]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/e1000/e1000_main.c
[PATCH] e1000: Enable polling before enabling interrupts
[mirror_ubuntu-bionic-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32 * 5.3.12 6/7/04
33 * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
34 * - if_mii support and associated kcompat for older kernels
35 * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
36 * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
37 *
38 * 5.7.1 12/16/04
39 * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
40 * fix was removed as it caused system instability. The suspected cause of
41 * this is the called to e1000_irq_disable in e1000_intr. Inlined the
42 * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
43 * 5.7.0 12/10/04
44 * - include fix to the condition that determines when to quit NAPI - Robert Olsson
45 * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
46 * 5.6.5 11/01/04
47 * - Enabling NETIF_F_SG without checksum offload is illegal -
48 John Mason <jdmason@us.ibm.com>
49 * 5.6.3 10/26/04
50 * - Remove redundant initialization - Jamal Hadi
51 * - Reset buffer_info->dma in tx resource cleanup logic
52 * 5.6.2 10/12/04
53 * - Avoid filling tx_ring completely - shemminger@osdl.org
54 * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
55 * nacc@us.ibm.com
56 * - Sparse cleanup - shemminger@osdl.org
57 * - Fix tx resource cleanup logic
58 * - LLTX support - ak@suse.de and hadi@cyberus.ca
59 */
60
61 char e1000_driver_name[] = "e1000";
62 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
63 #ifndef CONFIG_E1000_NAPI
64 #define DRIVERNAPI
65 #else
66 #define DRIVERNAPI "-NAPI"
67 #endif
68 #define DRV_VERSION "5.7.6-k2"DRIVERNAPI
69 char e1000_driver_version[] = DRV_VERSION;
70 char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
71
72 /* e1000_pci_tbl - PCI Device ID Table
73 *
74 * Last entry must be all 0s
75 *
76 * Macro expands to...
77 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
78 */
79 static struct pci_device_id e1000_pci_tbl[] = {
80 INTEL_E1000_ETHERNET_DEVICE(0x1000),
81 INTEL_E1000_ETHERNET_DEVICE(0x1001),
82 INTEL_E1000_ETHERNET_DEVICE(0x1004),
83 INTEL_E1000_ETHERNET_DEVICE(0x1008),
84 INTEL_E1000_ETHERNET_DEVICE(0x1009),
85 INTEL_E1000_ETHERNET_DEVICE(0x100C),
86 INTEL_E1000_ETHERNET_DEVICE(0x100D),
87 INTEL_E1000_ETHERNET_DEVICE(0x100E),
88 INTEL_E1000_ETHERNET_DEVICE(0x100F),
89 INTEL_E1000_ETHERNET_DEVICE(0x1010),
90 INTEL_E1000_ETHERNET_DEVICE(0x1011),
91 INTEL_E1000_ETHERNET_DEVICE(0x1012),
92 INTEL_E1000_ETHERNET_DEVICE(0x1013),
93 INTEL_E1000_ETHERNET_DEVICE(0x1014),
94 INTEL_E1000_ETHERNET_DEVICE(0x1015),
95 INTEL_E1000_ETHERNET_DEVICE(0x1016),
96 INTEL_E1000_ETHERNET_DEVICE(0x1017),
97 INTEL_E1000_ETHERNET_DEVICE(0x1018),
98 INTEL_E1000_ETHERNET_DEVICE(0x1019),
99 INTEL_E1000_ETHERNET_DEVICE(0x101D),
100 INTEL_E1000_ETHERNET_DEVICE(0x101E),
101 INTEL_E1000_ETHERNET_DEVICE(0x1026),
102 INTEL_E1000_ETHERNET_DEVICE(0x1027),
103 INTEL_E1000_ETHERNET_DEVICE(0x1028),
104 INTEL_E1000_ETHERNET_DEVICE(0x1075),
105 INTEL_E1000_ETHERNET_DEVICE(0x1076),
106 INTEL_E1000_ETHERNET_DEVICE(0x1077),
107 INTEL_E1000_ETHERNET_DEVICE(0x1078),
108 INTEL_E1000_ETHERNET_DEVICE(0x1079),
109 INTEL_E1000_ETHERNET_DEVICE(0x107A),
110 INTEL_E1000_ETHERNET_DEVICE(0x107B),
111 INTEL_E1000_ETHERNET_DEVICE(0x107C),
112 INTEL_E1000_ETHERNET_DEVICE(0x108A),
113 /* required last entry */
114 {0,}
115 };
116
117 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
118
119 int e1000_up(struct e1000_adapter *adapter);
120 void e1000_down(struct e1000_adapter *adapter);
121 void e1000_reset(struct e1000_adapter *adapter);
122 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
123 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
124 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
125 void e1000_free_tx_resources(struct e1000_adapter *adapter);
126 void e1000_free_rx_resources(struct e1000_adapter *adapter);
127 void e1000_update_stats(struct e1000_adapter *adapter);
128
129 /* Local Function Prototypes */
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
142 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
143 static void e1000_set_multi(struct net_device *netdev);
144 static void e1000_update_phy_info(unsigned long data);
145 static void e1000_watchdog(unsigned long data);
146 static void e1000_watchdog_task(struct e1000_adapter *adapter);
147 static void e1000_82547_tx_fifo_stall(unsigned long data);
148 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
149 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
150 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
151 static int e1000_set_mac(struct net_device *netdev, void *p);
152 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
153 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
154 #ifdef CONFIG_E1000_NAPI
155 static int e1000_clean(struct net_device *netdev, int *budget);
156 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
157 int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
160 #endif
161 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
162 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
163 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
164 int cmd);
165 void e1000_set_ethtool_ops(struct net_device *netdev);
166 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
167 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
168 static void e1000_tx_timeout(struct net_device *dev);
169 static void e1000_tx_timeout_task(struct net_device *dev);
170 static void e1000_smartspeed(struct e1000_adapter *adapter);
171 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
172 struct sk_buff *skb);
173
174 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
175 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
176 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
177 static void e1000_restore_vlan(struct e1000_adapter *adapter);
178
179 static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
180 static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
181 #ifdef CONFIG_PM
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void e1000_netpoll (struct net_device *netdev);
188 #endif
189
190 struct notifier_block e1000_notifier_reboot = {
191 .notifier_call = e1000_notify_reboot,
192 .next = NULL,
193 .priority = 0
194 };
195
196 /* Exported from other modules */
197
198 extern void e1000_check_options(struct e1000_adapter *adapter);
199
200 static struct pci_driver e1000_driver = {
201 .name = e1000_driver_name,
202 .id_table = e1000_pci_tbl,
203 .probe = e1000_probe,
204 .remove = __devexit_p(e1000_remove),
205 /* Power Managment Hooks */
206 #ifdef CONFIG_PM
207 .suspend = e1000_suspend,
208 .resume = e1000_resume
209 #endif
210 };
211
212 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
213 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
214 MODULE_LICENSE("GPL");
215 MODULE_VERSION(DRV_VERSION);
216
217 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
218 module_param(debug, int, 0);
219 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
220
221 /**
222 * e1000_init_module - Driver Registration Routine
223 *
224 * e1000_init_module is the first routine called when the driver is
225 * loaded. All it does is register with the PCI subsystem.
226 **/
227
228 static int __init
229 e1000_init_module(void)
230 {
231 int ret;
232 printk(KERN_INFO "%s - version %s\n",
233 e1000_driver_string, e1000_driver_version);
234
235 printk(KERN_INFO "%s\n", e1000_copyright);
236
237 ret = pci_module_init(&e1000_driver);
238 if(ret >= 0) {
239 register_reboot_notifier(&e1000_notifier_reboot);
240 }
241 return ret;
242 }
243
244 module_init(e1000_init_module);
245
246 /**
247 * e1000_exit_module - Driver Exit Cleanup Routine
248 *
249 * e1000_exit_module is called just before the driver is removed
250 * from memory.
251 **/
252
253 static void __exit
254 e1000_exit_module(void)
255 {
256 unregister_reboot_notifier(&e1000_notifier_reboot);
257 pci_unregister_driver(&e1000_driver);
258 }
259
260 module_exit(e1000_exit_module);
261
262 /**
263 * e1000_irq_disable - Mask off interrupt generation on the NIC
264 * @adapter: board private structure
265 **/
266
267 static inline void
268 e1000_irq_disable(struct e1000_adapter *adapter)
269 {
270 atomic_inc(&adapter->irq_sem);
271 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
272 E1000_WRITE_FLUSH(&adapter->hw);
273 synchronize_irq(adapter->pdev->irq);
274 }
275
276 /**
277 * e1000_irq_enable - Enable default interrupt generation settings
278 * @adapter: board private structure
279 **/
280
281 static inline void
282 e1000_irq_enable(struct e1000_adapter *adapter)
283 {
284 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
285 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
286 E1000_WRITE_FLUSH(&adapter->hw);
287 }
288 }
289
290 int
291 e1000_up(struct e1000_adapter *adapter)
292 {
293 struct net_device *netdev = adapter->netdev;
294 int err;
295
296 /* hardware has been reset, we need to reload some things */
297
298 /* Reset the PHY if it was previously powered down */
299 if(adapter->hw.media_type == e1000_media_type_copper) {
300 uint16_t mii_reg;
301 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
302 if(mii_reg & MII_CR_POWER_DOWN)
303 e1000_phy_reset(&adapter->hw);
304 }
305
306 e1000_set_multi(netdev);
307
308 e1000_restore_vlan(adapter);
309
310 e1000_configure_tx(adapter);
311 e1000_setup_rctl(adapter);
312 e1000_configure_rx(adapter);
313 e1000_alloc_rx_buffers(adapter);
314
315 #ifdef CONFIG_PCI_MSI
316 if(adapter->hw.mac_type > e1000_82547_rev_2) {
317 adapter->have_msi = TRUE;
318 if((err = pci_enable_msi(adapter->pdev))) {
319 DPRINTK(PROBE, ERR,
320 "Unable to allocate MSI interrupt Error: %d\n", err);
321 adapter->have_msi = FALSE;
322 }
323 }
324 #endif
325 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
326 SA_SHIRQ | SA_SAMPLE_RANDOM,
327 netdev->name, netdev)))
328 return err;
329
330 mod_timer(&adapter->watchdog_timer, jiffies);
331
332 #ifdef CONFIG_E1000_NAPI
333 netif_poll_enable(netdev);
334 #endif
335 e1000_irq_enable(adapter);
336
337 return 0;
338 }
339
340 void
341 e1000_down(struct e1000_adapter *adapter)
342 {
343 struct net_device *netdev = adapter->netdev;
344
345 e1000_irq_disable(adapter);
346 free_irq(adapter->pdev->irq, netdev);
347 #ifdef CONFIG_PCI_MSI
348 if(adapter->hw.mac_type > e1000_82547_rev_2 &&
349 adapter->have_msi == TRUE)
350 pci_disable_msi(adapter->pdev);
351 #endif
352 del_timer_sync(&adapter->tx_fifo_stall_timer);
353 del_timer_sync(&adapter->watchdog_timer);
354 del_timer_sync(&adapter->phy_info_timer);
355
356 #ifdef CONFIG_E1000_NAPI
357 netif_poll_disable(netdev);
358 #endif
359 adapter->link_speed = 0;
360 adapter->link_duplex = 0;
361 netif_carrier_off(netdev);
362 netif_stop_queue(netdev);
363
364 e1000_reset(adapter);
365 e1000_clean_tx_ring(adapter);
366 e1000_clean_rx_ring(adapter);
367
368 /* If WoL is not enabled
369 * Power down the PHY so no link is implied when interface is down */
370 if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
371 uint16_t mii_reg;
372 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
373 mii_reg |= MII_CR_POWER_DOWN;
374 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
375 }
376 }
377
378 void
379 e1000_reset(struct e1000_adapter *adapter)
380 {
381 uint32_t pba;
382
383 /* Repartition Pba for greater than 9k mtu
384 * To take effect CTRL.RST is required.
385 */
386
387 if(adapter->hw.mac_type < e1000_82547) {
388 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
389 pba = E1000_PBA_40K;
390 else
391 pba = E1000_PBA_48K;
392 } else {
393 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
394 pba = E1000_PBA_22K;
395 else
396 pba = E1000_PBA_30K;
397 adapter->tx_fifo_head = 0;
398 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
399 adapter->tx_fifo_size =
400 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
401 atomic_set(&adapter->tx_fifo_stall, 0);
402 }
403 E1000_WRITE_REG(&adapter->hw, PBA, pba);
404
405 /* flow control settings */
406 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
407 E1000_FC_HIGH_DIFF;
408 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
409 E1000_FC_LOW_DIFF;
410 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
411 adapter->hw.fc_send_xon = 1;
412 adapter->hw.fc = adapter->hw.original_fc;
413
414 e1000_reset_hw(&adapter->hw);
415 if(adapter->hw.mac_type >= e1000_82544)
416 E1000_WRITE_REG(&adapter->hw, WUC, 0);
417 if(e1000_init_hw(&adapter->hw))
418 DPRINTK(PROBE, ERR, "Hardware Error\n");
419
420 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
421 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
422
423 e1000_reset_adaptive(&adapter->hw);
424 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
425 }
426
427 /**
428 * e1000_probe - Device Initialization Routine
429 * @pdev: PCI device information struct
430 * @ent: entry in e1000_pci_tbl
431 *
432 * Returns 0 on success, negative on failure
433 *
434 * e1000_probe initializes an adapter identified by a pci_dev structure.
435 * The OS initialization, configuring of the adapter private structure,
436 * and a hardware reset occur.
437 **/
438
439 static int __devinit
440 e1000_probe(struct pci_dev *pdev,
441 const struct pci_device_id *ent)
442 {
443 struct net_device *netdev;
444 struct e1000_adapter *adapter;
445 static int cards_found = 0;
446 unsigned long mmio_start;
447 int mmio_len;
448 int pci_using_dac;
449 int i;
450 int err;
451 uint16_t eeprom_data;
452 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
453
454 if((err = pci_enable_device(pdev)))
455 return err;
456
457 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
458 pci_using_dac = 1;
459 } else {
460 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
461 E1000_ERR("No usable DMA configuration, aborting\n");
462 return err;
463 }
464 pci_using_dac = 0;
465 }
466
467 if((err = pci_request_regions(pdev, e1000_driver_name)))
468 return err;
469
470 pci_set_master(pdev);
471
472 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
473 if(!netdev) {
474 err = -ENOMEM;
475 goto err_alloc_etherdev;
476 }
477
478 SET_MODULE_OWNER(netdev);
479 SET_NETDEV_DEV(netdev, &pdev->dev);
480
481 pci_set_drvdata(pdev, netdev);
482 adapter = netdev->priv;
483 adapter->netdev = netdev;
484 adapter->pdev = pdev;
485 adapter->hw.back = adapter;
486 adapter->msg_enable = (1 << debug) - 1;
487
488 mmio_start = pci_resource_start(pdev, BAR_0);
489 mmio_len = pci_resource_len(pdev, BAR_0);
490
491 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
492 if(!adapter->hw.hw_addr) {
493 err = -EIO;
494 goto err_ioremap;
495 }
496
497 for(i = BAR_1; i <= BAR_5; i++) {
498 if(pci_resource_len(pdev, i) == 0)
499 continue;
500 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
501 adapter->hw.io_base = pci_resource_start(pdev, i);
502 break;
503 }
504 }
505
506 netdev->open = &e1000_open;
507 netdev->stop = &e1000_close;
508 netdev->hard_start_xmit = &e1000_xmit_frame;
509 netdev->get_stats = &e1000_get_stats;
510 netdev->set_multicast_list = &e1000_set_multi;
511 netdev->set_mac_address = &e1000_set_mac;
512 netdev->change_mtu = &e1000_change_mtu;
513 netdev->do_ioctl = &e1000_ioctl;
514 e1000_set_ethtool_ops(netdev);
515 netdev->tx_timeout = &e1000_tx_timeout;
516 netdev->watchdog_timeo = 5 * HZ;
517 #ifdef CONFIG_E1000_NAPI
518 netdev->poll = &e1000_clean;
519 netdev->weight = 64;
520 #endif
521 netdev->vlan_rx_register = e1000_vlan_rx_register;
522 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
523 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
524 #ifdef CONFIG_NET_POLL_CONTROLLER
525 netdev->poll_controller = e1000_netpoll;
526 #endif
527 strcpy(netdev->name, pci_name(pdev));
528
529 netdev->mem_start = mmio_start;
530 netdev->mem_end = mmio_start + mmio_len;
531 netdev->base_addr = adapter->hw.io_base;
532
533 adapter->bd_number = cards_found;
534
535 /* setup the private structure */
536
537 if((err = e1000_sw_init(adapter)))
538 goto err_sw_init;
539
540 if(adapter->hw.mac_type >= e1000_82543) {
541 netdev->features = NETIF_F_SG |
542 NETIF_F_HW_CSUM |
543 NETIF_F_HW_VLAN_TX |
544 NETIF_F_HW_VLAN_RX |
545 NETIF_F_HW_VLAN_FILTER;
546 }
547
548 #ifdef NETIF_F_TSO
549 if((adapter->hw.mac_type >= e1000_82544) &&
550 (adapter->hw.mac_type != e1000_82547))
551 netdev->features |= NETIF_F_TSO;
552 #endif
553 if(pci_using_dac)
554 netdev->features |= NETIF_F_HIGHDMA;
555
556 /* hard_start_xmit is safe against parallel locking */
557 netdev->features |= NETIF_F_LLTX;
558
559 /* before reading the EEPROM, reset the controller to
560 * put the device in a known good starting state */
561
562 e1000_reset_hw(&adapter->hw);
563
564 /* make sure the EEPROM is good */
565
566 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
567 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
568 err = -EIO;
569 goto err_eeprom;
570 }
571
572 /* copy the MAC address out of the EEPROM */
573
574 if (e1000_read_mac_addr(&adapter->hw))
575 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
576 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
577
578 if(!is_valid_ether_addr(netdev->dev_addr)) {
579 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
580 err = -EIO;
581 goto err_eeprom;
582 }
583
584 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
585
586 e1000_get_bus_info(&adapter->hw);
587
588 init_timer(&adapter->tx_fifo_stall_timer);
589 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
590 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
591
592 init_timer(&adapter->watchdog_timer);
593 adapter->watchdog_timer.function = &e1000_watchdog;
594 adapter->watchdog_timer.data = (unsigned long) adapter;
595
596 INIT_WORK(&adapter->watchdog_task,
597 (void (*)(void *))e1000_watchdog_task, adapter);
598
599 init_timer(&adapter->phy_info_timer);
600 adapter->phy_info_timer.function = &e1000_update_phy_info;
601 adapter->phy_info_timer.data = (unsigned long) adapter;
602
603 INIT_WORK(&adapter->tx_timeout_task,
604 (void (*)(void *))e1000_tx_timeout_task, netdev);
605
606 /* we're going to reset, so assume we have no link for now */
607
608 netif_carrier_off(netdev);
609 netif_stop_queue(netdev);
610
611 e1000_check_options(adapter);
612
613 /* Initial Wake on LAN setting
614 * If APM wake is enabled in the EEPROM,
615 * enable the ACPI Magic Packet filter
616 */
617
618 switch(adapter->hw.mac_type) {
619 case e1000_82542_rev2_0:
620 case e1000_82542_rev2_1:
621 case e1000_82543:
622 break;
623 case e1000_82544:
624 e1000_read_eeprom(&adapter->hw,
625 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
626 eeprom_apme_mask = E1000_EEPROM_82544_APM;
627 break;
628 case e1000_82546:
629 case e1000_82546_rev_3:
630 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
631 && (adapter->hw.media_type == e1000_media_type_copper)) {
632 e1000_read_eeprom(&adapter->hw,
633 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
634 break;
635 }
636 /* Fall Through */
637 default:
638 e1000_read_eeprom(&adapter->hw,
639 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
640 break;
641 }
642 if(eeprom_data & eeprom_apme_mask)
643 adapter->wol |= E1000_WUFC_MAG;
644
645 /* reset the hardware with the new settings */
646 e1000_reset(adapter);
647
648 strcpy(netdev->name, "eth%d");
649 if((err = register_netdev(netdev)))
650 goto err_register;
651
652 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
653
654 cards_found++;
655 return 0;
656
657 err_register:
658 err_sw_init:
659 err_eeprom:
660 iounmap(adapter->hw.hw_addr);
661 err_ioremap:
662 free_netdev(netdev);
663 err_alloc_etherdev:
664 pci_release_regions(pdev);
665 return err;
666 }
667
668 /**
669 * e1000_remove - Device Removal Routine
670 * @pdev: PCI device information struct
671 *
672 * e1000_remove is called by the PCI subsystem to alert the driver
673 * that it should release a PCI device. The could be caused by a
674 * Hot-Plug event, or because the driver is going to be removed from
675 * memory.
676 **/
677
678 static void __devexit
679 e1000_remove(struct pci_dev *pdev)
680 {
681 struct net_device *netdev = pci_get_drvdata(pdev);
682 struct e1000_adapter *adapter = netdev->priv;
683 uint32_t manc;
684
685 flush_scheduled_work();
686
687 if(adapter->hw.mac_type >= e1000_82540 &&
688 adapter->hw.media_type == e1000_media_type_copper) {
689 manc = E1000_READ_REG(&adapter->hw, MANC);
690 if(manc & E1000_MANC_SMBUS_EN) {
691 manc |= E1000_MANC_ARP_EN;
692 E1000_WRITE_REG(&adapter->hw, MANC, manc);
693 }
694 }
695
696 unregister_netdev(netdev);
697
698 e1000_phy_hw_reset(&adapter->hw);
699
700 iounmap(adapter->hw.hw_addr);
701 pci_release_regions(pdev);
702
703 free_netdev(netdev);
704
705 pci_disable_device(pdev);
706 }
707
708 /**
709 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
710 * @adapter: board private structure to initialize
711 *
712 * e1000_sw_init initializes the Adapter private data structure.
713 * Fields are initialized based on PCI device information and
714 * OS network device settings (MTU size).
715 **/
716
717 static int __devinit
718 e1000_sw_init(struct e1000_adapter *adapter)
719 {
720 struct e1000_hw *hw = &adapter->hw;
721 struct net_device *netdev = adapter->netdev;
722 struct pci_dev *pdev = adapter->pdev;
723
724 /* PCI config space info */
725
726 hw->vendor_id = pdev->vendor;
727 hw->device_id = pdev->device;
728 hw->subsystem_vendor_id = pdev->subsystem_vendor;
729 hw->subsystem_id = pdev->subsystem_device;
730
731 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
732
733 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
734
735 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
736 hw->max_frame_size = netdev->mtu +
737 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
738 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
739
740 /* identify the MAC */
741
742 if(e1000_set_mac_type(hw)) {
743 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
744 return -EIO;
745 }
746
747 /* initialize eeprom parameters */
748
749 e1000_init_eeprom_params(hw);
750
751 switch(hw->mac_type) {
752 default:
753 break;
754 case e1000_82541:
755 case e1000_82547:
756 case e1000_82541_rev_2:
757 case e1000_82547_rev_2:
758 hw->phy_init_script = 1;
759 break;
760 }
761
762 e1000_set_media_type(hw);
763
764 hw->wait_autoneg_complete = FALSE;
765 hw->tbi_compatibility_en = TRUE;
766 hw->adaptive_ifs = TRUE;
767
768 /* Copper options */
769
770 if(hw->media_type == e1000_media_type_copper) {
771 hw->mdix = AUTO_ALL_MODES;
772 hw->disable_polarity_correction = FALSE;
773 hw->master_slave = E1000_MASTER_SLAVE;
774 }
775
776 atomic_set(&adapter->irq_sem, 1);
777 spin_lock_init(&adapter->stats_lock);
778 spin_lock_init(&adapter->tx_lock);
779
780 return 0;
781 }
782
783 /**
784 * e1000_open - Called when a network interface is made active
785 * @netdev: network interface device structure
786 *
787 * Returns 0 on success, negative value on failure
788 *
789 * The open entry point is called when a network interface is made
790 * active by the system (IFF_UP). At this point all resources needed
791 * for transmit and receive operations are allocated, the interrupt
792 * handler is registered with the OS, the watchdog timer is started,
793 * and the stack is notified that the interface is ready.
794 **/
795
796 static int
797 e1000_open(struct net_device *netdev)
798 {
799 struct e1000_adapter *adapter = netdev->priv;
800 int err;
801
802 /* allocate transmit descriptors */
803
804 if((err = e1000_setup_tx_resources(adapter)))
805 goto err_setup_tx;
806
807 /* allocate receive descriptors */
808
809 if((err = e1000_setup_rx_resources(adapter)))
810 goto err_setup_rx;
811
812 if((err = e1000_up(adapter)))
813 goto err_up;
814
815 return E1000_SUCCESS;
816
817 err_up:
818 e1000_free_rx_resources(adapter);
819 err_setup_rx:
820 e1000_free_tx_resources(adapter);
821 err_setup_tx:
822 e1000_reset(adapter);
823
824 return err;
825 }
826
827 /**
828 * e1000_close - Disables a network interface
829 * @netdev: network interface device structure
830 *
831 * Returns 0, this is not allowed to fail
832 *
833 * The close entry point is called when an interface is de-activated
834 * by the OS. The hardware is still under the drivers control, but
835 * needs to be disabled. A global MAC reset is issued to stop the
836 * hardware, and all transmit and receive resources are freed.
837 **/
838
839 static int
840 e1000_close(struct net_device *netdev)
841 {
842 struct e1000_adapter *adapter = netdev->priv;
843
844 e1000_down(adapter);
845
846 e1000_free_tx_resources(adapter);
847 e1000_free_rx_resources(adapter);
848
849 return 0;
850 }
851
852 /**
853 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
854 * @adapter: address of board private structure
855 * @begin: address of beginning of memory
856 * @end: address of end of memory
857 **/
858 static inline boolean_t
859 e1000_check_64k_bound(struct e1000_adapter *adapter,
860 void *start, unsigned long len)
861 {
862 unsigned long begin = (unsigned long) start;
863 unsigned long end = begin + len;
864
865 /* first rev 82545 and 82546 need to not allow any memory
866 * write location to cross a 64k boundary due to errata 23 */
867 if (adapter->hw.mac_type == e1000_82545 ||
868 adapter->hw.mac_type == e1000_82546 ) {
869
870 /* check buffer doesn't cross 64kB */
871 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
872 }
873
874 return TRUE;
875 }
876
877 /**
878 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
879 * @adapter: board private structure
880 *
881 * Return 0 on success, negative on failure
882 **/
883
884 int
885 e1000_setup_tx_resources(struct e1000_adapter *adapter)
886 {
887 struct e1000_desc_ring *txdr = &adapter->tx_ring;
888 struct pci_dev *pdev = adapter->pdev;
889 int size;
890
891 size = sizeof(struct e1000_buffer) * txdr->count;
892 txdr->buffer_info = vmalloc(size);
893 if(!txdr->buffer_info) {
894 DPRINTK(PROBE, ERR,
895 "Unable to Allocate Memory for the Transmit descriptor ring\n");
896 return -ENOMEM;
897 }
898 memset(txdr->buffer_info, 0, size);
899
900 /* round up to nearest 4K */
901
902 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
903 E1000_ROUNDUP(txdr->size, 4096);
904
905 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
906 if(!txdr->desc) {
907 setup_tx_desc_die:
908 DPRINTK(PROBE, ERR,
909 "Unable to Allocate Memory for the Transmit descriptor ring\n");
910 vfree(txdr->buffer_info);
911 return -ENOMEM;
912 }
913
914 /* fix for errata 23, cant cross 64kB boundary */
915 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
916 void *olddesc = txdr->desc;
917 dma_addr_t olddma = txdr->dma;
918 DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
919 txdr->size, txdr->desc);
920 /* try again, without freeing the previous */
921 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
922 /* failed allocation, critial failure */
923 if(!txdr->desc) {
924 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
925 goto setup_tx_desc_die;
926 }
927
928 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
929 /* give up */
930 pci_free_consistent(pdev, txdr->size,
931 txdr->desc, txdr->dma);
932 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
933 DPRINTK(PROBE, ERR,
934 "Unable to Allocate aligned Memory for the Transmit"
935 " descriptor ring\n");
936 vfree(txdr->buffer_info);
937 return -ENOMEM;
938 } else {
939 /* free old, move on with the new one since its okay */
940 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
941 }
942 }
943 memset(txdr->desc, 0, txdr->size);
944
945 txdr->next_to_use = 0;
946 txdr->next_to_clean = 0;
947
948 return 0;
949 }
950
951 /**
952 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
953 * @adapter: board private structure
954 *
955 * Configure the Tx unit of the MAC after a reset.
956 **/
957
958 static void
959 e1000_configure_tx(struct e1000_adapter *adapter)
960 {
961 uint64_t tdba = adapter->tx_ring.dma;
962 uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
963 uint32_t tctl, tipg;
964
965 E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
966 E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
967
968 E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
969
970 /* Setup the HW Tx Head and Tail descriptor pointers */
971
972 E1000_WRITE_REG(&adapter->hw, TDH, 0);
973 E1000_WRITE_REG(&adapter->hw, TDT, 0);
974
975 /* Set the default values for the Tx Inter Packet Gap timer */
976
977 switch (adapter->hw.mac_type) {
978 case e1000_82542_rev2_0:
979 case e1000_82542_rev2_1:
980 tipg = DEFAULT_82542_TIPG_IPGT;
981 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
982 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
983 break;
984 default:
985 if(adapter->hw.media_type == e1000_media_type_fiber ||
986 adapter->hw.media_type == e1000_media_type_internal_serdes)
987 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
988 else
989 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
990 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
991 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
992 }
993 E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
994
995 /* Set the Tx Interrupt Delay register */
996
997 E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
998 if(adapter->hw.mac_type >= e1000_82540)
999 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
1000
1001 /* Program the Transmit Control Register */
1002
1003 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1004
1005 tctl &= ~E1000_TCTL_CT;
1006 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1007 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1008
1009 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1010
1011 e1000_config_collision_dist(&adapter->hw);
1012
1013 /* Setup Transmit Descriptor Settings for eop descriptor */
1014 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1015 E1000_TXD_CMD_IFCS;
1016
1017 if(adapter->hw.mac_type < e1000_82543)
1018 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1019 else
1020 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1021
1022 /* Cache if we're 82544 running in PCI-X because we'll
1023 * need this to apply a workaround later in the send path. */
1024 if(adapter->hw.mac_type == e1000_82544 &&
1025 adapter->hw.bus_type == e1000_bus_type_pcix)
1026 adapter->pcix_82544 = 1;
1027 }
1028
1029 /**
1030 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1031 * @adapter: board private structure
1032 *
1033 * Returns 0 on success, negative on failure
1034 **/
1035
1036 int
1037 e1000_setup_rx_resources(struct e1000_adapter *adapter)
1038 {
1039 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1040 struct pci_dev *pdev = adapter->pdev;
1041 int size;
1042
1043 size = sizeof(struct e1000_buffer) * rxdr->count;
1044 rxdr->buffer_info = vmalloc(size);
1045 if(!rxdr->buffer_info) {
1046 DPRINTK(PROBE, ERR,
1047 "Unable to Allocate Memory for the Recieve descriptor ring\n");
1048 return -ENOMEM;
1049 }
1050 memset(rxdr->buffer_info, 0, size);
1051
1052 /* Round up to nearest 4K */
1053
1054 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1055 E1000_ROUNDUP(rxdr->size, 4096);
1056
1057 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1058
1059 if(!rxdr->desc) {
1060 setup_rx_desc_die:
1061 DPRINTK(PROBE, ERR,
1062 "Unble to Allocate Memory for the Recieve descriptor ring\n");
1063 vfree(rxdr->buffer_info);
1064 return -ENOMEM;
1065 }
1066
1067 /* fix for errata 23, cant cross 64kB boundary */
1068 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1069 void *olddesc = rxdr->desc;
1070 dma_addr_t olddma = rxdr->dma;
1071 DPRINTK(RX_ERR,ERR,
1072 "rxdr align check failed: %u bytes at %p\n",
1073 rxdr->size, rxdr->desc);
1074 /* try again, without freeing the previous */
1075 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1076 /* failed allocation, critial failure */
1077 if(!rxdr->desc) {
1078 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1079 goto setup_rx_desc_die;
1080 }
1081
1082 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1083 /* give up */
1084 pci_free_consistent(pdev, rxdr->size,
1085 rxdr->desc, rxdr->dma);
1086 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1087 DPRINTK(PROBE, ERR,
1088 "Unable to Allocate aligned Memory for the"
1089 " Receive descriptor ring\n");
1090 vfree(rxdr->buffer_info);
1091 return -ENOMEM;
1092 } else {
1093 /* free old, move on with the new one since its okay */
1094 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1095 }
1096 }
1097 memset(rxdr->desc, 0, rxdr->size);
1098
1099 rxdr->next_to_clean = 0;
1100 rxdr->next_to_use = 0;
1101
1102 return 0;
1103 }
1104
1105 /**
1106 * e1000_setup_rctl - configure the receive control register
1107 * @adapter: Board private structure
1108 **/
1109
1110 static void
1111 e1000_setup_rctl(struct e1000_adapter *adapter)
1112 {
1113 uint32_t rctl;
1114
1115 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1116
1117 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1118
1119 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1120 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1121 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1122
1123 if(adapter->hw.tbi_compatibility_on == 1)
1124 rctl |= E1000_RCTL_SBP;
1125 else
1126 rctl &= ~E1000_RCTL_SBP;
1127
1128 /* Setup buffer sizes */
1129 rctl &= ~(E1000_RCTL_SZ_4096);
1130 rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
1131 switch (adapter->rx_buffer_len) {
1132 case E1000_RXBUFFER_2048:
1133 default:
1134 rctl |= E1000_RCTL_SZ_2048;
1135 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
1136 break;
1137 case E1000_RXBUFFER_4096:
1138 rctl |= E1000_RCTL_SZ_4096;
1139 break;
1140 case E1000_RXBUFFER_8192:
1141 rctl |= E1000_RCTL_SZ_8192;
1142 break;
1143 case E1000_RXBUFFER_16384:
1144 rctl |= E1000_RCTL_SZ_16384;
1145 break;
1146 }
1147
1148 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1149 }
1150
1151 /**
1152 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1153 * @adapter: board private structure
1154 *
1155 * Configure the Rx unit of the MAC after a reset.
1156 **/
1157
1158 static void
1159 e1000_configure_rx(struct e1000_adapter *adapter)
1160 {
1161 uint64_t rdba = adapter->rx_ring.dma;
1162 uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1163 uint32_t rctl;
1164 uint32_t rxcsum;
1165
1166 /* disable receives while setting up the descriptors */
1167 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1168 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1169
1170 /* set the Receive Delay Timer Register */
1171 E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1172
1173 if(adapter->hw.mac_type >= e1000_82540) {
1174 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1175 if(adapter->itr > 1)
1176 E1000_WRITE_REG(&adapter->hw, ITR,
1177 1000000000 / (adapter->itr * 256));
1178 }
1179
1180 /* Setup the Base and Length of the Rx Descriptor Ring */
1181 E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1182 E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1183
1184 E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1185
1186 /* Setup the HW Rx Head and Tail Descriptor Pointers */
1187 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1188 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1189
1190 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1191 if((adapter->hw.mac_type >= e1000_82543) &&
1192 (adapter->rx_csum == TRUE)) {
1193 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1194 rxcsum |= E1000_RXCSUM_TUOFL;
1195 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1196 }
1197
1198 /* Enable Receives */
1199 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1200 }
1201
1202 /**
1203 * e1000_free_tx_resources - Free Tx Resources
1204 * @adapter: board private structure
1205 *
1206 * Free all transmit software resources
1207 **/
1208
1209 void
1210 e1000_free_tx_resources(struct e1000_adapter *adapter)
1211 {
1212 struct pci_dev *pdev = adapter->pdev;
1213
1214 e1000_clean_tx_ring(adapter);
1215
1216 vfree(adapter->tx_ring.buffer_info);
1217 adapter->tx_ring.buffer_info = NULL;
1218
1219 pci_free_consistent(pdev, adapter->tx_ring.size,
1220 adapter->tx_ring.desc, adapter->tx_ring.dma);
1221
1222 adapter->tx_ring.desc = NULL;
1223 }
1224
1225 static inline void
1226 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1227 struct e1000_buffer *buffer_info)
1228 {
1229 struct pci_dev *pdev = adapter->pdev;
1230
1231 if(buffer_info->dma) {
1232 pci_unmap_page(pdev,
1233 buffer_info->dma,
1234 buffer_info->length,
1235 PCI_DMA_TODEVICE);
1236 buffer_info->dma = 0;
1237 }
1238 if(buffer_info->skb) {
1239 dev_kfree_skb_any(buffer_info->skb);
1240 buffer_info->skb = NULL;
1241 }
1242 }
1243
1244 /**
1245 * e1000_clean_tx_ring - Free Tx Buffers
1246 * @adapter: board private structure
1247 **/
1248
1249 static void
1250 e1000_clean_tx_ring(struct e1000_adapter *adapter)
1251 {
1252 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1253 struct e1000_buffer *buffer_info;
1254 unsigned long size;
1255 unsigned int i;
1256
1257 /* Free all the Tx ring sk_buffs */
1258
1259 if (likely(adapter->previous_buffer_info.skb != NULL)) {
1260 e1000_unmap_and_free_tx_resource(adapter,
1261 &adapter->previous_buffer_info);
1262 }
1263
1264 for(i = 0; i < tx_ring->count; i++) {
1265 buffer_info = &tx_ring->buffer_info[i];
1266 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1267 }
1268
1269 size = sizeof(struct e1000_buffer) * tx_ring->count;
1270 memset(tx_ring->buffer_info, 0, size);
1271
1272 /* Zero out the descriptor ring */
1273
1274 memset(tx_ring->desc, 0, tx_ring->size);
1275
1276 tx_ring->next_to_use = 0;
1277 tx_ring->next_to_clean = 0;
1278
1279 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1280 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1281 }
1282
1283 /**
1284 * e1000_free_rx_resources - Free Rx Resources
1285 * @adapter: board private structure
1286 *
1287 * Free all receive software resources
1288 **/
1289
1290 void
1291 e1000_free_rx_resources(struct e1000_adapter *adapter)
1292 {
1293 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1294 struct pci_dev *pdev = adapter->pdev;
1295
1296 e1000_clean_rx_ring(adapter);
1297
1298 vfree(rx_ring->buffer_info);
1299 rx_ring->buffer_info = NULL;
1300
1301 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1302
1303 rx_ring->desc = NULL;
1304 }
1305
1306 /**
1307 * e1000_clean_rx_ring - Free Rx Buffers
1308 * @adapter: board private structure
1309 **/
1310
1311 static void
1312 e1000_clean_rx_ring(struct e1000_adapter *adapter)
1313 {
1314 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1315 struct e1000_buffer *buffer_info;
1316 struct pci_dev *pdev = adapter->pdev;
1317 unsigned long size;
1318 unsigned int i;
1319
1320 /* Free all the Rx ring sk_buffs */
1321
1322 for(i = 0; i < rx_ring->count; i++) {
1323 buffer_info = &rx_ring->buffer_info[i];
1324 if(buffer_info->skb) {
1325
1326 pci_unmap_single(pdev,
1327 buffer_info->dma,
1328 buffer_info->length,
1329 PCI_DMA_FROMDEVICE);
1330
1331 dev_kfree_skb(buffer_info->skb);
1332 buffer_info->skb = NULL;
1333 }
1334 }
1335
1336 size = sizeof(struct e1000_buffer) * rx_ring->count;
1337 memset(rx_ring->buffer_info, 0, size);
1338
1339 /* Zero out the descriptor ring */
1340
1341 memset(rx_ring->desc, 0, rx_ring->size);
1342
1343 rx_ring->next_to_clean = 0;
1344 rx_ring->next_to_use = 0;
1345
1346 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1347 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1348 }
1349
1350 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1351 * and memory write and invalidate disabled for certain operations
1352 */
1353 static void
1354 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1355 {
1356 struct net_device *netdev = adapter->netdev;
1357 uint32_t rctl;
1358
1359 e1000_pci_clear_mwi(&adapter->hw);
1360
1361 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1362 rctl |= E1000_RCTL_RST;
1363 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1364 E1000_WRITE_FLUSH(&adapter->hw);
1365 mdelay(5);
1366
1367 if(netif_running(netdev))
1368 e1000_clean_rx_ring(adapter);
1369 }
1370
1371 static void
1372 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1373 {
1374 struct net_device *netdev = adapter->netdev;
1375 uint32_t rctl;
1376
1377 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1378 rctl &= ~E1000_RCTL_RST;
1379 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1380 E1000_WRITE_FLUSH(&adapter->hw);
1381 mdelay(5);
1382
1383 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1384 e1000_pci_set_mwi(&adapter->hw);
1385
1386 if(netif_running(netdev)) {
1387 e1000_configure_rx(adapter);
1388 e1000_alloc_rx_buffers(adapter);
1389 }
1390 }
1391
1392 /**
1393 * e1000_set_mac - Change the Ethernet Address of the NIC
1394 * @netdev: network interface device structure
1395 * @p: pointer to an address structure
1396 *
1397 * Returns 0 on success, negative on failure
1398 **/
1399
1400 static int
1401 e1000_set_mac(struct net_device *netdev, void *p)
1402 {
1403 struct e1000_adapter *adapter = netdev->priv;
1404 struct sockaddr *addr = p;
1405
1406 if(!is_valid_ether_addr(addr->sa_data))
1407 return -EADDRNOTAVAIL;
1408
1409 /* 82542 2.0 needs to be in reset to write receive address registers */
1410
1411 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1412 e1000_enter_82542_rst(adapter);
1413
1414 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1415 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1416
1417 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1418
1419 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1420 e1000_leave_82542_rst(adapter);
1421
1422 return 0;
1423 }
1424
1425 /**
1426 * e1000_set_multi - Multicast and Promiscuous mode set
1427 * @netdev: network interface device structure
1428 *
1429 * The set_multi entry point is called whenever the multicast address
1430 * list or the network interface flags are updated. This routine is
1431 * responsible for configuring the hardware for proper multicast,
1432 * promiscuous mode, and all-multi behavior.
1433 **/
1434
1435 static void
1436 e1000_set_multi(struct net_device *netdev)
1437 {
1438 struct e1000_adapter *adapter = netdev->priv;
1439 struct e1000_hw *hw = &adapter->hw;
1440 struct dev_mc_list *mc_ptr;
1441 uint32_t rctl;
1442 uint32_t hash_value;
1443 int i;
1444 unsigned long flags;
1445
1446 /* Check for Promiscuous and All Multicast modes */
1447
1448 spin_lock_irqsave(&adapter->tx_lock, flags);
1449
1450 rctl = E1000_READ_REG(hw, RCTL);
1451
1452 if(netdev->flags & IFF_PROMISC) {
1453 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1454 } else if(netdev->flags & IFF_ALLMULTI) {
1455 rctl |= E1000_RCTL_MPE;
1456 rctl &= ~E1000_RCTL_UPE;
1457 } else {
1458 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1459 }
1460
1461 E1000_WRITE_REG(hw, RCTL, rctl);
1462
1463 /* 82542 2.0 needs to be in reset to write receive address registers */
1464
1465 if(hw->mac_type == e1000_82542_rev2_0)
1466 e1000_enter_82542_rst(adapter);
1467
1468 /* load the first 14 multicast address into the exact filters 1-14
1469 * RAR 0 is used for the station MAC adddress
1470 * if there are not 14 addresses, go ahead and clear the filters
1471 */
1472 mc_ptr = netdev->mc_list;
1473
1474 for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1475 if(mc_ptr) {
1476 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1477 mc_ptr = mc_ptr->next;
1478 } else {
1479 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1480 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1481 }
1482 }
1483
1484 /* clear the old settings from the multicast hash table */
1485
1486 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1487 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1488
1489 /* load any remaining addresses into the hash table */
1490
1491 for(; mc_ptr; mc_ptr = mc_ptr->next) {
1492 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1493 e1000_mta_set(hw, hash_value);
1494 }
1495
1496 if(hw->mac_type == e1000_82542_rev2_0)
1497 e1000_leave_82542_rst(adapter);
1498
1499 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1500 }
1501
1502 /* Need to wait a few seconds after link up to get diagnostic information from
1503 * the phy */
1504
1505 static void
1506 e1000_update_phy_info(unsigned long data)
1507 {
1508 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1509 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1510 }
1511
1512 /**
1513 * e1000_82547_tx_fifo_stall - Timer Call-back
1514 * @data: pointer to adapter cast into an unsigned long
1515 **/
1516
1517 static void
1518 e1000_82547_tx_fifo_stall(unsigned long data)
1519 {
1520 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1521 struct net_device *netdev = adapter->netdev;
1522 uint32_t tctl;
1523
1524 if(atomic_read(&adapter->tx_fifo_stall)) {
1525 if((E1000_READ_REG(&adapter->hw, TDT) ==
1526 E1000_READ_REG(&adapter->hw, TDH)) &&
1527 (E1000_READ_REG(&adapter->hw, TDFT) ==
1528 E1000_READ_REG(&adapter->hw, TDFH)) &&
1529 (E1000_READ_REG(&adapter->hw, TDFTS) ==
1530 E1000_READ_REG(&adapter->hw, TDFHS))) {
1531 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1532 E1000_WRITE_REG(&adapter->hw, TCTL,
1533 tctl & ~E1000_TCTL_EN);
1534 E1000_WRITE_REG(&adapter->hw, TDFT,
1535 adapter->tx_head_addr);
1536 E1000_WRITE_REG(&adapter->hw, TDFH,
1537 adapter->tx_head_addr);
1538 E1000_WRITE_REG(&adapter->hw, TDFTS,
1539 adapter->tx_head_addr);
1540 E1000_WRITE_REG(&adapter->hw, TDFHS,
1541 adapter->tx_head_addr);
1542 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1543 E1000_WRITE_FLUSH(&adapter->hw);
1544
1545 adapter->tx_fifo_head = 0;
1546 atomic_set(&adapter->tx_fifo_stall, 0);
1547 netif_wake_queue(netdev);
1548 } else {
1549 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1550 }
1551 }
1552 }
1553
1554 /**
1555 * e1000_watchdog - Timer Call-back
1556 * @data: pointer to adapter cast into an unsigned long
1557 **/
1558 static void
1559 e1000_watchdog(unsigned long data)
1560 {
1561 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1562
1563 /* Do the rest outside of interrupt context */
1564 schedule_work(&adapter->watchdog_task);
1565 }
1566
1567 static void
1568 e1000_watchdog_task(struct e1000_adapter *adapter)
1569 {
1570 struct net_device *netdev = adapter->netdev;
1571 struct e1000_desc_ring *txdr = &adapter->tx_ring;
1572 uint32_t link;
1573
1574 e1000_check_for_link(&adapter->hw);
1575
1576 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1577 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1578 link = !adapter->hw.serdes_link_down;
1579 else
1580 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1581
1582 if(link) {
1583 if(!netif_carrier_ok(netdev)) {
1584 e1000_get_speed_and_duplex(&adapter->hw,
1585 &adapter->link_speed,
1586 &adapter->link_duplex);
1587
1588 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1589 adapter->link_speed,
1590 adapter->link_duplex == FULL_DUPLEX ?
1591 "Full Duplex" : "Half Duplex");
1592
1593 netif_carrier_on(netdev);
1594 netif_wake_queue(netdev);
1595 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1596 adapter->smartspeed = 0;
1597 }
1598 } else {
1599 if(netif_carrier_ok(netdev)) {
1600 adapter->link_speed = 0;
1601 adapter->link_duplex = 0;
1602 DPRINTK(LINK, INFO, "NIC Link is Down\n");
1603 netif_carrier_off(netdev);
1604 netif_stop_queue(netdev);
1605 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1606 }
1607
1608 e1000_smartspeed(adapter);
1609 }
1610
1611 e1000_update_stats(adapter);
1612
1613 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1614 adapter->tpt_old = adapter->stats.tpt;
1615 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1616 adapter->colc_old = adapter->stats.colc;
1617
1618 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1619 adapter->gorcl_old = adapter->stats.gorcl;
1620 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1621 adapter->gotcl_old = adapter->stats.gotcl;
1622
1623 e1000_update_adaptive(&adapter->hw);
1624
1625 if(!netif_carrier_ok(netdev)) {
1626 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1627 /* We've lost link, so the controller stops DMA,
1628 * but we've got queued Tx work that's never going
1629 * to get done, so reset controller to flush Tx.
1630 * (Do the reset outside of interrupt context). */
1631 schedule_work(&adapter->tx_timeout_task);
1632 }
1633 }
1634
1635 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1636 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1637 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1638 * asymmetrical Tx or Rx gets ITR=8000; everyone
1639 * else is between 2000-8000. */
1640 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1641 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
1642 adapter->gotcl - adapter->gorcl :
1643 adapter->gorcl - adapter->gotcl) / 10000;
1644 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1645 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1646 }
1647
1648 /* Cause software interrupt to ensure rx ring is cleaned */
1649 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1650
1651 /* Force detection of hung controller every watchdog period*/
1652 adapter->detect_tx_hung = TRUE;
1653
1654 /* Reset the timer */
1655 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1656 }
1657
1658 #define E1000_TX_FLAGS_CSUM 0x00000001
1659 #define E1000_TX_FLAGS_VLAN 0x00000002
1660 #define E1000_TX_FLAGS_TSO 0x00000004
1661 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
1662 #define E1000_TX_FLAGS_VLAN_SHIFT 16
1663
1664 static inline int
1665 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1666 {
1667 #ifdef NETIF_F_TSO
1668 struct e1000_context_desc *context_desc;
1669 unsigned int i;
1670 uint32_t cmd_length = 0;
1671 uint16_t ipcse, tucse, mss;
1672 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1673 int err;
1674
1675 if(skb_shinfo(skb)->tso_size) {
1676 if (skb_header_cloned(skb)) {
1677 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1678 if (err)
1679 return err;
1680 }
1681
1682 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1683 mss = skb_shinfo(skb)->tso_size;
1684 skb->nh.iph->tot_len = 0;
1685 skb->nh.iph->check = 0;
1686 skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
1687 skb->nh.iph->daddr,
1688 0,
1689 IPPROTO_TCP,
1690 0);
1691 ipcss = skb->nh.raw - skb->data;
1692 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1693 ipcse = skb->h.raw - skb->data - 1;
1694 tucss = skb->h.raw - skb->data;
1695 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1696 tucse = 0;
1697
1698 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1699 E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
1700 (skb->len - (hdr_len)));
1701
1702 i = adapter->tx_ring.next_to_use;
1703 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1704
1705 context_desc->lower_setup.ip_fields.ipcss = ipcss;
1706 context_desc->lower_setup.ip_fields.ipcso = ipcso;
1707 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
1708 context_desc->upper_setup.tcp_fields.tucss = tucss;
1709 context_desc->upper_setup.tcp_fields.tucso = tucso;
1710 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1711 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
1712 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1713 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1714
1715 if(++i == adapter->tx_ring.count) i = 0;
1716 adapter->tx_ring.next_to_use = i;
1717
1718 return 1;
1719 }
1720 #endif
1721
1722 return 0;
1723 }
1724
1725 static inline boolean_t
1726 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1727 {
1728 struct e1000_context_desc *context_desc;
1729 unsigned int i;
1730 uint8_t css;
1731
1732 if(likely(skb->ip_summed == CHECKSUM_HW)) {
1733 css = skb->h.raw - skb->data;
1734
1735 i = adapter->tx_ring.next_to_use;
1736 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1737
1738 context_desc->upper_setup.tcp_fields.tucss = css;
1739 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1740 context_desc->upper_setup.tcp_fields.tucse = 0;
1741 context_desc->tcp_seg_setup.data = 0;
1742 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1743
1744 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1745 adapter->tx_ring.next_to_use = i;
1746
1747 return TRUE;
1748 }
1749
1750 return FALSE;
1751 }
1752
1753 #define E1000_MAX_TXD_PWR 12
1754 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
1755
1756 static inline int
1757 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1758 unsigned int first, unsigned int max_per_txd,
1759 unsigned int nr_frags, unsigned int mss)
1760 {
1761 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1762 struct e1000_buffer *buffer_info;
1763 unsigned int len = skb->len;
1764 unsigned int offset = 0, size, count = 0, i;
1765 unsigned int f;
1766 len -= skb->data_len;
1767
1768 i = tx_ring->next_to_use;
1769
1770 while(len) {
1771 buffer_info = &tx_ring->buffer_info[i];
1772 size = min(len, max_per_txd);
1773 #ifdef NETIF_F_TSO
1774 /* Workaround for premature desc write-backs
1775 * in TSO mode. Append 4-byte sentinel desc */
1776 if(unlikely(mss && !nr_frags && size == len && size > 8))
1777 size -= 4;
1778 #endif
1779 /* Workaround for potential 82544 hang in PCI-X. Avoid
1780 * terminating buffers within evenly-aligned dwords. */
1781 if(unlikely(adapter->pcix_82544 &&
1782 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
1783 size > 4))
1784 size -= 4;
1785
1786 buffer_info->length = size;
1787 buffer_info->dma =
1788 pci_map_single(adapter->pdev,
1789 skb->data + offset,
1790 size,
1791 PCI_DMA_TODEVICE);
1792 buffer_info->time_stamp = jiffies;
1793
1794 len -= size;
1795 offset += size;
1796 count++;
1797 if(unlikely(++i == tx_ring->count)) i = 0;
1798 }
1799
1800 for(f = 0; f < nr_frags; f++) {
1801 struct skb_frag_struct *frag;
1802
1803 frag = &skb_shinfo(skb)->frags[f];
1804 len = frag->size;
1805 offset = frag->page_offset;
1806
1807 while(len) {
1808 buffer_info = &tx_ring->buffer_info[i];
1809 size = min(len, max_per_txd);
1810 #ifdef NETIF_F_TSO
1811 /* Workaround for premature desc write-backs
1812 * in TSO mode. Append 4-byte sentinel desc */
1813 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
1814 size -= 4;
1815 #endif
1816 /* Workaround for potential 82544 hang in PCI-X.
1817 * Avoid terminating buffers within evenly-aligned
1818 * dwords. */
1819 if(unlikely(adapter->pcix_82544 &&
1820 !((unsigned long)(frag->page+offset+size-1) & 4) &&
1821 size > 4))
1822 size -= 4;
1823
1824 buffer_info->length = size;
1825 buffer_info->dma =
1826 pci_map_page(adapter->pdev,
1827 frag->page,
1828 offset,
1829 size,
1830 PCI_DMA_TODEVICE);
1831 buffer_info->time_stamp = jiffies;
1832
1833 len -= size;
1834 offset += size;
1835 count++;
1836 if(unlikely(++i == tx_ring->count)) i = 0;
1837 }
1838 }
1839
1840 i = (i == 0) ? tx_ring->count - 1 : i - 1;
1841 tx_ring->buffer_info[i].skb = skb;
1842 tx_ring->buffer_info[first].next_to_watch = i;
1843
1844 return count;
1845 }
1846
1847 static inline void
1848 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
1849 {
1850 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1851 struct e1000_tx_desc *tx_desc = NULL;
1852 struct e1000_buffer *buffer_info;
1853 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1854 unsigned int i;
1855
1856 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1857 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
1858 E1000_TXD_CMD_TSE;
1859 txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
1860 }
1861
1862 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1863 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
1864 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
1865 }
1866
1867 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1868 txd_lower |= E1000_TXD_CMD_VLE;
1869 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
1870 }
1871
1872 i = tx_ring->next_to_use;
1873
1874 while(count--) {
1875 buffer_info = &tx_ring->buffer_info[i];
1876 tx_desc = E1000_TX_DESC(*tx_ring, i);
1877 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1878 tx_desc->lower.data =
1879 cpu_to_le32(txd_lower | buffer_info->length);
1880 tx_desc->upper.data = cpu_to_le32(txd_upper);
1881 if(unlikely(++i == tx_ring->count)) i = 0;
1882 }
1883
1884 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
1885
1886 /* Force memory writes to complete before letting h/w
1887 * know there are new descriptors to fetch. (Only
1888 * applicable for weak-ordered memory model archs,
1889 * such as IA-64). */
1890 wmb();
1891
1892 tx_ring->next_to_use = i;
1893 E1000_WRITE_REG(&adapter->hw, TDT, i);
1894 }
1895
1896 /**
1897 * 82547 workaround to avoid controller hang in half-duplex environment.
1898 * The workaround is to avoid queuing a large packet that would span
1899 * the internal Tx FIFO ring boundary by notifying the stack to resend
1900 * the packet at a later time. This gives the Tx FIFO an opportunity to
1901 * flush all packets. When that occurs, we reset the Tx FIFO pointers
1902 * to the beginning of the Tx FIFO.
1903 **/
1904
1905 #define E1000_FIFO_HDR 0x10
1906 #define E1000_82547_PAD_LEN 0x3E0
1907
1908 static inline int
1909 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
1910 {
1911 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1912 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
1913
1914 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
1915
1916 if(adapter->link_duplex != HALF_DUPLEX)
1917 goto no_fifo_stall_required;
1918
1919 if(atomic_read(&adapter->tx_fifo_stall))
1920 return 1;
1921
1922 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1923 atomic_set(&adapter->tx_fifo_stall, 1);
1924 return 1;
1925 }
1926
1927 no_fifo_stall_required:
1928 adapter->tx_fifo_head += skb_fifo_len;
1929 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
1930 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1931 return 0;
1932 }
1933
1934 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
1935 static int
1936 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1937 {
1938 struct e1000_adapter *adapter = netdev->priv;
1939 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
1940 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
1941 unsigned int tx_flags = 0;
1942 unsigned int len = skb->len;
1943 unsigned long flags;
1944 unsigned int nr_frags = 0;
1945 unsigned int mss = 0;
1946 int count = 0;
1947 int tso;
1948 unsigned int f;
1949 len -= skb->data_len;
1950
1951 if(unlikely(skb->len <= 0)) {
1952 dev_kfree_skb_any(skb);
1953 return NETDEV_TX_OK;
1954 }
1955
1956 #ifdef NETIF_F_TSO
1957 mss = skb_shinfo(skb)->tso_size;
1958 /* The controller does a simple calculation to
1959 * make sure there is enough room in the FIFO before
1960 * initiating the DMA for each buffer. The calc is:
1961 * 4 = ceil(buffer len/mss). To make sure we don't
1962 * overrun the FIFO, adjust the max buffer len if mss
1963 * drops. */
1964 if(mss) {
1965 max_per_txd = min(mss << 2, max_per_txd);
1966 max_txd_pwr = fls(max_per_txd) - 1;
1967 }
1968
1969 if((mss) || (skb->ip_summed == CHECKSUM_HW))
1970 count++;
1971 count++; /* for sentinel desc */
1972 #else
1973 if(skb->ip_summed == CHECKSUM_HW)
1974 count++;
1975 #endif
1976 count += TXD_USE_COUNT(len, max_txd_pwr);
1977
1978 if(adapter->pcix_82544)
1979 count++;
1980
1981 nr_frags = skb_shinfo(skb)->nr_frags;
1982 for(f = 0; f < nr_frags; f++)
1983 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
1984 max_txd_pwr);
1985 if(adapter->pcix_82544)
1986 count += nr_frags;
1987
1988 local_irq_save(flags);
1989 if (!spin_trylock(&adapter->tx_lock)) {
1990 /* Collision - tell upper layer to requeue */
1991 local_irq_restore(flags);
1992 return NETDEV_TX_LOCKED;
1993 }
1994
1995 /* need: count + 2 desc gap to keep tail from touching
1996 * head, otherwise try next time */
1997 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
1998 netif_stop_queue(netdev);
1999 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2000 return NETDEV_TX_BUSY;
2001 }
2002
2003 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2004 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2005 netif_stop_queue(netdev);
2006 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2007 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2008 return NETDEV_TX_BUSY;
2009 }
2010 }
2011
2012 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2013 tx_flags |= E1000_TX_FLAGS_VLAN;
2014 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2015 }
2016
2017 first = adapter->tx_ring.next_to_use;
2018
2019 tso = e1000_tso(adapter, skb);
2020 if (tso < 0) {
2021 dev_kfree_skb_any(skb);
2022 return NETDEV_TX_OK;
2023 }
2024
2025 if (likely(tso))
2026 tx_flags |= E1000_TX_FLAGS_TSO;
2027 else if(likely(e1000_tx_csum(adapter, skb)))
2028 tx_flags |= E1000_TX_FLAGS_CSUM;
2029
2030 e1000_tx_queue(adapter,
2031 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2032 tx_flags);
2033
2034 netdev->trans_start = jiffies;
2035
2036 /* Make sure there is space in the ring for the next send. */
2037 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2038 netif_stop_queue(netdev);
2039
2040 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2041 return NETDEV_TX_OK;
2042 }
2043
2044 /**
2045 * e1000_tx_timeout - Respond to a Tx Hang
2046 * @netdev: network interface device structure
2047 **/
2048
2049 static void
2050 e1000_tx_timeout(struct net_device *netdev)
2051 {
2052 struct e1000_adapter *adapter = netdev->priv;
2053
2054 /* Do the reset outside of interrupt context */
2055 schedule_work(&adapter->tx_timeout_task);
2056 }
2057
2058 static void
2059 e1000_tx_timeout_task(struct net_device *netdev)
2060 {
2061 struct e1000_adapter *adapter = netdev->priv;
2062
2063 e1000_down(adapter);
2064 e1000_up(adapter);
2065 }
2066
2067 /**
2068 * e1000_get_stats - Get System Network Statistics
2069 * @netdev: network interface device structure
2070 *
2071 * Returns the address of the device statistics structure.
2072 * The statistics are actually updated from the timer callback.
2073 **/
2074
2075 static struct net_device_stats *
2076 e1000_get_stats(struct net_device *netdev)
2077 {
2078 struct e1000_adapter *adapter = netdev->priv;
2079
2080 e1000_update_stats(adapter);
2081 return &adapter->net_stats;
2082 }
2083
2084 /**
2085 * e1000_change_mtu - Change the Maximum Transfer Unit
2086 * @netdev: network interface device structure
2087 * @new_mtu: new value for maximum frame size
2088 *
2089 * Returns 0 on success, negative on failure
2090 **/
2091
2092 static int
2093 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2094 {
2095 struct e1000_adapter *adapter = netdev->priv;
2096 int old_mtu = adapter->rx_buffer_len;
2097 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2098
2099 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2100 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2101 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2102 return -EINVAL;
2103 }
2104
2105 if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
2106 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2107
2108 } else if(adapter->hw.mac_type < e1000_82543) {
2109 DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
2110 return -EINVAL;
2111
2112 } else if(max_frame <= E1000_RXBUFFER_4096) {
2113 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2114
2115 } else if(max_frame <= E1000_RXBUFFER_8192) {
2116 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2117
2118 } else {
2119 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2120 }
2121
2122 if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
2123 e1000_down(adapter);
2124 e1000_up(adapter);
2125 }
2126
2127 netdev->mtu = new_mtu;
2128 adapter->hw.max_frame_size = max_frame;
2129
2130 return 0;
2131 }
2132
2133 /**
2134 * e1000_update_stats - Update the board statistics counters
2135 * @adapter: board private structure
2136 **/
2137
2138 void
2139 e1000_update_stats(struct e1000_adapter *adapter)
2140 {
2141 struct e1000_hw *hw = &adapter->hw;
2142 unsigned long flags;
2143 uint16_t phy_tmp;
2144
2145 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2146
2147 spin_lock_irqsave(&adapter->stats_lock, flags);
2148
2149 /* these counters are modified from e1000_adjust_tbi_stats,
2150 * called from the interrupt context, so they must only
2151 * be written while holding adapter->stats_lock
2152 */
2153
2154 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2155 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2156 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2157 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2158 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2159 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2160 adapter->stats.roc += E1000_READ_REG(hw, ROC);
2161 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2162 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2163 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2164 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2165 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2166 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2167
2168 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2169 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2170 adapter->stats.scc += E1000_READ_REG(hw, SCC);
2171 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2172 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2173 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2174 adapter->stats.dc += E1000_READ_REG(hw, DC);
2175 adapter->stats.sec += E1000_READ_REG(hw, SEC);
2176 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2177 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2178 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2179 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2180 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2181 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2182 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2183 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2184 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2185 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2186 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2187 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2188 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2189 adapter->stats.torl += E1000_READ_REG(hw, TORL);
2190 adapter->stats.torh += E1000_READ_REG(hw, TORH);
2191 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2192 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2193 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2194 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2195 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2196 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2197 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2198 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2199 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2200 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2201 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2202
2203 /* used for adaptive IFS */
2204
2205 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2206 adapter->stats.tpt += hw->tx_packet_delta;
2207 hw->collision_delta = E1000_READ_REG(hw, COLC);
2208 adapter->stats.colc += hw->collision_delta;
2209
2210 if(hw->mac_type >= e1000_82543) {
2211 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2212 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2213 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2214 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2215 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2216 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2217 }
2218
2219 /* Fill out the OS statistics structure */
2220
2221 adapter->net_stats.rx_packets = adapter->stats.gprc;
2222 adapter->net_stats.tx_packets = adapter->stats.gptc;
2223 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2224 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2225 adapter->net_stats.multicast = adapter->stats.mprc;
2226 adapter->net_stats.collisions = adapter->stats.colc;
2227
2228 /* Rx Errors */
2229
2230 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2231 adapter->stats.crcerrs + adapter->stats.algnerrc +
2232 adapter->stats.rlec + adapter->stats.rnbc +
2233 adapter->stats.mpc + adapter->stats.cexterr;
2234 adapter->net_stats.rx_dropped = adapter->stats.rnbc;
2235 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2236 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2237 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2238 adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2239 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2240
2241 /* Tx Errors */
2242
2243 adapter->net_stats.tx_errors = adapter->stats.ecol +
2244 adapter->stats.latecol;
2245 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2246 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2247 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2248
2249 /* Tx Dropped needs to be maintained elsewhere */
2250
2251 /* Phy Stats */
2252
2253 if(hw->media_type == e1000_media_type_copper) {
2254 if((adapter->link_speed == SPEED_1000) &&
2255 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2256 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2257 adapter->phy_stats.idle_errors += phy_tmp;
2258 }
2259
2260 if((hw->mac_type <= e1000_82546) &&
2261 (hw->phy_type == e1000_phy_m88) &&
2262 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2263 adapter->phy_stats.receive_errors += phy_tmp;
2264 }
2265
2266 spin_unlock_irqrestore(&adapter->stats_lock, flags);
2267 }
2268
2269 /**
2270 * e1000_intr - Interrupt Handler
2271 * @irq: interrupt number
2272 * @data: pointer to a network interface device structure
2273 * @pt_regs: CPU registers structure
2274 **/
2275
2276 static irqreturn_t
2277 e1000_intr(int irq, void *data, struct pt_regs *regs)
2278 {
2279 struct net_device *netdev = data;
2280 struct e1000_adapter *adapter = netdev->priv;
2281 struct e1000_hw *hw = &adapter->hw;
2282 uint32_t icr = E1000_READ_REG(hw, ICR);
2283 #ifndef CONFIG_E1000_NAPI
2284 unsigned int i;
2285 #endif
2286
2287 if(unlikely(!icr))
2288 return IRQ_NONE; /* Not our interrupt */
2289
2290 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2291 hw->get_link_status = 1;
2292 mod_timer(&adapter->watchdog_timer, jiffies);
2293 }
2294
2295 #ifdef CONFIG_E1000_NAPI
2296 if(likely(netif_rx_schedule_prep(netdev))) {
2297
2298 /* Disable interrupts and register for poll. The flush
2299 of the posted write is intentionally left out.
2300 */
2301
2302 atomic_inc(&adapter->irq_sem);
2303 E1000_WRITE_REG(hw, IMC, ~0);
2304 __netif_rx_schedule(netdev);
2305 }
2306 #else
2307 /* Writing IMC and IMS is needed for 82547.
2308 Due to Hub Link bus being occupied, an interrupt
2309 de-assertion message is not able to be sent.
2310 When an interrupt assertion message is generated later,
2311 two messages are re-ordered and sent out.
2312 That causes APIC to think 82547 is in de-assertion
2313 state, while 82547 is in assertion state, resulting
2314 in dead lock. Writing IMC forces 82547 into
2315 de-assertion state.
2316 */
2317 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2318 atomic_inc(&adapter->irq_sem);
2319 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
2320 }
2321
2322 for(i = 0; i < E1000_MAX_INTR; i++)
2323 if(unlikely(!e1000_clean_rx_irq(adapter) &
2324 !e1000_clean_tx_irq(adapter)))
2325 break;
2326
2327 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2328 e1000_irq_enable(adapter);
2329 #endif
2330
2331 return IRQ_HANDLED;
2332 }
2333
2334 #ifdef CONFIG_E1000_NAPI
2335 /**
2336 * e1000_clean - NAPI Rx polling callback
2337 * @adapter: board private structure
2338 **/
2339
2340 static int
2341 e1000_clean(struct net_device *netdev, int *budget)
2342 {
2343 struct e1000_adapter *adapter = netdev->priv;
2344 int work_to_do = min(*budget, netdev->quota);
2345 int tx_cleaned;
2346 int work_done = 0;
2347
2348 tx_cleaned = e1000_clean_tx_irq(adapter);
2349 e1000_clean_rx_irq(adapter, &work_done, work_to_do);
2350
2351 *budget -= work_done;
2352 netdev->quota -= work_done;
2353
2354 /* if no Tx and not enough Rx work done, exit the polling mode */
2355 if((!tx_cleaned && (work_done < work_to_do)) ||
2356 !netif_running(netdev)) {
2357 netif_rx_complete(netdev);
2358 e1000_irq_enable(adapter);
2359 return 0;
2360 }
2361
2362 return 1;
2363 }
2364
2365 #endif
2366 /**
2367 * e1000_clean_tx_irq - Reclaim resources after transmit completes
2368 * @adapter: board private structure
2369 **/
2370
2371 static boolean_t
2372 e1000_clean_tx_irq(struct e1000_adapter *adapter)
2373 {
2374 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2375 struct net_device *netdev = adapter->netdev;
2376 struct e1000_tx_desc *tx_desc, *eop_desc;
2377 struct e1000_buffer *buffer_info;
2378 unsigned int i, eop;
2379 boolean_t cleaned = FALSE;
2380
2381 i = tx_ring->next_to_clean;
2382 eop = tx_ring->buffer_info[i].next_to_watch;
2383 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2384
2385 while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2386 /* pre-mature writeback of Tx descriptors */
2387 /* clear (free buffers and unmap pci_mapping) */
2388 /* previous_buffer_info */
2389 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2390 e1000_unmap_and_free_tx_resource(adapter,
2391 &adapter->previous_buffer_info);
2392 }
2393
2394 for(cleaned = FALSE; !cleaned; ) {
2395 tx_desc = E1000_TX_DESC(*tx_ring, i);
2396 buffer_info = &tx_ring->buffer_info[i];
2397 cleaned = (i == eop);
2398
2399 /* pre-mature writeback of Tx descriptors */
2400 /* save the cleaning of the this for the */
2401 /* next iteration */
2402 if (cleaned) {
2403 memcpy(&adapter->previous_buffer_info,
2404 buffer_info,
2405 sizeof(struct e1000_buffer));
2406 memset(buffer_info,
2407 0,
2408 sizeof(struct e1000_buffer));
2409 } else {
2410 e1000_unmap_and_free_tx_resource(adapter,
2411 buffer_info);
2412 }
2413
2414 tx_desc->buffer_addr = 0;
2415 tx_desc->lower.data = 0;
2416 tx_desc->upper.data = 0;
2417
2418 cleaned = (i == eop);
2419 if(unlikely(++i == tx_ring->count)) i = 0;
2420 }
2421
2422 eop = tx_ring->buffer_info[i].next_to_watch;
2423 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2424 }
2425
2426 tx_ring->next_to_clean = i;
2427
2428 spin_lock(&adapter->tx_lock);
2429
2430 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2431 netif_carrier_ok(netdev)))
2432 netif_wake_queue(netdev);
2433
2434 spin_unlock(&adapter->tx_lock);
2435
2436 if(adapter->detect_tx_hung) {
2437 /* detect a transmit hang in hardware, this serializes the
2438 * check with the clearing of time_stamp and movement of i */
2439 adapter->detect_tx_hung = FALSE;
2440 if(tx_ring->buffer_info[i].dma &&
2441 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) &&
2442 !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
2443 netif_stop_queue(netdev);
2444 }
2445
2446 return cleaned;
2447 }
2448
2449 /**
2450 * e1000_rx_checksum - Receive Checksum Offload for 82543
2451 * @adapter: board private structure
2452 * @rx_desc: receive descriptor
2453 * @sk_buff: socket buffer with received data
2454 **/
2455
2456 static inline void
2457 e1000_rx_checksum(struct e1000_adapter *adapter,
2458 struct e1000_rx_desc *rx_desc,
2459 struct sk_buff *skb)
2460 {
2461 /* 82543 or newer only */
2462 if(unlikely((adapter->hw.mac_type < e1000_82543) ||
2463 /* Ignore Checksum bit is set */
2464 (rx_desc->status & E1000_RXD_STAT_IXSM) ||
2465 /* TCP Checksum has not been calculated */
2466 (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
2467 skb->ip_summed = CHECKSUM_NONE;
2468 return;
2469 }
2470
2471 /* At this point we know the hardware did the TCP checksum */
2472 /* now look at the TCP checksum error bit */
2473 if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
2474 /* let the stack verify checksum errors */
2475 skb->ip_summed = CHECKSUM_NONE;
2476 adapter->hw_csum_err++;
2477 } else {
2478 /* TCP checksum is good */
2479 skb->ip_summed = CHECKSUM_UNNECESSARY;
2480 adapter->hw_csum_good++;
2481 }
2482 }
2483
2484 /**
2485 * e1000_clean_rx_irq - Send received data up the network stack
2486 * @adapter: board private structure
2487 **/
2488
2489 static boolean_t
2490 #ifdef CONFIG_E1000_NAPI
2491 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2492 int work_to_do)
2493 #else
2494 e1000_clean_rx_irq(struct e1000_adapter *adapter)
2495 #endif
2496 {
2497 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2498 struct net_device *netdev = adapter->netdev;
2499 struct pci_dev *pdev = adapter->pdev;
2500 struct e1000_rx_desc *rx_desc;
2501 struct e1000_buffer *buffer_info;
2502 struct sk_buff *skb;
2503 unsigned long flags;
2504 uint32_t length;
2505 uint8_t last_byte;
2506 unsigned int i;
2507 boolean_t cleaned = FALSE;
2508
2509 i = rx_ring->next_to_clean;
2510 rx_desc = E1000_RX_DESC(*rx_ring, i);
2511
2512 while(rx_desc->status & E1000_RXD_STAT_DD) {
2513 buffer_info = &rx_ring->buffer_info[i];
2514 #ifdef CONFIG_E1000_NAPI
2515 if(*work_done >= work_to_do)
2516 break;
2517 (*work_done)++;
2518 #endif
2519 cleaned = TRUE;
2520
2521 pci_unmap_single(pdev,
2522 buffer_info->dma,
2523 buffer_info->length,
2524 PCI_DMA_FROMDEVICE);
2525
2526 skb = buffer_info->skb;
2527 length = le16_to_cpu(rx_desc->length);
2528
2529 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2530 /* All receives must fit into a single buffer */
2531 E1000_DBG("%s: Receive packet consumed multiple"
2532 " buffers\n", netdev->name);
2533 dev_kfree_skb_irq(skb);
2534 goto next_desc;
2535 }
2536
2537 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2538 last_byte = *(skb->data + length - 1);
2539 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2540 rx_desc->errors, length, last_byte)) {
2541 spin_lock_irqsave(&adapter->stats_lock, flags);
2542 e1000_tbi_adjust_stats(&adapter->hw,
2543 &adapter->stats,
2544 length, skb->data);
2545 spin_unlock_irqrestore(&adapter->stats_lock,
2546 flags);
2547 length--;
2548 } else {
2549 dev_kfree_skb_irq(skb);
2550 goto next_desc;
2551 }
2552 }
2553
2554 /* Good Receive */
2555 skb_put(skb, length - ETHERNET_FCS_SIZE);
2556
2557 /* Receive Checksum Offload */
2558 e1000_rx_checksum(adapter, rx_desc, skb);
2559
2560 skb->protocol = eth_type_trans(skb, netdev);
2561 #ifdef CONFIG_E1000_NAPI
2562 if(unlikely(adapter->vlgrp &&
2563 (rx_desc->status & E1000_RXD_STAT_VP))) {
2564 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2565 le16_to_cpu(rx_desc->special) &
2566 E1000_RXD_SPC_VLAN_MASK);
2567 } else {
2568 netif_receive_skb(skb);
2569 }
2570 #else /* CONFIG_E1000_NAPI */
2571 if(unlikely(adapter->vlgrp &&
2572 (rx_desc->status & E1000_RXD_STAT_VP))) {
2573 vlan_hwaccel_rx(skb, adapter->vlgrp,
2574 le16_to_cpu(rx_desc->special) &
2575 E1000_RXD_SPC_VLAN_MASK);
2576 } else {
2577 netif_rx(skb);
2578 }
2579 #endif /* CONFIG_E1000_NAPI */
2580 netdev->last_rx = jiffies;
2581
2582 next_desc:
2583 rx_desc->status = 0;
2584 buffer_info->skb = NULL;
2585 if(unlikely(++i == rx_ring->count)) i = 0;
2586
2587 rx_desc = E1000_RX_DESC(*rx_ring, i);
2588 }
2589
2590 rx_ring->next_to_clean = i;
2591
2592 e1000_alloc_rx_buffers(adapter);
2593
2594 return cleaned;
2595 }
2596
2597 /**
2598 * e1000_alloc_rx_buffers - Replace used receive buffers
2599 * @adapter: address of board private structure
2600 **/
2601
2602 static void
2603 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
2604 {
2605 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2606 struct net_device *netdev = adapter->netdev;
2607 struct pci_dev *pdev = adapter->pdev;
2608 struct e1000_rx_desc *rx_desc;
2609 struct e1000_buffer *buffer_info;
2610 struct sk_buff *skb;
2611 unsigned int i, bufsz;
2612
2613 i = rx_ring->next_to_use;
2614 buffer_info = &rx_ring->buffer_info[i];
2615
2616 while(!buffer_info->skb) {
2617 bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
2618
2619 skb = dev_alloc_skb(bufsz);
2620 if(unlikely(!skb)) {
2621 /* Better luck next round */
2622 break;
2623 }
2624
2625 /* fix for errata 23, cant cross 64kB boundary */
2626 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2627 struct sk_buff *oldskb = skb;
2628 DPRINTK(RX_ERR,ERR,
2629 "skb align check failed: %u bytes at %p\n",
2630 bufsz, skb->data);
2631 /* try again, without freeing the previous */
2632 skb = dev_alloc_skb(bufsz);
2633 if (!skb) {
2634 dev_kfree_skb(oldskb);
2635 break;
2636 }
2637 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2638 /* give up */
2639 dev_kfree_skb(skb);
2640 dev_kfree_skb(oldskb);
2641 break; /* while !buffer_info->skb */
2642 } else {
2643 /* move on with the new one */
2644 dev_kfree_skb(oldskb);
2645 }
2646 }
2647
2648 /* Make buffer alignment 2 beyond a 16 byte boundary
2649 * this will result in a 16 byte aligned IP header after
2650 * the 14 byte MAC header is removed
2651 */
2652 skb_reserve(skb, NET_IP_ALIGN);
2653
2654 skb->dev = netdev;
2655
2656 buffer_info->skb = skb;
2657 buffer_info->length = adapter->rx_buffer_len;
2658 buffer_info->dma = pci_map_single(pdev,
2659 skb->data,
2660 adapter->rx_buffer_len,
2661 PCI_DMA_FROMDEVICE);
2662
2663 /* fix for errata 23, cant cross 64kB boundary */
2664 if(!e1000_check_64k_bound(adapter,
2665 (void *)(unsigned long)buffer_info->dma,
2666 adapter->rx_buffer_len)) {
2667 DPRINTK(RX_ERR,ERR,
2668 "dma align check failed: %u bytes at %ld\n",
2669 adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
2670
2671 dev_kfree_skb(skb);
2672 buffer_info->skb = NULL;
2673
2674 pci_unmap_single(pdev,
2675 buffer_info->dma,
2676 adapter->rx_buffer_len,
2677 PCI_DMA_FROMDEVICE);
2678
2679 break; /* while !buffer_info->skb */
2680 }
2681
2682 rx_desc = E1000_RX_DESC(*rx_ring, i);
2683 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2684
2685 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
2686 /* Force memory writes to complete before letting h/w
2687 * know there are new descriptors to fetch. (Only
2688 * applicable for weak-ordered memory model archs,
2689 * such as IA-64). */
2690 wmb();
2691
2692 E1000_WRITE_REG(&adapter->hw, RDT, i);
2693 }
2694
2695 if(unlikely(++i == rx_ring->count)) i = 0;
2696 buffer_info = &rx_ring->buffer_info[i];
2697 }
2698
2699 rx_ring->next_to_use = i;
2700 }
2701
2702 /**
2703 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
2704 * @adapter:
2705 **/
2706
2707 static void
2708 e1000_smartspeed(struct e1000_adapter *adapter)
2709 {
2710 uint16_t phy_status;
2711 uint16_t phy_ctrl;
2712
2713 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
2714 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2715 return;
2716
2717 if(adapter->smartspeed == 0) {
2718 /* If Master/Slave config fault is asserted twice,
2719 * we assume back-to-back */
2720 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2721 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2722 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2723 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2724 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2725 if(phy_ctrl & CR_1000T_MS_ENABLE) {
2726 phy_ctrl &= ~CR_1000T_MS_ENABLE;
2727 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
2728 phy_ctrl);
2729 adapter->smartspeed++;
2730 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2731 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
2732 &phy_ctrl)) {
2733 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2734 MII_CR_RESTART_AUTO_NEG);
2735 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
2736 phy_ctrl);
2737 }
2738 }
2739 return;
2740 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
2741 /* If still no link, perhaps using 2/3 pair cable */
2742 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2743 phy_ctrl |= CR_1000T_MS_ENABLE;
2744 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
2745 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2746 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
2747 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2748 MII_CR_RESTART_AUTO_NEG);
2749 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
2750 }
2751 }
2752 /* Restart process after E1000_SMARTSPEED_MAX iterations */
2753 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
2754 adapter->smartspeed = 0;
2755 }
2756
2757 /**
2758 * e1000_ioctl -
2759 * @netdev:
2760 * @ifreq:
2761 * @cmd:
2762 **/
2763
2764 static int
2765 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2766 {
2767 switch (cmd) {
2768 case SIOCGMIIPHY:
2769 case SIOCGMIIREG:
2770 case SIOCSMIIREG:
2771 return e1000_mii_ioctl(netdev, ifr, cmd);
2772 default:
2773 return -EOPNOTSUPP;
2774 }
2775 }
2776
2777 /**
2778 * e1000_mii_ioctl -
2779 * @netdev:
2780 * @ifreq:
2781 * @cmd:
2782 **/
2783
2784 static int
2785 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2786 {
2787 struct e1000_adapter *adapter = netdev->priv;
2788 struct mii_ioctl_data *data = if_mii(ifr);
2789 int retval;
2790 uint16_t mii_reg;
2791 uint16_t spddplx;
2792
2793 if(adapter->hw.media_type != e1000_media_type_copper)
2794 return -EOPNOTSUPP;
2795
2796 switch (cmd) {
2797 case SIOCGMIIPHY:
2798 data->phy_id = adapter->hw.phy_addr;
2799 break;
2800 case SIOCGMIIREG:
2801 if (!capable(CAP_NET_ADMIN))
2802 return -EPERM;
2803 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
2804 &data->val_out))
2805 return -EIO;
2806 break;
2807 case SIOCSMIIREG:
2808 if (!capable(CAP_NET_ADMIN))
2809 return -EPERM;
2810 if (data->reg_num & ~(0x1F))
2811 return -EFAULT;
2812 mii_reg = data->val_in;
2813 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
2814 mii_reg))
2815 return -EIO;
2816 if (adapter->hw.phy_type == e1000_phy_m88) {
2817 switch (data->reg_num) {
2818 case PHY_CTRL:
2819 if(mii_reg & MII_CR_POWER_DOWN)
2820 break;
2821 if(mii_reg & MII_CR_AUTO_NEG_EN) {
2822 adapter->hw.autoneg = 1;
2823 adapter->hw.autoneg_advertised = 0x2F;
2824 } else {
2825 if (mii_reg & 0x40)
2826 spddplx = SPEED_1000;
2827 else if (mii_reg & 0x2000)
2828 spddplx = SPEED_100;
2829 else
2830 spddplx = SPEED_10;
2831 spddplx += (mii_reg & 0x100)
2832 ? FULL_DUPLEX :
2833 HALF_DUPLEX;
2834 retval = e1000_set_spd_dplx(adapter,
2835 spddplx);
2836 if(retval)
2837 return retval;
2838 }
2839 if(netif_running(adapter->netdev)) {
2840 e1000_down(adapter);
2841 e1000_up(adapter);
2842 } else
2843 e1000_reset(adapter);
2844 break;
2845 case M88E1000_PHY_SPEC_CTRL:
2846 case M88E1000_EXT_PHY_SPEC_CTRL:
2847 if (e1000_phy_reset(&adapter->hw))
2848 return -EIO;
2849 break;
2850 }
2851 } else {
2852 switch (data->reg_num) {
2853 case PHY_CTRL:
2854 if(mii_reg & MII_CR_POWER_DOWN)
2855 break;
2856 if(netif_running(adapter->netdev)) {
2857 e1000_down(adapter);
2858 e1000_up(adapter);
2859 } else
2860 e1000_reset(adapter);
2861 break;
2862 }
2863 }
2864 break;
2865 default:
2866 return -EOPNOTSUPP;
2867 }
2868 return E1000_SUCCESS;
2869 }
2870
2871 void
2872 e1000_pci_set_mwi(struct e1000_hw *hw)
2873 {
2874 struct e1000_adapter *adapter = hw->back;
2875
2876 int ret;
2877 ret = pci_set_mwi(adapter->pdev);
2878 }
2879
2880 void
2881 e1000_pci_clear_mwi(struct e1000_hw *hw)
2882 {
2883 struct e1000_adapter *adapter = hw->back;
2884
2885 pci_clear_mwi(adapter->pdev);
2886 }
2887
2888 void
2889 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2890 {
2891 struct e1000_adapter *adapter = hw->back;
2892
2893 pci_read_config_word(adapter->pdev, reg, value);
2894 }
2895
2896 void
2897 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2898 {
2899 struct e1000_adapter *adapter = hw->back;
2900
2901 pci_write_config_word(adapter->pdev, reg, *value);
2902 }
2903
2904 uint32_t
2905 e1000_io_read(struct e1000_hw *hw, unsigned long port)
2906 {
2907 return inl(port);
2908 }
2909
2910 void
2911 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
2912 {
2913 outl(value, port);
2914 }
2915
2916 static void
2917 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
2918 {
2919 struct e1000_adapter *adapter = netdev->priv;
2920 uint32_t ctrl, rctl;
2921
2922 e1000_irq_disable(adapter);
2923 adapter->vlgrp = grp;
2924
2925 if(grp) {
2926 /* enable VLAN tag insert/strip */
2927 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2928 ctrl |= E1000_CTRL_VME;
2929 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2930
2931 /* enable VLAN receive filtering */
2932 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2933 rctl |= E1000_RCTL_VFE;
2934 rctl &= ~E1000_RCTL_CFIEN;
2935 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2936 } else {
2937 /* disable VLAN tag insert/strip */
2938 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2939 ctrl &= ~E1000_CTRL_VME;
2940 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2941
2942 /* disable VLAN filtering */
2943 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2944 rctl &= ~E1000_RCTL_VFE;
2945 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2946 }
2947
2948 e1000_irq_enable(adapter);
2949 }
2950
2951 static void
2952 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
2953 {
2954 struct e1000_adapter *adapter = netdev->priv;
2955 uint32_t vfta, index;
2956
2957 /* add VID to filter table */
2958 index = (vid >> 5) & 0x7F;
2959 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2960 vfta |= (1 << (vid & 0x1F));
2961 e1000_write_vfta(&adapter->hw, index, vfta);
2962 }
2963
2964 static void
2965 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
2966 {
2967 struct e1000_adapter *adapter = netdev->priv;
2968 uint32_t vfta, index;
2969
2970 e1000_irq_disable(adapter);
2971
2972 if(adapter->vlgrp)
2973 adapter->vlgrp->vlan_devices[vid] = NULL;
2974
2975 e1000_irq_enable(adapter);
2976
2977 /* remove VID from filter table */
2978 index = (vid >> 5) & 0x7F;
2979 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2980 vfta &= ~(1 << (vid & 0x1F));
2981 e1000_write_vfta(&adapter->hw, index, vfta);
2982 }
2983
2984 static void
2985 e1000_restore_vlan(struct e1000_adapter *adapter)
2986 {
2987 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2988
2989 if(adapter->vlgrp) {
2990 uint16_t vid;
2991 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2992 if(!adapter->vlgrp->vlan_devices[vid])
2993 continue;
2994 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2995 }
2996 }
2997 }
2998
2999 int
3000 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
3001 {
3002 adapter->hw.autoneg = 0;
3003
3004 switch(spddplx) {
3005 case SPEED_10 + DUPLEX_HALF:
3006 adapter->hw.forced_speed_duplex = e1000_10_half;
3007 break;
3008 case SPEED_10 + DUPLEX_FULL:
3009 adapter->hw.forced_speed_duplex = e1000_10_full;
3010 break;
3011 case SPEED_100 + DUPLEX_HALF:
3012 adapter->hw.forced_speed_duplex = e1000_100_half;
3013 break;
3014 case SPEED_100 + DUPLEX_FULL:
3015 adapter->hw.forced_speed_duplex = e1000_100_full;
3016 break;
3017 case SPEED_1000 + DUPLEX_FULL:
3018 adapter->hw.autoneg = 1;
3019 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3020 break;
3021 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3022 default:
3023 DPRINTK(PROBE, ERR,
3024 "Unsupported Speed/Duplexity configuration\n");
3025 return -EINVAL;
3026 }
3027 return 0;
3028 }
3029
3030 static int
3031 e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
3032 {
3033 struct pci_dev *pdev = NULL;
3034
3035 switch(event) {
3036 case SYS_DOWN:
3037 case SYS_HALT:
3038 case SYS_POWER_OFF:
3039 while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
3040 if(pci_dev_driver(pdev) == &e1000_driver)
3041 e1000_suspend(pdev, 3);
3042 }
3043 }
3044 return NOTIFY_DONE;
3045 }
3046
3047 static int
3048 e1000_suspend(struct pci_dev *pdev, uint32_t state)
3049 {
3050 struct net_device *netdev = pci_get_drvdata(pdev);
3051 struct e1000_adapter *adapter = netdev->priv;
3052 uint32_t ctrl, ctrl_ext, rctl, manc, status;
3053 uint32_t wufc = adapter->wol;
3054
3055 netif_device_detach(netdev);
3056
3057 if(netif_running(netdev))
3058 e1000_down(adapter);
3059
3060 status = E1000_READ_REG(&adapter->hw, STATUS);
3061 if(status & E1000_STATUS_LU)
3062 wufc &= ~E1000_WUFC_LNKC;
3063
3064 if(wufc) {
3065 e1000_setup_rctl(adapter);
3066 e1000_set_multi(netdev);
3067
3068 /* turn on all-multi mode if wake on multicast is enabled */
3069 if(adapter->wol & E1000_WUFC_MC) {
3070 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3071 rctl |= E1000_RCTL_MPE;
3072 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3073 }
3074
3075 if(adapter->hw.mac_type >= e1000_82540) {
3076 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3077 /* advertise wake from D3Cold */
3078 #define E1000_CTRL_ADVD3WUC 0x00100000
3079 /* phy power management enable */
3080 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3081 ctrl |= E1000_CTRL_ADVD3WUC |
3082 E1000_CTRL_EN_PHY_PWR_MGMT;
3083 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3084 }
3085
3086 if(adapter->hw.media_type == e1000_media_type_fiber ||
3087 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3088 /* keep the laser running in D3 */
3089 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3090 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3091 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3092 }
3093
3094 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3095 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3096 pci_enable_wake(pdev, 3, 1);
3097 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3098 } else {
3099 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3100 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3101 pci_enable_wake(pdev, 3, 0);
3102 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3103 }
3104
3105 pci_save_state(pdev);
3106
3107 if(adapter->hw.mac_type >= e1000_82540 &&
3108 adapter->hw.media_type == e1000_media_type_copper) {
3109 manc = E1000_READ_REG(&adapter->hw, MANC);
3110 if(manc & E1000_MANC_SMBUS_EN) {
3111 manc |= E1000_MANC_ARP_EN;
3112 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3113 pci_enable_wake(pdev, 3, 1);
3114 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3115 }
3116 }
3117
3118 pci_disable_device(pdev);
3119
3120 state = (state > 0) ? 3 : 0;
3121 pci_set_power_state(pdev, state);
3122
3123 return 0;
3124 }
3125
3126 #ifdef CONFIG_PM
3127 static int
3128 e1000_resume(struct pci_dev *pdev)
3129 {
3130 struct net_device *netdev = pci_get_drvdata(pdev);
3131 struct e1000_adapter *adapter = netdev->priv;
3132 uint32_t manc, ret;
3133
3134 pci_set_power_state(pdev, 0);
3135 pci_restore_state(pdev);
3136 ret = pci_enable_device(pdev);
3137 if (pdev->is_busmaster)
3138 pci_set_master(pdev);
3139
3140 pci_enable_wake(pdev, 3, 0);
3141 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3142
3143 e1000_reset(adapter);
3144 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3145
3146 if(netif_running(netdev))
3147 e1000_up(adapter);
3148
3149 netif_device_attach(netdev);
3150
3151 if(adapter->hw.mac_type >= e1000_82540 &&
3152 adapter->hw.media_type == e1000_media_type_copper) {
3153 manc = E1000_READ_REG(&adapter->hw, MANC);
3154 manc &= ~(E1000_MANC_ARP_EN);
3155 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3156 }
3157
3158 return 0;
3159 }
3160 #endif
3161
3162 #ifdef CONFIG_NET_POLL_CONTROLLER
3163 /*
3164 * Polling 'interrupt' - used by things like netconsole to send skbs
3165 * without having to re-enable interrupts. It's not called while
3166 * the interrupt routine is executing.
3167 */
3168 static void
3169 e1000_netpoll (struct net_device *netdev)
3170 {
3171 struct e1000_adapter *adapter = netdev->priv;
3172 disable_irq(adapter->pdev->irq);
3173 e1000_intr(adapter->pdev->irq, netdev, NULL);
3174 enable_irq(adapter->pdev->irq);
3175 }
3176 #endif
3177
3178 /* e1000_main.c */