]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/e1000e/ethtool.c
e1000e: initial support for 82579 LOMs
[mirror_ubuntu-artful-kernel.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42 char stat_string[ETH_GSTRING_LEN];
43 int type;
44 int sizeof_stat;
45 int stat_offset;
46 };
47
48 #define E1000_STAT(m) E1000_STATS, \
49 sizeof(((struct e1000_adapter *)0)->m), \
50 offsetof(struct e1000_adapter, m)
51 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
52 sizeof(((struct net_device *)0)->m), \
53 offsetof(struct net_device, m)
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 { "rx_packets", E1000_STAT(stats.gprc) },
57 { "tx_packets", E1000_STAT(stats.gptc) },
58 { "rx_bytes", E1000_STAT(stats.gorc) },
59 { "tx_bytes", E1000_STAT(stats.gotc) },
60 { "rx_broadcast", E1000_STAT(stats.bprc) },
61 { "tx_broadcast", E1000_STAT(stats.bptc) },
62 { "rx_multicast", E1000_STAT(stats.mprc) },
63 { "tx_multicast", E1000_STAT(stats.mptc) },
64 { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
65 { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
66 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
67 { "multicast", E1000_STAT(stats.mprc) },
68 { "collisions", E1000_STAT(stats.colc) },
69 { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
70 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
71 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
73 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74 { "rx_missed_errors", E1000_STAT(stats.mpc) },
75 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
78 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
79 { "tx_window_errors", E1000_STAT(stats.latecol) },
80 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81 { "tx_deferred_ok", E1000_STAT(stats.dc) },
82 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85 { "tx_restart_queue", E1000_STAT(restart_queue) },
86 { "rx_long_length_errors", E1000_STAT(stats.roc) },
87 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95 { "rx_long_byte_count", E1000_STAT(stats.gorc) },
96 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98 { "rx_header_split", E1000_STAT(rx_hdr_split) },
99 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100 { "tx_smbus", E1000_STAT(stats.mgptc) },
101 { "rx_smbus", E1000_STAT(stats.mgprc) },
102 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
104 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
105 };
106
107 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
108 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
109 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
110 "Register test (offline)", "Eeprom test (offline)",
111 "Interrupt test (offline)", "Loopback test (offline)",
112 "Link test (on/offline)"
113 };
114 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
115
116 static int e1000_get_settings(struct net_device *netdev,
117 struct ethtool_cmd *ecmd)
118 {
119 struct e1000_adapter *adapter = netdev_priv(netdev);
120 struct e1000_hw *hw = &adapter->hw;
121 u32 status;
122
123 if (hw->phy.media_type == e1000_media_type_copper) {
124
125 ecmd->supported = (SUPPORTED_10baseT_Half |
126 SUPPORTED_10baseT_Full |
127 SUPPORTED_100baseT_Half |
128 SUPPORTED_100baseT_Full |
129 SUPPORTED_1000baseT_Full |
130 SUPPORTED_Autoneg |
131 SUPPORTED_TP);
132 if (hw->phy.type == e1000_phy_ife)
133 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
134 ecmd->advertising = ADVERTISED_TP;
135
136 if (hw->mac.autoneg == 1) {
137 ecmd->advertising |= ADVERTISED_Autoneg;
138 /* the e1000 autoneg seems to match ethtool nicely */
139 ecmd->advertising |= hw->phy.autoneg_advertised;
140 }
141
142 ecmd->port = PORT_TP;
143 ecmd->phy_address = hw->phy.addr;
144 ecmd->transceiver = XCVR_INTERNAL;
145
146 } else {
147 ecmd->supported = (SUPPORTED_1000baseT_Full |
148 SUPPORTED_FIBRE |
149 SUPPORTED_Autoneg);
150
151 ecmd->advertising = (ADVERTISED_1000baseT_Full |
152 ADVERTISED_FIBRE |
153 ADVERTISED_Autoneg);
154
155 ecmd->port = PORT_FIBRE;
156 ecmd->transceiver = XCVR_EXTERNAL;
157 }
158
159 status = er32(STATUS);
160 if (status & E1000_STATUS_LU) {
161 if (status & E1000_STATUS_SPEED_1000)
162 ecmd->speed = 1000;
163 else if (status & E1000_STATUS_SPEED_100)
164 ecmd->speed = 100;
165 else
166 ecmd->speed = 10;
167
168 if (status & E1000_STATUS_FD)
169 ecmd->duplex = DUPLEX_FULL;
170 else
171 ecmd->duplex = DUPLEX_HALF;
172 } else {
173 ecmd->speed = -1;
174 ecmd->duplex = -1;
175 }
176
177 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
178 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
179
180 /* MDI-X => 2; MDI =>1; Invalid =>0 */
181 if ((hw->phy.media_type == e1000_media_type_copper) &&
182 !hw->mac.get_link_status)
183 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
184 ETH_TP_MDI;
185 else
186 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
187
188 return 0;
189 }
190
191 static u32 e1000_get_link(struct net_device *netdev)
192 {
193 struct e1000_adapter *adapter = netdev_priv(netdev);
194 struct e1000_mac_info *mac = &adapter->hw.mac;
195
196 /*
197 * If the link is not reported up to netdev, interrupts are disabled,
198 * and so the physical link state may have changed since we last
199 * looked. Set get_link_status to make sure that the true link
200 * state is interrogated, rather than pulling a cached and possibly
201 * stale link state from the driver.
202 */
203 if (!netif_carrier_ok(netdev))
204 mac->get_link_status = 1;
205
206 return e1000e_has_link(adapter);
207 }
208
209 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
210 {
211 struct e1000_mac_info *mac = &adapter->hw.mac;
212
213 mac->autoneg = 0;
214
215 /* Fiber NICs only allow 1000 gbps Full duplex */
216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
218 e_err("Unsupported Speed/Duplex configuration\n");
219 return -EINVAL;
220 }
221
222 switch (spddplx) {
223 case SPEED_10 + DUPLEX_HALF:
224 mac->forced_speed_duplex = ADVERTISE_10_HALF;
225 break;
226 case SPEED_10 + DUPLEX_FULL:
227 mac->forced_speed_duplex = ADVERTISE_10_FULL;
228 break;
229 case SPEED_100 + DUPLEX_HALF:
230 mac->forced_speed_duplex = ADVERTISE_100_HALF;
231 break;
232 case SPEED_100 + DUPLEX_FULL:
233 mac->forced_speed_duplex = ADVERTISE_100_FULL;
234 break;
235 case SPEED_1000 + DUPLEX_FULL:
236 mac->autoneg = 1;
237 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
238 break;
239 case SPEED_1000 + DUPLEX_HALF: /* not supported */
240 default:
241 e_err("Unsupported Speed/Duplex configuration\n");
242 return -EINVAL;
243 }
244 return 0;
245 }
246
247 static int e1000_set_settings(struct net_device *netdev,
248 struct ethtool_cmd *ecmd)
249 {
250 struct e1000_adapter *adapter = netdev_priv(netdev);
251 struct e1000_hw *hw = &adapter->hw;
252
253 /*
254 * When SoL/IDER sessions are active, autoneg/speed/duplex
255 * cannot be changed
256 */
257 if (e1000_check_reset_block(hw)) {
258 e_err("Cannot change link characteristics when SoL/IDER is "
259 "active.\n");
260 return -EINVAL;
261 }
262
263 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
264 msleep(1);
265
266 if (ecmd->autoneg == AUTONEG_ENABLE) {
267 hw->mac.autoneg = 1;
268 if (hw->phy.media_type == e1000_media_type_fiber)
269 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
270 ADVERTISED_FIBRE |
271 ADVERTISED_Autoneg;
272 else
273 hw->phy.autoneg_advertised = ecmd->advertising |
274 ADVERTISED_TP |
275 ADVERTISED_Autoneg;
276 ecmd->advertising = hw->phy.autoneg_advertised;
277 if (adapter->fc_autoneg)
278 hw->fc.requested_mode = e1000_fc_default;
279 } else {
280 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
281 clear_bit(__E1000_RESETTING, &adapter->state);
282 return -EINVAL;
283 }
284 }
285
286 /* reset the link */
287
288 if (netif_running(adapter->netdev)) {
289 e1000e_down(adapter);
290 e1000e_up(adapter);
291 } else {
292 e1000e_reset(adapter);
293 }
294
295 clear_bit(__E1000_RESETTING, &adapter->state);
296 return 0;
297 }
298
299 static void e1000_get_pauseparam(struct net_device *netdev,
300 struct ethtool_pauseparam *pause)
301 {
302 struct e1000_adapter *adapter = netdev_priv(netdev);
303 struct e1000_hw *hw = &adapter->hw;
304
305 pause->autoneg =
306 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
307
308 if (hw->fc.current_mode == e1000_fc_rx_pause) {
309 pause->rx_pause = 1;
310 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
311 pause->tx_pause = 1;
312 } else if (hw->fc.current_mode == e1000_fc_full) {
313 pause->rx_pause = 1;
314 pause->tx_pause = 1;
315 }
316 }
317
318 static int e1000_set_pauseparam(struct net_device *netdev,
319 struct ethtool_pauseparam *pause)
320 {
321 struct e1000_adapter *adapter = netdev_priv(netdev);
322 struct e1000_hw *hw = &adapter->hw;
323 int retval = 0;
324
325 adapter->fc_autoneg = pause->autoneg;
326
327 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
328 msleep(1);
329
330 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
331 hw->fc.requested_mode = e1000_fc_default;
332 if (netif_running(adapter->netdev)) {
333 e1000e_down(adapter);
334 e1000e_up(adapter);
335 } else {
336 e1000e_reset(adapter);
337 }
338 } else {
339 if (pause->rx_pause && pause->tx_pause)
340 hw->fc.requested_mode = e1000_fc_full;
341 else if (pause->rx_pause && !pause->tx_pause)
342 hw->fc.requested_mode = e1000_fc_rx_pause;
343 else if (!pause->rx_pause && pause->tx_pause)
344 hw->fc.requested_mode = e1000_fc_tx_pause;
345 else if (!pause->rx_pause && !pause->tx_pause)
346 hw->fc.requested_mode = e1000_fc_none;
347
348 hw->fc.current_mode = hw->fc.requested_mode;
349
350 if (hw->phy.media_type == e1000_media_type_fiber) {
351 retval = hw->mac.ops.setup_link(hw);
352 /* implicit goto out */
353 } else {
354 retval = e1000e_force_mac_fc(hw);
355 if (retval)
356 goto out;
357 e1000e_set_fc_watermarks(hw);
358 }
359 }
360
361 out:
362 clear_bit(__E1000_RESETTING, &adapter->state);
363 return retval;
364 }
365
366 static u32 e1000_get_rx_csum(struct net_device *netdev)
367 {
368 struct e1000_adapter *adapter = netdev_priv(netdev);
369 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
370 }
371
372 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
373 {
374 struct e1000_adapter *adapter = netdev_priv(netdev);
375
376 if (data)
377 adapter->flags |= FLAG_RX_CSUM_ENABLED;
378 else
379 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
380
381 if (netif_running(netdev))
382 e1000e_reinit_locked(adapter);
383 else
384 e1000e_reset(adapter);
385 return 0;
386 }
387
388 static u32 e1000_get_tx_csum(struct net_device *netdev)
389 {
390 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
391 }
392
393 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
394 {
395 if (data)
396 netdev->features |= NETIF_F_HW_CSUM;
397 else
398 netdev->features &= ~NETIF_F_HW_CSUM;
399
400 return 0;
401 }
402
403 static int e1000_set_tso(struct net_device *netdev, u32 data)
404 {
405 struct e1000_adapter *adapter = netdev_priv(netdev);
406
407 if (data) {
408 netdev->features |= NETIF_F_TSO;
409 netdev->features |= NETIF_F_TSO6;
410 } else {
411 netdev->features &= ~NETIF_F_TSO;
412 netdev->features &= ~NETIF_F_TSO6;
413 }
414
415 adapter->flags |= FLAG_TSO_FORCE;
416 return 0;
417 }
418
419 static u32 e1000_get_msglevel(struct net_device *netdev)
420 {
421 struct e1000_adapter *adapter = netdev_priv(netdev);
422 return adapter->msg_enable;
423 }
424
425 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
426 {
427 struct e1000_adapter *adapter = netdev_priv(netdev);
428 adapter->msg_enable = data;
429 }
430
431 static int e1000_get_regs_len(struct net_device *netdev)
432 {
433 #define E1000_REGS_LEN 32 /* overestimate */
434 return E1000_REGS_LEN * sizeof(u32);
435 }
436
437 static void e1000_get_regs(struct net_device *netdev,
438 struct ethtool_regs *regs, void *p)
439 {
440 struct e1000_adapter *adapter = netdev_priv(netdev);
441 struct e1000_hw *hw = &adapter->hw;
442 u32 *regs_buff = p;
443 u16 phy_data;
444 u8 revision_id;
445
446 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
447
448 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
449
450 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
451
452 regs_buff[0] = er32(CTRL);
453 regs_buff[1] = er32(STATUS);
454
455 regs_buff[2] = er32(RCTL);
456 regs_buff[3] = er32(RDLEN);
457 regs_buff[4] = er32(RDH);
458 regs_buff[5] = er32(RDT);
459 regs_buff[6] = er32(RDTR);
460
461 regs_buff[7] = er32(TCTL);
462 regs_buff[8] = er32(TDLEN);
463 regs_buff[9] = er32(TDH);
464 regs_buff[10] = er32(TDT);
465 regs_buff[11] = er32(TIDV);
466
467 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
468
469 /* ethtool doesn't use anything past this point, so all this
470 * code is likely legacy junk for apps that may or may not
471 * exist */
472 if (hw->phy.type == e1000_phy_m88) {
473 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
474 regs_buff[13] = (u32)phy_data; /* cable length */
475 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
476 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
477 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
479 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
480 regs_buff[18] = regs_buff[13]; /* cable polarity */
481 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
482 regs_buff[20] = regs_buff[17]; /* polarity correction */
483 /* phy receive errors */
484 regs_buff[22] = adapter->phy_stats.receive_errors;
485 regs_buff[23] = regs_buff[13]; /* mdix mode */
486 }
487 regs_buff[21] = 0; /* was idle_errors */
488 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
489 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
490 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
491 }
492
493 static int e1000_get_eeprom_len(struct net_device *netdev)
494 {
495 struct e1000_adapter *adapter = netdev_priv(netdev);
496 return adapter->hw.nvm.word_size * 2;
497 }
498
499 static int e1000_get_eeprom(struct net_device *netdev,
500 struct ethtool_eeprom *eeprom, u8 *bytes)
501 {
502 struct e1000_adapter *adapter = netdev_priv(netdev);
503 struct e1000_hw *hw = &adapter->hw;
504 u16 *eeprom_buff;
505 int first_word;
506 int last_word;
507 int ret_val = 0;
508 u16 i;
509
510 if (eeprom->len == 0)
511 return -EINVAL;
512
513 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
514
515 first_word = eeprom->offset >> 1;
516 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517
518 eeprom_buff = kmalloc(sizeof(u16) *
519 (last_word - first_word + 1), GFP_KERNEL);
520 if (!eeprom_buff)
521 return -ENOMEM;
522
523 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
524 ret_val = e1000_read_nvm(hw, first_word,
525 last_word - first_word + 1,
526 eeprom_buff);
527 } else {
528 for (i = 0; i < last_word - first_word + 1; i++) {
529 ret_val = e1000_read_nvm(hw, first_word + i, 1,
530 &eeprom_buff[i]);
531 if (ret_val)
532 break;
533 }
534 }
535
536 if (ret_val) {
537 /* a read error occurred, throw away the result */
538 memset(eeprom_buff, 0xff, sizeof(u16) *
539 (last_word - first_word + 1));
540 } else {
541 /* Device's eeprom is always little-endian, word addressable */
542 for (i = 0; i < last_word - first_word + 1; i++)
543 le16_to_cpus(&eeprom_buff[i]);
544 }
545
546 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
547 kfree(eeprom_buff);
548
549 return ret_val;
550 }
551
552 static int e1000_set_eeprom(struct net_device *netdev,
553 struct ethtool_eeprom *eeprom, u8 *bytes)
554 {
555 struct e1000_adapter *adapter = netdev_priv(netdev);
556 struct e1000_hw *hw = &adapter->hw;
557 u16 *eeprom_buff;
558 void *ptr;
559 int max_len;
560 int first_word;
561 int last_word;
562 int ret_val = 0;
563 u16 i;
564
565 if (eeprom->len == 0)
566 return -EOPNOTSUPP;
567
568 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
569 return -EFAULT;
570
571 if (adapter->flags & FLAG_READ_ONLY_NVM)
572 return -EINVAL;
573
574 max_len = hw->nvm.word_size * 2;
575
576 first_word = eeprom->offset >> 1;
577 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
578 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
579 if (!eeprom_buff)
580 return -ENOMEM;
581
582 ptr = (void *)eeprom_buff;
583
584 if (eeprom->offset & 1) {
585 /* need read/modify/write of first changed EEPROM word */
586 /* only the second byte of the word is being modified */
587 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
588 ptr++;
589 }
590 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
591 /* need read/modify/write of last changed EEPROM word */
592 /* only the first byte of the word is being modified */
593 ret_val = e1000_read_nvm(hw, last_word, 1,
594 &eeprom_buff[last_word - first_word]);
595
596 if (ret_val)
597 goto out;
598
599 /* Device's eeprom is always little-endian, word addressable */
600 for (i = 0; i < last_word - first_word + 1; i++)
601 le16_to_cpus(&eeprom_buff[i]);
602
603 memcpy(ptr, bytes, eeprom->len);
604
605 for (i = 0; i < last_word - first_word + 1; i++)
606 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
607
608 ret_val = e1000_write_nvm(hw, first_word,
609 last_word - first_word + 1, eeprom_buff);
610
611 if (ret_val)
612 goto out;
613
614 /*
615 * Update the checksum over the first part of the EEPROM if needed
616 * and flush shadow RAM for applicable controllers
617 */
618 if ((first_word <= NVM_CHECKSUM_REG) ||
619 (hw->mac.type == e1000_82583) ||
620 (hw->mac.type == e1000_82574) ||
621 (hw->mac.type == e1000_82573))
622 ret_val = e1000e_update_nvm_checksum(hw);
623
624 out:
625 kfree(eeprom_buff);
626 return ret_val;
627 }
628
629 static void e1000_get_drvinfo(struct net_device *netdev,
630 struct ethtool_drvinfo *drvinfo)
631 {
632 struct e1000_adapter *adapter = netdev_priv(netdev);
633 char firmware_version[32];
634
635 strncpy(drvinfo->driver, e1000e_driver_name, 32);
636 strncpy(drvinfo->version, e1000e_driver_version, 32);
637
638 /*
639 * EEPROM image version # is reported as firmware version # for
640 * PCI-E controllers
641 */
642 sprintf(firmware_version, "%d.%d-%d",
643 (adapter->eeprom_vers & 0xF000) >> 12,
644 (adapter->eeprom_vers & 0x0FF0) >> 4,
645 (adapter->eeprom_vers & 0x000F));
646
647 strncpy(drvinfo->fw_version, firmware_version, 32);
648 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
649 drvinfo->regdump_len = e1000_get_regs_len(netdev);
650 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
651 }
652
653 static void e1000_get_ringparam(struct net_device *netdev,
654 struct ethtool_ringparam *ring)
655 {
656 struct e1000_adapter *adapter = netdev_priv(netdev);
657 struct e1000_ring *tx_ring = adapter->tx_ring;
658 struct e1000_ring *rx_ring = adapter->rx_ring;
659
660 ring->rx_max_pending = E1000_MAX_RXD;
661 ring->tx_max_pending = E1000_MAX_TXD;
662 ring->rx_mini_max_pending = 0;
663 ring->rx_jumbo_max_pending = 0;
664 ring->rx_pending = rx_ring->count;
665 ring->tx_pending = tx_ring->count;
666 ring->rx_mini_pending = 0;
667 ring->rx_jumbo_pending = 0;
668 }
669
670 static int e1000_set_ringparam(struct net_device *netdev,
671 struct ethtool_ringparam *ring)
672 {
673 struct e1000_adapter *adapter = netdev_priv(netdev);
674 struct e1000_ring *tx_ring, *tx_old;
675 struct e1000_ring *rx_ring, *rx_old;
676 int err;
677
678 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
679 return -EINVAL;
680
681 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
682 msleep(1);
683
684 if (netif_running(adapter->netdev))
685 e1000e_down(adapter);
686
687 tx_old = adapter->tx_ring;
688 rx_old = adapter->rx_ring;
689
690 err = -ENOMEM;
691 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
692 if (!tx_ring)
693 goto err_alloc_tx;
694 /*
695 * use a memcpy to save any previously configured
696 * items like napi structs from having to be
697 * reinitialized
698 */
699 memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
700
701 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
702 if (!rx_ring)
703 goto err_alloc_rx;
704 memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
705
706 adapter->tx_ring = tx_ring;
707 adapter->rx_ring = rx_ring;
708
709 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
710 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
711 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
712
713 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
714 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
715 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
716
717 if (netif_running(adapter->netdev)) {
718 /* Try to get new resources before deleting old */
719 err = e1000e_setup_rx_resources(adapter);
720 if (err)
721 goto err_setup_rx;
722 err = e1000e_setup_tx_resources(adapter);
723 if (err)
724 goto err_setup_tx;
725
726 /*
727 * restore the old in order to free it,
728 * then add in the new
729 */
730 adapter->rx_ring = rx_old;
731 adapter->tx_ring = tx_old;
732 e1000e_free_rx_resources(adapter);
733 e1000e_free_tx_resources(adapter);
734 kfree(tx_old);
735 kfree(rx_old);
736 adapter->rx_ring = rx_ring;
737 adapter->tx_ring = tx_ring;
738 err = e1000e_up(adapter);
739 if (err)
740 goto err_setup;
741 }
742
743 clear_bit(__E1000_RESETTING, &adapter->state);
744 return 0;
745 err_setup_tx:
746 e1000e_free_rx_resources(adapter);
747 err_setup_rx:
748 adapter->rx_ring = rx_old;
749 adapter->tx_ring = tx_old;
750 kfree(rx_ring);
751 err_alloc_rx:
752 kfree(tx_ring);
753 err_alloc_tx:
754 e1000e_up(adapter);
755 err_setup:
756 clear_bit(__E1000_RESETTING, &adapter->state);
757 return err;
758 }
759
760 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
761 int reg, int offset, u32 mask, u32 write)
762 {
763 u32 pat, val;
764 static const u32 test[] =
765 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
766 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
767 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
768 (test[pat] & write));
769 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
770 if (val != (test[pat] & write & mask)) {
771 e_err("pattern test reg %04X failed: got 0x%08X "
772 "expected 0x%08X\n", reg + offset, val,
773 (test[pat] & write & mask));
774 *data = reg;
775 return 1;
776 }
777 }
778 return 0;
779 }
780
781 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
782 int reg, u32 mask, u32 write)
783 {
784 u32 val;
785 __ew32(&adapter->hw, reg, write & mask);
786 val = __er32(&adapter->hw, reg);
787 if ((write & mask) != (val & mask)) {
788 e_err("set/check reg %04X test failed: got 0x%08X "
789 "expected 0x%08X\n", reg, (val & mask), (write & mask));
790 *data = reg;
791 return 1;
792 }
793 return 0;
794 }
795 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
796 do { \
797 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
798 return 1; \
799 } while (0)
800 #define REG_PATTERN_TEST(reg, mask, write) \
801 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
802
803 #define REG_SET_AND_CHECK(reg, mask, write) \
804 do { \
805 if (reg_set_and_check(adapter, data, reg, mask, write)) \
806 return 1; \
807 } while (0)
808
809 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
810 {
811 struct e1000_hw *hw = &adapter->hw;
812 struct e1000_mac_info *mac = &adapter->hw.mac;
813 u32 value;
814 u32 before;
815 u32 after;
816 u32 i;
817 u32 toggle;
818 u32 mask;
819
820 /*
821 * The status register is Read Only, so a write should fail.
822 * Some bits that get toggled are ignored.
823 */
824 switch (mac->type) {
825 /* there are several bits on newer hardware that are r/w */
826 case e1000_82571:
827 case e1000_82572:
828 case e1000_80003es2lan:
829 toggle = 0x7FFFF3FF;
830 break;
831 default:
832 toggle = 0x7FFFF033;
833 break;
834 }
835
836 before = er32(STATUS);
837 value = (er32(STATUS) & toggle);
838 ew32(STATUS, toggle);
839 after = er32(STATUS) & toggle;
840 if (value != after) {
841 e_err("failed STATUS register test got: 0x%08X expected: "
842 "0x%08X\n", after, value);
843 *data = 1;
844 return 1;
845 }
846 /* restore previous status */
847 ew32(STATUS, before);
848
849 if (!(adapter->flags & FLAG_IS_ICH)) {
850 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
851 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
852 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
853 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
854 }
855
856 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
857 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
858 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
859 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
860 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
861 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
862 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
863 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
864 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
865 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
866
867 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
868
869 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
870 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
871 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
872
873 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
875 if (!(adapter->flags & FLAG_IS_ICH))
876 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
877 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
879 mask = 0x8003FFFF;
880 switch (mac->type) {
881 case e1000_ich10lan:
882 case e1000_pchlan:
883 case e1000_pch2lan:
884 mask |= (1 << 18);
885 break;
886 default:
887 break;
888 }
889 for (i = 0; i < mac->rar_entry_count; i++)
890 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
891 mask, 0xFFFFFFFF);
892
893 for (i = 0; i < mac->mta_reg_count; i++)
894 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
895
896 *data = 0;
897 return 0;
898 }
899
900 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
901 {
902 u16 temp;
903 u16 checksum = 0;
904 u16 i;
905
906 *data = 0;
907 /* Read and add up the contents of the EEPROM */
908 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
909 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
910 *data = 1;
911 return *data;
912 }
913 checksum += temp;
914 }
915
916 /* If Checksum is not Correct return error else test passed */
917 if ((checksum != (u16) NVM_SUM) && !(*data))
918 *data = 2;
919
920 return *data;
921 }
922
923 static irqreturn_t e1000_test_intr(int irq, void *data)
924 {
925 struct net_device *netdev = (struct net_device *) data;
926 struct e1000_adapter *adapter = netdev_priv(netdev);
927 struct e1000_hw *hw = &adapter->hw;
928
929 adapter->test_icr |= er32(ICR);
930
931 return IRQ_HANDLED;
932 }
933
934 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
935 {
936 struct net_device *netdev = adapter->netdev;
937 struct e1000_hw *hw = &adapter->hw;
938 u32 mask;
939 u32 shared_int = 1;
940 u32 irq = adapter->pdev->irq;
941 int i;
942 int ret_val = 0;
943 int int_mode = E1000E_INT_MODE_LEGACY;
944
945 *data = 0;
946
947 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
948 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
949 int_mode = adapter->int_mode;
950 e1000e_reset_interrupt_capability(adapter);
951 adapter->int_mode = E1000E_INT_MODE_LEGACY;
952 e1000e_set_interrupt_capability(adapter);
953 }
954 /* Hook up test interrupt handler just for this test */
955 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
956 netdev)) {
957 shared_int = 0;
958 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
959 netdev->name, netdev)) {
960 *data = 1;
961 ret_val = -1;
962 goto out;
963 }
964 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
965
966 /* Disable all the interrupts */
967 ew32(IMC, 0xFFFFFFFF);
968 msleep(10);
969
970 /* Test each interrupt */
971 for (i = 0; i < 10; i++) {
972 /* Interrupt to test */
973 mask = 1 << i;
974
975 if (adapter->flags & FLAG_IS_ICH) {
976 switch (mask) {
977 case E1000_ICR_RXSEQ:
978 continue;
979 case 0x00000100:
980 if (adapter->hw.mac.type == e1000_ich8lan ||
981 adapter->hw.mac.type == e1000_ich9lan)
982 continue;
983 break;
984 default:
985 break;
986 }
987 }
988
989 if (!shared_int) {
990 /*
991 * Disable the interrupt to be reported in
992 * the cause register and then force the same
993 * interrupt and see if one gets posted. If
994 * an interrupt was posted to the bus, the
995 * test failed.
996 */
997 adapter->test_icr = 0;
998 ew32(IMC, mask);
999 ew32(ICS, mask);
1000 msleep(10);
1001
1002 if (adapter->test_icr & mask) {
1003 *data = 3;
1004 break;
1005 }
1006 }
1007
1008 /*
1009 * Enable the interrupt to be reported in
1010 * the cause register and then force the same
1011 * interrupt and see if one gets posted. If
1012 * an interrupt was not posted to the bus, the
1013 * test failed.
1014 */
1015 adapter->test_icr = 0;
1016 ew32(IMS, mask);
1017 ew32(ICS, mask);
1018 msleep(10);
1019
1020 if (!(adapter->test_icr & mask)) {
1021 *data = 4;
1022 break;
1023 }
1024
1025 if (!shared_int) {
1026 /*
1027 * Disable the other interrupts to be reported in
1028 * the cause register and then force the other
1029 * interrupts and see if any get posted. If
1030 * an interrupt was posted to the bus, the
1031 * test failed.
1032 */
1033 adapter->test_icr = 0;
1034 ew32(IMC, ~mask & 0x00007FFF);
1035 ew32(ICS, ~mask & 0x00007FFF);
1036 msleep(10);
1037
1038 if (adapter->test_icr) {
1039 *data = 5;
1040 break;
1041 }
1042 }
1043 }
1044
1045 /* Disable all the interrupts */
1046 ew32(IMC, 0xFFFFFFFF);
1047 msleep(10);
1048
1049 /* Unhook test interrupt handler */
1050 free_irq(irq, netdev);
1051
1052 out:
1053 if (int_mode == E1000E_INT_MODE_MSIX) {
1054 e1000e_reset_interrupt_capability(adapter);
1055 adapter->int_mode = int_mode;
1056 e1000e_set_interrupt_capability(adapter);
1057 }
1058
1059 return ret_val;
1060 }
1061
1062 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1063 {
1064 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1065 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1066 struct pci_dev *pdev = adapter->pdev;
1067 int i;
1068
1069 if (tx_ring->desc && tx_ring->buffer_info) {
1070 for (i = 0; i < tx_ring->count; i++) {
1071 if (tx_ring->buffer_info[i].dma)
1072 dma_unmap_single(&pdev->dev,
1073 tx_ring->buffer_info[i].dma,
1074 tx_ring->buffer_info[i].length,
1075 DMA_TO_DEVICE);
1076 if (tx_ring->buffer_info[i].skb)
1077 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1078 }
1079 }
1080
1081 if (rx_ring->desc && rx_ring->buffer_info) {
1082 for (i = 0; i < rx_ring->count; i++) {
1083 if (rx_ring->buffer_info[i].dma)
1084 dma_unmap_single(&pdev->dev,
1085 rx_ring->buffer_info[i].dma,
1086 2048, DMA_FROM_DEVICE);
1087 if (rx_ring->buffer_info[i].skb)
1088 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1089 }
1090 }
1091
1092 if (tx_ring->desc) {
1093 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1094 tx_ring->dma);
1095 tx_ring->desc = NULL;
1096 }
1097 if (rx_ring->desc) {
1098 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1099 rx_ring->dma);
1100 rx_ring->desc = NULL;
1101 }
1102
1103 kfree(tx_ring->buffer_info);
1104 tx_ring->buffer_info = NULL;
1105 kfree(rx_ring->buffer_info);
1106 rx_ring->buffer_info = NULL;
1107 }
1108
1109 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1110 {
1111 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1112 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1113 struct pci_dev *pdev = adapter->pdev;
1114 struct e1000_hw *hw = &adapter->hw;
1115 u32 rctl;
1116 int i;
1117 int ret_val;
1118
1119 /* Setup Tx descriptor ring and Tx buffers */
1120
1121 if (!tx_ring->count)
1122 tx_ring->count = E1000_DEFAULT_TXD;
1123
1124 tx_ring->buffer_info = kcalloc(tx_ring->count,
1125 sizeof(struct e1000_buffer),
1126 GFP_KERNEL);
1127 if (!(tx_ring->buffer_info)) {
1128 ret_val = 1;
1129 goto err_nomem;
1130 }
1131
1132 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1133 tx_ring->size = ALIGN(tx_ring->size, 4096);
1134 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1135 &tx_ring->dma, GFP_KERNEL);
1136 if (!tx_ring->desc) {
1137 ret_val = 2;
1138 goto err_nomem;
1139 }
1140 tx_ring->next_to_use = 0;
1141 tx_ring->next_to_clean = 0;
1142
1143 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1144 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1145 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1146 ew32(TDH, 0);
1147 ew32(TDT, 0);
1148 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1149 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1150 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1151
1152 for (i = 0; i < tx_ring->count; i++) {
1153 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1154 struct sk_buff *skb;
1155 unsigned int skb_size = 1024;
1156
1157 skb = alloc_skb(skb_size, GFP_KERNEL);
1158 if (!skb) {
1159 ret_val = 3;
1160 goto err_nomem;
1161 }
1162 skb_put(skb, skb_size);
1163 tx_ring->buffer_info[i].skb = skb;
1164 tx_ring->buffer_info[i].length = skb->len;
1165 tx_ring->buffer_info[i].dma =
1166 dma_map_single(&pdev->dev, skb->data, skb->len,
1167 DMA_TO_DEVICE);
1168 if (dma_mapping_error(&pdev->dev,
1169 tx_ring->buffer_info[i].dma)) {
1170 ret_val = 4;
1171 goto err_nomem;
1172 }
1173 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1174 tx_desc->lower.data = cpu_to_le32(skb->len);
1175 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1176 E1000_TXD_CMD_IFCS |
1177 E1000_TXD_CMD_RS);
1178 tx_desc->upper.data = 0;
1179 }
1180
1181 /* Setup Rx descriptor ring and Rx buffers */
1182
1183 if (!rx_ring->count)
1184 rx_ring->count = E1000_DEFAULT_RXD;
1185
1186 rx_ring->buffer_info = kcalloc(rx_ring->count,
1187 sizeof(struct e1000_buffer),
1188 GFP_KERNEL);
1189 if (!(rx_ring->buffer_info)) {
1190 ret_val = 5;
1191 goto err_nomem;
1192 }
1193
1194 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1195 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1196 &rx_ring->dma, GFP_KERNEL);
1197 if (!rx_ring->desc) {
1198 ret_val = 6;
1199 goto err_nomem;
1200 }
1201 rx_ring->next_to_use = 0;
1202 rx_ring->next_to_clean = 0;
1203
1204 rctl = er32(RCTL);
1205 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1206 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1207 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1208 ew32(RDLEN, rx_ring->size);
1209 ew32(RDH, 0);
1210 ew32(RDT, 0);
1211 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1212 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1213 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1214 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1215 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1216 ew32(RCTL, rctl);
1217
1218 for (i = 0; i < rx_ring->count; i++) {
1219 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1220 struct sk_buff *skb;
1221
1222 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1223 if (!skb) {
1224 ret_val = 7;
1225 goto err_nomem;
1226 }
1227 skb_reserve(skb, NET_IP_ALIGN);
1228 rx_ring->buffer_info[i].skb = skb;
1229 rx_ring->buffer_info[i].dma =
1230 dma_map_single(&pdev->dev, skb->data, 2048,
1231 DMA_FROM_DEVICE);
1232 if (dma_mapping_error(&pdev->dev,
1233 rx_ring->buffer_info[i].dma)) {
1234 ret_val = 8;
1235 goto err_nomem;
1236 }
1237 rx_desc->buffer_addr =
1238 cpu_to_le64(rx_ring->buffer_info[i].dma);
1239 memset(skb->data, 0x00, skb->len);
1240 }
1241
1242 return 0;
1243
1244 err_nomem:
1245 e1000_free_desc_rings(adapter);
1246 return ret_val;
1247 }
1248
1249 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1250 {
1251 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1252 e1e_wphy(&adapter->hw, 29, 0x001F);
1253 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1254 e1e_wphy(&adapter->hw, 29, 0x001A);
1255 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1256 }
1257
1258 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1259 {
1260 struct e1000_hw *hw = &adapter->hw;
1261 u32 ctrl_reg = 0;
1262 u32 stat_reg = 0;
1263 u16 phy_reg = 0;
1264
1265 hw->mac.autoneg = 0;
1266
1267 if (hw->phy.type == e1000_phy_ife) {
1268 /* force 100, set loopback */
1269 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1270
1271 /* Now set up the MAC to the same speed/duplex as the PHY. */
1272 ctrl_reg = er32(CTRL);
1273 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1274 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1275 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1276 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1277 E1000_CTRL_FD); /* Force Duplex to FULL */
1278
1279 ew32(CTRL, ctrl_reg);
1280 udelay(500);
1281
1282 return 0;
1283 }
1284
1285 /* Specific PHY configuration for loopback */
1286 switch (hw->phy.type) {
1287 case e1000_phy_m88:
1288 /* Auto-MDI/MDIX Off */
1289 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1290 /* reset to update Auto-MDI/MDIX */
1291 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1292 /* autoneg off */
1293 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1294 break;
1295 case e1000_phy_gg82563:
1296 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1297 break;
1298 case e1000_phy_bm:
1299 /* Set Default MAC Interface speed to 1GB */
1300 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1301 phy_reg &= ~0x0007;
1302 phy_reg |= 0x006;
1303 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1304 /* Assert SW reset for above settings to take effect */
1305 e1000e_commit_phy(hw);
1306 mdelay(1);
1307 /* Force Full Duplex */
1308 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1309 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1310 /* Set Link Up (in force link) */
1311 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1312 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1313 /* Force Link */
1314 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1315 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1316 /* Set Early Link Enable */
1317 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1318 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1319 break;
1320 case e1000_phy_82577:
1321 case e1000_phy_82578:
1322 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1323 e1000_configure_k1_ich8lan(hw, false);
1324 break;
1325 case e1000_phy_82579:
1326 /* Disable PHY energy detect power down */
1327 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1328 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1329 /* Disable full chip energy detect */
1330 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1331 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1332 /* Enable loopback on the PHY */
1333 #define I82577_PHY_LBK_CTRL 19
1334 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1335 break;
1336 default:
1337 break;
1338 }
1339
1340 /* force 1000, set loopback */
1341 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1342 mdelay(250);
1343
1344 /* Now set up the MAC to the same speed/duplex as the PHY. */
1345 ctrl_reg = er32(CTRL);
1346 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1347 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1348 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1349 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1350 E1000_CTRL_FD); /* Force Duplex to FULL */
1351
1352 if (adapter->flags & FLAG_IS_ICH)
1353 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1354
1355 if (hw->phy.media_type == e1000_media_type_copper &&
1356 hw->phy.type == e1000_phy_m88) {
1357 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1358 } else {
1359 /*
1360 * Set the ILOS bit on the fiber Nic if half duplex link is
1361 * detected.
1362 */
1363 stat_reg = er32(STATUS);
1364 if ((stat_reg & E1000_STATUS_FD) == 0)
1365 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1366 }
1367
1368 ew32(CTRL, ctrl_reg);
1369
1370 /*
1371 * Disable the receiver on the PHY so when a cable is plugged in, the
1372 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1373 */
1374 if (hw->phy.type == e1000_phy_m88)
1375 e1000_phy_disable_receiver(adapter);
1376
1377 udelay(500);
1378
1379 return 0;
1380 }
1381
1382 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1383 {
1384 struct e1000_hw *hw = &adapter->hw;
1385 u32 ctrl = er32(CTRL);
1386 int link = 0;
1387
1388 /* special requirements for 82571/82572 fiber adapters */
1389
1390 /*
1391 * jump through hoops to make sure link is up because serdes
1392 * link is hardwired up
1393 */
1394 ctrl |= E1000_CTRL_SLU;
1395 ew32(CTRL, ctrl);
1396
1397 /* disable autoneg */
1398 ctrl = er32(TXCW);
1399 ctrl &= ~(1 << 31);
1400 ew32(TXCW, ctrl);
1401
1402 link = (er32(STATUS) & E1000_STATUS_LU);
1403
1404 if (!link) {
1405 /* set invert loss of signal */
1406 ctrl = er32(CTRL);
1407 ctrl |= E1000_CTRL_ILOS;
1408 ew32(CTRL, ctrl);
1409 }
1410
1411 /*
1412 * special write to serdes control register to enable SerDes analog
1413 * loopback
1414 */
1415 #define E1000_SERDES_LB_ON 0x410
1416 ew32(SCTL, E1000_SERDES_LB_ON);
1417 msleep(10);
1418
1419 return 0;
1420 }
1421
1422 /* only call this for fiber/serdes connections to es2lan */
1423 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1424 {
1425 struct e1000_hw *hw = &adapter->hw;
1426 u32 ctrlext = er32(CTRL_EXT);
1427 u32 ctrl = er32(CTRL);
1428
1429 /*
1430 * save CTRL_EXT to restore later, reuse an empty variable (unused
1431 * on mac_type 80003es2lan)
1432 */
1433 adapter->tx_fifo_head = ctrlext;
1434
1435 /* clear the serdes mode bits, putting the device into mac loopback */
1436 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1437 ew32(CTRL_EXT, ctrlext);
1438
1439 /* force speed to 1000/FD, link up */
1440 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1441 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1442 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1443 ew32(CTRL, ctrl);
1444
1445 /* set mac loopback */
1446 ctrl = er32(RCTL);
1447 ctrl |= E1000_RCTL_LBM_MAC;
1448 ew32(RCTL, ctrl);
1449
1450 /* set testing mode parameters (no need to reset later) */
1451 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1452 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1453 ew32(KMRNCTRLSTA,
1454 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1455
1456 return 0;
1457 }
1458
1459 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1460 {
1461 struct e1000_hw *hw = &adapter->hw;
1462 u32 rctl;
1463
1464 if (hw->phy.media_type == e1000_media_type_fiber ||
1465 hw->phy.media_type == e1000_media_type_internal_serdes) {
1466 switch (hw->mac.type) {
1467 case e1000_80003es2lan:
1468 return e1000_set_es2lan_mac_loopback(adapter);
1469 break;
1470 case e1000_82571:
1471 case e1000_82572:
1472 return e1000_set_82571_fiber_loopback(adapter);
1473 break;
1474 default:
1475 rctl = er32(RCTL);
1476 rctl |= E1000_RCTL_LBM_TCVR;
1477 ew32(RCTL, rctl);
1478 return 0;
1479 }
1480 } else if (hw->phy.media_type == e1000_media_type_copper) {
1481 return e1000_integrated_phy_loopback(adapter);
1482 }
1483
1484 return 7;
1485 }
1486
1487 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1488 {
1489 struct e1000_hw *hw = &adapter->hw;
1490 u32 rctl;
1491 u16 phy_reg;
1492
1493 rctl = er32(RCTL);
1494 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1495 ew32(RCTL, rctl);
1496
1497 switch (hw->mac.type) {
1498 case e1000_80003es2lan:
1499 if (hw->phy.media_type == e1000_media_type_fiber ||
1500 hw->phy.media_type == e1000_media_type_internal_serdes) {
1501 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1502 ew32(CTRL_EXT, adapter->tx_fifo_head);
1503 adapter->tx_fifo_head = 0;
1504 }
1505 /* fall through */
1506 case e1000_82571:
1507 case e1000_82572:
1508 if (hw->phy.media_type == e1000_media_type_fiber ||
1509 hw->phy.media_type == e1000_media_type_internal_serdes) {
1510 #define E1000_SERDES_LB_OFF 0x400
1511 ew32(SCTL, E1000_SERDES_LB_OFF);
1512 msleep(10);
1513 break;
1514 }
1515 /* Fall Through */
1516 default:
1517 hw->mac.autoneg = 1;
1518 if (hw->phy.type == e1000_phy_gg82563)
1519 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1520 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1521 if (phy_reg & MII_CR_LOOPBACK) {
1522 phy_reg &= ~MII_CR_LOOPBACK;
1523 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1524 e1000e_commit_phy(hw);
1525 }
1526 break;
1527 }
1528 }
1529
1530 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1531 unsigned int frame_size)
1532 {
1533 memset(skb->data, 0xFF, frame_size);
1534 frame_size &= ~1;
1535 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1536 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1537 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1538 }
1539
1540 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1541 unsigned int frame_size)
1542 {
1543 frame_size &= ~1;
1544 if (*(skb->data + 3) == 0xFF)
1545 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1546 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1547 return 0;
1548 return 13;
1549 }
1550
1551 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1552 {
1553 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1554 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1555 struct pci_dev *pdev = adapter->pdev;
1556 struct e1000_hw *hw = &adapter->hw;
1557 int i, j, k, l;
1558 int lc;
1559 int good_cnt;
1560 int ret_val = 0;
1561 unsigned long time;
1562
1563 ew32(RDT, rx_ring->count - 1);
1564
1565 /*
1566 * Calculate the loop count based on the largest descriptor ring
1567 * The idea is to wrap the largest ring a number of times using 64
1568 * send/receive pairs during each loop
1569 */
1570
1571 if (rx_ring->count <= tx_ring->count)
1572 lc = ((tx_ring->count / 64) * 2) + 1;
1573 else
1574 lc = ((rx_ring->count / 64) * 2) + 1;
1575
1576 k = 0;
1577 l = 0;
1578 for (j = 0; j <= lc; j++) { /* loop count loop */
1579 for (i = 0; i < 64; i++) { /* send the packets */
1580 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1581 1024);
1582 dma_sync_single_for_device(&pdev->dev,
1583 tx_ring->buffer_info[k].dma,
1584 tx_ring->buffer_info[k].length,
1585 DMA_TO_DEVICE);
1586 k++;
1587 if (k == tx_ring->count)
1588 k = 0;
1589 }
1590 ew32(TDT, k);
1591 msleep(200);
1592 time = jiffies; /* set the start time for the receive */
1593 good_cnt = 0;
1594 do { /* receive the sent packets */
1595 dma_sync_single_for_cpu(&pdev->dev,
1596 rx_ring->buffer_info[l].dma, 2048,
1597 DMA_FROM_DEVICE);
1598
1599 ret_val = e1000_check_lbtest_frame(
1600 rx_ring->buffer_info[l].skb, 1024);
1601 if (!ret_val)
1602 good_cnt++;
1603 l++;
1604 if (l == rx_ring->count)
1605 l = 0;
1606 /*
1607 * time + 20 msecs (200 msecs on 2.4) is more than
1608 * enough time to complete the receives, if it's
1609 * exceeded, break and error off
1610 */
1611 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1612 if (good_cnt != 64) {
1613 ret_val = 13; /* ret_val is the same as mis-compare */
1614 break;
1615 }
1616 if (jiffies >= (time + 20)) {
1617 ret_val = 14; /* error code for time out error */
1618 break;
1619 }
1620 } /* end loop count loop */
1621 return ret_val;
1622 }
1623
1624 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1625 {
1626 /*
1627 * PHY loopback cannot be performed if SoL/IDER
1628 * sessions are active
1629 */
1630 if (e1000_check_reset_block(&adapter->hw)) {
1631 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1632 *data = 0;
1633 goto out;
1634 }
1635
1636 *data = e1000_setup_desc_rings(adapter);
1637 if (*data)
1638 goto out;
1639
1640 *data = e1000_setup_loopback_test(adapter);
1641 if (*data)
1642 goto err_loopback;
1643
1644 *data = e1000_run_loopback_test(adapter);
1645 e1000_loopback_cleanup(adapter);
1646
1647 err_loopback:
1648 e1000_free_desc_rings(adapter);
1649 out:
1650 return *data;
1651 }
1652
1653 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1654 {
1655 struct e1000_hw *hw = &adapter->hw;
1656
1657 *data = 0;
1658 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1659 int i = 0;
1660 hw->mac.serdes_has_link = false;
1661
1662 /*
1663 * On some blade server designs, link establishment
1664 * could take as long as 2-3 minutes
1665 */
1666 do {
1667 hw->mac.ops.check_for_link(hw);
1668 if (hw->mac.serdes_has_link)
1669 return *data;
1670 msleep(20);
1671 } while (i++ < 3750);
1672
1673 *data = 1;
1674 } else {
1675 hw->mac.ops.check_for_link(hw);
1676 if (hw->mac.autoneg)
1677 msleep(4000);
1678
1679 if (!(er32(STATUS) &
1680 E1000_STATUS_LU))
1681 *data = 1;
1682 }
1683 return *data;
1684 }
1685
1686 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1687 {
1688 switch (sset) {
1689 case ETH_SS_TEST:
1690 return E1000_TEST_LEN;
1691 case ETH_SS_STATS:
1692 return E1000_STATS_LEN;
1693 default:
1694 return -EOPNOTSUPP;
1695 }
1696 }
1697
1698 static void e1000_diag_test(struct net_device *netdev,
1699 struct ethtool_test *eth_test, u64 *data)
1700 {
1701 struct e1000_adapter *adapter = netdev_priv(netdev);
1702 u16 autoneg_advertised;
1703 u8 forced_speed_duplex;
1704 u8 autoneg;
1705 bool if_running = netif_running(netdev);
1706
1707 set_bit(__E1000_TESTING, &adapter->state);
1708 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1709 /* Offline tests */
1710
1711 /* save speed, duplex, autoneg settings */
1712 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1713 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1714 autoneg = adapter->hw.mac.autoneg;
1715
1716 e_info("offline testing starting\n");
1717
1718 /*
1719 * Link test performed before hardware reset so autoneg doesn't
1720 * interfere with test result
1721 */
1722 if (e1000_link_test(adapter, &data[4]))
1723 eth_test->flags |= ETH_TEST_FL_FAILED;
1724
1725 if (if_running)
1726 /* indicate we're in test mode */
1727 dev_close(netdev);
1728 else
1729 e1000e_reset(adapter);
1730
1731 if (e1000_reg_test(adapter, &data[0]))
1732 eth_test->flags |= ETH_TEST_FL_FAILED;
1733
1734 e1000e_reset(adapter);
1735 if (e1000_eeprom_test(adapter, &data[1]))
1736 eth_test->flags |= ETH_TEST_FL_FAILED;
1737
1738 e1000e_reset(adapter);
1739 if (e1000_intr_test(adapter, &data[2]))
1740 eth_test->flags |= ETH_TEST_FL_FAILED;
1741
1742 e1000e_reset(adapter);
1743 /* make sure the phy is powered up */
1744 e1000e_power_up_phy(adapter);
1745 if (e1000_loopback_test(adapter, &data[3]))
1746 eth_test->flags |= ETH_TEST_FL_FAILED;
1747
1748 /* restore speed, duplex, autoneg settings */
1749 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1750 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1751 adapter->hw.mac.autoneg = autoneg;
1752
1753 /* force this routine to wait until autoneg complete/timeout */
1754 adapter->hw.phy.autoneg_wait_to_complete = 1;
1755 e1000e_reset(adapter);
1756 adapter->hw.phy.autoneg_wait_to_complete = 0;
1757
1758 clear_bit(__E1000_TESTING, &adapter->state);
1759 if (if_running)
1760 dev_open(netdev);
1761 } else {
1762 if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
1763 clear_bit(__E1000_TESTING, &adapter->state);
1764 dev_open(netdev);
1765 set_bit(__E1000_TESTING, &adapter->state);
1766 }
1767
1768 e_info("online testing starting\n");
1769 /* Online tests */
1770 if (e1000_link_test(adapter, &data[4]))
1771 eth_test->flags |= ETH_TEST_FL_FAILED;
1772
1773 /* Online tests aren't run; pass by default */
1774 data[0] = 0;
1775 data[1] = 0;
1776 data[2] = 0;
1777 data[3] = 0;
1778
1779 if (!if_running && (adapter->flags & FLAG_HAS_AMT))
1780 dev_close(netdev);
1781
1782 clear_bit(__E1000_TESTING, &adapter->state);
1783 }
1784 msleep_interruptible(4 * 1000);
1785 }
1786
1787 static void e1000_get_wol(struct net_device *netdev,
1788 struct ethtool_wolinfo *wol)
1789 {
1790 struct e1000_adapter *adapter = netdev_priv(netdev);
1791
1792 wol->supported = 0;
1793 wol->wolopts = 0;
1794
1795 if (!(adapter->flags & FLAG_HAS_WOL) ||
1796 !device_can_wakeup(&adapter->pdev->dev))
1797 return;
1798
1799 wol->supported = WAKE_UCAST | WAKE_MCAST |
1800 WAKE_BCAST | WAKE_MAGIC |
1801 WAKE_PHY | WAKE_ARP;
1802
1803 /* apply any specific unsupported masks here */
1804 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1805 wol->supported &= ~WAKE_UCAST;
1806
1807 if (adapter->wol & E1000_WUFC_EX)
1808 e_err("Interface does not support directed (unicast) "
1809 "frame wake-up packets\n");
1810 }
1811
1812 if (adapter->wol & E1000_WUFC_EX)
1813 wol->wolopts |= WAKE_UCAST;
1814 if (adapter->wol & E1000_WUFC_MC)
1815 wol->wolopts |= WAKE_MCAST;
1816 if (adapter->wol & E1000_WUFC_BC)
1817 wol->wolopts |= WAKE_BCAST;
1818 if (adapter->wol & E1000_WUFC_MAG)
1819 wol->wolopts |= WAKE_MAGIC;
1820 if (adapter->wol & E1000_WUFC_LNKC)
1821 wol->wolopts |= WAKE_PHY;
1822 if (adapter->wol & E1000_WUFC_ARP)
1823 wol->wolopts |= WAKE_ARP;
1824 }
1825
1826 static int e1000_set_wol(struct net_device *netdev,
1827 struct ethtool_wolinfo *wol)
1828 {
1829 struct e1000_adapter *adapter = netdev_priv(netdev);
1830
1831 if (!(adapter->flags & FLAG_HAS_WOL) ||
1832 !device_can_wakeup(&adapter->pdev->dev) ||
1833 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1834 WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1835 return -EOPNOTSUPP;
1836
1837 /* these settings will always override what we currently have */
1838 adapter->wol = 0;
1839
1840 if (wol->wolopts & WAKE_UCAST)
1841 adapter->wol |= E1000_WUFC_EX;
1842 if (wol->wolopts & WAKE_MCAST)
1843 adapter->wol |= E1000_WUFC_MC;
1844 if (wol->wolopts & WAKE_BCAST)
1845 adapter->wol |= E1000_WUFC_BC;
1846 if (wol->wolopts & WAKE_MAGIC)
1847 adapter->wol |= E1000_WUFC_MAG;
1848 if (wol->wolopts & WAKE_PHY)
1849 adapter->wol |= E1000_WUFC_LNKC;
1850 if (wol->wolopts & WAKE_ARP)
1851 adapter->wol |= E1000_WUFC_ARP;
1852
1853 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1854
1855 return 0;
1856 }
1857
1858 /* toggle LED 4 times per second = 2 "blinks" per second */
1859 #define E1000_ID_INTERVAL (HZ/4)
1860
1861 /* bit defines for adapter->led_status */
1862 #define E1000_LED_ON 0
1863
1864 static void e1000e_led_blink_task(struct work_struct *work)
1865 {
1866 struct e1000_adapter *adapter = container_of(work,
1867 struct e1000_adapter, led_blink_task);
1868
1869 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1870 adapter->hw.mac.ops.led_off(&adapter->hw);
1871 else
1872 adapter->hw.mac.ops.led_on(&adapter->hw);
1873 }
1874
1875 static void e1000_led_blink_callback(unsigned long data)
1876 {
1877 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1878
1879 schedule_work(&adapter->led_blink_task);
1880 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1881 }
1882
1883 static int e1000_phys_id(struct net_device *netdev, u32 data)
1884 {
1885 struct e1000_adapter *adapter = netdev_priv(netdev);
1886 struct e1000_hw *hw = &adapter->hw;
1887
1888 if (!data)
1889 data = INT_MAX;
1890
1891 if ((hw->phy.type == e1000_phy_ife) ||
1892 (hw->mac.type == e1000_pchlan) ||
1893 (hw->mac.type == e1000_pch2lan) ||
1894 (hw->mac.type == e1000_82583) ||
1895 (hw->mac.type == e1000_82574)) {
1896 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1897 if (!adapter->blink_timer.function) {
1898 init_timer(&adapter->blink_timer);
1899 adapter->blink_timer.function =
1900 e1000_led_blink_callback;
1901 adapter->blink_timer.data = (unsigned long) adapter;
1902 }
1903 mod_timer(&adapter->blink_timer, jiffies);
1904 msleep_interruptible(data * 1000);
1905 del_timer_sync(&adapter->blink_timer);
1906 if (hw->phy.type == e1000_phy_ife)
1907 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1908 } else {
1909 e1000e_blink_led(hw);
1910 msleep_interruptible(data * 1000);
1911 }
1912
1913 hw->mac.ops.led_off(hw);
1914 clear_bit(E1000_LED_ON, &adapter->led_status);
1915 hw->mac.ops.cleanup_led(hw);
1916
1917 return 0;
1918 }
1919
1920 static int e1000_get_coalesce(struct net_device *netdev,
1921 struct ethtool_coalesce *ec)
1922 {
1923 struct e1000_adapter *adapter = netdev_priv(netdev);
1924
1925 if (adapter->itr_setting <= 4)
1926 ec->rx_coalesce_usecs = adapter->itr_setting;
1927 else
1928 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1929
1930 return 0;
1931 }
1932
1933 static int e1000_set_coalesce(struct net_device *netdev,
1934 struct ethtool_coalesce *ec)
1935 {
1936 struct e1000_adapter *adapter = netdev_priv(netdev);
1937 struct e1000_hw *hw = &adapter->hw;
1938
1939 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1940 ((ec->rx_coalesce_usecs > 4) &&
1941 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1942 (ec->rx_coalesce_usecs == 2))
1943 return -EINVAL;
1944
1945 if (ec->rx_coalesce_usecs == 4) {
1946 adapter->itr = adapter->itr_setting = 4;
1947 } else if (ec->rx_coalesce_usecs <= 3) {
1948 adapter->itr = 20000;
1949 adapter->itr_setting = ec->rx_coalesce_usecs;
1950 } else {
1951 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1952 adapter->itr_setting = adapter->itr & ~3;
1953 }
1954
1955 if (adapter->itr_setting != 0)
1956 ew32(ITR, 1000000000 / (adapter->itr * 256));
1957 else
1958 ew32(ITR, 0);
1959
1960 return 0;
1961 }
1962
1963 static int e1000_nway_reset(struct net_device *netdev)
1964 {
1965 struct e1000_adapter *adapter = netdev_priv(netdev);
1966 if (netif_running(netdev))
1967 e1000e_reinit_locked(adapter);
1968 return 0;
1969 }
1970
1971 static void e1000_get_ethtool_stats(struct net_device *netdev,
1972 struct ethtool_stats *stats,
1973 u64 *data)
1974 {
1975 struct e1000_adapter *adapter = netdev_priv(netdev);
1976 int i;
1977 char *p = NULL;
1978
1979 e1000e_update_stats(adapter);
1980 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1981 switch (e1000_gstrings_stats[i].type) {
1982 case NETDEV_STATS:
1983 p = (char *) netdev +
1984 e1000_gstrings_stats[i].stat_offset;
1985 break;
1986 case E1000_STATS:
1987 p = (char *) adapter +
1988 e1000_gstrings_stats[i].stat_offset;
1989 break;
1990 }
1991
1992 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1993 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1994 }
1995 }
1996
1997 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1998 u8 *data)
1999 {
2000 u8 *p = data;
2001 int i;
2002
2003 switch (stringset) {
2004 case ETH_SS_TEST:
2005 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
2006 break;
2007 case ETH_SS_STATS:
2008 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2009 memcpy(p, e1000_gstrings_stats[i].stat_string,
2010 ETH_GSTRING_LEN);
2011 p += ETH_GSTRING_LEN;
2012 }
2013 break;
2014 }
2015 }
2016
2017 static const struct ethtool_ops e1000_ethtool_ops = {
2018 .get_settings = e1000_get_settings,
2019 .set_settings = e1000_set_settings,
2020 .get_drvinfo = e1000_get_drvinfo,
2021 .get_regs_len = e1000_get_regs_len,
2022 .get_regs = e1000_get_regs,
2023 .get_wol = e1000_get_wol,
2024 .set_wol = e1000_set_wol,
2025 .get_msglevel = e1000_get_msglevel,
2026 .set_msglevel = e1000_set_msglevel,
2027 .nway_reset = e1000_nway_reset,
2028 .get_link = e1000_get_link,
2029 .get_eeprom_len = e1000_get_eeprom_len,
2030 .get_eeprom = e1000_get_eeprom,
2031 .set_eeprom = e1000_set_eeprom,
2032 .get_ringparam = e1000_get_ringparam,
2033 .set_ringparam = e1000_set_ringparam,
2034 .get_pauseparam = e1000_get_pauseparam,
2035 .set_pauseparam = e1000_set_pauseparam,
2036 .get_rx_csum = e1000_get_rx_csum,
2037 .set_rx_csum = e1000_set_rx_csum,
2038 .get_tx_csum = e1000_get_tx_csum,
2039 .set_tx_csum = e1000_set_tx_csum,
2040 .get_sg = ethtool_op_get_sg,
2041 .set_sg = ethtool_op_set_sg,
2042 .get_tso = ethtool_op_get_tso,
2043 .set_tso = e1000_set_tso,
2044 .self_test = e1000_diag_test,
2045 .get_strings = e1000_get_strings,
2046 .phys_id = e1000_phys_id,
2047 .get_ethtool_stats = e1000_get_ethtool_stats,
2048 .get_sset_count = e1000e_get_sset_count,
2049 .get_coalesce = e1000_get_coalesce,
2050 .set_coalesce = e1000_set_coalesce,
2051 .get_flags = ethtool_op_get_flags,
2052 .set_flags = ethtool_op_set_flags,
2053 };
2054
2055 void e1000e_set_ethtool_ops(struct net_device *netdev)
2056 {
2057 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2058 }