]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/e1000e/netdev.c
Merge branch 'linus' into core/softlockup
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47
48 #include "e1000.h"
49
50 #define DRV_VERSION "0.3.3.3-k2"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
53
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_80003es2lan] = &e1000_es2_info,
59 [board_ich8lan] = &e1000_ich8_info,
60 [board_ich9lan] = &e1000_ich9_info,
61 };
62
63 #ifdef DEBUG
64 /**
65 * e1000_get_hw_dev_name - return device name string
66 * used by hardware layer to print debugging information
67 **/
68 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
69 {
70 return hw->adapter->netdev->name;
71 }
72 #endif
73
74 /**
75 * e1000_desc_unused - calculate if we have unused descriptors
76 **/
77 static int e1000_desc_unused(struct e1000_ring *ring)
78 {
79 if (ring->next_to_clean > ring->next_to_use)
80 return ring->next_to_clean - ring->next_to_use - 1;
81
82 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
83 }
84
85 /**
86 * e1000_receive_skb - helper function to handle Rx indications
87 * @adapter: board private structure
88 * @status: descriptor status field as written by hardware
89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
90 * @skb: pointer to sk_buff to be indicated to stack
91 **/
92 static void e1000_receive_skb(struct e1000_adapter *adapter,
93 struct net_device *netdev,
94 struct sk_buff *skb,
95 u8 status, __le16 vlan)
96 {
97 skb->protocol = eth_type_trans(skb, netdev);
98
99 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
101 le16_to_cpu(vlan) &
102 E1000_RXD_SPC_VLAN_MASK);
103 else
104 netif_receive_skb(skb);
105
106 netdev->last_rx = jiffies;
107 }
108
109 /**
110 * e1000_rx_checksum - Receive Checksum Offload for 82543
111 * @adapter: board private structure
112 * @status_err: receive descriptor status and error fields
113 * @csum: receive descriptor csum field
114 * @sk_buff: socket buffer with received data
115 **/
116 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
117 u32 csum, struct sk_buff *skb)
118 {
119 u16 status = (u16)status_err;
120 u8 errors = (u8)(status_err >> 24);
121 skb->ip_summed = CHECKSUM_NONE;
122
123 /* Ignore Checksum bit is set */
124 if (status & E1000_RXD_STAT_IXSM)
125 return;
126 /* TCP/UDP checksum error bit is set */
127 if (errors & E1000_RXD_ERR_TCPE) {
128 /* let the stack verify checksum errors */
129 adapter->hw_csum_err++;
130 return;
131 }
132
133 /* TCP/UDP Checksum has not been calculated */
134 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
135 return;
136
137 /* It must be a TCP or UDP packet with a valid checksum */
138 if (status & E1000_RXD_STAT_TCPCS) {
139 /* TCP checksum is good */
140 skb->ip_summed = CHECKSUM_UNNECESSARY;
141 } else {
142 /*
143 * IP fragment with UDP payload
144 * Hardware complements the payload checksum, so we undo it
145 * and then put the value in host order for further stack use.
146 */
147 __sum16 sum = (__force __sum16)htons(csum);
148 skb->csum = csum_unfold(~sum);
149 skb->ip_summed = CHECKSUM_COMPLETE;
150 }
151 adapter->hw_csum_good++;
152 }
153
154 /**
155 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
156 * @adapter: address of board private structure
157 **/
158 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
159 int cleaned_count)
160 {
161 struct net_device *netdev = adapter->netdev;
162 struct pci_dev *pdev = adapter->pdev;
163 struct e1000_ring *rx_ring = adapter->rx_ring;
164 struct e1000_rx_desc *rx_desc;
165 struct e1000_buffer *buffer_info;
166 struct sk_buff *skb;
167 unsigned int i;
168 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169
170 i = rx_ring->next_to_use;
171 buffer_info = &rx_ring->buffer_info[i];
172
173 while (cleaned_count--) {
174 skb = buffer_info->skb;
175 if (skb) {
176 skb_trim(skb, 0);
177 goto map_skb;
178 }
179
180 skb = netdev_alloc_skb(netdev, bufsz);
181 if (!skb) {
182 /* Better luck next round */
183 adapter->alloc_rx_buff_failed++;
184 break;
185 }
186
187 /*
188 * Make buffer alignment 2 beyond a 16 byte boundary
189 * this will result in a 16 byte aligned IP header after
190 * the 14 byte MAC header is removed
191 */
192 skb_reserve(skb, NET_IP_ALIGN);
193
194 buffer_info->skb = skb;
195 map_skb:
196 buffer_info->dma = pci_map_single(pdev, skb->data,
197 adapter->rx_buffer_len,
198 PCI_DMA_FROMDEVICE);
199 if (pci_dma_mapping_error(buffer_info->dma)) {
200 dev_err(&pdev->dev, "RX DMA map failed\n");
201 adapter->rx_dma_failed++;
202 break;
203 }
204
205 rx_desc = E1000_RX_DESC(*rx_ring, i);
206 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
207
208 i++;
209 if (i == rx_ring->count)
210 i = 0;
211 buffer_info = &rx_ring->buffer_info[i];
212 }
213
214 if (rx_ring->next_to_use != i) {
215 rx_ring->next_to_use = i;
216 if (i-- == 0)
217 i = (rx_ring->count - 1);
218
219 /*
220 * Force memory writes to complete before letting h/w
221 * know there are new descriptors to fetch. (Only
222 * applicable for weak-ordered memory model archs,
223 * such as IA-64).
224 */
225 wmb();
226 writel(i, adapter->hw.hw_addr + rx_ring->tail);
227 }
228 }
229
230 /**
231 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
232 * @adapter: address of board private structure
233 **/
234 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
235 int cleaned_count)
236 {
237 struct net_device *netdev = adapter->netdev;
238 struct pci_dev *pdev = adapter->pdev;
239 union e1000_rx_desc_packet_split *rx_desc;
240 struct e1000_ring *rx_ring = adapter->rx_ring;
241 struct e1000_buffer *buffer_info;
242 struct e1000_ps_page *ps_page;
243 struct sk_buff *skb;
244 unsigned int i, j;
245
246 i = rx_ring->next_to_use;
247 buffer_info = &rx_ring->buffer_info[i];
248
249 while (cleaned_count--) {
250 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251
252 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
253 ps_page = &buffer_info->ps_pages[j];
254 if (j >= adapter->rx_ps_pages) {
255 /* all unused desc entries get hw null ptr */
256 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
257 continue;
258 }
259 if (!ps_page->page) {
260 ps_page->page = alloc_page(GFP_ATOMIC);
261 if (!ps_page->page) {
262 adapter->alloc_rx_buff_failed++;
263 goto no_buffers;
264 }
265 ps_page->dma = pci_map_page(pdev,
266 ps_page->page,
267 0, PAGE_SIZE,
268 PCI_DMA_FROMDEVICE);
269 if (pci_dma_mapping_error(ps_page->dma)) {
270 dev_err(&adapter->pdev->dev,
271 "RX DMA page map failed\n");
272 adapter->rx_dma_failed++;
273 goto no_buffers;
274 }
275 }
276 /*
277 * Refresh the desc even if buffer_addrs
278 * didn't change because each write-back
279 * erases this info.
280 */
281 rx_desc->read.buffer_addr[j+1] =
282 cpu_to_le64(ps_page->dma);
283 }
284
285 skb = netdev_alloc_skb(netdev,
286 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
287
288 if (!skb) {
289 adapter->alloc_rx_buff_failed++;
290 break;
291 }
292
293 /*
294 * Make buffer alignment 2 beyond a 16 byte boundary
295 * this will result in a 16 byte aligned IP header after
296 * the 14 byte MAC header is removed
297 */
298 skb_reserve(skb, NET_IP_ALIGN);
299
300 buffer_info->skb = skb;
301 buffer_info->dma = pci_map_single(pdev, skb->data,
302 adapter->rx_ps_bsize0,
303 PCI_DMA_FROMDEVICE);
304 if (pci_dma_mapping_error(buffer_info->dma)) {
305 dev_err(&pdev->dev, "RX DMA map failed\n");
306 adapter->rx_dma_failed++;
307 /* cleanup skb */
308 dev_kfree_skb_any(skb);
309 buffer_info->skb = NULL;
310 break;
311 }
312
313 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
314
315 i++;
316 if (i == rx_ring->count)
317 i = 0;
318 buffer_info = &rx_ring->buffer_info[i];
319 }
320
321 no_buffers:
322 if (rx_ring->next_to_use != i) {
323 rx_ring->next_to_use = i;
324
325 if (!(i--))
326 i = (rx_ring->count - 1);
327
328 /*
329 * Force memory writes to complete before letting h/w
330 * know there are new descriptors to fetch. (Only
331 * applicable for weak-ordered memory model archs,
332 * such as IA-64).
333 */
334 wmb();
335 /*
336 * Hardware increments by 16 bytes, but packet split
337 * descriptors are 32 bytes...so we increment tail
338 * twice as much.
339 */
340 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
341 }
342 }
343
344 /**
345 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
346 * @adapter: address of board private structure
347 * @rx_ring: pointer to receive ring structure
348 * @cleaned_count: number of buffers to allocate this pass
349 **/
350
351 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
352 int cleaned_count)
353 {
354 struct net_device *netdev = adapter->netdev;
355 struct pci_dev *pdev = adapter->pdev;
356 struct e1000_rx_desc *rx_desc;
357 struct e1000_ring *rx_ring = adapter->rx_ring;
358 struct e1000_buffer *buffer_info;
359 struct sk_buff *skb;
360 unsigned int i;
361 unsigned int bufsz = 256 -
362 16 /* for skb_reserve */ -
363 NET_IP_ALIGN;
364
365 i = rx_ring->next_to_use;
366 buffer_info = &rx_ring->buffer_info[i];
367
368 while (cleaned_count--) {
369 skb = buffer_info->skb;
370 if (skb) {
371 skb_trim(skb, 0);
372 goto check_page;
373 }
374
375 skb = netdev_alloc_skb(netdev, bufsz);
376 if (unlikely(!skb)) {
377 /* Better luck next round */
378 adapter->alloc_rx_buff_failed++;
379 break;
380 }
381
382 /* Make buffer alignment 2 beyond a 16 byte boundary
383 * this will result in a 16 byte aligned IP header after
384 * the 14 byte MAC header is removed
385 */
386 skb_reserve(skb, NET_IP_ALIGN);
387
388 buffer_info->skb = skb;
389 check_page:
390 /* allocate a new page if necessary */
391 if (!buffer_info->page) {
392 buffer_info->page = alloc_page(GFP_ATOMIC);
393 if (unlikely(!buffer_info->page)) {
394 adapter->alloc_rx_buff_failed++;
395 break;
396 }
397 }
398
399 if (!buffer_info->dma)
400 buffer_info->dma = pci_map_page(pdev,
401 buffer_info->page, 0,
402 PAGE_SIZE,
403 PCI_DMA_FROMDEVICE);
404
405 rx_desc = E1000_RX_DESC(*rx_ring, i);
406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407
408 if (unlikely(++i == rx_ring->count))
409 i = 0;
410 buffer_info = &rx_ring->buffer_info[i];
411 }
412
413 if (likely(rx_ring->next_to_use != i)) {
414 rx_ring->next_to_use = i;
415 if (unlikely(i-- == 0))
416 i = (rx_ring->count - 1);
417
418 /* Force memory writes to complete before letting h/w
419 * know there are new descriptors to fetch. (Only
420 * applicable for weak-ordered memory model archs,
421 * such as IA-64). */
422 wmb();
423 writel(i, adapter->hw.hw_addr + rx_ring->tail);
424 }
425 }
426
427 /**
428 * e1000_clean_rx_irq - Send received data up the network stack; legacy
429 * @adapter: board private structure
430 *
431 * the return value indicates whether actual cleaning was done, there
432 * is no guarantee that everything was cleaned
433 **/
434 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
435 int *work_done, int work_to_do)
436 {
437 struct net_device *netdev = adapter->netdev;
438 struct pci_dev *pdev = adapter->pdev;
439 struct e1000_ring *rx_ring = adapter->rx_ring;
440 struct e1000_rx_desc *rx_desc, *next_rxd;
441 struct e1000_buffer *buffer_info, *next_buffer;
442 u32 length;
443 unsigned int i;
444 int cleaned_count = 0;
445 bool cleaned = 0;
446 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447
448 i = rx_ring->next_to_clean;
449 rx_desc = E1000_RX_DESC(*rx_ring, i);
450 buffer_info = &rx_ring->buffer_info[i];
451
452 while (rx_desc->status & E1000_RXD_STAT_DD) {
453 struct sk_buff *skb;
454 u8 status;
455
456 if (*work_done >= work_to_do)
457 break;
458 (*work_done)++;
459
460 status = rx_desc->status;
461 skb = buffer_info->skb;
462 buffer_info->skb = NULL;
463
464 prefetch(skb->data - NET_IP_ALIGN);
465
466 i++;
467 if (i == rx_ring->count)
468 i = 0;
469 next_rxd = E1000_RX_DESC(*rx_ring, i);
470 prefetch(next_rxd);
471
472 next_buffer = &rx_ring->buffer_info[i];
473
474 cleaned = 1;
475 cleaned_count++;
476 pci_unmap_single(pdev,
477 buffer_info->dma,
478 adapter->rx_buffer_len,
479 PCI_DMA_FROMDEVICE);
480 buffer_info->dma = 0;
481
482 length = le16_to_cpu(rx_desc->length);
483
484 /* !EOP means multiple descriptors were used to store a single
485 * packet, also make sure the frame isn't just CRC only */
486 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
487 /* All receives must fit into a single buffer */
488 ndev_dbg(netdev, "%s: Receive packet consumed "
489 "multiple buffers\n", netdev->name);
490 /* recycle */
491 buffer_info->skb = skb;
492 goto next_desc;
493 }
494
495 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
496 /* recycle */
497 buffer_info->skb = skb;
498 goto next_desc;
499 }
500
501 total_rx_bytes += length;
502 total_rx_packets++;
503
504 /*
505 * code added for copybreak, this should improve
506 * performance for small packets with large amounts
507 * of reassembly being done in the stack
508 */
509 if (length < copybreak) {
510 struct sk_buff *new_skb =
511 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
512 if (new_skb) {
513 skb_reserve(new_skb, NET_IP_ALIGN);
514 memcpy(new_skb->data - NET_IP_ALIGN,
515 skb->data - NET_IP_ALIGN,
516 length + NET_IP_ALIGN);
517 /* save the skb in buffer_info as good */
518 buffer_info->skb = skb;
519 skb = new_skb;
520 }
521 /* else just continue with the old one */
522 }
523 /* end copybreak code */
524 skb_put(skb, length);
525
526 /* Receive Checksum Offload */
527 e1000_rx_checksum(adapter,
528 (u32)(status) |
529 ((u32)(rx_desc->errors) << 24),
530 le16_to_cpu(rx_desc->csum), skb);
531
532 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
533
534 next_desc:
535 rx_desc->status = 0;
536
537 /* return some buffers to hardware, one at a time is too slow */
538 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
539 adapter->alloc_rx_buf(adapter, cleaned_count);
540 cleaned_count = 0;
541 }
542
543 /* use prefetched values */
544 rx_desc = next_rxd;
545 buffer_info = next_buffer;
546 }
547 rx_ring->next_to_clean = i;
548
549 cleaned_count = e1000_desc_unused(rx_ring);
550 if (cleaned_count)
551 adapter->alloc_rx_buf(adapter, cleaned_count);
552
553 adapter->total_rx_bytes += total_rx_bytes;
554 adapter->total_rx_packets += total_rx_packets;
555 adapter->net_stats.rx_bytes += total_rx_bytes;
556 adapter->net_stats.rx_packets += total_rx_packets;
557 return cleaned;
558 }
559
560 static void e1000_put_txbuf(struct e1000_adapter *adapter,
561 struct e1000_buffer *buffer_info)
562 {
563 if (buffer_info->dma) {
564 pci_unmap_page(adapter->pdev, buffer_info->dma,
565 buffer_info->length, PCI_DMA_TODEVICE);
566 buffer_info->dma = 0;
567 }
568 if (buffer_info->skb) {
569 dev_kfree_skb_any(buffer_info->skb);
570 buffer_info->skb = NULL;
571 }
572 }
573
574 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
575 {
576 struct e1000_ring *tx_ring = adapter->tx_ring;
577 unsigned int i = tx_ring->next_to_clean;
578 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
579 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
580 struct net_device *netdev = adapter->netdev;
581
582 /* detected Tx unit hang */
583 ndev_err(netdev,
584 "Detected Tx Unit Hang:\n"
585 " TDH <%x>\n"
586 " TDT <%x>\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
592 " jiffies <%lx>\n"
593 " next_to_watch.status <%x>\n",
594 readl(adapter->hw.hw_addr + tx_ring->head),
595 readl(adapter->hw.hw_addr + tx_ring->tail),
596 tx_ring->next_to_use,
597 tx_ring->next_to_clean,
598 tx_ring->buffer_info[eop].time_stamp,
599 eop,
600 jiffies,
601 eop_desc->upper.fields.status);
602 }
603
604 /**
605 * e1000_clean_tx_irq - Reclaim resources after transmit completes
606 * @adapter: board private structure
607 *
608 * the return value indicates whether actual cleaning was done, there
609 * is no guarantee that everything was cleaned
610 **/
611 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
612 {
613 struct net_device *netdev = adapter->netdev;
614 struct e1000_hw *hw = &adapter->hw;
615 struct e1000_ring *tx_ring = adapter->tx_ring;
616 struct e1000_tx_desc *tx_desc, *eop_desc;
617 struct e1000_buffer *buffer_info;
618 unsigned int i, eop;
619 unsigned int count = 0;
620 bool cleaned = 0;
621 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
622
623 i = tx_ring->next_to_clean;
624 eop = tx_ring->buffer_info[i].next_to_watch;
625 eop_desc = E1000_TX_DESC(*tx_ring, eop);
626
627 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
628 for (cleaned = 0; !cleaned; ) {
629 tx_desc = E1000_TX_DESC(*tx_ring, i);
630 buffer_info = &tx_ring->buffer_info[i];
631 cleaned = (i == eop);
632
633 if (cleaned) {
634 struct sk_buff *skb = buffer_info->skb;
635 unsigned int segs, bytecount;
636 segs = skb_shinfo(skb)->gso_segs ?: 1;
637 /* multiply data chunks by size of headers */
638 bytecount = ((segs - 1) * skb_headlen(skb)) +
639 skb->len;
640 total_tx_packets += segs;
641 total_tx_bytes += bytecount;
642 }
643
644 e1000_put_txbuf(adapter, buffer_info);
645 tx_desc->upper.data = 0;
646
647 i++;
648 if (i == tx_ring->count)
649 i = 0;
650 }
651
652 eop = tx_ring->buffer_info[i].next_to_watch;
653 eop_desc = E1000_TX_DESC(*tx_ring, eop);
654 #define E1000_TX_WEIGHT 64
655 /* weight of a sort for tx, to avoid endless transmit cleanup */
656 if (count++ == E1000_TX_WEIGHT)
657 break;
658 }
659
660 tx_ring->next_to_clean = i;
661
662 #define TX_WAKE_THRESHOLD 32
663 if (cleaned && netif_carrier_ok(netdev) &&
664 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
665 /* Make sure that anybody stopping the queue after this
666 * sees the new next_to_clean.
667 */
668 smp_mb();
669
670 if (netif_queue_stopped(netdev) &&
671 !(test_bit(__E1000_DOWN, &adapter->state))) {
672 netif_wake_queue(netdev);
673 ++adapter->restart_queue;
674 }
675 }
676
677 if (adapter->detect_tx_hung) {
678 /*
679 * Detect a transmit hang in hardware, this serializes the
680 * check with the clearing of time_stamp and movement of i
681 */
682 adapter->detect_tx_hung = 0;
683 if (tx_ring->buffer_info[eop].dma &&
684 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
685 + (adapter->tx_timeout_factor * HZ))
686 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
687 e1000_print_tx_hang(adapter);
688 netif_stop_queue(netdev);
689 }
690 }
691 adapter->total_tx_bytes += total_tx_bytes;
692 adapter->total_tx_packets += total_tx_packets;
693 adapter->net_stats.tx_bytes += total_tx_bytes;
694 adapter->net_stats.tx_packets += total_tx_packets;
695 return cleaned;
696 }
697
698 /**
699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
700 * @adapter: board private structure
701 *
702 * the return value indicates whether actual cleaning was done, there
703 * is no guarantee that everything was cleaned
704 **/
705 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
706 int *work_done, int work_to_do)
707 {
708 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
709 struct net_device *netdev = adapter->netdev;
710 struct pci_dev *pdev = adapter->pdev;
711 struct e1000_ring *rx_ring = adapter->rx_ring;
712 struct e1000_buffer *buffer_info, *next_buffer;
713 struct e1000_ps_page *ps_page;
714 struct sk_buff *skb;
715 unsigned int i, j;
716 u32 length, staterr;
717 int cleaned_count = 0;
718 bool cleaned = 0;
719 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
720
721 i = rx_ring->next_to_clean;
722 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
724 buffer_info = &rx_ring->buffer_info[i];
725
726 while (staterr & E1000_RXD_STAT_DD) {
727 if (*work_done >= work_to_do)
728 break;
729 (*work_done)++;
730 skb = buffer_info->skb;
731
732 /* in the packet split case this is header only */
733 prefetch(skb->data - NET_IP_ALIGN);
734
735 i++;
736 if (i == rx_ring->count)
737 i = 0;
738 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
739 prefetch(next_rxd);
740
741 next_buffer = &rx_ring->buffer_info[i];
742
743 cleaned = 1;
744 cleaned_count++;
745 pci_unmap_single(pdev, buffer_info->dma,
746 adapter->rx_ps_bsize0,
747 PCI_DMA_FROMDEVICE);
748 buffer_info->dma = 0;
749
750 if (!(staterr & E1000_RXD_STAT_EOP)) {
751 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
752 "up the full packet\n", netdev->name);
753 dev_kfree_skb_irq(skb);
754 goto next_desc;
755 }
756
757 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
758 dev_kfree_skb_irq(skb);
759 goto next_desc;
760 }
761
762 length = le16_to_cpu(rx_desc->wb.middle.length0);
763
764 if (!length) {
765 ndev_dbg(netdev, "%s: Last part of the packet spanning"
766 " multiple descriptors\n", netdev->name);
767 dev_kfree_skb_irq(skb);
768 goto next_desc;
769 }
770
771 /* Good Receive */
772 skb_put(skb, length);
773
774 {
775 /*
776 * this looks ugly, but it seems compiler issues make it
777 * more efficient than reusing j
778 */
779 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
780
781 /*
782 * page alloc/put takes too long and effects small packet
783 * throughput, so unsplit small packets and save the alloc/put
784 * only valid in softirq (napi) context to call kmap_*
785 */
786 if (l1 && (l1 <= copybreak) &&
787 ((length + l1) <= adapter->rx_ps_bsize0)) {
788 u8 *vaddr;
789
790 ps_page = &buffer_info->ps_pages[0];
791
792 /*
793 * there is no documentation about how to call
794 * kmap_atomic, so we can't hold the mapping
795 * very long
796 */
797 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
798 PAGE_SIZE, PCI_DMA_FROMDEVICE);
799 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
800 memcpy(skb_tail_pointer(skb), vaddr, l1);
801 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
802 pci_dma_sync_single_for_device(pdev, ps_page->dma,
803 PAGE_SIZE, PCI_DMA_FROMDEVICE);
804
805 skb_put(skb, l1);
806 goto copydone;
807 } /* if */
808 }
809
810 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
811 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
812 if (!length)
813 break;
814
815 ps_page = &buffer_info->ps_pages[j];
816 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
817 PCI_DMA_FROMDEVICE);
818 ps_page->dma = 0;
819 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
820 ps_page->page = NULL;
821 skb->len += length;
822 skb->data_len += length;
823 skb->truesize += length;
824 }
825
826 copydone:
827 total_rx_bytes += skb->len;
828 total_rx_packets++;
829
830 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
831 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
832
833 if (rx_desc->wb.upper.header_status &
834 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
835 adapter->rx_hdr_split++;
836
837 e1000_receive_skb(adapter, netdev, skb,
838 staterr, rx_desc->wb.middle.vlan);
839
840 next_desc:
841 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
842 buffer_info->skb = NULL;
843
844 /* return some buffers to hardware, one at a time is too slow */
845 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
846 adapter->alloc_rx_buf(adapter, cleaned_count);
847 cleaned_count = 0;
848 }
849
850 /* use prefetched values */
851 rx_desc = next_rxd;
852 buffer_info = next_buffer;
853
854 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
855 }
856 rx_ring->next_to_clean = i;
857
858 cleaned_count = e1000_desc_unused(rx_ring);
859 if (cleaned_count)
860 adapter->alloc_rx_buf(adapter, cleaned_count);
861
862 adapter->total_rx_bytes += total_rx_bytes;
863 adapter->total_rx_packets += total_rx_packets;
864 adapter->net_stats.rx_bytes += total_rx_bytes;
865 adapter->net_stats.rx_packets += total_rx_packets;
866 return cleaned;
867 }
868
869 /**
870 * e1000_consume_page - helper function
871 **/
872 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
873 u16 length)
874 {
875 bi->page = NULL;
876 skb->len += length;
877 skb->data_len += length;
878 skb->truesize += length;
879 }
880
881 /**
882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
883 * @adapter: board private structure
884 *
885 * the return value indicates whether actual cleaning was done, there
886 * is no guarantee that everything was cleaned
887 **/
888
889 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
890 int *work_done, int work_to_do)
891 {
892 struct net_device *netdev = adapter->netdev;
893 struct pci_dev *pdev = adapter->pdev;
894 struct e1000_ring *rx_ring = adapter->rx_ring;
895 struct e1000_rx_desc *rx_desc, *next_rxd;
896 struct e1000_buffer *buffer_info, *next_buffer;
897 u32 length;
898 unsigned int i;
899 int cleaned_count = 0;
900 bool cleaned = false;
901 unsigned int total_rx_bytes=0, total_rx_packets=0;
902
903 i = rx_ring->next_to_clean;
904 rx_desc = E1000_RX_DESC(*rx_ring, i);
905 buffer_info = &rx_ring->buffer_info[i];
906
907 while (rx_desc->status & E1000_RXD_STAT_DD) {
908 struct sk_buff *skb;
909 u8 status;
910
911 if (*work_done >= work_to_do)
912 break;
913 (*work_done)++;
914
915 status = rx_desc->status;
916 skb = buffer_info->skb;
917 buffer_info->skb = NULL;
918
919 ++i;
920 if (i == rx_ring->count)
921 i = 0;
922 next_rxd = E1000_RX_DESC(*rx_ring, i);
923 prefetch(next_rxd);
924
925 next_buffer = &rx_ring->buffer_info[i];
926
927 cleaned = true;
928 cleaned_count++;
929 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
930 PCI_DMA_FROMDEVICE);
931 buffer_info->dma = 0;
932
933 length = le16_to_cpu(rx_desc->length);
934
935 /* errors is only valid for DD + EOP descriptors */
936 if (unlikely((status & E1000_RXD_STAT_EOP) &&
937 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
938 /* recycle both page and skb */
939 buffer_info->skb = skb;
940 /* an error means any chain goes out the window
941 * too */
942 if (rx_ring->rx_skb_top)
943 dev_kfree_skb(rx_ring->rx_skb_top);
944 rx_ring->rx_skb_top = NULL;
945 goto next_desc;
946 }
947
948 #define rxtop rx_ring->rx_skb_top
949 if (!(status & E1000_RXD_STAT_EOP)) {
950 /* this descriptor is only the beginning (or middle) */
951 if (!rxtop) {
952 /* this is the beginning of a chain */
953 rxtop = skb;
954 skb_fill_page_desc(rxtop, 0, buffer_info->page,
955 0, length);
956 } else {
957 /* this is the middle of a chain */
958 skb_fill_page_desc(rxtop,
959 skb_shinfo(rxtop)->nr_frags,
960 buffer_info->page, 0, length);
961 /* re-use the skb, only consumed the page */
962 buffer_info->skb = skb;
963 }
964 e1000_consume_page(buffer_info, rxtop, length);
965 goto next_desc;
966 } else {
967 if (rxtop) {
968 /* end of the chain */
969 skb_fill_page_desc(rxtop,
970 skb_shinfo(rxtop)->nr_frags,
971 buffer_info->page, 0, length);
972 /* re-use the current skb, we only consumed the
973 * page */
974 buffer_info->skb = skb;
975 skb = rxtop;
976 rxtop = NULL;
977 e1000_consume_page(buffer_info, skb, length);
978 } else {
979 /* no chain, got EOP, this buf is the packet
980 * copybreak to save the put_page/alloc_page */
981 if (length <= copybreak &&
982 skb_tailroom(skb) >= length) {
983 u8 *vaddr;
984 vaddr = kmap_atomic(buffer_info->page,
985 KM_SKB_DATA_SOFTIRQ);
986 memcpy(skb_tail_pointer(skb), vaddr,
987 length);
988 kunmap_atomic(vaddr,
989 KM_SKB_DATA_SOFTIRQ);
990 /* re-use the page, so don't erase
991 * buffer_info->page */
992 skb_put(skb, length);
993 } else {
994 skb_fill_page_desc(skb, 0,
995 buffer_info->page, 0,
996 length);
997 e1000_consume_page(buffer_info, skb,
998 length);
999 }
1000 }
1001 }
1002
1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1004 e1000_rx_checksum(adapter,
1005 (u32)(status) |
1006 ((u32)(rx_desc->errors) << 24),
1007 le16_to_cpu(rx_desc->csum), skb);
1008
1009 /* probably a little skewed due to removing CRC */
1010 total_rx_bytes += skb->len;
1011 total_rx_packets++;
1012
1013 /* eth type trans needs skb->data to point to something */
1014 if (!pskb_may_pull(skb, ETH_HLEN)) {
1015 ndev_err(netdev, "pskb_may_pull failed.\n");
1016 dev_kfree_skb(skb);
1017 goto next_desc;
1018 }
1019
1020 e1000_receive_skb(adapter, netdev, skb, status,
1021 rx_desc->special);
1022
1023 next_desc:
1024 rx_desc->status = 0;
1025
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1028 adapter->alloc_rx_buf(adapter, cleaned_count);
1029 cleaned_count = 0;
1030 }
1031
1032 /* use prefetched values */
1033 rx_desc = next_rxd;
1034 buffer_info = next_buffer;
1035 }
1036 rx_ring->next_to_clean = i;
1037
1038 cleaned_count = e1000_desc_unused(rx_ring);
1039 if (cleaned_count)
1040 adapter->alloc_rx_buf(adapter, cleaned_count);
1041
1042 adapter->total_rx_bytes += total_rx_bytes;
1043 adapter->total_rx_packets += total_rx_packets;
1044 adapter->net_stats.rx_bytes += total_rx_bytes;
1045 adapter->net_stats.rx_packets += total_rx_packets;
1046 return cleaned;
1047 }
1048
1049 /**
1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1051 * @adapter: board private structure
1052 **/
1053 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1054 {
1055 struct e1000_ring *rx_ring = adapter->rx_ring;
1056 struct e1000_buffer *buffer_info;
1057 struct e1000_ps_page *ps_page;
1058 struct pci_dev *pdev = adapter->pdev;
1059 unsigned int i, j;
1060
1061 /* Free all the Rx ring sk_buffs */
1062 for (i = 0; i < rx_ring->count; i++) {
1063 buffer_info = &rx_ring->buffer_info[i];
1064 if (buffer_info->dma) {
1065 if (adapter->clean_rx == e1000_clean_rx_irq)
1066 pci_unmap_single(pdev, buffer_info->dma,
1067 adapter->rx_buffer_len,
1068 PCI_DMA_FROMDEVICE);
1069 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1070 pci_unmap_page(pdev, buffer_info->dma,
1071 PAGE_SIZE,
1072 PCI_DMA_FROMDEVICE);
1073 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1074 pci_unmap_single(pdev, buffer_info->dma,
1075 adapter->rx_ps_bsize0,
1076 PCI_DMA_FROMDEVICE);
1077 buffer_info->dma = 0;
1078 }
1079
1080 if (buffer_info->page) {
1081 put_page(buffer_info->page);
1082 buffer_info->page = NULL;
1083 }
1084
1085 if (buffer_info->skb) {
1086 dev_kfree_skb(buffer_info->skb);
1087 buffer_info->skb = NULL;
1088 }
1089
1090 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1091 ps_page = &buffer_info->ps_pages[j];
1092 if (!ps_page->page)
1093 break;
1094 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1095 PCI_DMA_FROMDEVICE);
1096 ps_page->dma = 0;
1097 put_page(ps_page->page);
1098 ps_page->page = NULL;
1099 }
1100 }
1101
1102 /* there also may be some cached data from a chained receive */
1103 if (rx_ring->rx_skb_top) {
1104 dev_kfree_skb(rx_ring->rx_skb_top);
1105 rx_ring->rx_skb_top = NULL;
1106 }
1107
1108 /* Zero out the descriptor ring */
1109 memset(rx_ring->desc, 0, rx_ring->size);
1110
1111 rx_ring->next_to_clean = 0;
1112 rx_ring->next_to_use = 0;
1113
1114 writel(0, adapter->hw.hw_addr + rx_ring->head);
1115 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1116 }
1117
1118 /**
1119 * e1000_intr_msi - Interrupt Handler
1120 * @irq: interrupt number
1121 * @data: pointer to a network interface device structure
1122 **/
1123 static irqreturn_t e1000_intr_msi(int irq, void *data)
1124 {
1125 struct net_device *netdev = data;
1126 struct e1000_adapter *adapter = netdev_priv(netdev);
1127 struct e1000_hw *hw = &adapter->hw;
1128 u32 icr = er32(ICR);
1129
1130 /*
1131 * read ICR disables interrupts using IAM
1132 */
1133
1134 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1135 hw->mac.get_link_status = 1;
1136 /*
1137 * ICH8 workaround-- Call gig speed drop workaround on cable
1138 * disconnect (LSC) before accessing any PHY registers
1139 */
1140 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1141 (!(er32(STATUS) & E1000_STATUS_LU)))
1142 e1000e_gig_downshift_workaround_ich8lan(hw);
1143
1144 /*
1145 * 80003ES2LAN workaround-- For packet buffer work-around on
1146 * link down event; disable receives here in the ISR and reset
1147 * adapter in watchdog
1148 */
1149 if (netif_carrier_ok(netdev) &&
1150 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1151 /* disable receives */
1152 u32 rctl = er32(RCTL);
1153 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1154 adapter->flags |= FLAG_RX_RESTART_NOW;
1155 }
1156 /* guard against interrupt when we're going down */
1157 if (!test_bit(__E1000_DOWN, &adapter->state))
1158 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1159 }
1160
1161 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1162 adapter->total_tx_bytes = 0;
1163 adapter->total_tx_packets = 0;
1164 adapter->total_rx_bytes = 0;
1165 adapter->total_rx_packets = 0;
1166 __netif_rx_schedule(netdev, &adapter->napi);
1167 }
1168
1169 return IRQ_HANDLED;
1170 }
1171
1172 /**
1173 * e1000_intr - Interrupt Handler
1174 * @irq: interrupt number
1175 * @data: pointer to a network interface device structure
1176 **/
1177 static irqreturn_t e1000_intr(int irq, void *data)
1178 {
1179 struct net_device *netdev = data;
1180 struct e1000_adapter *adapter = netdev_priv(netdev);
1181 struct e1000_hw *hw = &adapter->hw;
1182
1183 u32 rctl, icr = er32(ICR);
1184 if (!icr)
1185 return IRQ_NONE; /* Not our interrupt */
1186
1187 /*
1188 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1189 * not set, then the adapter didn't send an interrupt
1190 */
1191 if (!(icr & E1000_ICR_INT_ASSERTED))
1192 return IRQ_NONE;
1193
1194 /*
1195 * Interrupt Auto-Mask...upon reading ICR,
1196 * interrupts are masked. No need for the
1197 * IMC write
1198 */
1199
1200 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1201 hw->mac.get_link_status = 1;
1202 /*
1203 * ICH8 workaround-- Call gig speed drop workaround on cable
1204 * disconnect (LSC) before accessing any PHY registers
1205 */
1206 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1207 (!(er32(STATUS) & E1000_STATUS_LU)))
1208 e1000e_gig_downshift_workaround_ich8lan(hw);
1209
1210 /*
1211 * 80003ES2LAN workaround--
1212 * For packet buffer work-around on link down event;
1213 * disable receives here in the ISR and
1214 * reset adapter in watchdog
1215 */
1216 if (netif_carrier_ok(netdev) &&
1217 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1218 /* disable receives */
1219 rctl = er32(RCTL);
1220 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1221 adapter->flags |= FLAG_RX_RESTART_NOW;
1222 }
1223 /* guard against interrupt when we're going down */
1224 if (!test_bit(__E1000_DOWN, &adapter->state))
1225 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1226 }
1227
1228 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1229 adapter->total_tx_bytes = 0;
1230 adapter->total_tx_packets = 0;
1231 adapter->total_rx_bytes = 0;
1232 adapter->total_rx_packets = 0;
1233 __netif_rx_schedule(netdev, &adapter->napi);
1234 }
1235
1236 return IRQ_HANDLED;
1237 }
1238
1239 static int e1000_request_irq(struct e1000_adapter *adapter)
1240 {
1241 struct net_device *netdev = adapter->netdev;
1242 irq_handler_t handler = e1000_intr;
1243 int irq_flags = IRQF_SHARED;
1244 int err;
1245
1246 if (!pci_enable_msi(adapter->pdev)) {
1247 adapter->flags |= FLAG_MSI_ENABLED;
1248 handler = e1000_intr_msi;
1249 irq_flags = 0;
1250 }
1251
1252 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
1253 netdev);
1254 if (err) {
1255 ndev_err(netdev,
1256 "Unable to allocate %s interrupt (return: %d)\n",
1257 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
1258 err);
1259 if (adapter->flags & FLAG_MSI_ENABLED)
1260 pci_disable_msi(adapter->pdev);
1261 }
1262
1263 return err;
1264 }
1265
1266 static void e1000_free_irq(struct e1000_adapter *adapter)
1267 {
1268 struct net_device *netdev = adapter->netdev;
1269
1270 free_irq(adapter->pdev->irq, netdev);
1271 if (adapter->flags & FLAG_MSI_ENABLED) {
1272 pci_disable_msi(adapter->pdev);
1273 adapter->flags &= ~FLAG_MSI_ENABLED;
1274 }
1275 }
1276
1277 /**
1278 * e1000_irq_disable - Mask off interrupt generation on the NIC
1279 **/
1280 static void e1000_irq_disable(struct e1000_adapter *adapter)
1281 {
1282 struct e1000_hw *hw = &adapter->hw;
1283
1284 ew32(IMC, ~0);
1285 e1e_flush();
1286 synchronize_irq(adapter->pdev->irq);
1287 }
1288
1289 /**
1290 * e1000_irq_enable - Enable default interrupt generation settings
1291 **/
1292 static void e1000_irq_enable(struct e1000_adapter *adapter)
1293 {
1294 struct e1000_hw *hw = &adapter->hw;
1295
1296 ew32(IMS, IMS_ENABLE_MASK);
1297 e1e_flush();
1298 }
1299
1300 /**
1301 * e1000_get_hw_control - get control of the h/w from f/w
1302 * @adapter: address of board private structure
1303 *
1304 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1305 * For ASF and Pass Through versions of f/w this means that
1306 * the driver is loaded. For AMT version (only with 82573)
1307 * of the f/w this means that the network i/f is open.
1308 **/
1309 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1310 {
1311 struct e1000_hw *hw = &adapter->hw;
1312 u32 ctrl_ext;
1313 u32 swsm;
1314
1315 /* Let firmware know the driver has taken over */
1316 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1317 swsm = er32(SWSM);
1318 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1319 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1320 ctrl_ext = er32(CTRL_EXT);
1321 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1322 }
1323 }
1324
1325 /**
1326 * e1000_release_hw_control - release control of the h/w to f/w
1327 * @adapter: address of board private structure
1328 *
1329 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1330 * For ASF and Pass Through versions of f/w this means that the
1331 * driver is no longer loaded. For AMT version (only with 82573) i
1332 * of the f/w this means that the network i/f is closed.
1333 *
1334 **/
1335 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1336 {
1337 struct e1000_hw *hw = &adapter->hw;
1338 u32 ctrl_ext;
1339 u32 swsm;
1340
1341 /* Let firmware taken over control of h/w */
1342 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1343 swsm = er32(SWSM);
1344 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1345 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1346 ctrl_ext = er32(CTRL_EXT);
1347 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1348 }
1349 }
1350
1351 /**
1352 * @e1000_alloc_ring - allocate memory for a ring structure
1353 **/
1354 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1355 struct e1000_ring *ring)
1356 {
1357 struct pci_dev *pdev = adapter->pdev;
1358
1359 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1360 GFP_KERNEL);
1361 if (!ring->desc)
1362 return -ENOMEM;
1363
1364 return 0;
1365 }
1366
1367 /**
1368 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1369 * @adapter: board private structure
1370 *
1371 * Return 0 on success, negative on failure
1372 **/
1373 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1374 {
1375 struct e1000_ring *tx_ring = adapter->tx_ring;
1376 int err = -ENOMEM, size;
1377
1378 size = sizeof(struct e1000_buffer) * tx_ring->count;
1379 tx_ring->buffer_info = vmalloc(size);
1380 if (!tx_ring->buffer_info)
1381 goto err;
1382 memset(tx_ring->buffer_info, 0, size);
1383
1384 /* round up to nearest 4K */
1385 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1386 tx_ring->size = ALIGN(tx_ring->size, 4096);
1387
1388 err = e1000_alloc_ring_dma(adapter, tx_ring);
1389 if (err)
1390 goto err;
1391
1392 tx_ring->next_to_use = 0;
1393 tx_ring->next_to_clean = 0;
1394 spin_lock_init(&adapter->tx_queue_lock);
1395
1396 return 0;
1397 err:
1398 vfree(tx_ring->buffer_info);
1399 ndev_err(adapter->netdev,
1400 "Unable to allocate memory for the transmit descriptor ring\n");
1401 return err;
1402 }
1403
1404 /**
1405 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1406 * @adapter: board private structure
1407 *
1408 * Returns 0 on success, negative on failure
1409 **/
1410 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1411 {
1412 struct e1000_ring *rx_ring = adapter->rx_ring;
1413 struct e1000_buffer *buffer_info;
1414 int i, size, desc_len, err = -ENOMEM;
1415
1416 size = sizeof(struct e1000_buffer) * rx_ring->count;
1417 rx_ring->buffer_info = vmalloc(size);
1418 if (!rx_ring->buffer_info)
1419 goto err;
1420 memset(rx_ring->buffer_info, 0, size);
1421
1422 for (i = 0; i < rx_ring->count; i++) {
1423 buffer_info = &rx_ring->buffer_info[i];
1424 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1425 sizeof(struct e1000_ps_page),
1426 GFP_KERNEL);
1427 if (!buffer_info->ps_pages)
1428 goto err_pages;
1429 }
1430
1431 desc_len = sizeof(union e1000_rx_desc_packet_split);
1432
1433 /* Round up to nearest 4K */
1434 rx_ring->size = rx_ring->count * desc_len;
1435 rx_ring->size = ALIGN(rx_ring->size, 4096);
1436
1437 err = e1000_alloc_ring_dma(adapter, rx_ring);
1438 if (err)
1439 goto err_pages;
1440
1441 rx_ring->next_to_clean = 0;
1442 rx_ring->next_to_use = 0;
1443 rx_ring->rx_skb_top = NULL;
1444
1445 return 0;
1446
1447 err_pages:
1448 for (i = 0; i < rx_ring->count; i++) {
1449 buffer_info = &rx_ring->buffer_info[i];
1450 kfree(buffer_info->ps_pages);
1451 }
1452 err:
1453 vfree(rx_ring->buffer_info);
1454 ndev_err(adapter->netdev,
1455 "Unable to allocate memory for the transmit descriptor ring\n");
1456 return err;
1457 }
1458
1459 /**
1460 * e1000_clean_tx_ring - Free Tx Buffers
1461 * @adapter: board private structure
1462 **/
1463 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1464 {
1465 struct e1000_ring *tx_ring = adapter->tx_ring;
1466 struct e1000_buffer *buffer_info;
1467 unsigned long size;
1468 unsigned int i;
1469
1470 for (i = 0; i < tx_ring->count; i++) {
1471 buffer_info = &tx_ring->buffer_info[i];
1472 e1000_put_txbuf(adapter, buffer_info);
1473 }
1474
1475 size = sizeof(struct e1000_buffer) * tx_ring->count;
1476 memset(tx_ring->buffer_info, 0, size);
1477
1478 memset(tx_ring->desc, 0, tx_ring->size);
1479
1480 tx_ring->next_to_use = 0;
1481 tx_ring->next_to_clean = 0;
1482
1483 writel(0, adapter->hw.hw_addr + tx_ring->head);
1484 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1485 }
1486
1487 /**
1488 * e1000e_free_tx_resources - Free Tx Resources per Queue
1489 * @adapter: board private structure
1490 *
1491 * Free all transmit software resources
1492 **/
1493 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1494 {
1495 struct pci_dev *pdev = adapter->pdev;
1496 struct e1000_ring *tx_ring = adapter->tx_ring;
1497
1498 e1000_clean_tx_ring(adapter);
1499
1500 vfree(tx_ring->buffer_info);
1501 tx_ring->buffer_info = NULL;
1502
1503 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1504 tx_ring->dma);
1505 tx_ring->desc = NULL;
1506 }
1507
1508 /**
1509 * e1000e_free_rx_resources - Free Rx Resources
1510 * @adapter: board private structure
1511 *
1512 * Free all receive software resources
1513 **/
1514
1515 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1516 {
1517 struct pci_dev *pdev = adapter->pdev;
1518 struct e1000_ring *rx_ring = adapter->rx_ring;
1519 int i;
1520
1521 e1000_clean_rx_ring(adapter);
1522
1523 for (i = 0; i < rx_ring->count; i++) {
1524 kfree(rx_ring->buffer_info[i].ps_pages);
1525 }
1526
1527 vfree(rx_ring->buffer_info);
1528 rx_ring->buffer_info = NULL;
1529
1530 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1531 rx_ring->dma);
1532 rx_ring->desc = NULL;
1533 }
1534
1535 /**
1536 * e1000_update_itr - update the dynamic ITR value based on statistics
1537 * @adapter: pointer to adapter
1538 * @itr_setting: current adapter->itr
1539 * @packets: the number of packets during this measurement interval
1540 * @bytes: the number of bytes during this measurement interval
1541 *
1542 * Stores a new ITR value based on packets and byte
1543 * counts during the last interrupt. The advantage of per interrupt
1544 * computation is faster updates and more accurate ITR for the current
1545 * traffic pattern. Constants in this function were computed
1546 * based on theoretical maximum wire speed and thresholds were set based
1547 * on testing data as well as attempting to minimize response time
1548 * while increasing bulk throughput.
1549 * this functionality is controlled by the InterruptThrottleRate module
1550 * parameter (see e1000_param.c)
1551 **/
1552 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1553 u16 itr_setting, int packets,
1554 int bytes)
1555 {
1556 unsigned int retval = itr_setting;
1557
1558 if (packets == 0)
1559 goto update_itr_done;
1560
1561 switch (itr_setting) {
1562 case lowest_latency:
1563 /* handle TSO and jumbo frames */
1564 if (bytes/packets > 8000)
1565 retval = bulk_latency;
1566 else if ((packets < 5) && (bytes > 512)) {
1567 retval = low_latency;
1568 }
1569 break;
1570 case low_latency: /* 50 usec aka 20000 ints/s */
1571 if (bytes > 10000) {
1572 /* this if handles the TSO accounting */
1573 if (bytes/packets > 8000) {
1574 retval = bulk_latency;
1575 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1576 retval = bulk_latency;
1577 } else if ((packets > 35)) {
1578 retval = lowest_latency;
1579 }
1580 } else if (bytes/packets > 2000) {
1581 retval = bulk_latency;
1582 } else if (packets <= 2 && bytes < 512) {
1583 retval = lowest_latency;
1584 }
1585 break;
1586 case bulk_latency: /* 250 usec aka 4000 ints/s */
1587 if (bytes > 25000) {
1588 if (packets > 35) {
1589 retval = low_latency;
1590 }
1591 } else if (bytes < 6000) {
1592 retval = low_latency;
1593 }
1594 break;
1595 }
1596
1597 update_itr_done:
1598 return retval;
1599 }
1600
1601 static void e1000_set_itr(struct e1000_adapter *adapter)
1602 {
1603 struct e1000_hw *hw = &adapter->hw;
1604 u16 current_itr;
1605 u32 new_itr = adapter->itr;
1606
1607 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1608 if (adapter->link_speed != SPEED_1000) {
1609 current_itr = 0;
1610 new_itr = 4000;
1611 goto set_itr_now;
1612 }
1613
1614 adapter->tx_itr = e1000_update_itr(adapter,
1615 adapter->tx_itr,
1616 adapter->total_tx_packets,
1617 adapter->total_tx_bytes);
1618 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1619 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1620 adapter->tx_itr = low_latency;
1621
1622 adapter->rx_itr = e1000_update_itr(adapter,
1623 adapter->rx_itr,
1624 adapter->total_rx_packets,
1625 adapter->total_rx_bytes);
1626 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1627 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1628 adapter->rx_itr = low_latency;
1629
1630 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1631
1632 switch (current_itr) {
1633 /* counts and packets in update_itr are dependent on these numbers */
1634 case lowest_latency:
1635 new_itr = 70000;
1636 break;
1637 case low_latency:
1638 new_itr = 20000; /* aka hwitr = ~200 */
1639 break;
1640 case bulk_latency:
1641 new_itr = 4000;
1642 break;
1643 default:
1644 break;
1645 }
1646
1647 set_itr_now:
1648 if (new_itr != adapter->itr) {
1649 /*
1650 * this attempts to bias the interrupt rate towards Bulk
1651 * by adding intermediate steps when interrupt rate is
1652 * increasing
1653 */
1654 new_itr = new_itr > adapter->itr ?
1655 min(adapter->itr + (new_itr >> 2), new_itr) :
1656 new_itr;
1657 adapter->itr = new_itr;
1658 ew32(ITR, 1000000000 / (new_itr * 256));
1659 }
1660 }
1661
1662 /**
1663 * e1000_clean - NAPI Rx polling callback
1664 * @napi: struct associated with this polling callback
1665 * @budget: amount of packets driver is allowed to process this poll
1666 **/
1667 static int e1000_clean(struct napi_struct *napi, int budget)
1668 {
1669 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1670 struct net_device *poll_dev = adapter->netdev;
1671 int tx_cleaned = 0, work_done = 0;
1672
1673 /* Must NOT use netdev_priv macro here. */
1674 adapter = poll_dev->priv;
1675
1676 /*
1677 * e1000_clean is called per-cpu. This lock protects
1678 * tx_ring from being cleaned by multiple cpus
1679 * simultaneously. A failure obtaining the lock means
1680 * tx_ring is currently being cleaned anyway.
1681 */
1682 if (spin_trylock(&adapter->tx_queue_lock)) {
1683 tx_cleaned = e1000_clean_tx_irq(adapter);
1684 spin_unlock(&adapter->tx_queue_lock);
1685 }
1686
1687 adapter->clean_rx(adapter, &work_done, budget);
1688
1689 if (tx_cleaned)
1690 work_done = budget;
1691
1692 /* If budget not fully consumed, exit the polling mode */
1693 if (work_done < budget) {
1694 if (adapter->itr_setting & 3)
1695 e1000_set_itr(adapter);
1696 netif_rx_complete(poll_dev, napi);
1697 e1000_irq_enable(adapter);
1698 }
1699
1700 return work_done;
1701 }
1702
1703 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1704 {
1705 struct e1000_adapter *adapter = netdev_priv(netdev);
1706 struct e1000_hw *hw = &adapter->hw;
1707 u32 vfta, index;
1708
1709 /* don't update vlan cookie if already programmed */
1710 if ((adapter->hw.mng_cookie.status &
1711 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1712 (vid == adapter->mng_vlan_id))
1713 return;
1714 /* add VID to filter table */
1715 index = (vid >> 5) & 0x7F;
1716 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1717 vfta |= (1 << (vid & 0x1F));
1718 e1000e_write_vfta(hw, index, vfta);
1719 }
1720
1721 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1722 {
1723 struct e1000_adapter *adapter = netdev_priv(netdev);
1724 struct e1000_hw *hw = &adapter->hw;
1725 u32 vfta, index;
1726
1727 if (!test_bit(__E1000_DOWN, &adapter->state))
1728 e1000_irq_disable(adapter);
1729 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1730
1731 if (!test_bit(__E1000_DOWN, &adapter->state))
1732 e1000_irq_enable(adapter);
1733
1734 if ((adapter->hw.mng_cookie.status &
1735 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1736 (vid == adapter->mng_vlan_id)) {
1737 /* release control to f/w */
1738 e1000_release_hw_control(adapter);
1739 return;
1740 }
1741
1742 /* remove VID from filter table */
1743 index = (vid >> 5) & 0x7F;
1744 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1745 vfta &= ~(1 << (vid & 0x1F));
1746 e1000e_write_vfta(hw, index, vfta);
1747 }
1748
1749 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1750 {
1751 struct net_device *netdev = adapter->netdev;
1752 u16 vid = adapter->hw.mng_cookie.vlan_id;
1753 u16 old_vid = adapter->mng_vlan_id;
1754
1755 if (!adapter->vlgrp)
1756 return;
1757
1758 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1759 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1760 if (adapter->hw.mng_cookie.status &
1761 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1762 e1000_vlan_rx_add_vid(netdev, vid);
1763 adapter->mng_vlan_id = vid;
1764 }
1765
1766 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1767 (vid != old_vid) &&
1768 !vlan_group_get_device(adapter->vlgrp, old_vid))
1769 e1000_vlan_rx_kill_vid(netdev, old_vid);
1770 } else {
1771 adapter->mng_vlan_id = vid;
1772 }
1773 }
1774
1775
1776 static void e1000_vlan_rx_register(struct net_device *netdev,
1777 struct vlan_group *grp)
1778 {
1779 struct e1000_adapter *adapter = netdev_priv(netdev);
1780 struct e1000_hw *hw = &adapter->hw;
1781 u32 ctrl, rctl;
1782
1783 if (!test_bit(__E1000_DOWN, &adapter->state))
1784 e1000_irq_disable(adapter);
1785 adapter->vlgrp = grp;
1786
1787 if (grp) {
1788 /* enable VLAN tag insert/strip */
1789 ctrl = er32(CTRL);
1790 ctrl |= E1000_CTRL_VME;
1791 ew32(CTRL, ctrl);
1792
1793 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1794 /* enable VLAN receive filtering */
1795 rctl = er32(RCTL);
1796 rctl |= E1000_RCTL_VFE;
1797 rctl &= ~E1000_RCTL_CFIEN;
1798 ew32(RCTL, rctl);
1799 e1000_update_mng_vlan(adapter);
1800 }
1801 } else {
1802 /* disable VLAN tag insert/strip */
1803 ctrl = er32(CTRL);
1804 ctrl &= ~E1000_CTRL_VME;
1805 ew32(CTRL, ctrl);
1806
1807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1808 /* disable VLAN filtering */
1809 rctl = er32(RCTL);
1810 rctl &= ~E1000_RCTL_VFE;
1811 ew32(RCTL, rctl);
1812 if (adapter->mng_vlan_id !=
1813 (u16)E1000_MNG_VLAN_NONE) {
1814 e1000_vlan_rx_kill_vid(netdev,
1815 adapter->mng_vlan_id);
1816 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1817 }
1818 }
1819 }
1820
1821 if (!test_bit(__E1000_DOWN, &adapter->state))
1822 e1000_irq_enable(adapter);
1823 }
1824
1825 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1826 {
1827 u16 vid;
1828
1829 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1830
1831 if (!adapter->vlgrp)
1832 return;
1833
1834 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1835 if (!vlan_group_get_device(adapter->vlgrp, vid))
1836 continue;
1837 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1838 }
1839 }
1840
1841 static void e1000_init_manageability(struct e1000_adapter *adapter)
1842 {
1843 struct e1000_hw *hw = &adapter->hw;
1844 u32 manc, manc2h;
1845
1846 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1847 return;
1848
1849 manc = er32(MANC);
1850
1851 /*
1852 * enable receiving management packets to the host. this will probably
1853 * generate destination unreachable messages from the host OS, but
1854 * the packets will be handled on SMBUS
1855 */
1856 manc |= E1000_MANC_EN_MNG2HOST;
1857 manc2h = er32(MANC2H);
1858 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1859 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1860 manc2h |= E1000_MNG2HOST_PORT_623;
1861 manc2h |= E1000_MNG2HOST_PORT_664;
1862 ew32(MANC2H, manc2h);
1863 ew32(MANC, manc);
1864 }
1865
1866 /**
1867 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1868 * @adapter: board private structure
1869 *
1870 * Configure the Tx unit of the MAC after a reset.
1871 **/
1872 static void e1000_configure_tx(struct e1000_adapter *adapter)
1873 {
1874 struct e1000_hw *hw = &adapter->hw;
1875 struct e1000_ring *tx_ring = adapter->tx_ring;
1876 u64 tdba;
1877 u32 tdlen, tctl, tipg, tarc;
1878 u32 ipgr1, ipgr2;
1879
1880 /* Setup the HW Tx Head and Tail descriptor pointers */
1881 tdba = tx_ring->dma;
1882 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1883 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1884 ew32(TDBAH, (tdba >> 32));
1885 ew32(TDLEN, tdlen);
1886 ew32(TDH, 0);
1887 ew32(TDT, 0);
1888 tx_ring->head = E1000_TDH;
1889 tx_ring->tail = E1000_TDT;
1890
1891 /* Set the default values for the Tx Inter Packet Gap timer */
1892 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1893 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1894 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1895
1896 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1897 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1898
1899 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1900 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1901 ew32(TIPG, tipg);
1902
1903 /* Set the Tx Interrupt Delay register */
1904 ew32(TIDV, adapter->tx_int_delay);
1905 /* Tx irq moderation */
1906 ew32(TADV, adapter->tx_abs_int_delay);
1907
1908 /* Program the Transmit Control Register */
1909 tctl = er32(TCTL);
1910 tctl &= ~E1000_TCTL_CT;
1911 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1912 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1913
1914 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1915 tarc = er32(TARC(0));
1916 /*
1917 * set the speed mode bit, we'll clear it if we're not at
1918 * gigabit link later
1919 */
1920 #define SPEED_MODE_BIT (1 << 21)
1921 tarc |= SPEED_MODE_BIT;
1922 ew32(TARC(0), tarc);
1923 }
1924
1925 /* errata: program both queues to unweighted RR */
1926 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1927 tarc = er32(TARC(0));
1928 tarc |= 1;
1929 ew32(TARC(0), tarc);
1930 tarc = er32(TARC(1));
1931 tarc |= 1;
1932 ew32(TARC(1), tarc);
1933 }
1934
1935 e1000e_config_collision_dist(hw);
1936
1937 /* Setup Transmit Descriptor Settings for eop descriptor */
1938 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1939
1940 /* only set IDE if we are delaying interrupts using the timers */
1941 if (adapter->tx_int_delay)
1942 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1943
1944 /* enable Report Status bit */
1945 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1946
1947 ew32(TCTL, tctl);
1948
1949 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1950 }
1951
1952 /**
1953 * e1000_setup_rctl - configure the receive control registers
1954 * @adapter: Board private structure
1955 **/
1956 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1957 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1958 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1959 {
1960 struct e1000_hw *hw = &adapter->hw;
1961 u32 rctl, rfctl;
1962 u32 psrctl = 0;
1963 u32 pages = 0;
1964
1965 /* Program MC offset vector base */
1966 rctl = er32(RCTL);
1967 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1968 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1969 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1970 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1971
1972 /* Do not Store bad packets */
1973 rctl &= ~E1000_RCTL_SBP;
1974
1975 /* Enable Long Packet receive */
1976 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1977 rctl &= ~E1000_RCTL_LPE;
1978 else
1979 rctl |= E1000_RCTL_LPE;
1980
1981 /* Enable hardware CRC frame stripping */
1982 rctl |= E1000_RCTL_SECRC;
1983
1984 /* Setup buffer sizes */
1985 rctl &= ~E1000_RCTL_SZ_4096;
1986 rctl |= E1000_RCTL_BSEX;
1987 switch (adapter->rx_buffer_len) {
1988 case 256:
1989 rctl |= E1000_RCTL_SZ_256;
1990 rctl &= ~E1000_RCTL_BSEX;
1991 break;
1992 case 512:
1993 rctl |= E1000_RCTL_SZ_512;
1994 rctl &= ~E1000_RCTL_BSEX;
1995 break;
1996 case 1024:
1997 rctl |= E1000_RCTL_SZ_1024;
1998 rctl &= ~E1000_RCTL_BSEX;
1999 break;
2000 case 2048:
2001 default:
2002 rctl |= E1000_RCTL_SZ_2048;
2003 rctl &= ~E1000_RCTL_BSEX;
2004 break;
2005 case 4096:
2006 rctl |= E1000_RCTL_SZ_4096;
2007 break;
2008 case 8192:
2009 rctl |= E1000_RCTL_SZ_8192;
2010 break;
2011 case 16384:
2012 rctl |= E1000_RCTL_SZ_16384;
2013 break;
2014 }
2015
2016 /*
2017 * 82571 and greater support packet-split where the protocol
2018 * header is placed in skb->data and the packet data is
2019 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2020 * In the case of a non-split, skb->data is linearly filled,
2021 * followed by the page buffers. Therefore, skb->data is
2022 * sized to hold the largest protocol header.
2023 *
2024 * allocations using alloc_page take too long for regular MTU
2025 * so only enable packet split for jumbo frames
2026 *
2027 * Using pages when the page size is greater than 16k wastes
2028 * a lot of memory, since we allocate 3 pages at all times
2029 * per packet.
2030 */
2031 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2032 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2033 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2034 adapter->rx_ps_pages = pages;
2035 else
2036 adapter->rx_ps_pages = 0;
2037
2038 if (adapter->rx_ps_pages) {
2039 /* Configure extra packet-split registers */
2040 rfctl = er32(RFCTL);
2041 rfctl |= E1000_RFCTL_EXTEN;
2042 /*
2043 * disable packet split support for IPv6 extension headers,
2044 * because some malformed IPv6 headers can hang the Rx
2045 */
2046 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2047 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2048
2049 ew32(RFCTL, rfctl);
2050
2051 /* Enable Packet split descriptors */
2052 rctl |= E1000_RCTL_DTYP_PS;
2053
2054 psrctl |= adapter->rx_ps_bsize0 >>
2055 E1000_PSRCTL_BSIZE0_SHIFT;
2056
2057 switch (adapter->rx_ps_pages) {
2058 case 3:
2059 psrctl |= PAGE_SIZE <<
2060 E1000_PSRCTL_BSIZE3_SHIFT;
2061 case 2:
2062 psrctl |= PAGE_SIZE <<
2063 E1000_PSRCTL_BSIZE2_SHIFT;
2064 case 1:
2065 psrctl |= PAGE_SIZE >>
2066 E1000_PSRCTL_BSIZE1_SHIFT;
2067 break;
2068 }
2069
2070 ew32(PSRCTL, psrctl);
2071 }
2072
2073 ew32(RCTL, rctl);
2074 /* just started the receive unit, no need to restart */
2075 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2076 }
2077
2078 /**
2079 * e1000_configure_rx - Configure Receive Unit after Reset
2080 * @adapter: board private structure
2081 *
2082 * Configure the Rx unit of the MAC after a reset.
2083 **/
2084 static void e1000_configure_rx(struct e1000_adapter *adapter)
2085 {
2086 struct e1000_hw *hw = &adapter->hw;
2087 struct e1000_ring *rx_ring = adapter->rx_ring;
2088 u64 rdba;
2089 u32 rdlen, rctl, rxcsum, ctrl_ext;
2090
2091 if (adapter->rx_ps_pages) {
2092 /* this is a 32 byte descriptor */
2093 rdlen = rx_ring->count *
2094 sizeof(union e1000_rx_desc_packet_split);
2095 adapter->clean_rx = e1000_clean_rx_irq_ps;
2096 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2097 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2098 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2099 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2100 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2101 } else {
2102 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2103 adapter->clean_rx = e1000_clean_rx_irq;
2104 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2105 }
2106
2107 /* disable receives while setting up the descriptors */
2108 rctl = er32(RCTL);
2109 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2110 e1e_flush();
2111 msleep(10);
2112
2113 /* set the Receive Delay Timer Register */
2114 ew32(RDTR, adapter->rx_int_delay);
2115
2116 /* irq moderation */
2117 ew32(RADV, adapter->rx_abs_int_delay);
2118 if (adapter->itr_setting != 0)
2119 ew32(ITR, 1000000000 / (adapter->itr * 256));
2120
2121 ctrl_ext = er32(CTRL_EXT);
2122 /* Reset delay timers after every interrupt */
2123 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2124 /* Auto-Mask interrupts upon ICR access */
2125 ctrl_ext |= E1000_CTRL_EXT_IAME;
2126 ew32(IAM, 0xffffffff);
2127 ew32(CTRL_EXT, ctrl_ext);
2128 e1e_flush();
2129
2130 /*
2131 * Setup the HW Rx Head and Tail Descriptor Pointers and
2132 * the Base and Length of the Rx Descriptor Ring
2133 */
2134 rdba = rx_ring->dma;
2135 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2136 ew32(RDBAH, (rdba >> 32));
2137 ew32(RDLEN, rdlen);
2138 ew32(RDH, 0);
2139 ew32(RDT, 0);
2140 rx_ring->head = E1000_RDH;
2141 rx_ring->tail = E1000_RDT;
2142
2143 /* Enable Receive Checksum Offload for TCP and UDP */
2144 rxcsum = er32(RXCSUM);
2145 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2146 rxcsum |= E1000_RXCSUM_TUOFL;
2147
2148 /*
2149 * IPv4 payload checksum for UDP fragments must be
2150 * used in conjunction with packet-split.
2151 */
2152 if (adapter->rx_ps_pages)
2153 rxcsum |= E1000_RXCSUM_IPPCSE;
2154 } else {
2155 rxcsum &= ~E1000_RXCSUM_TUOFL;
2156 /* no need to clear IPPCSE as it defaults to 0 */
2157 }
2158 ew32(RXCSUM, rxcsum);
2159
2160 /*
2161 * Enable early receives on supported devices, only takes effect when
2162 * packet size is equal or larger than the specified value (in 8 byte
2163 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2164 */
2165 if ((adapter->flags & FLAG_HAS_ERT) &&
2166 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2167 u32 rxdctl = er32(RXDCTL(0));
2168 ew32(RXDCTL(0), rxdctl | 0x3);
2169 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2170 /*
2171 * With jumbo frames and early-receive enabled, excessive
2172 * C4->C2 latencies result in dropped transactions.
2173 */
2174 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2175 e1000e_driver_name, 55);
2176 } else {
2177 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2178 e1000e_driver_name,
2179 PM_QOS_DEFAULT_VALUE);
2180 }
2181
2182 /* Enable Receives */
2183 ew32(RCTL, rctl);
2184 }
2185
2186 /**
2187 * e1000_update_mc_addr_list - Update Multicast addresses
2188 * @hw: pointer to the HW structure
2189 * @mc_addr_list: array of multicast addresses to program
2190 * @mc_addr_count: number of multicast addresses to program
2191 * @rar_used_count: the first RAR register free to program
2192 * @rar_count: total number of supported Receive Address Registers
2193 *
2194 * Updates the Receive Address Registers and Multicast Table Array.
2195 * The caller must have a packed mc_addr_list of multicast addresses.
2196 * The parameter rar_count will usually be hw->mac.rar_entry_count
2197 * unless there are workarounds that change this. Currently no func pointer
2198 * exists and all implementations are handled in the generic version of this
2199 * function.
2200 **/
2201 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2202 u32 mc_addr_count, u32 rar_used_count,
2203 u32 rar_count)
2204 {
2205 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2206 rar_used_count, rar_count);
2207 }
2208
2209 /**
2210 * e1000_set_multi - Multicast and Promiscuous mode set
2211 * @netdev: network interface device structure
2212 *
2213 * The set_multi entry point is called whenever the multicast address
2214 * list or the network interface flags are updated. This routine is
2215 * responsible for configuring the hardware for proper multicast,
2216 * promiscuous mode, and all-multi behavior.
2217 **/
2218 static void e1000_set_multi(struct net_device *netdev)
2219 {
2220 struct e1000_adapter *adapter = netdev_priv(netdev);
2221 struct e1000_hw *hw = &adapter->hw;
2222 struct e1000_mac_info *mac = &hw->mac;
2223 struct dev_mc_list *mc_ptr;
2224 u8 *mta_list;
2225 u32 rctl;
2226 int i;
2227
2228 /* Check for Promiscuous and All Multicast modes */
2229
2230 rctl = er32(RCTL);
2231
2232 if (netdev->flags & IFF_PROMISC) {
2233 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2234 } else if (netdev->flags & IFF_ALLMULTI) {
2235 rctl |= E1000_RCTL_MPE;
2236 rctl &= ~E1000_RCTL_UPE;
2237 } else {
2238 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2239 }
2240
2241 ew32(RCTL, rctl);
2242
2243 if (netdev->mc_count) {
2244 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2245 if (!mta_list)
2246 return;
2247
2248 /* prepare a packed array of only addresses. */
2249 mc_ptr = netdev->mc_list;
2250
2251 for (i = 0; i < netdev->mc_count; i++) {
2252 if (!mc_ptr)
2253 break;
2254 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2255 ETH_ALEN);
2256 mc_ptr = mc_ptr->next;
2257 }
2258
2259 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2260 mac->rar_entry_count);
2261 kfree(mta_list);
2262 } else {
2263 /*
2264 * if we're called from probe, we might not have
2265 * anything to do here, so clear out the list
2266 */
2267 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2268 }
2269 }
2270
2271 /**
2272 * e1000_configure - configure the hardware for Rx and Tx
2273 * @adapter: private board structure
2274 **/
2275 static void e1000_configure(struct e1000_adapter *adapter)
2276 {
2277 e1000_set_multi(adapter->netdev);
2278
2279 e1000_restore_vlan(adapter);
2280 e1000_init_manageability(adapter);
2281
2282 e1000_configure_tx(adapter);
2283 e1000_setup_rctl(adapter);
2284 e1000_configure_rx(adapter);
2285 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2286 }
2287
2288 /**
2289 * e1000e_power_up_phy - restore link in case the phy was powered down
2290 * @adapter: address of board private structure
2291 *
2292 * The phy may be powered down to save power and turn off link when the
2293 * driver is unloaded and wake on lan is not enabled (among others)
2294 * *** this routine MUST be followed by a call to e1000e_reset ***
2295 **/
2296 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2297 {
2298 u16 mii_reg = 0;
2299
2300 /* Just clear the power down bit to wake the phy back up */
2301 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2302 /*
2303 * According to the manual, the phy will retain its
2304 * settings across a power-down/up cycle
2305 */
2306 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2307 mii_reg &= ~MII_CR_POWER_DOWN;
2308 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2309 }
2310
2311 adapter->hw.mac.ops.setup_link(&adapter->hw);
2312 }
2313
2314 /**
2315 * e1000_power_down_phy - Power down the PHY
2316 *
2317 * Power down the PHY so no link is implied when interface is down
2318 * The PHY cannot be powered down is management or WoL is active
2319 */
2320 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2321 {
2322 struct e1000_hw *hw = &adapter->hw;
2323 u16 mii_reg;
2324
2325 /* WoL is enabled */
2326 if (adapter->wol)
2327 return;
2328
2329 /* non-copper PHY? */
2330 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2331 return;
2332
2333 /* reset is blocked because of a SoL/IDER session */
2334 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2335 return;
2336
2337 /* manageability (AMT) is enabled */
2338 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2339 return;
2340
2341 /* power down the PHY */
2342 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2343 mii_reg |= MII_CR_POWER_DOWN;
2344 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2345 mdelay(1);
2346 }
2347
2348 /**
2349 * e1000e_reset - bring the hardware into a known good state
2350 *
2351 * This function boots the hardware and enables some settings that
2352 * require a configuration cycle of the hardware - those cannot be
2353 * set/changed during runtime. After reset the device needs to be
2354 * properly configured for Rx, Tx etc.
2355 */
2356 void e1000e_reset(struct e1000_adapter *adapter)
2357 {
2358 struct e1000_mac_info *mac = &adapter->hw.mac;
2359 struct e1000_fc_info *fc = &adapter->hw.fc;
2360 struct e1000_hw *hw = &adapter->hw;
2361 u32 tx_space, min_tx_space, min_rx_space;
2362 u32 pba = adapter->pba;
2363 u16 hwm;
2364
2365 /* reset Packet Buffer Allocation to default */
2366 ew32(PBA, pba);
2367
2368 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2369 /*
2370 * To maintain wire speed transmits, the Tx FIFO should be
2371 * large enough to accommodate two full transmit packets,
2372 * rounded up to the next 1KB and expressed in KB. Likewise,
2373 * the Rx FIFO should be large enough to accommodate at least
2374 * one full receive packet and is similarly rounded up and
2375 * expressed in KB.
2376 */
2377 pba = er32(PBA);
2378 /* upper 16 bits has Tx packet buffer allocation size in KB */
2379 tx_space = pba >> 16;
2380 /* lower 16 bits has Rx packet buffer allocation size in KB */
2381 pba &= 0xffff;
2382 /*
2383 * the Tx fifo also stores 16 bytes of information about the tx
2384 * but don't include ethernet FCS because hardware appends it
2385 */
2386 min_tx_space = (adapter->max_frame_size +
2387 sizeof(struct e1000_tx_desc) -
2388 ETH_FCS_LEN) * 2;
2389 min_tx_space = ALIGN(min_tx_space, 1024);
2390 min_tx_space >>= 10;
2391 /* software strips receive CRC, so leave room for it */
2392 min_rx_space = adapter->max_frame_size;
2393 min_rx_space = ALIGN(min_rx_space, 1024);
2394 min_rx_space >>= 10;
2395
2396 /*
2397 * If current Tx allocation is less than the min Tx FIFO size,
2398 * and the min Tx FIFO size is less than the current Rx FIFO
2399 * allocation, take space away from current Rx allocation
2400 */
2401 if ((tx_space < min_tx_space) &&
2402 ((min_tx_space - tx_space) < pba)) {
2403 pba -= min_tx_space - tx_space;
2404
2405 /*
2406 * if short on Rx space, Rx wins and must trump tx
2407 * adjustment or use Early Receive if available
2408 */
2409 if ((pba < min_rx_space) &&
2410 (!(adapter->flags & FLAG_HAS_ERT)))
2411 /* ERT enabled in e1000_configure_rx */
2412 pba = min_rx_space;
2413 }
2414
2415 ew32(PBA, pba);
2416 }
2417
2418
2419 /*
2420 * flow control settings
2421 *
2422 * The high water mark must be low enough to fit one full frame
2423 * (or the size used for early receive) above it in the Rx FIFO.
2424 * Set it to the lower of:
2425 * - 90% of the Rx FIFO size, and
2426 * - the full Rx FIFO size minus the early receive size (for parts
2427 * with ERT support assuming ERT set to E1000_ERT_2048), or
2428 * - the full Rx FIFO size minus one full frame
2429 */
2430 if (adapter->flags & FLAG_HAS_ERT)
2431 hwm = min(((pba << 10) * 9 / 10),
2432 ((pba << 10) - (E1000_ERT_2048 << 3)));
2433 else
2434 hwm = min(((pba << 10) * 9 / 10),
2435 ((pba << 10) - adapter->max_frame_size));
2436
2437 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2438 fc->low_water = fc->high_water - 8;
2439
2440 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2441 fc->pause_time = 0xFFFF;
2442 else
2443 fc->pause_time = E1000_FC_PAUSE_TIME;
2444 fc->send_xon = 1;
2445 fc->type = fc->original_type;
2446
2447 /* Allow time for pending master requests to run */
2448 mac->ops.reset_hw(hw);
2449
2450 /*
2451 * For parts with AMT enabled, let the firmware know
2452 * that the network interface is in control
2453 */
2454 if ((adapter->flags & FLAG_HAS_AMT) && e1000e_check_mng_mode(hw))
2455 e1000_get_hw_control(adapter);
2456
2457 ew32(WUC, 0);
2458
2459 if (mac->ops.init_hw(hw))
2460 ndev_err(adapter->netdev, "Hardware Error\n");
2461
2462 e1000_update_mng_vlan(adapter);
2463
2464 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2465 ew32(VET, ETH_P_8021Q);
2466
2467 e1000e_reset_adaptive(hw);
2468 e1000_get_phy_info(hw);
2469
2470 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2471 u16 phy_data = 0;
2472 /*
2473 * speed up time to link by disabling smart power down, ignore
2474 * the return value of this function because there is nothing
2475 * different we would do if it failed
2476 */
2477 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2478 phy_data &= ~IGP02E1000_PM_SPD;
2479 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2480 }
2481 }
2482
2483 int e1000e_up(struct e1000_adapter *adapter)
2484 {
2485 struct e1000_hw *hw = &adapter->hw;
2486
2487 /* hardware has been reset, we need to reload some things */
2488 e1000_configure(adapter);
2489
2490 clear_bit(__E1000_DOWN, &adapter->state);
2491
2492 napi_enable(&adapter->napi);
2493 e1000_irq_enable(adapter);
2494
2495 /* fire a link change interrupt to start the watchdog */
2496 ew32(ICS, E1000_ICS_LSC);
2497 return 0;
2498 }
2499
2500 void e1000e_down(struct e1000_adapter *adapter)
2501 {
2502 struct net_device *netdev = adapter->netdev;
2503 struct e1000_hw *hw = &adapter->hw;
2504 u32 tctl, rctl;
2505
2506 /*
2507 * signal that we're down so the interrupt handler does not
2508 * reschedule our watchdog timer
2509 */
2510 set_bit(__E1000_DOWN, &adapter->state);
2511
2512 /* disable receives in the hardware */
2513 rctl = er32(RCTL);
2514 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2515 /* flush and sleep below */
2516
2517 netif_stop_queue(netdev);
2518
2519 /* disable transmits in the hardware */
2520 tctl = er32(TCTL);
2521 tctl &= ~E1000_TCTL_EN;
2522 ew32(TCTL, tctl);
2523 /* flush both disables and wait for them to finish */
2524 e1e_flush();
2525 msleep(10);
2526
2527 napi_disable(&adapter->napi);
2528 e1000_irq_disable(adapter);
2529
2530 del_timer_sync(&adapter->watchdog_timer);
2531 del_timer_sync(&adapter->phy_info_timer);
2532
2533 netdev->tx_queue_len = adapter->tx_queue_len;
2534 netif_carrier_off(netdev);
2535 adapter->link_speed = 0;
2536 adapter->link_duplex = 0;
2537
2538 if (!pci_channel_offline(adapter->pdev))
2539 e1000e_reset(adapter);
2540 e1000_clean_tx_ring(adapter);
2541 e1000_clean_rx_ring(adapter);
2542
2543 /*
2544 * TODO: for power management, we could drop the link and
2545 * pci_disable_device here.
2546 */
2547 }
2548
2549 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2550 {
2551 might_sleep();
2552 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2553 msleep(1);
2554 e1000e_down(adapter);
2555 e1000e_up(adapter);
2556 clear_bit(__E1000_RESETTING, &adapter->state);
2557 }
2558
2559 /**
2560 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2561 * @adapter: board private structure to initialize
2562 *
2563 * e1000_sw_init initializes the Adapter private data structure.
2564 * Fields are initialized based on PCI device information and
2565 * OS network device settings (MTU size).
2566 **/
2567 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2568 {
2569 struct net_device *netdev = adapter->netdev;
2570
2571 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2572 adapter->rx_ps_bsize0 = 128;
2573 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2574 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2575
2576 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2577 if (!adapter->tx_ring)
2578 goto err;
2579
2580 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2581 if (!adapter->rx_ring)
2582 goto err;
2583
2584 spin_lock_init(&adapter->tx_queue_lock);
2585
2586 /* Explicitly disable IRQ since the NIC can be in any state. */
2587 e1000_irq_disable(adapter);
2588
2589 spin_lock_init(&adapter->stats_lock);
2590
2591 set_bit(__E1000_DOWN, &adapter->state);
2592 return 0;
2593
2594 err:
2595 ndev_err(netdev, "Unable to allocate memory for queues\n");
2596 kfree(adapter->rx_ring);
2597 kfree(adapter->tx_ring);
2598 return -ENOMEM;
2599 }
2600
2601 /**
2602 * e1000_open - Called when a network interface is made active
2603 * @netdev: network interface device structure
2604 *
2605 * Returns 0 on success, negative value on failure
2606 *
2607 * The open entry point is called when a network interface is made
2608 * active by the system (IFF_UP). At this point all resources needed
2609 * for transmit and receive operations are allocated, the interrupt
2610 * handler is registered with the OS, the watchdog timer is started,
2611 * and the stack is notified that the interface is ready.
2612 **/
2613 static int e1000_open(struct net_device *netdev)
2614 {
2615 struct e1000_adapter *adapter = netdev_priv(netdev);
2616 struct e1000_hw *hw = &adapter->hw;
2617 int err;
2618
2619 /* disallow open during test */
2620 if (test_bit(__E1000_TESTING, &adapter->state))
2621 return -EBUSY;
2622
2623 /* allocate transmit descriptors */
2624 err = e1000e_setup_tx_resources(adapter);
2625 if (err)
2626 goto err_setup_tx;
2627
2628 /* allocate receive descriptors */
2629 err = e1000e_setup_rx_resources(adapter);
2630 if (err)
2631 goto err_setup_rx;
2632
2633 e1000e_power_up_phy(adapter);
2634
2635 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2636 if ((adapter->hw.mng_cookie.status &
2637 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2638 e1000_update_mng_vlan(adapter);
2639
2640 /*
2641 * If AMT is enabled, let the firmware know that the network
2642 * interface is now open
2643 */
2644 if ((adapter->flags & FLAG_HAS_AMT) &&
2645 e1000e_check_mng_mode(&adapter->hw))
2646 e1000_get_hw_control(adapter);
2647
2648 /*
2649 * before we allocate an interrupt, we must be ready to handle it.
2650 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2651 * as soon as we call pci_request_irq, so we have to setup our
2652 * clean_rx handler before we do so.
2653 */
2654 e1000_configure(adapter);
2655
2656 err = e1000_request_irq(adapter);
2657 if (err)
2658 goto err_req_irq;
2659
2660 /* From here on the code is the same as e1000e_up() */
2661 clear_bit(__E1000_DOWN, &adapter->state);
2662
2663 napi_enable(&adapter->napi);
2664
2665 e1000_irq_enable(adapter);
2666
2667 /* fire a link status change interrupt to start the watchdog */
2668 ew32(ICS, E1000_ICS_LSC);
2669
2670 return 0;
2671
2672 err_req_irq:
2673 e1000_release_hw_control(adapter);
2674 e1000_power_down_phy(adapter);
2675 e1000e_free_rx_resources(adapter);
2676 err_setup_rx:
2677 e1000e_free_tx_resources(adapter);
2678 err_setup_tx:
2679 e1000e_reset(adapter);
2680
2681 return err;
2682 }
2683
2684 /**
2685 * e1000_close - Disables a network interface
2686 * @netdev: network interface device structure
2687 *
2688 * Returns 0, this is not allowed to fail
2689 *
2690 * The close entry point is called when an interface is de-activated
2691 * by the OS. The hardware is still under the drivers control, but
2692 * needs to be disabled. A global MAC reset is issued to stop the
2693 * hardware, and all transmit and receive resources are freed.
2694 **/
2695 static int e1000_close(struct net_device *netdev)
2696 {
2697 struct e1000_adapter *adapter = netdev_priv(netdev);
2698
2699 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2700 e1000e_down(adapter);
2701 e1000_power_down_phy(adapter);
2702 e1000_free_irq(adapter);
2703
2704 e1000e_free_tx_resources(adapter);
2705 e1000e_free_rx_resources(adapter);
2706
2707 /*
2708 * kill manageability vlan ID if supported, but not if a vlan with
2709 * the same ID is registered on the host OS (let 8021q kill it)
2710 */
2711 if ((adapter->hw.mng_cookie.status &
2712 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2713 !(adapter->vlgrp &&
2714 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2715 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2716
2717 /*
2718 * If AMT is enabled, let the firmware know that the network
2719 * interface is now closed
2720 */
2721 if ((adapter->flags & FLAG_HAS_AMT) &&
2722 e1000e_check_mng_mode(&adapter->hw))
2723 e1000_release_hw_control(adapter);
2724
2725 return 0;
2726 }
2727 /**
2728 * e1000_set_mac - Change the Ethernet Address of the NIC
2729 * @netdev: network interface device structure
2730 * @p: pointer to an address structure
2731 *
2732 * Returns 0 on success, negative on failure
2733 **/
2734 static int e1000_set_mac(struct net_device *netdev, void *p)
2735 {
2736 struct e1000_adapter *adapter = netdev_priv(netdev);
2737 struct sockaddr *addr = p;
2738
2739 if (!is_valid_ether_addr(addr->sa_data))
2740 return -EADDRNOTAVAIL;
2741
2742 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2743 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2744
2745 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2746
2747 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2748 /* activate the work around */
2749 e1000e_set_laa_state_82571(&adapter->hw, 1);
2750
2751 /*
2752 * Hold a copy of the LAA in RAR[14] This is done so that
2753 * between the time RAR[0] gets clobbered and the time it
2754 * gets fixed (in e1000_watchdog), the actual LAA is in one
2755 * of the RARs and no incoming packets directed to this port
2756 * are dropped. Eventually the LAA will be in RAR[0] and
2757 * RAR[14]
2758 */
2759 e1000e_rar_set(&adapter->hw,
2760 adapter->hw.mac.addr,
2761 adapter->hw.mac.rar_entry_count - 1);
2762 }
2763
2764 return 0;
2765 }
2766
2767 /*
2768 * Need to wait a few seconds after link up to get diagnostic information from
2769 * the phy
2770 */
2771 static void e1000_update_phy_info(unsigned long data)
2772 {
2773 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2774 e1000_get_phy_info(&adapter->hw);
2775 }
2776
2777 /**
2778 * e1000e_update_stats - Update the board statistics counters
2779 * @adapter: board private structure
2780 **/
2781 void e1000e_update_stats(struct e1000_adapter *adapter)
2782 {
2783 struct e1000_hw *hw = &adapter->hw;
2784 struct pci_dev *pdev = adapter->pdev;
2785 unsigned long irq_flags;
2786 u16 phy_tmp;
2787
2788 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2789
2790 /*
2791 * Prevent stats update while adapter is being reset, or if the pci
2792 * connection is down.
2793 */
2794 if (adapter->link_speed == 0)
2795 return;
2796 if (pci_channel_offline(pdev))
2797 return;
2798
2799 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2800
2801 /*
2802 * these counters are modified from e1000_adjust_tbi_stats,
2803 * called from the interrupt context, so they must only
2804 * be written while holding adapter->stats_lock
2805 */
2806
2807 adapter->stats.crcerrs += er32(CRCERRS);
2808 adapter->stats.gprc += er32(GPRC);
2809 adapter->stats.gorc += er32(GORCL);
2810 er32(GORCH); /* Clear gorc */
2811 adapter->stats.bprc += er32(BPRC);
2812 adapter->stats.mprc += er32(MPRC);
2813 adapter->stats.roc += er32(ROC);
2814
2815 adapter->stats.mpc += er32(MPC);
2816 adapter->stats.scc += er32(SCC);
2817 adapter->stats.ecol += er32(ECOL);
2818 adapter->stats.mcc += er32(MCC);
2819 adapter->stats.latecol += er32(LATECOL);
2820 adapter->stats.dc += er32(DC);
2821 adapter->stats.xonrxc += er32(XONRXC);
2822 adapter->stats.xontxc += er32(XONTXC);
2823 adapter->stats.xoffrxc += er32(XOFFRXC);
2824 adapter->stats.xofftxc += er32(XOFFTXC);
2825 adapter->stats.gptc += er32(GPTC);
2826 adapter->stats.gotc += er32(GOTCL);
2827 er32(GOTCH); /* Clear gotc */
2828 adapter->stats.rnbc += er32(RNBC);
2829 adapter->stats.ruc += er32(RUC);
2830
2831 adapter->stats.mptc += er32(MPTC);
2832 adapter->stats.bptc += er32(BPTC);
2833
2834 /* used for adaptive IFS */
2835
2836 hw->mac.tx_packet_delta = er32(TPT);
2837 adapter->stats.tpt += hw->mac.tx_packet_delta;
2838 hw->mac.collision_delta = er32(COLC);
2839 adapter->stats.colc += hw->mac.collision_delta;
2840
2841 adapter->stats.algnerrc += er32(ALGNERRC);
2842 adapter->stats.rxerrc += er32(RXERRC);
2843 adapter->stats.tncrs += er32(TNCRS);
2844 adapter->stats.cexterr += er32(CEXTERR);
2845 adapter->stats.tsctc += er32(TSCTC);
2846 adapter->stats.tsctfc += er32(TSCTFC);
2847
2848 /* Fill out the OS statistics structure */
2849 adapter->net_stats.multicast = adapter->stats.mprc;
2850 adapter->net_stats.collisions = adapter->stats.colc;
2851
2852 /* Rx Errors */
2853
2854 /*
2855 * RLEC on some newer hardware can be incorrect so build
2856 * our own version based on RUC and ROC
2857 */
2858 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2859 adapter->stats.crcerrs + adapter->stats.algnerrc +
2860 adapter->stats.ruc + adapter->stats.roc +
2861 adapter->stats.cexterr;
2862 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2863 adapter->stats.roc;
2864 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2865 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2866 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2867
2868 /* Tx Errors */
2869 adapter->net_stats.tx_errors = adapter->stats.ecol +
2870 adapter->stats.latecol;
2871 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2872 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2873 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2874
2875 /* Tx Dropped needs to be maintained elsewhere */
2876
2877 /* Phy Stats */
2878 if (hw->phy.media_type == e1000_media_type_copper) {
2879 if ((adapter->link_speed == SPEED_1000) &&
2880 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2881 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2882 adapter->phy_stats.idle_errors += phy_tmp;
2883 }
2884 }
2885
2886 /* Management Stats */
2887 adapter->stats.mgptc += er32(MGTPTC);
2888 adapter->stats.mgprc += er32(MGTPRC);
2889 adapter->stats.mgpdc += er32(MGTPDC);
2890
2891 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2892 }
2893
2894 /**
2895 * e1000_phy_read_status - Update the PHY register status snapshot
2896 * @adapter: board private structure
2897 **/
2898 static void e1000_phy_read_status(struct e1000_adapter *adapter)
2899 {
2900 struct e1000_hw *hw = &adapter->hw;
2901 struct e1000_phy_regs *phy = &adapter->phy_regs;
2902 int ret_val;
2903 unsigned long irq_flags;
2904
2905
2906 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2907
2908 if ((er32(STATUS) & E1000_STATUS_LU) &&
2909 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
2910 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
2911 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
2912 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
2913 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
2914 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
2915 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
2916 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
2917 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
2918 if (ret_val)
2919 ndev_warn(adapter->netdev,
2920 "Error reading PHY register\n");
2921 } else {
2922 /*
2923 * Do not read PHY registers if link is not up
2924 * Set values to typical power-on defaults
2925 */
2926 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
2927 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
2928 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
2929 BMSR_ERCAP);
2930 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
2931 ADVERTISE_ALL | ADVERTISE_CSMA);
2932 phy->lpa = 0;
2933 phy->expansion = EXPANSION_ENABLENPAGE;
2934 phy->ctrl1000 = ADVERTISE_1000FULL;
2935 phy->stat1000 = 0;
2936 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
2937 }
2938
2939 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2940 }
2941
2942 static void e1000_print_link_info(struct e1000_adapter *adapter)
2943 {
2944 struct e1000_hw *hw = &adapter->hw;
2945 struct net_device *netdev = adapter->netdev;
2946 u32 ctrl = er32(CTRL);
2947
2948 ndev_info(netdev,
2949 "Link is Up %d Mbps %s, Flow Control: %s\n",
2950 adapter->link_speed,
2951 (adapter->link_duplex == FULL_DUPLEX) ?
2952 "Full Duplex" : "Half Duplex",
2953 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2954 "RX/TX" :
2955 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2956 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2957 }
2958
2959 static bool e1000_has_link(struct e1000_adapter *adapter)
2960 {
2961 struct e1000_hw *hw = &adapter->hw;
2962 bool link_active = 0;
2963 s32 ret_val = 0;
2964
2965 /*
2966 * get_link_status is set on LSC (link status) interrupt or
2967 * Rx sequence error interrupt. get_link_status will stay
2968 * false until the check_for_link establishes link
2969 * for copper adapters ONLY
2970 */
2971 switch (hw->phy.media_type) {
2972 case e1000_media_type_copper:
2973 if (hw->mac.get_link_status) {
2974 ret_val = hw->mac.ops.check_for_link(hw);
2975 link_active = !hw->mac.get_link_status;
2976 } else {
2977 link_active = 1;
2978 }
2979 break;
2980 case e1000_media_type_fiber:
2981 ret_val = hw->mac.ops.check_for_link(hw);
2982 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2983 break;
2984 case e1000_media_type_internal_serdes:
2985 ret_val = hw->mac.ops.check_for_link(hw);
2986 link_active = adapter->hw.mac.serdes_has_link;
2987 break;
2988 default:
2989 case e1000_media_type_unknown:
2990 break;
2991 }
2992
2993 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
2994 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2995 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2996 ndev_info(adapter->netdev,
2997 "Gigabit has been disabled, downgrading speed\n");
2998 }
2999
3000 return link_active;
3001 }
3002
3003 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3004 {
3005 /* make sure the receive unit is started */
3006 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3007 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3008 struct e1000_hw *hw = &adapter->hw;
3009 u32 rctl = er32(RCTL);
3010 ew32(RCTL, rctl | E1000_RCTL_EN);
3011 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3012 }
3013 }
3014
3015 /**
3016 * e1000_watchdog - Timer Call-back
3017 * @data: pointer to adapter cast into an unsigned long
3018 **/
3019 static void e1000_watchdog(unsigned long data)
3020 {
3021 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3022
3023 /* Do the rest outside of interrupt context */
3024 schedule_work(&adapter->watchdog_task);
3025
3026 /* TODO: make this use queue_delayed_work() */
3027 }
3028
3029 static void e1000_watchdog_task(struct work_struct *work)
3030 {
3031 struct e1000_adapter *adapter = container_of(work,
3032 struct e1000_adapter, watchdog_task);
3033 struct net_device *netdev = adapter->netdev;
3034 struct e1000_mac_info *mac = &adapter->hw.mac;
3035 struct e1000_ring *tx_ring = adapter->tx_ring;
3036 struct e1000_hw *hw = &adapter->hw;
3037 u32 link, tctl;
3038 int tx_pending = 0;
3039
3040 link = e1000_has_link(adapter);
3041 if ((netif_carrier_ok(netdev)) && link) {
3042 e1000e_enable_receives(adapter);
3043 goto link_up;
3044 }
3045
3046 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3047 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3048 e1000_update_mng_vlan(adapter);
3049
3050 if (link) {
3051 if (!netif_carrier_ok(netdev)) {
3052 bool txb2b = 1;
3053 /* update snapshot of PHY registers on LSC */
3054 e1000_phy_read_status(adapter);
3055 mac->ops.get_link_up_info(&adapter->hw,
3056 &adapter->link_speed,
3057 &adapter->link_duplex);
3058 e1000_print_link_info(adapter);
3059 /*
3060 * tweak tx_queue_len according to speed/duplex
3061 * and adjust the timeout factor
3062 */
3063 netdev->tx_queue_len = adapter->tx_queue_len;
3064 adapter->tx_timeout_factor = 1;
3065 switch (adapter->link_speed) {
3066 case SPEED_10:
3067 txb2b = 0;
3068 netdev->tx_queue_len = 10;
3069 adapter->tx_timeout_factor = 14;
3070 break;
3071 case SPEED_100:
3072 txb2b = 0;
3073 netdev->tx_queue_len = 100;
3074 /* maybe add some timeout factor ? */
3075 break;
3076 }
3077
3078 /*
3079 * workaround: re-program speed mode bit after
3080 * link-up event
3081 */
3082 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3083 !txb2b) {
3084 u32 tarc0;
3085 tarc0 = er32(TARC(0));
3086 tarc0 &= ~SPEED_MODE_BIT;
3087 ew32(TARC(0), tarc0);
3088 }
3089
3090 /*
3091 * disable TSO for pcie and 10/100 speeds, to avoid
3092 * some hardware issues
3093 */
3094 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3095 switch (adapter->link_speed) {
3096 case SPEED_10:
3097 case SPEED_100:
3098 ndev_info(netdev,
3099 "10/100 speed: disabling TSO\n");
3100 netdev->features &= ~NETIF_F_TSO;
3101 netdev->features &= ~NETIF_F_TSO6;
3102 break;
3103 case SPEED_1000:
3104 netdev->features |= NETIF_F_TSO;
3105 netdev->features |= NETIF_F_TSO6;
3106 break;
3107 default:
3108 /* oops */
3109 break;
3110 }
3111 }
3112
3113 /*
3114 * enable transmits in the hardware, need to do this
3115 * after setting TARC(0)
3116 */
3117 tctl = er32(TCTL);
3118 tctl |= E1000_TCTL_EN;
3119 ew32(TCTL, tctl);
3120
3121 netif_carrier_on(netdev);
3122 netif_wake_queue(netdev);
3123
3124 if (!test_bit(__E1000_DOWN, &adapter->state))
3125 mod_timer(&adapter->phy_info_timer,
3126 round_jiffies(jiffies + 2 * HZ));
3127 }
3128 } else {
3129 if (netif_carrier_ok(netdev)) {
3130 adapter->link_speed = 0;
3131 adapter->link_duplex = 0;
3132 ndev_info(netdev, "Link is Down\n");
3133 netif_carrier_off(netdev);
3134 netif_stop_queue(netdev);
3135 if (!test_bit(__E1000_DOWN, &adapter->state))
3136 mod_timer(&adapter->phy_info_timer,
3137 round_jiffies(jiffies + 2 * HZ));
3138
3139 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3140 schedule_work(&adapter->reset_task);
3141 }
3142 }
3143
3144 link_up:
3145 e1000e_update_stats(adapter);
3146
3147 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3148 adapter->tpt_old = adapter->stats.tpt;
3149 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3150 adapter->colc_old = adapter->stats.colc;
3151
3152 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3153 adapter->gorc_old = adapter->stats.gorc;
3154 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3155 adapter->gotc_old = adapter->stats.gotc;
3156
3157 e1000e_update_adaptive(&adapter->hw);
3158
3159 if (!netif_carrier_ok(netdev)) {
3160 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3161 tx_ring->count);
3162 if (tx_pending) {
3163 /*
3164 * We've lost link, so the controller stops DMA,
3165 * but we've got queued Tx work that's never going
3166 * to get done, so reset controller to flush Tx.
3167 * (Do the reset outside of interrupt context).
3168 */
3169 adapter->tx_timeout_count++;
3170 schedule_work(&adapter->reset_task);
3171 }
3172 }
3173
3174 /* Cause software interrupt to ensure Rx ring is cleaned */
3175 ew32(ICS, E1000_ICS_RXDMT0);
3176
3177 /* Force detection of hung controller every watchdog period */
3178 adapter->detect_tx_hung = 1;
3179
3180 /*
3181 * With 82571 controllers, LAA may be overwritten due to controller
3182 * reset from the other port. Set the appropriate LAA in RAR[0]
3183 */
3184 if (e1000e_get_laa_state_82571(hw))
3185 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3186
3187 /* Reset the timer */
3188 if (!test_bit(__E1000_DOWN, &adapter->state))
3189 mod_timer(&adapter->watchdog_timer,
3190 round_jiffies(jiffies + 2 * HZ));
3191 }
3192
3193 #define E1000_TX_FLAGS_CSUM 0x00000001
3194 #define E1000_TX_FLAGS_VLAN 0x00000002
3195 #define E1000_TX_FLAGS_TSO 0x00000004
3196 #define E1000_TX_FLAGS_IPV4 0x00000008
3197 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3198 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3199
3200 static int e1000_tso(struct e1000_adapter *adapter,
3201 struct sk_buff *skb)
3202 {
3203 struct e1000_ring *tx_ring = adapter->tx_ring;
3204 struct e1000_context_desc *context_desc;
3205 struct e1000_buffer *buffer_info;
3206 unsigned int i;
3207 u32 cmd_length = 0;
3208 u16 ipcse = 0, tucse, mss;
3209 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3210 int err;
3211
3212 if (skb_is_gso(skb)) {
3213 if (skb_header_cloned(skb)) {
3214 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3215 if (err)
3216 return err;
3217 }
3218
3219 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3220 mss = skb_shinfo(skb)->gso_size;
3221 if (skb->protocol == htons(ETH_P_IP)) {
3222 struct iphdr *iph = ip_hdr(skb);
3223 iph->tot_len = 0;
3224 iph->check = 0;
3225 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3226 iph->daddr, 0,
3227 IPPROTO_TCP,
3228 0);
3229 cmd_length = E1000_TXD_CMD_IP;
3230 ipcse = skb_transport_offset(skb) - 1;
3231 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3232 ipv6_hdr(skb)->payload_len = 0;
3233 tcp_hdr(skb)->check =
3234 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3235 &ipv6_hdr(skb)->daddr,
3236 0, IPPROTO_TCP, 0);
3237 ipcse = 0;
3238 }
3239 ipcss = skb_network_offset(skb);
3240 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3241 tucss = skb_transport_offset(skb);
3242 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3243 tucse = 0;
3244
3245 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3246 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3247
3248 i = tx_ring->next_to_use;
3249 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3250 buffer_info = &tx_ring->buffer_info[i];
3251
3252 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3253 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3254 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3255 context_desc->upper_setup.tcp_fields.tucss = tucss;
3256 context_desc->upper_setup.tcp_fields.tucso = tucso;
3257 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3258 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3259 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3260 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3261
3262 buffer_info->time_stamp = jiffies;
3263 buffer_info->next_to_watch = i;
3264
3265 i++;
3266 if (i == tx_ring->count)
3267 i = 0;
3268 tx_ring->next_to_use = i;
3269
3270 return 1;
3271 }
3272
3273 return 0;
3274 }
3275
3276 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3277 {
3278 struct e1000_ring *tx_ring = adapter->tx_ring;
3279 struct e1000_context_desc *context_desc;
3280 struct e1000_buffer *buffer_info;
3281 unsigned int i;
3282 u8 css;
3283
3284 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3285 css = skb_transport_offset(skb);
3286
3287 i = tx_ring->next_to_use;
3288 buffer_info = &tx_ring->buffer_info[i];
3289 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3290
3291 context_desc->lower_setup.ip_config = 0;
3292 context_desc->upper_setup.tcp_fields.tucss = css;
3293 context_desc->upper_setup.tcp_fields.tucso =
3294 css + skb->csum_offset;
3295 context_desc->upper_setup.tcp_fields.tucse = 0;
3296 context_desc->tcp_seg_setup.data = 0;
3297 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3298
3299 buffer_info->time_stamp = jiffies;
3300 buffer_info->next_to_watch = i;
3301
3302 i++;
3303 if (i == tx_ring->count)
3304 i = 0;
3305 tx_ring->next_to_use = i;
3306
3307 return 1;
3308 }
3309
3310 return 0;
3311 }
3312
3313 #define E1000_MAX_PER_TXD 8192
3314 #define E1000_MAX_TXD_PWR 12
3315
3316 static int e1000_tx_map(struct e1000_adapter *adapter,
3317 struct sk_buff *skb, unsigned int first,
3318 unsigned int max_per_txd, unsigned int nr_frags,
3319 unsigned int mss)
3320 {
3321 struct e1000_ring *tx_ring = adapter->tx_ring;
3322 struct e1000_buffer *buffer_info;
3323 unsigned int len = skb->len - skb->data_len;
3324 unsigned int offset = 0, size, count = 0, i;
3325 unsigned int f;
3326
3327 i = tx_ring->next_to_use;
3328
3329 while (len) {
3330 buffer_info = &tx_ring->buffer_info[i];
3331 size = min(len, max_per_txd);
3332
3333 /* Workaround for premature desc write-backs
3334 * in TSO mode. Append 4-byte sentinel desc */
3335 if (mss && !nr_frags && size == len && size > 8)
3336 size -= 4;
3337
3338 buffer_info->length = size;
3339 /* set time_stamp *before* dma to help avoid a possible race */
3340 buffer_info->time_stamp = jiffies;
3341 buffer_info->dma =
3342 pci_map_single(adapter->pdev,
3343 skb->data + offset,
3344 size,
3345 PCI_DMA_TODEVICE);
3346 if (pci_dma_mapping_error(buffer_info->dma)) {
3347 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3348 adapter->tx_dma_failed++;
3349 return -1;
3350 }
3351 buffer_info->next_to_watch = i;
3352
3353 len -= size;
3354 offset += size;
3355 count++;
3356 i++;
3357 if (i == tx_ring->count)
3358 i = 0;
3359 }
3360
3361 for (f = 0; f < nr_frags; f++) {
3362 struct skb_frag_struct *frag;
3363
3364 frag = &skb_shinfo(skb)->frags[f];
3365 len = frag->size;
3366 offset = frag->page_offset;
3367
3368 while (len) {
3369 buffer_info = &tx_ring->buffer_info[i];
3370 size = min(len, max_per_txd);
3371 /* Workaround for premature desc write-backs
3372 * in TSO mode. Append 4-byte sentinel desc */
3373 if (mss && f == (nr_frags-1) && size == len && size > 8)
3374 size -= 4;
3375
3376 buffer_info->length = size;
3377 buffer_info->time_stamp = jiffies;
3378 buffer_info->dma =
3379 pci_map_page(adapter->pdev,
3380 frag->page,
3381 offset,
3382 size,
3383 PCI_DMA_TODEVICE);
3384 if (pci_dma_mapping_error(buffer_info->dma)) {
3385 dev_err(&adapter->pdev->dev,
3386 "TX DMA page map failed\n");
3387 adapter->tx_dma_failed++;
3388 return -1;
3389 }
3390
3391 buffer_info->next_to_watch = i;
3392
3393 len -= size;
3394 offset += size;
3395 count++;
3396
3397 i++;
3398 if (i == tx_ring->count)
3399 i = 0;
3400 }
3401 }
3402
3403 if (i == 0)
3404 i = tx_ring->count - 1;
3405 else
3406 i--;
3407
3408 tx_ring->buffer_info[i].skb = skb;
3409 tx_ring->buffer_info[first].next_to_watch = i;
3410
3411 return count;
3412 }
3413
3414 static void e1000_tx_queue(struct e1000_adapter *adapter,
3415 int tx_flags, int count)
3416 {
3417 struct e1000_ring *tx_ring = adapter->tx_ring;
3418 struct e1000_tx_desc *tx_desc = NULL;
3419 struct e1000_buffer *buffer_info;
3420 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3421 unsigned int i;
3422
3423 if (tx_flags & E1000_TX_FLAGS_TSO) {
3424 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3425 E1000_TXD_CMD_TSE;
3426 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3427
3428 if (tx_flags & E1000_TX_FLAGS_IPV4)
3429 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3430 }
3431
3432 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3433 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3434 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3435 }
3436
3437 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3438 txd_lower |= E1000_TXD_CMD_VLE;
3439 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3440 }
3441
3442 i = tx_ring->next_to_use;
3443
3444 while (count--) {
3445 buffer_info = &tx_ring->buffer_info[i];
3446 tx_desc = E1000_TX_DESC(*tx_ring, i);
3447 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3448 tx_desc->lower.data =
3449 cpu_to_le32(txd_lower | buffer_info->length);
3450 tx_desc->upper.data = cpu_to_le32(txd_upper);
3451
3452 i++;
3453 if (i == tx_ring->count)
3454 i = 0;
3455 }
3456
3457 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3458
3459 /*
3460 * Force memory writes to complete before letting h/w
3461 * know there are new descriptors to fetch. (Only
3462 * applicable for weak-ordered memory model archs,
3463 * such as IA-64).
3464 */
3465 wmb();
3466
3467 tx_ring->next_to_use = i;
3468 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3469 /*
3470 * we need this if more than one processor can write to our tail
3471 * at a time, it synchronizes IO on IA64/Altix systems
3472 */
3473 mmiowb();
3474 }
3475
3476 #define MINIMUM_DHCP_PACKET_SIZE 282
3477 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3478 struct sk_buff *skb)
3479 {
3480 struct e1000_hw *hw = &adapter->hw;
3481 u16 length, offset;
3482
3483 if (vlan_tx_tag_present(skb)) {
3484 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3485 && (adapter->hw.mng_cookie.status &
3486 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3487 return 0;
3488 }
3489
3490 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3491 return 0;
3492
3493 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3494 return 0;
3495
3496 {
3497 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3498 struct udphdr *udp;
3499
3500 if (ip->protocol != IPPROTO_UDP)
3501 return 0;
3502
3503 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3504 if (ntohs(udp->dest) != 67)
3505 return 0;
3506
3507 offset = (u8 *)udp + 8 - skb->data;
3508 length = skb->len - offset;
3509 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3510 }
3511
3512 return 0;
3513 }
3514
3515 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3516 {
3517 struct e1000_adapter *adapter = netdev_priv(netdev);
3518
3519 netif_stop_queue(netdev);
3520 /*
3521 * Herbert's original patch had:
3522 * smp_mb__after_netif_stop_queue();
3523 * but since that doesn't exist yet, just open code it.
3524 */
3525 smp_mb();
3526
3527 /*
3528 * We need to check again in a case another CPU has just
3529 * made room available.
3530 */
3531 if (e1000_desc_unused(adapter->tx_ring) < size)
3532 return -EBUSY;
3533
3534 /* A reprieve! */
3535 netif_start_queue(netdev);
3536 ++adapter->restart_queue;
3537 return 0;
3538 }
3539
3540 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3541 {
3542 struct e1000_adapter *adapter = netdev_priv(netdev);
3543
3544 if (e1000_desc_unused(adapter->tx_ring) >= size)
3545 return 0;
3546 return __e1000_maybe_stop_tx(netdev, size);
3547 }
3548
3549 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3550 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3551 {
3552 struct e1000_adapter *adapter = netdev_priv(netdev);
3553 struct e1000_ring *tx_ring = adapter->tx_ring;
3554 unsigned int first;
3555 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3556 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3557 unsigned int tx_flags = 0;
3558 unsigned int len = skb->len - skb->data_len;
3559 unsigned long irq_flags;
3560 unsigned int nr_frags;
3561 unsigned int mss;
3562 int count = 0;
3563 int tso;
3564 unsigned int f;
3565
3566 if (test_bit(__E1000_DOWN, &adapter->state)) {
3567 dev_kfree_skb_any(skb);
3568 return NETDEV_TX_OK;
3569 }
3570
3571 if (skb->len <= 0) {
3572 dev_kfree_skb_any(skb);
3573 return NETDEV_TX_OK;
3574 }
3575
3576 mss = skb_shinfo(skb)->gso_size;
3577 /*
3578 * The controller does a simple calculation to
3579 * make sure there is enough room in the FIFO before
3580 * initiating the DMA for each buffer. The calc is:
3581 * 4 = ceil(buffer len/mss). To make sure we don't
3582 * overrun the FIFO, adjust the max buffer len if mss
3583 * drops.
3584 */
3585 if (mss) {
3586 u8 hdr_len;
3587 max_per_txd = min(mss << 2, max_per_txd);
3588 max_txd_pwr = fls(max_per_txd) - 1;
3589
3590 /*
3591 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3592 * points to just header, pull a few bytes of payload from
3593 * frags into skb->data
3594 */
3595 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3596 /*
3597 * we do this workaround for ES2LAN, but it is un-necessary,
3598 * avoiding it could save a lot of cycles
3599 */
3600 if (skb->data_len && (hdr_len == len)) {
3601 unsigned int pull_size;
3602
3603 pull_size = min((unsigned int)4, skb->data_len);
3604 if (!__pskb_pull_tail(skb, pull_size)) {
3605 ndev_err(netdev,
3606 "__pskb_pull_tail failed.\n");
3607 dev_kfree_skb_any(skb);
3608 return NETDEV_TX_OK;
3609 }
3610 len = skb->len - skb->data_len;
3611 }
3612 }
3613
3614 /* reserve a descriptor for the offload context */
3615 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3616 count++;
3617 count++;
3618
3619 count += TXD_USE_COUNT(len, max_txd_pwr);
3620
3621 nr_frags = skb_shinfo(skb)->nr_frags;
3622 for (f = 0; f < nr_frags; f++)
3623 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3624 max_txd_pwr);
3625
3626 if (adapter->hw.mac.tx_pkt_filtering)
3627 e1000_transfer_dhcp_info(adapter, skb);
3628
3629 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3630 /* Collision - tell upper layer to requeue */
3631 return NETDEV_TX_LOCKED;
3632
3633 /*
3634 * need: count + 2 desc gap to keep tail from touching
3635 * head, otherwise try next time
3636 */
3637 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3638 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3639 return NETDEV_TX_BUSY;
3640 }
3641
3642 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3643 tx_flags |= E1000_TX_FLAGS_VLAN;
3644 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3645 }
3646
3647 first = tx_ring->next_to_use;
3648
3649 tso = e1000_tso(adapter, skb);
3650 if (tso < 0) {
3651 dev_kfree_skb_any(skb);
3652 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3653 return NETDEV_TX_OK;
3654 }
3655
3656 if (tso)
3657 tx_flags |= E1000_TX_FLAGS_TSO;
3658 else if (e1000_tx_csum(adapter, skb))
3659 tx_flags |= E1000_TX_FLAGS_CSUM;
3660
3661 /*
3662 * Old method was to assume IPv4 packet by default if TSO was enabled.
3663 * 82571 hardware supports TSO capabilities for IPv6 as well...
3664 * no longer assume, we must.
3665 */
3666 if (skb->protocol == htons(ETH_P_IP))
3667 tx_flags |= E1000_TX_FLAGS_IPV4;
3668
3669 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3670 if (count < 0) {
3671 /* handle pci_map_single() error in e1000_tx_map */
3672 dev_kfree_skb_any(skb);
3673 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3674 return NETDEV_TX_OK;
3675 }
3676
3677 e1000_tx_queue(adapter, tx_flags, count);
3678
3679 netdev->trans_start = jiffies;
3680
3681 /* Make sure there is space in the ring for the next send. */
3682 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3683
3684 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3685 return NETDEV_TX_OK;
3686 }
3687
3688 /**
3689 * e1000_tx_timeout - Respond to a Tx Hang
3690 * @netdev: network interface device structure
3691 **/
3692 static void e1000_tx_timeout(struct net_device *netdev)
3693 {
3694 struct e1000_adapter *adapter = netdev_priv(netdev);
3695
3696 /* Do the reset outside of interrupt context */
3697 adapter->tx_timeout_count++;
3698 schedule_work(&adapter->reset_task);
3699 }
3700
3701 static void e1000_reset_task(struct work_struct *work)
3702 {
3703 struct e1000_adapter *adapter;
3704 adapter = container_of(work, struct e1000_adapter, reset_task);
3705
3706 e1000e_reinit_locked(adapter);
3707 }
3708
3709 /**
3710 * e1000_get_stats - Get System Network Statistics
3711 * @netdev: network interface device structure
3712 *
3713 * Returns the address of the device statistics structure.
3714 * The statistics are actually updated from the timer callback.
3715 **/
3716 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3717 {
3718 struct e1000_adapter *adapter = netdev_priv(netdev);
3719
3720 /* only return the current stats */
3721 return &adapter->net_stats;
3722 }
3723
3724 /**
3725 * e1000_change_mtu - Change the Maximum Transfer Unit
3726 * @netdev: network interface device structure
3727 * @new_mtu: new value for maximum frame size
3728 *
3729 * Returns 0 on success, negative on failure
3730 **/
3731 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3732 {
3733 struct e1000_adapter *adapter = netdev_priv(netdev);
3734 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3735
3736 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3737 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3738 ndev_err(netdev, "Invalid MTU setting\n");
3739 return -EINVAL;
3740 }
3741
3742 /* Jumbo frame size limits */
3743 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3744 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3745 ndev_err(netdev, "Jumbo Frames not supported.\n");
3746 return -EINVAL;
3747 }
3748 if (adapter->hw.phy.type == e1000_phy_ife) {
3749 ndev_err(netdev, "Jumbo Frames not supported.\n");
3750 return -EINVAL;
3751 }
3752 }
3753
3754 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3755 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3756 ndev_err(netdev, "MTU > 9216 not supported.\n");
3757 return -EINVAL;
3758 }
3759
3760 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3761 msleep(1);
3762 /* e1000e_down has a dependency on max_frame_size */
3763 adapter->max_frame_size = max_frame;
3764 if (netif_running(netdev))
3765 e1000e_down(adapter);
3766
3767 /*
3768 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3769 * means we reserve 2 more, this pushes us to allocate from the next
3770 * larger slab size.
3771 * i.e. RXBUFFER_2048 --> size-4096 slab
3772 * However with the new *_jumbo_rx* routines, jumbo receives will use
3773 * fragmented skbs
3774 */
3775
3776 if (max_frame <= 256)
3777 adapter->rx_buffer_len = 256;
3778 else if (max_frame <= 512)
3779 adapter->rx_buffer_len = 512;
3780 else if (max_frame <= 1024)
3781 adapter->rx_buffer_len = 1024;
3782 else if (max_frame <= 2048)
3783 adapter->rx_buffer_len = 2048;
3784 else
3785 adapter->rx_buffer_len = 4096;
3786
3787 /* adjust allocation if LPE protects us, and we aren't using SBP */
3788 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3789 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3790 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3791 + ETH_FCS_LEN;
3792
3793 ndev_info(netdev, "changing MTU from %d to %d\n",
3794 netdev->mtu, new_mtu);
3795 netdev->mtu = new_mtu;
3796
3797 if (netif_running(netdev))
3798 e1000e_up(adapter);
3799 else
3800 e1000e_reset(adapter);
3801
3802 clear_bit(__E1000_RESETTING, &adapter->state);
3803
3804 return 0;
3805 }
3806
3807 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3808 int cmd)
3809 {
3810 struct e1000_adapter *adapter = netdev_priv(netdev);
3811 struct mii_ioctl_data *data = if_mii(ifr);
3812
3813 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3814 return -EOPNOTSUPP;
3815
3816 switch (cmd) {
3817 case SIOCGMIIPHY:
3818 data->phy_id = adapter->hw.phy.addr;
3819 break;
3820 case SIOCGMIIREG:
3821 if (!capable(CAP_NET_ADMIN))
3822 return -EPERM;
3823 switch (data->reg_num & 0x1F) {
3824 case MII_BMCR:
3825 data->val_out = adapter->phy_regs.bmcr;
3826 break;
3827 case MII_BMSR:
3828 data->val_out = adapter->phy_regs.bmsr;
3829 break;
3830 case MII_PHYSID1:
3831 data->val_out = (adapter->hw.phy.id >> 16);
3832 break;
3833 case MII_PHYSID2:
3834 data->val_out = (adapter->hw.phy.id & 0xFFFF);
3835 break;
3836 case MII_ADVERTISE:
3837 data->val_out = adapter->phy_regs.advertise;
3838 break;
3839 case MII_LPA:
3840 data->val_out = adapter->phy_regs.lpa;
3841 break;
3842 case MII_EXPANSION:
3843 data->val_out = adapter->phy_regs.expansion;
3844 break;
3845 case MII_CTRL1000:
3846 data->val_out = adapter->phy_regs.ctrl1000;
3847 break;
3848 case MII_STAT1000:
3849 data->val_out = adapter->phy_regs.stat1000;
3850 break;
3851 case MII_ESTATUS:
3852 data->val_out = adapter->phy_regs.estatus;
3853 break;
3854 default:
3855 return -EIO;
3856 }
3857 break;
3858 case SIOCSMIIREG:
3859 default:
3860 return -EOPNOTSUPP;
3861 }
3862 return 0;
3863 }
3864
3865 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3866 {
3867 switch (cmd) {
3868 case SIOCGMIIPHY:
3869 case SIOCGMIIREG:
3870 case SIOCSMIIREG:
3871 return e1000_mii_ioctl(netdev, ifr, cmd);
3872 default:
3873 return -EOPNOTSUPP;
3874 }
3875 }
3876
3877 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3878 {
3879 struct net_device *netdev = pci_get_drvdata(pdev);
3880 struct e1000_adapter *adapter = netdev_priv(netdev);
3881 struct e1000_hw *hw = &adapter->hw;
3882 u32 ctrl, ctrl_ext, rctl, status;
3883 u32 wufc = adapter->wol;
3884 int retval = 0;
3885
3886 netif_device_detach(netdev);
3887
3888 if (netif_running(netdev)) {
3889 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3890 e1000e_down(adapter);
3891 e1000_free_irq(adapter);
3892 }
3893
3894 retval = pci_save_state(pdev);
3895 if (retval)
3896 return retval;
3897
3898 status = er32(STATUS);
3899 if (status & E1000_STATUS_LU)
3900 wufc &= ~E1000_WUFC_LNKC;
3901
3902 if (wufc) {
3903 e1000_setup_rctl(adapter);
3904 e1000_set_multi(netdev);
3905
3906 /* turn on all-multi mode if wake on multicast is enabled */
3907 if (wufc & E1000_WUFC_MC) {
3908 rctl = er32(RCTL);
3909 rctl |= E1000_RCTL_MPE;
3910 ew32(RCTL, rctl);
3911 }
3912
3913 ctrl = er32(CTRL);
3914 /* advertise wake from D3Cold */
3915 #define E1000_CTRL_ADVD3WUC 0x00100000
3916 /* phy power management enable */
3917 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3918 ctrl |= E1000_CTRL_ADVD3WUC |
3919 E1000_CTRL_EN_PHY_PWR_MGMT;
3920 ew32(CTRL, ctrl);
3921
3922 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3923 adapter->hw.phy.media_type ==
3924 e1000_media_type_internal_serdes) {
3925 /* keep the laser running in D3 */
3926 ctrl_ext = er32(CTRL_EXT);
3927 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3928 ew32(CTRL_EXT, ctrl_ext);
3929 }
3930
3931 if (adapter->flags & FLAG_IS_ICH)
3932 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
3933
3934 /* Allow time for pending master requests to run */
3935 e1000e_disable_pcie_master(&adapter->hw);
3936
3937 ew32(WUC, E1000_WUC_PME_EN);
3938 ew32(WUFC, wufc);
3939 pci_enable_wake(pdev, PCI_D3hot, 1);
3940 pci_enable_wake(pdev, PCI_D3cold, 1);
3941 } else {
3942 ew32(WUC, 0);
3943 ew32(WUFC, 0);
3944 pci_enable_wake(pdev, PCI_D3hot, 0);
3945 pci_enable_wake(pdev, PCI_D3cold, 0);
3946 }
3947
3948 /* make sure adapter isn't asleep if manageability is enabled */
3949 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3950 pci_enable_wake(pdev, PCI_D3hot, 1);
3951 pci_enable_wake(pdev, PCI_D3cold, 1);
3952 }
3953
3954 if (adapter->hw.phy.type == e1000_phy_igp_3)
3955 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3956
3957 /*
3958 * Release control of h/w to f/w. If f/w is AMT enabled, this
3959 * would have already happened in close and is redundant.
3960 */
3961 e1000_release_hw_control(adapter);
3962
3963 pci_disable_device(pdev);
3964
3965 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3966
3967 return 0;
3968 }
3969
3970 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3971 {
3972 int pos;
3973 u16 val;
3974
3975 /*
3976 * 82573 workaround - disable L1 ASPM on mobile chipsets
3977 *
3978 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3979 * resulting in lost data or garbage information on the pci-e link
3980 * level. This could result in (false) bad EEPROM checksum errors,
3981 * long ping times (up to 2s) or even a system freeze/hang.
3982 *
3983 * Unfortunately this feature saves about 1W power consumption when
3984 * active.
3985 */
3986 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3987 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3988 if (val & 0x2) {
3989 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3990 val &= ~0x2;
3991 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3992 }
3993 }
3994
3995 #ifdef CONFIG_PM
3996 static int e1000_resume(struct pci_dev *pdev)
3997 {
3998 struct net_device *netdev = pci_get_drvdata(pdev);
3999 struct e1000_adapter *adapter = netdev_priv(netdev);
4000 struct e1000_hw *hw = &adapter->hw;
4001 u32 err;
4002
4003 pci_set_power_state(pdev, PCI_D0);
4004 pci_restore_state(pdev);
4005 e1000e_disable_l1aspm(pdev);
4006 err = pci_enable_device(pdev);
4007 if (err) {
4008 dev_err(&pdev->dev,
4009 "Cannot enable PCI device from suspend\n");
4010 return err;
4011 }
4012
4013 pci_set_master(pdev);
4014
4015 pci_enable_wake(pdev, PCI_D3hot, 0);
4016 pci_enable_wake(pdev, PCI_D3cold, 0);
4017
4018 if (netif_running(netdev)) {
4019 err = e1000_request_irq(adapter);
4020 if (err)
4021 return err;
4022 }
4023
4024 e1000e_power_up_phy(adapter);
4025 e1000e_reset(adapter);
4026 ew32(WUS, ~0);
4027
4028 e1000_init_manageability(adapter);
4029
4030 if (netif_running(netdev))
4031 e1000e_up(adapter);
4032
4033 netif_device_attach(netdev);
4034
4035 /*
4036 * If the controller has AMT, do not set DRV_LOAD until the interface
4037 * is up. For all other cases, let the f/w know that the h/w is now
4038 * under the control of the driver.
4039 */
4040 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
4041 e1000_get_hw_control(adapter);
4042
4043 return 0;
4044 }
4045 #endif
4046
4047 static void e1000_shutdown(struct pci_dev *pdev)
4048 {
4049 e1000_suspend(pdev, PMSG_SUSPEND);
4050 }
4051
4052 #ifdef CONFIG_NET_POLL_CONTROLLER
4053 /*
4054 * Polling 'interrupt' - used by things like netconsole to send skbs
4055 * without having to re-enable interrupts. It's not called while
4056 * the interrupt routine is executing.
4057 */
4058 static void e1000_netpoll(struct net_device *netdev)
4059 {
4060 struct e1000_adapter *adapter = netdev_priv(netdev);
4061
4062 disable_irq(adapter->pdev->irq);
4063 e1000_intr(adapter->pdev->irq, netdev);
4064
4065 e1000_clean_tx_irq(adapter);
4066
4067 enable_irq(adapter->pdev->irq);
4068 }
4069 #endif
4070
4071 /**
4072 * e1000_io_error_detected - called when PCI error is detected
4073 * @pdev: Pointer to PCI device
4074 * @state: The current pci connection state
4075 *
4076 * This function is called after a PCI bus error affecting
4077 * this device has been detected.
4078 */
4079 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4080 pci_channel_state_t state)
4081 {
4082 struct net_device *netdev = pci_get_drvdata(pdev);
4083 struct e1000_adapter *adapter = netdev_priv(netdev);
4084
4085 netif_device_detach(netdev);
4086
4087 if (netif_running(netdev))
4088 e1000e_down(adapter);
4089 pci_disable_device(pdev);
4090
4091 /* Request a slot slot reset. */
4092 return PCI_ERS_RESULT_NEED_RESET;
4093 }
4094
4095 /**
4096 * e1000_io_slot_reset - called after the pci bus has been reset.
4097 * @pdev: Pointer to PCI device
4098 *
4099 * Restart the card from scratch, as if from a cold-boot. Implementation
4100 * resembles the first-half of the e1000_resume routine.
4101 */
4102 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4103 {
4104 struct net_device *netdev = pci_get_drvdata(pdev);
4105 struct e1000_adapter *adapter = netdev_priv(netdev);
4106 struct e1000_hw *hw = &adapter->hw;
4107
4108 e1000e_disable_l1aspm(pdev);
4109 if (pci_enable_device(pdev)) {
4110 dev_err(&pdev->dev,
4111 "Cannot re-enable PCI device after reset.\n");
4112 return PCI_ERS_RESULT_DISCONNECT;
4113 }
4114 pci_set_master(pdev);
4115 pci_restore_state(pdev);
4116
4117 pci_enable_wake(pdev, PCI_D3hot, 0);
4118 pci_enable_wake(pdev, PCI_D3cold, 0);
4119
4120 e1000e_reset(adapter);
4121 ew32(WUS, ~0);
4122
4123 return PCI_ERS_RESULT_RECOVERED;
4124 }
4125
4126 /**
4127 * e1000_io_resume - called when traffic can start flowing again.
4128 * @pdev: Pointer to PCI device
4129 *
4130 * This callback is called when the error recovery driver tells us that
4131 * its OK to resume normal operation. Implementation resembles the
4132 * second-half of the e1000_resume routine.
4133 */
4134 static void e1000_io_resume(struct pci_dev *pdev)
4135 {
4136 struct net_device *netdev = pci_get_drvdata(pdev);
4137 struct e1000_adapter *adapter = netdev_priv(netdev);
4138
4139 e1000_init_manageability(adapter);
4140
4141 if (netif_running(netdev)) {
4142 if (e1000e_up(adapter)) {
4143 dev_err(&pdev->dev,
4144 "can't bring device back up after reset\n");
4145 return;
4146 }
4147 }
4148
4149 netif_device_attach(netdev);
4150
4151 /*
4152 * If the controller has AMT, do not set DRV_LOAD until the interface
4153 * is up. For all other cases, let the f/w know that the h/w is now
4154 * under the control of the driver.
4155 */
4156 if (!(adapter->flags & FLAG_HAS_AMT) ||
4157 !e1000e_check_mng_mode(&adapter->hw))
4158 e1000_get_hw_control(adapter);
4159
4160 }
4161
4162 static void e1000_print_device_info(struct e1000_adapter *adapter)
4163 {
4164 struct e1000_hw *hw = &adapter->hw;
4165 struct net_device *netdev = adapter->netdev;
4166 u32 pba_num;
4167
4168 /* print bus type/speed/width info */
4169 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
4170 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4171 /* bus width */
4172 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4173 "Width x1"),
4174 /* MAC address */
4175 netdev->dev_addr[0], netdev->dev_addr[1],
4176 netdev->dev_addr[2], netdev->dev_addr[3],
4177 netdev->dev_addr[4], netdev->dev_addr[5]);
4178 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
4179 (hw->phy.type == e1000_phy_ife)
4180 ? "10/100" : "1000");
4181 e1000e_read_pba_num(hw, &pba_num);
4182 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4183 hw->mac.type, hw->phy.type,
4184 (pba_num >> 8), (pba_num & 0xff));
4185 }
4186
4187 /**
4188 * e1000_probe - Device Initialization Routine
4189 * @pdev: PCI device information struct
4190 * @ent: entry in e1000_pci_tbl
4191 *
4192 * Returns 0 on success, negative on failure
4193 *
4194 * e1000_probe initializes an adapter identified by a pci_dev structure.
4195 * The OS initialization, configuring of the adapter private structure,
4196 * and a hardware reset occur.
4197 **/
4198 static int __devinit e1000_probe(struct pci_dev *pdev,
4199 const struct pci_device_id *ent)
4200 {
4201 struct net_device *netdev;
4202 struct e1000_adapter *adapter;
4203 struct e1000_hw *hw;
4204 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4205 resource_size_t mmio_start, mmio_len;
4206 resource_size_t flash_start, flash_len;
4207
4208 static int cards_found;
4209 int i, err, pci_using_dac;
4210 u16 eeprom_data = 0;
4211 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4212
4213 e1000e_disable_l1aspm(pdev);
4214 err = pci_enable_device(pdev);
4215 if (err)
4216 return err;
4217
4218 pci_using_dac = 0;
4219 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4220 if (!err) {
4221 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4222 if (!err)
4223 pci_using_dac = 1;
4224 } else {
4225 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4226 if (err) {
4227 err = pci_set_consistent_dma_mask(pdev,
4228 DMA_32BIT_MASK);
4229 if (err) {
4230 dev_err(&pdev->dev, "No usable DMA "
4231 "configuration, aborting\n");
4232 goto err_dma;
4233 }
4234 }
4235 }
4236
4237 err = pci_request_regions(pdev, e1000e_driver_name);
4238 if (err)
4239 goto err_pci_reg;
4240
4241 pci_set_master(pdev);
4242 pci_save_state(pdev);
4243
4244 err = -ENOMEM;
4245 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4246 if (!netdev)
4247 goto err_alloc_etherdev;
4248
4249 SET_NETDEV_DEV(netdev, &pdev->dev);
4250
4251 pci_set_drvdata(pdev, netdev);
4252 adapter = netdev_priv(netdev);
4253 hw = &adapter->hw;
4254 adapter->netdev = netdev;
4255 adapter->pdev = pdev;
4256 adapter->ei = ei;
4257 adapter->pba = ei->pba;
4258 adapter->flags = ei->flags;
4259 adapter->hw.adapter = adapter;
4260 adapter->hw.mac.type = ei->mac;
4261 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4262
4263 mmio_start = pci_resource_start(pdev, 0);
4264 mmio_len = pci_resource_len(pdev, 0);
4265
4266 err = -EIO;
4267 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4268 if (!adapter->hw.hw_addr)
4269 goto err_ioremap;
4270
4271 if ((adapter->flags & FLAG_HAS_FLASH) &&
4272 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4273 flash_start = pci_resource_start(pdev, 1);
4274 flash_len = pci_resource_len(pdev, 1);
4275 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4276 if (!adapter->hw.flash_address)
4277 goto err_flashmap;
4278 }
4279
4280 /* construct the net_device struct */
4281 netdev->open = &e1000_open;
4282 netdev->stop = &e1000_close;
4283 netdev->hard_start_xmit = &e1000_xmit_frame;
4284 netdev->get_stats = &e1000_get_stats;
4285 netdev->set_multicast_list = &e1000_set_multi;
4286 netdev->set_mac_address = &e1000_set_mac;
4287 netdev->change_mtu = &e1000_change_mtu;
4288 netdev->do_ioctl = &e1000_ioctl;
4289 e1000e_set_ethtool_ops(netdev);
4290 netdev->tx_timeout = &e1000_tx_timeout;
4291 netdev->watchdog_timeo = 5 * HZ;
4292 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4293 netdev->vlan_rx_register = e1000_vlan_rx_register;
4294 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4295 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4296 #ifdef CONFIG_NET_POLL_CONTROLLER
4297 netdev->poll_controller = e1000_netpoll;
4298 #endif
4299 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4300
4301 netdev->mem_start = mmio_start;
4302 netdev->mem_end = mmio_start + mmio_len;
4303
4304 adapter->bd_number = cards_found++;
4305
4306 /* setup adapter struct */
4307 err = e1000_sw_init(adapter);
4308 if (err)
4309 goto err_sw_init;
4310
4311 err = -EIO;
4312
4313 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4314 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4315 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4316
4317 err = ei->get_variants(adapter);
4318 if (err)
4319 goto err_hw_init;
4320
4321 hw->mac.ops.get_bus_info(&adapter->hw);
4322
4323 adapter->hw.phy.autoneg_wait_to_complete = 0;
4324
4325 /* Copper options */
4326 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4327 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4328 adapter->hw.phy.disable_polarity_correction = 0;
4329 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4330 }
4331
4332 if (e1000_check_reset_block(&adapter->hw))
4333 ndev_info(netdev,
4334 "PHY reset is blocked due to SOL/IDER session.\n");
4335
4336 netdev->features = NETIF_F_SG |
4337 NETIF_F_HW_CSUM |
4338 NETIF_F_HW_VLAN_TX |
4339 NETIF_F_HW_VLAN_RX;
4340
4341 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4342 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4343
4344 netdev->features |= NETIF_F_TSO;
4345 netdev->features |= NETIF_F_TSO6;
4346
4347 if (pci_using_dac)
4348 netdev->features |= NETIF_F_HIGHDMA;
4349
4350 /*
4351 * We should not be using LLTX anymore, but we are still Tx faster with
4352 * it.
4353 */
4354 netdev->features |= NETIF_F_LLTX;
4355
4356 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4357 adapter->flags |= FLAG_MNG_PT_ENABLED;
4358
4359 /*
4360 * before reading the NVM, reset the controller to
4361 * put the device in a known good starting state
4362 */
4363 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4364
4365 /*
4366 * systems with ASPM and others may see the checksum fail on the first
4367 * attempt. Let's give it a few tries
4368 */
4369 for (i = 0;; i++) {
4370 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4371 break;
4372 if (i == 2) {
4373 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
4374 err = -EIO;
4375 goto err_eeprom;
4376 }
4377 }
4378
4379 /* copy the MAC address out of the NVM */
4380 if (e1000e_read_mac_addr(&adapter->hw))
4381 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
4382
4383 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4384 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4385
4386 if (!is_valid_ether_addr(netdev->perm_addr)) {
4387 ndev_err(netdev, "Invalid MAC Address: "
4388 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4389 netdev->perm_addr[0], netdev->perm_addr[1],
4390 netdev->perm_addr[2], netdev->perm_addr[3],
4391 netdev->perm_addr[4], netdev->perm_addr[5]);
4392 err = -EIO;
4393 goto err_eeprom;
4394 }
4395
4396 init_timer(&adapter->watchdog_timer);
4397 adapter->watchdog_timer.function = &e1000_watchdog;
4398 adapter->watchdog_timer.data = (unsigned long) adapter;
4399
4400 init_timer(&adapter->phy_info_timer);
4401 adapter->phy_info_timer.function = &e1000_update_phy_info;
4402 adapter->phy_info_timer.data = (unsigned long) adapter;
4403
4404 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4405 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4406
4407 e1000e_check_options(adapter);
4408
4409 /* Initialize link parameters. User can change them with ethtool */
4410 adapter->hw.mac.autoneg = 1;
4411 adapter->fc_autoneg = 1;
4412 adapter->hw.fc.original_type = e1000_fc_default;
4413 adapter->hw.fc.type = e1000_fc_default;
4414 adapter->hw.phy.autoneg_advertised = 0x2f;
4415
4416 /* ring size defaults */
4417 adapter->rx_ring->count = 256;
4418 adapter->tx_ring->count = 256;
4419
4420 /*
4421 * Initial Wake on LAN setting - If APM wake is enabled in
4422 * the EEPROM, enable the ACPI Magic Packet filter
4423 */
4424 if (adapter->flags & FLAG_APME_IN_WUC) {
4425 /* APME bit in EEPROM is mapped to WUC.APME */
4426 eeprom_data = er32(WUC);
4427 eeprom_apme_mask = E1000_WUC_APME;
4428 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4429 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4430 (adapter->hw.bus.func == 1))
4431 e1000_read_nvm(&adapter->hw,
4432 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4433 else
4434 e1000_read_nvm(&adapter->hw,
4435 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4436 }
4437
4438 /* fetch WoL from EEPROM */
4439 if (eeprom_data & eeprom_apme_mask)
4440 adapter->eeprom_wol |= E1000_WUFC_MAG;
4441
4442 /*
4443 * now that we have the eeprom settings, apply the special cases
4444 * where the eeprom may be wrong or the board simply won't support
4445 * wake on lan on a particular port
4446 */
4447 if (!(adapter->flags & FLAG_HAS_WOL))
4448 adapter->eeprom_wol = 0;
4449
4450 /* initialize the wol settings based on the eeprom settings */
4451 adapter->wol = adapter->eeprom_wol;
4452
4453 /* reset the hardware with the new settings */
4454 e1000e_reset(adapter);
4455
4456 /*
4457 * If the controller has AMT, do not set DRV_LOAD until the interface
4458 * is up. For all other cases, let the f/w know that the h/w is now
4459 * under the control of the driver.
4460 */
4461 if (!(adapter->flags & FLAG_HAS_AMT) ||
4462 !e1000e_check_mng_mode(&adapter->hw))
4463 e1000_get_hw_control(adapter);
4464
4465 /* tell the stack to leave us alone until e1000_open() is called */
4466 netif_carrier_off(netdev);
4467 netif_stop_queue(netdev);
4468
4469 strcpy(netdev->name, "eth%d");
4470 err = register_netdev(netdev);
4471 if (err)
4472 goto err_register;
4473
4474 e1000_print_device_info(adapter);
4475
4476 return 0;
4477
4478 err_register:
4479 err_hw_init:
4480 e1000_release_hw_control(adapter);
4481 err_eeprom:
4482 if (!e1000_check_reset_block(&adapter->hw))
4483 e1000_phy_hw_reset(&adapter->hw);
4484
4485 if (adapter->hw.flash_address)
4486 iounmap(adapter->hw.flash_address);
4487
4488 err_flashmap:
4489 kfree(adapter->tx_ring);
4490 kfree(adapter->rx_ring);
4491 err_sw_init:
4492 iounmap(adapter->hw.hw_addr);
4493 err_ioremap:
4494 free_netdev(netdev);
4495 err_alloc_etherdev:
4496 pci_release_regions(pdev);
4497 err_pci_reg:
4498 err_dma:
4499 pci_disable_device(pdev);
4500 return err;
4501 }
4502
4503 /**
4504 * e1000_remove - Device Removal Routine
4505 * @pdev: PCI device information struct
4506 *
4507 * e1000_remove is called by the PCI subsystem to alert the driver
4508 * that it should release a PCI device. The could be caused by a
4509 * Hot-Plug event, or because the driver is going to be removed from
4510 * memory.
4511 **/
4512 static void __devexit e1000_remove(struct pci_dev *pdev)
4513 {
4514 struct net_device *netdev = pci_get_drvdata(pdev);
4515 struct e1000_adapter *adapter = netdev_priv(netdev);
4516
4517 /*
4518 * flush_scheduled work may reschedule our watchdog task, so
4519 * explicitly disable watchdog tasks from being rescheduled
4520 */
4521 set_bit(__E1000_DOWN, &adapter->state);
4522 del_timer_sync(&adapter->watchdog_timer);
4523 del_timer_sync(&adapter->phy_info_timer);
4524
4525 flush_scheduled_work();
4526
4527 /*
4528 * Release control of h/w to f/w. If f/w is AMT enabled, this
4529 * would have already happened in close and is redundant.
4530 */
4531 e1000_release_hw_control(adapter);
4532
4533 unregister_netdev(netdev);
4534
4535 if (!e1000_check_reset_block(&adapter->hw))
4536 e1000_phy_hw_reset(&adapter->hw);
4537
4538 kfree(adapter->tx_ring);
4539 kfree(adapter->rx_ring);
4540
4541 iounmap(adapter->hw.hw_addr);
4542 if (adapter->hw.flash_address)
4543 iounmap(adapter->hw.flash_address);
4544 pci_release_regions(pdev);
4545
4546 free_netdev(netdev);
4547
4548 pci_disable_device(pdev);
4549 }
4550
4551 /* PCI Error Recovery (ERS) */
4552 static struct pci_error_handlers e1000_err_handler = {
4553 .error_detected = e1000_io_error_detected,
4554 .slot_reset = e1000_io_slot_reset,
4555 .resume = e1000_io_resume,
4556 };
4557
4558 static struct pci_device_id e1000_pci_tbl[] = {
4559 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4560 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4561 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4562 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4563 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4564 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4565 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4566 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4567 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4568
4569 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4570 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4571 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4572 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4573
4574 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4575 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4576 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4577
4578 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4579 board_80003es2lan },
4580 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4581 board_80003es2lan },
4582 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4583 board_80003es2lan },
4584 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4585 board_80003es2lan },
4586
4587 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4588 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4589 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4590 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4591 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4592 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4593 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4594
4595 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4596 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4597 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4598 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4599 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4600 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
4601 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
4602 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
4603
4604 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
4605 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
4606 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
4607
4608 { } /* terminate list */
4609 };
4610 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4611
4612 /* PCI Device API Driver */
4613 static struct pci_driver e1000_driver = {
4614 .name = e1000e_driver_name,
4615 .id_table = e1000_pci_tbl,
4616 .probe = e1000_probe,
4617 .remove = __devexit_p(e1000_remove),
4618 #ifdef CONFIG_PM
4619 /* Power Management Hooks */
4620 .suspend = e1000_suspend,
4621 .resume = e1000_resume,
4622 #endif
4623 .shutdown = e1000_shutdown,
4624 .err_handler = &e1000_err_handler
4625 };
4626
4627 /**
4628 * e1000_init_module - Driver Registration Routine
4629 *
4630 * e1000_init_module is the first routine called when the driver is
4631 * loaded. All it does is register with the PCI subsystem.
4632 **/
4633 static int __init e1000_init_module(void)
4634 {
4635 int ret;
4636 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4637 e1000e_driver_name, e1000e_driver_version);
4638 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4639 e1000e_driver_name);
4640 ret = pci_register_driver(&e1000_driver);
4641 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
4642 PM_QOS_DEFAULT_VALUE);
4643
4644 return ret;
4645 }
4646 module_init(e1000_init_module);
4647
4648 /**
4649 * e1000_exit_module - Driver Exit Cleanup Routine
4650 *
4651 * e1000_exit_module is called just before the driver is removed
4652 * from memory.
4653 **/
4654 static void __exit e1000_exit_module(void)
4655 {
4656 pci_unregister_driver(&e1000_driver);
4657 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
4658 }
4659 module_exit(e1000_exit_module);
4660
4661
4662 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4663 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4664 MODULE_LICENSE("GPL");
4665 MODULE_VERSION(DRV_VERSION);
4666
4667 /* e1000_main.c */