]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/enc28j60.c
Merge branch 'linus' into x86/bootmem
[mirror_ubuntu-bionic-kernel.git] / drivers / net / enc28j60.c
1 /*
2 * Microchip ENC28J60 ethernet driver (MAC + PHY)
3 *
4 * Copyright (C) 2007 Eurek srl
5 * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
6 * based on enc28j60.c written by David Anders for 2.4 kernel version
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/ethtool.h>
27 #include <linux/tcp.h>
28 #include <linux/skbuff.h>
29 #include <linux/delay.h>
30 #include <linux/spi/spi.h>
31
32 #include "enc28j60_hw.h"
33
34 #define DRV_NAME "enc28j60"
35 #define DRV_VERSION "1.01"
36
37 #define SPI_OPLEN 1
38
39 #define ENC28J60_MSG_DEFAULT \
40 (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK)
41
42 /* Buffer size required for the largest SPI transfer (i.e., reading a
43 * frame). */
44 #define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN)
45
46 #define TX_TIMEOUT (4 * HZ)
47
48 /* Max TX retries in case of collision as suggested by errata datasheet */
49 #define MAX_TX_RETRYCOUNT 16
50
51 enum {
52 RXFILTER_NORMAL,
53 RXFILTER_MULTI,
54 RXFILTER_PROMISC
55 };
56
57 /* Driver local data */
58 struct enc28j60_net {
59 struct net_device *netdev;
60 struct spi_device *spi;
61 struct mutex lock;
62 struct sk_buff *tx_skb;
63 struct work_struct tx_work;
64 struct work_struct irq_work;
65 struct work_struct setrx_work;
66 struct work_struct restart_work;
67 u8 bank; /* current register bank selected */
68 u16 next_pk_ptr; /* next packet pointer within FIFO */
69 u16 max_pk_counter; /* statistics: max packet counter */
70 u16 tx_retry_count;
71 bool hw_enable;
72 bool full_duplex;
73 int rxfilter;
74 u32 msg_enable;
75 u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN];
76 };
77
78 /* use ethtool to change the level for any given device */
79 static struct {
80 u32 msg_enable;
81 } debug = { -1 };
82
83 /*
84 * SPI read buffer
85 * wait for the SPI transfer and copy received data to destination
86 */
87 static int
88 spi_read_buf(struct enc28j60_net *priv, int len, u8 *data)
89 {
90 u8 *rx_buf = priv->spi_transfer_buf + 4;
91 u8 *tx_buf = priv->spi_transfer_buf;
92 struct spi_transfer t = {
93 .tx_buf = tx_buf,
94 .rx_buf = rx_buf,
95 .len = SPI_OPLEN + len,
96 };
97 struct spi_message msg;
98 int ret;
99
100 tx_buf[0] = ENC28J60_READ_BUF_MEM;
101 tx_buf[1] = tx_buf[2] = tx_buf[3] = 0; /* don't care */
102
103 spi_message_init(&msg);
104 spi_message_add_tail(&t, &msg);
105 ret = spi_sync(priv->spi, &msg);
106 if (ret == 0) {
107 memcpy(data, &rx_buf[SPI_OPLEN], len);
108 ret = msg.status;
109 }
110 if (ret && netif_msg_drv(priv))
111 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
112 __func__, ret);
113
114 return ret;
115 }
116
117 /*
118 * SPI write buffer
119 */
120 static int spi_write_buf(struct enc28j60_net *priv, int len,
121 const u8 *data)
122 {
123 int ret;
124
125 if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0)
126 ret = -EINVAL;
127 else {
128 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM;
129 memcpy(&priv->spi_transfer_buf[1], data, len);
130 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1);
131 if (ret && netif_msg_drv(priv))
132 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
133 __func__, ret);
134 }
135 return ret;
136 }
137
138 /*
139 * basic SPI read operation
140 */
141 static u8 spi_read_op(struct enc28j60_net *priv, u8 op,
142 u8 addr)
143 {
144 u8 tx_buf[2];
145 u8 rx_buf[4];
146 u8 val = 0;
147 int ret;
148 int slen = SPI_OPLEN;
149
150 /* do dummy read if needed */
151 if (addr & SPRD_MASK)
152 slen++;
153
154 tx_buf[0] = op | (addr & ADDR_MASK);
155 ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen);
156 if (ret)
157 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
158 __func__, ret);
159 else
160 val = rx_buf[slen - 1];
161
162 return val;
163 }
164
165 /*
166 * basic SPI write operation
167 */
168 static int spi_write_op(struct enc28j60_net *priv, u8 op,
169 u8 addr, u8 val)
170 {
171 int ret;
172
173 priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK);
174 priv->spi_transfer_buf[1] = val;
175 ret = spi_write(priv->spi, priv->spi_transfer_buf, 2);
176 if (ret && netif_msg_drv(priv))
177 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
178 __func__, ret);
179 return ret;
180 }
181
182 static void enc28j60_soft_reset(struct enc28j60_net *priv)
183 {
184 if (netif_msg_hw(priv))
185 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
186
187 spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
188 /* Errata workaround #1, CLKRDY check is unreliable,
189 * delay at least 1 mS instead */
190 udelay(2000);
191 }
192
193 /*
194 * select the current register bank if necessary
195 */
196 static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr)
197 {
198 u8 b = (addr & BANK_MASK) >> 5;
199
200 /* These registers (EIE, EIR, ESTAT, ECON2, ECON1)
201 * are present in all banks, no need to switch bank
202 */
203 if (addr >= EIE && addr <= ECON1)
204 return;
205
206 /* Clear or set each bank selection bit as needed */
207 if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) {
208 if (b & ECON1_BSEL0)
209 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
210 ECON1_BSEL0);
211 else
212 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
213 ECON1_BSEL0);
214 }
215 if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) {
216 if (b & ECON1_BSEL1)
217 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
218 ECON1_BSEL1);
219 else
220 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
221 ECON1_BSEL1);
222 }
223 priv->bank = b;
224 }
225
226 /*
227 * Register access routines through the SPI bus.
228 * Every register access comes in two flavours:
229 * - nolock_xxx: caller needs to invoke mutex_lock, usually to access
230 * atomically more than one register
231 * - locked_xxx: caller doesn't need to invoke mutex_lock, single access
232 *
233 * Some registers can be accessed through the bit field clear and
234 * bit field set to avoid a read modify write cycle.
235 */
236
237 /*
238 * Register bit field Set
239 */
240 static void nolock_reg_bfset(struct enc28j60_net *priv,
241 u8 addr, u8 mask)
242 {
243 enc28j60_set_bank(priv, addr);
244 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask);
245 }
246
247 static void locked_reg_bfset(struct enc28j60_net *priv,
248 u8 addr, u8 mask)
249 {
250 mutex_lock(&priv->lock);
251 nolock_reg_bfset(priv, addr, mask);
252 mutex_unlock(&priv->lock);
253 }
254
255 /*
256 * Register bit field Clear
257 */
258 static void nolock_reg_bfclr(struct enc28j60_net *priv,
259 u8 addr, u8 mask)
260 {
261 enc28j60_set_bank(priv, addr);
262 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask);
263 }
264
265 static void locked_reg_bfclr(struct enc28j60_net *priv,
266 u8 addr, u8 mask)
267 {
268 mutex_lock(&priv->lock);
269 nolock_reg_bfclr(priv, addr, mask);
270 mutex_unlock(&priv->lock);
271 }
272
273 /*
274 * Register byte read
275 */
276 static int nolock_regb_read(struct enc28j60_net *priv,
277 u8 address)
278 {
279 enc28j60_set_bank(priv, address);
280 return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
281 }
282
283 static int locked_regb_read(struct enc28j60_net *priv,
284 u8 address)
285 {
286 int ret;
287
288 mutex_lock(&priv->lock);
289 ret = nolock_regb_read(priv, address);
290 mutex_unlock(&priv->lock);
291
292 return ret;
293 }
294
295 /*
296 * Register word read
297 */
298 static int nolock_regw_read(struct enc28j60_net *priv,
299 u8 address)
300 {
301 int rl, rh;
302
303 enc28j60_set_bank(priv, address);
304 rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
305 rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1);
306
307 return (rh << 8) | rl;
308 }
309
310 static int locked_regw_read(struct enc28j60_net *priv,
311 u8 address)
312 {
313 int ret;
314
315 mutex_lock(&priv->lock);
316 ret = nolock_regw_read(priv, address);
317 mutex_unlock(&priv->lock);
318
319 return ret;
320 }
321
322 /*
323 * Register byte write
324 */
325 static void nolock_regb_write(struct enc28j60_net *priv,
326 u8 address, u8 data)
327 {
328 enc28j60_set_bank(priv, address);
329 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data);
330 }
331
332 static void locked_regb_write(struct enc28j60_net *priv,
333 u8 address, u8 data)
334 {
335 mutex_lock(&priv->lock);
336 nolock_regb_write(priv, address, data);
337 mutex_unlock(&priv->lock);
338 }
339
340 /*
341 * Register word write
342 */
343 static void nolock_regw_write(struct enc28j60_net *priv,
344 u8 address, u16 data)
345 {
346 enc28j60_set_bank(priv, address);
347 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data);
348 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1,
349 (u8) (data >> 8));
350 }
351
352 static void locked_regw_write(struct enc28j60_net *priv,
353 u8 address, u16 data)
354 {
355 mutex_lock(&priv->lock);
356 nolock_regw_write(priv, address, data);
357 mutex_unlock(&priv->lock);
358 }
359
360 /*
361 * Buffer memory read
362 * Select the starting address and execute a SPI buffer read
363 */
364 static void enc28j60_mem_read(struct enc28j60_net *priv,
365 u16 addr, int len, u8 *data)
366 {
367 mutex_lock(&priv->lock);
368 nolock_regw_write(priv, ERDPTL, addr);
369 #ifdef CONFIG_ENC28J60_WRITEVERIFY
370 if (netif_msg_drv(priv)) {
371 u16 reg;
372 reg = nolock_regw_read(priv, ERDPTL);
373 if (reg != addr)
374 printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT "
375 "(0x%04x - 0x%04x)\n", __func__, reg, addr);
376 }
377 #endif
378 spi_read_buf(priv, len, data);
379 mutex_unlock(&priv->lock);
380 }
381
382 /*
383 * Write packet to enc28j60 TX buffer memory
384 */
385 static void
386 enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data)
387 {
388 mutex_lock(&priv->lock);
389 /* Set the write pointer to start of transmit buffer area */
390 nolock_regw_write(priv, EWRPTL, TXSTART_INIT);
391 #ifdef CONFIG_ENC28J60_WRITEVERIFY
392 if (netif_msg_drv(priv)) {
393 u16 reg;
394 reg = nolock_regw_read(priv, EWRPTL);
395 if (reg != TXSTART_INIT)
396 printk(KERN_DEBUG DRV_NAME
397 ": %s() ERWPT:0x%04x != 0x%04x\n",
398 __func__, reg, TXSTART_INIT);
399 }
400 #endif
401 /* Set the TXND pointer to correspond to the packet size given */
402 nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len);
403 /* write per-packet control byte */
404 spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
405 if (netif_msg_hw(priv))
406 printk(KERN_DEBUG DRV_NAME
407 ": %s() after control byte ERWPT:0x%04x\n",
408 __func__, nolock_regw_read(priv, EWRPTL));
409 /* copy the packet into the transmit buffer */
410 spi_write_buf(priv, len, data);
411 if (netif_msg_hw(priv))
412 printk(KERN_DEBUG DRV_NAME
413 ": %s() after write packet ERWPT:0x%04x, len=%d\n",
414 __func__, nolock_regw_read(priv, EWRPTL), len);
415 mutex_unlock(&priv->lock);
416 }
417
418 static unsigned long msec20_to_jiffies;
419
420 static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val)
421 {
422 unsigned long timeout = jiffies + msec20_to_jiffies;
423
424 /* 20 msec timeout read */
425 while ((nolock_regb_read(priv, reg) & mask) != val) {
426 if (time_after(jiffies, timeout)) {
427 if (netif_msg_drv(priv))
428 dev_dbg(&priv->spi->dev,
429 "reg %02x ready timeout!\n", reg);
430 return -ETIMEDOUT;
431 }
432 cpu_relax();
433 }
434 return 0;
435 }
436
437 /*
438 * Wait until the PHY operation is complete.
439 */
440 static int wait_phy_ready(struct enc28j60_net *priv)
441 {
442 return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1;
443 }
444
445 /*
446 * PHY register read
447 * PHY registers are not accessed directly, but through the MII
448 */
449 static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address)
450 {
451 u16 ret;
452
453 mutex_lock(&priv->lock);
454 /* set the PHY register address */
455 nolock_regb_write(priv, MIREGADR, address);
456 /* start the register read operation */
457 nolock_regb_write(priv, MICMD, MICMD_MIIRD);
458 /* wait until the PHY read completes */
459 wait_phy_ready(priv);
460 /* quit reading */
461 nolock_regb_write(priv, MICMD, 0x00);
462 /* return the data */
463 ret = nolock_regw_read(priv, MIRDL);
464 mutex_unlock(&priv->lock);
465
466 return ret;
467 }
468
469 static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data)
470 {
471 int ret;
472
473 mutex_lock(&priv->lock);
474 /* set the PHY register address */
475 nolock_regb_write(priv, MIREGADR, address);
476 /* write the PHY data */
477 nolock_regw_write(priv, MIWRL, data);
478 /* wait until the PHY write completes and return */
479 ret = wait_phy_ready(priv);
480 mutex_unlock(&priv->lock);
481
482 return ret;
483 }
484
485 /*
486 * Program the hardware MAC address from dev->dev_addr.
487 */
488 static int enc28j60_set_hw_macaddr(struct net_device *ndev)
489 {
490 int ret;
491 struct enc28j60_net *priv = netdev_priv(ndev);
492
493 mutex_lock(&priv->lock);
494 if (!priv->hw_enable) {
495 if (netif_msg_drv(priv))
496 printk(KERN_INFO DRV_NAME
497 ": %s: Setting MAC address to %pM\n",
498 ndev->name, ndev->dev_addr);
499 /* NOTE: MAC address in ENC28J60 is byte-backward */
500 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]);
501 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]);
502 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]);
503 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]);
504 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]);
505 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]);
506 ret = 0;
507 } else {
508 if (netif_msg_drv(priv))
509 printk(KERN_DEBUG DRV_NAME
510 ": %s() Hardware must be disabled to set "
511 "Mac address\n", __func__);
512 ret = -EBUSY;
513 }
514 mutex_unlock(&priv->lock);
515 return ret;
516 }
517
518 /*
519 * Store the new hardware address in dev->dev_addr, and update the MAC.
520 */
521 static int enc28j60_set_mac_address(struct net_device *dev, void *addr)
522 {
523 struct sockaddr *address = addr;
524
525 if (netif_running(dev))
526 return -EBUSY;
527 if (!is_valid_ether_addr(address->sa_data))
528 return -EADDRNOTAVAIL;
529
530 memcpy(dev->dev_addr, address->sa_data, dev->addr_len);
531 return enc28j60_set_hw_macaddr(dev);
532 }
533
534 /*
535 * Debug routine to dump useful register contents
536 */
537 static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg)
538 {
539 mutex_lock(&priv->lock);
540 printk(KERN_DEBUG DRV_NAME " %s\n"
541 "HwRevID: 0x%02x\n"
542 "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n"
543 " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n"
544 "MAC : MACON1 MACON3 MACON4\n"
545 " 0x%02x 0x%02x 0x%02x\n"
546 "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"
547 " 0x%04x 0x%04x 0x%04x 0x%04x "
548 "0x%02x 0x%02x 0x%04x\n"
549 "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n"
550 " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n",
551 msg, nolock_regb_read(priv, EREVID),
552 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2),
553 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR),
554 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1),
555 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4),
556 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL),
557 nolock_regw_read(priv, ERXWRPTL),
558 nolock_regw_read(priv, ERXRDPTL),
559 nolock_regb_read(priv, ERXFCON),
560 nolock_regb_read(priv, EPKTCNT),
561 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL),
562 nolock_regw_read(priv, ETXNDL),
563 nolock_regb_read(priv, MACLCON1),
564 nolock_regb_read(priv, MACLCON2),
565 nolock_regb_read(priv, MAPHSUP));
566 mutex_unlock(&priv->lock);
567 }
568
569 /*
570 * ERXRDPT need to be set always at odd addresses, refer to errata datasheet
571 */
572 static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end)
573 {
574 u16 erxrdpt;
575
576 if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end))
577 erxrdpt = end;
578 else
579 erxrdpt = next_packet_ptr - 1;
580
581 return erxrdpt;
582 }
583
584 /*
585 * Calculate wrap around when reading beyond the end of the RX buffer
586 */
587 static u16 rx_packet_start(u16 ptr)
588 {
589 if (ptr + RSV_SIZE > RXEND_INIT)
590 return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1);
591 else
592 return ptr + RSV_SIZE;
593 }
594
595 static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
596 {
597 u16 erxrdpt;
598
599 if (start > 0x1FFF || end > 0x1FFF || start > end) {
600 if (netif_msg_drv(priv))
601 printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO "
602 "bad parameters!\n", __func__, start, end);
603 return;
604 }
605 /* set receive buffer start + end */
606 priv->next_pk_ptr = start;
607 nolock_regw_write(priv, ERXSTL, start);
608 erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end);
609 nolock_regw_write(priv, ERXRDPTL, erxrdpt);
610 nolock_regw_write(priv, ERXNDL, end);
611 }
612
613 static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
614 {
615 if (start > 0x1FFF || end > 0x1FFF || start > end) {
616 if (netif_msg_drv(priv))
617 printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO "
618 "bad parameters!\n", __func__, start, end);
619 return;
620 }
621 /* set transmit buffer start + end */
622 nolock_regw_write(priv, ETXSTL, start);
623 nolock_regw_write(priv, ETXNDL, end);
624 }
625
626 /*
627 * Low power mode shrinks power consumption about 100x, so we'd like
628 * the chip to be in that mode whenever it's inactive. (However, we
629 * can't stay in lowpower mode during suspend with WOL active.)
630 */
631 static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low)
632 {
633 if (netif_msg_drv(priv))
634 dev_dbg(&priv->spi->dev, "%s power...\n",
635 is_low ? "low" : "high");
636
637 mutex_lock(&priv->lock);
638 if (is_low) {
639 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
640 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0);
641 poll_ready(priv, ECON1, ECON1_TXRTS, 0);
642 /* ECON2_VRPS was set during initialization */
643 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV);
644 } else {
645 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV);
646 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY);
647 /* caller sets ECON1_RXEN */
648 }
649 mutex_unlock(&priv->lock);
650 }
651
652 static int enc28j60_hw_init(struct enc28j60_net *priv)
653 {
654 u8 reg;
655
656 if (netif_msg_drv(priv))
657 printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __func__,
658 priv->full_duplex ? "FullDuplex" : "HalfDuplex");
659
660 mutex_lock(&priv->lock);
661 /* first reset the chip */
662 enc28j60_soft_reset(priv);
663 /* Clear ECON1 */
664 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00);
665 priv->bank = 0;
666 priv->hw_enable = false;
667 priv->tx_retry_count = 0;
668 priv->max_pk_counter = 0;
669 priv->rxfilter = RXFILTER_NORMAL;
670 /* enable address auto increment and voltage regulator powersave */
671 nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS);
672
673 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
674 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
675 mutex_unlock(&priv->lock);
676
677 /*
678 * Check the RevID.
679 * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or
680 * damaged
681 */
682 reg = locked_regb_read(priv, EREVID);
683 if (netif_msg_drv(priv))
684 printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg);
685 if (reg == 0x00 || reg == 0xff) {
686 if (netif_msg_drv(priv))
687 printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n",
688 __func__, reg);
689 return 0;
690 }
691
692 /* default filter mode: (unicast OR broadcast) AND crc valid */
693 locked_regb_write(priv, ERXFCON,
694 ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
695
696 /* enable MAC receive */
697 locked_regb_write(priv, MACON1,
698 MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
699 /* enable automatic padding and CRC operations */
700 if (priv->full_duplex) {
701 locked_regb_write(priv, MACON3,
702 MACON3_PADCFG0 | MACON3_TXCRCEN |
703 MACON3_FRMLNEN | MACON3_FULDPX);
704 /* set inter-frame gap (non-back-to-back) */
705 locked_regb_write(priv, MAIPGL, 0x12);
706 /* set inter-frame gap (back-to-back) */
707 locked_regb_write(priv, MABBIPG, 0x15);
708 } else {
709 locked_regb_write(priv, MACON3,
710 MACON3_PADCFG0 | MACON3_TXCRCEN |
711 MACON3_FRMLNEN);
712 locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */
713 /* set inter-frame gap (non-back-to-back) */
714 locked_regw_write(priv, MAIPGL, 0x0C12);
715 /* set inter-frame gap (back-to-back) */
716 locked_regb_write(priv, MABBIPG, 0x12);
717 }
718 /*
719 * MACLCON1 (default)
720 * MACLCON2 (default)
721 * Set the maximum packet size which the controller will accept
722 */
723 locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN);
724
725 /* Configure LEDs */
726 if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE))
727 return 0;
728
729 if (priv->full_duplex) {
730 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD))
731 return 0;
732 if (!enc28j60_phy_write(priv, PHCON2, 0x00))
733 return 0;
734 } else {
735 if (!enc28j60_phy_write(priv, PHCON1, 0x00))
736 return 0;
737 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS))
738 return 0;
739 }
740 if (netif_msg_hw(priv))
741 enc28j60_dump_regs(priv, "Hw initialized.");
742
743 return 1;
744 }
745
746 static void enc28j60_hw_enable(struct enc28j60_net *priv)
747 {
748 /* enable interrupts */
749 if (netif_msg_hw(priv))
750 printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n",
751 __func__);
752
753 enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
754
755 mutex_lock(&priv->lock);
756 nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF |
757 EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF);
758 nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
759 EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
760
761 /* enable receive logic */
762 nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
763 priv->hw_enable = true;
764 mutex_unlock(&priv->lock);
765 }
766
767 static void enc28j60_hw_disable(struct enc28j60_net *priv)
768 {
769 mutex_lock(&priv->lock);
770 /* disable interrutps and packet reception */
771 nolock_regb_write(priv, EIE, 0x00);
772 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
773 priv->hw_enable = false;
774 mutex_unlock(&priv->lock);
775 }
776
777 static int
778 enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex)
779 {
780 struct enc28j60_net *priv = netdev_priv(ndev);
781 int ret = 0;
782
783 if (!priv->hw_enable) {
784 /* link is in low power mode now; duplex setting
785 * will take effect on next enc28j60_hw_init().
786 */
787 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10)
788 priv->full_duplex = (duplex == DUPLEX_FULL);
789 else {
790 if (netif_msg_link(priv))
791 dev_warn(&ndev->dev,
792 "unsupported link setting\n");
793 ret = -EOPNOTSUPP;
794 }
795 } else {
796 if (netif_msg_link(priv))
797 dev_warn(&ndev->dev, "Warning: hw must be disabled "
798 "to set link mode\n");
799 ret = -EBUSY;
800 }
801 return ret;
802 }
803
804 /*
805 * Read the Transmit Status Vector
806 */
807 static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE])
808 {
809 int endptr;
810
811 endptr = locked_regw_read(priv, ETXNDL);
812 if (netif_msg_hw(priv))
813 printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n",
814 endptr + 1);
815 enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv);
816 }
817
818 static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg,
819 u8 tsv[TSV_SIZE])
820 {
821 u16 tmp1, tmp2;
822
823 printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg);
824 tmp1 = tsv[1];
825 tmp1 <<= 8;
826 tmp1 |= tsv[0];
827
828 tmp2 = tsv[5];
829 tmp2 <<= 8;
830 tmp2 |= tsv[4];
831
832 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d,"
833 " TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2);
834 printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d,"
835 " LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE),
836 TSV_GETBIT(tsv, TSV_TXCRCERROR),
837 TSV_GETBIT(tsv, TSV_TXLENCHKERROR),
838 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE));
839 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
840 "PacketDefer: %d, ExDefer: %d\n",
841 TSV_GETBIT(tsv, TSV_TXMULTICAST),
842 TSV_GETBIT(tsv, TSV_TXBROADCAST),
843 TSV_GETBIT(tsv, TSV_TXPACKETDEFER),
844 TSV_GETBIT(tsv, TSV_TXEXDEFER));
845 printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, "
846 "Giant: %d, Underrun: %d\n",
847 TSV_GETBIT(tsv, TSV_TXEXCOLLISION),
848 TSV_GETBIT(tsv, TSV_TXLATECOLLISION),
849 TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN));
850 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, "
851 "BackPressApp: %d, VLanTagFrame: %d\n",
852 TSV_GETBIT(tsv, TSV_TXCONTROLFRAME),
853 TSV_GETBIT(tsv, TSV_TXPAUSEFRAME),
854 TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP),
855 TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME));
856 }
857
858 /*
859 * Receive Status vector
860 */
861 static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg,
862 u16 pk_ptr, int len, u16 sts)
863 {
864 printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n",
865 msg, pk_ptr);
866 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len,
867 RSV_GETBIT(sts, RSV_DRIBBLENIBBLE));
868 printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d,"
869 " LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK),
870 RSV_GETBIT(sts, RSV_CRCERROR),
871 RSV_GETBIT(sts, RSV_LENCHECKERR),
872 RSV_GETBIT(sts, RSV_LENOUTOFRANGE));
873 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
874 "LongDropEvent: %d, CarrierEvent: %d\n",
875 RSV_GETBIT(sts, RSV_RXMULTICAST),
876 RSV_GETBIT(sts, RSV_RXBROADCAST),
877 RSV_GETBIT(sts, RSV_RXLONGEVDROPEV),
878 RSV_GETBIT(sts, RSV_CARRIEREV));
879 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d,"
880 " UnknownOp: %d, VLanTagFrame: %d\n",
881 RSV_GETBIT(sts, RSV_RXCONTROLFRAME),
882 RSV_GETBIT(sts, RSV_RXPAUSEFRAME),
883 RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE),
884 RSV_GETBIT(sts, RSV_RXTYPEVLAN));
885 }
886
887 static void dump_packet(const char *msg, int len, const char *data)
888 {
889 printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len);
890 print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1,
891 data, len, true);
892 }
893
894 /*
895 * Hardware receive function.
896 * Read the buffer memory, update the FIFO pointer to free the buffer,
897 * check the status vector and decrement the packet counter.
898 */
899 static void enc28j60_hw_rx(struct net_device *ndev)
900 {
901 struct enc28j60_net *priv = netdev_priv(ndev);
902 struct sk_buff *skb = NULL;
903 u16 erxrdpt, next_packet, rxstat;
904 u8 rsv[RSV_SIZE];
905 int len;
906
907 if (netif_msg_rx_status(priv))
908 printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n",
909 priv->next_pk_ptr);
910
911 if (unlikely(priv->next_pk_ptr > RXEND_INIT)) {
912 if (netif_msg_rx_err(priv))
913 dev_err(&ndev->dev,
914 "%s() Invalid packet address!! 0x%04x\n",
915 __func__, priv->next_pk_ptr);
916 /* packet address corrupted: reset RX logic */
917 mutex_lock(&priv->lock);
918 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
919 nolock_reg_bfset(priv, ECON1, ECON1_RXRST);
920 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST);
921 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
922 nolock_reg_bfclr(priv, EIR, EIR_RXERIF);
923 nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
924 mutex_unlock(&priv->lock);
925 ndev->stats.rx_errors++;
926 return;
927 }
928 /* Read next packet pointer and rx status vector */
929 enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);
930
931 next_packet = rsv[1];
932 next_packet <<= 8;
933 next_packet |= rsv[0];
934
935 len = rsv[3];
936 len <<= 8;
937 len |= rsv[2];
938
939 rxstat = rsv[5];
940 rxstat <<= 8;
941 rxstat |= rsv[4];
942
943 if (netif_msg_rx_status(priv))
944 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat);
945
946 if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) {
947 if (netif_msg_rx_err(priv))
948 dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat);
949 ndev->stats.rx_errors++;
950 if (RSV_GETBIT(rxstat, RSV_CRCERROR))
951 ndev->stats.rx_crc_errors++;
952 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR))
953 ndev->stats.rx_frame_errors++;
954 if (len > MAX_FRAMELEN)
955 ndev->stats.rx_over_errors++;
956 } else {
957 skb = dev_alloc_skb(len + NET_IP_ALIGN);
958 if (!skb) {
959 if (netif_msg_rx_err(priv))
960 dev_err(&ndev->dev,
961 "out of memory for Rx'd frame\n");
962 ndev->stats.rx_dropped++;
963 } else {
964 skb->dev = ndev;
965 skb_reserve(skb, NET_IP_ALIGN);
966 /* copy the packet from the receive buffer */
967 enc28j60_mem_read(priv,
968 rx_packet_start(priv->next_pk_ptr),
969 len, skb_put(skb, len));
970 if (netif_msg_pktdata(priv))
971 dump_packet(__func__, skb->len, skb->data);
972 skb->protocol = eth_type_trans(skb, ndev);
973 /* update statistics */
974 ndev->stats.rx_packets++;
975 ndev->stats.rx_bytes += len;
976 netif_rx_ni(skb);
977 }
978 }
979 /*
980 * Move the RX read pointer to the start of the next
981 * received packet.
982 * This frees the memory we just read out
983 */
984 erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT);
985 if (netif_msg_hw(priv))
986 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n",
987 __func__, erxrdpt);
988
989 mutex_lock(&priv->lock);
990 nolock_regw_write(priv, ERXRDPTL, erxrdpt);
991 #ifdef CONFIG_ENC28J60_WRITEVERIFY
992 if (netif_msg_drv(priv)) {
993 u16 reg;
994 reg = nolock_regw_read(priv, ERXRDPTL);
995 if (reg != erxrdpt)
996 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify "
997 "error (0x%04x - 0x%04x)\n", __func__,
998 reg, erxrdpt);
999 }
1000 #endif
1001 priv->next_pk_ptr = next_packet;
1002 /* we are done with this packet, decrement the packet counter */
1003 nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC);
1004 mutex_unlock(&priv->lock);
1005 }
1006
1007 /*
1008 * Calculate free space in RxFIFO
1009 */
1010 static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv)
1011 {
1012 int epkcnt, erxst, erxnd, erxwr, erxrd;
1013 int free_space;
1014
1015 mutex_lock(&priv->lock);
1016 epkcnt = nolock_regb_read(priv, EPKTCNT);
1017 if (epkcnt >= 255)
1018 free_space = -1;
1019 else {
1020 erxst = nolock_regw_read(priv, ERXSTL);
1021 erxnd = nolock_regw_read(priv, ERXNDL);
1022 erxwr = nolock_regw_read(priv, ERXWRPTL);
1023 erxrd = nolock_regw_read(priv, ERXRDPTL);
1024
1025 if (erxwr > erxrd)
1026 free_space = (erxnd - erxst) - (erxwr - erxrd);
1027 else if (erxwr == erxrd)
1028 free_space = (erxnd - erxst);
1029 else
1030 free_space = erxrd - erxwr - 1;
1031 }
1032 mutex_unlock(&priv->lock);
1033 if (netif_msg_rx_status(priv))
1034 printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n",
1035 __func__, free_space);
1036 return free_space;
1037 }
1038
1039 /*
1040 * Access the PHY to determine link status
1041 */
1042 static void enc28j60_check_link_status(struct net_device *ndev)
1043 {
1044 struct enc28j60_net *priv = netdev_priv(ndev);
1045 u16 reg;
1046 int duplex;
1047
1048 reg = enc28j60_phy_read(priv, PHSTAT2);
1049 if (netif_msg_hw(priv))
1050 printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, "
1051 "PHSTAT2: %04x\n", __func__,
1052 enc28j60_phy_read(priv, PHSTAT1), reg);
1053 duplex = reg & PHSTAT2_DPXSTAT;
1054
1055 if (reg & PHSTAT2_LSTAT) {
1056 netif_carrier_on(ndev);
1057 if (netif_msg_ifup(priv))
1058 dev_info(&ndev->dev, "link up - %s\n",
1059 duplex ? "Full duplex" : "Half duplex");
1060 } else {
1061 if (netif_msg_ifdown(priv))
1062 dev_info(&ndev->dev, "link down\n");
1063 netif_carrier_off(ndev);
1064 }
1065 }
1066
1067 static void enc28j60_tx_clear(struct net_device *ndev, bool err)
1068 {
1069 struct enc28j60_net *priv = netdev_priv(ndev);
1070
1071 if (err)
1072 ndev->stats.tx_errors++;
1073 else
1074 ndev->stats.tx_packets++;
1075
1076 if (priv->tx_skb) {
1077 if (!err)
1078 ndev->stats.tx_bytes += priv->tx_skb->len;
1079 dev_kfree_skb(priv->tx_skb);
1080 priv->tx_skb = NULL;
1081 }
1082 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1083 netif_wake_queue(ndev);
1084 }
1085
1086 /*
1087 * RX handler
1088 * ignore PKTIF because is unreliable! (look at the errata datasheet)
1089 * check EPKTCNT is the suggested workaround.
1090 * We don't need to clear interrupt flag, automatically done when
1091 * enc28j60_hw_rx() decrements the packet counter.
1092 * Returns how many packet processed.
1093 */
1094 static int enc28j60_rx_interrupt(struct net_device *ndev)
1095 {
1096 struct enc28j60_net *priv = netdev_priv(ndev);
1097 int pk_counter, ret;
1098
1099 pk_counter = locked_regb_read(priv, EPKTCNT);
1100 if (pk_counter && netif_msg_intr(priv))
1101 printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter);
1102 if (pk_counter > priv->max_pk_counter) {
1103 /* update statistics */
1104 priv->max_pk_counter = pk_counter;
1105 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1)
1106 printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n",
1107 priv->max_pk_counter);
1108 }
1109 ret = pk_counter;
1110 while (pk_counter-- > 0)
1111 enc28j60_hw_rx(ndev);
1112
1113 return ret;
1114 }
1115
1116 static void enc28j60_irq_work_handler(struct work_struct *work)
1117 {
1118 struct enc28j60_net *priv =
1119 container_of(work, struct enc28j60_net, irq_work);
1120 struct net_device *ndev = priv->netdev;
1121 int intflags, loop;
1122
1123 if (netif_msg_intr(priv))
1124 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1125 /* disable further interrupts */
1126 locked_reg_bfclr(priv, EIE, EIE_INTIE);
1127
1128 do {
1129 loop = 0;
1130 intflags = locked_regb_read(priv, EIR);
1131 /* DMA interrupt handler (not currently used) */
1132 if ((intflags & EIR_DMAIF) != 0) {
1133 loop++;
1134 if (netif_msg_intr(priv))
1135 printk(KERN_DEBUG DRV_NAME
1136 ": intDMA(%d)\n", loop);
1137 locked_reg_bfclr(priv, EIR, EIR_DMAIF);
1138 }
1139 /* LINK changed handler */
1140 if ((intflags & EIR_LINKIF) != 0) {
1141 loop++;
1142 if (netif_msg_intr(priv))
1143 printk(KERN_DEBUG DRV_NAME
1144 ": intLINK(%d)\n", loop);
1145 enc28j60_check_link_status(ndev);
1146 /* read PHIR to clear the flag */
1147 enc28j60_phy_read(priv, PHIR);
1148 }
1149 /* TX complete handler */
1150 if ((intflags & EIR_TXIF) != 0) {
1151 bool err = false;
1152 loop++;
1153 if (netif_msg_intr(priv))
1154 printk(KERN_DEBUG DRV_NAME
1155 ": intTX(%d)\n", loop);
1156 priv->tx_retry_count = 0;
1157 if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) {
1158 if (netif_msg_tx_err(priv))
1159 dev_err(&ndev->dev,
1160 "Tx Error (aborted)\n");
1161 err = true;
1162 }
1163 if (netif_msg_tx_done(priv)) {
1164 u8 tsv[TSV_SIZE];
1165 enc28j60_read_tsv(priv, tsv);
1166 enc28j60_dump_tsv(priv, "Tx Done", tsv);
1167 }
1168 enc28j60_tx_clear(ndev, err);
1169 locked_reg_bfclr(priv, EIR, EIR_TXIF);
1170 }
1171 /* TX Error handler */
1172 if ((intflags & EIR_TXERIF) != 0) {
1173 u8 tsv[TSV_SIZE];
1174
1175 loop++;
1176 if (netif_msg_intr(priv))
1177 printk(KERN_DEBUG DRV_NAME
1178 ": intTXErr(%d)\n", loop);
1179 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1180 enc28j60_read_tsv(priv, tsv);
1181 if (netif_msg_tx_err(priv))
1182 enc28j60_dump_tsv(priv, "Tx Error", tsv);
1183 /* Reset TX logic */
1184 mutex_lock(&priv->lock);
1185 nolock_reg_bfset(priv, ECON1, ECON1_TXRST);
1186 nolock_reg_bfclr(priv, ECON1, ECON1_TXRST);
1187 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
1188 mutex_unlock(&priv->lock);
1189 /* Transmit Late collision check for retransmit */
1190 if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) {
1191 if (netif_msg_tx_err(priv))
1192 printk(KERN_DEBUG DRV_NAME
1193 ": LateCollision TXErr (%d)\n",
1194 priv->tx_retry_count);
1195 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT)
1196 locked_reg_bfset(priv, ECON1,
1197 ECON1_TXRTS);
1198 else
1199 enc28j60_tx_clear(ndev, true);
1200 } else
1201 enc28j60_tx_clear(ndev, true);
1202 locked_reg_bfclr(priv, EIR, EIR_TXERIF);
1203 }
1204 /* RX Error handler */
1205 if ((intflags & EIR_RXERIF) != 0) {
1206 loop++;
1207 if (netif_msg_intr(priv))
1208 printk(KERN_DEBUG DRV_NAME
1209 ": intRXErr(%d)\n", loop);
1210 /* Check free FIFO space to flag RX overrun */
1211 if (enc28j60_get_free_rxfifo(priv) <= 0) {
1212 if (netif_msg_rx_err(priv))
1213 printk(KERN_DEBUG DRV_NAME
1214 ": RX Overrun\n");
1215 ndev->stats.rx_dropped++;
1216 }
1217 locked_reg_bfclr(priv, EIR, EIR_RXERIF);
1218 }
1219 /* RX handler */
1220 if (enc28j60_rx_interrupt(ndev))
1221 loop++;
1222 } while (loop);
1223
1224 /* re-enable interrupts */
1225 locked_reg_bfset(priv, EIE, EIE_INTIE);
1226 if (netif_msg_intr(priv))
1227 printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __func__);
1228 }
1229
1230 /*
1231 * Hardware transmit function.
1232 * Fill the buffer memory and send the contents of the transmit buffer
1233 * onto the network
1234 */
1235 static void enc28j60_hw_tx(struct enc28j60_net *priv)
1236 {
1237 if (netif_msg_tx_queued(priv))
1238 printk(KERN_DEBUG DRV_NAME
1239 ": Tx Packet Len:%d\n", priv->tx_skb->len);
1240
1241 if (netif_msg_pktdata(priv))
1242 dump_packet(__func__,
1243 priv->tx_skb->len, priv->tx_skb->data);
1244 enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data);
1245
1246 #ifdef CONFIG_ENC28J60_WRITEVERIFY
1247 /* readback and verify written data */
1248 if (netif_msg_drv(priv)) {
1249 int test_len, k;
1250 u8 test_buf[64]; /* limit the test to the first 64 bytes */
1251 int okflag;
1252
1253 test_len = priv->tx_skb->len;
1254 if (test_len > sizeof(test_buf))
1255 test_len = sizeof(test_buf);
1256
1257 /* + 1 to skip control byte */
1258 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf);
1259 okflag = 1;
1260 for (k = 0; k < test_len; k++) {
1261 if (priv->tx_skb->data[k] != test_buf[k]) {
1262 printk(KERN_DEBUG DRV_NAME
1263 ": Error, %d location differ: "
1264 "0x%02x-0x%02x\n", k,
1265 priv->tx_skb->data[k], test_buf[k]);
1266 okflag = 0;
1267 }
1268 }
1269 if (!okflag)
1270 printk(KERN_DEBUG DRV_NAME ": Tx write buffer, "
1271 "verify ERROR!\n");
1272 }
1273 #endif
1274 /* set TX request flag */
1275 locked_reg_bfset(priv, ECON1, ECON1_TXRTS);
1276 }
1277
1278 static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb,
1279 struct net_device *dev)
1280 {
1281 struct enc28j60_net *priv = netdev_priv(dev);
1282
1283 if (netif_msg_tx_queued(priv))
1284 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1285
1286 /* If some error occurs while trying to transmit this
1287 * packet, you should return '1' from this function.
1288 * In such a case you _may not_ do anything to the
1289 * SKB, it is still owned by the network queueing
1290 * layer when an error is returned. This means you
1291 * may not modify any SKB fields, you may not free
1292 * the SKB, etc.
1293 */
1294 netif_stop_queue(dev);
1295
1296 /* Remember the skb for deferred processing */
1297 priv->tx_skb = skb;
1298 schedule_work(&priv->tx_work);
1299
1300 return NETDEV_TX_OK;
1301 }
1302
1303 static void enc28j60_tx_work_handler(struct work_struct *work)
1304 {
1305 struct enc28j60_net *priv =
1306 container_of(work, struct enc28j60_net, tx_work);
1307
1308 /* actual delivery of data */
1309 enc28j60_hw_tx(priv);
1310 }
1311
1312 static irqreturn_t enc28j60_irq(int irq, void *dev_id)
1313 {
1314 struct enc28j60_net *priv = dev_id;
1315
1316 /*
1317 * Can't do anything in interrupt context because we need to
1318 * block (spi_sync() is blocking) so fire of the interrupt
1319 * handling workqueue.
1320 * Remember that we access enc28j60 registers through SPI bus
1321 * via spi_sync() call.
1322 */
1323 schedule_work(&priv->irq_work);
1324
1325 return IRQ_HANDLED;
1326 }
1327
1328 static void enc28j60_tx_timeout(struct net_device *ndev)
1329 {
1330 struct enc28j60_net *priv = netdev_priv(ndev);
1331
1332 if (netif_msg_timer(priv))
1333 dev_err(&ndev->dev, DRV_NAME " tx timeout\n");
1334
1335 ndev->stats.tx_errors++;
1336 /* can't restart safely under softirq */
1337 schedule_work(&priv->restart_work);
1338 }
1339
1340 /*
1341 * Open/initialize the board. This is called (in the current kernel)
1342 * sometime after booting when the 'ifconfig' program is run.
1343 *
1344 * This routine should set everything up anew at each open, even
1345 * registers that "should" only need to be set once at boot, so that
1346 * there is non-reboot way to recover if something goes wrong.
1347 */
1348 static int enc28j60_net_open(struct net_device *dev)
1349 {
1350 struct enc28j60_net *priv = netdev_priv(dev);
1351
1352 if (netif_msg_drv(priv))
1353 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1354
1355 if (!is_valid_ether_addr(dev->dev_addr)) {
1356 if (netif_msg_ifup(priv))
1357 dev_err(&dev->dev, "invalid MAC address %pM\n",
1358 dev->dev_addr);
1359 return -EADDRNOTAVAIL;
1360 }
1361 /* Reset the hardware here (and take it out of low power mode) */
1362 enc28j60_lowpower(priv, false);
1363 enc28j60_hw_disable(priv);
1364 if (!enc28j60_hw_init(priv)) {
1365 if (netif_msg_ifup(priv))
1366 dev_err(&dev->dev, "hw_reset() failed\n");
1367 return -EINVAL;
1368 }
1369 /* Update the MAC address (in case user has changed it) */
1370 enc28j60_set_hw_macaddr(dev);
1371 /* Enable interrupts */
1372 enc28j60_hw_enable(priv);
1373 /* check link status */
1374 enc28j60_check_link_status(dev);
1375 /* We are now ready to accept transmit requests from
1376 * the queueing layer of the networking.
1377 */
1378 netif_start_queue(dev);
1379
1380 return 0;
1381 }
1382
1383 /* The inverse routine to net_open(). */
1384 static int enc28j60_net_close(struct net_device *dev)
1385 {
1386 struct enc28j60_net *priv = netdev_priv(dev);
1387
1388 if (netif_msg_drv(priv))
1389 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1390
1391 enc28j60_hw_disable(priv);
1392 enc28j60_lowpower(priv, true);
1393 netif_stop_queue(dev);
1394
1395 return 0;
1396 }
1397
1398 /*
1399 * Set or clear the multicast filter for this adapter
1400 * num_addrs == -1 Promiscuous mode, receive all packets
1401 * num_addrs == 0 Normal mode, filter out multicast packets
1402 * num_addrs > 0 Multicast mode, receive normal and MC packets
1403 */
1404 static void enc28j60_set_multicast_list(struct net_device *dev)
1405 {
1406 struct enc28j60_net *priv = netdev_priv(dev);
1407 int oldfilter = priv->rxfilter;
1408
1409 if (dev->flags & IFF_PROMISC) {
1410 if (netif_msg_link(priv))
1411 dev_info(&dev->dev, "promiscuous mode\n");
1412 priv->rxfilter = RXFILTER_PROMISC;
1413 } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) {
1414 if (netif_msg_link(priv))
1415 dev_info(&dev->dev, "%smulticast mode\n",
1416 (dev->flags & IFF_ALLMULTI) ? "all-" : "");
1417 priv->rxfilter = RXFILTER_MULTI;
1418 } else {
1419 if (netif_msg_link(priv))
1420 dev_info(&dev->dev, "normal mode\n");
1421 priv->rxfilter = RXFILTER_NORMAL;
1422 }
1423
1424 if (oldfilter != priv->rxfilter)
1425 schedule_work(&priv->setrx_work);
1426 }
1427
1428 static void enc28j60_setrx_work_handler(struct work_struct *work)
1429 {
1430 struct enc28j60_net *priv =
1431 container_of(work, struct enc28j60_net, setrx_work);
1432
1433 if (priv->rxfilter == RXFILTER_PROMISC) {
1434 if (netif_msg_drv(priv))
1435 printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n");
1436 locked_regb_write(priv, ERXFCON, 0x00);
1437 } else if (priv->rxfilter == RXFILTER_MULTI) {
1438 if (netif_msg_drv(priv))
1439 printk(KERN_DEBUG DRV_NAME ": multicast mode\n");
1440 locked_regb_write(priv, ERXFCON,
1441 ERXFCON_UCEN | ERXFCON_CRCEN |
1442 ERXFCON_BCEN | ERXFCON_MCEN);
1443 } else {
1444 if (netif_msg_drv(priv))
1445 printk(KERN_DEBUG DRV_NAME ": normal mode\n");
1446 locked_regb_write(priv, ERXFCON,
1447 ERXFCON_UCEN | ERXFCON_CRCEN |
1448 ERXFCON_BCEN);
1449 }
1450 }
1451
1452 static void enc28j60_restart_work_handler(struct work_struct *work)
1453 {
1454 struct enc28j60_net *priv =
1455 container_of(work, struct enc28j60_net, restart_work);
1456 struct net_device *ndev = priv->netdev;
1457 int ret;
1458
1459 rtnl_lock();
1460 if (netif_running(ndev)) {
1461 enc28j60_net_close(ndev);
1462 ret = enc28j60_net_open(ndev);
1463 if (unlikely(ret)) {
1464 dev_info(&ndev->dev, " could not restart %d\n", ret);
1465 dev_close(ndev);
1466 }
1467 }
1468 rtnl_unlock();
1469 }
1470
1471 /* ......................... ETHTOOL SUPPORT ........................... */
1472
1473 static void
1474 enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1475 {
1476 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1477 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1478 strlcpy(info->bus_info,
1479 dev_name(dev->dev.parent), sizeof(info->bus_info));
1480 }
1481
1482 static int
1483 enc28j60_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1484 {
1485 struct enc28j60_net *priv = netdev_priv(dev);
1486
1487 cmd->transceiver = XCVR_INTERNAL;
1488 cmd->supported = SUPPORTED_10baseT_Half
1489 | SUPPORTED_10baseT_Full
1490 | SUPPORTED_TP;
1491 cmd->speed = SPEED_10;
1492 cmd->duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1493 cmd->port = PORT_TP;
1494 cmd->autoneg = AUTONEG_DISABLE;
1495
1496 return 0;
1497 }
1498
1499 static int
1500 enc28j60_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1501 {
1502 return enc28j60_setlink(dev, cmd->autoneg, cmd->speed, cmd->duplex);
1503 }
1504
1505 static u32 enc28j60_get_msglevel(struct net_device *dev)
1506 {
1507 struct enc28j60_net *priv = netdev_priv(dev);
1508 return priv->msg_enable;
1509 }
1510
1511 static void enc28j60_set_msglevel(struct net_device *dev, u32 val)
1512 {
1513 struct enc28j60_net *priv = netdev_priv(dev);
1514 priv->msg_enable = val;
1515 }
1516
1517 static const struct ethtool_ops enc28j60_ethtool_ops = {
1518 .get_settings = enc28j60_get_settings,
1519 .set_settings = enc28j60_set_settings,
1520 .get_drvinfo = enc28j60_get_drvinfo,
1521 .get_msglevel = enc28j60_get_msglevel,
1522 .set_msglevel = enc28j60_set_msglevel,
1523 };
1524
1525 static int enc28j60_chipset_init(struct net_device *dev)
1526 {
1527 struct enc28j60_net *priv = netdev_priv(dev);
1528
1529 return enc28j60_hw_init(priv);
1530 }
1531
1532 static const struct net_device_ops enc28j60_netdev_ops = {
1533 .ndo_open = enc28j60_net_open,
1534 .ndo_stop = enc28j60_net_close,
1535 .ndo_start_xmit = enc28j60_send_packet,
1536 .ndo_set_multicast_list = enc28j60_set_multicast_list,
1537 .ndo_set_mac_address = enc28j60_set_mac_address,
1538 .ndo_tx_timeout = enc28j60_tx_timeout,
1539 .ndo_change_mtu = eth_change_mtu,
1540 .ndo_validate_addr = eth_validate_addr,
1541 };
1542
1543 static int __devinit enc28j60_probe(struct spi_device *spi)
1544 {
1545 struct net_device *dev;
1546 struct enc28j60_net *priv;
1547 int ret = 0;
1548
1549 if (netif_msg_drv(&debug))
1550 dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n",
1551 DRV_VERSION);
1552
1553 dev = alloc_etherdev(sizeof(struct enc28j60_net));
1554 if (!dev) {
1555 if (netif_msg_drv(&debug))
1556 dev_err(&spi->dev, DRV_NAME
1557 ": unable to alloc new ethernet\n");
1558 ret = -ENOMEM;
1559 goto error_alloc;
1560 }
1561 priv = netdev_priv(dev);
1562
1563 priv->netdev = dev; /* priv to netdev reference */
1564 priv->spi = spi; /* priv to spi reference */
1565 priv->msg_enable = netif_msg_init(debug.msg_enable,
1566 ENC28J60_MSG_DEFAULT);
1567 mutex_init(&priv->lock);
1568 INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler);
1569 INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler);
1570 INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler);
1571 INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler);
1572 dev_set_drvdata(&spi->dev, priv); /* spi to priv reference */
1573 SET_NETDEV_DEV(dev, &spi->dev);
1574
1575 if (!enc28j60_chipset_init(dev)) {
1576 if (netif_msg_probe(priv))
1577 dev_info(&spi->dev, DRV_NAME " chip not found\n");
1578 ret = -EIO;
1579 goto error_irq;
1580 }
1581 random_ether_addr(dev->dev_addr);
1582 enc28j60_set_hw_macaddr(dev);
1583
1584 /* Board setup must set the relevant edge trigger type;
1585 * level triggers won't currently work.
1586 */
1587 ret = request_irq(spi->irq, enc28j60_irq, 0, DRV_NAME, priv);
1588 if (ret < 0) {
1589 if (netif_msg_probe(priv))
1590 dev_err(&spi->dev, DRV_NAME ": request irq %d failed "
1591 "(ret = %d)\n", spi->irq, ret);
1592 goto error_irq;
1593 }
1594
1595 dev->if_port = IF_PORT_10BASET;
1596 dev->irq = spi->irq;
1597 dev->netdev_ops = &enc28j60_netdev_ops;
1598 dev->watchdog_timeo = TX_TIMEOUT;
1599 SET_ETHTOOL_OPS(dev, &enc28j60_ethtool_ops);
1600
1601 enc28j60_lowpower(priv, true);
1602
1603 ret = register_netdev(dev);
1604 if (ret) {
1605 if (netif_msg_probe(priv))
1606 dev_err(&spi->dev, "register netdev " DRV_NAME
1607 " failed (ret = %d)\n", ret);
1608 goto error_register;
1609 }
1610 dev_info(&dev->dev, DRV_NAME " driver registered\n");
1611
1612 return 0;
1613
1614 error_register:
1615 free_irq(spi->irq, priv);
1616 error_irq:
1617 free_netdev(dev);
1618 error_alloc:
1619 return ret;
1620 }
1621
1622 static int __devexit enc28j60_remove(struct spi_device *spi)
1623 {
1624 struct enc28j60_net *priv = dev_get_drvdata(&spi->dev);
1625
1626 if (netif_msg_drv(priv))
1627 printk(KERN_DEBUG DRV_NAME ": remove\n");
1628
1629 unregister_netdev(priv->netdev);
1630 free_irq(spi->irq, priv);
1631 free_netdev(priv->netdev);
1632
1633 return 0;
1634 }
1635
1636 static struct spi_driver enc28j60_driver = {
1637 .driver = {
1638 .name = DRV_NAME,
1639 .owner = THIS_MODULE,
1640 },
1641 .probe = enc28j60_probe,
1642 .remove = __devexit_p(enc28j60_remove),
1643 };
1644
1645 static int __init enc28j60_init(void)
1646 {
1647 msec20_to_jiffies = msecs_to_jiffies(20);
1648
1649 return spi_register_driver(&enc28j60_driver);
1650 }
1651
1652 module_init(enc28j60_init);
1653
1654 static void __exit enc28j60_exit(void)
1655 {
1656 spi_unregister_driver(&enc28j60_driver);
1657 }
1658
1659 module_exit(enc28j60_exit);
1660
1661 MODULE_DESCRIPTION(DRV_NAME " ethernet driver");
1662 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
1663 MODULE_LICENSE("GPL");
1664 module_param_named(debug, debug.msg_enable, int, 0);
1665 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)");
1666 MODULE_ALIAS("spi:" DRV_NAME);