]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/net/e1000e/lib.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
[mirror_ubuntu-kernels.git] / drivers / net / e1000e / lib.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/netdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/delay.h>
32 #include <linux/pci.h>
33
34 #include "e1000.h"
35
36 enum e1000_mng_mode {
37 e1000_mng_mode_none = 0,
38 e1000_mng_mode_asf,
39 e1000_mng_mode_pt,
40 e1000_mng_mode_ipmi,
41 e1000_mng_mode_host_if_only
42 };
43
44 #define E1000_FACTPS_MNGCG 0x20000000
45
46 #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management
47 * Technology signature */
48
49 /**
50 * e1000e_get_bus_info_pcie - Get PCIe bus information
51 * @hw: pointer to the HW structure
52 *
53 * Determines and stores the system bus information for a particular
54 * network interface. The following bus information is determined and stored:
55 * bus speed, bus width, type (PCIe), and PCIe function.
56 **/
57 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
58 {
59 struct e1000_bus_info *bus = &hw->bus;
60 struct e1000_adapter *adapter = hw->adapter;
61 u32 status;
62 u16 pcie_link_status, pci_header_type, cap_offset;
63
64 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
65 if (!cap_offset) {
66 bus->width = e1000_bus_width_unknown;
67 } else {
68 pci_read_config_word(adapter->pdev,
69 cap_offset + PCIE_LINK_STATUS,
70 &pcie_link_status);
71 bus->width = (enum e1000_bus_width)((pcie_link_status &
72 PCIE_LINK_WIDTH_MASK) >>
73 PCIE_LINK_WIDTH_SHIFT);
74 }
75
76 pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
77 &pci_header_type);
78 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
79 status = er32(STATUS);
80 bus->func = (status & E1000_STATUS_FUNC_MASK)
81 >> E1000_STATUS_FUNC_SHIFT;
82 } else {
83 bus->func = 0;
84 }
85
86 return 0;
87 }
88
89 /**
90 * e1000e_write_vfta - Write value to VLAN filter table
91 * @hw: pointer to the HW structure
92 * @offset: register offset in VLAN filter table
93 * @value: register value written to VLAN filter table
94 *
95 * Writes value at the given offset in the register array which stores
96 * the VLAN filter table.
97 **/
98 void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
99 {
100 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
101 e1e_flush();
102 }
103
104 /**
105 * e1000e_init_rx_addrs - Initialize receive address's
106 * @hw: pointer to the HW structure
107 * @rar_count: receive address registers
108 *
109 * Setups the receive address registers by setting the base receive address
110 * register to the devices MAC address and clearing all the other receive
111 * address registers to 0.
112 **/
113 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
114 {
115 u32 i;
116
117 /* Setup the receive address */
118 hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
119
120 e1000e_rar_set(hw, hw->mac.addr, 0);
121
122 /* Zero out the other (rar_entry_count - 1) receive addresses */
123 hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
124 for (i = 1; i < rar_count; i++) {
125 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
126 e1e_flush();
127 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
128 e1e_flush();
129 }
130 }
131
132 /**
133 * e1000e_rar_set - Set receive address register
134 * @hw: pointer to the HW structure
135 * @addr: pointer to the receive address
136 * @index: receive address array register
137 *
138 * Sets the receive address array register at index to the address passed
139 * in by addr.
140 **/
141 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
142 {
143 u32 rar_low, rar_high;
144
145 /* HW expects these in little endian so we reverse the byte order
146 * from network order (big endian) to little endian
147 */
148 rar_low = ((u32) addr[0] |
149 ((u32) addr[1] << 8) |
150 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
151
152 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
153
154 rar_high |= E1000_RAH_AV;
155
156 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
157 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
158 }
159
160 /**
161 * e1000_mta_set - Set multicast filter table address
162 * @hw: pointer to the HW structure
163 * @hash_value: determines the MTA register and bit to set
164 *
165 * The multicast table address is a register array of 32-bit registers.
166 * The hash_value is used to determine what register the bit is in, the
167 * current value is read, the new bit is OR'd in and the new value is
168 * written back into the register.
169 **/
170 static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
171 {
172 u32 hash_bit, hash_reg, mta;
173
174 /* The MTA is a register array of 32-bit registers. It is
175 * treated like an array of (32*mta_reg_count) bits. We want to
176 * set bit BitArray[hash_value]. So we figure out what register
177 * the bit is in, read it, OR in the new bit, then write
178 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
179 * mask to bits 31:5 of the hash value which gives us the
180 * register we're modifying. The hash bit within that register
181 * is determined by the lower 5 bits of the hash value.
182 */
183 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
184 hash_bit = hash_value & 0x1F;
185
186 mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
187
188 mta |= (1 << hash_bit);
189
190 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
191 e1e_flush();
192 }
193
194 /**
195 * e1000_hash_mc_addr - Generate a multicast hash value
196 * @hw: pointer to the HW structure
197 * @mc_addr: pointer to a multicast address
198 *
199 * Generates a multicast address hash value which is used to determine
200 * the multicast filter table array address and new table value. See
201 * e1000_mta_set_generic()
202 **/
203 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
204 {
205 u32 hash_value, hash_mask;
206 u8 bit_shift = 0;
207
208 /* Register count multiplied by bits per register */
209 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
210
211 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
212 * where 0xFF would still fall within the hash mask. */
213 while (hash_mask >> bit_shift != 0xFF)
214 bit_shift++;
215
216 /* The portion of the address that is used for the hash table
217 * is determined by the mc_filter_type setting.
218 * The algorithm is such that there is a total of 8 bits of shifting.
219 * The bit_shift for a mc_filter_type of 0 represents the number of
220 * left-shifts where the MSB of mc_addr[5] would still fall within
221 * the hash_mask. Case 0 does this exactly. Since there are a total
222 * of 8 bits of shifting, then mc_addr[4] will shift right the
223 * remaining number of bits. Thus 8 - bit_shift. The rest of the
224 * cases are a variation of this algorithm...essentially raising the
225 * number of bits to shift mc_addr[5] left, while still keeping the
226 * 8-bit shifting total.
227 */
228 /* For example, given the following Destination MAC Address and an
229 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
230 * we can see that the bit_shift for case 0 is 4. These are the hash
231 * values resulting from each mc_filter_type...
232 * [0] [1] [2] [3] [4] [5]
233 * 01 AA 00 12 34 56
234 * LSB MSB
235 *
236 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
237 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
238 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
239 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
240 */
241 switch (hw->mac.mc_filter_type) {
242 default:
243 case 0:
244 break;
245 case 1:
246 bit_shift += 1;
247 break;
248 case 2:
249 bit_shift += 2;
250 break;
251 case 3:
252 bit_shift += 4;
253 break;
254 }
255
256 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
257 (((u16) mc_addr[5]) << bit_shift)));
258
259 return hash_value;
260 }
261
262 /**
263 * e1000e_mc_addr_list_update_generic - Update Multicast addresses
264 * @hw: pointer to the HW structure
265 * @mc_addr_list: array of multicast addresses to program
266 * @mc_addr_count: number of multicast addresses to program
267 * @rar_used_count: the first RAR register free to program
268 * @rar_count: total number of supported Receive Address Registers
269 *
270 * Updates the Receive Address Registers and Multicast Table Array.
271 * The caller must have a packed mc_addr_list of multicast addresses.
272 * The parameter rar_count will usually be hw->mac.rar_entry_count
273 * unless there are workarounds that change this.
274 **/
275 void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw,
276 u8 *mc_addr_list, u32 mc_addr_count,
277 u32 rar_used_count, u32 rar_count)
278 {
279 u32 hash_value;
280 u32 i;
281
282 /* Load the first set of multicast addresses into the exact
283 * filters (RAR). If there are not enough to fill the RAR
284 * array, clear the filters.
285 */
286 for (i = rar_used_count; i < rar_count; i++) {
287 if (mc_addr_count) {
288 e1000e_rar_set(hw, mc_addr_list, i);
289 mc_addr_count--;
290 mc_addr_list += ETH_ALEN;
291 } else {
292 E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
293 e1e_flush();
294 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
295 e1e_flush();
296 }
297 }
298
299 /* Clear the old settings from the MTA */
300 hw_dbg(hw, "Clearing MTA\n");
301 for (i = 0; i < hw->mac.mta_reg_count; i++) {
302 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
303 e1e_flush();
304 }
305
306 /* Load any remaining multicast addresses into the hash table. */
307 for (; mc_addr_count > 0; mc_addr_count--) {
308 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
309 hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
310 e1000_mta_set(hw, hash_value);
311 mc_addr_list += ETH_ALEN;
312 }
313 }
314
315 /**
316 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
317 * @hw: pointer to the HW structure
318 *
319 * Clears the base hardware counters by reading the counter registers.
320 **/
321 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
322 {
323 u32 temp;
324
325 temp = er32(CRCERRS);
326 temp = er32(SYMERRS);
327 temp = er32(MPC);
328 temp = er32(SCC);
329 temp = er32(ECOL);
330 temp = er32(MCC);
331 temp = er32(LATECOL);
332 temp = er32(COLC);
333 temp = er32(DC);
334 temp = er32(SEC);
335 temp = er32(RLEC);
336 temp = er32(XONRXC);
337 temp = er32(XONTXC);
338 temp = er32(XOFFRXC);
339 temp = er32(XOFFTXC);
340 temp = er32(FCRUC);
341 temp = er32(GPRC);
342 temp = er32(BPRC);
343 temp = er32(MPRC);
344 temp = er32(GPTC);
345 temp = er32(GORCL);
346 temp = er32(GORCH);
347 temp = er32(GOTCL);
348 temp = er32(GOTCH);
349 temp = er32(RNBC);
350 temp = er32(RUC);
351 temp = er32(RFC);
352 temp = er32(ROC);
353 temp = er32(RJC);
354 temp = er32(TORL);
355 temp = er32(TORH);
356 temp = er32(TOTL);
357 temp = er32(TOTH);
358 temp = er32(TPR);
359 temp = er32(TPT);
360 temp = er32(MPTC);
361 temp = er32(BPTC);
362 }
363
364 /**
365 * e1000e_check_for_copper_link - Check for link (Copper)
366 * @hw: pointer to the HW structure
367 *
368 * Checks to see of the link status of the hardware has changed. If a
369 * change in link status has been detected, then we read the PHY registers
370 * to get the current speed/duplex if link exists.
371 **/
372 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
373 {
374 struct e1000_mac_info *mac = &hw->mac;
375 s32 ret_val;
376 bool link;
377
378 /* We only want to go out to the PHY registers to see if Auto-Neg
379 * has completed and/or if our link status has changed. The
380 * get_link_status flag is set upon receiving a Link Status
381 * Change or Rx Sequence Error interrupt.
382 */
383 if (!mac->get_link_status)
384 return 0;
385
386 /* First we want to see if the MII Status Register reports
387 * link. If so, then we want to get the current speed/duplex
388 * of the PHY.
389 */
390 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
391 if (ret_val)
392 return ret_val;
393
394 if (!link)
395 return ret_val; /* No link detected */
396
397 mac->get_link_status = 0;
398
399 /* Check if there was DownShift, must be checked
400 * immediately after link-up */
401 e1000e_check_downshift(hw);
402
403 /* If we are forcing speed/duplex, then we simply return since
404 * we have already determined whether we have link or not.
405 */
406 if (!mac->autoneg) {
407 ret_val = -E1000_ERR_CONFIG;
408 return ret_val;
409 }
410
411 /* Auto-Neg is enabled. Auto Speed Detection takes care
412 * of MAC speed/duplex configuration. So we only need to
413 * configure Collision Distance in the MAC.
414 */
415 e1000e_config_collision_dist(hw);
416
417 /* Configure Flow Control now that Auto-Neg has completed.
418 * First, we need to restore the desired flow control
419 * settings because we may have had to re-autoneg with a
420 * different link partner.
421 */
422 ret_val = e1000e_config_fc_after_link_up(hw);
423 if (ret_val) {
424 hw_dbg(hw, "Error configuring flow control\n");
425 }
426
427 return ret_val;
428 }
429
430 /**
431 * e1000e_check_for_fiber_link - Check for link (Fiber)
432 * @hw: pointer to the HW structure
433 *
434 * Checks for link up on the hardware. If link is not up and we have
435 * a signal, then we need to force link up.
436 **/
437 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
438 {
439 struct e1000_mac_info *mac = &hw->mac;
440 u32 rxcw;
441 u32 ctrl;
442 u32 status;
443 s32 ret_val;
444
445 ctrl = er32(CTRL);
446 status = er32(STATUS);
447 rxcw = er32(RXCW);
448
449 /* If we don't have link (auto-negotiation failed or link partner
450 * cannot auto-negotiate), the cable is plugged in (we have signal),
451 * and our link partner is not trying to auto-negotiate with us (we
452 * are receiving idles or data), we need to force link up. We also
453 * need to give auto-negotiation time to complete, in case the cable
454 * was just plugged in. The autoneg_failed flag does this.
455 */
456 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
457 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
458 (!(rxcw & E1000_RXCW_C))) {
459 if (mac->autoneg_failed == 0) {
460 mac->autoneg_failed = 1;
461 return 0;
462 }
463 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
464
465 /* Disable auto-negotiation in the TXCW register */
466 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
467
468 /* Force link-up and also force full-duplex. */
469 ctrl = er32(CTRL);
470 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
471 ew32(CTRL, ctrl);
472
473 /* Configure Flow Control after forcing link up. */
474 ret_val = e1000e_config_fc_after_link_up(hw);
475 if (ret_val) {
476 hw_dbg(hw, "Error configuring flow control\n");
477 return ret_val;
478 }
479 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
480 /* If we are forcing link and we are receiving /C/ ordered
481 * sets, re-enable auto-negotiation in the TXCW register
482 * and disable forced link in the Device Control register
483 * in an attempt to auto-negotiate with our link partner.
484 */
485 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
486 ew32(TXCW, mac->txcw);
487 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
488
489 mac->serdes_has_link = 1;
490 }
491
492 return 0;
493 }
494
495 /**
496 * e1000e_check_for_serdes_link - Check for link (Serdes)
497 * @hw: pointer to the HW structure
498 *
499 * Checks for link up on the hardware. If link is not up and we have
500 * a signal, then we need to force link up.
501 **/
502 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
503 {
504 struct e1000_mac_info *mac = &hw->mac;
505 u32 rxcw;
506 u32 ctrl;
507 u32 status;
508 s32 ret_val;
509
510 ctrl = er32(CTRL);
511 status = er32(STATUS);
512 rxcw = er32(RXCW);
513
514 /* If we don't have link (auto-negotiation failed or link partner
515 * cannot auto-negotiate), and our link partner is not trying to
516 * auto-negotiate with us (we are receiving idles or data),
517 * we need to force link up. We also need to give auto-negotiation
518 * time to complete.
519 */
520 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
521 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
522 if (mac->autoneg_failed == 0) {
523 mac->autoneg_failed = 1;
524 return 0;
525 }
526 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
527
528 /* Disable auto-negotiation in the TXCW register */
529 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
530
531 /* Force link-up and also force full-duplex. */
532 ctrl = er32(CTRL);
533 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
534 ew32(CTRL, ctrl);
535
536 /* Configure Flow Control after forcing link up. */
537 ret_val = e1000e_config_fc_after_link_up(hw);
538 if (ret_val) {
539 hw_dbg(hw, "Error configuring flow control\n");
540 return ret_val;
541 }
542 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
543 /* If we are forcing link and we are receiving /C/ ordered
544 * sets, re-enable auto-negotiation in the TXCW register
545 * and disable forced link in the Device Control register
546 * in an attempt to auto-negotiate with our link partner.
547 */
548 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
549 ew32(TXCW, mac->txcw);
550 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
551
552 mac->serdes_has_link = 1;
553 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
554 /* If we force link for non-auto-negotiation switch, check
555 * link status based on MAC synchronization for internal
556 * serdes media type.
557 */
558 /* SYNCH bit and IV bit are sticky. */
559 udelay(10);
560 if (E1000_RXCW_SYNCH & er32(RXCW)) {
561 if (!(rxcw & E1000_RXCW_IV)) {
562 mac->serdes_has_link = 1;
563 hw_dbg(hw, "SERDES: Link is up.\n");
564 }
565 } else {
566 mac->serdes_has_link = 0;
567 hw_dbg(hw, "SERDES: Link is down.\n");
568 }
569 }
570
571 if (E1000_TXCW_ANE & er32(TXCW)) {
572 status = er32(STATUS);
573 mac->serdes_has_link = (status & E1000_STATUS_LU);
574 }
575
576 return 0;
577 }
578
579 /**
580 * e1000_set_default_fc_generic - Set flow control default values
581 * @hw: pointer to the HW structure
582 *
583 * Read the EEPROM for the default values for flow control and store the
584 * values.
585 **/
586 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
587 {
588 struct e1000_mac_info *mac = &hw->mac;
589 s32 ret_val;
590 u16 nvm_data;
591
592 if (mac->fc != e1000_fc_default)
593 return 0;
594
595 /* Read and store word 0x0F of the EEPROM. This word contains bits
596 * that determine the hardware's default PAUSE (flow control) mode,
597 * a bit that determines whether the HW defaults to enabling or
598 * disabling auto-negotiation, and the direction of the
599 * SW defined pins. If there is no SW over-ride of the flow
600 * control setting, then the variable hw->fc will
601 * be initialized based on a value in the EEPROM.
602 */
603 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
604
605 if (ret_val) {
606 hw_dbg(hw, "NVM Read Error\n");
607 return ret_val;
608 }
609
610 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
611 mac->fc = e1000_fc_none;
612 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
613 NVM_WORD0F_ASM_DIR)
614 mac->fc = e1000_fc_tx_pause;
615 else
616 mac->fc = e1000_fc_full;
617
618 return 0;
619 }
620
621 /**
622 * e1000e_setup_link - Setup flow control and link settings
623 * @hw: pointer to the HW structure
624 *
625 * Determines which flow control settings to use, then configures flow
626 * control. Calls the appropriate media-specific link configuration
627 * function. Assuming the adapter has a valid link partner, a valid link
628 * should be established. Assumes the hardware has previously been reset
629 * and the transmitter and receiver are not enabled.
630 **/
631 s32 e1000e_setup_link(struct e1000_hw *hw)
632 {
633 struct e1000_mac_info *mac = &hw->mac;
634 s32 ret_val;
635
636 /* In the case of the phy reset being blocked, we already have a link.
637 * We do not need to set it up again.
638 */
639 if (e1000_check_reset_block(hw))
640 return 0;
641
642 /*
643 * If flow control is set to default, set flow control based on
644 * the EEPROM flow control settings.
645 */
646 if (mac->fc == e1000_fc_default) {
647 ret_val = e1000_set_default_fc_generic(hw);
648 if (ret_val)
649 return ret_val;
650 }
651
652 /* We want to save off the original Flow Control configuration just
653 * in case we get disconnected and then reconnected into a different
654 * hub or switch with different Flow Control capabilities.
655 */
656 mac->original_fc = mac->fc;
657
658 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
659
660 /* Call the necessary media_type subroutine to configure the link. */
661 ret_val = mac->ops.setup_physical_interface(hw);
662 if (ret_val)
663 return ret_val;
664
665 /* Initialize the flow control address, type, and PAUSE timer
666 * registers to their default values. This is done even if flow
667 * control is disabled, because it does not hurt anything to
668 * initialize these registers.
669 */
670 hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n");
671 ew32(FCT, FLOW_CONTROL_TYPE);
672 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
673 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
674
675 ew32(FCTTV, mac->fc_pause_time);
676
677 return e1000e_set_fc_watermarks(hw);
678 }
679
680 /**
681 * e1000_commit_fc_settings_generic - Configure flow control
682 * @hw: pointer to the HW structure
683 *
684 * Write the flow control settings to the Transmit Config Word Register (TXCW)
685 * base on the flow control settings in e1000_mac_info.
686 **/
687 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
688 {
689 struct e1000_mac_info *mac = &hw->mac;
690 u32 txcw;
691
692 /* Check for a software override of the flow control settings, and
693 * setup the device accordingly. If auto-negotiation is enabled, then
694 * software will have to set the "PAUSE" bits to the correct value in
695 * the Transmit Config Word Register (TXCW) and re-start auto-
696 * negotiation. However, if auto-negotiation is disabled, then
697 * software will have to manually configure the two flow control enable
698 * bits in the CTRL register.
699 *
700 * The possible values of the "fc" parameter are:
701 * 0: Flow control is completely disabled
702 * 1: Rx flow control is enabled (we can receive pause frames,
703 * but not send pause frames).
704 * 2: Tx flow control is enabled (we can send pause frames but we
705 * do not support receiving pause frames).
706 * 3: Both Rx and TX flow control (symmetric) are enabled.
707 */
708 switch (mac->fc) {
709 case e1000_fc_none:
710 /* Flow control completely disabled by a software over-ride. */
711 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
712 break;
713 case e1000_fc_rx_pause:
714 /* RX Flow control is enabled and TX Flow control is disabled
715 * by a software over-ride. Since there really isn't a way to
716 * advertise that we are capable of RX Pause ONLY, we will
717 * advertise that we support both symmetric and asymmetric RX
718 * PAUSE. Later, we will disable the adapter's ability to send
719 * PAUSE frames.
720 */
721 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
722 break;
723 case e1000_fc_tx_pause:
724 /* TX Flow control is enabled, and RX Flow control is disabled,
725 * by a software over-ride.
726 */
727 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
728 break;
729 case e1000_fc_full:
730 /* Flow control (both RX and TX) is enabled by a software
731 * over-ride.
732 */
733 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
734 break;
735 default:
736 hw_dbg(hw, "Flow control param set incorrectly\n");
737 return -E1000_ERR_CONFIG;
738 break;
739 }
740
741 ew32(TXCW, txcw);
742 mac->txcw = txcw;
743
744 return 0;
745 }
746
747 /**
748 * e1000_poll_fiber_serdes_link_generic - Poll for link up
749 * @hw: pointer to the HW structure
750 *
751 * Polls for link up by reading the status register, if link fails to come
752 * up with auto-negotiation, then the link is forced if a signal is detected.
753 **/
754 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
755 {
756 struct e1000_mac_info *mac = &hw->mac;
757 u32 i, status;
758 s32 ret_val;
759
760 /* If we have a signal (the cable is plugged in, or assumed true for
761 * serdes media) then poll for a "Link-Up" indication in the Device
762 * Status Register. Time-out if a link isn't seen in 500 milliseconds
763 * seconds (Auto-negotiation should complete in less than 500
764 * milliseconds even if the other end is doing it in SW).
765 */
766 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
767 msleep(10);
768 status = er32(STATUS);
769 if (status & E1000_STATUS_LU)
770 break;
771 }
772 if (i == FIBER_LINK_UP_LIMIT) {
773 hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
774 mac->autoneg_failed = 1;
775 /* AutoNeg failed to achieve a link, so we'll call
776 * mac->check_for_link. This routine will force the
777 * link up if we detect a signal. This will allow us to
778 * communicate with non-autonegotiating link partners.
779 */
780 ret_val = mac->ops.check_for_link(hw);
781 if (ret_val) {
782 hw_dbg(hw, "Error while checking for link\n");
783 return ret_val;
784 }
785 mac->autoneg_failed = 0;
786 } else {
787 mac->autoneg_failed = 0;
788 hw_dbg(hw, "Valid Link Found\n");
789 }
790
791 return 0;
792 }
793
794 /**
795 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
796 * @hw: pointer to the HW structure
797 *
798 * Configures collision distance and flow control for fiber and serdes
799 * links. Upon successful setup, poll for link.
800 **/
801 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
802 {
803 u32 ctrl;
804 s32 ret_val;
805
806 ctrl = er32(CTRL);
807
808 /* Take the link out of reset */
809 ctrl &= ~E1000_CTRL_LRST;
810
811 e1000e_config_collision_dist(hw);
812
813 ret_val = e1000_commit_fc_settings_generic(hw);
814 if (ret_val)
815 return ret_val;
816
817 /* Since auto-negotiation is enabled, take the link out of reset (the
818 * link will be in reset, because we previously reset the chip). This
819 * will restart auto-negotiation. If auto-negotiation is successful
820 * then the link-up status bit will be set and the flow control enable
821 * bits (RFCE and TFCE) will be set according to their negotiated value.
822 */
823 hw_dbg(hw, "Auto-negotiation enabled\n");
824
825 ew32(CTRL, ctrl);
826 e1e_flush();
827 msleep(1);
828
829 /* For these adapters, the SW defineable pin 1 is set when the optics
830 * detect a signal. If we have a signal, then poll for a "Link-Up"
831 * indication.
832 */
833 if (hw->media_type == e1000_media_type_internal_serdes ||
834 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
835 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
836 } else {
837 hw_dbg(hw, "No signal detected\n");
838 }
839
840 return 0;
841 }
842
843 /**
844 * e1000e_config_collision_dist - Configure collision distance
845 * @hw: pointer to the HW structure
846 *
847 * Configures the collision distance to the default value and is used
848 * during link setup. Currently no func pointer exists and all
849 * implementations are handled in the generic version of this function.
850 **/
851 void e1000e_config_collision_dist(struct e1000_hw *hw)
852 {
853 u32 tctl;
854
855 tctl = er32(TCTL);
856
857 tctl &= ~E1000_TCTL_COLD;
858 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
859
860 ew32(TCTL, tctl);
861 e1e_flush();
862 }
863
864 /**
865 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
866 * @hw: pointer to the HW structure
867 *
868 * Sets the flow control high/low threshold (watermark) registers. If
869 * flow control XON frame transmission is enabled, then set XON frame
870 * tansmission as well.
871 **/
872 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
873 {
874 struct e1000_mac_info *mac = &hw->mac;
875 u32 fcrtl = 0, fcrth = 0;
876
877 /* Set the flow control receive threshold registers. Normally,
878 * these registers will be set to a default threshold that may be
879 * adjusted later by the driver's runtime code. However, if the
880 * ability to transmit pause frames is not enabled, then these
881 * registers will be set to 0.
882 */
883 if (mac->fc & e1000_fc_tx_pause) {
884 /* We need to set up the Receive Threshold high and low water
885 * marks as well as (optionally) enabling the transmission of
886 * XON frames.
887 */
888 fcrtl = mac->fc_low_water;
889 fcrtl |= E1000_FCRTL_XONE;
890 fcrth = mac->fc_high_water;
891 }
892 ew32(FCRTL, fcrtl);
893 ew32(FCRTH, fcrth);
894
895 return 0;
896 }
897
898 /**
899 * e1000e_force_mac_fc - Force the MAC's flow control settings
900 * @hw: pointer to the HW structure
901 *
902 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
903 * device control register to reflect the adapter settings. TFCE and RFCE
904 * need to be explicitly set by software when a copper PHY is used because
905 * autonegotiation is managed by the PHY rather than the MAC. Software must
906 * also configure these bits when link is forced on a fiber connection.
907 **/
908 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
909 {
910 struct e1000_mac_info *mac = &hw->mac;
911 u32 ctrl;
912
913 ctrl = er32(CTRL);
914
915 /* Because we didn't get link via the internal auto-negotiation
916 * mechanism (we either forced link or we got link via PHY
917 * auto-neg), we have to manually enable/disable transmit an
918 * receive flow control.
919 *
920 * The "Case" statement below enables/disable flow control
921 * according to the "mac->fc" parameter.
922 *
923 * The possible values of the "fc" parameter are:
924 * 0: Flow control is completely disabled
925 * 1: Rx flow control is enabled (we can receive pause
926 * frames but not send pause frames).
927 * 2: Tx flow control is enabled (we can send pause frames
928 * frames but we do not receive pause frames).
929 * 3: Both Rx and TX flow control (symmetric) is enabled.
930 * other: No other values should be possible at this point.
931 */
932 hw_dbg(hw, "mac->fc = %u\n", mac->fc);
933
934 switch (mac->fc) {
935 case e1000_fc_none:
936 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
937 break;
938 case e1000_fc_rx_pause:
939 ctrl &= (~E1000_CTRL_TFCE);
940 ctrl |= E1000_CTRL_RFCE;
941 break;
942 case e1000_fc_tx_pause:
943 ctrl &= (~E1000_CTRL_RFCE);
944 ctrl |= E1000_CTRL_TFCE;
945 break;
946 case e1000_fc_full:
947 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
948 break;
949 default:
950 hw_dbg(hw, "Flow control param set incorrectly\n");
951 return -E1000_ERR_CONFIG;
952 }
953
954 ew32(CTRL, ctrl);
955
956 return 0;
957 }
958
959 /**
960 * e1000e_config_fc_after_link_up - Configures flow control after link
961 * @hw: pointer to the HW structure
962 *
963 * Checks the status of auto-negotiation after link up to ensure that the
964 * speed and duplex were not forced. If the link needed to be forced, then
965 * flow control needs to be forced also. If auto-negotiation is enabled
966 * and did not fail, then we configure flow control based on our link
967 * partner.
968 **/
969 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
970 {
971 struct e1000_mac_info *mac = &hw->mac;
972 s32 ret_val = 0;
973 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
974 u16 speed, duplex;
975
976 /* Check for the case where we have fiber media and auto-neg failed
977 * so we had to force link. In this case, we need to force the
978 * configuration of the MAC to match the "fc" parameter.
979 */
980 if (mac->autoneg_failed) {
981 if (hw->media_type == e1000_media_type_fiber ||
982 hw->media_type == e1000_media_type_internal_serdes)
983 ret_val = e1000e_force_mac_fc(hw);
984 } else {
985 if (hw->media_type == e1000_media_type_copper)
986 ret_val = e1000e_force_mac_fc(hw);
987 }
988
989 if (ret_val) {
990 hw_dbg(hw, "Error forcing flow control settings\n");
991 return ret_val;
992 }
993
994 /* Check for the case where we have copper media and auto-neg is
995 * enabled. In this case, we need to check and see if Auto-Neg
996 * has completed, and if so, how the PHY and link partner has
997 * flow control configured.
998 */
999 if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) {
1000 /* Read the MII Status Register and check to see if AutoNeg
1001 * has completed. We read this twice because this reg has
1002 * some "sticky" (latched) bits.
1003 */
1004 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1005 if (ret_val)
1006 return ret_val;
1007 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1008 if (ret_val)
1009 return ret_val;
1010
1011 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1012 hw_dbg(hw, "Copper PHY and Auto Neg "
1013 "has not completed.\n");
1014 return ret_val;
1015 }
1016
1017 /* The AutoNeg process has completed, so we now need to
1018 * read both the Auto Negotiation Advertisement
1019 * Register (Address 4) and the Auto_Negotiation Base
1020 * Page Ability Register (Address 5) to determine how
1021 * flow control was negotiated.
1022 */
1023 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1024 if (ret_val)
1025 return ret_val;
1026 ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1027 if (ret_val)
1028 return ret_val;
1029
1030 /* Two bits in the Auto Negotiation Advertisement Register
1031 * (Address 4) and two bits in the Auto Negotiation Base
1032 * Page Ability Register (Address 5) determine flow control
1033 * for both the PHY and the link partner. The following
1034 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1035 * 1999, describes these PAUSE resolution bits and how flow
1036 * control is determined based upon these settings.
1037 * NOTE: DC = Don't Care
1038 *
1039 * LOCAL DEVICE | LINK PARTNER
1040 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1041 *-------|---------|-------|---------|--------------------
1042 * 0 | 0 | DC | DC | e1000_fc_none
1043 * 0 | 1 | 0 | DC | e1000_fc_none
1044 * 0 | 1 | 1 | 0 | e1000_fc_none
1045 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1046 * 1 | 0 | 0 | DC | e1000_fc_none
1047 * 1 | DC | 1 | DC | e1000_fc_full
1048 * 1 | 1 | 0 | 0 | e1000_fc_none
1049 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1050 *
1051 */
1052 /* Are both PAUSE bits set to 1? If so, this implies
1053 * Symmetric Flow Control is enabled at both ends. The
1054 * ASM_DIR bits are irrelevant per the spec.
1055 *
1056 * For Symmetric Flow Control:
1057 *
1058 * LOCAL DEVICE | LINK PARTNER
1059 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1060 *-------|---------|-------|---------|--------------------
1061 * 1 | DC | 1 | DC | E1000_fc_full
1062 *
1063 */
1064 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1065 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1066 /* Now we need to check if the user selected RX ONLY
1067 * of pause frames. In this case, we had to advertise
1068 * FULL flow control because we could not advertise RX
1069 * ONLY. Hence, we must now check to see if we need to
1070 * turn OFF the TRANSMISSION of PAUSE frames.
1071 */
1072 if (mac->original_fc == e1000_fc_full) {
1073 mac->fc = e1000_fc_full;
1074 hw_dbg(hw, "Flow Control = FULL.\r\n");
1075 } else {
1076 mac->fc = e1000_fc_rx_pause;
1077 hw_dbg(hw, "Flow Control = "
1078 "RX PAUSE frames only.\r\n");
1079 }
1080 }
1081 /* For receiving PAUSE frames ONLY.
1082 *
1083 * LOCAL DEVICE | LINK PARTNER
1084 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1085 *-------|---------|-------|---------|--------------------
1086 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1087 *
1088 */
1089 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1090 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1091 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1092 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1093 mac->fc = e1000_fc_tx_pause;
1094 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
1095 }
1096 /* For transmitting PAUSE frames ONLY.
1097 *
1098 * LOCAL DEVICE | LINK PARTNER
1099 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1100 *-------|---------|-------|---------|--------------------
1101 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1102 *
1103 */
1104 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1105 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1106 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1107 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1108 mac->fc = e1000_fc_rx_pause;
1109 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
1110 }
1111 /* Per the IEEE spec, at this point flow control should be
1112 * disabled. However, we want to consider that we could
1113 * be connected to a legacy switch that doesn't advertise
1114 * desired flow control, but can be forced on the link
1115 * partner. So if we advertised no flow control, that is
1116 * what we will resolve to. If we advertised some kind of
1117 * receive capability (Rx Pause Only or Full Flow Control)
1118 * and the link partner advertised none, we will configure
1119 * ourselves to enable Rx Flow Control only. We can do
1120 * this safely for two reasons: If the link partner really
1121 * didn't want flow control enabled, and we enable Rx, no
1122 * harm done since we won't be receiving any PAUSE frames
1123 * anyway. If the intent on the link partner was to have
1124 * flow control enabled, then by us enabling RX only, we
1125 * can at least receive pause frames and process them.
1126 * This is a good idea because in most cases, since we are
1127 * predominantly a server NIC, more times than not we will
1128 * be asked to delay transmission of packets than asking
1129 * our link partner to pause transmission of frames.
1130 */
1131 else if ((mac->original_fc == e1000_fc_none) ||
1132 (mac->original_fc == e1000_fc_tx_pause)) {
1133 mac->fc = e1000_fc_none;
1134 hw_dbg(hw, "Flow Control = NONE.\r\n");
1135 } else {
1136 mac->fc = e1000_fc_rx_pause;
1137 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
1138 }
1139
1140 /* Now we need to do one last check... If we auto-
1141 * negotiated to HALF DUPLEX, flow control should not be
1142 * enabled per IEEE 802.3 spec.
1143 */
1144 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1145 if (ret_val) {
1146 hw_dbg(hw, "Error getting link speed and duplex\n");
1147 return ret_val;
1148 }
1149
1150 if (duplex == HALF_DUPLEX)
1151 mac->fc = e1000_fc_none;
1152
1153 /* Now we call a subroutine to actually force the MAC
1154 * controller to use the correct flow control settings.
1155 */
1156 ret_val = e1000e_force_mac_fc(hw);
1157 if (ret_val) {
1158 hw_dbg(hw, "Error forcing flow control settings\n");
1159 return ret_val;
1160 }
1161 }
1162
1163 return 0;
1164 }
1165
1166 /**
1167 * e1000e_get_speed_and_duplex_copper - Retreive current speed/duplex
1168 * @hw: pointer to the HW structure
1169 * @speed: stores the current speed
1170 * @duplex: stores the current duplex
1171 *
1172 * Read the status register for the current speed/duplex and store the current
1173 * speed and duplex for copper connections.
1174 **/
1175 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1176 {
1177 u32 status;
1178
1179 status = er32(STATUS);
1180 if (status & E1000_STATUS_SPEED_1000) {
1181 *speed = SPEED_1000;
1182 hw_dbg(hw, "1000 Mbs, ");
1183 } else if (status & E1000_STATUS_SPEED_100) {
1184 *speed = SPEED_100;
1185 hw_dbg(hw, "100 Mbs, ");
1186 } else {
1187 *speed = SPEED_10;
1188 hw_dbg(hw, "10 Mbs, ");
1189 }
1190
1191 if (status & E1000_STATUS_FD) {
1192 *duplex = FULL_DUPLEX;
1193 hw_dbg(hw, "Full Duplex\n");
1194 } else {
1195 *duplex = HALF_DUPLEX;
1196 hw_dbg(hw, "Half Duplex\n");
1197 }
1198
1199 return 0;
1200 }
1201
1202 /**
1203 * e1000e_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex
1204 * @hw: pointer to the HW structure
1205 * @speed: stores the current speed
1206 * @duplex: stores the current duplex
1207 *
1208 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1209 * for fiber/serdes links.
1210 **/
1211 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1212 {
1213 *speed = SPEED_1000;
1214 *duplex = FULL_DUPLEX;
1215
1216 return 0;
1217 }
1218
1219 /**
1220 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1221 * @hw: pointer to the HW structure
1222 *
1223 * Acquire the HW semaphore to access the PHY or NVM
1224 **/
1225 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1226 {
1227 u32 swsm;
1228 s32 timeout = hw->nvm.word_size + 1;
1229 s32 i = 0;
1230
1231 /* Get the SW semaphore */
1232 while (i < timeout) {
1233 swsm = er32(SWSM);
1234 if (!(swsm & E1000_SWSM_SMBI))
1235 break;
1236
1237 udelay(50);
1238 i++;
1239 }
1240
1241 if (i == timeout) {
1242 hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
1243 return -E1000_ERR_NVM;
1244 }
1245
1246 /* Get the FW semaphore. */
1247 for (i = 0; i < timeout; i++) {
1248 swsm = er32(SWSM);
1249 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1250
1251 /* Semaphore acquired if bit latched */
1252 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1253 break;
1254
1255 udelay(50);
1256 }
1257
1258 if (i == timeout) {
1259 /* Release semaphores */
1260 e1000e_put_hw_semaphore(hw);
1261 hw_dbg(hw, "Driver can't access the NVM\n");
1262 return -E1000_ERR_NVM;
1263 }
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * e1000e_put_hw_semaphore - Release hardware semaphore
1270 * @hw: pointer to the HW structure
1271 *
1272 * Release hardware semaphore used to access the PHY or NVM
1273 **/
1274 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1275 {
1276 u32 swsm;
1277
1278 swsm = er32(SWSM);
1279 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1280 ew32(SWSM, swsm);
1281 }
1282
1283 /**
1284 * e1000e_get_auto_rd_done - Check for auto read completion
1285 * @hw: pointer to the HW structure
1286 *
1287 * Check EEPROM for Auto Read done bit.
1288 **/
1289 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1290 {
1291 s32 i = 0;
1292
1293 while (i < AUTO_READ_DONE_TIMEOUT) {
1294 if (er32(EECD) & E1000_EECD_AUTO_RD)
1295 break;
1296 msleep(1);
1297 i++;
1298 }
1299
1300 if (i == AUTO_READ_DONE_TIMEOUT) {
1301 hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
1302 return -E1000_ERR_RESET;
1303 }
1304
1305 return 0;
1306 }
1307
1308 /**
1309 * e1000e_valid_led_default - Verify a valid default LED config
1310 * @hw: pointer to the HW structure
1311 * @data: pointer to the NVM (EEPROM)
1312 *
1313 * Read the EEPROM for the current default LED configuration. If the
1314 * LED configuration is not valid, set to a valid LED configuration.
1315 **/
1316 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1317 {
1318 s32 ret_val;
1319
1320 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1321 if (ret_val) {
1322 hw_dbg(hw, "NVM Read Error\n");
1323 return ret_val;
1324 }
1325
1326 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1327 *data = ID_LED_DEFAULT;
1328
1329 return 0;
1330 }
1331
1332 /**
1333 * e1000e_id_led_init -
1334 * @hw: pointer to the HW structure
1335 *
1336 **/
1337 s32 e1000e_id_led_init(struct e1000_hw *hw)
1338 {
1339 struct e1000_mac_info *mac = &hw->mac;
1340 s32 ret_val;
1341 const u32 ledctl_mask = 0x000000FF;
1342 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1343 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1344 u16 data, i, temp;
1345 const u16 led_mask = 0x0F;
1346
1347 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1348 if (ret_val)
1349 return ret_val;
1350
1351 mac->ledctl_default = er32(LEDCTL);
1352 mac->ledctl_mode1 = mac->ledctl_default;
1353 mac->ledctl_mode2 = mac->ledctl_default;
1354
1355 for (i = 0; i < 4; i++) {
1356 temp = (data >> (i << 2)) & led_mask;
1357 switch (temp) {
1358 case ID_LED_ON1_DEF2:
1359 case ID_LED_ON1_ON2:
1360 case ID_LED_ON1_OFF2:
1361 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1362 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1363 break;
1364 case ID_LED_OFF1_DEF2:
1365 case ID_LED_OFF1_ON2:
1366 case ID_LED_OFF1_OFF2:
1367 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1368 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1369 break;
1370 default:
1371 /* Do nothing */
1372 break;
1373 }
1374 switch (temp) {
1375 case ID_LED_DEF1_ON2:
1376 case ID_LED_ON1_ON2:
1377 case ID_LED_OFF1_ON2:
1378 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1379 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1380 break;
1381 case ID_LED_DEF1_OFF2:
1382 case ID_LED_ON1_OFF2:
1383 case ID_LED_OFF1_OFF2:
1384 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1385 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1386 break;
1387 default:
1388 /* Do nothing */
1389 break;
1390 }
1391 }
1392
1393 return 0;
1394 }
1395
1396 /**
1397 * e1000e_cleanup_led_generic - Set LED config to default operation
1398 * @hw: pointer to the HW structure
1399 *
1400 * Remove the current LED configuration and set the LED configuration
1401 * to the default value, saved from the EEPROM.
1402 **/
1403 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1404 {
1405 ew32(LEDCTL, hw->mac.ledctl_default);
1406 return 0;
1407 }
1408
1409 /**
1410 * e1000e_blink_led - Blink LED
1411 * @hw: pointer to the HW structure
1412 *
1413 * Blink the led's which are set to be on.
1414 **/
1415 s32 e1000e_blink_led(struct e1000_hw *hw)
1416 {
1417 u32 ledctl_blink = 0;
1418 u32 i;
1419
1420 if (hw->media_type == e1000_media_type_fiber) {
1421 /* always blink LED0 for PCI-E fiber */
1422 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1423 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1424 } else {
1425 /* set the blink bit for each LED that's "on" (0x0E)
1426 * in ledctl_mode2 */
1427 ledctl_blink = hw->mac.ledctl_mode2;
1428 for (i = 0; i < 4; i++)
1429 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1430 E1000_LEDCTL_MODE_LED_ON)
1431 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1432 (i * 8));
1433 }
1434
1435 ew32(LEDCTL, ledctl_blink);
1436
1437 return 0;
1438 }
1439
1440 /**
1441 * e1000e_led_on_generic - Turn LED on
1442 * @hw: pointer to the HW structure
1443 *
1444 * Turn LED on.
1445 **/
1446 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1447 {
1448 u32 ctrl;
1449
1450 switch (hw->media_type) {
1451 case e1000_media_type_fiber:
1452 ctrl = er32(CTRL);
1453 ctrl &= ~E1000_CTRL_SWDPIN0;
1454 ctrl |= E1000_CTRL_SWDPIO0;
1455 ew32(CTRL, ctrl);
1456 break;
1457 case e1000_media_type_copper:
1458 ew32(LEDCTL, hw->mac.ledctl_mode2);
1459 break;
1460 default:
1461 break;
1462 }
1463
1464 return 0;
1465 }
1466
1467 /**
1468 * e1000e_led_off_generic - Turn LED off
1469 * @hw: pointer to the HW structure
1470 *
1471 * Turn LED off.
1472 **/
1473 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1474 {
1475 u32 ctrl;
1476
1477 switch (hw->media_type) {
1478 case e1000_media_type_fiber:
1479 ctrl = er32(CTRL);
1480 ctrl |= E1000_CTRL_SWDPIN0;
1481 ctrl |= E1000_CTRL_SWDPIO0;
1482 ew32(CTRL, ctrl);
1483 break;
1484 case e1000_media_type_copper:
1485 ew32(LEDCTL, hw->mac.ledctl_mode1);
1486 break;
1487 default:
1488 break;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /**
1495 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1496 * @hw: pointer to the HW structure
1497 * @no_snoop: bitmap of snoop events
1498 *
1499 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1500 **/
1501 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1502 {
1503 u32 gcr;
1504
1505 if (no_snoop) {
1506 gcr = er32(GCR);
1507 gcr &= ~(PCIE_NO_SNOOP_ALL);
1508 gcr |= no_snoop;
1509 ew32(GCR, gcr);
1510 }
1511 }
1512
1513 /**
1514 * e1000e_disable_pcie_master - Disables PCI-express master access
1515 * @hw: pointer to the HW structure
1516 *
1517 * Returns 0 if successful, else returns -10
1518 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1519 * the master requests to be disabled.
1520 *
1521 * Disables PCI-Express master access and verifies there are no pending
1522 * requests.
1523 **/
1524 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1525 {
1526 u32 ctrl;
1527 s32 timeout = MASTER_DISABLE_TIMEOUT;
1528
1529 ctrl = er32(CTRL);
1530 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1531 ew32(CTRL, ctrl);
1532
1533 while (timeout) {
1534 if (!(er32(STATUS) &
1535 E1000_STATUS_GIO_MASTER_ENABLE))
1536 break;
1537 udelay(100);
1538 timeout--;
1539 }
1540
1541 if (!timeout) {
1542 hw_dbg(hw, "Master requests are pending.\n");
1543 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1544 }
1545
1546 return 0;
1547 }
1548
1549 /**
1550 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1551 * @hw: pointer to the HW structure
1552 *
1553 * Reset the Adaptive Interframe Spacing throttle to default values.
1554 **/
1555 void e1000e_reset_adaptive(struct e1000_hw *hw)
1556 {
1557 struct e1000_mac_info *mac = &hw->mac;
1558
1559 mac->current_ifs_val = 0;
1560 mac->ifs_min_val = IFS_MIN;
1561 mac->ifs_max_val = IFS_MAX;
1562 mac->ifs_step_size = IFS_STEP;
1563 mac->ifs_ratio = IFS_RATIO;
1564
1565 mac->in_ifs_mode = 0;
1566 ew32(AIT, 0);
1567 }
1568
1569 /**
1570 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1571 * @hw: pointer to the HW structure
1572 *
1573 * Update the Adaptive Interframe Spacing Throttle value based on the
1574 * time between transmitted packets and time between collisions.
1575 **/
1576 void e1000e_update_adaptive(struct e1000_hw *hw)
1577 {
1578 struct e1000_mac_info *mac = &hw->mac;
1579
1580 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1581 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1582 mac->in_ifs_mode = 1;
1583 if (mac->current_ifs_val < mac->ifs_max_val) {
1584 if (!mac->current_ifs_val)
1585 mac->current_ifs_val = mac->ifs_min_val;
1586 else
1587 mac->current_ifs_val +=
1588 mac->ifs_step_size;
1589 ew32(AIT,
1590 mac->current_ifs_val);
1591 }
1592 }
1593 } else {
1594 if (mac->in_ifs_mode &&
1595 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1596 mac->current_ifs_val = 0;
1597 mac->in_ifs_mode = 0;
1598 ew32(AIT, 0);
1599 }
1600 }
1601 }
1602
1603 /**
1604 * e1000_raise_eec_clk - Raise EEPROM clock
1605 * @hw: pointer to the HW structure
1606 * @eecd: pointer to the EEPROM
1607 *
1608 * Enable/Raise the EEPROM clock bit.
1609 **/
1610 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1611 {
1612 *eecd = *eecd | E1000_EECD_SK;
1613 ew32(EECD, *eecd);
1614 e1e_flush();
1615 udelay(hw->nvm.delay_usec);
1616 }
1617
1618 /**
1619 * e1000_lower_eec_clk - Lower EEPROM clock
1620 * @hw: pointer to the HW structure
1621 * @eecd: pointer to the EEPROM
1622 *
1623 * Clear/Lower the EEPROM clock bit.
1624 **/
1625 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
1626 {
1627 *eecd = *eecd & ~E1000_EECD_SK;
1628 ew32(EECD, *eecd);
1629 e1e_flush();
1630 udelay(hw->nvm.delay_usec);
1631 }
1632
1633 /**
1634 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1635 * @hw: pointer to the HW structure
1636 * @data: data to send to the EEPROM
1637 * @count: number of bits to shift out
1638 *
1639 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1640 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1641 * In order to do this, "data" must be broken down into bits.
1642 **/
1643 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
1644 {
1645 struct e1000_nvm_info *nvm = &hw->nvm;
1646 u32 eecd = er32(EECD);
1647 u32 mask;
1648
1649 mask = 0x01 << (count - 1);
1650 if (nvm->type == e1000_nvm_eeprom_spi)
1651 eecd |= E1000_EECD_DO;
1652
1653 do {
1654 eecd &= ~E1000_EECD_DI;
1655
1656 if (data & mask)
1657 eecd |= E1000_EECD_DI;
1658
1659 ew32(EECD, eecd);
1660 e1e_flush();
1661
1662 udelay(nvm->delay_usec);
1663
1664 e1000_raise_eec_clk(hw, &eecd);
1665 e1000_lower_eec_clk(hw, &eecd);
1666
1667 mask >>= 1;
1668 } while (mask);
1669
1670 eecd &= ~E1000_EECD_DI;
1671 ew32(EECD, eecd);
1672 }
1673
1674 /**
1675 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1676 * @hw: pointer to the HW structure
1677 * @count: number of bits to shift in
1678 *
1679 * In order to read a register from the EEPROM, we need to shift 'count' bits
1680 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1681 * the EEPROM (setting the SK bit), and then reading the value of the data out
1682 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1683 * always be clear.
1684 **/
1685 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
1686 {
1687 u32 eecd;
1688 u32 i;
1689 u16 data;
1690
1691 eecd = er32(EECD);
1692
1693 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1694 data = 0;
1695
1696 for (i = 0; i < count; i++) {
1697 data <<= 1;
1698 e1000_raise_eec_clk(hw, &eecd);
1699
1700 eecd = er32(EECD);
1701
1702 eecd &= ~E1000_EECD_DI;
1703 if (eecd & E1000_EECD_DO)
1704 data |= 1;
1705
1706 e1000_lower_eec_clk(hw, &eecd);
1707 }
1708
1709 return data;
1710 }
1711
1712 /**
1713 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1714 * @hw: pointer to the HW structure
1715 * @ee_reg: EEPROM flag for polling
1716 *
1717 * Polls the EEPROM status bit for either read or write completion based
1718 * upon the value of 'ee_reg'.
1719 **/
1720 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1721 {
1722 u32 attempts = 100000;
1723 u32 i, reg = 0;
1724
1725 for (i = 0; i < attempts; i++) {
1726 if (ee_reg == E1000_NVM_POLL_READ)
1727 reg = er32(EERD);
1728 else
1729 reg = er32(EEWR);
1730
1731 if (reg & E1000_NVM_RW_REG_DONE)
1732 return 0;
1733
1734 udelay(5);
1735 }
1736
1737 return -E1000_ERR_NVM;
1738 }
1739
1740 /**
1741 * e1000e_acquire_nvm - Generic request for access to EEPROM
1742 * @hw: pointer to the HW structure
1743 *
1744 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1745 * Return successful if access grant bit set, else clear the request for
1746 * EEPROM access and return -E1000_ERR_NVM (-1).
1747 **/
1748 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
1749 {
1750 u32 eecd = er32(EECD);
1751 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1752
1753 ew32(EECD, eecd | E1000_EECD_REQ);
1754 eecd = er32(EECD);
1755
1756 while (timeout) {
1757 if (eecd & E1000_EECD_GNT)
1758 break;
1759 udelay(5);
1760 eecd = er32(EECD);
1761 timeout--;
1762 }
1763
1764 if (!timeout) {
1765 eecd &= ~E1000_EECD_REQ;
1766 ew32(EECD, eecd);
1767 hw_dbg(hw, "Could not acquire NVM grant\n");
1768 return -E1000_ERR_NVM;
1769 }
1770
1771 return 0;
1772 }
1773
1774 /**
1775 * e1000_standby_nvm - Return EEPROM to standby state
1776 * @hw: pointer to the HW structure
1777 *
1778 * Return the EEPROM to a standby state.
1779 **/
1780 static void e1000_standby_nvm(struct e1000_hw *hw)
1781 {
1782 struct e1000_nvm_info *nvm = &hw->nvm;
1783 u32 eecd = er32(EECD);
1784
1785 if (nvm->type == e1000_nvm_eeprom_spi) {
1786 /* Toggle CS to flush commands */
1787 eecd |= E1000_EECD_CS;
1788 ew32(EECD, eecd);
1789 e1e_flush();
1790 udelay(nvm->delay_usec);
1791 eecd &= ~E1000_EECD_CS;
1792 ew32(EECD, eecd);
1793 e1e_flush();
1794 udelay(nvm->delay_usec);
1795 }
1796 }
1797
1798 /**
1799 * e1000_stop_nvm - Terminate EEPROM command
1800 * @hw: pointer to the HW structure
1801 *
1802 * Terminates the current command by inverting the EEPROM's chip select pin.
1803 **/
1804 static void e1000_stop_nvm(struct e1000_hw *hw)
1805 {
1806 u32 eecd;
1807
1808 eecd = er32(EECD);
1809 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
1810 /* Pull CS high */
1811 eecd |= E1000_EECD_CS;
1812 e1000_lower_eec_clk(hw, &eecd);
1813 }
1814 }
1815
1816 /**
1817 * e1000e_release_nvm - Release exclusive access to EEPROM
1818 * @hw: pointer to the HW structure
1819 *
1820 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1821 **/
1822 void e1000e_release_nvm(struct e1000_hw *hw)
1823 {
1824 u32 eecd;
1825
1826 e1000_stop_nvm(hw);
1827
1828 eecd = er32(EECD);
1829 eecd &= ~E1000_EECD_REQ;
1830 ew32(EECD, eecd);
1831 }
1832
1833 /**
1834 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1835 * @hw: pointer to the HW structure
1836 *
1837 * Setups the EEPROM for reading and writing.
1838 **/
1839 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
1840 {
1841 struct e1000_nvm_info *nvm = &hw->nvm;
1842 u32 eecd = er32(EECD);
1843 u16 timeout = 0;
1844 u8 spi_stat_reg;
1845
1846 if (nvm->type == e1000_nvm_eeprom_spi) {
1847 /* Clear SK and CS */
1848 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1849 ew32(EECD, eecd);
1850 udelay(1);
1851 timeout = NVM_MAX_RETRY_SPI;
1852
1853 /* Read "Status Register" repeatedly until the LSB is cleared.
1854 * The EEPROM will signal that the command has been completed
1855 * by clearing bit 0 of the internal status register. If it's
1856 * not cleared within 'timeout', then error out. */
1857 while (timeout) {
1858 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
1859 hw->nvm.opcode_bits);
1860 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
1861 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
1862 break;
1863
1864 udelay(5);
1865 e1000_standby_nvm(hw);
1866 timeout--;
1867 }
1868
1869 if (!timeout) {
1870 hw_dbg(hw, "SPI NVM Status error\n");
1871 return -E1000_ERR_NVM;
1872 }
1873 }
1874
1875 return 0;
1876 }
1877
1878 /**
1879 * e1000e_read_nvm_spi - Read EEPROM's using SPI
1880 * @hw: pointer to the HW structure
1881 * @offset: offset of word in the EEPROM to read
1882 * @words: number of words to read
1883 * @data: word read from the EEPROM
1884 *
1885 * Reads a 16 bit word from the EEPROM.
1886 **/
1887 s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1888 {
1889 struct e1000_nvm_info *nvm = &hw->nvm;
1890 u32 i = 0;
1891 s32 ret_val;
1892 u16 word_in;
1893 u8 read_opcode = NVM_READ_OPCODE_SPI;
1894
1895 /* A check for invalid values: offset too large, too many words,
1896 * and not enough words. */
1897 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1898 (words == 0)) {
1899 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1900 return -E1000_ERR_NVM;
1901 }
1902
1903 ret_val = nvm->ops.acquire_nvm(hw);
1904 if (ret_val)
1905 return ret_val;
1906
1907 ret_val = e1000_ready_nvm_eeprom(hw);
1908 if (ret_val) {
1909 nvm->ops.release_nvm(hw);
1910 return ret_val;
1911 }
1912
1913 e1000_standby_nvm(hw);
1914
1915 if ((nvm->address_bits == 8) && (offset >= 128))
1916 read_opcode |= NVM_A8_OPCODE_SPI;
1917
1918 /* Send the READ command (opcode + addr) */
1919 e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
1920 e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
1921
1922 /* Read the data. SPI NVMs increment the address with each byte
1923 * read and will roll over if reading beyond the end. This allows
1924 * us to read the whole NVM from any offset */
1925 for (i = 0; i < words; i++) {
1926 word_in = e1000_shift_in_eec_bits(hw, 16);
1927 data[i] = (word_in >> 8) | (word_in << 8);
1928 }
1929
1930 nvm->ops.release_nvm(hw);
1931 return 0;
1932 }
1933
1934 /**
1935 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
1936 * @hw: pointer to the HW structure
1937 * @offset: offset of word in the EEPROM to read
1938 * @words: number of words to read
1939 * @data: word read from the EEPROM
1940 *
1941 * Reads a 16 bit word from the EEPROM using the EERD register.
1942 **/
1943 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1944 {
1945 struct e1000_nvm_info *nvm = &hw->nvm;
1946 u32 i, eerd = 0;
1947 s32 ret_val = 0;
1948
1949 /* A check for invalid values: offset too large, too many words,
1950 * and not enough words. */
1951 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1952 (words == 0)) {
1953 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1954 return -E1000_ERR_NVM;
1955 }
1956
1957 for (i = 0; i < words; i++) {
1958 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
1959 E1000_NVM_RW_REG_START;
1960
1961 ew32(EERD, eerd);
1962 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
1963 if (ret_val)
1964 break;
1965
1966 data[i] = (er32(EERD) >>
1967 E1000_NVM_RW_REG_DATA);
1968 }
1969
1970 return ret_val;
1971 }
1972
1973 /**
1974 * e1000e_write_nvm_spi - Write to EEPROM using SPI
1975 * @hw: pointer to the HW structure
1976 * @offset: offset within the EEPROM to be written to
1977 * @words: number of words to write
1978 * @data: 16 bit word(s) to be written to the EEPROM
1979 *
1980 * Writes data to EEPROM at offset using SPI interface.
1981 *
1982 * If e1000e_update_nvm_checksum is not called after this function , the
1983 * EEPROM will most likley contain an invalid checksum.
1984 **/
1985 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1986 {
1987 struct e1000_nvm_info *nvm = &hw->nvm;
1988 s32 ret_val;
1989 u16 widx = 0;
1990
1991 /* A check for invalid values: offset too large, too many words,
1992 * and not enough words. */
1993 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1994 (words == 0)) {
1995 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1996 return -E1000_ERR_NVM;
1997 }
1998
1999 ret_val = nvm->ops.acquire_nvm(hw);
2000 if (ret_val)
2001 return ret_val;
2002
2003 msleep(10);
2004
2005 while (widx < words) {
2006 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
2007
2008 ret_val = e1000_ready_nvm_eeprom(hw);
2009 if (ret_val) {
2010 nvm->ops.release_nvm(hw);
2011 return ret_val;
2012 }
2013
2014 e1000_standby_nvm(hw);
2015
2016 /* Send the WRITE ENABLE command (8 bit opcode) */
2017 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
2018 nvm->opcode_bits);
2019
2020 e1000_standby_nvm(hw);
2021
2022 /* Some SPI eeproms use the 8th address bit embedded in the
2023 * opcode */
2024 if ((nvm->address_bits == 8) && (offset >= 128))
2025 write_opcode |= NVM_A8_OPCODE_SPI;
2026
2027 /* Send the Write command (8-bit opcode + addr) */
2028 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
2029 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
2030 nvm->address_bits);
2031
2032 /* Loop to allow for up to whole page write of eeprom */
2033 while (widx < words) {
2034 u16 word_out = data[widx];
2035 word_out = (word_out >> 8) | (word_out << 8);
2036 e1000_shift_out_eec_bits(hw, word_out, 16);
2037 widx++;
2038
2039 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
2040 e1000_standby_nvm(hw);
2041 break;
2042 }
2043 }
2044 }
2045
2046 msleep(10);
2047 return 0;
2048 }
2049
2050 /**
2051 * e1000e_read_mac_addr - Read device MAC address
2052 * @hw: pointer to the HW structure
2053 *
2054 * Reads the device MAC address from the EEPROM and stores the value.
2055 * Since devices with two ports use the same EEPROM, we increment the
2056 * last bit in the MAC address for the second port.
2057 **/
2058 s32 e1000e_read_mac_addr(struct e1000_hw *hw)
2059 {
2060 s32 ret_val;
2061 u16 offset, nvm_data, i;
2062
2063 for (i = 0; i < ETH_ALEN; i += 2) {
2064 offset = i >> 1;
2065 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
2066 if (ret_val) {
2067 hw_dbg(hw, "NVM Read Error\n");
2068 return ret_val;
2069 }
2070 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
2071 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
2072 }
2073
2074 /* Flip last bit of mac address if we're on second port */
2075 if (hw->bus.func == E1000_FUNC_1)
2076 hw->mac.perm_addr[5] ^= 1;
2077
2078 for (i = 0; i < ETH_ALEN; i++)
2079 hw->mac.addr[i] = hw->mac.perm_addr[i];
2080
2081 return 0;
2082 }
2083
2084 /**
2085 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2086 * @hw: pointer to the HW structure
2087 *
2088 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2089 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2090 **/
2091 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
2092 {
2093 s32 ret_val;
2094 u16 checksum = 0;
2095 u16 i, nvm_data;
2096
2097 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
2098 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2099 if (ret_val) {
2100 hw_dbg(hw, "NVM Read Error\n");
2101 return ret_val;
2102 }
2103 checksum += nvm_data;
2104 }
2105
2106 if (checksum != (u16) NVM_SUM) {
2107 hw_dbg(hw, "NVM Checksum Invalid\n");
2108 return -E1000_ERR_NVM;
2109 }
2110
2111 return 0;
2112 }
2113
2114 /**
2115 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2116 * @hw: pointer to the HW structure
2117 *
2118 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2119 * up to the checksum. Then calculates the EEPROM checksum and writes the
2120 * value to the EEPROM.
2121 **/
2122 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
2123 {
2124 s32 ret_val;
2125 u16 checksum = 0;
2126 u16 i, nvm_data;
2127
2128 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
2129 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2130 if (ret_val) {
2131 hw_dbg(hw, "NVM Read Error while updating checksum.\n");
2132 return ret_val;
2133 }
2134 checksum += nvm_data;
2135 }
2136 checksum = (u16) NVM_SUM - checksum;
2137 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
2138 if (ret_val)
2139 hw_dbg(hw, "NVM Write Error while updating checksum.\n");
2140
2141 return ret_val;
2142 }
2143
2144 /**
2145 * e1000e_reload_nvm - Reloads EEPROM
2146 * @hw: pointer to the HW structure
2147 *
2148 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2149 * extended control register.
2150 **/
2151 void e1000e_reload_nvm(struct e1000_hw *hw)
2152 {
2153 u32 ctrl_ext;
2154
2155 udelay(10);
2156 ctrl_ext = er32(CTRL_EXT);
2157 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
2158 ew32(CTRL_EXT, ctrl_ext);
2159 e1e_flush();
2160 }
2161
2162 /**
2163 * e1000_calculate_checksum - Calculate checksum for buffer
2164 * @buffer: pointer to EEPROM
2165 * @length: size of EEPROM to calculate a checksum for
2166 *
2167 * Calculates the checksum for some buffer on a specified length. The
2168 * checksum calculated is returned.
2169 **/
2170 static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
2171 {
2172 u32 i;
2173 u8 sum = 0;
2174
2175 if (!buffer)
2176 return 0;
2177
2178 for (i = 0; i < length; i++)
2179 sum += buffer[i];
2180
2181 return (u8) (0 - sum);
2182 }
2183
2184 /**
2185 * e1000_mng_enable_host_if - Checks host interface is enabled
2186 * @hw: pointer to the HW structure
2187 *
2188 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2189 *
2190 * This function checks whether the HOST IF is enabled for command operaton
2191 * and also checks whether the previous command is completed. It busy waits
2192 * in case of previous command is not completed.
2193 **/
2194 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2195 {
2196 u32 hicr;
2197 u8 i;
2198
2199 /* Check that the host interface is enabled. */
2200 hicr = er32(HICR);
2201 if ((hicr & E1000_HICR_EN) == 0) {
2202 hw_dbg(hw, "E1000_HOST_EN bit disabled.\n");
2203 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2204 }
2205 /* check the previous command is completed */
2206 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
2207 hicr = er32(HICR);
2208 if (!(hicr & E1000_HICR_C))
2209 break;
2210 mdelay(1);
2211 }
2212
2213 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
2214 hw_dbg(hw, "Previous command timeout failed .\n");
2215 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2216 }
2217
2218 return 0;
2219 }
2220
2221 /**
2222 * e1000e_check_mng_mode - check managament mode
2223 * @hw: pointer to the HW structure
2224 *
2225 * Reads the firmware semaphore register and returns true (>0) if
2226 * manageability is enabled, else false (0).
2227 **/
2228 bool e1000e_check_mng_mode(struct e1000_hw *hw)
2229 {
2230 u32 fwsm = er32(FWSM);
2231
2232 return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab;
2233 }
2234
2235 /**
2236 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX
2237 * @hw: pointer to the HW structure
2238 *
2239 * Enables packet filtering on transmit packets if manageability is enabled
2240 * and host interface is enabled.
2241 **/
2242 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
2243 {
2244 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
2245 u32 *buffer = (u32 *)&hw->mng_cookie;
2246 u32 offset;
2247 s32 ret_val, hdr_csum, csum;
2248 u8 i, len;
2249
2250 /* No manageability, no filtering */
2251 if (!e1000e_check_mng_mode(hw)) {
2252 hw->mac.tx_pkt_filtering = 0;
2253 return 0;
2254 }
2255
2256 /* If we can't read from the host interface for whatever
2257 * reason, disable filtering.
2258 */
2259 ret_val = e1000_mng_enable_host_if(hw);
2260 if (ret_val != 0) {
2261 hw->mac.tx_pkt_filtering = 0;
2262 return ret_val;
2263 }
2264
2265 /* Read in the header. Length and offset are in dwords. */
2266 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
2267 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
2268 for (i = 0; i < len; i++)
2269 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
2270 hdr_csum = hdr->checksum;
2271 hdr->checksum = 0;
2272 csum = e1000_calculate_checksum((u8 *)hdr,
2273 E1000_MNG_DHCP_COOKIE_LENGTH);
2274 /* If either the checksums or signature don't match, then
2275 * the cookie area isn't considered valid, in which case we
2276 * take the safe route of assuming Tx filtering is enabled.
2277 */
2278 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
2279 hw->mac.tx_pkt_filtering = 1;
2280 return 1;
2281 }
2282
2283 /* Cookie area is valid, make the final check for filtering. */
2284 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
2285 hw->mac.tx_pkt_filtering = 0;
2286 return 0;
2287 }
2288
2289 hw->mac.tx_pkt_filtering = 1;
2290 return 1;
2291 }
2292
2293 /**
2294 * e1000_mng_write_cmd_header - Writes manageability command header
2295 * @hw: pointer to the HW structure
2296 * @hdr: pointer to the host interface command header
2297 *
2298 * Writes the command header after does the checksum calculation.
2299 **/
2300 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
2301 struct e1000_host_mng_command_header *hdr)
2302 {
2303 u16 i, length = sizeof(struct e1000_host_mng_command_header);
2304
2305 /* Write the whole command header structure with new checksum. */
2306
2307 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
2308
2309 length >>= 2;
2310 /* Write the relevant command block into the ram area. */
2311 for (i = 0; i < length; i++) {
2312 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
2313 *((u32 *) hdr + i));
2314 e1e_flush();
2315 }
2316
2317 return 0;
2318 }
2319
2320 /**
2321 * e1000_mng_host_if_write - Writes to the manageability host interface
2322 * @hw: pointer to the HW structure
2323 * @buffer: pointer to the host interface buffer
2324 * @length: size of the buffer
2325 * @offset: location in the buffer to write to
2326 * @sum: sum of the data (not checksum)
2327 *
2328 * This function writes the buffer content at the offset given on the host if.
2329 * It also does alignment considerations to do the writes in most efficient
2330 * way. Also fills up the sum of the buffer in *buffer parameter.
2331 **/
2332 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
2333 u16 length, u16 offset, u8 *sum)
2334 {
2335 u8 *tmp;
2336 u8 *bufptr = buffer;
2337 u32 data = 0;
2338 u16 remaining, i, j, prev_bytes;
2339
2340 /* sum = only sum of the data and it is not checksum */
2341
2342 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
2343 return -E1000_ERR_PARAM;
2344
2345 tmp = (u8 *)&data;
2346 prev_bytes = offset & 0x3;
2347 offset >>= 2;
2348
2349 if (prev_bytes) {
2350 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
2351 for (j = prev_bytes; j < sizeof(u32); j++) {
2352 *(tmp + j) = *bufptr++;
2353 *sum += *(tmp + j);
2354 }
2355 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
2356 length -= j - prev_bytes;
2357 offset++;
2358 }
2359
2360 remaining = length & 0x3;
2361 length -= remaining;
2362
2363 /* Calculate length in DWORDs */
2364 length >>= 2;
2365
2366 /* The device driver writes the relevant command block into the
2367 * ram area. */
2368 for (i = 0; i < length; i++) {
2369 for (j = 0; j < sizeof(u32); j++) {
2370 *(tmp + j) = *bufptr++;
2371 *sum += *(tmp + j);
2372 }
2373
2374 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2375 }
2376 if (remaining) {
2377 for (j = 0; j < sizeof(u32); j++) {
2378 if (j < remaining)
2379 *(tmp + j) = *bufptr++;
2380 else
2381 *(tmp + j) = 0;
2382
2383 *sum += *(tmp + j);
2384 }
2385 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2386 }
2387
2388 return 0;
2389 }
2390
2391 /**
2392 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2393 * @hw: pointer to the HW structure
2394 * @buffer: pointer to the host interface
2395 * @length: size of the buffer
2396 *
2397 * Writes the DHCP information to the host interface.
2398 **/
2399 s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2400 {
2401 struct e1000_host_mng_command_header hdr;
2402 s32 ret_val;
2403 u32 hicr;
2404
2405 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
2406 hdr.command_length = length;
2407 hdr.reserved1 = 0;
2408 hdr.reserved2 = 0;
2409 hdr.checksum = 0;
2410
2411 /* Enable the host interface */
2412 ret_val = e1000_mng_enable_host_if(hw);
2413 if (ret_val)
2414 return ret_val;
2415
2416 /* Populate the host interface with the contents of "buffer". */
2417 ret_val = e1000_mng_host_if_write(hw, buffer, length,
2418 sizeof(hdr), &(hdr.checksum));
2419 if (ret_val)
2420 return ret_val;
2421
2422 /* Write the manageability command header */
2423 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
2424 if (ret_val)
2425 return ret_val;
2426
2427 /* Tell the ARC a new command is pending. */
2428 hicr = er32(HICR);
2429 ew32(HICR, hicr | E1000_HICR_C);
2430
2431 return 0;
2432 }
2433
2434 /**
2435 * e1000e_enable_mng_pass_thru - Enable processing of ARP's
2436 * @hw: pointer to the HW structure
2437 *
2438 * Verifies the hardware needs to allow ARPs to be processed by the host.
2439 **/
2440 bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
2441 {
2442 u32 manc;
2443 u32 fwsm, factps;
2444 bool ret_val = 0;
2445
2446 manc = er32(MANC);
2447
2448 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
2449 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
2450 return ret_val;
2451
2452 if (hw->mac.arc_subsystem_valid) {
2453 fwsm = er32(FWSM);
2454 factps = er32(FACTPS);
2455
2456 if (!(factps & E1000_FACTPS_MNGCG) &&
2457 ((fwsm & E1000_FWSM_MODE_MASK) ==
2458 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
2459 ret_val = 1;
2460 return ret_val;
2461 }
2462 } else {
2463 if ((manc & E1000_MANC_SMBUS_EN) &&
2464 !(manc & E1000_MANC_ASF_EN)) {
2465 ret_val = 1;
2466 return ret_val;
2467 }
2468 }
2469
2470 return ret_val;
2471 }
2472
2473 s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num)
2474 {
2475 s32 ret_val;
2476 u16 nvm_data;
2477
2478 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
2479 if (ret_val) {
2480 hw_dbg(hw, "NVM Read Error\n");
2481 return ret_val;
2482 }
2483 *part_num = (u32)(nvm_data << 16);
2484
2485 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
2486 if (ret_val) {
2487 hw_dbg(hw, "NVM Read Error\n");
2488 return ret_val;
2489 }
2490 *part_num |= nvm_data;
2491
2492 return 0;
2493 }