 if (likely(skb->protocol == htons(ETH_P_IP)))
3077 tx_flags |= E1000_TX_FLAGS_IPV4;
3078
3079 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3080 nr_frags, mss);
3081
3082 if (count) {
3083 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3084 /* Make sure there is space in the ring for the next send. */
3085 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3086
3087 } else {
3088 dev_kfree_skb_any(skb);
3089 tx_ring->buffer_info[first].time_stamp = 0;
3090 tx_ring->next_to_use = first;
3091 }
3092
3093 return NETDEV_TX_OK;
3094 }
3095
3096 /**
3097 * e1000_tx_timeout - Respond to a Tx Hang
3098 * @netdev: network interface device structure
3099 **/
3100
3101 static void e1000_tx_timeout(struct net_device *netdev)
3102 {
3103 struct e1000_adapter *adapter = netdev_priv(netdev);
3104
3105 /* Do the reset outside of interrupt context */
3106 adapter->tx_timeout_count++;
3107 schedule_work(&adapter->reset_task);
3108 }
3109
3110 static void e1000_reset_task(struct work_struct *work)
3111 {
3112 struct e1000_adapter *adapter =
3113 container_of(work, struct e1000_adapter, reset_task);
3114
3115 e1000_reinit_locked(adapter);
3116 }
3117
3118 /**
3119 * e1000_get_stats - Get System Network Statistics
3120 * @netdev: network interface device structure
3121 *
3122 * Returns the address of the device statistics structure.
3123 * The statistics are actually updated from the timer callback.
3124 **/
3125
3126 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3127 {
3128 /* only return the current stats */
3129 return &netdev->stats;
3130 }
3131
3132 /**
3133 * e1000_change_mtu - Change the Maximum Transfer Unit
3134 * @netdev: network interface device structure
3135 * @new_mtu: new value for maximum frame size
3136 *
3137 * Returns 0 on success, negative on failure
3138 **/
3139
3140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3141 {
3142 struct e1000_adapter *adapter = netdev_priv(netdev);
3143 struct e1000_hw *hw = &adapter->hw;
3144 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3145
3146 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3147 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3148 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3149 return -EINVAL;
3150 }
3151
3152 /* Adapter-specific max frame size limits. */
3153 switch (hw->mac_type) {
3154 case e1000_undefined ... e1000_82542_rev2_1:
3155 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3156 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3157 return -EINVAL;
3158 }
3159 break;
3160 default:
3161 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3162 break;
3163 }
3164
3165 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3166 msleep(1);
3167 /* e1000_down has a dependency on max_frame_size */
3168 hw->max_frame_size = max_frame;
3169 if (netif_running(netdev))
3170 e1000_down(adapter);
3171
3172 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3173 * means we reserve 2 more, this pushes us to allocate from the next
3174 * larger slab size.
3175 * i.e. RXBUFFER_2048 --> size-4096 slab
3176 * however with the new *_jumbo_rx* routines, jumbo receives will use
3177 * fragmented skbs */
3178
3179 if (max_frame <= E1000_RXBUFFER_256)
3180 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3181 else if (max_frame <= E1000_RXBUFFER_512)
3182 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3183 else if (max_frame <= E1000_RXBUFFER_1024)
3184 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3185 else if (max_frame <= E1000_RXBUFFER_2048)
3186 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3187 else
3188 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3189 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3190 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3191 adapter->rx_buffer_len = PAGE_SIZE;
3192 #endif
3193
3194 /* adjust allocation if LPE protects us, and we aren't using SBP */
3195 if (!hw->tbi_compatibility_on &&
3196 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3197 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3198 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3199
3200 printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
3201 netdev->name, netdev->mtu, new_mtu);
3202 netdev->mtu = new_mtu;
3203
3204 if (netif_running(netdev))
3205 e1000_up(adapter);
3206 else
3207 e1000_reset(adapter);
3208
3209 clear_bit(__E1000_RESETTING, &adapter->flags);
3210
3211 return 0;
3212 }
3213
3214 /**
3215 * e1000_update_stats - Update the board statistics counters
3216 * @adapter: board private structure
3217 **/
3218
3219 void e1000_update_stats(struct e1000_adapter *adapter)
3220 {
3221 struct net_device *netdev = adapter->netdev;
3222 struct e1000_hw *hw = &adapter->hw;
3223 struct pci_dev *pdev = adapter->pdev;
3224 unsigned long flags;
3225 u16 phy_tmp;
3226
3227 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3228
3229 /*
3230 * Prevent stats update while adapter is being reset, or if the pci
3231 * connection is down.
3232 */
3233 if (adapter->link_speed == 0)
3234 return;
3235 if (pci_channel_offline(pdev))
3236 return;
3237
3238 spin_lock_irqsave(&adapter->stats_lock, flags);
3239
3240 /* these counters are modified from e1000_tbi_adjust_stats,
3241 * called from the interrupt context, so they must only
3242 * be written while holding adapter->stats_lock
3243 */
3244
3245 adapter->stats.crcerrs += er32(CRCERRS);
3246 adapter->stats.gprc += er32(GPRC);
3247 adapter->stats.gorcl += er32(GORCL);
3248 adapter->stats.gorch += er32(GORCH);
3249 adapter->stats.bprc += er32(BPRC);
3250 adapter->stats.mprc += er32(MPRC);
3251 adapter->stats.roc += er32(ROC);
3252
3253 adapter->stats.prc64 += er32(PRC64);
3254 adapter->stats.prc127 += er32(PRC127);
3255 adapter->stats.prc255 += er32(PRC255);
3256 adapter->stats.prc511 += er32(PRC511);
3257 adapter->stats.prc1023 += er32(PRC1023);
3258 adapter->stats.prc1522 += er32(PRC1522);
3259
3260 adapter->stats.symerrs += er32(SYMERRS);
3261 adapter->stats.mpc += er32(MPC);
3262 adapter->stats.scc += er32(SCC);
3263 adapter->stats.ecol += er32(ECOL);
3264 adapter->stats.mcc += er32(MCC);
3265 adapter->stats.latecol += er32(LATECOL);
3266 adapter->stats.dc += er32(DC);
3267 adapter->stats.sec += er32(SEC);
3268 adapter->stats.rlec += er32(RLEC);
3269 adapter->stats.xonrxc += er32(XONRXC);
3270 adapter->stats.xontxc += er32(XONTXC);
3271 adapter->stats.xoffrxc += er32(XOFFRXC);
3272 adapter->stats.xofftxc += er32(XOFFTXC);
3273 adapter->stats.fcruc += er32(FCRUC);
3274 adapter->stats.gptc += er32(GPTC);
3275 adapter->stats.gotcl += er32(GOTCL);
3276 adapter->stats.gotch += er32(GOTCH);
3277 adapter->stats.rnbc += er32(RNBC);
3278 adapter->stats.ruc += er32(RUC);
3279 adapter->stats.rfc += er32(RFC);
3280 adapter->stats.rjc += er32(RJC);
3281 adapter->stats.torl += er32(TORL);
3282 adapter->stats.torh += er32(TORH);
3283 adapter->stats.totl += er32(TOTL);
3284 adapter->stats.toth += er32(TOTH);
3285 adapter->stats.tpr += er32(TPR);
3286
3287 adapter->stats.ptc64 += er32(PTC64);
3288 adapter->stats.ptc127 += er32(PTC127);
3289 adapter->stats.ptc255 += er32(PTC255);
3290 adapter->stats.ptc511 += er32(PTC511);
3291 adapter->stats.ptc1023 += er32(PTC1023);
3292 adapter->stats.ptc1522 += er32(PTC1522);
3293
3294 adapter->stats.mptc += er32(MPTC);
3295 adapter->stats.bptc += er32(BPTC);
3296
3297 /* used for adaptive IFS */
3298
3299 hw->tx_packet_delta = er32(TPT);
3300 adapter->stats.tpt += hw->tx_packet_delta;
3301 hw->collision_delta = er32(COLC);
3302 adapter->stats.colc += hw->collision_delta;
3303
3304 if (hw->mac_type >= e1000_82543) {
3305 adapter->stats.algnerrc += er32(ALGNERRC);
3306 adapter->stats.rxerrc += er32(RXERRC);
3307 adapter->stats.tncrs += er32(TNCRS);
3308 adapter->stats.cexterr += er32(CEXTERR);
3309 adapter->stats.tsctc += er32(TSCTC);
3310 adapter->stats.tsctfc += er32(TSCTFC);
3311 }
3312
3313 /* Fill out the OS statistics structure */
3314 netdev->stats.multicast = adapter->stats.mprc;
3315 netdev->stats.collisions = adapter->stats.colc;
3316
3317 /* Rx Errors */
3318
3319 /* RLEC on some newer hardware can be incorrect so build
3320 * our own version based on RUC and ROC */
3321 netdev->stats.rx_errors = adapter->stats.rxerrc +
3322 adapter->stats.crcerrs + adapter->stats.algnerrc +
3323 adapter->stats.ruc + adapter->stats.roc +
3324 adapter->stats.cexterr;
3325 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3326 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3327 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3328 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3329 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3330
3331 /* Tx Errors */
3332 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3333 netdev->stats.tx_errors = adapter->stats.txerrc;
3334 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3335 netdev->stats.tx_window_errors = adapter->stats.latecol;
3336 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3337 if (hw->bad_tx_carr_stats_fd &&
3338 adapter->link_duplex == FULL_DUPLEX) {
3339 netdev->stats.tx_carrier_errors = 0;
3340 adapter->stats.tncrs = 0;
3341 }
3342
3343 /* Tx Dropped needs to be maintained elsewhere */
3344
3345 /* Phy Stats */
3346 if (hw->media_type == e1000_media_type_copper) {
3347 if ((adapter->link_speed == SPEED_1000) &&
3348 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3349 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3350 adapter->phy_stats.idle_errors += phy_tmp;
3351 }
3352
3353 if ((hw->mac_type <= e1000_82546) &&
3354 (hw->phy_type == e1000_phy_m88) &&
3355 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3356 adapter->phy_stats.receive_errors += phy_tmp;
3357 }
3358
3359 /* Management Stats */
3360 if (hw->has_smbus) {
3361 adapter->stats.mgptc += er32(MGTPTC);
3362 adapter->stats.mgprc += er32(MGTPRC);
3363 adapter->stats.mgpdc += er32(MGTPDC);
3364 }
3365
3366 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3367 }
3368
3369 /**
3370 * e1000_intr - Interrupt Handler
3371 * @irq: interrupt number
3372 * @data: pointer to a network interface device structure
3373 **/
3374
3375 static irqreturn_t e1000_intr(int irq, void *data)
3376 {
3377 struct net_device *netdev = data;
3378 struct e1000_adapter *adapter = netdev_priv(netdev);
3379 struct e1000_hw *hw = &adapter->hw;
3380 u32 icr = er32(ICR);
3381
3382 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3383 return IRQ_NONE; /* Not our interrupt */
3384
3385 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3386 hw->get_link_status = 1;
3387 /* guard against interrupt when we're going down */
3388 if (!test_bit(__E1000_DOWN, &adapter->flags))
3389 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3390 }
3391
3392 /* disable interrupts, without the synchronize_irq bit */
3393 ew32(IMC, ~0);
3394 E1000_WRITE_FLUSH();
3395
3396 if (likely(napi_schedule_prep(&adapter->napi))) {
3397 adapter->total_tx_bytes = 0;
3398 adapter->total_tx_packets = 0;
3399 adapter->total_rx_bytes = 0;
3400 adapter->total_rx_packets = 0;
3401 __napi_schedule(&adapter->napi);
3402 } else {
3403 /* this really should not happen! if it does it is basically a
3404 * bug, but not a hard error, so enable ints and continue */
3405 if (!test_bit(__E1000_DOWN, &adapter->flags))
3406 e1000_irq_enable(adapter);
3407 }
3408
3409 return IRQ_HANDLED;
3410 }
3411
3412 /**
3413 * e1000_clean - NAPI Rx polling callback
3414 * @adapter: board private structure
3415 **/
3416 static int e1000_clean(struct napi_struct *napi, int budget)
3417 {
3418 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3419 int tx_clean_complete = 0, work_done = 0;
3420
3421 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3422
3423 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3424
3425 if (!tx_clean_complete)
3426 work_done = budget;
3427
3428 /* If budget not fully consumed, exit the polling mode */
3429 if (work_done < budget) {
3430 if (likely(adapter->itr_setting & 3))
3431 e1000_set_itr(adapter);
3432 napi_complete(napi);
3433 if (!test_bit(__E1000_DOWN, &adapter->flags))
3434 e1000_irq_enable(adapter);
3435 }
3436
3437 return work_done;
3438 }
3439
3440 /**
3441 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3442 * @adapter: board private structure
3443 **/
3444 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3445 struct e1000_tx_ring *tx_ring)
3446 {
3447 struct e1000_hw *hw = &adapter->hw;
3448 struct net_device *netdev = adapter->netdev;
3449 struct e1000_tx_desc *tx_desc, *eop_desc;
3450 struct e1000_buffer *buffer_info;
3451 unsigned int i, eop;
3452 unsigned int count = 0;
3453 unsigned int total_tx_bytes=0, total_tx_packets=0;
3454
3455 i = tx_ring->next_to_clean;
3456 eop = tx_ring->buffer_info[i].next_to_watch;
3457 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3458
3459 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3460 (count < tx_ring->count)) {
3461 bool cleaned = false;
3462 for ( ; !cleaned; count++) {
3463 tx_desc = E1000_TX_DESC(*tx_ring, i);
3464 buffer_info = &tx_ring->buffer_info[i];
3465 cleaned = (i == eop);
3466
3467 if (cleaned) {
3468 struct sk_buff *skb = buffer_info->skb;
3469 unsigned int segs, bytecount;
3470 segs = skb_shinfo(skb)->gso_segs ?: 1;
3471 /* multiply data chunks by size of headers */
3472 bytecount = ((segs - 1) * skb_headlen(skb)) +
3473 skb->len;
3474 total_tx_packets += segs;
3475 total_tx_bytes += bytecount;
3476 }
3477 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3478 tx_desc->upper.data = 0;
3479
3480 if (unlikely(++i == tx_ring->count)) i = 0;
3481 }
3482
3483 eop = tx_ring->buffer_info[i].next_to_watch;
3484 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3485 }
3486
3487 tx_ring->next_to_clean = i;
3488
3489 #define TX_WAKE_THRESHOLD 32
3490 if (unlikely(count && netif_carrier_ok(netdev) &&
3491 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3492 /* Make sure that anybody stopping the queue after this
3493 * sees the new next_to_clean.
3494 */
3495 smp_mb();
3496
3497 if (netif_queue_stopped(netdev) &&
3498 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3499 netif_wake_queue(netdev);
3500 ++adapter->restart_queue;
3501 }
3502 }
3503
3504 if (adapter->detect_tx_hung) {
3505 /* Detect a transmit hang in hardware, this serializes the
3506 * check with the clearing of time_stamp and movement of i */
3507 adapter->detect_tx_hung = false;
3508 if (tx_ring->buffer_info[eop].time_stamp &&
3509 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3510 (adapter->tx_timeout_factor * HZ)) &&
3511 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3512
3513 /* detected Tx unit hang */
3514 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3515 " Tx Queue <%lu>\n"
3516 " TDH <%x>\n"
3517 " TDT <%x>\n"
3518 " next_to_use <%x>\n"
3519 " next_to_clean <%x>\n"
3520 "buffer_info[next_to_clean]\n"
3521 " time_stamp <%lx>\n"
3522 " next_to_watch <%x>\n"
3523 " jiffies <%lx>\n"
3524 " next_to_watch.status <%x>\n",
3525 (unsigned long)((tx_ring - adapter->tx_ring) /
3526 sizeof(struct e1000_tx_ring)),
3527 readl(hw->hw_addr + tx_ring->tdh),
3528 readl(hw->hw_addr + tx_ring->tdt),
3529 tx_ring->next_to_use,
3530 tx_ring->next_to_clean,
3531 tx_ring->buffer_info[eop].time_stamp,
3532 eop,
3533 jiffies,
3534 eop_desc->upper.fields.status);
3535 netif_stop_queue(netdev);
3536 }
3537 }
3538 adapter->total_tx_bytes += total_tx_bytes;
3539 adapter->total_tx_packets += total_tx_packets;
3540 netdev->stats.tx_bytes += total_tx_bytes;
3541 netdev->stats.tx_packets += total_tx_packets;
3542 return (count < tx_ring->count);
3543 }
3544
3545 /**
3546 * e1000_rx_checksum - Receive Checksum Offload for 82543
3547 * @adapter: board private structure
3548 * @status_err: receive descriptor status and error fields
3549 * @csum: receive descriptor csum field
3550 * @sk_buff: socket buffer with received data
3551 **/
3552
3553 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3554 u32 csum, struct sk_buff *skb)
3555 {
3556 struct e1000_hw *hw = &adapter->hw;
3557 u16 status = (u16)status_err;
3558 u8 errors = (u8)(status_err >> 24);
3559 skb->ip_summed = CHECKSUM_NONE;
3560
3561 /* 82543 or newer only */
3562 if (unlikely(hw->mac_type < e1000_82543)) return;
3563 /* Ignore Checksum bit is set */
3564 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3565 /* TCP/UDP checksum error bit is set */
3566 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3567 /* let the stack verify checksum errors */
3568 adapter->hw_csum_err++;
3569 return;
3570 }
3571 /* TCP/UDP Checksum has not been calculated */
3572 if (!(status & E1000_RXD_STAT_TCPCS))
3573 return;
3574
3575 /* It must be a TCP or UDP packet with a valid checksum */
3576 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3577 /* TCP checksum is good */
3578 skb->ip_summed = CHECKSUM_UNNECESSARY;
3579 }
3580 adapter->hw_csum_good++;
3581 }
3582
3583 /**
3584 * e1000_consume_page - helper function
3585 **/
3586 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3587 u16 length)
3588 {
3589 bi->page = NULL;
3590 skb->len += length;
3591 skb->data_len += length;
3592 skb->truesize += length;
3593 }
3594
3595 /**
3596 * e1000_receive_skb - helper function to handle rx indications
3597 * @adapter: board private structure
3598 * @status: descriptor status field as written by hardware
3599 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3600 * @skb: pointer to sk_buff to be indicated to stack
3601 */
3602 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3603 __le16 vlan, struct sk_buff *skb)
3604 {
3605 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3606 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3607 le16_to_cpu(vlan) &
3608 E1000_RXD_SPC_VLAN_MASK);
3609 } else {
3610 netif_receive_skb(skb);
3611 }
3612 }
3613
3614 /**
3615 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3616 * @adapter: board private structure
3617 * @rx_ring: ring to clean
3618 * @work_done: amount of napi work completed this call
3619 * @work_to_do: max amount of work allowed for this call to do
3620 *
3621 * the return value indicates whether actual cleaning was done, there
3622 * is no guarantee that everything was cleaned
3623 */
3624 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3625 struct e1000_rx_ring *rx_ring,
3626 int *work_done, int work_to_do)
3627 {
3628 struct e1000_hw *hw = &adapter->hw;
3629 struct net_device *netdev = adapter->netdev;
3630 struct pci_dev *pdev = adapter->pdev;
3631 struct e1000_rx_desc *rx_desc, *next_rxd;
3632 struct e1000_buffer *buffer_info, *next_buffer;
3633 unsigned long irq_flags;
3634 u32 length;
3635 unsigned int i;
3636 int cleaned_count = 0;
3637 bool cleaned = false;
3638 unsigned int total_rx_bytes=0, total_rx_packets=0;
3639
3640 i = rx_ring->next_to_clean;
3641 rx_desc = E1000_RX_DESC(*rx_ring, i);
3642 buffer_info = &rx_ring->buffer_info[i];
3643
3644 while (rx_desc->status & E1000_RXD_STAT_DD) {
3645 struct sk_buff *skb;
3646 u8 status;
3647
3648 if (*work_done >= work_to_do)
3649 break;
3650 (*work_done)++;
3651
3652 status = rx_desc->status;
3653 skb = buffer_info->skb;
3654 buffer_info->skb = NULL;
3655
3656 if (++i == rx_ring->count) i = 0;
3657 next_rxd = E1000_RX_DESC(*rx_ring, i);
3658 prefetch(next_rxd);
3659
3660 next_buffer = &rx_ring->buffer_info[i];
3661
3662 cleaned = true;
3663 cleaned_count++;
3664 pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
3665 PCI_DMA_FROMDEVICE);
3666 buffer_info->dma = 0;
3667
3668 length = le16_to_cpu(rx_desc->length);
3669
3670 /* errors is only valid for DD + EOP descriptors */
3671 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3672 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3673 u8 last_byte = *(skb->data + length - 1);
3674 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3675 last_byte)) {
3676 spin_lock_irqsave(&adapter->stats_lock,
3677 irq_flags);
3678 e1000_tbi_adjust_stats(hw, &adapter->stats,
3679 length, skb->data);
3680 spin_unlock_irqrestore(&adapter->stats_lock,
3681 irq_flags);
3682 length--;
3683 } else {
3684 /* recycle both page and skb */
3685 buffer_info->skb = skb;
3686 /* an error means any chain goes out the window
3687 * too */
3688 if (rx_ring->rx_skb_top)
3689 dev_kfree_skb(rx_ring->rx_skb_top);
3690 rx_ring->rx_skb_top = NULL;
3691 goto next_desc;
3692 }
3693 }
3694
3695 #define rxtop rx_ring->rx_skb_top
3696 if (!(status & E1000_RXD_STAT_EOP)) {
3697 /* this descriptor is only the beginning (or middle) */
3698 if (!rxtop) {
3699 /* this is the beginning of a chain */
3700 rxtop = skb;
3701 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3702 0, length);
3703 } else {
3704 /* this is the middle of a chain */
3705 skb_fill_page_desc(rxtop,
3706 skb_shinfo(rxtop)->nr_frags,
3707 buffer_info->page, 0, length);
3708 /* re-use the skb, only consumed the page */
3709 buffer_info->skb = skb;
3710 }
3711 e1000_consume_page(buffer_info, rxtop, length);
3712 goto next_desc;
3713 } else {
3714 if (rxtop) {
3715 /* end of the chain */
3716 skb_fill_page_desc(rxtop,
3717 skb_shinfo(rxtop)->nr_frags,
3718 buffer_info->page, 0, length);
3719 /* re-use the current skb, we only consumed the
3720 * page */
3721 buffer_info->skb = skb;
3722 skb = rxtop;
3723 rxtop = NULL;
3724 e1000_consume_page(buffer_info, skb, length);
3725 } else {
3726 /* no chain, got EOP, this buf is the packet
3727 * copybreak to save the put_page/alloc_page */
3728 if (length <= copybreak &&
3729 skb_tailroom(skb) >= length) {
3730 u8 *vaddr;
3731 vaddr = kmap_atomic(buffer_info->page,
3732 KM_SKB_DATA_SOFTIRQ);
3733 memcpy(skb_tail_pointer(skb), vaddr, length);
3734 kunmap_atomic(vaddr,
3735 KM_SKB_DATA_SOFTIRQ);
3736 /* re-use the page, so don't erase
3737 * buffer_info->page */
3738 skb_put(skb, length);
3739 } else {
3740 skb_fill_page_desc(skb, 0,
3741 buffer_info->page, 0,
3742 length);
3743 e1000_consume_page(buffer_info, skb,
3744 length);
3745 }
3746 }
3747 }
3748
3749 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3750 e1000_rx_checksum(adapter,
3751 (u32)(status) |
3752 ((u32)(rx_desc->errors) << 24),
3753 le16_to_cpu(rx_desc->csum), skb);
3754
3755 pskb_trim(skb, skb->len - 4);
3756
3757 /* probably a little skewed due to removing CRC */
3758 total_rx_bytes += skb->len;
3759 total_rx_packets++;
3760
3761 /* eth type trans needs skb->data to point to something */
3762 if (!pskb_may_pull(skb, ETH_HLEN)) {
3763 DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
3764 dev_kfree_skb(skb);
3765 goto next_desc;
3766 }
3767
3768 skb->protocol = eth_type_trans(skb, netdev);
3769
3770 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3771
3772 next_desc:
3773 rx_desc->status = 0;
3774
3775 /* return some buffers to hardware, one at a time is too slow */
3776 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3777 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3778 cleaned_count = 0;
3779 }
3780
3781 /* use prefetched values */
3782 rx_desc = next_rxd;
3783 buffer_info = next_buffer;
3784 }
3785 rx_ring->next_to_clean = i;
3786
3787 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3788 if (cleaned_count)
3789 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3790
3791 adapter->total_rx_packets += total_rx_packets;
3792 adapter->total_rx_bytes += total_rx_bytes;
3793 netdev->stats.rx_bytes += total_rx_bytes;
3794 netdev->stats.rx_packets += total_rx_packets;
3795 return cleaned;
3796 }
3797
3798 /**
3799 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3800 * @adapter: board private structure
3801 * @rx_ring: ring to clean
3802 * @work_done: amount of napi work completed this call
3803 * @work_to_do: max amount of work allowed for this call to do
3804 */
3805 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3806 struct e1000_rx_ring *rx_ring,
3807 int *work_done, int work_to_do)
3808 {
3809 struct e1000_hw *hw = &adapter->hw;
3810 struct net_device *netdev = adapter->netdev;
3811 struct pci_dev *pdev = adapter->pdev;
3812 struct e1000_rx_desc *rx_desc, *next_rxd;
3813 struct e1000_buffer *buffer_info, *next_buffer;
3814 unsigned long flags;
3815 u32 length;
3816 unsigned int i;
3817 int cleaned_count = 0;
3818 bool cleaned = false;
3819 unsigned int total_rx_bytes=0, total_rx_packets=0;
3820
3821 i = rx_ring->next_to_clean;
3822 rx_desc = E1000_RX_DESC(*rx_ring, i);
3823 buffer_info = &rx_ring->buffer_info[i];
3824
3825 while (rx_desc->status & E1000_RXD_STAT_DD) {
3826 struct sk_buff *skb;
3827 u8 status;
3828
3829 if (*work_done >= work_to_do)
3830 break;
3831 (*work_done)++;
3832
3833 status = rx_desc->status;
3834 skb = buffer_info->skb;
3835 buffer_info->skb = NULL;
3836
3837 prefetch(skb->data - NET_IP_ALIGN);
3838
3839 if (++i == rx_ring->count) i = 0;
3840 next_rxd = E1000_RX_DESC(*rx_ring, i);
3841 prefetch(next_rxd);
3842
3843 next_buffer = &rx_ring->buffer_info[i];
3844
3845 cleaned = true;
3846 cleaned_count++;
3847 pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
3848 PCI_DMA_FROMDEVICE);
3849 buffer_info->dma = 0;
3850
3851 length = le16_to_cpu(rx_desc->length);
3852 /* !EOP means multiple descriptors were used to store a single
3853 * packet, also make sure the frame isn't just CRC only */
3854 if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
3855 /* All receives must fit into a single buffer */
3856 E1000_DBG("%s: Receive packet consumed multiple"
3857 " buffers\n", netdev->name);
3858 /* recycle */
3859 buffer_info->skb = skb;
3860 goto next_desc;
3861 }
3862
3863 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3864 u8 last_byte = *(skb->data + length - 1);
3865 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3866 last_byte)) {
3867 spin_lock_irqsave(&adapter->stats_lock, flags);
3868 e1000_tbi_adjust_stats(hw, &adapter->stats,
3869 length, skb->data);
3870 spin_unlock_irqrestore(&adapter->stats_lock,
3871 flags);
3872 length--;
3873 } else {
3874 /* recycle */
3875 buffer_info->skb = skb;
3876 goto next_desc;
3877 }
3878 }
3879
3880 /* adjust length to remove Ethernet CRC, this must be
3881 * done after the TBI_ACCEPT workaround above */
3882 length -= 4;
3883
3884 /* probably a little skewed due to removing CRC */
3885 total_rx_bytes += length;
3886 total_rx_packets++;
3887
3888 /* code added for copybreak, this should improve
3889 * performance for small packets with large amounts
3890 * of reassembly being done in the stack */
3891 if (length < copybreak) {
3892 struct sk_buff *new_skb =
3893 netdev_alloc_skb_ip_align(netdev, length);
3894 if (new_skb) {
3895 skb_copy_to_linear_data_offset(new_skb,
3896 -NET_IP_ALIGN,
3897 (skb->data -
3898 NET_IP_ALIGN),
3899 (length +
3900 NET_IP_ALIGN));
3901 /* save the skb in buffer_info as good */
3902 buffer_info->skb = skb;
3903 skb = new_skb;
3904 }
3905 /* else just continue with the old one */
3906 }
3907 /* end copybreak code */
3908 skb_put(skb, length);
3909
3910 /* Receive Checksum Offload */
3911 e1000_rx_checksum(adapter,
3912 (u32)(status) |
3913 ((u32)(rx_desc->errors) << 24),
3914 le16_to_cpu(rx_desc->csum), skb);
3915
3916 skb->protocol = eth_type_trans(skb, netdev);
3917
3918 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3919
3920 next_desc:
3921 rx_desc->status = 0;
3922
3923 /* return some buffers to hardware, one at a time is too slow */
3924 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3925 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3926 cleaned_count = 0;
3927 }
3928
3929 /* use prefetched values */
3930 rx_desc = next_rxd;
3931 buffer_info = next_buffer;
3932 }
3933 rx_ring->next_to_clean = i;
3934
3935 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3936 if (cleaned_count)
3937 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3938
3939 adapter->total_rx_packets += total_rx_packets;
3940 adapter->total_rx_bytes += total_rx_bytes;
3941 netdev->stats.rx_bytes += total_rx_bytes;
3942 netdev->stats.rx_packets += total_rx_packets;
3943 return cleaned;
3944 }
3945
3946 /**
3947 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3948 * @adapter: address of board private structure
3949 * @rx_ring: pointer to receive ring structure
3950 * @cleaned_count: number of buffers to allocate this pass
3951 **/
3952
3953 static void
3954 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3955 struct e1000_rx_ring *rx_ring, int cleaned_count)
3956 {
3957 struct net_device *netdev = adapter->netdev;
3958 struct pci_dev *pdev = adapter->pdev;
3959 struct e1000_rx_desc *rx_desc;
3960 struct e1000_buffer *buffer_info;
3961 struct sk_buff *skb;
3962 unsigned int i;
3963 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
3964
3965 i = rx_ring->next_to_use;
3966 buffer_info = &rx_ring->buffer_info[i];
3967
3968 while (cleaned_count--) {
3969 skb = buffer_info->skb;
3970 if (skb) {
3971 skb_trim(skb, 0);
3972 goto check_page;
3973 }
3974
3975 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3976 if (unlikely(!skb)) {
3977 /* Better luck next round */
3978 adapter->alloc_rx_buff_failed++;
3979 break;
3980 }
3981
3982 /* Fix for errata 23, can't cross 64kB boundary */
3983 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3984 struct sk_buff *oldskb = skb;
3985 DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
3986 "at %p\n", bufsz, skb->data);
3987 /* Try again, without freeing the previous */
3988 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3989 /* Failed allocation, critical failure */
3990 if (!skb) {
3991 dev_kfree_skb(oldskb);
3992 adapter->alloc_rx_buff_failed++;
3993 break;
3994 }
3995
3996 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3997 /* give up */
3998 dev_kfree_skb(skb);
3999 dev_kfree_skb(oldskb);
4000 break; /* while (cleaned_count--) */
4001 }
4002
4003 /* Use new allocation */
4004 dev_kfree_skb(oldskb);
4005 }
4006 buffer_info->skb = skb;
4007 buffer_info->length = adapter->rx_buffer_len;
4008 check_page:
4009 /* allocate a new page if necessary */
4010 if (!buffer_info->page) {
4011 buffer_info->page = alloc_page(GFP_ATOMIC);
4012 if (unlikely(!buffer_info->page)) {
4013 adapter->alloc_rx_buff_failed++;
4014 break;
4015 }
4016 }
4017
4018 if (!buffer_info->dma)
4019 buffer_info->dma = pci_map_page(pdev,
4020 buffer_info->page, 0,
4021 buffer_info->length,
4022 PCI_DMA_FROMDEVICE);
4023
4024 rx_desc = E1000_RX_DESC(*rx_ring, i);
4025 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4026
4027 if (unlikely(++i == rx_ring->count))
4028 i = 0;
4029 buffer_info = &rx_ring->buffer_info[i];
4030 }
4031
4032 if (likely(rx_ring->next_to_use != i)) {
4033 rx_ring->next_to_use = i;
4034 if (unlikely(i-- == 0))
4035 i = (rx_ring->count - 1);
4036
4037 /* Force memory writes to complete before letting h/w
4038 * know there are new descriptors to fetch. (Only
4039 * applicable for weak-ordered memory model archs,
4040 * such as IA-64). */
4041 wmb();
4042 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4043 }
4044 }
4045
4046 /**
4047 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4048 * @adapter: address of board private structure
4049 **/
4050
4051 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4052 struct e1000_rx_ring *rx_ring,
4053 int cleaned_count)
4054 {
4055 struct e1000_hw *hw = &adapter->hw;
4056 struct net_device *netdev = adapter->netdev;
4057 struct pci_dev *pdev = adapter->pdev;
4058 struct e1000_rx_desc *rx_desc;
4059 struct e1000_buffer *buffer_info;
4060 struct sk_buff *skb;
4061 unsigned int i;
4062 unsigned int bufsz = adapter->rx_buffer_len;
4063
4064 i = rx_ring->next_to_use;
4065 buffer_info = &rx_ring->buffer_info[i];
4066
4067 while (cleaned_count--) {
4068 skb = buffer_info->skb;
4069 if (skb) {
4070 skb_trim(skb, 0);
4071 goto map_skb;
4072 }
4073
4074 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4075 if (unlikely(!skb)) {
4076 /* Better luck next round */
4077 adapter->alloc_rx_buff_failed++;
4078 break;
4079 }
4080
4081 /* Fix for errata 23, can't cross 64kB boundary */
4082 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4083 struct sk_buff *oldskb = skb;
4084 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4085 "at %p\n", bufsz, skb->data);
4086 /* Try again, without freeing the previous */
4087 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4088 /* Failed allocation, critical failure */
4089 if (!skb) {
4090 dev_kfree_skb(oldskb);
4091 adapter->alloc_rx_buff_failed++;
4092 break;
4093 }
4094
4095 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4096 /* give up */
4097 dev_kfree_skb(skb);
4098 dev_kfree_skb(oldskb);
4099 adapter->alloc_rx_buff_failed++;
4100 break; /* while !buffer_info->skb */
4101 }
4102
4103 /* Use new allocation */
4104 dev_kfree_skb(oldskb);
4105 }
4106 buffer_info->skb = skb;
4107 buffer_info->length = adapter->rx_buffer_len;
4108 map_skb:
4109 buffer_info->dma = pci_map_single(pdev,
4110 skb->data,
4111 buffer_info->length,
4112 PCI_DMA_FROMDEVICE);
4113
4114 /*
4115 * XXX if it was allocated cleanly it will never map to a
4116 * boundary crossing
4117 */
4118
4119 /* Fix for errata 23, can't cross 64kB boundary */
4120 if (!e1000_check_64k_bound(adapter,
4121 (void *)(unsigned long)buffer_info->dma,
4122 adapter->rx_buffer_len)) {
4123 DPRINTK(RX_ERR, ERR,
4124 "dma align check failed: %u bytes at %p\n",
4125 adapter->rx_buffer_len,
4126 (void *)(unsigned long)buffer_info->dma);
4127 dev_kfree_skb(skb);
4128 buffer_info->skb = NULL;
4129
4130 pci_unmap_single(pdev, buffer_info->dma,
4131 adapter->rx_buffer_len,
4132 PCI_DMA_FROMDEVICE);
4133 buffer_info->dma = 0;
4134
4135 adapter->alloc_rx_buff_failed++;
4136 break; /* while !buffer_info->skb */
4137 }
4138 rx_desc = E1000_RX_DESC(*rx_ring, i);
4139 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4140
4141 if (unlikely(++i == rx_ring->count))
4142 i = 0;
4143 buffer_info = &rx_ring->buffer_info[i];
4144 }
4145
4146 if (likely(rx_ring->next_to_use != i)) {
4147 rx_ring->next_to_use = i;
4148 if (unlikely(i-- == 0))
4149 i = (rx_ring->count - 1);
4150
4151 /* Force memory writes to complete before letting h/w
4152 * know there are new descriptors to fetch. (Only
4153 * applicable for weak-ordered memory model archs,
4154 * such as IA-64). */
4155 wmb();
4156 writel(i, hw->hw_addr + rx_ring->rdt);
4157 }
4158 }
4159
4160 /**
4161 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4162 * @adapter:
4163 **/
4164
4165 static void e1000_smartspeed(struct e1000_adapter *adapter)
4166 {
4167 struct e1000_hw *hw = &adapter->hw;
4168 u16 phy_status;
4169 u16 phy_ctrl;
4170
4171 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4172 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4173 return;
4174
4175 if (adapter->smartspeed == 0) {
4176 /* If Master/Slave config fault is asserted twice,
4177 * we assume back-to-back */
4178 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4179 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4180 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4181 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4182 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4183 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4184 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4185 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4186 phy_ctrl);
4187 adapter->smartspeed++;
4188 if (!e1000_phy_setup_autoneg(hw) &&
4189 !e1000_read_phy_reg(hw, PHY_CTRL,
4190 &phy_ctrl)) {
4191 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4192 MII_CR_RESTART_AUTO_NEG);
4193 e1000_write_phy_reg(hw, PHY_CTRL,
4194 phy_ctrl);
4195 }
4196 }
4197 return;
4198 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4199 /* If still no link, perhaps using 2/3 pair cable */
4200 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4201 phy_ctrl |= CR_1000T_MS_ENABLE;
4202 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4203 if (!e1000_phy_setup_autoneg(hw) &&
4204 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4205 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4206 MII_CR_RESTART_AUTO_NEG);
4207 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4208 }
4209 }
4210 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4211 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4212 adapter->smartspeed = 0;
4213 }
4214
4215 /**
4216 * e1000_ioctl -
4217 * @netdev:
4218 * @ifreq:
4219 * @cmd:
4220 **/
4221
4222 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4223 {
4224 switch (cmd) {
4225 case SIOCGMIIPHY:
4226 case SIOCGMIIREG:
4227 case SIOCSMIIREG:
4228 return e1000_mii_ioctl(netdev, ifr, cmd);
4229 default:
4230 return -EOPNOTSUPP;
4231 }
4232 }
4233
4234 /**
4235 * e1000_mii_ioctl -
4236 * @netdev:
4237 * @ifreq:
4238 * @cmd:
4239 **/
4240
4241 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4242 int cmd)
4243 {
4244 struct e1000_adapter *adapter = netdev_priv(netdev);
4245 struct e1000_hw *hw = &adapter->hw;
4246 struct mii_ioctl_data *data = if_mii(ifr);
4247 int retval;
4248 u16 mii_reg;
4249 u16 spddplx;
4250 unsigned long flags;
4251
4252 if (hw->media_type != e1000_media_type_copper)
4253 return -EOPNOTSUPP;
4254
4255 switch (cmd) {
4256 case SIOCGMIIPHY:
4257 data->phy_id = hw->phy_addr;
4258 break;
4259 case SIOCGMIIREG:
4260 spin_lock_irqsave(&adapter->stats_lock, flags);
4261 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4262 &data->val_out)) {
4263 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4264 return -EIO;
4265 }
4266 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4267 break;
4268 case SIOCSMIIREG:
4269 if (data->reg_num & ~(0x1F))
4270 return -EFAULT;
4271 mii_reg = data->val_in;
4272 spin_lock_irqsave(&adapter->stats_lock, flags);
4273 if (e1000_write_phy_reg(hw, data->reg_num,
4274 mii_reg)) {
4275 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4276 return -EIO;
4277 }
4278 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4279 if (hw->media_type == e1000_media_type_copper) {
4280 switch (data->reg_num) {
4281 case PHY_CTRL:
4282 if (mii_reg & MII_CR_POWER_DOWN)
4283 break;
4284 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4285 hw->autoneg = 1;
4286 hw->autoneg_advertised = 0x2F;
4287 } else {
4288 if (mii_reg & 0x40)
4289 spddplx = SPEED_1000;
4290 else if (mii_reg & 0x2000)
4291 spddplx = SPEED_100;
4292 else
4293 spddplx = SPEED_10;
4294 spddplx += (mii_reg & 0x100)
4295 ? DUPLEX_FULL :
4296 DUPLEX_HALF;
4297 retval = e1000_set_spd_dplx(adapter,
4298 spddplx);
4299 if (retval)
4300 return retval;
4301 }
4302 if (netif_running(adapter->netdev))
4303 e1000_reinit_locked(adapter);
4304 else
4305 e1000_reset(adapter);
4306 break;
4307 case M88E1000_PHY_SPEC_CTRL:
4308 case M88E1000_EXT_PHY_SPEC_CTRL:
4309 if (e1000_phy_reset(hw))
4310 return -EIO;
4311 break;
4312 }
4313 } else {
4314 switch (data->reg_num) {
4315 case PHY_CTRL:
4316 if (mii_reg & MII_CR_POWER_DOWN)
4317 break;
4318 if (netif_running(adapter->netdev))
4319 e1000_reinit_locked(adapter);
4320 else
4321 e1000_reset(adapter);
4322 break;
4323 }
4324 }
4325 break;
4326 default:
4327 return -EOPNOTSUPP;
4328 }
4329 return E1000_SUCCESS;
4330 }
4331
4332 void e1000_pci_set_mwi(struct e1000_hw *hw)
4333 {
4334 struct e1000_adapter *adapter = hw->back;
4335 int ret_val = pci_set_mwi(adapter->pdev);
4336
4337 if (ret_val)
4338 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4339 }
4340
4341 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4342 {
4343 struct e1000_adapter *adapter = hw->back;
4344
4345 pci_clear_mwi(adapter->pdev);
4346 }
4347
4348 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4349 {
4350 struct e1000_adapter *adapter = hw->back;
4351 return pcix_get_mmrbc(adapter->pdev);
4352 }
4353
4354 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4355 {
4356 struct e1000_adapter *adapter = hw->back;
4357 pcix_set_mmrbc(adapter->pdev, mmrbc);
4358 }
4359
4360 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4361 {
4362 outl(value, port);
4363 }
4364
4365 static void e1000_vlan_rx_register(struct net_device *netdev,
4366 struct vlan_group *grp)
4367 {
4368 struct e1000_adapter *adapter = netdev_priv(netdev);
4369 struct e1000_hw *hw = &adapter->hw;
4370 u32 ctrl, rctl;
4371
4372 if (!test_bit(__E1000_DOWN, &adapter->flags))
4373 e1000_irq_disable(adapter);
4374 adapter->vlgrp = grp;
4375
4376 if (grp) {
4377 /* enable VLAN tag insert/strip */
4378 ctrl = er32(CTRL);
4379 ctrl |= E1000_CTRL_VME;
4380 ew32(CTRL, ctrl);
4381
4382 /* enable VLAN receive filtering */
4383 rctl = er32(RCTL);
4384 rctl &= ~E1000_RCTL_CFIEN;
4385 if (!(netdev->flags & IFF_PROMISC))
4386 rctl |= E1000_RCTL_VFE;
4387 ew32(RCTL, rctl);
4388 e1000_update_mng_vlan(adapter);
4389 } else {
4390 /* disable VLAN tag insert/strip */
4391 ctrl = er32(CTRL);
4392 ctrl &= ~E1000_CTRL_VME;
4393 ew32(CTRL, ctrl);
4394
4395 /* disable VLAN receive filtering */
4396 rctl = er32(RCTL);
4397 rctl &= ~E1000_RCTL_VFE;
4398 ew32(RCTL, rctl);
4399
4400 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4401 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4402 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4403 }
4404 }
4405
4406 if (!test_bit(__E1000_DOWN, &adapter->flags))
4407 e1000_irq_enable(adapter);
4408 }
4409
4410 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4411 {
4412 struct e1000_adapter *adapter = netdev_priv(netdev);
4413 struct e1000_hw *hw = &adapter->hw;
4414 u32 vfta, index;
4415
4416 if ((hw->mng_cookie.status &
4417 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4418 (vid == adapter->mng_vlan_id))
4419 return;
4420 /* add VID to filter table */
4421 index = (vid >> 5) & 0x7F;
4422 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4423 vfta |= (1 << (vid & 0x1F));
4424 e1000_write_vfta(hw, index, vfta);
4425 }
4426
4427 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4428 {
4429 struct e1000_adapter *adapter = netdev_priv(netdev);
4430 struct e1000_hw *hw = &adapter->hw;
4431 u32 vfta, index;
4432
4433 if (!test_bit(__E1000_DOWN, &adapter->flags))
4434 e1000_irq_disable(adapter);
4435 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4436 if (!test_bit(__E1000_DOWN, &adapter->flags))
4437 e1000_irq_enable(adapter);
4438
4439 /* remove VID from filter table */
4440 index = (vid >> 5) & 0x7F;
4441 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4442 vfta &= ~(1 << (vid & 0x1F));
4443 e1000_write_vfta(hw, index, vfta);
4444 }
4445
4446 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4447 {
4448 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4449
4450 if (adapter->vlgrp) {
4451 u16 vid;
4452 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4453 if (!vlan_group_get_device(adapter->vlgrp, vid))
4454 continue;
4455 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4456 }
4457 }
4458 }
4459
4460 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4461 {
4462 struct e1000_hw *hw = &adapter->hw;
4463
4464 hw->autoneg = 0;
4465
4466 /* Fiber NICs only allow 1000 gbps Full duplex */
4467 if ((hw->media_type == e1000_media_type_fiber) &&
4468 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4469 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4470 return -EINVAL;
4471 }
4472
4473 switch (spddplx) {
4474 case SPEED_10 + DUPLEX_HALF:
4475 hw->forced_speed_duplex = e1000_10_half;
4476 break;
4477 case SPEED_10 + DUPLEX_FULL:
4478 hw->forced_speed_duplex = e1000_10_full;
4479 break;
4480 case SPEED_100 + DUPLEX_HALF:
4481 hw->forced_speed_duplex = e1000_100_half;
4482 break;
4483 case SPEED_100 + DUPLEX_FULL:
4484 hw->forced_speed_duplex = e1000_100_full;
4485 break;
4486 case SPEED_1000 + DUPLEX_FULL:
4487 hw->autoneg = 1;
4488 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4489 break;
4490 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4491 default:
4492 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4493 return -EINVAL;
4494 }
4495 return 0;
4496 }
4497
4498 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4499 {
4500 struct net_device *netdev = pci_get_drvdata(pdev);
4501 struct e1000_adapter *adapter = netdev_priv(netdev);
4502 struct e1000_hw *hw = &adapter->hw;
4503 u32 ctrl, ctrl_ext, rctl, status;
4504 u32 wufc = adapter->wol;
4505 #ifdef CONFIG_PM
4506 int retval = 0;
4507 #endif
4508
4509 netif_device_detach(netdev);
4510
4511 if (netif_running(netdev)) {
4512 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4513 e1000_down(adapter);
4514 }
4515
4516 #ifdef CONFIG_PM
4517 retval = pci_save_state(pdev);
4518 if (retval)
4519 return retval;
4520 #endif
4521
4522 status = er32(STATUS);
4523 if (status & E1000_STATUS_LU)
4524 wufc &= ~E1000_WUFC_LNKC;
4525
4526 if (wufc) {
4527 e1000_setup_rctl(adapter);
4528 e1000_set_rx_mode(netdev);
4529
4530 /* turn on all-multi mode if wake on multicast is enabled */
4531 if (wufc & E1000_WUFC_MC) {
4532 rctl = er32(RCTL);
4533 rctl |= E1000_RCTL_MPE;
4534 ew32(RCTL, rctl);
4535 }
4536
4537 if (hw->mac_type >= e1000_82540) {
4538 ctrl = er32(CTRL);
4539 /* advertise wake from D3Cold */
4540 #define E1000_CTRL_ADVD3WUC 0x00100000
4541 /* phy power management enable */
4542 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4543 ctrl |= E1000_CTRL_ADVD3WUC |
4544 E1000_CTRL_EN_PHY_PWR_MGMT;
4545 ew32(CTRL, ctrl);
4546 }
4547
4548 if (hw->media_type == e1000_media_type_fiber ||
4549 hw->media_type == e1000_media_type_internal_serdes) {
4550 /* keep the laser running in D3 */
4551 ctrl_ext = er32(CTRL_EXT);
4552 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4553 ew32(CTRL_EXT, ctrl_ext);
4554 }
4555
4556 ew32(WUC, E1000_WUC_PME_EN);
4557 ew32(WUFC, wufc);
4558 } else {
4559 ew32(WUC, 0);
4560 ew32(WUFC, 0);
4561 }
4562
4563 e1000_release_manageability(adapter);
4564
4565 *enable_wake = !!wufc;
4566
4567 /* make sure adapter isn't asleep if manageability is enabled */
4568 if (adapter->en_mng_pt)
4569 *enable_wake = true;
4570
4571 if (netif_running(netdev))
4572 e1000_free_irq(adapter);
4573
4574 pci_disable_device(pdev);
4575
4576 return 0;
4577 }
4578
4579 #ifdef CONFIG_PM
4580 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4581 {
4582 int retval;
4583 bool wake;
4584
4585 retval = __e1000_shutdown(pdev, &wake);
4586 if (retval)
4587 return retval;
4588
4589 if (wake) {
4590 pci_prepare_to_sleep(pdev);
4591 } else {
4592 pci_wake_from_d3(pdev, false);
4593 pci_set_power_state(pdev, PCI_D3hot);
4594 }
4595
4596 return 0;
4597 }
4598
4599 static int e1000_resume(struct pci_dev *pdev)
4600 {
4601 struct net_device *netdev = pci_get_drvdata(pdev);
4602 struct e1000_adapter *adapter = netdev_priv(netdev);
4603 struct e1000_hw *hw = &adapter->hw;
4604 u32 err;
4605
4606 pci_set_power_state(pdev, PCI_D0);
4607 pci_restore_state(pdev);
4608
4609 if (adapter->need_ioport)
4610 err = pci_enable_device(pdev);
4611 else
4612 err = pci_enable_device_mem(pdev);
4613 if (err) {
4614 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4615 return err;
4616 }
4617 pci_set_master(pdev);
4618
4619 pci_enable_wake(pdev, PCI_D3hot, 0);
4620 pci_enable_wake(pdev, PCI_D3cold, 0);
4621
4622 if (netif_running(netdev)) {
4623 err = e1000_request_irq(adapter);
4624 if (err)
4625 return err;
4626 }
4627
4628 e1000_power_up_phy(adapter);
4629 e1000_reset(adapter);
4630 ew32(WUS, ~0);
4631
4632 e1000_init_manageability(adapter);
4633
4634 if (netif_running(netdev))
4635 e1000_up(adapter);
4636
4637 netif_device_attach(netdev);
4638
4639 return 0;
4640 }
4641 #endif
4642
4643 static void e1000_shutdown(struct pci_dev *pdev)
4644 {
4645 bool wake;
4646
4647 __e1000_shutdown(pdev, &wake);
4648
4649 if (system_state == SYSTEM_POWER_OFF) {
4650 pci_wake_from_d3(pdev, wake);
4651 pci_set_power_state(pdev, PCI_D3hot);
4652 }
4653 }
4654
4655 #ifdef CONFIG_NET_POLL_CONTROLLER
4656 /*
4657 * Polling 'interrupt' - used by things like netconsole to send skbs
4658 * without having to re-enable interrupts. It's not called while
4659 * the interrupt routine is executing.
4660 */
4661 static void e1000_netpoll(struct net_device *netdev)
4662 {
4663 struct e1000_adapter *adapter = netdev_priv(netdev);
4664
4665 disable_irq(adapter->pdev->irq);
4666 e1000_intr(adapter->pdev->irq, netdev);
4667 enable_irq(adapter->pdev->irq);
4668 }
4669 #endif
4670
4671 /**
4672 * e1000_io_error_detected - called when PCI error is detected
4673 * @pdev: Pointer to PCI device
4674 * @state: The current pci connection state
4675 *
4676 * This function is called after a PCI bus error affecting
4677 * this device has been detected.
4678 */
4679 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4680 pci_channel_state_t state)
4681 {
4682 struct net_device *netdev = pci_get_drvdata(pdev);
4683 struct e1000_adapter *adapter = netdev_priv(netdev);
4684
4685 netif_device_detach(netdev);
4686
4687 if (state == pci_channel_io_perm_failure)
4688 return PCI_ERS_RESULT_DISCONNECT;
4689
4690 if (netif_running(netdev))
4691 e1000_down(adapter);
4692 pci_disable_device(pdev);
4693
4694 /* Request a slot slot reset. */
4695 return PCI_ERS_RESULT_NEED_RESET;
4696 }
4697
4698 /**
4699 * e1000_io_slot_reset - called after the pci bus has been reset.
4700 * @pdev: Pointer to PCI device
4701 *
4702 * Restart the card from scratch, as if from a cold-boot. Implementation
4703 * resembles the first-half of the e1000_resume routine.
4704 */
4705 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4706 {
4707 struct net_device *netdev = pci_get_drvdata(pdev);
4708 struct e1000_adapter *adapter = netdev_priv(netdev);
4709 struct e1000_hw *hw = &adapter->hw;
4710 int err;
4711
4712 if (adapter->need_ioport)
4713 err = pci_enable_device(pdev);
4714 else
4715 err = pci_enable_device_mem(pdev);
4716 if (err) {
4717 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4718 return PCI_ERS_RESULT_DISCONNECT;
4719 }
4720 pci_set_master(pdev);
4721
4722 pci_enable_wake(pdev, PCI_D3hot, 0);
4723 pci_enable_wake(pdev, PCI_D3cold, 0);
4724
4725 e1000_reset(adapter);
4726 ew32(WUS, ~0);
4727
4728 return PCI_ERS_RESULT_RECOVERED;
4729 }
4730
4731 /**
4732 * e1000_io_resume - called when traffic can start flowing again.
4733 * @pdev: Pointer to PCI device
4734 *
4735 * This callback is called when the error recovery driver tells us that
4736 * its OK to resume normal operation. Implementation resembles the
4737 * second-half of the e1000_resume routine.
4738 */
4739 static void e1000_io_resume(struct pci_dev *pdev)
4740 {
4741 struct net_device *netdev = pci_get_drvdata(pdev);
4742 struct e1000_adapter *adapter = netdev_priv(netdev);
4743
4744 e1000_init_manageability(adapter);
4745
4746 if (netif_running(netdev)) {
4747 if (e1000_up(adapter)) {
4748 printk("e1000: can't bring device back up after reset\n");
4749 return;
4750 }
4751 }
4752
4753 netif_device_attach(netdev);
4754 }
4755
4756 /* e1000_main.c */