]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/e1000e/ethtool.c
Merge branch 'pending-l2x0' into cache
[mirror_ubuntu-bionic-kernel.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 enum {NETDEV_STATS, E1000_STATS};
39
40 struct e1000_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int type;
43 int sizeof_stat;
44 int stat_offset;
45 };
46
47 #define E1000_STAT(m) E1000_STATS, \
48 sizeof(((struct e1000_adapter *)0)->m), \
49 offsetof(struct e1000_adapter, m)
50 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
51 sizeof(((struct net_device *)0)->m), \
52 offsetof(struct net_device, m)
53
54 static const struct e1000_stats e1000_gstrings_stats[] = {
55 { "rx_packets", E1000_STAT(stats.gprc) },
56 { "tx_packets", E1000_STAT(stats.gptc) },
57 { "rx_bytes", E1000_STAT(stats.gorc) },
58 { "tx_bytes", E1000_STAT(stats.gotc) },
59 { "rx_broadcast", E1000_STAT(stats.bprc) },
60 { "tx_broadcast", E1000_STAT(stats.bptc) },
61 { "rx_multicast", E1000_STAT(stats.mprc) },
62 { "tx_multicast", E1000_STAT(stats.mptc) },
63 { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
64 { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
65 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
66 { "multicast", E1000_STAT(stats.mprc) },
67 { "collisions", E1000_STAT(stats.colc) },
68 { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
69 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
70 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
71 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
72 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73 { "rx_missed_errors", E1000_STAT(stats.mpc) },
74 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
75 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
76 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
77 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
78 { "tx_window_errors", E1000_STAT(stats.latecol) },
79 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80 { "tx_deferred_ok", E1000_STAT(stats.dc) },
81 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
84 { "tx_restart_queue", E1000_STAT(restart_queue) },
85 { "rx_long_length_errors", E1000_STAT(stats.roc) },
86 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
87 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
88 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
89 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
90 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
91 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
92 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
93 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
94 { "rx_long_byte_count", E1000_STAT(stats.gorc) },
95 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
96 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
97 { "rx_header_split", E1000_STAT(rx_hdr_split) },
98 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
99 { "tx_smbus", E1000_STAT(stats.mgptc) },
100 { "rx_smbus", E1000_STAT(stats.mgprc) },
101 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
102 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
103 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
104 };
105
106 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109 "Register test (offline)", "Eeprom test (offline)",
110 "Interrupt test (offline)", "Loopback test (offline)",
111 "Link test (on/offline)"
112 };
113 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
114
115 static int e1000_get_settings(struct net_device *netdev,
116 struct ethtool_cmd *ecmd)
117 {
118 struct e1000_adapter *adapter = netdev_priv(netdev);
119 struct e1000_hw *hw = &adapter->hw;
120 u32 status;
121
122 if (hw->phy.media_type == e1000_media_type_copper) {
123
124 ecmd->supported = (SUPPORTED_10baseT_Half |
125 SUPPORTED_10baseT_Full |
126 SUPPORTED_100baseT_Half |
127 SUPPORTED_100baseT_Full |
128 SUPPORTED_1000baseT_Full |
129 SUPPORTED_Autoneg |
130 SUPPORTED_TP);
131 if (hw->phy.type == e1000_phy_ife)
132 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133 ecmd->advertising = ADVERTISED_TP;
134
135 if (hw->mac.autoneg == 1) {
136 ecmd->advertising |= ADVERTISED_Autoneg;
137 /* the e1000 autoneg seems to match ethtool nicely */
138 ecmd->advertising |= hw->phy.autoneg_advertised;
139 }
140
141 ecmd->port = PORT_TP;
142 ecmd->phy_address = hw->phy.addr;
143 ecmd->transceiver = XCVR_INTERNAL;
144
145 } else {
146 ecmd->supported = (SUPPORTED_1000baseT_Full |
147 SUPPORTED_FIBRE |
148 SUPPORTED_Autoneg);
149
150 ecmd->advertising = (ADVERTISED_1000baseT_Full |
151 ADVERTISED_FIBRE |
152 ADVERTISED_Autoneg);
153
154 ecmd->port = PORT_FIBRE;
155 ecmd->transceiver = XCVR_EXTERNAL;
156 }
157
158 status = er32(STATUS);
159 if (status & E1000_STATUS_LU) {
160 if (status & E1000_STATUS_SPEED_1000)
161 ecmd->speed = 1000;
162 else if (status & E1000_STATUS_SPEED_100)
163 ecmd->speed = 100;
164 else
165 ecmd->speed = 10;
166
167 if (status & E1000_STATUS_FD)
168 ecmd->duplex = DUPLEX_FULL;
169 else
170 ecmd->duplex = DUPLEX_HALF;
171 } else {
172 ecmd->speed = -1;
173 ecmd->duplex = -1;
174 }
175
176 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178
179 /* MDI-X => 2; MDI =>1; Invalid =>0 */
180 if ((hw->phy.media_type == e1000_media_type_copper) &&
181 !hw->mac.get_link_status)
182 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
183 ETH_TP_MDI;
184 else
185 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
186
187 return 0;
188 }
189
190 static u32 e1000_get_link(struct net_device *netdev)
191 {
192 struct e1000_adapter *adapter = netdev_priv(netdev);
193 struct e1000_mac_info *mac = &adapter->hw.mac;
194
195 /*
196 * If the link is not reported up to netdev, interrupts are disabled,
197 * and so the physical link state may have changed since we last
198 * looked. Set get_link_status to make sure that the true link
199 * state is interrogated, rather than pulling a cached and possibly
200 * stale link state from the driver.
201 */
202 if (!netif_carrier_ok(netdev))
203 mac->get_link_status = 1;
204
205 return e1000_has_link(adapter);
206 }
207
208 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
209 {
210 struct e1000_mac_info *mac = &adapter->hw.mac;
211
212 mac->autoneg = 0;
213
214 /* Fiber NICs only allow 1000 gbps Full duplex */
215 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
216 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
217 e_err("Unsupported Speed/Duplex configuration\n");
218 return -EINVAL;
219 }
220
221 switch (spddplx) {
222 case SPEED_10 + DUPLEX_HALF:
223 mac->forced_speed_duplex = ADVERTISE_10_HALF;
224 break;
225 case SPEED_10 + DUPLEX_FULL:
226 mac->forced_speed_duplex = ADVERTISE_10_FULL;
227 break;
228 case SPEED_100 + DUPLEX_HALF:
229 mac->forced_speed_duplex = ADVERTISE_100_HALF;
230 break;
231 case SPEED_100 + DUPLEX_FULL:
232 mac->forced_speed_duplex = ADVERTISE_100_FULL;
233 break;
234 case SPEED_1000 + DUPLEX_FULL:
235 mac->autoneg = 1;
236 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
237 break;
238 case SPEED_1000 + DUPLEX_HALF: /* not supported */
239 default:
240 e_err("Unsupported Speed/Duplex configuration\n");
241 return -EINVAL;
242 }
243 return 0;
244 }
245
246 static int e1000_set_settings(struct net_device *netdev,
247 struct ethtool_cmd *ecmd)
248 {
249 struct e1000_adapter *adapter = netdev_priv(netdev);
250 struct e1000_hw *hw = &adapter->hw;
251
252 /*
253 * When SoL/IDER sessions are active, autoneg/speed/duplex
254 * cannot be changed
255 */
256 if (e1000_check_reset_block(hw)) {
257 e_err("Cannot change link characteristics when SoL/IDER is "
258 "active.\n");
259 return -EINVAL;
260 }
261
262 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
263 msleep(1);
264
265 if (ecmd->autoneg == AUTONEG_ENABLE) {
266 hw->mac.autoneg = 1;
267 if (hw->phy.media_type == e1000_media_type_fiber)
268 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
269 ADVERTISED_FIBRE |
270 ADVERTISED_Autoneg;
271 else
272 hw->phy.autoneg_advertised = ecmd->advertising |
273 ADVERTISED_TP |
274 ADVERTISED_Autoneg;
275 ecmd->advertising = hw->phy.autoneg_advertised;
276 if (adapter->fc_autoneg)
277 hw->fc.requested_mode = e1000_fc_default;
278 } else {
279 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
280 clear_bit(__E1000_RESETTING, &adapter->state);
281 return -EINVAL;
282 }
283 }
284
285 /* reset the link */
286
287 if (netif_running(adapter->netdev)) {
288 e1000e_down(adapter);
289 e1000e_up(adapter);
290 } else {
291 e1000e_reset(adapter);
292 }
293
294 clear_bit(__E1000_RESETTING, &adapter->state);
295 return 0;
296 }
297
298 static void e1000_get_pauseparam(struct net_device *netdev,
299 struct ethtool_pauseparam *pause)
300 {
301 struct e1000_adapter *adapter = netdev_priv(netdev);
302 struct e1000_hw *hw = &adapter->hw;
303
304 pause->autoneg =
305 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
306
307 if (hw->fc.current_mode == e1000_fc_rx_pause) {
308 pause->rx_pause = 1;
309 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
310 pause->tx_pause = 1;
311 } else if (hw->fc.current_mode == e1000_fc_full) {
312 pause->rx_pause = 1;
313 pause->tx_pause = 1;
314 }
315 }
316
317 static int e1000_set_pauseparam(struct net_device *netdev,
318 struct ethtool_pauseparam *pause)
319 {
320 struct e1000_adapter *adapter = netdev_priv(netdev);
321 struct e1000_hw *hw = &adapter->hw;
322 int retval = 0;
323
324 adapter->fc_autoneg = pause->autoneg;
325
326 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
327 msleep(1);
328
329 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
330 hw->fc.requested_mode = e1000_fc_default;
331 if (netif_running(adapter->netdev)) {
332 e1000e_down(adapter);
333 e1000e_up(adapter);
334 } else {
335 e1000e_reset(adapter);
336 }
337 } else {
338 if (pause->rx_pause && pause->tx_pause)
339 hw->fc.requested_mode = e1000_fc_full;
340 else if (pause->rx_pause && !pause->tx_pause)
341 hw->fc.requested_mode = e1000_fc_rx_pause;
342 else if (!pause->rx_pause && pause->tx_pause)
343 hw->fc.requested_mode = e1000_fc_tx_pause;
344 else if (!pause->rx_pause && !pause->tx_pause)
345 hw->fc.requested_mode = e1000_fc_none;
346
347 hw->fc.current_mode = hw->fc.requested_mode;
348
349 if (hw->phy.media_type == e1000_media_type_fiber) {
350 retval = hw->mac.ops.setup_link(hw);
351 /* implicit goto out */
352 } else {
353 retval = e1000e_force_mac_fc(hw);
354 if (retval)
355 goto out;
356 e1000e_set_fc_watermarks(hw);
357 }
358 }
359
360 out:
361 clear_bit(__E1000_RESETTING, &adapter->state);
362 return retval;
363 }
364
365 static u32 e1000_get_rx_csum(struct net_device *netdev)
366 {
367 struct e1000_adapter *adapter = netdev_priv(netdev);
368 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
369 }
370
371 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
372 {
373 struct e1000_adapter *adapter = netdev_priv(netdev);
374
375 if (data)
376 adapter->flags |= FLAG_RX_CSUM_ENABLED;
377 else
378 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
379
380 if (netif_running(netdev))
381 e1000e_reinit_locked(adapter);
382 else
383 e1000e_reset(adapter);
384 return 0;
385 }
386
387 static u32 e1000_get_tx_csum(struct net_device *netdev)
388 {
389 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
390 }
391
392 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
393 {
394 if (data)
395 netdev->features |= NETIF_F_HW_CSUM;
396 else
397 netdev->features &= ~NETIF_F_HW_CSUM;
398
399 return 0;
400 }
401
402 static int e1000_set_tso(struct net_device *netdev, u32 data)
403 {
404 struct e1000_adapter *adapter = netdev_priv(netdev);
405
406 if (data) {
407 netdev->features |= NETIF_F_TSO;
408 netdev->features |= NETIF_F_TSO6;
409 } else {
410 netdev->features &= ~NETIF_F_TSO;
411 netdev->features &= ~NETIF_F_TSO6;
412 }
413
414 e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
415 adapter->flags |= FLAG_TSO_FORCE;
416 return 0;
417 }
418
419 static u32 e1000_get_msglevel(struct net_device *netdev)
420 {
421 struct e1000_adapter *adapter = netdev_priv(netdev);
422 return adapter->msg_enable;
423 }
424
425 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
426 {
427 struct e1000_adapter *adapter = netdev_priv(netdev);
428 adapter->msg_enable = data;
429 }
430
431 static int e1000_get_regs_len(struct net_device *netdev)
432 {
433 #define E1000_REGS_LEN 32 /* overestimate */
434 return E1000_REGS_LEN * sizeof(u32);
435 }
436
437 static void e1000_get_regs(struct net_device *netdev,
438 struct ethtool_regs *regs, void *p)
439 {
440 struct e1000_adapter *adapter = netdev_priv(netdev);
441 struct e1000_hw *hw = &adapter->hw;
442 u32 *regs_buff = p;
443 u16 phy_data;
444 u8 revision_id;
445
446 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
447
448 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
449
450 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
451
452 regs_buff[0] = er32(CTRL);
453 regs_buff[1] = er32(STATUS);
454
455 regs_buff[2] = er32(RCTL);
456 regs_buff[3] = er32(RDLEN);
457 regs_buff[4] = er32(RDH);
458 regs_buff[5] = er32(RDT);
459 regs_buff[6] = er32(RDTR);
460
461 regs_buff[7] = er32(TCTL);
462 regs_buff[8] = er32(TDLEN);
463 regs_buff[9] = er32(TDH);
464 regs_buff[10] = er32(TDT);
465 regs_buff[11] = er32(TIDV);
466
467 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
468
469 /* ethtool doesn't use anything past this point, so all this
470 * code is likely legacy junk for apps that may or may not
471 * exist */
472 if (hw->phy.type == e1000_phy_m88) {
473 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
474 regs_buff[13] = (u32)phy_data; /* cable length */
475 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
476 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
477 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
479 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
480 regs_buff[18] = regs_buff[13]; /* cable polarity */
481 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
482 regs_buff[20] = regs_buff[17]; /* polarity correction */
483 /* phy receive errors */
484 regs_buff[22] = adapter->phy_stats.receive_errors;
485 regs_buff[23] = regs_buff[13]; /* mdix mode */
486 }
487 regs_buff[21] = 0; /* was idle_errors */
488 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
489 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
490 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
491 }
492
493 static int e1000_get_eeprom_len(struct net_device *netdev)
494 {
495 struct e1000_adapter *adapter = netdev_priv(netdev);
496 return adapter->hw.nvm.word_size * 2;
497 }
498
499 static int e1000_get_eeprom(struct net_device *netdev,
500 struct ethtool_eeprom *eeprom, u8 *bytes)
501 {
502 struct e1000_adapter *adapter = netdev_priv(netdev);
503 struct e1000_hw *hw = &adapter->hw;
504 u16 *eeprom_buff;
505 int first_word;
506 int last_word;
507 int ret_val = 0;
508 u16 i;
509
510 if (eeprom->len == 0)
511 return -EINVAL;
512
513 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
514
515 first_word = eeprom->offset >> 1;
516 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517
518 eeprom_buff = kmalloc(sizeof(u16) *
519 (last_word - first_word + 1), GFP_KERNEL);
520 if (!eeprom_buff)
521 return -ENOMEM;
522
523 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
524 ret_val = e1000_read_nvm(hw, first_word,
525 last_word - first_word + 1,
526 eeprom_buff);
527 } else {
528 for (i = 0; i < last_word - first_word + 1; i++) {
529 ret_val = e1000_read_nvm(hw, first_word + i, 1,
530 &eeprom_buff[i]);
531 if (ret_val)
532 break;
533 }
534 }
535
536 if (ret_val) {
537 /* a read error occurred, throw away the result */
538 memset(eeprom_buff, 0xff, sizeof(u16) *
539 (last_word - first_word + 1));
540 } else {
541 /* Device's eeprom is always little-endian, word addressable */
542 for (i = 0; i < last_word - first_word + 1; i++)
543 le16_to_cpus(&eeprom_buff[i]);
544 }
545
546 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
547 kfree(eeprom_buff);
548
549 return ret_val;
550 }
551
552 static int e1000_set_eeprom(struct net_device *netdev,
553 struct ethtool_eeprom *eeprom, u8 *bytes)
554 {
555 struct e1000_adapter *adapter = netdev_priv(netdev);
556 struct e1000_hw *hw = &adapter->hw;
557 u16 *eeprom_buff;
558 void *ptr;
559 int max_len;
560 int first_word;
561 int last_word;
562 int ret_val = 0;
563 u16 i;
564
565 if (eeprom->len == 0)
566 return -EOPNOTSUPP;
567
568 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
569 return -EFAULT;
570
571 if (adapter->flags & FLAG_READ_ONLY_NVM)
572 return -EINVAL;
573
574 max_len = hw->nvm.word_size * 2;
575
576 first_word = eeprom->offset >> 1;
577 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
578 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
579 if (!eeprom_buff)
580 return -ENOMEM;
581
582 ptr = (void *)eeprom_buff;
583
584 if (eeprom->offset & 1) {
585 /* need read/modify/write of first changed EEPROM word */
586 /* only the second byte of the word is being modified */
587 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
588 ptr++;
589 }
590 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
591 /* need read/modify/write of last changed EEPROM word */
592 /* only the first byte of the word is being modified */
593 ret_val = e1000_read_nvm(hw, last_word, 1,
594 &eeprom_buff[last_word - first_word]);
595
596 if (ret_val)
597 goto out;
598
599 /* Device's eeprom is always little-endian, word addressable */
600 for (i = 0; i < last_word - first_word + 1; i++)
601 le16_to_cpus(&eeprom_buff[i]);
602
603 memcpy(ptr, bytes, eeprom->len);
604
605 for (i = 0; i < last_word - first_word + 1; i++)
606 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
607
608 ret_val = e1000_write_nvm(hw, first_word,
609 last_word - first_word + 1, eeprom_buff);
610
611 if (ret_val)
612 goto out;
613
614 /*
615 * Update the checksum over the first part of the EEPROM if needed
616 * and flush shadow RAM for applicable controllers
617 */
618 if ((first_word <= NVM_CHECKSUM_REG) ||
619 (hw->mac.type == e1000_82583) ||
620 (hw->mac.type == e1000_82574) ||
621 (hw->mac.type == e1000_82573))
622 ret_val = e1000e_update_nvm_checksum(hw);
623
624 out:
625 kfree(eeprom_buff);
626 return ret_val;
627 }
628
629 static void e1000_get_drvinfo(struct net_device *netdev,
630 struct ethtool_drvinfo *drvinfo)
631 {
632 struct e1000_adapter *adapter = netdev_priv(netdev);
633 char firmware_version[32];
634
635 strncpy(drvinfo->driver, e1000e_driver_name, 32);
636 strncpy(drvinfo->version, e1000e_driver_version, 32);
637
638 /*
639 * EEPROM image version # is reported as firmware version # for
640 * PCI-E controllers
641 */
642 sprintf(firmware_version, "%d.%d-%d",
643 (adapter->eeprom_vers & 0xF000) >> 12,
644 (adapter->eeprom_vers & 0x0FF0) >> 4,
645 (adapter->eeprom_vers & 0x000F));
646
647 strncpy(drvinfo->fw_version, firmware_version, 32);
648 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
649 drvinfo->regdump_len = e1000_get_regs_len(netdev);
650 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
651 }
652
653 static void e1000_get_ringparam(struct net_device *netdev,
654 struct ethtool_ringparam *ring)
655 {
656 struct e1000_adapter *adapter = netdev_priv(netdev);
657 struct e1000_ring *tx_ring = adapter->tx_ring;
658 struct e1000_ring *rx_ring = adapter->rx_ring;
659
660 ring->rx_max_pending = E1000_MAX_RXD;
661 ring->tx_max_pending = E1000_MAX_TXD;
662 ring->rx_mini_max_pending = 0;
663 ring->rx_jumbo_max_pending = 0;
664 ring->rx_pending = rx_ring->count;
665 ring->tx_pending = tx_ring->count;
666 ring->rx_mini_pending = 0;
667 ring->rx_jumbo_pending = 0;
668 }
669
670 static int e1000_set_ringparam(struct net_device *netdev,
671 struct ethtool_ringparam *ring)
672 {
673 struct e1000_adapter *adapter = netdev_priv(netdev);
674 struct e1000_ring *tx_ring, *tx_old;
675 struct e1000_ring *rx_ring, *rx_old;
676 int err;
677
678 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
679 return -EINVAL;
680
681 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
682 msleep(1);
683
684 if (netif_running(adapter->netdev))
685 e1000e_down(adapter);
686
687 tx_old = adapter->tx_ring;
688 rx_old = adapter->rx_ring;
689
690 err = -ENOMEM;
691 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
692 if (!tx_ring)
693 goto err_alloc_tx;
694 /*
695 * use a memcpy to save any previously configured
696 * items like napi structs from having to be
697 * reinitialized
698 */
699 memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
700
701 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
702 if (!rx_ring)
703 goto err_alloc_rx;
704 memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
705
706 adapter->tx_ring = tx_ring;
707 adapter->rx_ring = rx_ring;
708
709 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
710 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
711 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
712
713 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
714 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
715 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
716
717 if (netif_running(adapter->netdev)) {
718 /* Try to get new resources before deleting old */
719 err = e1000e_setup_rx_resources(adapter);
720 if (err)
721 goto err_setup_rx;
722 err = e1000e_setup_tx_resources(adapter);
723 if (err)
724 goto err_setup_tx;
725
726 /*
727 * restore the old in order to free it,
728 * then add in the new
729 */
730 adapter->rx_ring = rx_old;
731 adapter->tx_ring = tx_old;
732 e1000e_free_rx_resources(adapter);
733 e1000e_free_tx_resources(adapter);
734 kfree(tx_old);
735 kfree(rx_old);
736 adapter->rx_ring = rx_ring;
737 adapter->tx_ring = tx_ring;
738 err = e1000e_up(adapter);
739 if (err)
740 goto err_setup;
741 }
742
743 clear_bit(__E1000_RESETTING, &adapter->state);
744 return 0;
745 err_setup_tx:
746 e1000e_free_rx_resources(adapter);
747 err_setup_rx:
748 adapter->rx_ring = rx_old;
749 adapter->tx_ring = tx_old;
750 kfree(rx_ring);
751 err_alloc_rx:
752 kfree(tx_ring);
753 err_alloc_tx:
754 e1000e_up(adapter);
755 err_setup:
756 clear_bit(__E1000_RESETTING, &adapter->state);
757 return err;
758 }
759
760 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
761 int reg, int offset, u32 mask, u32 write)
762 {
763 u32 pat, val;
764 static const u32 test[] =
765 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
766 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
767 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
768 (test[pat] & write));
769 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
770 if (val != (test[pat] & write & mask)) {
771 e_err("pattern test reg %04X failed: got 0x%08X "
772 "expected 0x%08X\n", reg + offset, val,
773 (test[pat] & write & mask));
774 *data = reg;
775 return 1;
776 }
777 }
778 return 0;
779 }
780
781 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
782 int reg, u32 mask, u32 write)
783 {
784 u32 val;
785 __ew32(&adapter->hw, reg, write & mask);
786 val = __er32(&adapter->hw, reg);
787 if ((write & mask) != (val & mask)) {
788 e_err("set/check reg %04X test failed: got 0x%08X "
789 "expected 0x%08X\n", reg, (val & mask), (write & mask));
790 *data = reg;
791 return 1;
792 }
793 return 0;
794 }
795 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
796 do { \
797 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
798 return 1; \
799 } while (0)
800 #define REG_PATTERN_TEST(reg, mask, write) \
801 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
802
803 #define REG_SET_AND_CHECK(reg, mask, write) \
804 do { \
805 if (reg_set_and_check(adapter, data, reg, mask, write)) \
806 return 1; \
807 } while (0)
808
809 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
810 {
811 struct e1000_hw *hw = &adapter->hw;
812 struct e1000_mac_info *mac = &adapter->hw.mac;
813 u32 value;
814 u32 before;
815 u32 after;
816 u32 i;
817 u32 toggle;
818 u32 mask;
819
820 /*
821 * The status register is Read Only, so a write should fail.
822 * Some bits that get toggled are ignored.
823 */
824 switch (mac->type) {
825 /* there are several bits on newer hardware that are r/w */
826 case e1000_82571:
827 case e1000_82572:
828 case e1000_80003es2lan:
829 toggle = 0x7FFFF3FF;
830 break;
831 default:
832 toggle = 0x7FFFF033;
833 break;
834 }
835
836 before = er32(STATUS);
837 value = (er32(STATUS) & toggle);
838 ew32(STATUS, toggle);
839 after = er32(STATUS) & toggle;
840 if (value != after) {
841 e_err("failed STATUS register test got: 0x%08X expected: "
842 "0x%08X\n", after, value);
843 *data = 1;
844 return 1;
845 }
846 /* restore previous status */
847 ew32(STATUS, before);
848
849 if (!(adapter->flags & FLAG_IS_ICH)) {
850 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
851 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
852 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
853 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
854 }
855
856 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
857 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
858 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
859 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
860 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
861 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
862 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
863 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
864 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
865 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
866
867 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
868
869 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
870 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
871 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
872
873 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
875 if (!(adapter->flags & FLAG_IS_ICH))
876 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
877 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
879 mask = 0x8003FFFF;
880 switch (mac->type) {
881 case e1000_ich10lan:
882 case e1000_pchlan:
883 mask |= (1 << 18);
884 break;
885 default:
886 break;
887 }
888 for (i = 0; i < mac->rar_entry_count; i++)
889 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
890 mask, 0xFFFFFFFF);
891
892 for (i = 0; i < mac->mta_reg_count; i++)
893 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
894
895 *data = 0;
896 return 0;
897 }
898
899 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
900 {
901 u16 temp;
902 u16 checksum = 0;
903 u16 i;
904
905 *data = 0;
906 /* Read and add up the contents of the EEPROM */
907 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
908 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
909 *data = 1;
910 return *data;
911 }
912 checksum += temp;
913 }
914
915 /* If Checksum is not Correct return error else test passed */
916 if ((checksum != (u16) NVM_SUM) && !(*data))
917 *data = 2;
918
919 return *data;
920 }
921
922 static irqreturn_t e1000_test_intr(int irq, void *data)
923 {
924 struct net_device *netdev = (struct net_device *) data;
925 struct e1000_adapter *adapter = netdev_priv(netdev);
926 struct e1000_hw *hw = &adapter->hw;
927
928 adapter->test_icr |= er32(ICR);
929
930 return IRQ_HANDLED;
931 }
932
933 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
934 {
935 struct net_device *netdev = adapter->netdev;
936 struct e1000_hw *hw = &adapter->hw;
937 u32 mask;
938 u32 shared_int = 1;
939 u32 irq = adapter->pdev->irq;
940 int i;
941 int ret_val = 0;
942 int int_mode = E1000E_INT_MODE_LEGACY;
943
944 *data = 0;
945
946 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
947 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
948 int_mode = adapter->int_mode;
949 e1000e_reset_interrupt_capability(adapter);
950 adapter->int_mode = E1000E_INT_MODE_LEGACY;
951 e1000e_set_interrupt_capability(adapter);
952 }
953 /* Hook up test interrupt handler just for this test */
954 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
955 netdev)) {
956 shared_int = 0;
957 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
958 netdev->name, netdev)) {
959 *data = 1;
960 ret_val = -1;
961 goto out;
962 }
963 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
964
965 /* Disable all the interrupts */
966 ew32(IMC, 0xFFFFFFFF);
967 msleep(10);
968
969 /* Test each interrupt */
970 for (i = 0; i < 10; i++) {
971 /* Interrupt to test */
972 mask = 1 << i;
973
974 if (adapter->flags & FLAG_IS_ICH) {
975 switch (mask) {
976 case E1000_ICR_RXSEQ:
977 continue;
978 case 0x00000100:
979 if (adapter->hw.mac.type == e1000_ich8lan ||
980 adapter->hw.mac.type == e1000_ich9lan)
981 continue;
982 break;
983 default:
984 break;
985 }
986 }
987
988 if (!shared_int) {
989 /*
990 * Disable the interrupt to be reported in
991 * the cause register and then force the same
992 * interrupt and see if one gets posted. If
993 * an interrupt was posted to the bus, the
994 * test failed.
995 */
996 adapter->test_icr = 0;
997 ew32(IMC, mask);
998 ew32(ICS, mask);
999 msleep(10);
1000
1001 if (adapter->test_icr & mask) {
1002 *data = 3;
1003 break;
1004 }
1005 }
1006
1007 /*
1008 * Enable the interrupt to be reported in
1009 * the cause register and then force the same
1010 * interrupt and see if one gets posted. If
1011 * an interrupt was not posted to the bus, the
1012 * test failed.
1013 */
1014 adapter->test_icr = 0;
1015 ew32(IMS, mask);
1016 ew32(ICS, mask);
1017 msleep(10);
1018
1019 if (!(adapter->test_icr & mask)) {
1020 *data = 4;
1021 break;
1022 }
1023
1024 if (!shared_int) {
1025 /*
1026 * Disable the other interrupts to be reported in
1027 * the cause register and then force the other
1028 * interrupts and see if any get posted. If
1029 * an interrupt was posted to the bus, the
1030 * test failed.
1031 */
1032 adapter->test_icr = 0;
1033 ew32(IMC, ~mask & 0x00007FFF);
1034 ew32(ICS, ~mask & 0x00007FFF);
1035 msleep(10);
1036
1037 if (adapter->test_icr) {
1038 *data = 5;
1039 break;
1040 }
1041 }
1042 }
1043
1044 /* Disable all the interrupts */
1045 ew32(IMC, 0xFFFFFFFF);
1046 msleep(10);
1047
1048 /* Unhook test interrupt handler */
1049 free_irq(irq, netdev);
1050
1051 out:
1052 if (int_mode == E1000E_INT_MODE_MSIX) {
1053 e1000e_reset_interrupt_capability(adapter);
1054 adapter->int_mode = int_mode;
1055 e1000e_set_interrupt_capability(adapter);
1056 }
1057
1058 return ret_val;
1059 }
1060
1061 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1062 {
1063 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1064 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1065 struct pci_dev *pdev = adapter->pdev;
1066 int i;
1067
1068 if (tx_ring->desc && tx_ring->buffer_info) {
1069 for (i = 0; i < tx_ring->count; i++) {
1070 if (tx_ring->buffer_info[i].dma)
1071 pci_unmap_single(pdev,
1072 tx_ring->buffer_info[i].dma,
1073 tx_ring->buffer_info[i].length,
1074 PCI_DMA_TODEVICE);
1075 if (tx_ring->buffer_info[i].skb)
1076 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1077 }
1078 }
1079
1080 if (rx_ring->desc && rx_ring->buffer_info) {
1081 for (i = 0; i < rx_ring->count; i++) {
1082 if (rx_ring->buffer_info[i].dma)
1083 pci_unmap_single(pdev,
1084 rx_ring->buffer_info[i].dma,
1085 2048, PCI_DMA_FROMDEVICE);
1086 if (rx_ring->buffer_info[i].skb)
1087 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1088 }
1089 }
1090
1091 if (tx_ring->desc) {
1092 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1093 tx_ring->dma);
1094 tx_ring->desc = NULL;
1095 }
1096 if (rx_ring->desc) {
1097 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1098 rx_ring->dma);
1099 rx_ring->desc = NULL;
1100 }
1101
1102 kfree(tx_ring->buffer_info);
1103 tx_ring->buffer_info = NULL;
1104 kfree(rx_ring->buffer_info);
1105 rx_ring->buffer_info = NULL;
1106 }
1107
1108 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1109 {
1110 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1111 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1112 struct pci_dev *pdev = adapter->pdev;
1113 struct e1000_hw *hw = &adapter->hw;
1114 u32 rctl;
1115 int i;
1116 int ret_val;
1117
1118 /* Setup Tx descriptor ring and Tx buffers */
1119
1120 if (!tx_ring->count)
1121 tx_ring->count = E1000_DEFAULT_TXD;
1122
1123 tx_ring->buffer_info = kcalloc(tx_ring->count,
1124 sizeof(struct e1000_buffer),
1125 GFP_KERNEL);
1126 if (!(tx_ring->buffer_info)) {
1127 ret_val = 1;
1128 goto err_nomem;
1129 }
1130
1131 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1132 tx_ring->size = ALIGN(tx_ring->size, 4096);
1133 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1134 &tx_ring->dma, GFP_KERNEL);
1135 if (!tx_ring->desc) {
1136 ret_val = 2;
1137 goto err_nomem;
1138 }
1139 tx_ring->next_to_use = 0;
1140 tx_ring->next_to_clean = 0;
1141
1142 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1143 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1144 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1145 ew32(TDH, 0);
1146 ew32(TDT, 0);
1147 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1148 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1149 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1150
1151 for (i = 0; i < tx_ring->count; i++) {
1152 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1153 struct sk_buff *skb;
1154 unsigned int skb_size = 1024;
1155
1156 skb = alloc_skb(skb_size, GFP_KERNEL);
1157 if (!skb) {
1158 ret_val = 3;
1159 goto err_nomem;
1160 }
1161 skb_put(skb, skb_size);
1162 tx_ring->buffer_info[i].skb = skb;
1163 tx_ring->buffer_info[i].length = skb->len;
1164 tx_ring->buffer_info[i].dma =
1165 pci_map_single(pdev, skb->data, skb->len,
1166 PCI_DMA_TODEVICE);
1167 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1168 ret_val = 4;
1169 goto err_nomem;
1170 }
1171 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1172 tx_desc->lower.data = cpu_to_le32(skb->len);
1173 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1174 E1000_TXD_CMD_IFCS |
1175 E1000_TXD_CMD_RS);
1176 tx_desc->upper.data = 0;
1177 }
1178
1179 /* Setup Rx descriptor ring and Rx buffers */
1180
1181 if (!rx_ring->count)
1182 rx_ring->count = E1000_DEFAULT_RXD;
1183
1184 rx_ring->buffer_info = kcalloc(rx_ring->count,
1185 sizeof(struct e1000_buffer),
1186 GFP_KERNEL);
1187 if (!(rx_ring->buffer_info)) {
1188 ret_val = 5;
1189 goto err_nomem;
1190 }
1191
1192 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1193 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1194 &rx_ring->dma, GFP_KERNEL);
1195 if (!rx_ring->desc) {
1196 ret_val = 6;
1197 goto err_nomem;
1198 }
1199 rx_ring->next_to_use = 0;
1200 rx_ring->next_to_clean = 0;
1201
1202 rctl = er32(RCTL);
1203 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1204 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1205 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1206 ew32(RDLEN, rx_ring->size);
1207 ew32(RDH, 0);
1208 ew32(RDT, 0);
1209 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1210 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1211 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1212 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1213 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1214 ew32(RCTL, rctl);
1215
1216 for (i = 0; i < rx_ring->count; i++) {
1217 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1218 struct sk_buff *skb;
1219
1220 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1221 if (!skb) {
1222 ret_val = 7;
1223 goto err_nomem;
1224 }
1225 skb_reserve(skb, NET_IP_ALIGN);
1226 rx_ring->buffer_info[i].skb = skb;
1227 rx_ring->buffer_info[i].dma =
1228 pci_map_single(pdev, skb->data, 2048,
1229 PCI_DMA_FROMDEVICE);
1230 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1231 ret_val = 8;
1232 goto err_nomem;
1233 }
1234 rx_desc->buffer_addr =
1235 cpu_to_le64(rx_ring->buffer_info[i].dma);
1236 memset(skb->data, 0x00, skb->len);
1237 }
1238
1239 return 0;
1240
1241 err_nomem:
1242 e1000_free_desc_rings(adapter);
1243 return ret_val;
1244 }
1245
1246 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1247 {
1248 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1249 e1e_wphy(&adapter->hw, 29, 0x001F);
1250 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1251 e1e_wphy(&adapter->hw, 29, 0x001A);
1252 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1253 }
1254
1255 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1256 {
1257 struct e1000_hw *hw = &adapter->hw;
1258 u32 ctrl_reg = 0;
1259 u32 stat_reg = 0;
1260 u16 phy_reg = 0;
1261
1262 hw->mac.autoneg = 0;
1263
1264 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1265 if (hw->mac.type == e1000_pchlan)
1266 e1000_configure_k1_ich8lan(hw, false);
1267
1268 if (hw->phy.type == e1000_phy_m88) {
1269 /* Auto-MDI/MDIX Off */
1270 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1271 /* reset to update Auto-MDI/MDIX */
1272 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1273 /* autoneg off */
1274 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1275 } else if (hw->phy.type == e1000_phy_gg82563)
1276 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1277
1278 ctrl_reg = er32(CTRL);
1279
1280 switch (hw->phy.type) {
1281 case e1000_phy_ife:
1282 /* force 100, set loopback */
1283 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1284
1285 /* Now set up the MAC to the same speed/duplex as the PHY. */
1286 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1287 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1288 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1289 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1290 E1000_CTRL_FD); /* Force Duplex to FULL */
1291 break;
1292 case e1000_phy_bm:
1293 /* Set Default MAC Interface speed to 1GB */
1294 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1295 phy_reg &= ~0x0007;
1296 phy_reg |= 0x006;
1297 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1298 /* Assert SW reset for above settings to take effect */
1299 e1000e_commit_phy(hw);
1300 mdelay(1);
1301 /* Force Full Duplex */
1302 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1303 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1304 /* Set Link Up (in force link) */
1305 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1306 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1307 /* Force Link */
1308 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1309 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1310 /* Set Early Link Enable */
1311 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1312 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1313 /* fall through */
1314 default:
1315 /* force 1000, set loopback */
1316 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1317 mdelay(250);
1318
1319 /* Now set up the MAC to the same speed/duplex as the PHY. */
1320 ctrl_reg = er32(CTRL);
1321 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1322 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1323 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1324 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1325 E1000_CTRL_FD); /* Force Duplex to FULL */
1326
1327 if (adapter->flags & FLAG_IS_ICH)
1328 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1329 }
1330
1331 if (hw->phy.media_type == e1000_media_type_copper &&
1332 hw->phy.type == e1000_phy_m88) {
1333 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1334 } else {
1335 /*
1336 * Set the ILOS bit on the fiber Nic if half duplex link is
1337 * detected.
1338 */
1339 stat_reg = er32(STATUS);
1340 if ((stat_reg & E1000_STATUS_FD) == 0)
1341 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1342 }
1343
1344 ew32(CTRL, ctrl_reg);
1345
1346 /*
1347 * Disable the receiver on the PHY so when a cable is plugged in, the
1348 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1349 */
1350 if (hw->phy.type == e1000_phy_m88)
1351 e1000_phy_disable_receiver(adapter);
1352
1353 udelay(500);
1354
1355 return 0;
1356 }
1357
1358 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1359 {
1360 struct e1000_hw *hw = &adapter->hw;
1361 u32 ctrl = er32(CTRL);
1362 int link = 0;
1363
1364 /* special requirements for 82571/82572 fiber adapters */
1365
1366 /*
1367 * jump through hoops to make sure link is up because serdes
1368 * link is hardwired up
1369 */
1370 ctrl |= E1000_CTRL_SLU;
1371 ew32(CTRL, ctrl);
1372
1373 /* disable autoneg */
1374 ctrl = er32(TXCW);
1375 ctrl &= ~(1 << 31);
1376 ew32(TXCW, ctrl);
1377
1378 link = (er32(STATUS) & E1000_STATUS_LU);
1379
1380 if (!link) {
1381 /* set invert loss of signal */
1382 ctrl = er32(CTRL);
1383 ctrl |= E1000_CTRL_ILOS;
1384 ew32(CTRL, ctrl);
1385 }
1386
1387 /*
1388 * special write to serdes control register to enable SerDes analog
1389 * loopback
1390 */
1391 #define E1000_SERDES_LB_ON 0x410
1392 ew32(SCTL, E1000_SERDES_LB_ON);
1393 msleep(10);
1394
1395 return 0;
1396 }
1397
1398 /* only call this for fiber/serdes connections to es2lan */
1399 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1400 {
1401 struct e1000_hw *hw = &adapter->hw;
1402 u32 ctrlext = er32(CTRL_EXT);
1403 u32 ctrl = er32(CTRL);
1404
1405 /*
1406 * save CTRL_EXT to restore later, reuse an empty variable (unused
1407 * on mac_type 80003es2lan)
1408 */
1409 adapter->tx_fifo_head = ctrlext;
1410
1411 /* clear the serdes mode bits, putting the device into mac loopback */
1412 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1413 ew32(CTRL_EXT, ctrlext);
1414
1415 /* force speed to 1000/FD, link up */
1416 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1417 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1418 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1419 ew32(CTRL, ctrl);
1420
1421 /* set mac loopback */
1422 ctrl = er32(RCTL);
1423 ctrl |= E1000_RCTL_LBM_MAC;
1424 ew32(RCTL, ctrl);
1425
1426 /* set testing mode parameters (no need to reset later) */
1427 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1428 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1429 ew32(KMRNCTRLSTA,
1430 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1431
1432 return 0;
1433 }
1434
1435 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1436 {
1437 struct e1000_hw *hw = &adapter->hw;
1438 u32 rctl;
1439
1440 if (hw->phy.media_type == e1000_media_type_fiber ||
1441 hw->phy.media_type == e1000_media_type_internal_serdes) {
1442 switch (hw->mac.type) {
1443 case e1000_80003es2lan:
1444 return e1000_set_es2lan_mac_loopback(adapter);
1445 break;
1446 case e1000_82571:
1447 case e1000_82572:
1448 return e1000_set_82571_fiber_loopback(adapter);
1449 break;
1450 default:
1451 rctl = er32(RCTL);
1452 rctl |= E1000_RCTL_LBM_TCVR;
1453 ew32(RCTL, rctl);
1454 return 0;
1455 }
1456 } else if (hw->phy.media_type == e1000_media_type_copper) {
1457 return e1000_integrated_phy_loopback(adapter);
1458 }
1459
1460 return 7;
1461 }
1462
1463 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1464 {
1465 struct e1000_hw *hw = &adapter->hw;
1466 u32 rctl;
1467 u16 phy_reg;
1468
1469 rctl = er32(RCTL);
1470 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1471 ew32(RCTL, rctl);
1472
1473 switch (hw->mac.type) {
1474 case e1000_80003es2lan:
1475 if (hw->phy.media_type == e1000_media_type_fiber ||
1476 hw->phy.media_type == e1000_media_type_internal_serdes) {
1477 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1478 ew32(CTRL_EXT, adapter->tx_fifo_head);
1479 adapter->tx_fifo_head = 0;
1480 }
1481 /* fall through */
1482 case e1000_82571:
1483 case e1000_82572:
1484 if (hw->phy.media_type == e1000_media_type_fiber ||
1485 hw->phy.media_type == e1000_media_type_internal_serdes) {
1486 #define E1000_SERDES_LB_OFF 0x400
1487 ew32(SCTL, E1000_SERDES_LB_OFF);
1488 msleep(10);
1489 break;
1490 }
1491 /* Fall Through */
1492 default:
1493 hw->mac.autoneg = 1;
1494 if (hw->phy.type == e1000_phy_gg82563)
1495 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1496 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1497 if (phy_reg & MII_CR_LOOPBACK) {
1498 phy_reg &= ~MII_CR_LOOPBACK;
1499 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1500 e1000e_commit_phy(hw);
1501 }
1502 break;
1503 }
1504 }
1505
1506 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1507 unsigned int frame_size)
1508 {
1509 memset(skb->data, 0xFF, frame_size);
1510 frame_size &= ~1;
1511 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1512 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1513 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1514 }
1515
1516 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1517 unsigned int frame_size)
1518 {
1519 frame_size &= ~1;
1520 if (*(skb->data + 3) == 0xFF)
1521 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1522 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1523 return 0;
1524 return 13;
1525 }
1526
1527 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1528 {
1529 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1530 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1531 struct pci_dev *pdev = adapter->pdev;
1532 struct e1000_hw *hw = &adapter->hw;
1533 int i, j, k, l;
1534 int lc;
1535 int good_cnt;
1536 int ret_val = 0;
1537 unsigned long time;
1538
1539 ew32(RDT, rx_ring->count - 1);
1540
1541 /*
1542 * Calculate the loop count based on the largest descriptor ring
1543 * The idea is to wrap the largest ring a number of times using 64
1544 * send/receive pairs during each loop
1545 */
1546
1547 if (rx_ring->count <= tx_ring->count)
1548 lc = ((tx_ring->count / 64) * 2) + 1;
1549 else
1550 lc = ((rx_ring->count / 64) * 2) + 1;
1551
1552 k = 0;
1553 l = 0;
1554 for (j = 0; j <= lc; j++) { /* loop count loop */
1555 for (i = 0; i < 64; i++) { /* send the packets */
1556 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1557 1024);
1558 pci_dma_sync_single_for_device(pdev,
1559 tx_ring->buffer_info[k].dma,
1560 tx_ring->buffer_info[k].length,
1561 PCI_DMA_TODEVICE);
1562 k++;
1563 if (k == tx_ring->count)
1564 k = 0;
1565 }
1566 ew32(TDT, k);
1567 msleep(200);
1568 time = jiffies; /* set the start time for the receive */
1569 good_cnt = 0;
1570 do { /* receive the sent packets */
1571 pci_dma_sync_single_for_cpu(pdev,
1572 rx_ring->buffer_info[l].dma, 2048,
1573 PCI_DMA_FROMDEVICE);
1574
1575 ret_val = e1000_check_lbtest_frame(
1576 rx_ring->buffer_info[l].skb, 1024);
1577 if (!ret_val)
1578 good_cnt++;
1579 l++;
1580 if (l == rx_ring->count)
1581 l = 0;
1582 /*
1583 * time + 20 msecs (200 msecs on 2.4) is more than
1584 * enough time to complete the receives, if it's
1585 * exceeded, break and error off
1586 */
1587 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1588 if (good_cnt != 64) {
1589 ret_val = 13; /* ret_val is the same as mis-compare */
1590 break;
1591 }
1592 if (jiffies >= (time + 20)) {
1593 ret_val = 14; /* error code for time out error */
1594 break;
1595 }
1596 } /* end loop count loop */
1597 return ret_val;
1598 }
1599
1600 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1601 {
1602 /*
1603 * PHY loopback cannot be performed if SoL/IDER
1604 * sessions are active
1605 */
1606 if (e1000_check_reset_block(&adapter->hw)) {
1607 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1608 *data = 0;
1609 goto out;
1610 }
1611
1612 *data = e1000_setup_desc_rings(adapter);
1613 if (*data)
1614 goto out;
1615
1616 *data = e1000_setup_loopback_test(adapter);
1617 if (*data)
1618 goto err_loopback;
1619
1620 *data = e1000_run_loopback_test(adapter);
1621 e1000_loopback_cleanup(adapter);
1622
1623 err_loopback:
1624 e1000_free_desc_rings(adapter);
1625 out:
1626 return *data;
1627 }
1628
1629 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1630 {
1631 struct e1000_hw *hw = &adapter->hw;
1632
1633 *data = 0;
1634 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1635 int i = 0;
1636 hw->mac.serdes_has_link = false;
1637
1638 /*
1639 * On some blade server designs, link establishment
1640 * could take as long as 2-3 minutes
1641 */
1642 do {
1643 hw->mac.ops.check_for_link(hw);
1644 if (hw->mac.serdes_has_link)
1645 return *data;
1646 msleep(20);
1647 } while (i++ < 3750);
1648
1649 *data = 1;
1650 } else {
1651 hw->mac.ops.check_for_link(hw);
1652 if (hw->mac.autoneg)
1653 msleep(4000);
1654
1655 if (!(er32(STATUS) &
1656 E1000_STATUS_LU))
1657 *data = 1;
1658 }
1659 return *data;
1660 }
1661
1662 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1663 {
1664 switch (sset) {
1665 case ETH_SS_TEST:
1666 return E1000_TEST_LEN;
1667 case ETH_SS_STATS:
1668 return E1000_STATS_LEN;
1669 default:
1670 return -EOPNOTSUPP;
1671 }
1672 }
1673
1674 static void e1000_diag_test(struct net_device *netdev,
1675 struct ethtool_test *eth_test, u64 *data)
1676 {
1677 struct e1000_adapter *adapter = netdev_priv(netdev);
1678 u16 autoneg_advertised;
1679 u8 forced_speed_duplex;
1680 u8 autoneg;
1681 bool if_running = netif_running(netdev);
1682
1683 set_bit(__E1000_TESTING, &adapter->state);
1684 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1685 /* Offline tests */
1686
1687 /* save speed, duplex, autoneg settings */
1688 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1689 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1690 autoneg = adapter->hw.mac.autoneg;
1691
1692 e_info("offline testing starting\n");
1693
1694 /*
1695 * Link test performed before hardware reset so autoneg doesn't
1696 * interfere with test result
1697 */
1698 if (e1000_link_test(adapter, &data[4]))
1699 eth_test->flags |= ETH_TEST_FL_FAILED;
1700
1701 if (if_running)
1702 /* indicate we're in test mode */
1703 dev_close(netdev);
1704 else
1705 e1000e_reset(adapter);
1706
1707 if (e1000_reg_test(adapter, &data[0]))
1708 eth_test->flags |= ETH_TEST_FL_FAILED;
1709
1710 e1000e_reset(adapter);
1711 if (e1000_eeprom_test(adapter, &data[1]))
1712 eth_test->flags |= ETH_TEST_FL_FAILED;
1713
1714 e1000e_reset(adapter);
1715 if (e1000_intr_test(adapter, &data[2]))
1716 eth_test->flags |= ETH_TEST_FL_FAILED;
1717
1718 e1000e_reset(adapter);
1719 /* make sure the phy is powered up */
1720 e1000e_power_up_phy(adapter);
1721 if (e1000_loopback_test(adapter, &data[3]))
1722 eth_test->flags |= ETH_TEST_FL_FAILED;
1723
1724 /* restore speed, duplex, autoneg settings */
1725 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1726 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1727 adapter->hw.mac.autoneg = autoneg;
1728
1729 /* force this routine to wait until autoneg complete/timeout */
1730 adapter->hw.phy.autoneg_wait_to_complete = 1;
1731 e1000e_reset(adapter);
1732 adapter->hw.phy.autoneg_wait_to_complete = 0;
1733
1734 clear_bit(__E1000_TESTING, &adapter->state);
1735 if (if_running)
1736 dev_open(netdev);
1737 } else {
1738 e_info("online testing starting\n");
1739 /* Online tests */
1740 if (e1000_link_test(adapter, &data[4]))
1741 eth_test->flags |= ETH_TEST_FL_FAILED;
1742
1743 /* Online tests aren't run; pass by default */
1744 data[0] = 0;
1745 data[1] = 0;
1746 data[2] = 0;
1747 data[3] = 0;
1748
1749 clear_bit(__E1000_TESTING, &adapter->state);
1750 }
1751 msleep_interruptible(4 * 1000);
1752 }
1753
1754 static void e1000_get_wol(struct net_device *netdev,
1755 struct ethtool_wolinfo *wol)
1756 {
1757 struct e1000_adapter *adapter = netdev_priv(netdev);
1758
1759 wol->supported = 0;
1760 wol->wolopts = 0;
1761
1762 if (!(adapter->flags & FLAG_HAS_WOL) ||
1763 !device_can_wakeup(&adapter->pdev->dev))
1764 return;
1765
1766 wol->supported = WAKE_UCAST | WAKE_MCAST |
1767 WAKE_BCAST | WAKE_MAGIC |
1768 WAKE_PHY | WAKE_ARP;
1769
1770 /* apply any specific unsupported masks here */
1771 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1772 wol->supported &= ~WAKE_UCAST;
1773
1774 if (adapter->wol & E1000_WUFC_EX)
1775 e_err("Interface does not support directed (unicast) "
1776 "frame wake-up packets\n");
1777 }
1778
1779 if (adapter->wol & E1000_WUFC_EX)
1780 wol->wolopts |= WAKE_UCAST;
1781 if (adapter->wol & E1000_WUFC_MC)
1782 wol->wolopts |= WAKE_MCAST;
1783 if (adapter->wol & E1000_WUFC_BC)
1784 wol->wolopts |= WAKE_BCAST;
1785 if (adapter->wol & E1000_WUFC_MAG)
1786 wol->wolopts |= WAKE_MAGIC;
1787 if (adapter->wol & E1000_WUFC_LNKC)
1788 wol->wolopts |= WAKE_PHY;
1789 if (adapter->wol & E1000_WUFC_ARP)
1790 wol->wolopts |= WAKE_ARP;
1791 }
1792
1793 static int e1000_set_wol(struct net_device *netdev,
1794 struct ethtool_wolinfo *wol)
1795 {
1796 struct e1000_adapter *adapter = netdev_priv(netdev);
1797
1798 if (!(adapter->flags & FLAG_HAS_WOL) ||
1799 !device_can_wakeup(&adapter->pdev->dev) ||
1800 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1801 WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1802 return -EOPNOTSUPP;
1803
1804 /* these settings will always override what we currently have */
1805 adapter->wol = 0;
1806
1807 if (wol->wolopts & WAKE_UCAST)
1808 adapter->wol |= E1000_WUFC_EX;
1809 if (wol->wolopts & WAKE_MCAST)
1810 adapter->wol |= E1000_WUFC_MC;
1811 if (wol->wolopts & WAKE_BCAST)
1812 adapter->wol |= E1000_WUFC_BC;
1813 if (wol->wolopts & WAKE_MAGIC)
1814 adapter->wol |= E1000_WUFC_MAG;
1815 if (wol->wolopts & WAKE_PHY)
1816 adapter->wol |= E1000_WUFC_LNKC;
1817 if (wol->wolopts & WAKE_ARP)
1818 adapter->wol |= E1000_WUFC_ARP;
1819
1820 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1821
1822 return 0;
1823 }
1824
1825 /* toggle LED 4 times per second = 2 "blinks" per second */
1826 #define E1000_ID_INTERVAL (HZ/4)
1827
1828 /* bit defines for adapter->led_status */
1829 #define E1000_LED_ON 0
1830
1831 static void e1000e_led_blink_task(struct work_struct *work)
1832 {
1833 struct e1000_adapter *adapter = container_of(work,
1834 struct e1000_adapter, led_blink_task);
1835
1836 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1837 adapter->hw.mac.ops.led_off(&adapter->hw);
1838 else
1839 adapter->hw.mac.ops.led_on(&adapter->hw);
1840 }
1841
1842 static void e1000_led_blink_callback(unsigned long data)
1843 {
1844 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1845
1846 schedule_work(&adapter->led_blink_task);
1847 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1848 }
1849
1850 static int e1000_phys_id(struct net_device *netdev, u32 data)
1851 {
1852 struct e1000_adapter *adapter = netdev_priv(netdev);
1853 struct e1000_hw *hw = &adapter->hw;
1854
1855 if (!data)
1856 data = INT_MAX;
1857
1858 if ((hw->phy.type == e1000_phy_ife) ||
1859 (hw->mac.type == e1000_pchlan) ||
1860 (hw->mac.type == e1000_82583) ||
1861 (hw->mac.type == e1000_82574)) {
1862 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1863 if (!adapter->blink_timer.function) {
1864 init_timer(&adapter->blink_timer);
1865 adapter->blink_timer.function =
1866 e1000_led_blink_callback;
1867 adapter->blink_timer.data = (unsigned long) adapter;
1868 }
1869 mod_timer(&adapter->blink_timer, jiffies);
1870 msleep_interruptible(data * 1000);
1871 del_timer_sync(&adapter->blink_timer);
1872 if (hw->phy.type == e1000_phy_ife)
1873 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1874 } else {
1875 e1000e_blink_led(hw);
1876 msleep_interruptible(data * 1000);
1877 }
1878
1879 hw->mac.ops.led_off(hw);
1880 clear_bit(E1000_LED_ON, &adapter->led_status);
1881 hw->mac.ops.cleanup_led(hw);
1882
1883 return 0;
1884 }
1885
1886 static int e1000_get_coalesce(struct net_device *netdev,
1887 struct ethtool_coalesce *ec)
1888 {
1889 struct e1000_adapter *adapter = netdev_priv(netdev);
1890
1891 if (adapter->itr_setting <= 3)
1892 ec->rx_coalesce_usecs = adapter->itr_setting;
1893 else
1894 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1895
1896 return 0;
1897 }
1898
1899 static int e1000_set_coalesce(struct net_device *netdev,
1900 struct ethtool_coalesce *ec)
1901 {
1902 struct e1000_adapter *adapter = netdev_priv(netdev);
1903 struct e1000_hw *hw = &adapter->hw;
1904
1905 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1906 ((ec->rx_coalesce_usecs > 3) &&
1907 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1908 (ec->rx_coalesce_usecs == 2))
1909 return -EINVAL;
1910
1911 if (ec->rx_coalesce_usecs <= 3) {
1912 adapter->itr = 20000;
1913 adapter->itr_setting = ec->rx_coalesce_usecs;
1914 } else {
1915 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1916 adapter->itr_setting = adapter->itr & ~3;
1917 }
1918
1919 if (adapter->itr_setting != 0)
1920 ew32(ITR, 1000000000 / (adapter->itr * 256));
1921 else
1922 ew32(ITR, 0);
1923
1924 return 0;
1925 }
1926
1927 static int e1000_nway_reset(struct net_device *netdev)
1928 {
1929 struct e1000_adapter *adapter = netdev_priv(netdev);
1930 if (netif_running(netdev))
1931 e1000e_reinit_locked(adapter);
1932 return 0;
1933 }
1934
1935 static void e1000_get_ethtool_stats(struct net_device *netdev,
1936 struct ethtool_stats *stats,
1937 u64 *data)
1938 {
1939 struct e1000_adapter *adapter = netdev_priv(netdev);
1940 int i;
1941 char *p = NULL;
1942
1943 e1000e_update_stats(adapter);
1944 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1945 switch (e1000_gstrings_stats[i].type) {
1946 case NETDEV_STATS:
1947 p = (char *) netdev +
1948 e1000_gstrings_stats[i].stat_offset;
1949 break;
1950 case E1000_STATS:
1951 p = (char *) adapter +
1952 e1000_gstrings_stats[i].stat_offset;
1953 break;
1954 }
1955
1956 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1957 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1958 }
1959 }
1960
1961 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1962 u8 *data)
1963 {
1964 u8 *p = data;
1965 int i;
1966
1967 switch (stringset) {
1968 case ETH_SS_TEST:
1969 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1970 break;
1971 case ETH_SS_STATS:
1972 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1973 memcpy(p, e1000_gstrings_stats[i].stat_string,
1974 ETH_GSTRING_LEN);
1975 p += ETH_GSTRING_LEN;
1976 }
1977 break;
1978 }
1979 }
1980
1981 static const struct ethtool_ops e1000_ethtool_ops = {
1982 .get_settings = e1000_get_settings,
1983 .set_settings = e1000_set_settings,
1984 .get_drvinfo = e1000_get_drvinfo,
1985 .get_regs_len = e1000_get_regs_len,
1986 .get_regs = e1000_get_regs,
1987 .get_wol = e1000_get_wol,
1988 .set_wol = e1000_set_wol,
1989 .get_msglevel = e1000_get_msglevel,
1990 .set_msglevel = e1000_set_msglevel,
1991 .nway_reset = e1000_nway_reset,
1992 .get_link = e1000_get_link,
1993 .get_eeprom_len = e1000_get_eeprom_len,
1994 .get_eeprom = e1000_get_eeprom,
1995 .set_eeprom = e1000_set_eeprom,
1996 .get_ringparam = e1000_get_ringparam,
1997 .set_ringparam = e1000_set_ringparam,
1998 .get_pauseparam = e1000_get_pauseparam,
1999 .set_pauseparam = e1000_set_pauseparam,
2000 .get_rx_csum = e1000_get_rx_csum,
2001 .set_rx_csum = e1000_set_rx_csum,
2002 .get_tx_csum = e1000_get_tx_csum,
2003 .set_tx_csum = e1000_set_tx_csum,
2004 .get_sg = ethtool_op_get_sg,
2005 .set_sg = ethtool_op_set_sg,
2006 .get_tso = ethtool_op_get_tso,
2007 .set_tso = e1000_set_tso,
2008 .self_test = e1000_diag_test,
2009 .get_strings = e1000_get_strings,
2010 .phys_id = e1000_phys_id,
2011 .get_ethtool_stats = e1000_get_ethtool_stats,
2012 .get_sset_count = e1000e_get_sset_count,
2013 .get_coalesce = e1000_get_coalesce,
2014 .set_coalesce = e1000_set_coalesce,
2015 .get_flags = ethtool_op_get_flags,
2016 .set_flags = ethtool_op_set_flags,
2017 };
2018
2019 void e1000e_set_ethtool_ops(struct net_device *netdev)
2020 {
2021 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2022 }