]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/eepro100.c
[SK_BUFF]: Introduce skb_reset_mac_header(skb)
[mirror_ubuntu-zesty-kernel.git] / drivers / net / eepro100.c
1 /* drivers/net/eepro100.c: An Intel i82557-559 Ethernet driver for Linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 The driver also contains updates by different kernel developers
6 (see incomplete list below).
7 Current maintainer is Andrey V. Savochkin <saw@saw.sw.com.sg>.
8 Please use this email address and linux-kernel mailing list for bug reports.
9
10 This software may be used and distributed according to the terms
11 of the GNU General Public License, incorporated herein by reference.
12
13 This driver is for the Intel EtherExpress Pro100 (Speedo3) design.
14 It should work with all i82557/558/559 boards.
15
16 Version history:
17 1998 Apr - 2000 Feb Andrey V. Savochkin <saw@saw.sw.com.sg>
18 Serious fixes for multicast filter list setting, TX timeout routine;
19 RX ring refilling logic; other stuff
20 2000 Feb Jeff Garzik <jgarzik@pobox.com>
21 Convert to new PCI driver interface
22 2000 Mar 24 Dragan Stancevic <visitor@valinux.com>
23 Disabled FC and ER, to avoid lockups when when we get FCP interrupts.
24 2000 Jul 17 Goutham Rao <goutham.rao@intel.com>
25 PCI DMA API fixes, adding pci_dma_sync_single calls where neccesary
26 2000 Aug 31 David Mosberger <davidm@hpl.hp.com>
27 rx_align support: enables rx DMA without causing unaligned accesses.
28 */
29
30 static const char * const version =
31 "eepro100.c:v1.09j-t 9/29/99 Donald Becker http://www.scyld.com/network/eepro100.html\n"
32 "eepro100.c: $Revision: 1.36 $ 2000/11/17 Modified by Andrey V. Savochkin <saw@saw.sw.com.sg> and others\n";
33
34 /* A few user-configurable values that apply to all boards.
35 First set is undocumented and spelled per Intel recommendations. */
36
37 static int congenb /* = 0 */; /* Enable congestion control in the DP83840. */
38 static int txfifo = 8; /* Tx FIFO threshold in 4 byte units, 0-15 */
39 static int rxfifo = 8; /* Rx FIFO threshold, default 32 bytes. */
40 /* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */
41 static int txdmacount = 128;
42 static int rxdmacount /* = 0 */;
43
44 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) || defined(__mips__) || \
45 defined(__arm__)
46 /* align rx buffers to 2 bytes so that IP header is aligned */
47 # define rx_align(skb) skb_reserve((skb), 2)
48 # define RxFD_ALIGNMENT __attribute__ ((aligned (2), packed))
49 #else
50 # define rx_align(skb)
51 # define RxFD_ALIGNMENT
52 #endif
53
54 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx method.
55 Lower values use more memory, but are faster. */
56 static int rx_copybreak = 200;
57
58 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
59 static int max_interrupt_work = 20;
60
61 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */
62 static int multicast_filter_limit = 64;
63
64 /* 'options' is used to pass a transceiver override or full-duplex flag
65 e.g. "options=16" for FD, "options=32" for 100mbps-only. */
66 static int full_duplex[] = {-1, -1, -1, -1, -1, -1, -1, -1};
67 static int options[] = {-1, -1, -1, -1, -1, -1, -1, -1};
68
69 /* A few values that may be tweaked. */
70 /* The ring sizes should be a power of two for efficiency. */
71 #define TX_RING_SIZE 64
72 #define RX_RING_SIZE 64
73 /* How much slots multicast filter setup may take.
74 Do not descrease without changing set_rx_mode() implementaion. */
75 #define TX_MULTICAST_SIZE 2
76 #define TX_MULTICAST_RESERV (TX_MULTICAST_SIZE*2)
77 /* Actual number of TX packets queued, must be
78 <= TX_RING_SIZE-TX_MULTICAST_RESERV. */
79 #define TX_QUEUE_LIMIT (TX_RING_SIZE-TX_MULTICAST_RESERV)
80 /* Hysteresis marking queue as no longer full. */
81 #define TX_QUEUE_UNFULL (TX_QUEUE_LIMIT-4)
82
83 /* Operational parameters that usually are not changed. */
84
85 /* Time in jiffies before concluding the transmitter is hung. */
86 #define TX_TIMEOUT (2*HZ)
87 /* Size of an pre-allocated Rx buffer: <Ethernet MTU> + slack.*/
88 #define PKT_BUF_SZ 1536
89
90 #include <linux/module.h>
91
92 #include <linux/kernel.h>
93 #include <linux/string.h>
94 #include <linux/errno.h>
95 #include <linux/ioport.h>
96 #include <linux/slab.h>
97 #include <linux/interrupt.h>
98 #include <linux/timer.h>
99 #include <linux/pci.h>
100 #include <linux/spinlock.h>
101 #include <linux/init.h>
102 #include <linux/mii.h>
103 #include <linux/delay.h>
104 #include <linux/bitops.h>
105
106 #include <asm/io.h>
107 #include <asm/uaccess.h>
108 #include <asm/irq.h>
109
110 #include <linux/netdevice.h>
111 #include <linux/etherdevice.h>
112 #include <linux/rtnetlink.h>
113 #include <linux/skbuff.h>
114 #include <linux/ethtool.h>
115
116 static int use_io;
117 static int debug = -1;
118 #define DEBUG_DEFAULT (NETIF_MSG_DRV | \
119 NETIF_MSG_HW | \
120 NETIF_MSG_RX_ERR | \
121 NETIF_MSG_TX_ERR)
122 #define DEBUG ((debug >= 0) ? (1<<debug)-1 : DEBUG_DEFAULT)
123
124
125 MODULE_AUTHOR("Maintainer: Andrey V. Savochkin <saw@saw.sw.com.sg>");
126 MODULE_DESCRIPTION("Intel i82557/i82558/i82559 PCI EtherExpressPro driver");
127 MODULE_LICENSE("GPL");
128 module_param(use_io, int, 0);
129 module_param(debug, int, 0);
130 module_param_array(options, int, NULL, 0);
131 module_param_array(full_duplex, int, NULL, 0);
132 module_param(congenb, int, 0);
133 module_param(txfifo, int, 0);
134 module_param(rxfifo, int, 0);
135 module_param(txdmacount, int, 0);
136 module_param(rxdmacount, int, 0);
137 module_param(rx_copybreak, int, 0);
138 module_param(max_interrupt_work, int, 0);
139 module_param(multicast_filter_limit, int, 0);
140 MODULE_PARM_DESC(debug, "debug level (0-6)");
141 MODULE_PARM_DESC(options, "Bits 0-3: transceiver type, bit 4: full duplex, bit 5: 100Mbps");
142 MODULE_PARM_DESC(full_duplex, "full duplex setting(s) (1)");
143 MODULE_PARM_DESC(congenb, "Enable congestion control (1)");
144 MODULE_PARM_DESC(txfifo, "Tx FIFO threshold in 4 byte units, (0-15)");
145 MODULE_PARM_DESC(rxfifo, "Rx FIFO threshold in 4 byte units, (0-15)");
146 MODULE_PARM_DESC(txdmacount, "Tx DMA burst length; 128 - disable (0-128)");
147 MODULE_PARM_DESC(rxdmacount, "Rx DMA burst length; 128 - disable (0-128)");
148 MODULE_PARM_DESC(rx_copybreak, "copy breakpoint for copy-only-tiny-frames");
149 MODULE_PARM_DESC(max_interrupt_work, "maximum events handled per interrupt");
150 MODULE_PARM_DESC(multicast_filter_limit, "maximum number of filtered multicast addresses");
151
152 #define RUN_AT(x) (jiffies + (x))
153
154 #define netdevice_start(dev)
155 #define netdevice_stop(dev)
156 #define netif_set_tx_timeout(dev, tf, tm) \
157 do { \
158 (dev)->tx_timeout = (tf); \
159 (dev)->watchdog_timeo = (tm); \
160 } while(0)
161
162
163
164 /*
165 Theory of Operation
166
167 I. Board Compatibility
168
169 This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's
170 single-chip fast Ethernet controller for PCI, as used on the Intel
171 EtherExpress Pro 100 adapter.
172
173 II. Board-specific settings
174
175 PCI bus devices are configured by the system at boot time, so no jumpers
176 need to be set on the board. The system BIOS should be set to assign the
177 PCI INTA signal to an otherwise unused system IRQ line. While it's
178 possible to share PCI interrupt lines, it negatively impacts performance and
179 only recent kernels support it.
180
181 III. Driver operation
182
183 IIIA. General
184 The Speedo3 is very similar to other Intel network chips, that is to say
185 "apparently designed on a different planet". This chips retains the complex
186 Rx and Tx descriptors and multiple buffers pointers as previous chips, but
187 also has simplified Tx and Rx buffer modes. This driver uses the "flexible"
188 Tx mode, but in a simplified lower-overhead manner: it associates only a
189 single buffer descriptor with each frame descriptor.
190
191 Despite the extra space overhead in each receive skbuff, the driver must use
192 the simplified Rx buffer mode to assure that only a single data buffer is
193 associated with each RxFD. The driver implements this by reserving space
194 for the Rx descriptor at the head of each Rx skbuff.
195
196 The Speedo-3 has receive and command unit base addresses that are added to
197 almost all descriptor pointers. The driver sets these to zero, so that all
198 pointer fields are absolute addresses.
199
200 The System Control Block (SCB) of some previous Intel chips exists on the
201 chip in both PCI I/O and memory space. This driver uses the I/O space
202 registers, but might switch to memory mapped mode to better support non-x86
203 processors.
204
205 IIIB. Transmit structure
206
207 The driver must use the complex Tx command+descriptor mode in order to
208 have a indirect pointer to the skbuff data section. Each Tx command block
209 (TxCB) is associated with two immediately appended Tx Buffer Descriptor
210 (TxBD). A fixed ring of these TxCB+TxBD pairs are kept as part of the
211 speedo_private data structure for each adapter instance.
212
213 The newer i82558 explicitly supports this structure, and can read the two
214 TxBDs in the same PCI burst as the TxCB.
215
216 This ring structure is used for all normal transmit packets, but the
217 transmit packet descriptors aren't long enough for most non-Tx commands such
218 as CmdConfigure. This is complicated by the possibility that the chip has
219 already loaded the link address in the previous descriptor. So for these
220 commands we convert the next free descriptor on the ring to a NoOp, and point
221 that descriptor's link to the complex command.
222
223 An additional complexity of these non-transmit commands are that they may be
224 added asynchronous to the normal transmit queue, so we disable interrupts
225 whenever the Tx descriptor ring is manipulated.
226
227 A notable aspect of these special configure commands is that they do
228 work with the normal Tx ring entry scavenge method. The Tx ring scavenge
229 is done at interrupt time using the 'dirty_tx' index, and checking for the
230 command-complete bit. While the setup frames may have the NoOp command on the
231 Tx ring marked as complete, but not have completed the setup command, this
232 is not a problem. The tx_ring entry can be still safely reused, as the
233 tx_skbuff[] entry is always empty for config_cmd and mc_setup frames.
234
235 Commands may have bits set e.g. CmdSuspend in the command word to either
236 suspend or stop the transmit/command unit. This driver always flags the last
237 command with CmdSuspend, erases the CmdSuspend in the previous command, and
238 then issues a CU_RESUME.
239 Note: Watch out for the potential race condition here: imagine
240 erasing the previous suspend
241 the chip processes the previous command
242 the chip processes the final command, and suspends
243 doing the CU_RESUME
244 the chip processes the next-yet-valid post-final-command.
245 So blindly sending a CU_RESUME is only safe if we do it immediately after
246 after erasing the previous CmdSuspend, without the possibility of an
247 intervening delay. Thus the resume command is always within the
248 interrupts-disabled region. This is a timing dependence, but handling this
249 condition in a timing-independent way would considerably complicate the code.
250
251 Note: In previous generation Intel chips, restarting the command unit was a
252 notoriously slow process. This is presumably no longer true.
253
254 IIIC. Receive structure
255
256 Because of the bus-master support on the Speedo3 this driver uses the new
257 SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer.
258 This scheme allocates full-sized skbuffs as receive buffers. The value
259 SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to
260 trade-off the memory wasted by passing the full-sized skbuff to the queue
261 layer for all frames vs. the copying cost of copying a frame to a
262 correctly-sized skbuff.
263
264 For small frames the copying cost is negligible (esp. considering that we
265 are pre-loading the cache with immediately useful header information), so we
266 allocate a new, minimally-sized skbuff. For large frames the copying cost
267 is non-trivial, and the larger copy might flush the cache of useful data, so
268 we pass up the skbuff the packet was received into.
269
270 IV. Notes
271
272 Thanks to Steve Williams of Intel for arranging the non-disclosure agreement
273 that stated that I could disclose the information. But I still resent
274 having to sign an Intel NDA when I'm helping Intel sell their own product!
275
276 */
277
278 static int speedo_found1(struct pci_dev *pdev, void __iomem *ioaddr, int fnd_cnt, int acpi_idle_state);
279
280 /* Offsets to the various registers.
281 All accesses need not be longword aligned. */
282 enum speedo_offsets {
283 SCBStatus = 0, SCBCmd = 2, /* Rx/Command Unit command and status. */
284 SCBIntmask = 3,
285 SCBPointer = 4, /* General purpose pointer. */
286 SCBPort = 8, /* Misc. commands and operands. */
287 SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
288 SCBCtrlMDI = 16, /* MDI interface control. */
289 SCBEarlyRx = 20, /* Early receive byte count. */
290 };
291 /* Commands that can be put in a command list entry. */
292 enum commands {
293 CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000,
294 CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000,
295 CmdDump = 0x60000, CmdDiagnose = 0x70000,
296 CmdSuspend = 0x40000000, /* Suspend after completion. */
297 CmdIntr = 0x20000000, /* Interrupt after completion. */
298 CmdTxFlex = 0x00080000, /* Use "Flexible mode" for CmdTx command. */
299 };
300 /* Clear CmdSuspend (1<<30) avoiding interference with the card access to the
301 status bits. Previous driver versions used separate 16 bit fields for
302 commands and statuses. --SAW
303 */
304 #if defined(__alpha__)
305 # define clear_suspend(cmd) clear_bit(30, &(cmd)->cmd_status);
306 #else
307 # if defined(__LITTLE_ENDIAN)
308 # define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x4000
309 # elif defined(__BIG_ENDIAN)
310 # define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x0040
311 # else
312 # error Unsupported byteorder
313 # endif
314 #endif
315
316 enum SCBCmdBits {
317 SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000,
318 SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400,
319 SCBTriggerIntr=0x0200, SCBMaskAll=0x0100,
320 /* The rest are Rx and Tx commands. */
321 CUStart=0x0010, CUResume=0x0020, CUStatsAddr=0x0040, CUShowStats=0x0050,
322 CUCmdBase=0x0060, /* CU Base address (set to zero) . */
323 CUDumpStats=0x0070, /* Dump then reset stats counters. */
324 RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006,
325 RxResumeNoResources=0x0007,
326 };
327
328 enum SCBPort_cmds {
329 PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3,
330 };
331
332 /* The Speedo3 Rx and Tx frame/buffer descriptors. */
333 struct descriptor { /* A generic descriptor. */
334 volatile s32 cmd_status; /* All command and status fields. */
335 u32 link; /* struct descriptor * */
336 unsigned char params[0];
337 };
338
339 /* The Speedo3 Rx and Tx buffer descriptors. */
340 struct RxFD { /* Receive frame descriptor. */
341 volatile s32 status;
342 u32 link; /* struct RxFD * */
343 u32 rx_buf_addr; /* void * */
344 u32 count;
345 } RxFD_ALIGNMENT;
346
347 /* Selected elements of the Tx/RxFD.status word. */
348 enum RxFD_bits {
349 RxComplete=0x8000, RxOK=0x2000,
350 RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010,
351 RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002,
352 TxUnderrun=0x1000, StatusComplete=0x8000,
353 };
354
355 #define CONFIG_DATA_SIZE 22
356 struct TxFD { /* Transmit frame descriptor set. */
357 s32 status;
358 u32 link; /* void * */
359 u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
360 s32 count; /* # of TBD (=1), Tx start thresh., etc. */
361 /* This constitutes two "TBD" entries -- we only use one. */
362 #define TX_DESCR_BUF_OFFSET 16
363 u32 tx_buf_addr0; /* void *, frame to be transmitted. */
364 s32 tx_buf_size0; /* Length of Tx frame. */
365 u32 tx_buf_addr1; /* void *, frame to be transmitted. */
366 s32 tx_buf_size1; /* Length of Tx frame. */
367 /* the structure must have space for at least CONFIG_DATA_SIZE starting
368 * from tx_desc_addr field */
369 };
370
371 /* Multicast filter setting block. --SAW */
372 struct speedo_mc_block {
373 struct speedo_mc_block *next;
374 unsigned int tx;
375 dma_addr_t frame_dma;
376 unsigned int len;
377 struct descriptor frame __attribute__ ((__aligned__(16)));
378 };
379
380 /* Elements of the dump_statistics block. This block must be lword aligned. */
381 struct speedo_stats {
382 u32 tx_good_frames;
383 u32 tx_coll16_errs;
384 u32 tx_late_colls;
385 u32 tx_underruns;
386 u32 tx_lost_carrier;
387 u32 tx_deferred;
388 u32 tx_one_colls;
389 u32 tx_multi_colls;
390 u32 tx_total_colls;
391 u32 rx_good_frames;
392 u32 rx_crc_errs;
393 u32 rx_align_errs;
394 u32 rx_resource_errs;
395 u32 rx_overrun_errs;
396 u32 rx_colls_errs;
397 u32 rx_runt_errs;
398 u32 done_marker;
399 };
400
401 enum Rx_ring_state_bits {
402 RrNoMem=1, RrPostponed=2, RrNoResources=4, RrOOMReported=8,
403 };
404
405 /* Do not change the position (alignment) of the first few elements!
406 The later elements are grouped for cache locality.
407
408 Unfortunately, all the positions have been shifted since there.
409 A new re-alignment is required. 2000/03/06 SAW */
410 struct speedo_private {
411 void __iomem *regs;
412 struct TxFD *tx_ring; /* Commands (usually CmdTxPacket). */
413 struct RxFD *rx_ringp[RX_RING_SIZE]; /* Rx descriptor, used as ring. */
414 /* The addresses of a Tx/Rx-in-place packets/buffers. */
415 struct sk_buff *tx_skbuff[TX_RING_SIZE];
416 struct sk_buff *rx_skbuff[RX_RING_SIZE];
417 /* Mapped addresses of the rings. */
418 dma_addr_t tx_ring_dma;
419 #define TX_RING_ELEM_DMA(sp, n) ((sp)->tx_ring_dma + (n)*sizeof(struct TxFD))
420 dma_addr_t rx_ring_dma[RX_RING_SIZE];
421 struct descriptor *last_cmd; /* Last command sent. */
422 unsigned int cur_tx, dirty_tx; /* The ring entries to be free()ed. */
423 spinlock_t lock; /* Group with Tx control cache line. */
424 u32 tx_threshold; /* The value for txdesc.count. */
425 struct RxFD *last_rxf; /* Last filled RX buffer. */
426 dma_addr_t last_rxf_dma;
427 unsigned int cur_rx, dirty_rx; /* The next free ring entry */
428 long last_rx_time; /* Last Rx, in jiffies, to handle Rx hang. */
429 struct net_device_stats stats;
430 struct speedo_stats *lstats;
431 dma_addr_t lstats_dma;
432 int chip_id;
433 struct pci_dev *pdev;
434 struct timer_list timer; /* Media selection timer. */
435 struct speedo_mc_block *mc_setup_head; /* Multicast setup frame list head. */
436 struct speedo_mc_block *mc_setup_tail; /* Multicast setup frame list tail. */
437 long in_interrupt; /* Word-aligned dev->interrupt */
438 unsigned char acpi_pwr;
439 signed char rx_mode; /* Current PROMISC/ALLMULTI setting. */
440 unsigned int tx_full:1; /* The Tx queue is full. */
441 unsigned int flow_ctrl:1; /* Use 802.3x flow control. */
442 unsigned int rx_bug:1; /* Work around receiver hang errata. */
443 unsigned char default_port:8; /* Last dev->if_port value. */
444 unsigned char rx_ring_state; /* RX ring status flags. */
445 unsigned short phy[2]; /* PHY media interfaces available. */
446 unsigned short partner; /* Link partner caps. */
447 struct mii_if_info mii_if; /* MII API hooks, info */
448 u32 msg_enable; /* debug message level */
449 };
450
451 /* The parameters for a CmdConfigure operation.
452 There are so many options that it would be difficult to document each bit.
453 We mostly use the default or recommended settings. */
454 static const char i82557_config_cmd[CONFIG_DATA_SIZE] = {
455 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
456 0, 0x2E, 0, 0x60, 0,
457 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
458 0x3f, 0x05, };
459 static const char i82558_config_cmd[CONFIG_DATA_SIZE] = {
460 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
461 0, 0x2E, 0, 0x60, 0x08, 0x88,
462 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
463 0x31, 0x05, };
464
465 /* PHY media interface chips. */
466 static const char * const phys[] = {
467 "None", "i82553-A/B", "i82553-C", "i82503",
468 "DP83840", "80c240", "80c24", "i82555",
469 "unknown-8", "unknown-9", "DP83840A", "unknown-11",
470 "unknown-12", "unknown-13", "unknown-14", "unknown-15", };
471 enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240,
472 S80C24, I82555, DP83840A=10, };
473 static const char is_mii[] = { 0, 1, 1, 0, 1, 1, 0, 1 };
474 #define EE_READ_CMD (6)
475
476 static int eepro100_init_one(struct pci_dev *pdev,
477 const struct pci_device_id *ent);
478
479 static int do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len);
480 static int mdio_read(struct net_device *dev, int phy_id, int location);
481 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
482 static int speedo_open(struct net_device *dev);
483 static void speedo_resume(struct net_device *dev);
484 static void speedo_timer(unsigned long data);
485 static void speedo_init_rx_ring(struct net_device *dev);
486 static void speedo_tx_timeout(struct net_device *dev);
487 static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev);
488 static void speedo_refill_rx_buffers(struct net_device *dev, int force);
489 static int speedo_rx(struct net_device *dev);
490 static void speedo_tx_buffer_gc(struct net_device *dev);
491 static irqreturn_t speedo_interrupt(int irq, void *dev_instance);
492 static int speedo_close(struct net_device *dev);
493 static struct net_device_stats *speedo_get_stats(struct net_device *dev);
494 static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
495 static void set_rx_mode(struct net_device *dev);
496 static void speedo_show_state(struct net_device *dev);
497 static const struct ethtool_ops ethtool_ops;
498
499
500
501 #ifdef honor_default_port
502 /* Optional driver feature to allow forcing the transceiver setting.
503 Not recommended. */
504 static int mii_ctrl[8] = { 0x3300, 0x3100, 0x0000, 0x0100,
505 0x2000, 0x2100, 0x0400, 0x3100};
506 #endif
507
508 /* How to wait for the command unit to accept a command.
509 Typically this takes 0 ticks. */
510 static inline unsigned char wait_for_cmd_done(struct net_device *dev,
511 struct speedo_private *sp)
512 {
513 int wait = 1000;
514 void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
515 unsigned char r;
516
517 do {
518 udelay(1);
519 r = ioread8(cmd_ioaddr);
520 } while(r && --wait >= 0);
521
522 if (wait < 0)
523 printk(KERN_ALERT "%s: wait_for_cmd_done timeout!\n", dev->name);
524 return r;
525 }
526
527 static int __devinit eepro100_init_one (struct pci_dev *pdev,
528 const struct pci_device_id *ent)
529 {
530 void __iomem *ioaddr;
531 int irq, pci_bar;
532 int acpi_idle_state = 0, pm;
533 static int cards_found /* = 0 */;
534 unsigned long pci_base;
535
536 #ifndef MODULE
537 /* when built-in, we only print version if device is found */
538 static int did_version;
539 if (did_version++ == 0)
540 printk(version);
541 #endif
542
543 /* save power state before pci_enable_device overwrites it */
544 pm = pci_find_capability(pdev, PCI_CAP_ID_PM);
545 if (pm) {
546 u16 pwr_command;
547 pci_read_config_word(pdev, pm + PCI_PM_CTRL, &pwr_command);
548 acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
549 }
550
551 if (pci_enable_device(pdev))
552 goto err_out_free_mmio_region;
553
554 pci_set_master(pdev);
555
556 if (!request_region(pci_resource_start(pdev, 1),
557 pci_resource_len(pdev, 1), "eepro100")) {
558 dev_err(&pdev->dev, "eepro100: cannot reserve I/O ports\n");
559 goto err_out_none;
560 }
561 if (!request_mem_region(pci_resource_start(pdev, 0),
562 pci_resource_len(pdev, 0), "eepro100")) {
563 dev_err(&pdev->dev, "eepro100: cannot reserve MMIO region\n");
564 goto err_out_free_pio_region;
565 }
566
567 irq = pdev->irq;
568 pci_bar = use_io ? 1 : 0;
569 pci_base = pci_resource_start(pdev, pci_bar);
570 if (DEBUG & NETIF_MSG_PROBE)
571 printk("Found Intel i82557 PCI Speedo at %#lx, IRQ %d.\n",
572 pci_base, irq);
573
574 ioaddr = pci_iomap(pdev, pci_bar, 0);
575 if (!ioaddr) {
576 dev_err(&pdev->dev, "eepro100: cannot remap IO\n");
577 goto err_out_free_mmio_region;
578 }
579
580 if (speedo_found1(pdev, ioaddr, cards_found, acpi_idle_state) == 0)
581 cards_found++;
582 else
583 goto err_out_iounmap;
584
585 return 0;
586
587 err_out_iounmap: ;
588 pci_iounmap(pdev, ioaddr);
589 err_out_free_mmio_region:
590 release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
591 err_out_free_pio_region:
592 release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
593 err_out_none:
594 return -ENODEV;
595 }
596
597 #ifdef CONFIG_NET_POLL_CONTROLLER
598 /*
599 * Polling 'interrupt' - used by things like netconsole to send skbs
600 * without having to re-enable interrupts. It's not called while
601 * the interrupt routine is executing.
602 */
603
604 static void poll_speedo (struct net_device *dev)
605 {
606 /* disable_irq is not very nice, but with the funny lockless design
607 we have no other choice. */
608 disable_irq(dev->irq);
609 speedo_interrupt (dev->irq, dev);
610 enable_irq(dev->irq);
611 }
612 #endif
613
614 static int __devinit speedo_found1(struct pci_dev *pdev,
615 void __iomem *ioaddr, int card_idx, int acpi_idle_state)
616 {
617 struct net_device *dev;
618 struct speedo_private *sp;
619 const char *product;
620 int i, option;
621 u16 eeprom[0x100];
622 int size;
623 void *tx_ring_space;
624 dma_addr_t tx_ring_dma;
625
626 size = TX_RING_SIZE * sizeof(struct TxFD) + sizeof(struct speedo_stats);
627 tx_ring_space = pci_alloc_consistent(pdev, size, &tx_ring_dma);
628 if (tx_ring_space == NULL)
629 return -1;
630
631 dev = alloc_etherdev(sizeof(struct speedo_private));
632 if (dev == NULL) {
633 printk(KERN_ERR "eepro100: Could not allocate ethernet device.\n");
634 pci_free_consistent(pdev, size, tx_ring_space, tx_ring_dma);
635 return -1;
636 }
637
638 SET_MODULE_OWNER(dev);
639 SET_NETDEV_DEV(dev, &pdev->dev);
640
641 if (dev->mem_start > 0)
642 option = dev->mem_start;
643 else if (card_idx >= 0 && options[card_idx] >= 0)
644 option = options[card_idx];
645 else
646 option = 0;
647
648 rtnl_lock();
649 if (dev_alloc_name(dev, dev->name) < 0)
650 goto err_free_unlock;
651
652 /* Read the station address EEPROM before doing the reset.
653 Nominally his should even be done before accepting the device, but
654 then we wouldn't have a device name with which to report the error.
655 The size test is for 6 bit vs. 8 bit address serial EEPROMs.
656 */
657 {
658 void __iomem *iobase;
659 int read_cmd, ee_size;
660 u16 sum;
661 int j;
662
663 /* Use IO only to avoid postponed writes and satisfy EEPROM timing
664 requirements. */
665 iobase = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
666 if (!iobase)
667 goto err_free_unlock;
668 if ((do_eeprom_cmd(iobase, EE_READ_CMD << 24, 27) & 0xffe0000)
669 == 0xffe0000) {
670 ee_size = 0x100;
671 read_cmd = EE_READ_CMD << 24;
672 } else {
673 ee_size = 0x40;
674 read_cmd = EE_READ_CMD << 22;
675 }
676
677 for (j = 0, i = 0, sum = 0; i < ee_size; i++) {
678 u16 value = do_eeprom_cmd(iobase, read_cmd | (i << 16), 27);
679 eeprom[i] = value;
680 sum += value;
681 if (i < 3) {
682 dev->dev_addr[j++] = value;
683 dev->dev_addr[j++] = value >> 8;
684 }
685 }
686 if (sum != 0xBABA)
687 printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, "
688 "check settings before activating this device!\n",
689 dev->name, sum);
690 /* Don't unregister_netdev(dev); as the EEPro may actually be
691 usable, especially if the MAC address is set later.
692 On the other hand, it may be unusable if MDI data is corrupted. */
693
694 pci_iounmap(pdev, iobase);
695 }
696
697 /* Reset the chip: stop Tx and Rx processes and clear counters.
698 This takes less than 10usec and will easily finish before the next
699 action. */
700 iowrite32(PortReset, ioaddr + SCBPort);
701 ioread32(ioaddr + SCBPort);
702 udelay(10);
703
704 if (eeprom[3] & 0x0100)
705 product = "OEM i82557/i82558 10/100 Ethernet";
706 else
707 product = pci_name(pdev);
708
709 printk(KERN_INFO "%s: %s, ", dev->name, product);
710
711 for (i = 0; i < 5; i++)
712 printk("%2.2X:", dev->dev_addr[i]);
713 printk("%2.2X, ", dev->dev_addr[i]);
714 printk("IRQ %d.\n", pdev->irq);
715
716 sp = netdev_priv(dev);
717
718 /* we must initialize this early, for mdio_{read,write} */
719 sp->regs = ioaddr;
720
721 #if 1 || defined(kernel_bloat)
722 /* OK, this is pure kernel bloat. I don't like it when other drivers
723 waste non-pageable kernel space to emit similar messages, but I need
724 them for bug reports. */
725 {
726 const char *connectors[] = {" RJ45", " BNC", " AUI", " MII"};
727 /* The self-test results must be paragraph aligned. */
728 volatile s32 *self_test_results;
729 int boguscnt = 16000; /* Timeout for set-test. */
730 if ((eeprom[3] & 0x03) != 0x03)
731 printk(KERN_INFO " Receiver lock-up bug exists -- enabling"
732 " work-around.\n");
733 printk(KERN_INFO " Board assembly %4.4x%2.2x-%3.3d, Physical"
734 " connectors present:",
735 eeprom[8], eeprom[9]>>8, eeprom[9] & 0xff);
736 for (i = 0; i < 4; i++)
737 if (eeprom[5] & (1<<i))
738 printk(connectors[i]);
739 printk("\n"KERN_INFO" Primary interface chip %s PHY #%d.\n",
740 phys[(eeprom[6]>>8)&15], eeprom[6] & 0x1f);
741 if (eeprom[7] & 0x0700)
742 printk(KERN_INFO " Secondary interface chip %s.\n",
743 phys[(eeprom[7]>>8)&7]);
744 if (((eeprom[6]>>8) & 0x3f) == DP83840
745 || ((eeprom[6]>>8) & 0x3f) == DP83840A) {
746 int mdi_reg23 = mdio_read(dev, eeprom[6] & 0x1f, 23) | 0x0422;
747 if (congenb)
748 mdi_reg23 |= 0x0100;
749 printk(KERN_INFO" DP83840 specific setup, setting register 23 to %4.4x.\n",
750 mdi_reg23);
751 mdio_write(dev, eeprom[6] & 0x1f, 23, mdi_reg23);
752 }
753 if ((option >= 0) && (option & 0x70)) {
754 printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n",
755 (option & 0x20 ? 100 : 10),
756 (option & 0x10 ? "full" : "half"));
757 mdio_write(dev, eeprom[6] & 0x1f, MII_BMCR,
758 ((option & 0x20) ? 0x2000 : 0) | /* 100mbps? */
759 ((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */
760 }
761
762 /* Perform a system self-test. */
763 self_test_results = (s32*) ((((long) tx_ring_space) + 15) & ~0xf);
764 self_test_results[0] = 0;
765 self_test_results[1] = -1;
766 iowrite32(tx_ring_dma | PortSelfTest, ioaddr + SCBPort);
767 do {
768 udelay(10);
769 } while (self_test_results[1] == -1 && --boguscnt >= 0);
770
771 if (boguscnt < 0) { /* Test optimized out. */
772 printk(KERN_ERR "Self test failed, status %8.8x:\n"
773 KERN_ERR " Failure to initialize the i82557.\n"
774 KERN_ERR " Verify that the card is a bus-master"
775 " capable slot.\n",
776 self_test_results[1]);
777 } else
778 printk(KERN_INFO " General self-test: %s.\n"
779 KERN_INFO " Serial sub-system self-test: %s.\n"
780 KERN_INFO " Internal registers self-test: %s.\n"
781 KERN_INFO " ROM checksum self-test: %s (%#8.8x).\n",
782 self_test_results[1] & 0x1000 ? "failed" : "passed",
783 self_test_results[1] & 0x0020 ? "failed" : "passed",
784 self_test_results[1] & 0x0008 ? "failed" : "passed",
785 self_test_results[1] & 0x0004 ? "failed" : "passed",
786 self_test_results[0]);
787 }
788 #endif /* kernel_bloat */
789
790 iowrite32(PortReset, ioaddr + SCBPort);
791 ioread32(ioaddr + SCBPort);
792 udelay(10);
793
794 /* Return the chip to its original power state. */
795 pci_set_power_state(pdev, acpi_idle_state);
796
797 pci_set_drvdata (pdev, dev);
798 SET_NETDEV_DEV(dev, &pdev->dev);
799
800 dev->irq = pdev->irq;
801
802 sp->pdev = pdev;
803 sp->msg_enable = DEBUG;
804 sp->acpi_pwr = acpi_idle_state;
805 sp->tx_ring = tx_ring_space;
806 sp->tx_ring_dma = tx_ring_dma;
807 sp->lstats = (struct speedo_stats *)(sp->tx_ring + TX_RING_SIZE);
808 sp->lstats_dma = TX_RING_ELEM_DMA(sp, TX_RING_SIZE);
809 init_timer(&sp->timer); /* used in ioctl() */
810 spin_lock_init(&sp->lock);
811
812 sp->mii_if.full_duplex = option >= 0 && (option & 0x10) ? 1 : 0;
813 if (card_idx >= 0) {
814 if (full_duplex[card_idx] >= 0)
815 sp->mii_if.full_duplex = full_duplex[card_idx];
816 }
817 sp->default_port = option >= 0 ? (option & 0x0f) : 0;
818
819 sp->phy[0] = eeprom[6];
820 sp->phy[1] = eeprom[7];
821
822 sp->mii_if.phy_id = eeprom[6] & 0x1f;
823 sp->mii_if.phy_id_mask = 0x1f;
824 sp->mii_if.reg_num_mask = 0x1f;
825 sp->mii_if.dev = dev;
826 sp->mii_if.mdio_read = mdio_read;
827 sp->mii_if.mdio_write = mdio_write;
828
829 sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1;
830 if (((pdev->device > 0x1030 && (pdev->device < 0x103F)))
831 || (pdev->device == 0x2449) || (pdev->device == 0x2459)
832 || (pdev->device == 0x245D)) {
833 sp->chip_id = 1;
834 }
835
836 if (sp->rx_bug)
837 printk(KERN_INFO " Receiver lock-up workaround activated.\n");
838
839 /* The Speedo-specific entries in the device structure. */
840 dev->open = &speedo_open;
841 dev->hard_start_xmit = &speedo_start_xmit;
842 netif_set_tx_timeout(dev, &speedo_tx_timeout, TX_TIMEOUT);
843 dev->stop = &speedo_close;
844 dev->get_stats = &speedo_get_stats;
845 dev->set_multicast_list = &set_rx_mode;
846 dev->do_ioctl = &speedo_ioctl;
847 SET_ETHTOOL_OPS(dev, &ethtool_ops);
848 #ifdef CONFIG_NET_POLL_CONTROLLER
849 dev->poll_controller = &poll_speedo;
850 #endif
851
852 if (register_netdevice(dev))
853 goto err_free_unlock;
854 rtnl_unlock();
855
856 return 0;
857
858 err_free_unlock:
859 rtnl_unlock();
860 free_netdev(dev);
861 return -1;
862 }
863
864 static void do_slow_command(struct net_device *dev, struct speedo_private *sp, int cmd)
865 {
866 void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
867 int wait = 0;
868 do
869 if (ioread8(cmd_ioaddr) == 0) break;
870 while(++wait <= 200);
871 if (wait > 100)
872 printk(KERN_ERR "Command %4.4x never accepted (%d polls)!\n",
873 ioread8(cmd_ioaddr), wait);
874
875 iowrite8(cmd, cmd_ioaddr);
876
877 for (wait = 0; wait <= 100; wait++)
878 if (ioread8(cmd_ioaddr) == 0) return;
879 for (; wait <= 20000; wait++)
880 if (ioread8(cmd_ioaddr) == 0) return;
881 else udelay(1);
882 printk(KERN_ERR "Command %4.4x was not accepted after %d polls!"
883 " Current status %8.8x.\n",
884 cmd, wait, ioread32(sp->regs + SCBStatus));
885 }
886
887 /* Serial EEPROM section.
888 A "bit" grungy, but we work our way through bit-by-bit :->. */
889 /* EEPROM_Ctrl bits. */
890 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
891 #define EE_CS 0x02 /* EEPROM chip select. */
892 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
893 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
894 #define EE_ENB (0x4800 | EE_CS)
895 #define EE_WRITE_0 0x4802
896 #define EE_WRITE_1 0x4806
897 #define EE_OFFSET SCBeeprom
898
899 /* The fixes for the code were kindly provided by Dragan Stancevic
900 <visitor@valinux.com> to strictly follow Intel specifications of EEPROM
901 access timing.
902 The publicly available sheet 64486302 (sec. 3.1) specifies 1us access
903 interval for serial EEPROM. However, it looks like that there is an
904 additional requirement dictating larger udelay's in the code below.
905 2000/05/24 SAW */
906 static int __devinit do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len)
907 {
908 unsigned retval = 0;
909 void __iomem *ee_addr = ioaddr + SCBeeprom;
910
911 iowrite16(EE_ENB, ee_addr); udelay(2);
912 iowrite16(EE_ENB | EE_SHIFT_CLK, ee_addr); udelay(2);
913
914 /* Shift the command bits out. */
915 do {
916 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
917 iowrite16(dataval, ee_addr); udelay(2);
918 iowrite16(dataval | EE_SHIFT_CLK, ee_addr); udelay(2);
919 retval = (retval << 1) | ((ioread16(ee_addr) & EE_DATA_READ) ? 1 : 0);
920 } while (--cmd_len >= 0);
921 iowrite16(EE_ENB, ee_addr); udelay(2);
922
923 /* Terminate the EEPROM access. */
924 iowrite16(EE_ENB & ~EE_CS, ee_addr);
925 return retval;
926 }
927
928 static int mdio_read(struct net_device *dev, int phy_id, int location)
929 {
930 struct speedo_private *sp = netdev_priv(dev);
931 void __iomem *ioaddr = sp->regs;
932 int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
933 iowrite32(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI);
934 do {
935 val = ioread32(ioaddr + SCBCtrlMDI);
936 if (--boguscnt < 0) {
937 printk(KERN_ERR " mdio_read() timed out with val = %8.8x.\n", val);
938 break;
939 }
940 } while (! (val & 0x10000000));
941 return val & 0xffff;
942 }
943
944 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
945 {
946 struct speedo_private *sp = netdev_priv(dev);
947 void __iomem *ioaddr = sp->regs;
948 int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
949 iowrite32(0x04000000 | (location<<16) | (phy_id<<21) | value,
950 ioaddr + SCBCtrlMDI);
951 do {
952 val = ioread32(ioaddr + SCBCtrlMDI);
953 if (--boguscnt < 0) {
954 printk(KERN_ERR" mdio_write() timed out with val = %8.8x.\n", val);
955 break;
956 }
957 } while (! (val & 0x10000000));
958 }
959
960 static int
961 speedo_open(struct net_device *dev)
962 {
963 struct speedo_private *sp = netdev_priv(dev);
964 void __iomem *ioaddr = sp->regs;
965 int retval;
966
967 if (netif_msg_ifup(sp))
968 printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", dev->name, dev->irq);
969
970 pci_set_power_state(sp->pdev, PCI_D0);
971
972 /* Set up the Tx queue early.. */
973 sp->cur_tx = 0;
974 sp->dirty_tx = 0;
975 sp->last_cmd = NULL;
976 sp->tx_full = 0;
977 sp->in_interrupt = 0;
978
979 /* .. we can safely take handler calls during init. */
980 retval = request_irq(dev->irq, &speedo_interrupt, IRQF_SHARED, dev->name, dev);
981 if (retval) {
982 return retval;
983 }
984
985 dev->if_port = sp->default_port;
986
987 #ifdef oh_no_you_dont_unless_you_honour_the_options_passed_in_to_us
988 /* Retrigger negotiation to reset previous errors. */
989 if ((sp->phy[0] & 0x8000) == 0) {
990 int phy_addr = sp->phy[0] & 0x1f ;
991 /* Use 0x3300 for restarting NWay, other values to force xcvr:
992 0x0000 10-HD
993 0x0100 10-FD
994 0x2000 100-HD
995 0x2100 100-FD
996 */
997 #ifdef honor_default_port
998 mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
999 #else
1000 mdio_write(dev, phy_addr, MII_BMCR, 0x3300);
1001 #endif
1002 }
1003 #endif
1004
1005 speedo_init_rx_ring(dev);
1006
1007 /* Fire up the hardware. */
1008 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1009 speedo_resume(dev);
1010
1011 netdevice_start(dev);
1012 netif_start_queue(dev);
1013
1014 /* Setup the chip and configure the multicast list. */
1015 sp->mc_setup_head = NULL;
1016 sp->mc_setup_tail = NULL;
1017 sp->flow_ctrl = sp->partner = 0;
1018 sp->rx_mode = -1; /* Invalid -> always reset the mode. */
1019 set_rx_mode(dev);
1020 if ((sp->phy[0] & 0x8000) == 0)
1021 sp->mii_if.advertising = mdio_read(dev, sp->phy[0] & 0x1f, MII_ADVERTISE);
1022
1023 mii_check_link(&sp->mii_if);
1024
1025 if (netif_msg_ifup(sp)) {
1026 printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n",
1027 dev->name, ioread16(ioaddr + SCBStatus));
1028 }
1029
1030 /* Set the timer. The timer serves a dual purpose:
1031 1) to monitor the media interface (e.g. link beat) and perhaps switch
1032 to an alternate media type
1033 2) to monitor Rx activity, and restart the Rx process if the receiver
1034 hangs. */
1035 sp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */
1036 sp->timer.data = (unsigned long)dev;
1037 sp->timer.function = &speedo_timer; /* timer handler */
1038 add_timer(&sp->timer);
1039
1040 /* No need to wait for the command unit to accept here. */
1041 if ((sp->phy[0] & 0x8000) == 0)
1042 mdio_read(dev, sp->phy[0] & 0x1f, MII_BMCR);
1043
1044 return 0;
1045 }
1046
1047 /* Start the chip hardware after a full reset. */
1048 static void speedo_resume(struct net_device *dev)
1049 {
1050 struct speedo_private *sp = netdev_priv(dev);
1051 void __iomem *ioaddr = sp->regs;
1052
1053 /* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */
1054 sp->tx_threshold = 0x01208000;
1055
1056 /* Set the segment registers to '0'. */
1057 if (wait_for_cmd_done(dev, sp) != 0) {
1058 iowrite32(PortPartialReset, ioaddr + SCBPort);
1059 udelay(10);
1060 }
1061
1062 iowrite32(0, ioaddr + SCBPointer);
1063 ioread32(ioaddr + SCBPointer); /* Flush to PCI. */
1064 udelay(10); /* Bogus, but it avoids the bug. */
1065
1066 /* Note: these next two operations can take a while. */
1067 do_slow_command(dev, sp, RxAddrLoad);
1068 do_slow_command(dev, sp, CUCmdBase);
1069
1070 /* Load the statistics block and rx ring addresses. */
1071 iowrite32(sp->lstats_dma, ioaddr + SCBPointer);
1072 ioread32(ioaddr + SCBPointer); /* Flush to PCI */
1073
1074 iowrite8(CUStatsAddr, ioaddr + SCBCmd);
1075 sp->lstats->done_marker = 0;
1076 wait_for_cmd_done(dev, sp);
1077
1078 if (sp->rx_ringp[sp->cur_rx % RX_RING_SIZE] == NULL) {
1079 if (netif_msg_rx_err(sp))
1080 printk(KERN_DEBUG "%s: NULL cur_rx in speedo_resume().\n",
1081 dev->name);
1082 } else {
1083 iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
1084 ioaddr + SCBPointer);
1085 ioread32(ioaddr + SCBPointer); /* Flush to PCI */
1086 }
1087
1088 /* Note: RxStart should complete instantly. */
1089 do_slow_command(dev, sp, RxStart);
1090 do_slow_command(dev, sp, CUDumpStats);
1091
1092 /* Fill the first command with our physical address. */
1093 {
1094 struct descriptor *ias_cmd;
1095
1096 ias_cmd =
1097 (struct descriptor *)&sp->tx_ring[sp->cur_tx++ % TX_RING_SIZE];
1098 /* Avoid a bug(?!) here by marking the command already completed. */
1099 ias_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000);
1100 ias_cmd->link =
1101 cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
1102 memcpy(ias_cmd->params, dev->dev_addr, 6);
1103 if (sp->last_cmd)
1104 clear_suspend(sp->last_cmd);
1105 sp->last_cmd = ias_cmd;
1106 }
1107
1108 /* Start the chip's Tx process and unmask interrupts. */
1109 iowrite32(TX_RING_ELEM_DMA(sp, sp->dirty_tx % TX_RING_SIZE),
1110 ioaddr + SCBPointer);
1111 /* We are not ACK-ing FCP and ER in the interrupt handler yet so they should
1112 remain masked --Dragan */
1113 iowrite16(CUStart | SCBMaskEarlyRx | SCBMaskFlowCtl, ioaddr + SCBCmd);
1114 }
1115
1116 /*
1117 * Sometimes the receiver stops making progress. This routine knows how to
1118 * get it going again, without losing packets or being otherwise nasty like
1119 * a chip reset would be. Previously the driver had a whole sequence
1120 * of if RxSuspended, if it's no buffers do one thing, if it's no resources,
1121 * do another, etc. But those things don't really matter. Separate logic
1122 * in the ISR provides for allocating buffers--the other half of operation
1123 * is just making sure the receiver is active. speedo_rx_soft_reset does that.
1124 * This problem with the old, more involved algorithm is shown up under
1125 * ping floods on the order of 60K packets/second on a 100Mbps fdx network.
1126 */
1127 static void
1128 speedo_rx_soft_reset(struct net_device *dev)
1129 {
1130 struct speedo_private *sp = netdev_priv(dev);
1131 struct RxFD *rfd;
1132 void __iomem *ioaddr;
1133
1134 ioaddr = sp->regs;
1135 if (wait_for_cmd_done(dev, sp) != 0) {
1136 printk("%s: previous command stalled\n", dev->name);
1137 return;
1138 }
1139 /*
1140 * Put the hardware into a known state.
1141 */
1142 iowrite8(RxAbort, ioaddr + SCBCmd);
1143
1144 rfd = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE];
1145
1146 rfd->rx_buf_addr = 0xffffffff;
1147
1148 if (wait_for_cmd_done(dev, sp) != 0) {
1149 printk("%s: RxAbort command stalled\n", dev->name);
1150 return;
1151 }
1152 iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
1153 ioaddr + SCBPointer);
1154 iowrite8(RxStart, ioaddr + SCBCmd);
1155 }
1156
1157
1158 /* Media monitoring and control. */
1159 static void speedo_timer(unsigned long data)
1160 {
1161 struct net_device *dev = (struct net_device *)data;
1162 struct speedo_private *sp = netdev_priv(dev);
1163 void __iomem *ioaddr = sp->regs;
1164 int phy_num = sp->phy[0] & 0x1f;
1165
1166 /* We have MII and lost link beat. */
1167 if ((sp->phy[0] & 0x8000) == 0) {
1168 int partner = mdio_read(dev, phy_num, MII_LPA);
1169 if (partner != sp->partner) {
1170 int flow_ctrl = sp->mii_if.advertising & partner & 0x0400 ? 1 : 0;
1171 if (netif_msg_link(sp)) {
1172 printk(KERN_DEBUG "%s: Link status change.\n", dev->name);
1173 printk(KERN_DEBUG "%s: Old partner %x, new %x, adv %x.\n",
1174 dev->name, sp->partner, partner, sp->mii_if.advertising);
1175 }
1176 sp->partner = partner;
1177 if (flow_ctrl != sp->flow_ctrl) {
1178 sp->flow_ctrl = flow_ctrl;
1179 sp->rx_mode = -1; /* Trigger a reload. */
1180 }
1181 }
1182 }
1183 mii_check_link(&sp->mii_if);
1184 if (netif_msg_timer(sp)) {
1185 printk(KERN_DEBUG "%s: Media control tick, status %4.4x.\n",
1186 dev->name, ioread16(ioaddr + SCBStatus));
1187 }
1188 if (sp->rx_mode < 0 ||
1189 (sp->rx_bug && jiffies - sp->last_rx_time > 2*HZ)) {
1190 /* We haven't received a packet in a Long Time. We might have been
1191 bitten by the receiver hang bug. This can be cleared by sending
1192 a set multicast list command. */
1193 if (netif_msg_timer(sp))
1194 printk(KERN_DEBUG "%s: Sending a multicast list set command"
1195 " from a timer routine,"
1196 " m=%d, j=%ld, l=%ld.\n",
1197 dev->name, sp->rx_mode, jiffies, sp->last_rx_time);
1198 set_rx_mode(dev);
1199 }
1200 /* We must continue to monitor the media. */
1201 sp->timer.expires = RUN_AT(2*HZ); /* 2.0 sec. */
1202 add_timer(&sp->timer);
1203 }
1204
1205 static void speedo_show_state(struct net_device *dev)
1206 {
1207 struct speedo_private *sp = netdev_priv(dev);
1208 int i;
1209
1210 if (netif_msg_pktdata(sp)) {
1211 printk(KERN_DEBUG "%s: Tx ring dump, Tx queue %u / %u:\n",
1212 dev->name, sp->cur_tx, sp->dirty_tx);
1213 for (i = 0; i < TX_RING_SIZE; i++)
1214 printk(KERN_DEBUG "%s: %c%c%2d %8.8x.\n", dev->name,
1215 i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ',
1216 i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ',
1217 i, sp->tx_ring[i].status);
1218
1219 printk(KERN_DEBUG "%s: Printing Rx ring"
1220 " (next to receive into %u, dirty index %u).\n",
1221 dev->name, sp->cur_rx, sp->dirty_rx);
1222 for (i = 0; i < RX_RING_SIZE; i++)
1223 printk(KERN_DEBUG "%s: %c%c%c%2d %8.8x.\n", dev->name,
1224 sp->rx_ringp[i] == sp->last_rxf ? 'l' : ' ',
1225 i == sp->dirty_rx % RX_RING_SIZE ? '*' : ' ',
1226 i == sp->cur_rx % RX_RING_SIZE ? '=' : ' ',
1227 i, (sp->rx_ringp[i] != NULL) ?
1228 (unsigned)sp->rx_ringp[i]->status : 0);
1229 }
1230
1231 #if 0
1232 {
1233 void __iomem *ioaddr = sp->regs;
1234 int phy_num = sp->phy[0] & 0x1f;
1235 for (i = 0; i < 16; i++) {
1236 /* FIXME: what does it mean? --SAW */
1237 if (i == 6) i = 21;
1238 printk(KERN_DEBUG "%s: PHY index %d register %d is %4.4x.\n",
1239 dev->name, phy_num, i, mdio_read(dev, phy_num, i));
1240 }
1241 }
1242 #endif
1243
1244 }
1245
1246 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1247 static void
1248 speedo_init_rx_ring(struct net_device *dev)
1249 {
1250 struct speedo_private *sp = netdev_priv(dev);
1251 struct RxFD *rxf, *last_rxf = NULL;
1252 dma_addr_t last_rxf_dma = 0 /* to shut up the compiler */;
1253 int i;
1254
1255 sp->cur_rx = 0;
1256
1257 for (i = 0; i < RX_RING_SIZE; i++) {
1258 struct sk_buff *skb;
1259 skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
1260 if (skb)
1261 rx_align(skb); /* Align IP on 16 byte boundary */
1262 sp->rx_skbuff[i] = skb;
1263 if (skb == NULL)
1264 break; /* OK. Just initially short of Rx bufs. */
1265 skb->dev = dev; /* Mark as being used by this device. */
1266 rxf = (struct RxFD *)skb->data;
1267 sp->rx_ringp[i] = rxf;
1268 sp->rx_ring_dma[i] =
1269 pci_map_single(sp->pdev, rxf,
1270 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_BIDIRECTIONAL);
1271 skb_reserve(skb, sizeof(struct RxFD));
1272 if (last_rxf) {
1273 last_rxf->link = cpu_to_le32(sp->rx_ring_dma[i]);
1274 pci_dma_sync_single_for_device(sp->pdev, last_rxf_dma,
1275 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1276 }
1277 last_rxf = rxf;
1278 last_rxf_dma = sp->rx_ring_dma[i];
1279 rxf->status = cpu_to_le32(0x00000001); /* '1' is flag value only. */
1280 rxf->link = 0; /* None yet. */
1281 /* This field unused by i82557. */
1282 rxf->rx_buf_addr = 0xffffffff;
1283 rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
1284 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[i],
1285 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1286 }
1287 sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1288 /* Mark the last entry as end-of-list. */
1289 last_rxf->status = cpu_to_le32(0xC0000002); /* '2' is flag value only. */
1290 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[RX_RING_SIZE-1],
1291 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1292 sp->last_rxf = last_rxf;
1293 sp->last_rxf_dma = last_rxf_dma;
1294 }
1295
1296 static void speedo_purge_tx(struct net_device *dev)
1297 {
1298 struct speedo_private *sp = netdev_priv(dev);
1299 int entry;
1300
1301 while ((int)(sp->cur_tx - sp->dirty_tx) > 0) {
1302 entry = sp->dirty_tx % TX_RING_SIZE;
1303 if (sp->tx_skbuff[entry]) {
1304 sp->stats.tx_errors++;
1305 pci_unmap_single(sp->pdev,
1306 le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
1307 sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
1308 dev_kfree_skb_irq(sp->tx_skbuff[entry]);
1309 sp->tx_skbuff[entry] = NULL;
1310 }
1311 sp->dirty_tx++;
1312 }
1313 while (sp->mc_setup_head != NULL) {
1314 struct speedo_mc_block *t;
1315 if (netif_msg_tx_err(sp))
1316 printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
1317 pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
1318 sp->mc_setup_head->len, PCI_DMA_TODEVICE);
1319 t = sp->mc_setup_head->next;
1320 kfree(sp->mc_setup_head);
1321 sp->mc_setup_head = t;
1322 }
1323 sp->mc_setup_tail = NULL;
1324 sp->tx_full = 0;
1325 netif_wake_queue(dev);
1326 }
1327
1328 static void reset_mii(struct net_device *dev)
1329 {
1330 struct speedo_private *sp = netdev_priv(dev);
1331
1332 /* Reset the MII transceiver, suggested by Fred Young @ scalable.com. */
1333 if ((sp->phy[0] & 0x8000) == 0) {
1334 int phy_addr = sp->phy[0] & 0x1f;
1335 int advertising = mdio_read(dev, phy_addr, MII_ADVERTISE);
1336 int mii_bmcr = mdio_read(dev, phy_addr, MII_BMCR);
1337 mdio_write(dev, phy_addr, MII_BMCR, 0x0400);
1338 mdio_write(dev, phy_addr, MII_BMSR, 0x0000);
1339 mdio_write(dev, phy_addr, MII_ADVERTISE, 0x0000);
1340 mdio_write(dev, phy_addr, MII_BMCR, 0x8000);
1341 #ifdef honor_default_port
1342 mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
1343 #else
1344 mdio_read(dev, phy_addr, MII_BMCR);
1345 mdio_write(dev, phy_addr, MII_BMCR, mii_bmcr);
1346 mdio_write(dev, phy_addr, MII_ADVERTISE, advertising);
1347 #endif
1348 }
1349 }
1350
1351 static void speedo_tx_timeout(struct net_device *dev)
1352 {
1353 struct speedo_private *sp = netdev_priv(dev);
1354 void __iomem *ioaddr = sp->regs;
1355 int status = ioread16(ioaddr + SCBStatus);
1356 unsigned long flags;
1357
1358 if (netif_msg_tx_err(sp)) {
1359 printk(KERN_WARNING "%s: Transmit timed out: status %4.4x "
1360 " %4.4x at %d/%d command %8.8x.\n",
1361 dev->name, status, ioread16(ioaddr + SCBCmd),
1362 sp->dirty_tx, sp->cur_tx,
1363 sp->tx_ring[sp->dirty_tx % TX_RING_SIZE].status);
1364
1365 }
1366 speedo_show_state(dev);
1367 #if 0
1368 if ((status & 0x00C0) != 0x0080
1369 && (status & 0x003C) == 0x0010) {
1370 /* Only the command unit has stopped. */
1371 printk(KERN_WARNING "%s: Trying to restart the transmitter...\n",
1372 dev->name);
1373 iowrite32(TX_RING_ELEM_DMA(sp, dirty_tx % TX_RING_SIZE]),
1374 ioaddr + SCBPointer);
1375 iowrite16(CUStart, ioaddr + SCBCmd);
1376 reset_mii(dev);
1377 } else {
1378 #else
1379 {
1380 #endif
1381 del_timer_sync(&sp->timer);
1382 /* Reset the Tx and Rx units. */
1383 iowrite32(PortReset, ioaddr + SCBPort);
1384 /* We may get spurious interrupts here. But I don't think that they
1385 may do much harm. 1999/12/09 SAW */
1386 udelay(10);
1387 /* Disable interrupts. */
1388 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1389 synchronize_irq(dev->irq);
1390 speedo_tx_buffer_gc(dev);
1391 /* Free as much as possible.
1392 It helps to recover from a hang because of out-of-memory.
1393 It also simplifies speedo_resume() in case TX ring is full or
1394 close-to-be full. */
1395 speedo_purge_tx(dev);
1396 speedo_refill_rx_buffers(dev, 1);
1397 spin_lock_irqsave(&sp->lock, flags);
1398 speedo_resume(dev);
1399 sp->rx_mode = -1;
1400 dev->trans_start = jiffies;
1401 spin_unlock_irqrestore(&sp->lock, flags);
1402 set_rx_mode(dev); /* it takes the spinlock itself --SAW */
1403 /* Reset MII transceiver. Do it before starting the timer to serialize
1404 mdio_xxx operations. Yes, it's a paranoya :-) 2000/05/09 SAW */
1405 reset_mii(dev);
1406 sp->timer.expires = RUN_AT(2*HZ);
1407 add_timer(&sp->timer);
1408 }
1409 return;
1410 }
1411
1412 static int
1413 speedo_start_xmit(struct sk_buff *skb, struct net_device *dev)
1414 {
1415 struct speedo_private *sp = netdev_priv(dev);
1416 void __iomem *ioaddr = sp->regs;
1417 int entry;
1418
1419 /* Prevent interrupts from changing the Tx ring from underneath us. */
1420 unsigned long flags;
1421
1422 spin_lock_irqsave(&sp->lock, flags);
1423
1424 /* Check if there are enough space. */
1425 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
1426 printk(KERN_ERR "%s: incorrect tbusy state, fixed.\n", dev->name);
1427 netif_stop_queue(dev);
1428 sp->tx_full = 1;
1429 spin_unlock_irqrestore(&sp->lock, flags);
1430 return 1;
1431 }
1432
1433 /* Calculate the Tx descriptor entry. */
1434 entry = sp->cur_tx++ % TX_RING_SIZE;
1435
1436 sp->tx_skbuff[entry] = skb;
1437 sp->tx_ring[entry].status =
1438 cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex);
1439 if (!(entry & ((TX_RING_SIZE>>2)-1)))
1440 sp->tx_ring[entry].status |= cpu_to_le32(CmdIntr);
1441 sp->tx_ring[entry].link =
1442 cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
1443 sp->tx_ring[entry].tx_desc_addr =
1444 cpu_to_le32(TX_RING_ELEM_DMA(sp, entry) + TX_DESCR_BUF_OFFSET);
1445 /* The data region is always in one buffer descriptor. */
1446 sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold);
1447 sp->tx_ring[entry].tx_buf_addr0 =
1448 cpu_to_le32(pci_map_single(sp->pdev, skb->data,
1449 skb->len, PCI_DMA_TODEVICE));
1450 sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len);
1451
1452 /* workaround for hardware bug on 10 mbit half duplex */
1453
1454 if ((sp->partner == 0) && (sp->chip_id == 1)) {
1455 wait_for_cmd_done(dev, sp);
1456 iowrite8(0 , ioaddr + SCBCmd);
1457 udelay(1);
1458 }
1459
1460 /* Trigger the command unit resume. */
1461 wait_for_cmd_done(dev, sp);
1462 clear_suspend(sp->last_cmd);
1463 /* We want the time window between clearing suspend flag on the previous
1464 command and resuming CU to be as small as possible.
1465 Interrupts in between are very undesired. --SAW */
1466 iowrite8(CUResume, ioaddr + SCBCmd);
1467 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
1468
1469 /* Leave room for set_rx_mode(). If there is no more space than reserved
1470 for multicast filter mark the ring as full. */
1471 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
1472 netif_stop_queue(dev);
1473 sp->tx_full = 1;
1474 }
1475
1476 spin_unlock_irqrestore(&sp->lock, flags);
1477
1478 dev->trans_start = jiffies;
1479
1480 return 0;
1481 }
1482
1483 static void speedo_tx_buffer_gc(struct net_device *dev)
1484 {
1485 unsigned int dirty_tx;
1486 struct speedo_private *sp = netdev_priv(dev);
1487
1488 dirty_tx = sp->dirty_tx;
1489 while ((int)(sp->cur_tx - dirty_tx) > 0) {
1490 int entry = dirty_tx % TX_RING_SIZE;
1491 int status = le32_to_cpu(sp->tx_ring[entry].status);
1492
1493 if (netif_msg_tx_done(sp))
1494 printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n",
1495 entry, status);
1496 if ((status & StatusComplete) == 0)
1497 break; /* It still hasn't been processed. */
1498 if (status & TxUnderrun)
1499 if (sp->tx_threshold < 0x01e08000) {
1500 if (netif_msg_tx_err(sp))
1501 printk(KERN_DEBUG "%s: TX underrun, threshold adjusted.\n",
1502 dev->name);
1503 sp->tx_threshold += 0x00040000;
1504 }
1505 /* Free the original skb. */
1506 if (sp->tx_skbuff[entry]) {
1507 sp->stats.tx_packets++; /* Count only user packets. */
1508 sp->stats.tx_bytes += sp->tx_skbuff[entry]->len;
1509 pci_unmap_single(sp->pdev,
1510 le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
1511 sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
1512 dev_kfree_skb_irq(sp->tx_skbuff[entry]);
1513 sp->tx_skbuff[entry] = NULL;
1514 }
1515 dirty_tx++;
1516 }
1517
1518 if (netif_msg_tx_err(sp) && (int)(sp->cur_tx - dirty_tx) > TX_RING_SIZE) {
1519 printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d,"
1520 " full=%d.\n",
1521 dirty_tx, sp->cur_tx, sp->tx_full);
1522 dirty_tx += TX_RING_SIZE;
1523 }
1524
1525 while (sp->mc_setup_head != NULL
1526 && (int)(dirty_tx - sp->mc_setup_head->tx - 1) > 0) {
1527 struct speedo_mc_block *t;
1528 if (netif_msg_tx_err(sp))
1529 printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
1530 pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
1531 sp->mc_setup_head->len, PCI_DMA_TODEVICE);
1532 t = sp->mc_setup_head->next;
1533 kfree(sp->mc_setup_head);
1534 sp->mc_setup_head = t;
1535 }
1536 if (sp->mc_setup_head == NULL)
1537 sp->mc_setup_tail = NULL;
1538
1539 sp->dirty_tx = dirty_tx;
1540 }
1541
1542 /* The interrupt handler does all of the Rx thread work and cleans up
1543 after the Tx thread. */
1544 static irqreturn_t speedo_interrupt(int irq, void *dev_instance)
1545 {
1546 struct net_device *dev = (struct net_device *)dev_instance;
1547 struct speedo_private *sp;
1548 void __iomem *ioaddr;
1549 long boguscnt = max_interrupt_work;
1550 unsigned short status;
1551 unsigned int handled = 0;
1552
1553 sp = netdev_priv(dev);
1554 ioaddr = sp->regs;
1555
1556 #ifndef final_version
1557 /* A lock to prevent simultaneous entry on SMP machines. */
1558 if (test_and_set_bit(0, (void*)&sp->in_interrupt)) {
1559 printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
1560 dev->name);
1561 sp->in_interrupt = 0; /* Avoid halting machine. */
1562 return IRQ_NONE;
1563 }
1564 #endif
1565
1566 do {
1567 status = ioread16(ioaddr + SCBStatus);
1568 /* Acknowledge all of the current interrupt sources ASAP. */
1569 /* Will change from 0xfc00 to 0xff00 when we start handling
1570 FCP and ER interrupts --Dragan */
1571 iowrite16(status & 0xfc00, ioaddr + SCBStatus);
1572
1573 if (netif_msg_intr(sp))
1574 printk(KERN_DEBUG "%s: interrupt status=%#4.4x.\n",
1575 dev->name, status);
1576
1577 if ((status & 0xfc00) == 0)
1578 break;
1579 handled = 1;
1580
1581
1582 if ((status & 0x5000) || /* Packet received, or Rx error. */
1583 (sp->rx_ring_state&(RrNoMem|RrPostponed)) == RrPostponed)
1584 /* Need to gather the postponed packet. */
1585 speedo_rx(dev);
1586
1587 /* Always check if all rx buffers are allocated. --SAW */
1588 speedo_refill_rx_buffers(dev, 0);
1589
1590 spin_lock(&sp->lock);
1591 /*
1592 * The chip may have suspended reception for various reasons.
1593 * Check for that, and re-prime it should this be the case.
1594 */
1595 switch ((status >> 2) & 0xf) {
1596 case 0: /* Idle */
1597 break;
1598 case 1: /* Suspended */
1599 case 2: /* No resources (RxFDs) */
1600 case 9: /* Suspended with no more RBDs */
1601 case 10: /* No resources due to no RBDs */
1602 case 12: /* Ready with no RBDs */
1603 speedo_rx_soft_reset(dev);
1604 break;
1605 case 3: case 5: case 6: case 7: case 8:
1606 case 11: case 13: case 14: case 15:
1607 /* these are all reserved values */
1608 break;
1609 }
1610
1611
1612 /* User interrupt, Command/Tx unit interrupt or CU not active. */
1613 if (status & 0xA400) {
1614 speedo_tx_buffer_gc(dev);
1615 if (sp->tx_full
1616 && (int)(sp->cur_tx - sp->dirty_tx) < TX_QUEUE_UNFULL) {
1617 /* The ring is no longer full. */
1618 sp->tx_full = 0;
1619 netif_wake_queue(dev); /* Attention: under a spinlock. --SAW */
1620 }
1621 }
1622
1623 spin_unlock(&sp->lock);
1624
1625 if (--boguscnt < 0) {
1626 printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n",
1627 dev->name, status);
1628 /* Clear all interrupt sources. */
1629 /* Will change from 0xfc00 to 0xff00 when we start handling
1630 FCP and ER interrupts --Dragan */
1631 iowrite16(0xfc00, ioaddr + SCBStatus);
1632 break;
1633 }
1634 } while (1);
1635
1636 if (netif_msg_intr(sp))
1637 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1638 dev->name, ioread16(ioaddr + SCBStatus));
1639
1640 clear_bit(0, (void*)&sp->in_interrupt);
1641 return IRQ_RETVAL(handled);
1642 }
1643
1644 static inline struct RxFD *speedo_rx_alloc(struct net_device *dev, int entry)
1645 {
1646 struct speedo_private *sp = netdev_priv(dev);
1647 struct RxFD *rxf;
1648 struct sk_buff *skb;
1649 /* Get a fresh skbuff to replace the consumed one. */
1650 skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
1651 if (skb)
1652 rx_align(skb); /* Align IP on 16 byte boundary */
1653 sp->rx_skbuff[entry] = skb;
1654 if (skb == NULL) {
1655 sp->rx_ringp[entry] = NULL;
1656 return NULL;
1657 }
1658 rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->data;
1659 sp->rx_ring_dma[entry] =
1660 pci_map_single(sp->pdev, rxf,
1661 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1662 skb->dev = dev;
1663 skb_reserve(skb, sizeof(struct RxFD));
1664 rxf->rx_buf_addr = 0xffffffff;
1665 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
1666 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1667 return rxf;
1668 }
1669
1670 static inline void speedo_rx_link(struct net_device *dev, int entry,
1671 struct RxFD *rxf, dma_addr_t rxf_dma)
1672 {
1673 struct speedo_private *sp = netdev_priv(dev);
1674 rxf->status = cpu_to_le32(0xC0000001); /* '1' for driver use only. */
1675 rxf->link = 0; /* None yet. */
1676 rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
1677 sp->last_rxf->link = cpu_to_le32(rxf_dma);
1678 sp->last_rxf->status &= cpu_to_le32(~0xC0000000);
1679 pci_dma_sync_single_for_device(sp->pdev, sp->last_rxf_dma,
1680 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1681 sp->last_rxf = rxf;
1682 sp->last_rxf_dma = rxf_dma;
1683 }
1684
1685 static int speedo_refill_rx_buf(struct net_device *dev, int force)
1686 {
1687 struct speedo_private *sp = netdev_priv(dev);
1688 int entry;
1689 struct RxFD *rxf;
1690
1691 entry = sp->dirty_rx % RX_RING_SIZE;
1692 if (sp->rx_skbuff[entry] == NULL) {
1693 rxf = speedo_rx_alloc(dev, entry);
1694 if (rxf == NULL) {
1695 unsigned int forw;
1696 int forw_entry;
1697 if (netif_msg_rx_err(sp) || !(sp->rx_ring_state & RrOOMReported)) {
1698 printk(KERN_WARNING "%s: can't fill rx buffer (force %d)!\n",
1699 dev->name, force);
1700 sp->rx_ring_state |= RrOOMReported;
1701 }
1702 speedo_show_state(dev);
1703 if (!force)
1704 return -1; /* Better luck next time! */
1705 /* Borrow an skb from one of next entries. */
1706 for (forw = sp->dirty_rx + 1; forw != sp->cur_rx; forw++)
1707 if (sp->rx_skbuff[forw % RX_RING_SIZE] != NULL)
1708 break;
1709 if (forw == sp->cur_rx)
1710 return -1;
1711 forw_entry = forw % RX_RING_SIZE;
1712 sp->rx_skbuff[entry] = sp->rx_skbuff[forw_entry];
1713 sp->rx_skbuff[forw_entry] = NULL;
1714 rxf = sp->rx_ringp[forw_entry];
1715 sp->rx_ringp[forw_entry] = NULL;
1716 sp->rx_ringp[entry] = rxf;
1717 }
1718 } else {
1719 rxf = sp->rx_ringp[entry];
1720 }
1721 speedo_rx_link(dev, entry, rxf, sp->rx_ring_dma[entry]);
1722 sp->dirty_rx++;
1723 sp->rx_ring_state &= ~(RrNoMem|RrOOMReported); /* Mark the progress. */
1724 return 0;
1725 }
1726
1727 static void speedo_refill_rx_buffers(struct net_device *dev, int force)
1728 {
1729 struct speedo_private *sp = netdev_priv(dev);
1730
1731 /* Refill the RX ring. */
1732 while ((int)(sp->cur_rx - sp->dirty_rx) > 0 &&
1733 speedo_refill_rx_buf(dev, force) != -1);
1734 }
1735
1736 static int
1737 speedo_rx(struct net_device *dev)
1738 {
1739 struct speedo_private *sp = netdev_priv(dev);
1740 int entry = sp->cur_rx % RX_RING_SIZE;
1741 int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx;
1742 int alloc_ok = 1;
1743 int npkts = 0;
1744
1745 if (netif_msg_intr(sp))
1746 printk(KERN_DEBUG " In speedo_rx().\n");
1747 /* If we own the next entry, it's a new packet. Send it up. */
1748 while (sp->rx_ringp[entry] != NULL) {
1749 int status;
1750 int pkt_len;
1751
1752 pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
1753 sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1754 status = le32_to_cpu(sp->rx_ringp[entry]->status);
1755 pkt_len = le32_to_cpu(sp->rx_ringp[entry]->count) & 0x3fff;
1756
1757 if (!(status & RxComplete))
1758 break;
1759
1760 if (--rx_work_limit < 0)
1761 break;
1762
1763 /* Check for a rare out-of-memory case: the current buffer is
1764 the last buffer allocated in the RX ring. --SAW */
1765 if (sp->last_rxf == sp->rx_ringp[entry]) {
1766 /* Postpone the packet. It'll be reaped at an interrupt when this
1767 packet is no longer the last packet in the ring. */
1768 if (netif_msg_rx_err(sp))
1769 printk(KERN_DEBUG "%s: RX packet postponed!\n",
1770 dev->name);
1771 sp->rx_ring_state |= RrPostponed;
1772 break;
1773 }
1774
1775 if (netif_msg_rx_status(sp))
1776 printk(KERN_DEBUG " speedo_rx() status %8.8x len %d.\n", status,
1777 pkt_len);
1778 if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) {
1779 if (status & RxErrTooBig)
1780 printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, "
1781 "status %8.8x!\n", dev->name, status);
1782 else if (! (status & RxOK)) {
1783 /* There was a fatal error. This *should* be impossible. */
1784 sp->stats.rx_errors++;
1785 printk(KERN_ERR "%s: Anomalous event in speedo_rx(), "
1786 "status %8.8x.\n",
1787 dev->name, status);
1788 }
1789 } else {
1790 struct sk_buff *skb;
1791
1792 /* Check if the packet is long enough to just accept without
1793 copying to a properly sized skbuff. */
1794 if (pkt_len < rx_copybreak
1795 && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
1796 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1797 /* 'skb_put()' points to the start of sk_buff data area. */
1798 pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
1799 sizeof(struct RxFD) + pkt_len,
1800 PCI_DMA_FROMDEVICE);
1801
1802 #if 1 || USE_IP_CSUM
1803 /* Packet is in one chunk -- we can copy + cksum. */
1804 eth_copy_and_sum(skb, sp->rx_skbuff[entry]->data, pkt_len, 0);
1805 skb_put(skb, pkt_len);
1806 #else
1807 memcpy(skb_put(skb, pkt_len), sp->rx_skbuff[entry]->data,
1808 pkt_len);
1809 #endif
1810 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
1811 sizeof(struct RxFD) + pkt_len,
1812 PCI_DMA_FROMDEVICE);
1813 npkts++;
1814 } else {
1815 /* Pass up the already-filled skbuff. */
1816 skb = sp->rx_skbuff[entry];
1817 if (skb == NULL) {
1818 printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n",
1819 dev->name);
1820 break;
1821 }
1822 sp->rx_skbuff[entry] = NULL;
1823 skb_put(skb, pkt_len);
1824 npkts++;
1825 sp->rx_ringp[entry] = NULL;
1826 pci_unmap_single(sp->pdev, sp->rx_ring_dma[entry],
1827 PKT_BUF_SZ + sizeof(struct RxFD),
1828 PCI_DMA_FROMDEVICE);
1829 }
1830 skb->protocol = eth_type_trans(skb, dev);
1831 netif_rx(skb);
1832 dev->last_rx = jiffies;
1833 sp->stats.rx_packets++;
1834 sp->stats.rx_bytes += pkt_len;
1835 }
1836 entry = (++sp->cur_rx) % RX_RING_SIZE;
1837 sp->rx_ring_state &= ~RrPostponed;
1838 /* Refill the recently taken buffers.
1839 Do it one-by-one to handle traffic bursts better. */
1840 if (alloc_ok && speedo_refill_rx_buf(dev, 0) == -1)
1841 alloc_ok = 0;
1842 }
1843
1844 /* Try hard to refill the recently taken buffers. */
1845 speedo_refill_rx_buffers(dev, 1);
1846
1847 if (npkts)
1848 sp->last_rx_time = jiffies;
1849
1850 return 0;
1851 }
1852
1853 static int
1854 speedo_close(struct net_device *dev)
1855 {
1856 struct speedo_private *sp = netdev_priv(dev);
1857 void __iomem *ioaddr = sp->regs;
1858 int i;
1859
1860 netdevice_stop(dev);
1861 netif_stop_queue(dev);
1862
1863 if (netif_msg_ifdown(sp))
1864 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n",
1865 dev->name, ioread16(ioaddr + SCBStatus));
1866
1867 /* Shut off the media monitoring timer. */
1868 del_timer_sync(&sp->timer);
1869
1870 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1871
1872 /* Shutting down the chip nicely fails to disable flow control. So.. */
1873 iowrite32(PortPartialReset, ioaddr + SCBPort);
1874 ioread32(ioaddr + SCBPort); /* flush posted write */
1875 /*
1876 * The chip requires a 10 microsecond quiet period. Wait here!
1877 */
1878 udelay(10);
1879
1880 free_irq(dev->irq, dev);
1881 speedo_show_state(dev);
1882
1883 /* Free all the skbuffs in the Rx and Tx queues. */
1884 for (i = 0; i < RX_RING_SIZE; i++) {
1885 struct sk_buff *skb = sp->rx_skbuff[i];
1886 sp->rx_skbuff[i] = NULL;
1887 /* Clear the Rx descriptors. */
1888 if (skb) {
1889 pci_unmap_single(sp->pdev,
1890 sp->rx_ring_dma[i],
1891 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1892 dev_kfree_skb(skb);
1893 }
1894 }
1895
1896 for (i = 0; i < TX_RING_SIZE; i++) {
1897 struct sk_buff *skb = sp->tx_skbuff[i];
1898 sp->tx_skbuff[i] = NULL;
1899 /* Clear the Tx descriptors. */
1900 if (skb) {
1901 pci_unmap_single(sp->pdev,
1902 le32_to_cpu(sp->tx_ring[i].tx_buf_addr0),
1903 skb->len, PCI_DMA_TODEVICE);
1904 dev_kfree_skb(skb);
1905 }
1906 }
1907
1908 /* Free multicast setting blocks. */
1909 for (i = 0; sp->mc_setup_head != NULL; i++) {
1910 struct speedo_mc_block *t;
1911 t = sp->mc_setup_head->next;
1912 kfree(sp->mc_setup_head);
1913 sp->mc_setup_head = t;
1914 }
1915 sp->mc_setup_tail = NULL;
1916 if (netif_msg_ifdown(sp))
1917 printk(KERN_DEBUG "%s: %d multicast blocks dropped.\n", dev->name, i);
1918
1919 pci_set_power_state(sp->pdev, PCI_D2);
1920
1921 return 0;
1922 }
1923
1924 /* The Speedo-3 has an especially awkward and unusable method of getting
1925 statistics out of the chip. It takes an unpredictable length of time
1926 for the dump-stats command to complete. To avoid a busy-wait loop we
1927 update the stats with the previous dump results, and then trigger a
1928 new dump.
1929
1930 Oh, and incoming frames are dropped while executing dump-stats!
1931 */
1932 static struct net_device_stats *
1933 speedo_get_stats(struct net_device *dev)
1934 {
1935 struct speedo_private *sp = netdev_priv(dev);
1936 void __iomem *ioaddr = sp->regs;
1937
1938 /* Update only if the previous dump finished. */
1939 if (sp->lstats->done_marker == le32_to_cpu(0xA007)) {
1940 sp->stats.tx_aborted_errors += le32_to_cpu(sp->lstats->tx_coll16_errs);
1941 sp->stats.tx_window_errors += le32_to_cpu(sp->lstats->tx_late_colls);
1942 sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_underruns);
1943 sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_lost_carrier);
1944 /*sp->stats.tx_deferred += le32_to_cpu(sp->lstats->tx_deferred);*/
1945 sp->stats.collisions += le32_to_cpu(sp->lstats->tx_total_colls);
1946 sp->stats.rx_crc_errors += le32_to_cpu(sp->lstats->rx_crc_errs);
1947 sp->stats.rx_frame_errors += le32_to_cpu(sp->lstats->rx_align_errs);
1948 sp->stats.rx_over_errors += le32_to_cpu(sp->lstats->rx_resource_errs);
1949 sp->stats.rx_fifo_errors += le32_to_cpu(sp->lstats->rx_overrun_errs);
1950 sp->stats.rx_length_errors += le32_to_cpu(sp->lstats->rx_runt_errs);
1951 sp->lstats->done_marker = 0x0000;
1952 if (netif_running(dev)) {
1953 unsigned long flags;
1954 /* Take a spinlock to make wait_for_cmd_done and sending the
1955 command atomic. --SAW */
1956 spin_lock_irqsave(&sp->lock, flags);
1957 wait_for_cmd_done(dev, sp);
1958 iowrite8(CUDumpStats, ioaddr + SCBCmd);
1959 spin_unlock_irqrestore(&sp->lock, flags);
1960 }
1961 }
1962 return &sp->stats;
1963 }
1964
1965 static void speedo_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1966 {
1967 struct speedo_private *sp = netdev_priv(dev);
1968 strncpy(info->driver, "eepro100", sizeof(info->driver)-1);
1969 strncpy(info->version, version, sizeof(info->version)-1);
1970 if (sp->pdev)
1971 strcpy(info->bus_info, pci_name(sp->pdev));
1972 }
1973
1974 static int speedo_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1975 {
1976 struct speedo_private *sp = netdev_priv(dev);
1977 spin_lock_irq(&sp->lock);
1978 mii_ethtool_gset(&sp->mii_if, ecmd);
1979 spin_unlock_irq(&sp->lock);
1980 return 0;
1981 }
1982
1983 static int speedo_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1984 {
1985 struct speedo_private *sp = netdev_priv(dev);
1986 int res;
1987 spin_lock_irq(&sp->lock);
1988 res = mii_ethtool_sset(&sp->mii_if, ecmd);
1989 spin_unlock_irq(&sp->lock);
1990 return res;
1991 }
1992
1993 static int speedo_nway_reset(struct net_device *dev)
1994 {
1995 struct speedo_private *sp = netdev_priv(dev);
1996 return mii_nway_restart(&sp->mii_if);
1997 }
1998
1999 static u32 speedo_get_link(struct net_device *dev)
2000 {
2001 struct speedo_private *sp = netdev_priv(dev);
2002 return mii_link_ok(&sp->mii_if);
2003 }
2004
2005 static u32 speedo_get_msglevel(struct net_device *dev)
2006 {
2007 struct speedo_private *sp = netdev_priv(dev);
2008 return sp->msg_enable;
2009 }
2010
2011 static void speedo_set_msglevel(struct net_device *dev, u32 v)
2012 {
2013 struct speedo_private *sp = netdev_priv(dev);
2014 sp->msg_enable = v;
2015 }
2016
2017 static const struct ethtool_ops ethtool_ops = {
2018 .get_drvinfo = speedo_get_drvinfo,
2019 .get_settings = speedo_get_settings,
2020 .set_settings = speedo_set_settings,
2021 .nway_reset = speedo_nway_reset,
2022 .get_link = speedo_get_link,
2023 .get_msglevel = speedo_get_msglevel,
2024 .set_msglevel = speedo_set_msglevel,
2025 };
2026
2027 static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2028 {
2029 struct speedo_private *sp = netdev_priv(dev);
2030 struct mii_ioctl_data *data = if_mii(rq);
2031 int phy = sp->phy[0] & 0x1f;
2032 int saved_acpi;
2033 int t;
2034
2035 switch(cmd) {
2036 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2037 data->phy_id = phy;
2038
2039 case SIOCGMIIREG: /* Read MII PHY register. */
2040 /* FIXME: these operations need to be serialized with MDIO
2041 access from the timeout handler.
2042 They are currently serialized only with MDIO access from the
2043 timer routine. 2000/05/09 SAW */
2044 saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
2045 t = del_timer_sync(&sp->timer);
2046 data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2047 if (t)
2048 add_timer(&sp->timer); /* may be set to the past --SAW */
2049 pci_set_power_state(sp->pdev, saved_acpi);
2050 return 0;
2051
2052 case SIOCSMIIREG: /* Write MII PHY register. */
2053 if (!capable(CAP_NET_ADMIN))
2054 return -EPERM;
2055 saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
2056 t = del_timer_sync(&sp->timer);
2057 mdio_write(dev, data->phy_id, data->reg_num, data->val_in);
2058 if (t)
2059 add_timer(&sp->timer); /* may be set to the past --SAW */
2060 pci_set_power_state(sp->pdev, saved_acpi);
2061 return 0;
2062 default:
2063 return -EOPNOTSUPP;
2064 }
2065 }
2066
2067 /* Set or clear the multicast filter for this adaptor.
2068 This is very ugly with Intel chips -- we usually have to execute an
2069 entire configuration command, plus process a multicast command.
2070 This is complicated. We must put a large configuration command and
2071 an arbitrarily-sized multicast command in the transmit list.
2072 To minimize the disruption -- the previous command might have already
2073 loaded the link -- we convert the current command block, normally a Tx
2074 command, into a no-op and link it to the new command.
2075 */
2076 static void set_rx_mode(struct net_device *dev)
2077 {
2078 struct speedo_private *sp = netdev_priv(dev);
2079 void __iomem *ioaddr = sp->regs;
2080 struct descriptor *last_cmd;
2081 char new_rx_mode;
2082 unsigned long flags;
2083 int entry, i;
2084
2085 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2086 new_rx_mode = 3;
2087 } else if ((dev->flags & IFF_ALLMULTI) ||
2088 dev->mc_count > multicast_filter_limit) {
2089 new_rx_mode = 1;
2090 } else
2091 new_rx_mode = 0;
2092
2093 if (netif_msg_rx_status(sp))
2094 printk(KERN_DEBUG "%s: set_rx_mode %d -> %d\n", dev->name,
2095 sp->rx_mode, new_rx_mode);
2096
2097 if ((int)(sp->cur_tx - sp->dirty_tx) > TX_RING_SIZE - TX_MULTICAST_SIZE) {
2098 /* The Tx ring is full -- don't add anything! Hope the mode will be
2099 * set again later. */
2100 sp->rx_mode = -1;
2101 return;
2102 }
2103
2104 if (new_rx_mode != sp->rx_mode) {
2105 u8 *config_cmd_data;
2106
2107 spin_lock_irqsave(&sp->lock, flags);
2108 entry = sp->cur_tx++ % TX_RING_SIZE;
2109 last_cmd = sp->last_cmd;
2110 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
2111
2112 sp->tx_skbuff[entry] = NULL; /* Redundant. */
2113 sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure);
2114 sp->tx_ring[entry].link =
2115 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2116 config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr;
2117 /* Construct a full CmdConfig frame. */
2118 memcpy(config_cmd_data, i82558_config_cmd, CONFIG_DATA_SIZE);
2119 config_cmd_data[1] = (txfifo << 4) | rxfifo;
2120 config_cmd_data[4] = rxdmacount;
2121 config_cmd_data[5] = txdmacount + 0x80;
2122 config_cmd_data[15] |= (new_rx_mode & 2) ? 1 : 0;
2123 /* 0x80 doesn't disable FC 0x84 does.
2124 Disable Flow control since we are not ACK-ing any FC interrupts
2125 for now. --Dragan */
2126 config_cmd_data[19] = 0x84;
2127 config_cmd_data[19] |= sp->mii_if.full_duplex ? 0x40 : 0;
2128 config_cmd_data[21] = (new_rx_mode & 1) ? 0x0D : 0x05;
2129 if (sp->phy[0] & 0x8000) { /* Use the AUI port instead. */
2130 config_cmd_data[15] |= 0x80;
2131 config_cmd_data[8] = 0;
2132 }
2133 /* Trigger the command unit resume. */
2134 wait_for_cmd_done(dev, sp);
2135 clear_suspend(last_cmd);
2136 iowrite8(CUResume, ioaddr + SCBCmd);
2137 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2138 netif_stop_queue(dev);
2139 sp->tx_full = 1;
2140 }
2141 spin_unlock_irqrestore(&sp->lock, flags);
2142 }
2143
2144 if (new_rx_mode == 0 && dev->mc_count < 4) {
2145 /* The simple case of 0-3 multicast list entries occurs often, and
2146 fits within one tx_ring[] entry. */
2147 struct dev_mc_list *mclist;
2148 u16 *setup_params, *eaddrs;
2149
2150 spin_lock_irqsave(&sp->lock, flags);
2151 entry = sp->cur_tx++ % TX_RING_SIZE;
2152 last_cmd = sp->last_cmd;
2153 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
2154
2155 sp->tx_skbuff[entry] = NULL;
2156 sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList);
2157 sp->tx_ring[entry].link =
2158 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2159 sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */
2160 setup_params = (u16 *)&sp->tx_ring[entry].tx_desc_addr;
2161 *setup_params++ = cpu_to_le16(dev->mc_count*6);
2162 /* Fill in the multicast addresses. */
2163 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
2164 i++, mclist = mclist->next) {
2165 eaddrs = (u16 *)mclist->dmi_addr;
2166 *setup_params++ = *eaddrs++;
2167 *setup_params++ = *eaddrs++;
2168 *setup_params++ = *eaddrs++;
2169 }
2170
2171 wait_for_cmd_done(dev, sp);
2172 clear_suspend(last_cmd);
2173 /* Immediately trigger the command unit resume. */
2174 iowrite8(CUResume, ioaddr + SCBCmd);
2175
2176 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2177 netif_stop_queue(dev);
2178 sp->tx_full = 1;
2179 }
2180 spin_unlock_irqrestore(&sp->lock, flags);
2181 } else if (new_rx_mode == 0) {
2182 struct dev_mc_list *mclist;
2183 u16 *setup_params, *eaddrs;
2184 struct speedo_mc_block *mc_blk;
2185 struct descriptor *mc_setup_frm;
2186 int i;
2187
2188 mc_blk = kmalloc(sizeof(*mc_blk) + 2 + multicast_filter_limit*6,
2189 GFP_ATOMIC);
2190 if (mc_blk == NULL) {
2191 printk(KERN_ERR "%s: Failed to allocate a setup frame.\n",
2192 dev->name);
2193 sp->rx_mode = -1; /* We failed, try again. */
2194 return;
2195 }
2196 mc_blk->next = NULL;
2197 mc_blk->len = 2 + multicast_filter_limit*6;
2198 mc_blk->frame_dma =
2199 pci_map_single(sp->pdev, &mc_blk->frame, mc_blk->len,
2200 PCI_DMA_TODEVICE);
2201 mc_setup_frm = &mc_blk->frame;
2202
2203 /* Fill the setup frame. */
2204 if (netif_msg_ifup(sp))
2205 printk(KERN_DEBUG "%s: Constructing a setup frame at %p.\n",
2206 dev->name, mc_setup_frm);
2207 mc_setup_frm->cmd_status =
2208 cpu_to_le32(CmdSuspend | CmdIntr | CmdMulticastList);
2209 /* Link set below. */
2210 setup_params = (u16 *)&mc_setup_frm->params;
2211 *setup_params++ = cpu_to_le16(dev->mc_count*6);
2212 /* Fill in the multicast addresses. */
2213 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
2214 i++, mclist = mclist->next) {
2215 eaddrs = (u16 *)mclist->dmi_addr;
2216 *setup_params++ = *eaddrs++;
2217 *setup_params++ = *eaddrs++;
2218 *setup_params++ = *eaddrs++;
2219 }
2220
2221 /* Disable interrupts while playing with the Tx Cmd list. */
2222 spin_lock_irqsave(&sp->lock, flags);
2223
2224 if (sp->mc_setup_tail)
2225 sp->mc_setup_tail->next = mc_blk;
2226 else
2227 sp->mc_setup_head = mc_blk;
2228 sp->mc_setup_tail = mc_blk;
2229 mc_blk->tx = sp->cur_tx;
2230
2231 entry = sp->cur_tx++ % TX_RING_SIZE;
2232 last_cmd = sp->last_cmd;
2233 sp->last_cmd = mc_setup_frm;
2234
2235 /* Change the command to a NoOp, pointing to the CmdMulti command. */
2236 sp->tx_skbuff[entry] = NULL;
2237 sp->tx_ring[entry].status = cpu_to_le32(CmdNOp);
2238 sp->tx_ring[entry].link = cpu_to_le32(mc_blk->frame_dma);
2239
2240 /* Set the link in the setup frame. */
2241 mc_setup_frm->link =
2242 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2243
2244 pci_dma_sync_single_for_device(sp->pdev, mc_blk->frame_dma,
2245 mc_blk->len, PCI_DMA_TODEVICE);
2246
2247 wait_for_cmd_done(dev, sp);
2248 clear_suspend(last_cmd);
2249 /* Immediately trigger the command unit resume. */
2250 iowrite8(CUResume, ioaddr + SCBCmd);
2251
2252 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2253 netif_stop_queue(dev);
2254 sp->tx_full = 1;
2255 }
2256 spin_unlock_irqrestore(&sp->lock, flags);
2257
2258 if (netif_msg_rx_status(sp))
2259 printk(" CmdMCSetup frame length %d in entry %d.\n",
2260 dev->mc_count, entry);
2261 }
2262
2263 sp->rx_mode = new_rx_mode;
2264 }
2265
2266 #ifdef CONFIG_PM
2267 static int eepro100_suspend(struct pci_dev *pdev, pm_message_t state)
2268 {
2269 struct net_device *dev = pci_get_drvdata (pdev);
2270 struct speedo_private *sp = netdev_priv(dev);
2271 void __iomem *ioaddr = sp->regs;
2272
2273 pci_save_state(pdev);
2274
2275 if (!netif_running(dev))
2276 return 0;
2277
2278 del_timer_sync(&sp->timer);
2279
2280 netif_device_detach(dev);
2281 iowrite32(PortPartialReset, ioaddr + SCBPort);
2282
2283 /* XXX call pci_set_power_state ()? */
2284 pci_disable_device(pdev);
2285 pci_set_power_state (pdev, PCI_D3hot);
2286 return 0;
2287 }
2288
2289 static int eepro100_resume(struct pci_dev *pdev)
2290 {
2291 struct net_device *dev = pci_get_drvdata (pdev);
2292 struct speedo_private *sp = netdev_priv(dev);
2293 void __iomem *ioaddr = sp->regs;
2294
2295 pci_set_power_state(pdev, PCI_D0);
2296 pci_restore_state(pdev);
2297 pci_enable_device(pdev);
2298 pci_set_master(pdev);
2299
2300 if (!netif_running(dev))
2301 return 0;
2302
2303 /* I'm absolutely uncertain if this part of code may work.
2304 The problems are:
2305 - correct hardware reinitialization;
2306 - correct driver behavior between different steps of the
2307 reinitialization;
2308 - serialization with other driver calls.
2309 2000/03/08 SAW */
2310 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
2311 speedo_resume(dev);
2312 netif_device_attach(dev);
2313 sp->rx_mode = -1;
2314 sp->flow_ctrl = sp->partner = 0;
2315 set_rx_mode(dev);
2316 sp->timer.expires = RUN_AT(2*HZ);
2317 add_timer(&sp->timer);
2318 return 0;
2319 }
2320 #endif /* CONFIG_PM */
2321
2322 static void __devexit eepro100_remove_one (struct pci_dev *pdev)
2323 {
2324 struct net_device *dev = pci_get_drvdata (pdev);
2325 struct speedo_private *sp = netdev_priv(dev);
2326
2327 unregister_netdev(dev);
2328
2329 release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
2330 release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
2331
2332 pci_iounmap(pdev, sp->regs);
2333 pci_free_consistent(pdev, TX_RING_SIZE * sizeof(struct TxFD)
2334 + sizeof(struct speedo_stats),
2335 sp->tx_ring, sp->tx_ring_dma);
2336 pci_disable_device(pdev);
2337 free_netdev(dev);
2338 }
2339
2340 static struct pci_device_id eepro100_pci_tbl[] = {
2341 { PCI_VENDOR_ID_INTEL, 0x1229, PCI_ANY_ID, PCI_ANY_ID, },
2342 { PCI_VENDOR_ID_INTEL, 0x1209, PCI_ANY_ID, PCI_ANY_ID, },
2343 { PCI_VENDOR_ID_INTEL, 0x1029, PCI_ANY_ID, PCI_ANY_ID, },
2344 { PCI_VENDOR_ID_INTEL, 0x1030, PCI_ANY_ID, PCI_ANY_ID, },
2345 { PCI_VENDOR_ID_INTEL, 0x1031, PCI_ANY_ID, PCI_ANY_ID, },
2346 { PCI_VENDOR_ID_INTEL, 0x1032, PCI_ANY_ID, PCI_ANY_ID, },
2347 { PCI_VENDOR_ID_INTEL, 0x1033, PCI_ANY_ID, PCI_ANY_ID, },
2348 { PCI_VENDOR_ID_INTEL, 0x1034, PCI_ANY_ID, PCI_ANY_ID, },
2349 { PCI_VENDOR_ID_INTEL, 0x1035, PCI_ANY_ID, PCI_ANY_ID, },
2350 { PCI_VENDOR_ID_INTEL, 0x1036, PCI_ANY_ID, PCI_ANY_ID, },
2351 { PCI_VENDOR_ID_INTEL, 0x1037, PCI_ANY_ID, PCI_ANY_ID, },
2352 { PCI_VENDOR_ID_INTEL, 0x1038, PCI_ANY_ID, PCI_ANY_ID, },
2353 { PCI_VENDOR_ID_INTEL, 0x1039, PCI_ANY_ID, PCI_ANY_ID, },
2354 { PCI_VENDOR_ID_INTEL, 0x103A, PCI_ANY_ID, PCI_ANY_ID, },
2355 { PCI_VENDOR_ID_INTEL, 0x103B, PCI_ANY_ID, PCI_ANY_ID, },
2356 { PCI_VENDOR_ID_INTEL, 0x103C, PCI_ANY_ID, PCI_ANY_ID, },
2357 { PCI_VENDOR_ID_INTEL, 0x103D, PCI_ANY_ID, PCI_ANY_ID, },
2358 { PCI_VENDOR_ID_INTEL, 0x103E, PCI_ANY_ID, PCI_ANY_ID, },
2359 { PCI_VENDOR_ID_INTEL, 0x1050, PCI_ANY_ID, PCI_ANY_ID, },
2360 { PCI_VENDOR_ID_INTEL, 0x1059, PCI_ANY_ID, PCI_ANY_ID, },
2361 { PCI_VENDOR_ID_INTEL, 0x1227, PCI_ANY_ID, PCI_ANY_ID, },
2362 { PCI_VENDOR_ID_INTEL, 0x2449, PCI_ANY_ID, PCI_ANY_ID, },
2363 { PCI_VENDOR_ID_INTEL, 0x2459, PCI_ANY_ID, PCI_ANY_ID, },
2364 { PCI_VENDOR_ID_INTEL, 0x245D, PCI_ANY_ID, PCI_ANY_ID, },
2365 { PCI_VENDOR_ID_INTEL, 0x5200, PCI_ANY_ID, PCI_ANY_ID, },
2366 { PCI_VENDOR_ID_INTEL, 0x5201, PCI_ANY_ID, PCI_ANY_ID, },
2367 { 0,}
2368 };
2369 MODULE_DEVICE_TABLE(pci, eepro100_pci_tbl);
2370
2371 static struct pci_driver eepro100_driver = {
2372 .name = "eepro100",
2373 .id_table = eepro100_pci_tbl,
2374 .probe = eepro100_init_one,
2375 .remove = __devexit_p(eepro100_remove_one),
2376 #ifdef CONFIG_PM
2377 .suspend = eepro100_suspend,
2378 .resume = eepro100_resume,
2379 #endif /* CONFIG_PM */
2380 };
2381
2382 static int __init eepro100_init_module(void)
2383 {
2384 #ifdef MODULE
2385 printk(version);
2386 #endif
2387 return pci_register_driver(&eepro100_driver);
2388 }
2389
2390 static void __exit eepro100_cleanup_module(void)
2391 {
2392 pci_unregister_driver(&eepro100_driver);
2393 }
2394
2395 module_init(eepro100_init_module);
2396 module_exit(eepro100_cleanup_module);
2397
2398 /*
2399 * Local variables:
2400 * compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c eepro100.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"
2401 * c-indent-level: 4
2402 * c-basic-offset: 4
2403 * tab-width: 4
2404 * End:
2405 */