]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/adaptec/starfire.c
Merge tag 'ecryptfs-3.8-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / adaptec / starfire.c
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27 */
28
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
32
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h> /* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50
51 /*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55 #define HAS_BROKEN_FIRMWARE
56
57 /*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63
64 /*
65 * Define this if using the driver with the zero-copy patch
66 */
67 #define ZEROCOPY
68
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
72
73 /* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
79
80 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
88
89 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90 /*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
109
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116
117 /* Operational parameters that are set at compile time. */
118
119 /* The "native" ring sizes are either 256 or 2048.
120 However in some modes a descriptor may be marked to wrap the ring earlier.
121 */
122 #define RX_RING_SIZE 256
123 #define TX_RING_SIZE 32
124 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125 #define DONE_Q_SIZE 1024
126 /* All queues must be aligned on a 256-byte boundary */
127 #define QUEUE_ALIGN 256
128
129 #if RX_RING_SIZE > 256
130 #define RX_Q_ENTRIES Rx2048QEntries
131 #else
132 #define RX_Q_ENTRIES Rx256QEntries
133 #endif
134
135 /* Operational parameters that usually are not changed. */
136 /* Time in jiffies before concluding the transmitter is hung. */
137 #define TX_TIMEOUT (2 * HZ)
138
139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140 /* 64-bit dma_addr_t */
141 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
142 #define netdrv_addr_t __le64
143 #define cpu_to_dma(x) cpu_to_le64(x)
144 #define dma_to_cpu(x) le64_to_cpu(x)
145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
150 #else /* 32-bit dma_addr_t */
151 #define netdrv_addr_t __le32
152 #define cpu_to_dma(x) cpu_to_le32(x)
153 #define dma_to_cpu(x) le32_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
159 #endif
160
161 #define skb_first_frag_len(skb) skb_headlen(skb)
162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163
164 /* Firmware names */
165 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
166 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
167
168 /* These identify the driver base version and may not be removed. */
169 static const char version[] =
170 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172
173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177 MODULE_FIRMWARE(FIRMWARE_RX);
178 MODULE_FIRMWARE(FIRMWARE_TX);
179
180 module_param(max_interrupt_work, int, 0);
181 module_param(mtu, int, 0);
182 module_param(debug, int, 0);
183 module_param(rx_copybreak, int, 0);
184 module_param(intr_latency, int, 0);
185 module_param(small_frames, int, 0);
186 module_param(enable_hw_cksum, int, 0);
187 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188 MODULE_PARM_DESC(mtu, "MTU (all boards)");
189 MODULE_PARM_DESC(debug, "Debug level (0-6)");
190 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194
195 /*
196 Theory of Operation
197
198 I. Board Compatibility
199
200 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
201
202 II. Board-specific settings
203
204 III. Driver operation
205
206 IIIa. Ring buffers
207
208 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
209 ring sizes are set fixed by the hardware, but may optionally be wrapped
210 earlier by the END bit in the descriptor.
211 This driver uses that hardware queue size for the Rx ring, where a large
212 number of entries has no ill effect beyond increases the potential backlog.
213 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214 disables the queue layer priority ordering and we have no mechanism to
215 utilize the hardware two-level priority queue. When modifying the
216 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217 levels.
218
219 IIIb/c. Transmit/Receive Structure
220
221 See the Adaptec manual for the many possible structures, and options for
222 each structure. There are far too many to document all of them here.
223
224 For transmit this driver uses type 0/1 transmit descriptors (depending
225 on the 32/64 bitness of the architecture), and relies on automatic
226 minimum-length padding. It does not use the completion queue
227 consumer index, but instead checks for non-zero status entries.
228
229 For receive this driver uses type 2/3 receive descriptors. The driver
230 allocates full frame size skbuffs for the Rx ring buffers, so all frames
231 should fit in a single descriptor. The driver does not use the completion
232 queue consumer index, but instead checks for non-zero status entries.
233
234 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235 is allocated and the frame is copied to the new skbuff. When the incoming
236 frame is larger, the skbuff is passed directly up the protocol stack.
237 Buffers consumed this way are replaced by newly allocated skbuffs in a later
238 phase of receive.
239
240 A notable aspect of operation is that unaligned buffers are not permitted by
241 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
242 isn't longword aligned, which may cause problems on some machine
243 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244 the frame into a new skbuff unconditionally. Copied frames are put into the
245 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
246
247 IIId. Synchronization
248
249 The driver runs as two independent, single-threaded flows of control. One
250 is the send-packet routine, which enforces single-threaded use by the
251 dev->tbusy flag. The other thread is the interrupt handler, which is single
252 threaded by the hardware and interrupt handling software.
253
254 The send packet thread has partial control over the Tx ring and the netif_queue
255 status. If the number of free Tx slots in the ring falls below a certain number
256 (currently hardcoded to 4), it signals the upper layer to stop the queue.
257
258 The interrupt handler has exclusive control over the Rx ring and records stats
259 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
260 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261 number of free Tx slow is above the threshold, it signals the upper layer to
262 restart the queue.
263
264 IV. Notes
265
266 IVb. References
267
268 The Adaptec Starfire manuals, available only from Adaptec.
269 http://www.scyld.com/expert/100mbps.html
270 http://www.scyld.com/expert/NWay.html
271
272 IVc. Errata
273
274 - StopOnPerr is broken, don't enable
275 - Hardware ethernet padding exposes random data, perform software padding
276 instead (unverified -- works correctly for all the hardware I have)
277
278 */
279
280
281
282 enum chip_capability_flags {CanHaveMII=1, };
283
284 enum chipset {
285 CH_6915 = 0,
286 };
287
288 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
289 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290 { 0, }
291 };
292 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293
294 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295 static const struct chip_info {
296 const char *name;
297 int drv_flags;
298 } netdrv_tbl[] = {
299 { "Adaptec Starfire 6915", CanHaveMII },
300 };
301
302
303 /* Offsets to the device registers.
304 Unlike software-only systems, device drivers interact with complex hardware.
305 It's not useful to define symbolic names for every register bit in the
306 device. The name can only partially document the semantics and make
307 the driver longer and more difficult to read.
308 In general, only the important configuration values or bits changed
309 multiple times should be defined symbolically.
310 */
311 enum register_offsets {
312 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
318 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 TxThreshold=0x500B0,
320 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 TxMode=0x55000, VlanType=0x55064,
326 PerfFilterTable=0x56000, HashTable=0x56100,
327 TxGfpMem=0x58000, RxGfpMem=0x5a000,
328 };
329
330 /*
331 * Bits in the interrupt status/mask registers.
332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333 * enables all the interrupt sources that are or'ed into those status bits.
334 */
335 enum intr_status_bits {
336 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 IntrTxGfp=0x02, IntrPCIPad=0x01,
350 /* not quite bits */
351 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354 };
355
356 /* Bits in the RxFilterMode register. */
357 enum rx_mode_bits {
358 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 WakeupOnGFP=0x0800,
362 };
363
364 /* Bits in the TxMode register */
365 enum tx_mode_bits {
366 MiiSoftReset=0x8000, MIILoopback=0x4000,
367 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369 };
370
371 /* Bits in the TxDescCtrl register. */
372 enum tx_ctrl_bits {
373 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 TxDescSpace128=0x30, TxDescSpace256=0x40,
375 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 TxDescType3=0x03, TxDescType4=0x04,
377 TxNoDMACompletion=0x08,
378 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 TxDMABurstSizeShift=8,
381 };
382
383 /* Bits in the RxDescQCtrl register. */
384 enum rx_ctrl_bits {
385 RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 Rx2048QEntries=0x4000, Rx256QEntries=0,
388 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 RxDescSpace4=0x000, RxDescSpace8=0x100,
391 RxDescSpace16=0x200, RxDescSpace32=0x300,
392 RxDescSpace64=0x400, RxDescSpace128=0x500,
393 RxConsumerWrEn=0x80,
394 };
395
396 /* Bits in the RxDMACtrl register. */
397 enum rx_dmactrl_bits {
398 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 RxChecksumRejectTCPOnly=0x01000000,
403 RxCompletionQ2Enable=0x800000,
404 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 RxDMAQ2NonIP=0x400000,
407 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 RxBurstSizeShift=0,
410 };
411
412 /* Bits in the RxCompletionAddr register */
413 enum rx_compl_bits {
414 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 RxComplProducerWrEn=0x40,
416 RxComplType0=0x00, RxComplType1=0x10,
417 RxComplType2=0x20, RxComplType3=0x30,
418 RxComplThreshShift=0,
419 };
420
421 /* Bits in the TxCompletionAddr register */
422 enum tx_compl_bits {
423 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 TxComplProducerWrEn=0x40,
425 TxComplIntrStatus=0x20,
426 CommonQueueMode=0x10,
427 TxComplThreshShift=0,
428 };
429
430 /* Bits in the GenCtrl register */
431 enum gen_ctrl_bits {
432 RxEnable=0x05, TxEnable=0x0a,
433 RxGFPEnable=0x10, TxGFPEnable=0x20,
434 };
435
436 /* Bits in the IntrTimerCtrl register */
437 enum intr_ctrl_bits {
438 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 IntrLatencyMask=0x1f,
441 };
442
443 /* The Rx and Tx buffer descriptors. */
444 struct starfire_rx_desc {
445 netdrv_addr_t rxaddr;
446 };
447 enum rx_desc_bits {
448 RxDescValid=1, RxDescEndRing=2,
449 };
450
451 /* Completion queue entry. */
452 struct short_rx_done_desc {
453 __le32 status; /* Low 16 bits is length. */
454 };
455 struct basic_rx_done_desc {
456 __le32 status; /* Low 16 bits is length. */
457 __le16 vlanid;
458 __le16 status2;
459 };
460 struct csum_rx_done_desc {
461 __le32 status; /* Low 16 bits is length. */
462 __le16 csum; /* Partial checksum */
463 __le16 status2;
464 };
465 struct full_rx_done_desc {
466 __le32 status; /* Low 16 bits is length. */
467 __le16 status3;
468 __le16 status2;
469 __le16 vlanid;
470 __le16 csum; /* partial checksum */
471 __le32 timestamp;
472 };
473 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
474 #ifdef VLAN_SUPPORT
475 typedef struct full_rx_done_desc rx_done_desc;
476 #define RxComplType RxComplType3
477 #else /* not VLAN_SUPPORT */
478 typedef struct csum_rx_done_desc rx_done_desc;
479 #define RxComplType RxComplType2
480 #endif /* not VLAN_SUPPORT */
481
482 enum rx_done_bits {
483 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484 };
485
486 /* Type 1 Tx descriptor. */
487 struct starfire_tx_desc_1 {
488 __le32 status; /* Upper bits are status, lower 16 length. */
489 __le32 addr;
490 };
491
492 /* Type 2 Tx descriptor. */
493 struct starfire_tx_desc_2 {
494 __le32 status; /* Upper bits are status, lower 16 length. */
495 __le32 reserved;
496 __le64 addr;
497 };
498
499 #ifdef ADDR_64BITS
500 typedef struct starfire_tx_desc_2 starfire_tx_desc;
501 #define TX_DESC_TYPE TxDescType2
502 #else /* not ADDR_64BITS */
503 typedef struct starfire_tx_desc_1 starfire_tx_desc;
504 #define TX_DESC_TYPE TxDescType1
505 #endif /* not ADDR_64BITS */
506 #define TX_DESC_SPACING TxDescSpaceUnlim
507
508 enum tx_desc_bits {
509 TxDescID=0xB0000000,
510 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512 };
513 struct tx_done_desc {
514 __le32 status; /* timestamp, index. */
515 #if 0
516 __le32 intrstatus; /* interrupt status */
517 #endif
518 };
519
520 struct rx_ring_info {
521 struct sk_buff *skb;
522 dma_addr_t mapping;
523 };
524 struct tx_ring_info {
525 struct sk_buff *skb;
526 dma_addr_t mapping;
527 unsigned int used_slots;
528 };
529
530 #define PHY_CNT 2
531 struct netdev_private {
532 /* Descriptor rings first for alignment. */
533 struct starfire_rx_desc *rx_ring;
534 starfire_tx_desc *tx_ring;
535 dma_addr_t rx_ring_dma;
536 dma_addr_t tx_ring_dma;
537 /* The addresses of rx/tx-in-place skbuffs. */
538 struct rx_ring_info rx_info[RX_RING_SIZE];
539 struct tx_ring_info tx_info[TX_RING_SIZE];
540 /* Pointers to completion queues (full pages). */
541 rx_done_desc *rx_done_q;
542 dma_addr_t rx_done_q_dma;
543 unsigned int rx_done;
544 struct tx_done_desc *tx_done_q;
545 dma_addr_t tx_done_q_dma;
546 unsigned int tx_done;
547 struct napi_struct napi;
548 struct net_device *dev;
549 struct pci_dev *pci_dev;
550 #ifdef VLAN_SUPPORT
551 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552 #endif
553 void *queue_mem;
554 dma_addr_t queue_mem_dma;
555 size_t queue_mem_size;
556
557 /* Frequently used values: keep some adjacent for cache effect. */
558 spinlock_t lock;
559 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
560 unsigned int cur_tx, dirty_tx, reap_tx;
561 unsigned int rx_buf_sz; /* Based on MTU+slack. */
562 /* These values keep track of the transceiver/media in use. */
563 int speed100; /* Set if speed == 100MBit. */
564 u32 tx_mode;
565 u32 intr_timer_ctrl;
566 u8 tx_threshold;
567 /* MII transceiver section. */
568 struct mii_if_info mii_if; /* MII lib hooks/info */
569 int phy_cnt; /* MII device addresses. */
570 unsigned char phys[PHY_CNT]; /* MII device addresses. */
571 void __iomem *base;
572 };
573
574
575 static int mdio_read(struct net_device *dev, int phy_id, int location);
576 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
577 static int netdev_open(struct net_device *dev);
578 static void check_duplex(struct net_device *dev);
579 static void tx_timeout(struct net_device *dev);
580 static void init_ring(struct net_device *dev);
581 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582 static irqreturn_t intr_handler(int irq, void *dev_instance);
583 static void netdev_error(struct net_device *dev, int intr_status);
584 static int __netdev_rx(struct net_device *dev, int *quota);
585 static int netdev_poll(struct napi_struct *napi, int budget);
586 static void refill_rx_ring(struct net_device *dev);
587 static void netdev_error(struct net_device *dev, int intr_status);
588 static void set_rx_mode(struct net_device *dev);
589 static struct net_device_stats *get_stats(struct net_device *dev);
590 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591 static int netdev_close(struct net_device *dev);
592 static void netdev_media_change(struct net_device *dev);
593 static const struct ethtool_ops ethtool_ops;
594
595
596 #ifdef VLAN_SUPPORT
597 static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
598 {
599 struct netdev_private *np = netdev_priv(dev);
600
601 spin_lock(&np->lock);
602 if (debug > 1)
603 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
604 set_bit(vid, np->active_vlans);
605 set_rx_mode(dev);
606 spin_unlock(&np->lock);
607
608 return 0;
609 }
610
611 static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
612 {
613 struct netdev_private *np = netdev_priv(dev);
614
615 spin_lock(&np->lock);
616 if (debug > 1)
617 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
618 clear_bit(vid, np->active_vlans);
619 set_rx_mode(dev);
620 spin_unlock(&np->lock);
621
622 return 0;
623 }
624 #endif /* VLAN_SUPPORT */
625
626
627 static const struct net_device_ops netdev_ops = {
628 .ndo_open = netdev_open,
629 .ndo_stop = netdev_close,
630 .ndo_start_xmit = start_tx,
631 .ndo_tx_timeout = tx_timeout,
632 .ndo_get_stats = get_stats,
633 .ndo_set_rx_mode = set_rx_mode,
634 .ndo_do_ioctl = netdev_ioctl,
635 .ndo_change_mtu = eth_change_mtu,
636 .ndo_set_mac_address = eth_mac_addr,
637 .ndo_validate_addr = eth_validate_addr,
638 #ifdef VLAN_SUPPORT
639 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
640 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
641 #endif
642 };
643
644 static int starfire_init_one(struct pci_dev *pdev,
645 const struct pci_device_id *ent)
646 {
647 struct device *d = &pdev->dev;
648 struct netdev_private *np;
649 int i, irq, chip_idx = ent->driver_data;
650 struct net_device *dev;
651 long ioaddr;
652 void __iomem *base;
653 int drv_flags, io_size;
654 int boguscnt;
655
656 /* when built into the kernel, we only print version if device is found */
657 #ifndef MODULE
658 static int printed_version;
659 if (!printed_version++)
660 printk(version);
661 #endif
662
663 if (pci_enable_device (pdev))
664 return -EIO;
665
666 ioaddr = pci_resource_start(pdev, 0);
667 io_size = pci_resource_len(pdev, 0);
668 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
669 dev_err(d, "no PCI MEM resources, aborting\n");
670 return -ENODEV;
671 }
672
673 dev = alloc_etherdev(sizeof(*np));
674 if (!dev)
675 return -ENOMEM;
676
677 SET_NETDEV_DEV(dev, &pdev->dev);
678
679 irq = pdev->irq;
680
681 if (pci_request_regions (pdev, DRV_NAME)) {
682 dev_err(d, "cannot reserve PCI resources, aborting\n");
683 goto err_out_free_netdev;
684 }
685
686 base = ioremap(ioaddr, io_size);
687 if (!base) {
688 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
689 io_size, ioaddr);
690 goto err_out_free_res;
691 }
692
693 pci_set_master(pdev);
694
695 /* enable MWI -- it vastly improves Rx performance on sparc64 */
696 pci_try_set_mwi(pdev);
697
698 #ifdef ZEROCOPY
699 /* Starfire can do TCP/UDP checksumming */
700 if (enable_hw_cksum)
701 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
702 #endif /* ZEROCOPY */
703
704 #ifdef VLAN_SUPPORT
705 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
706 #endif /* VLAN_RX_KILL_VID */
707 #ifdef ADDR_64BITS
708 dev->features |= NETIF_F_HIGHDMA;
709 #endif /* ADDR_64BITS */
710
711 /* Serial EEPROM reads are hidden by the hardware. */
712 for (i = 0; i < 6; i++)
713 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
714
715 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
716 if (debug > 4)
717 for (i = 0; i < 0x20; i++)
718 printk("%2.2x%s",
719 (unsigned int)readb(base + EEPROMCtrl + i),
720 i % 16 != 15 ? " " : "\n");
721 #endif
722
723 /* Issue soft reset */
724 writel(MiiSoftReset, base + TxMode);
725 udelay(1000);
726 writel(0, base + TxMode);
727
728 /* Reset the chip to erase previous misconfiguration. */
729 writel(1, base + PCIDeviceConfig);
730 boguscnt = 1000;
731 while (--boguscnt > 0) {
732 udelay(10);
733 if ((readl(base + PCIDeviceConfig) & 1) == 0)
734 break;
735 }
736 if (boguscnt == 0)
737 printk("%s: chipset reset never completed!\n", dev->name);
738 /* wait a little longer */
739 udelay(1000);
740
741 np = netdev_priv(dev);
742 np->dev = dev;
743 np->base = base;
744 spin_lock_init(&np->lock);
745 pci_set_drvdata(pdev, dev);
746
747 np->pci_dev = pdev;
748
749 np->mii_if.dev = dev;
750 np->mii_if.mdio_read = mdio_read;
751 np->mii_if.mdio_write = mdio_write;
752 np->mii_if.phy_id_mask = 0x1f;
753 np->mii_if.reg_num_mask = 0x1f;
754
755 drv_flags = netdrv_tbl[chip_idx].drv_flags;
756
757 np->speed100 = 1;
758
759 /* timer resolution is 128 * 0.8us */
760 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
761 Timer10X | EnableIntrMasking;
762
763 if (small_frames > 0) {
764 np->intr_timer_ctrl |= SmallFrameBypass;
765 switch (small_frames) {
766 case 1 ... 64:
767 np->intr_timer_ctrl |= SmallFrame64;
768 break;
769 case 65 ... 128:
770 np->intr_timer_ctrl |= SmallFrame128;
771 break;
772 case 129 ... 256:
773 np->intr_timer_ctrl |= SmallFrame256;
774 break;
775 default:
776 np->intr_timer_ctrl |= SmallFrame512;
777 if (small_frames > 512)
778 printk("Adjusting small_frames down to 512\n");
779 break;
780 }
781 }
782
783 dev->netdev_ops = &netdev_ops;
784 dev->watchdog_timeo = TX_TIMEOUT;
785 SET_ETHTOOL_OPS(dev, &ethtool_ops);
786
787 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
788
789 if (mtu)
790 dev->mtu = mtu;
791
792 if (register_netdev(dev))
793 goto err_out_cleardev;
794
795 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
796 dev->name, netdrv_tbl[chip_idx].name, base,
797 dev->dev_addr, irq);
798
799 if (drv_flags & CanHaveMII) {
800 int phy, phy_idx = 0;
801 int mii_status;
802 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
803 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
804 mdelay(100);
805 boguscnt = 1000;
806 while (--boguscnt > 0)
807 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
808 break;
809 if (boguscnt == 0) {
810 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
811 continue;
812 }
813 mii_status = mdio_read(dev, phy, MII_BMSR);
814 if (mii_status != 0) {
815 np->phys[phy_idx++] = phy;
816 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
817 printk(KERN_INFO "%s: MII PHY found at address %d, status "
818 "%#4.4x advertising %#4.4x.\n",
819 dev->name, phy, mii_status, np->mii_if.advertising);
820 /* there can be only one PHY on-board */
821 break;
822 }
823 }
824 np->phy_cnt = phy_idx;
825 if (np->phy_cnt > 0)
826 np->mii_if.phy_id = np->phys[0];
827 else
828 memset(&np->mii_if, 0, sizeof(np->mii_if));
829 }
830
831 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
832 dev->name, enable_hw_cksum ? "enabled" : "disabled");
833 return 0;
834
835 err_out_cleardev:
836 pci_set_drvdata(pdev, NULL);
837 iounmap(base);
838 err_out_free_res:
839 pci_release_regions (pdev);
840 err_out_free_netdev:
841 free_netdev(dev);
842 return -ENODEV;
843 }
844
845
846 /* Read the MII Management Data I/O (MDIO) interfaces. */
847 static int mdio_read(struct net_device *dev, int phy_id, int location)
848 {
849 struct netdev_private *np = netdev_priv(dev);
850 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
851 int result, boguscnt=1000;
852 /* ??? Should we add a busy-wait here? */
853 do {
854 result = readl(mdio_addr);
855 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
856 if (boguscnt == 0)
857 return 0;
858 if ((result & 0xffff) == 0xffff)
859 return 0;
860 return result & 0xffff;
861 }
862
863
864 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
865 {
866 struct netdev_private *np = netdev_priv(dev);
867 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
868 writel(value, mdio_addr);
869 /* The busy-wait will occur before a read. */
870 }
871
872
873 static int netdev_open(struct net_device *dev)
874 {
875 const struct firmware *fw_rx, *fw_tx;
876 const __be32 *fw_rx_data, *fw_tx_data;
877 struct netdev_private *np = netdev_priv(dev);
878 void __iomem *ioaddr = np->base;
879 const int irq = np->pci_dev->irq;
880 int i, retval;
881 size_t tx_size, rx_size;
882 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
883
884 /* Do we ever need to reset the chip??? */
885
886 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
887 if (retval)
888 return retval;
889
890 /* Disable the Rx and Tx, and reset the chip. */
891 writel(0, ioaddr + GenCtrl);
892 writel(1, ioaddr + PCIDeviceConfig);
893 if (debug > 1)
894 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
895 dev->name, irq);
896
897 /* Allocate the various queues. */
898 if (!np->queue_mem) {
899 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
900 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
903 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
904 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
905 if (np->queue_mem == NULL) {
906 free_irq(irq, dev);
907 return -ENOMEM;
908 }
909
910 np->tx_done_q = np->queue_mem;
911 np->tx_done_q_dma = np->queue_mem_dma;
912 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
913 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
914 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
915 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
916 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
917 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
918 }
919
920 /* Start with no carrier, it gets adjusted later */
921 netif_carrier_off(dev);
922 init_ring(dev);
923 /* Set the size of the Rx buffers. */
924 writel((np->rx_buf_sz << RxBufferLenShift) |
925 (0 << RxMinDescrThreshShift) |
926 RxPrefetchMode | RxVariableQ |
927 RX_Q_ENTRIES |
928 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
929 RxDescSpace4,
930 ioaddr + RxDescQCtrl);
931
932 /* Set up the Rx DMA controller. */
933 writel(RxChecksumIgnore |
934 (0 << RxEarlyIntThreshShift) |
935 (6 << RxHighPrioThreshShift) |
936 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
937 ioaddr + RxDMACtrl);
938
939 /* Set Tx descriptor */
940 writel((2 << TxHiPriFIFOThreshShift) |
941 (0 << TxPadLenShift) |
942 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
943 TX_DESC_Q_ADDR_SIZE |
944 TX_DESC_SPACING | TX_DESC_TYPE,
945 ioaddr + TxDescCtrl);
946
947 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
948 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
949 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
950 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
951 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
952
953 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
954 writel(np->rx_done_q_dma |
955 RxComplType |
956 (0 << RxComplThreshShift),
957 ioaddr + RxCompletionAddr);
958
959 if (debug > 1)
960 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
961
962 /* Fill both the Tx SA register and the Rx perfect filter. */
963 for (i = 0; i < 6; i++)
964 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
965 /* The first entry is special because it bypasses the VLAN filter.
966 Don't use it. */
967 writew(0, ioaddr + PerfFilterTable);
968 writew(0, ioaddr + PerfFilterTable + 4);
969 writew(0, ioaddr + PerfFilterTable + 8);
970 for (i = 1; i < 16; i++) {
971 __be16 *eaddrs = (__be16 *)dev->dev_addr;
972 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
973 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
974 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
975 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
976 }
977
978 /* Initialize other registers. */
979 /* Configure the PCI bus bursts and FIFO thresholds. */
980 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
981 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
982 udelay(1000);
983 writel(np->tx_mode, ioaddr + TxMode);
984 np->tx_threshold = 4;
985 writel(np->tx_threshold, ioaddr + TxThreshold);
986
987 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
988
989 napi_enable(&np->napi);
990
991 netif_start_queue(dev);
992
993 if (debug > 1)
994 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
995 set_rx_mode(dev);
996
997 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
998 check_duplex(dev);
999
1000 /* Enable GPIO interrupts on link change */
1001 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1002
1003 /* Set the interrupt mask */
1004 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1005 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1006 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1007 ioaddr + IntrEnable);
1008 /* Enable PCI interrupts. */
1009 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1010 ioaddr + PCIDeviceConfig);
1011
1012 #ifdef VLAN_SUPPORT
1013 /* Set VLAN type to 802.1q */
1014 writel(ETH_P_8021Q, ioaddr + VlanType);
1015 #endif /* VLAN_SUPPORT */
1016
1017 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1018 if (retval) {
1019 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1020 FIRMWARE_RX);
1021 goto out_init;
1022 }
1023 if (fw_rx->size % 4) {
1024 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1025 fw_rx->size, FIRMWARE_RX);
1026 retval = -EINVAL;
1027 goto out_rx;
1028 }
1029 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1030 if (retval) {
1031 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1032 FIRMWARE_TX);
1033 goto out_rx;
1034 }
1035 if (fw_tx->size % 4) {
1036 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1037 fw_tx->size, FIRMWARE_TX);
1038 retval = -EINVAL;
1039 goto out_tx;
1040 }
1041 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1042 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1043 rx_size = fw_rx->size / 4;
1044 tx_size = fw_tx->size / 4;
1045
1046 /* Load Rx/Tx firmware into the frame processors */
1047 for (i = 0; i < rx_size; i++)
1048 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1049 for (i = 0; i < tx_size; i++)
1050 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1051 if (enable_hw_cksum)
1052 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1053 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1054 else
1055 /* Enable the Rx and Tx units only. */
1056 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1057
1058 if (debug > 1)
1059 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1060 dev->name);
1061
1062 out_tx:
1063 release_firmware(fw_tx);
1064 out_rx:
1065 release_firmware(fw_rx);
1066 out_init:
1067 if (retval)
1068 netdev_close(dev);
1069 return retval;
1070 }
1071
1072
1073 static void check_duplex(struct net_device *dev)
1074 {
1075 struct netdev_private *np = netdev_priv(dev);
1076 u16 reg0;
1077 int silly_count = 1000;
1078
1079 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1080 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1081 udelay(500);
1082 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1083 /* do nothing */;
1084 if (!silly_count) {
1085 printk("%s: MII reset failed!\n", dev->name);
1086 return;
1087 }
1088
1089 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1090
1091 if (!np->mii_if.force_media) {
1092 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1093 } else {
1094 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1095 if (np->speed100)
1096 reg0 |= BMCR_SPEED100;
1097 if (np->mii_if.full_duplex)
1098 reg0 |= BMCR_FULLDPLX;
1099 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1100 dev->name,
1101 np->speed100 ? "100" : "10",
1102 np->mii_if.full_duplex ? "full" : "half");
1103 }
1104 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1105 }
1106
1107
1108 static void tx_timeout(struct net_device *dev)
1109 {
1110 struct netdev_private *np = netdev_priv(dev);
1111 void __iomem *ioaddr = np->base;
1112 int old_debug;
1113
1114 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1115 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1116
1117 /* Perhaps we should reinitialize the hardware here. */
1118
1119 /*
1120 * Stop and restart the interface.
1121 * Cheat and increase the debug level temporarily.
1122 */
1123 old_debug = debug;
1124 debug = 2;
1125 netdev_close(dev);
1126 netdev_open(dev);
1127 debug = old_debug;
1128
1129 /* Trigger an immediate transmit demand. */
1130
1131 dev->trans_start = jiffies; /* prevent tx timeout */
1132 dev->stats.tx_errors++;
1133 netif_wake_queue(dev);
1134 }
1135
1136
1137 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1138 static void init_ring(struct net_device *dev)
1139 {
1140 struct netdev_private *np = netdev_priv(dev);
1141 int i;
1142
1143 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1144 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1145
1146 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1147
1148 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1149 for (i = 0; i < RX_RING_SIZE; i++) {
1150 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1151 np->rx_info[i].skb = skb;
1152 if (skb == NULL)
1153 break;
1154 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1155 /* Grrr, we cannot offset to correctly align the IP header. */
1156 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1157 }
1158 writew(i - 1, np->base + RxDescQIdx);
1159 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1160
1161 /* Clear the remainder of the Rx buffer ring. */
1162 for ( ; i < RX_RING_SIZE; i++) {
1163 np->rx_ring[i].rxaddr = 0;
1164 np->rx_info[i].skb = NULL;
1165 np->rx_info[i].mapping = 0;
1166 }
1167 /* Mark the last entry as wrapping the ring. */
1168 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1169
1170 /* Clear the completion rings. */
1171 for (i = 0; i < DONE_Q_SIZE; i++) {
1172 np->rx_done_q[i].status = 0;
1173 np->tx_done_q[i].status = 0;
1174 }
1175
1176 for (i = 0; i < TX_RING_SIZE; i++)
1177 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1178 }
1179
1180
1181 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1182 {
1183 struct netdev_private *np = netdev_priv(dev);
1184 unsigned int entry;
1185 u32 status;
1186 int i;
1187
1188 /*
1189 * be cautious here, wrapping the queue has weird semantics
1190 * and we may not have enough slots even when it seems we do.
1191 */
1192 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1193 netif_stop_queue(dev);
1194 return NETDEV_TX_BUSY;
1195 }
1196
1197 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1198 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1199 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1200 return NETDEV_TX_OK;
1201 }
1202 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1203
1204 entry = np->cur_tx % TX_RING_SIZE;
1205 for (i = 0; i < skb_num_frags(skb); i++) {
1206 int wrap_ring = 0;
1207 status = TxDescID;
1208
1209 if (i == 0) {
1210 np->tx_info[entry].skb = skb;
1211 status |= TxCRCEn;
1212 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1213 status |= TxRingWrap;
1214 wrap_ring = 1;
1215 }
1216 if (np->reap_tx) {
1217 status |= TxDescIntr;
1218 np->reap_tx = 0;
1219 }
1220 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1221 status |= TxCalTCP;
1222 dev->stats.tx_compressed++;
1223 }
1224 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1225
1226 np->tx_info[entry].mapping =
1227 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1228 } else {
1229 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1230 status |= skb_frag_size(this_frag);
1231 np->tx_info[entry].mapping =
1232 pci_map_single(np->pci_dev,
1233 skb_frag_address(this_frag),
1234 skb_frag_size(this_frag),
1235 PCI_DMA_TODEVICE);
1236 }
1237
1238 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1239 np->tx_ring[entry].status = cpu_to_le32(status);
1240 if (debug > 3)
1241 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1242 dev->name, np->cur_tx, np->dirty_tx,
1243 entry, status);
1244 if (wrap_ring) {
1245 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1246 np->cur_tx += np->tx_info[entry].used_slots;
1247 entry = 0;
1248 } else {
1249 np->tx_info[entry].used_slots = 1;
1250 np->cur_tx += np->tx_info[entry].used_slots;
1251 entry++;
1252 }
1253 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1254 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1255 np->reap_tx = 1;
1256 }
1257
1258 /* Non-x86: explicitly flush descriptor cache lines here. */
1259 /* Ensure all descriptors are written back before the transmit is
1260 initiated. - Jes */
1261 wmb();
1262
1263 /* Update the producer index. */
1264 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1265
1266 /* 4 is arbitrary, but should be ok */
1267 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1268 netif_stop_queue(dev);
1269
1270 return NETDEV_TX_OK;
1271 }
1272
1273
1274 /* The interrupt handler does all of the Rx thread work and cleans up
1275 after the Tx thread. */
1276 static irqreturn_t intr_handler(int irq, void *dev_instance)
1277 {
1278 struct net_device *dev = dev_instance;
1279 struct netdev_private *np = netdev_priv(dev);
1280 void __iomem *ioaddr = np->base;
1281 int boguscnt = max_interrupt_work;
1282 int consumer;
1283 int tx_status;
1284 int handled = 0;
1285
1286 do {
1287 u32 intr_status = readl(ioaddr + IntrClear);
1288
1289 if (debug > 4)
1290 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1291 dev->name, intr_status);
1292
1293 if (intr_status == 0 || intr_status == (u32) -1)
1294 break;
1295
1296 handled = 1;
1297
1298 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1299 u32 enable;
1300
1301 if (likely(napi_schedule_prep(&np->napi))) {
1302 __napi_schedule(&np->napi);
1303 enable = readl(ioaddr + IntrEnable);
1304 enable &= ~(IntrRxDone | IntrRxEmpty);
1305 writel(enable, ioaddr + IntrEnable);
1306 /* flush PCI posting buffers */
1307 readl(ioaddr + IntrEnable);
1308 } else {
1309 /* Paranoia check */
1310 enable = readl(ioaddr + IntrEnable);
1311 if (enable & (IntrRxDone | IntrRxEmpty)) {
1312 printk(KERN_INFO
1313 "%s: interrupt while in poll!\n",
1314 dev->name);
1315 enable &= ~(IntrRxDone | IntrRxEmpty);
1316 writel(enable, ioaddr + IntrEnable);
1317 }
1318 }
1319 }
1320
1321 /* Scavenge the skbuff list based on the Tx-done queue.
1322 There are redundant checks here that may be cleaned up
1323 after the driver has proven to be reliable. */
1324 consumer = readl(ioaddr + TxConsumerIdx);
1325 if (debug > 3)
1326 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1327 dev->name, consumer);
1328
1329 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1330 if (debug > 3)
1331 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1332 dev->name, np->dirty_tx, np->tx_done, tx_status);
1333 if ((tx_status & 0xe0000000) == 0xa0000000) {
1334 dev->stats.tx_packets++;
1335 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1336 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1337 struct sk_buff *skb = np->tx_info[entry].skb;
1338 np->tx_info[entry].skb = NULL;
1339 pci_unmap_single(np->pci_dev,
1340 np->tx_info[entry].mapping,
1341 skb_first_frag_len(skb),
1342 PCI_DMA_TODEVICE);
1343 np->tx_info[entry].mapping = 0;
1344 np->dirty_tx += np->tx_info[entry].used_slots;
1345 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1346 {
1347 int i;
1348 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1349 pci_unmap_single(np->pci_dev,
1350 np->tx_info[entry].mapping,
1351 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1352 PCI_DMA_TODEVICE);
1353 np->dirty_tx++;
1354 entry++;
1355 }
1356 }
1357
1358 dev_kfree_skb_irq(skb);
1359 }
1360 np->tx_done_q[np->tx_done].status = 0;
1361 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1362 }
1363 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1364
1365 if (netif_queue_stopped(dev) &&
1366 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1367 /* The ring is no longer full, wake the queue. */
1368 netif_wake_queue(dev);
1369 }
1370
1371 /* Stats overflow */
1372 if (intr_status & IntrStatsMax)
1373 get_stats(dev);
1374
1375 /* Media change interrupt. */
1376 if (intr_status & IntrLinkChange)
1377 netdev_media_change(dev);
1378
1379 /* Abnormal error summary/uncommon events handlers. */
1380 if (intr_status & IntrAbnormalSummary)
1381 netdev_error(dev, intr_status);
1382
1383 if (--boguscnt < 0) {
1384 if (debug > 1)
1385 printk(KERN_WARNING "%s: Too much work at interrupt, "
1386 "status=%#8.8x.\n",
1387 dev->name, intr_status);
1388 break;
1389 }
1390 } while (1);
1391
1392 if (debug > 4)
1393 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1394 dev->name, (int) readl(ioaddr + IntrStatus));
1395 return IRQ_RETVAL(handled);
1396 }
1397
1398
1399 /*
1400 * This routine is logically part of the interrupt/poll handler, but separated
1401 * for clarity and better register allocation.
1402 */
1403 static int __netdev_rx(struct net_device *dev, int *quota)
1404 {
1405 struct netdev_private *np = netdev_priv(dev);
1406 u32 desc_status;
1407 int retcode = 0;
1408
1409 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1410 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1411 struct sk_buff *skb;
1412 u16 pkt_len;
1413 int entry;
1414 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1415
1416 if (debug > 4)
1417 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1418 if (!(desc_status & RxOK)) {
1419 /* There was an error. */
1420 if (debug > 2)
1421 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1422 dev->stats.rx_errors++;
1423 if (desc_status & RxFIFOErr)
1424 dev->stats.rx_fifo_errors++;
1425 goto next_rx;
1426 }
1427
1428 if (*quota <= 0) { /* out of rx quota */
1429 retcode = 1;
1430 goto out;
1431 }
1432 (*quota)--;
1433
1434 pkt_len = desc_status; /* Implicitly Truncate */
1435 entry = (desc_status >> 16) & 0x7ff;
1436
1437 if (debug > 4)
1438 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1439 /* Check if the packet is long enough to accept without copying
1440 to a minimally-sized skbuff. */
1441 if (pkt_len < rx_copybreak &&
1442 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1443 skb_reserve(skb, 2); /* 16 byte align the IP header */
1444 pci_dma_sync_single_for_cpu(np->pci_dev,
1445 np->rx_info[entry].mapping,
1446 pkt_len, PCI_DMA_FROMDEVICE);
1447 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1448 pci_dma_sync_single_for_device(np->pci_dev,
1449 np->rx_info[entry].mapping,
1450 pkt_len, PCI_DMA_FROMDEVICE);
1451 skb_put(skb, pkt_len);
1452 } else {
1453 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1454 skb = np->rx_info[entry].skb;
1455 skb_put(skb, pkt_len);
1456 np->rx_info[entry].skb = NULL;
1457 np->rx_info[entry].mapping = 0;
1458 }
1459 #ifndef final_version /* Remove after testing. */
1460 /* You will want this info for the initial debug. */
1461 if (debug > 5) {
1462 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1463 skb->data, skb->data + 6,
1464 skb->data[12], skb->data[13]);
1465 }
1466 #endif
1467
1468 skb->protocol = eth_type_trans(skb, dev);
1469 #ifdef VLAN_SUPPORT
1470 if (debug > 4)
1471 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1472 #endif
1473 if (le16_to_cpu(desc->status2) & 0x0100) {
1474 skb->ip_summed = CHECKSUM_UNNECESSARY;
1475 dev->stats.rx_compressed++;
1476 }
1477 /*
1478 * This feature doesn't seem to be working, at least
1479 * with the two firmware versions I have. If the GFP sees
1480 * an IP fragment, it either ignores it completely, or reports
1481 * "bad checksum" on it.
1482 *
1483 * Maybe I missed something -- corrections are welcome.
1484 * Until then, the printk stays. :-) -Ion
1485 */
1486 else if (le16_to_cpu(desc->status2) & 0x0040) {
1487 skb->ip_summed = CHECKSUM_COMPLETE;
1488 skb->csum = le16_to_cpu(desc->csum);
1489 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1490 }
1491 #ifdef VLAN_SUPPORT
1492 if (le16_to_cpu(desc->status2) & 0x0200) {
1493 u16 vlid = le16_to_cpu(desc->vlanid);
1494
1495 if (debug > 4) {
1496 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1497 vlid);
1498 }
1499 __vlan_hwaccel_put_tag(skb, vlid);
1500 }
1501 #endif /* VLAN_SUPPORT */
1502 netif_receive_skb(skb);
1503 dev->stats.rx_packets++;
1504
1505 next_rx:
1506 np->cur_rx++;
1507 desc->status = 0;
1508 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1509 }
1510
1511 if (*quota == 0) { /* out of rx quota */
1512 retcode = 1;
1513 goto out;
1514 }
1515 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1516
1517 out:
1518 refill_rx_ring(dev);
1519 if (debug > 5)
1520 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1521 retcode, np->rx_done, desc_status);
1522 return retcode;
1523 }
1524
1525 static int netdev_poll(struct napi_struct *napi, int budget)
1526 {
1527 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1528 struct net_device *dev = np->dev;
1529 u32 intr_status;
1530 void __iomem *ioaddr = np->base;
1531 int quota = budget;
1532
1533 do {
1534 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1535
1536 if (__netdev_rx(dev, &quota))
1537 goto out;
1538
1539 intr_status = readl(ioaddr + IntrStatus);
1540 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1541
1542 napi_complete(napi);
1543 intr_status = readl(ioaddr + IntrEnable);
1544 intr_status |= IntrRxDone | IntrRxEmpty;
1545 writel(intr_status, ioaddr + IntrEnable);
1546
1547 out:
1548 if (debug > 5)
1549 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1550 budget - quota);
1551
1552 /* Restart Rx engine if stopped. */
1553 return budget - quota;
1554 }
1555
1556 static void refill_rx_ring(struct net_device *dev)
1557 {
1558 struct netdev_private *np = netdev_priv(dev);
1559 struct sk_buff *skb;
1560 int entry = -1;
1561
1562 /* Refill the Rx ring buffers. */
1563 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1564 entry = np->dirty_rx % RX_RING_SIZE;
1565 if (np->rx_info[entry].skb == NULL) {
1566 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1567 np->rx_info[entry].skb = skb;
1568 if (skb == NULL)
1569 break; /* Better luck next round. */
1570 np->rx_info[entry].mapping =
1571 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1572 np->rx_ring[entry].rxaddr =
1573 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1574 }
1575 if (entry == RX_RING_SIZE - 1)
1576 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1577 }
1578 if (entry >= 0)
1579 writew(entry, np->base + RxDescQIdx);
1580 }
1581
1582
1583 static void netdev_media_change(struct net_device *dev)
1584 {
1585 struct netdev_private *np = netdev_priv(dev);
1586 void __iomem *ioaddr = np->base;
1587 u16 reg0, reg1, reg4, reg5;
1588 u32 new_tx_mode;
1589 u32 new_intr_timer_ctrl;
1590
1591 /* reset status first */
1592 mdio_read(dev, np->phys[0], MII_BMCR);
1593 mdio_read(dev, np->phys[0], MII_BMSR);
1594
1595 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1596 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1597
1598 if (reg1 & BMSR_LSTATUS) {
1599 /* link is up */
1600 if (reg0 & BMCR_ANENABLE) {
1601 /* autonegotiation is enabled */
1602 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1603 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1604 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1605 np->speed100 = 1;
1606 np->mii_if.full_duplex = 1;
1607 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1608 np->speed100 = 1;
1609 np->mii_if.full_duplex = 0;
1610 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1611 np->speed100 = 0;
1612 np->mii_if.full_duplex = 1;
1613 } else {
1614 np->speed100 = 0;
1615 np->mii_if.full_duplex = 0;
1616 }
1617 } else {
1618 /* autonegotiation is disabled */
1619 if (reg0 & BMCR_SPEED100)
1620 np->speed100 = 1;
1621 else
1622 np->speed100 = 0;
1623 if (reg0 & BMCR_FULLDPLX)
1624 np->mii_if.full_duplex = 1;
1625 else
1626 np->mii_if.full_duplex = 0;
1627 }
1628 netif_carrier_on(dev);
1629 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1630 dev->name,
1631 np->speed100 ? "100" : "10",
1632 np->mii_if.full_duplex ? "full" : "half");
1633
1634 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1635 if (np->mii_if.full_duplex)
1636 new_tx_mode |= FullDuplex;
1637 if (np->tx_mode != new_tx_mode) {
1638 np->tx_mode = new_tx_mode;
1639 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1640 udelay(1000);
1641 writel(np->tx_mode, ioaddr + TxMode);
1642 }
1643
1644 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1645 if (np->speed100)
1646 new_intr_timer_ctrl |= Timer10X;
1647 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1648 np->intr_timer_ctrl = new_intr_timer_ctrl;
1649 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1650 }
1651 } else {
1652 netif_carrier_off(dev);
1653 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1654 }
1655 }
1656
1657
1658 static void netdev_error(struct net_device *dev, int intr_status)
1659 {
1660 struct netdev_private *np = netdev_priv(dev);
1661
1662 /* Came close to underrunning the Tx FIFO, increase threshold. */
1663 if (intr_status & IntrTxDataLow) {
1664 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1665 writel(++np->tx_threshold, np->base + TxThreshold);
1666 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1667 dev->name, np->tx_threshold * 16);
1668 } else
1669 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1670 }
1671 if (intr_status & IntrRxGFPDead) {
1672 dev->stats.rx_fifo_errors++;
1673 dev->stats.rx_errors++;
1674 }
1675 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1676 dev->stats.tx_fifo_errors++;
1677 dev->stats.tx_errors++;
1678 }
1679 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1680 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1681 dev->name, intr_status);
1682 }
1683
1684
1685 static struct net_device_stats *get_stats(struct net_device *dev)
1686 {
1687 struct netdev_private *np = netdev_priv(dev);
1688 void __iomem *ioaddr = np->base;
1689
1690 /* This adapter architecture needs no SMP locks. */
1691 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1692 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1693 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1694 dev->stats.tx_aborted_errors =
1695 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1696 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1697 dev->stats.collisions =
1698 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1699
1700 /* The chip only need report frame silently dropped. */
1701 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1702 writew(0, ioaddr + RxDMAStatus);
1703 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1704 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1705 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1706 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1707
1708 return &dev->stats;
1709 }
1710
1711 #ifdef VLAN_SUPPORT
1712 static u32 set_vlan_mode(struct netdev_private *np)
1713 {
1714 u32 ret = VlanMode;
1715 u16 vid;
1716 void __iomem *filter_addr = np->base + HashTable + 8;
1717 int vlan_count = 0;
1718
1719 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1720 if (vlan_count == 32)
1721 break;
1722 writew(vid, filter_addr);
1723 filter_addr += 16;
1724 vlan_count++;
1725 }
1726 if (vlan_count == 32) {
1727 ret |= PerfectFilterVlan;
1728 while (vlan_count < 32) {
1729 writew(0, filter_addr);
1730 filter_addr += 16;
1731 vlan_count++;
1732 }
1733 }
1734 return ret;
1735 }
1736 #endif /* VLAN_SUPPORT */
1737
1738 static void set_rx_mode(struct net_device *dev)
1739 {
1740 struct netdev_private *np = netdev_priv(dev);
1741 void __iomem *ioaddr = np->base;
1742 u32 rx_mode = MinVLANPrio;
1743 struct netdev_hw_addr *ha;
1744 int i;
1745
1746 #ifdef VLAN_SUPPORT
1747 rx_mode |= set_vlan_mode(np);
1748 #endif /* VLAN_SUPPORT */
1749
1750 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1751 rx_mode |= AcceptAll;
1752 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1753 (dev->flags & IFF_ALLMULTI)) {
1754 /* Too many to match, or accept all multicasts. */
1755 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1756 } else if (netdev_mc_count(dev) <= 14) {
1757 /* Use the 16 element perfect filter, skip first two entries. */
1758 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1759 __be16 *eaddrs;
1760 netdev_for_each_mc_addr(ha, dev) {
1761 eaddrs = (__be16 *) ha->addr;
1762 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1763 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1764 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1765 }
1766 eaddrs = (__be16 *)dev->dev_addr;
1767 i = netdev_mc_count(dev) + 2;
1768 while (i++ < 16) {
1769 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1770 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1771 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1772 }
1773 rx_mode |= AcceptBroadcast|PerfectFilter;
1774 } else {
1775 /* Must use a multicast hash table. */
1776 void __iomem *filter_addr;
1777 __be16 *eaddrs;
1778 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1779
1780 memset(mc_filter, 0, sizeof(mc_filter));
1781 netdev_for_each_mc_addr(ha, dev) {
1782 /* The chip uses the upper 9 CRC bits
1783 as index into the hash table */
1784 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1785 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1786
1787 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1788 }
1789 /* Clear the perfect filter list, skip first two entries. */
1790 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1791 eaddrs = (__be16 *)dev->dev_addr;
1792 for (i = 2; i < 16; i++) {
1793 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1794 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1796 }
1797 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1798 writew(mc_filter[i], filter_addr);
1799 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1800 }
1801 writel(rx_mode, ioaddr + RxFilterMode);
1802 }
1803
1804 static int check_if_running(struct net_device *dev)
1805 {
1806 if (!netif_running(dev))
1807 return -EINVAL;
1808 return 0;
1809 }
1810
1811 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1812 {
1813 struct netdev_private *np = netdev_priv(dev);
1814 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1815 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1816 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1817 }
1818
1819 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1820 {
1821 struct netdev_private *np = netdev_priv(dev);
1822 spin_lock_irq(&np->lock);
1823 mii_ethtool_gset(&np->mii_if, ecmd);
1824 spin_unlock_irq(&np->lock);
1825 return 0;
1826 }
1827
1828 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1829 {
1830 struct netdev_private *np = netdev_priv(dev);
1831 int res;
1832 spin_lock_irq(&np->lock);
1833 res = mii_ethtool_sset(&np->mii_if, ecmd);
1834 spin_unlock_irq(&np->lock);
1835 check_duplex(dev);
1836 return res;
1837 }
1838
1839 static int nway_reset(struct net_device *dev)
1840 {
1841 struct netdev_private *np = netdev_priv(dev);
1842 return mii_nway_restart(&np->mii_if);
1843 }
1844
1845 static u32 get_link(struct net_device *dev)
1846 {
1847 struct netdev_private *np = netdev_priv(dev);
1848 return mii_link_ok(&np->mii_if);
1849 }
1850
1851 static u32 get_msglevel(struct net_device *dev)
1852 {
1853 return debug;
1854 }
1855
1856 static void set_msglevel(struct net_device *dev, u32 val)
1857 {
1858 debug = val;
1859 }
1860
1861 static const struct ethtool_ops ethtool_ops = {
1862 .begin = check_if_running,
1863 .get_drvinfo = get_drvinfo,
1864 .get_settings = get_settings,
1865 .set_settings = set_settings,
1866 .nway_reset = nway_reset,
1867 .get_link = get_link,
1868 .get_msglevel = get_msglevel,
1869 .set_msglevel = set_msglevel,
1870 };
1871
1872 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1873 {
1874 struct netdev_private *np = netdev_priv(dev);
1875 struct mii_ioctl_data *data = if_mii(rq);
1876 int rc;
1877
1878 if (!netif_running(dev))
1879 return -EINVAL;
1880
1881 spin_lock_irq(&np->lock);
1882 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1883 spin_unlock_irq(&np->lock);
1884
1885 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1886 check_duplex(dev);
1887
1888 return rc;
1889 }
1890
1891 static int netdev_close(struct net_device *dev)
1892 {
1893 struct netdev_private *np = netdev_priv(dev);
1894 void __iomem *ioaddr = np->base;
1895 int i;
1896
1897 netif_stop_queue(dev);
1898
1899 napi_disable(&np->napi);
1900
1901 if (debug > 1) {
1902 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1903 dev->name, (int) readl(ioaddr + IntrStatus));
1904 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1905 dev->name, np->cur_tx, np->dirty_tx,
1906 np->cur_rx, np->dirty_rx);
1907 }
1908
1909 /* Disable interrupts by clearing the interrupt mask. */
1910 writel(0, ioaddr + IntrEnable);
1911
1912 /* Stop the chip's Tx and Rx processes. */
1913 writel(0, ioaddr + GenCtrl);
1914 readl(ioaddr + GenCtrl);
1915
1916 if (debug > 5) {
1917 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1918 (long long) np->tx_ring_dma);
1919 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1920 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1921 i, le32_to_cpu(np->tx_ring[i].status),
1922 (long long) dma_to_cpu(np->tx_ring[i].addr),
1923 le32_to_cpu(np->tx_done_q[i].status));
1924 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1925 (long long) np->rx_ring_dma, np->rx_done_q);
1926 if (np->rx_done_q)
1927 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1928 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1929 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1930 }
1931 }
1932
1933 free_irq(np->pci_dev->irq, dev);
1934
1935 /* Free all the skbuffs in the Rx queue. */
1936 for (i = 0; i < RX_RING_SIZE; i++) {
1937 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1938 if (np->rx_info[i].skb != NULL) {
1939 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1940 dev_kfree_skb(np->rx_info[i].skb);
1941 }
1942 np->rx_info[i].skb = NULL;
1943 np->rx_info[i].mapping = 0;
1944 }
1945 for (i = 0; i < TX_RING_SIZE; i++) {
1946 struct sk_buff *skb = np->tx_info[i].skb;
1947 if (skb == NULL)
1948 continue;
1949 pci_unmap_single(np->pci_dev,
1950 np->tx_info[i].mapping,
1951 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1952 np->tx_info[i].mapping = 0;
1953 dev_kfree_skb(skb);
1954 np->tx_info[i].skb = NULL;
1955 }
1956
1957 return 0;
1958 }
1959
1960 #ifdef CONFIG_PM
1961 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1962 {
1963 struct net_device *dev = pci_get_drvdata(pdev);
1964
1965 if (netif_running(dev)) {
1966 netif_device_detach(dev);
1967 netdev_close(dev);
1968 }
1969
1970 pci_save_state(pdev);
1971 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1972
1973 return 0;
1974 }
1975
1976 static int starfire_resume(struct pci_dev *pdev)
1977 {
1978 struct net_device *dev = pci_get_drvdata(pdev);
1979
1980 pci_set_power_state(pdev, PCI_D0);
1981 pci_restore_state(pdev);
1982
1983 if (netif_running(dev)) {
1984 netdev_open(dev);
1985 netif_device_attach(dev);
1986 }
1987
1988 return 0;
1989 }
1990 #endif /* CONFIG_PM */
1991
1992
1993 static void starfire_remove_one(struct pci_dev *pdev)
1994 {
1995 struct net_device *dev = pci_get_drvdata(pdev);
1996 struct netdev_private *np = netdev_priv(dev);
1997
1998 BUG_ON(!dev);
1999
2000 unregister_netdev(dev);
2001
2002 if (np->queue_mem)
2003 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2004
2005
2006 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2007 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2008 pci_disable_device(pdev);
2009
2010 iounmap(np->base);
2011 pci_release_regions(pdev);
2012
2013 pci_set_drvdata(pdev, NULL);
2014 free_netdev(dev); /* Will also free np!! */
2015 }
2016
2017
2018 static struct pci_driver starfire_driver = {
2019 .name = DRV_NAME,
2020 .probe = starfire_init_one,
2021 .remove = starfire_remove_one,
2022 #ifdef CONFIG_PM
2023 .suspend = starfire_suspend,
2024 .resume = starfire_resume,
2025 #endif /* CONFIG_PM */
2026 .id_table = starfire_pci_tbl,
2027 };
2028
2029
2030 static int __init starfire_init (void)
2031 {
2032 /* when a module, this is printed whether or not devices are found in probe */
2033 #ifdef MODULE
2034 printk(version);
2035
2036 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2037 #endif
2038
2039 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2040
2041 return pci_register_driver(&starfire_driver);
2042 }
2043
2044
2045 static void __exit starfire_cleanup (void)
2046 {
2047 pci_unregister_driver (&starfire_driver);
2048 }
2049
2050
2051 module_init(starfire_init);
2052 module_exit(starfire_cleanup);
2053
2054
2055 /*
2056 * Local variables:
2057 * c-basic-offset: 8
2058 * tab-width: 8
2059 * End:
2060 */