]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/aeroflex/greth.c
6715bf54f04eaba49aa4ed94f3192123edc00fd1
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / aeroflex / greth.c
1 /*
2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
3 *
4 * 2005-2010 (c) Aeroflex Gaisler AB
5 *
6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
7 * available in the GRLIB VHDL IP core library.
8 *
9 * Full documentation of both cores can be found here:
10 * http://www.gaisler.com/products/grlib/grip.pdf
11 *
12 * The Gigabit version supports scatter/gather DMA, any alignment of
13 * buffers and checksum offloading.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Contributors: Kristoffer Glembo
21 * Daniel Hellstrom
22 * Marko Isomaki
23 */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/module.h>
27 #include <linux/uaccess.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
34 #include <linux/io.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/of_device.h>
38 #include <linux/of_platform.h>
39 #include <linux/slab.h>
40 #include <asm/cacheflush.h>
41 #include <asm/byteorder.h>
42
43 #ifdef CONFIG_SPARC
44 #include <asm/idprom.h>
45 #endif
46
47 #include "greth.h"
48
49 #define GRETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_DRV | \
51 NETIF_MSG_PROBE | \
52 NETIF_MSG_LINK | \
53 NETIF_MSG_IFDOWN | \
54 NETIF_MSG_IFUP | \
55 NETIF_MSG_RX_ERR | \
56 NETIF_MSG_TX_ERR)
57
58 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
59 module_param(greth_debug, int, 0);
60 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
61
62 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
63 static int macaddr[6];
64 module_param_array(macaddr, int, NULL, 0);
65 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
66
67 static int greth_edcl = 1;
68 module_param(greth_edcl, int, 0);
69 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
70
71 static int greth_open(struct net_device *dev);
72 static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
73 struct net_device *dev);
74 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
75 struct net_device *dev);
76 static int greth_rx(struct net_device *dev, int limit);
77 static int greth_rx_gbit(struct net_device *dev, int limit);
78 static void greth_clean_tx(struct net_device *dev);
79 static void greth_clean_tx_gbit(struct net_device *dev);
80 static irqreturn_t greth_interrupt(int irq, void *dev_id);
81 static int greth_close(struct net_device *dev);
82 static int greth_set_mac_add(struct net_device *dev, void *p);
83 static void greth_set_multicast_list(struct net_device *dev);
84
85 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
86 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
87 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
88 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
89
90 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
91 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
92 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
93
94 static void greth_print_rx_packet(void *addr, int len)
95 {
96 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
97 addr, len, true);
98 }
99
100 static void greth_print_tx_packet(struct sk_buff *skb)
101 {
102 int i;
103 int length;
104
105 if (skb_shinfo(skb)->nr_frags == 0)
106 length = skb->len;
107 else
108 length = skb_headlen(skb);
109
110 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
111 skb->data, length, true);
112
113 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
114
115 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
116 skb_frag_address(&skb_shinfo(skb)->frags[i]),
117 skb_shinfo(skb)->frags[i].size, true);
118 }
119 }
120
121 static inline void greth_enable_tx(struct greth_private *greth)
122 {
123 wmb();
124 GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
125 }
126
127 static inline void greth_disable_tx(struct greth_private *greth)
128 {
129 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
130 }
131
132 static inline void greth_enable_rx(struct greth_private *greth)
133 {
134 wmb();
135 GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
136 }
137
138 static inline void greth_disable_rx(struct greth_private *greth)
139 {
140 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
141 }
142
143 static inline void greth_enable_irqs(struct greth_private *greth)
144 {
145 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
146 }
147
148 static inline void greth_disable_irqs(struct greth_private *greth)
149 {
150 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
151 }
152
153 static inline void greth_write_bd(u32 *bd, u32 val)
154 {
155 __raw_writel(cpu_to_be32(val), bd);
156 }
157
158 static inline u32 greth_read_bd(u32 *bd)
159 {
160 return be32_to_cpu(__raw_readl(bd));
161 }
162
163 static void greth_clean_rings(struct greth_private *greth)
164 {
165 int i;
166 struct greth_bd *rx_bdp = greth->rx_bd_base;
167 struct greth_bd *tx_bdp = greth->tx_bd_base;
168
169 if (greth->gbit_mac) {
170
171 /* Free and unmap RX buffers */
172 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
173 if (greth->rx_skbuff[i] != NULL) {
174 dev_kfree_skb(greth->rx_skbuff[i]);
175 dma_unmap_single(greth->dev,
176 greth_read_bd(&rx_bdp->addr),
177 MAX_FRAME_SIZE+NET_IP_ALIGN,
178 DMA_FROM_DEVICE);
179 }
180 }
181
182 /* TX buffers */
183 while (greth->tx_free < GRETH_TXBD_NUM) {
184
185 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
186 int nr_frags = skb_shinfo(skb)->nr_frags;
187 tx_bdp = greth->tx_bd_base + greth->tx_last;
188 greth->tx_last = NEXT_TX(greth->tx_last);
189
190 dma_unmap_single(greth->dev,
191 greth_read_bd(&tx_bdp->addr),
192 skb_headlen(skb),
193 DMA_TO_DEVICE);
194
195 for (i = 0; i < nr_frags; i++) {
196 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
197 tx_bdp = greth->tx_bd_base + greth->tx_last;
198
199 dma_unmap_page(greth->dev,
200 greth_read_bd(&tx_bdp->addr),
201 frag->size,
202 DMA_TO_DEVICE);
203
204 greth->tx_last = NEXT_TX(greth->tx_last);
205 }
206 greth->tx_free += nr_frags+1;
207 dev_kfree_skb(skb);
208 }
209
210
211 } else { /* 10/100 Mbps MAC */
212
213 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
214 kfree(greth->rx_bufs[i]);
215 dma_unmap_single(greth->dev,
216 greth_read_bd(&rx_bdp->addr),
217 MAX_FRAME_SIZE,
218 DMA_FROM_DEVICE);
219 }
220 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
221 kfree(greth->tx_bufs[i]);
222 dma_unmap_single(greth->dev,
223 greth_read_bd(&tx_bdp->addr),
224 MAX_FRAME_SIZE,
225 DMA_TO_DEVICE);
226 }
227 }
228 }
229
230 static int greth_init_rings(struct greth_private *greth)
231 {
232 struct sk_buff *skb;
233 struct greth_bd *rx_bd, *tx_bd;
234 u32 dma_addr;
235 int i;
236
237 rx_bd = greth->rx_bd_base;
238 tx_bd = greth->tx_bd_base;
239
240 /* Initialize descriptor rings and buffers */
241 if (greth->gbit_mac) {
242
243 for (i = 0; i < GRETH_RXBD_NUM; i++) {
244 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
245 if (skb == NULL) {
246 if (netif_msg_ifup(greth))
247 dev_err(greth->dev, "Error allocating DMA ring.\n");
248 goto cleanup;
249 }
250 skb_reserve(skb, NET_IP_ALIGN);
251 dma_addr = dma_map_single(greth->dev,
252 skb->data,
253 MAX_FRAME_SIZE+NET_IP_ALIGN,
254 DMA_FROM_DEVICE);
255
256 if (dma_mapping_error(greth->dev, dma_addr)) {
257 if (netif_msg_ifup(greth))
258 dev_err(greth->dev, "Could not create initial DMA mapping\n");
259 goto cleanup;
260 }
261 greth->rx_skbuff[i] = skb;
262 greth_write_bd(&rx_bd[i].addr, dma_addr);
263 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
264 }
265
266 } else {
267
268 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
269 for (i = 0; i < GRETH_RXBD_NUM; i++) {
270
271 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
272
273 if (greth->rx_bufs[i] == NULL) {
274 if (netif_msg_ifup(greth))
275 dev_err(greth->dev, "Error allocating DMA ring.\n");
276 goto cleanup;
277 }
278
279 dma_addr = dma_map_single(greth->dev,
280 greth->rx_bufs[i],
281 MAX_FRAME_SIZE,
282 DMA_FROM_DEVICE);
283
284 if (dma_mapping_error(greth->dev, dma_addr)) {
285 if (netif_msg_ifup(greth))
286 dev_err(greth->dev, "Could not create initial DMA mapping\n");
287 goto cleanup;
288 }
289 greth_write_bd(&rx_bd[i].addr, dma_addr);
290 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
291 }
292 for (i = 0; i < GRETH_TXBD_NUM; i++) {
293
294 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
295
296 if (greth->tx_bufs[i] == NULL) {
297 if (netif_msg_ifup(greth))
298 dev_err(greth->dev, "Error allocating DMA ring.\n");
299 goto cleanup;
300 }
301
302 dma_addr = dma_map_single(greth->dev,
303 greth->tx_bufs[i],
304 MAX_FRAME_SIZE,
305 DMA_TO_DEVICE);
306
307 if (dma_mapping_error(greth->dev, dma_addr)) {
308 if (netif_msg_ifup(greth))
309 dev_err(greth->dev, "Could not create initial DMA mapping\n");
310 goto cleanup;
311 }
312 greth_write_bd(&tx_bd[i].addr, dma_addr);
313 greth_write_bd(&tx_bd[i].stat, 0);
314 }
315 }
316 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
317 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
318
319 /* Initialize pointers. */
320 greth->rx_cur = 0;
321 greth->tx_next = 0;
322 greth->tx_last = 0;
323 greth->tx_free = GRETH_TXBD_NUM;
324
325 /* Initialize descriptor base address */
326 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
327 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
328
329 return 0;
330
331 cleanup:
332 greth_clean_rings(greth);
333 return -ENOMEM;
334 }
335
336 static int greth_open(struct net_device *dev)
337 {
338 struct greth_private *greth = netdev_priv(dev);
339 int err;
340
341 err = greth_init_rings(greth);
342 if (err) {
343 if (netif_msg_ifup(greth))
344 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
345 return err;
346 }
347
348 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
349 if (err) {
350 if (netif_msg_ifup(greth))
351 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
352 greth_clean_rings(greth);
353 return err;
354 }
355
356 if (netif_msg_ifup(greth))
357 dev_dbg(&dev->dev, " starting queue\n");
358 netif_start_queue(dev);
359
360 GRETH_REGSAVE(greth->regs->status, 0xFF);
361
362 napi_enable(&greth->napi);
363
364 greth_enable_irqs(greth);
365 greth_enable_tx(greth);
366 greth_enable_rx(greth);
367 return 0;
368
369 }
370
371 static int greth_close(struct net_device *dev)
372 {
373 struct greth_private *greth = netdev_priv(dev);
374
375 napi_disable(&greth->napi);
376
377 greth_disable_irqs(greth);
378 greth_disable_tx(greth);
379 greth_disable_rx(greth);
380
381 netif_stop_queue(dev);
382
383 free_irq(greth->irq, (void *) dev);
384
385 greth_clean_rings(greth);
386
387 return 0;
388 }
389
390 static netdev_tx_t
391 greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
392 {
393 struct greth_private *greth = netdev_priv(dev);
394 struct greth_bd *bdp;
395 int err = NETDEV_TX_OK;
396 u32 status, dma_addr, ctrl;
397 unsigned long flags;
398
399 /* Clean TX Ring */
400 greth_clean_tx(greth->netdev);
401
402 if (unlikely(greth->tx_free <= 0)) {
403 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
404 ctrl = GRETH_REGLOAD(greth->regs->control);
405 /* Enable TX IRQ only if not already in poll() routine */
406 if (ctrl & GRETH_RXI)
407 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
408 netif_stop_queue(dev);
409 spin_unlock_irqrestore(&greth->devlock, flags);
410 return NETDEV_TX_BUSY;
411 }
412
413 if (netif_msg_pktdata(greth))
414 greth_print_tx_packet(skb);
415
416
417 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
418 dev->stats.tx_errors++;
419 goto out;
420 }
421
422 bdp = greth->tx_bd_base + greth->tx_next;
423 dma_addr = greth_read_bd(&bdp->addr);
424
425 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
426
427 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
428
429 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
430 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN;
431
432 /* Wrap around descriptor ring */
433 if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
434 status |= GRETH_BD_WR;
435 }
436
437 greth->tx_next = NEXT_TX(greth->tx_next);
438 greth->tx_free--;
439
440 /* Write descriptor control word and enable transmission */
441 greth_write_bd(&bdp->stat, status);
442 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
443 greth_enable_tx(greth);
444 spin_unlock_irqrestore(&greth->devlock, flags);
445
446 out:
447 dev_kfree_skb(skb);
448 return err;
449 }
450
451
452 static netdev_tx_t
453 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
454 {
455 struct greth_private *greth = netdev_priv(dev);
456 struct greth_bd *bdp;
457 u32 status = 0, dma_addr, ctrl;
458 int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
459 unsigned long flags;
460
461 nr_frags = skb_shinfo(skb)->nr_frags;
462
463 /* Clean TX Ring */
464 greth_clean_tx_gbit(dev);
465
466 if (greth->tx_free < nr_frags + 1) {
467 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
468 ctrl = GRETH_REGLOAD(greth->regs->control);
469 /* Enable TX IRQ only if not already in poll() routine */
470 if (ctrl & GRETH_RXI)
471 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
472 netif_stop_queue(dev);
473 spin_unlock_irqrestore(&greth->devlock, flags);
474 err = NETDEV_TX_BUSY;
475 goto out;
476 }
477
478 if (netif_msg_pktdata(greth))
479 greth_print_tx_packet(skb);
480
481 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
482 dev->stats.tx_errors++;
483 goto out;
484 }
485
486 /* Save skb pointer. */
487 greth->tx_skbuff[greth->tx_next] = skb;
488
489 /* Linear buf */
490 if (nr_frags != 0)
491 status = GRETH_TXBD_MORE;
492
493 if (skb->ip_summed == CHECKSUM_PARTIAL)
494 status |= GRETH_TXBD_CSALL;
495 status |= skb_headlen(skb) & GRETH_BD_LEN;
496 if (greth->tx_next == GRETH_TXBD_NUM_MASK)
497 status |= GRETH_BD_WR;
498
499
500 bdp = greth->tx_bd_base + greth->tx_next;
501 greth_write_bd(&bdp->stat, status);
502 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
503
504 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
505 goto map_error;
506
507 greth_write_bd(&bdp->addr, dma_addr);
508
509 curr_tx = NEXT_TX(greth->tx_next);
510
511 /* Frags */
512 for (i = 0; i < nr_frags; i++) {
513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
514 greth->tx_skbuff[curr_tx] = NULL;
515 bdp = greth->tx_bd_base + curr_tx;
516
517 status = GRETH_BD_EN;
518 if (skb->ip_summed == CHECKSUM_PARTIAL)
519 status |= GRETH_TXBD_CSALL;
520 status |= frag->size & GRETH_BD_LEN;
521
522 /* Wrap around descriptor ring */
523 if (curr_tx == GRETH_TXBD_NUM_MASK)
524 status |= GRETH_BD_WR;
525
526 /* More fragments left */
527 if (i < nr_frags - 1)
528 status |= GRETH_TXBD_MORE;
529 else
530 status |= GRETH_BD_IE; /* enable IRQ on last fragment */
531
532 greth_write_bd(&bdp->stat, status);
533
534 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, frag->size,
535 DMA_TO_DEVICE);
536
537 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
538 goto frag_map_error;
539
540 greth_write_bd(&bdp->addr, dma_addr);
541
542 curr_tx = NEXT_TX(curr_tx);
543 }
544
545 wmb();
546
547 /* Enable the descriptor chain by enabling the first descriptor */
548 bdp = greth->tx_bd_base + greth->tx_next;
549 greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
550 greth->tx_next = curr_tx;
551 greth->tx_free -= nr_frags + 1;
552
553 wmb();
554
555 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
556 greth_enable_tx(greth);
557 spin_unlock_irqrestore(&greth->devlock, flags);
558
559 return NETDEV_TX_OK;
560
561 frag_map_error:
562 /* Unmap SKB mappings that succeeded and disable descriptor */
563 for (i = 0; greth->tx_next + i != curr_tx; i++) {
564 bdp = greth->tx_bd_base + greth->tx_next + i;
565 dma_unmap_single(greth->dev,
566 greth_read_bd(&bdp->addr),
567 greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
568 DMA_TO_DEVICE);
569 greth_write_bd(&bdp->stat, 0);
570 }
571 map_error:
572 if (net_ratelimit())
573 dev_warn(greth->dev, "Could not create TX DMA mapping\n");
574 dev_kfree_skb(skb);
575 out:
576 return err;
577 }
578
579 static irqreturn_t greth_interrupt(int irq, void *dev_id)
580 {
581 struct net_device *dev = dev_id;
582 struct greth_private *greth;
583 u32 status, ctrl;
584 irqreturn_t retval = IRQ_NONE;
585
586 greth = netdev_priv(dev);
587
588 spin_lock(&greth->devlock);
589
590 /* Get the interrupt events that caused us to be here. */
591 status = GRETH_REGLOAD(greth->regs->status);
592
593 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
594 * set regardless of whether IRQ is enabled or not. Especially
595 * important when shared IRQ.
596 */
597 ctrl = GRETH_REGLOAD(greth->regs->control);
598
599 /* Handle rx and tx interrupts through poll */
600 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
601 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
602 retval = IRQ_HANDLED;
603
604 /* Disable interrupts and schedule poll() */
605 greth_disable_irqs(greth);
606 napi_schedule(&greth->napi);
607 }
608
609 mmiowb();
610 spin_unlock(&greth->devlock);
611
612 return retval;
613 }
614
615 static void greth_clean_tx(struct net_device *dev)
616 {
617 struct greth_private *greth;
618 struct greth_bd *bdp;
619 u32 stat;
620
621 greth = netdev_priv(dev);
622
623 while (1) {
624 bdp = greth->tx_bd_base + greth->tx_last;
625 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
626 mb();
627 stat = greth_read_bd(&bdp->stat);
628
629 if (unlikely(stat & GRETH_BD_EN))
630 break;
631
632 if (greth->tx_free == GRETH_TXBD_NUM)
633 break;
634
635 /* Check status for errors */
636 if (unlikely(stat & GRETH_TXBD_STATUS)) {
637 dev->stats.tx_errors++;
638 if (stat & GRETH_TXBD_ERR_AL)
639 dev->stats.tx_aborted_errors++;
640 if (stat & GRETH_TXBD_ERR_UE)
641 dev->stats.tx_fifo_errors++;
642 }
643 dev->stats.tx_packets++;
644 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last];
645 greth->tx_last = NEXT_TX(greth->tx_last);
646 greth->tx_free++;
647 }
648
649 if (greth->tx_free > 0) {
650 netif_wake_queue(dev);
651 }
652
653 }
654
655 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
656 {
657 /* Check status for errors */
658 if (unlikely(stat & GRETH_TXBD_STATUS)) {
659 dev->stats.tx_errors++;
660 if (stat & GRETH_TXBD_ERR_AL)
661 dev->stats.tx_aborted_errors++;
662 if (stat & GRETH_TXBD_ERR_UE)
663 dev->stats.tx_fifo_errors++;
664 if (stat & GRETH_TXBD_ERR_LC)
665 dev->stats.tx_aborted_errors++;
666 }
667 dev->stats.tx_packets++;
668 }
669
670 static void greth_clean_tx_gbit(struct net_device *dev)
671 {
672 struct greth_private *greth;
673 struct greth_bd *bdp, *bdp_last_frag;
674 struct sk_buff *skb;
675 u32 stat;
676 int nr_frags, i;
677
678 greth = netdev_priv(dev);
679
680 while (greth->tx_free < GRETH_TXBD_NUM) {
681
682 skb = greth->tx_skbuff[greth->tx_last];
683
684 nr_frags = skb_shinfo(skb)->nr_frags;
685
686 /* We only clean fully completed SKBs */
687 bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
688
689 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
690 mb();
691 stat = greth_read_bd(&bdp_last_frag->stat);
692
693 if (stat & GRETH_BD_EN)
694 break;
695
696 greth->tx_skbuff[greth->tx_last] = NULL;
697
698 greth_update_tx_stats(dev, stat);
699 dev->stats.tx_bytes += skb->len;
700
701 bdp = greth->tx_bd_base + greth->tx_last;
702
703 greth->tx_last = NEXT_TX(greth->tx_last);
704
705 dma_unmap_single(greth->dev,
706 greth_read_bd(&bdp->addr),
707 skb_headlen(skb),
708 DMA_TO_DEVICE);
709
710 for (i = 0; i < nr_frags; i++) {
711 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
712 bdp = greth->tx_bd_base + greth->tx_last;
713
714 dma_unmap_page(greth->dev,
715 greth_read_bd(&bdp->addr),
716 frag->size,
717 DMA_TO_DEVICE);
718
719 greth->tx_last = NEXT_TX(greth->tx_last);
720 }
721 greth->tx_free += nr_frags+1;
722 dev_kfree_skb(skb);
723 }
724
725 if (netif_queue_stopped(dev) && (greth->tx_free > (MAX_SKB_FRAGS+1)))
726 netif_wake_queue(dev);
727 }
728
729 static int greth_rx(struct net_device *dev, int limit)
730 {
731 struct greth_private *greth;
732 struct greth_bd *bdp;
733 struct sk_buff *skb;
734 int pkt_len;
735 int bad, count;
736 u32 status, dma_addr;
737 unsigned long flags;
738
739 greth = netdev_priv(dev);
740
741 for (count = 0; count < limit; ++count) {
742
743 bdp = greth->rx_bd_base + greth->rx_cur;
744 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
745 mb();
746 status = greth_read_bd(&bdp->stat);
747
748 if (unlikely(status & GRETH_BD_EN)) {
749 break;
750 }
751
752 dma_addr = greth_read_bd(&bdp->addr);
753 bad = 0;
754
755 /* Check status for errors. */
756 if (unlikely(status & GRETH_RXBD_STATUS)) {
757 if (status & GRETH_RXBD_ERR_FT) {
758 dev->stats.rx_length_errors++;
759 bad = 1;
760 }
761 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
762 dev->stats.rx_frame_errors++;
763 bad = 1;
764 }
765 if (status & GRETH_RXBD_ERR_CRC) {
766 dev->stats.rx_crc_errors++;
767 bad = 1;
768 }
769 }
770 if (unlikely(bad)) {
771 dev->stats.rx_errors++;
772
773 } else {
774
775 pkt_len = status & GRETH_BD_LEN;
776
777 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
778
779 if (unlikely(skb == NULL)) {
780
781 if (net_ratelimit())
782 dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
783
784 dev->stats.rx_dropped++;
785
786 } else {
787 skb_reserve(skb, NET_IP_ALIGN);
788 skb->dev = dev;
789
790 dma_sync_single_for_cpu(greth->dev,
791 dma_addr,
792 pkt_len,
793 DMA_FROM_DEVICE);
794
795 if (netif_msg_pktdata(greth))
796 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
797
798 memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
799
800 skb->protocol = eth_type_trans(skb, dev);
801 dev->stats.rx_bytes += pkt_len;
802 dev->stats.rx_packets++;
803 netif_receive_skb(skb);
804 }
805 }
806
807 status = GRETH_BD_EN | GRETH_BD_IE;
808 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
809 status |= GRETH_BD_WR;
810 }
811
812 wmb();
813 greth_write_bd(&bdp->stat, status);
814
815 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
816
817 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
818 greth_enable_rx(greth);
819 spin_unlock_irqrestore(&greth->devlock, flags);
820
821 greth->rx_cur = NEXT_RX(greth->rx_cur);
822 }
823
824 return count;
825 }
826
827 static inline int hw_checksummed(u32 status)
828 {
829
830 if (status & GRETH_RXBD_IP_FRAG)
831 return 0;
832
833 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
834 return 0;
835
836 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
837 return 0;
838
839 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
840 return 0;
841
842 return 1;
843 }
844
845 static int greth_rx_gbit(struct net_device *dev, int limit)
846 {
847 struct greth_private *greth;
848 struct greth_bd *bdp;
849 struct sk_buff *skb, *newskb;
850 int pkt_len;
851 int bad, count = 0;
852 u32 status, dma_addr;
853 unsigned long flags;
854
855 greth = netdev_priv(dev);
856
857 for (count = 0; count < limit; ++count) {
858
859 bdp = greth->rx_bd_base + greth->rx_cur;
860 skb = greth->rx_skbuff[greth->rx_cur];
861 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
862 mb();
863 status = greth_read_bd(&bdp->stat);
864 bad = 0;
865
866 if (status & GRETH_BD_EN)
867 break;
868
869 /* Check status for errors. */
870 if (unlikely(status & GRETH_RXBD_STATUS)) {
871
872 if (status & GRETH_RXBD_ERR_FT) {
873 dev->stats.rx_length_errors++;
874 bad = 1;
875 } else if (status &
876 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
877 dev->stats.rx_frame_errors++;
878 bad = 1;
879 } else if (status & GRETH_RXBD_ERR_CRC) {
880 dev->stats.rx_crc_errors++;
881 bad = 1;
882 }
883 }
884
885 /* Allocate new skb to replace current, not needed if the
886 * current skb can be reused */
887 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
888 skb_reserve(newskb, NET_IP_ALIGN);
889
890 dma_addr = dma_map_single(greth->dev,
891 newskb->data,
892 MAX_FRAME_SIZE + NET_IP_ALIGN,
893 DMA_FROM_DEVICE);
894
895 if (!dma_mapping_error(greth->dev, dma_addr)) {
896 /* Process the incoming frame. */
897 pkt_len = status & GRETH_BD_LEN;
898
899 dma_unmap_single(greth->dev,
900 greth_read_bd(&bdp->addr),
901 MAX_FRAME_SIZE + NET_IP_ALIGN,
902 DMA_FROM_DEVICE);
903
904 if (netif_msg_pktdata(greth))
905 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
906
907 skb_put(skb, pkt_len);
908
909 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
910 skb->ip_summed = CHECKSUM_UNNECESSARY;
911 else
912 skb_checksum_none_assert(skb);
913
914 skb->protocol = eth_type_trans(skb, dev);
915 dev->stats.rx_packets++;
916 dev->stats.rx_bytes += pkt_len;
917 netif_receive_skb(skb);
918
919 greth->rx_skbuff[greth->rx_cur] = newskb;
920 greth_write_bd(&bdp->addr, dma_addr);
921 } else {
922 if (net_ratelimit())
923 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
924 dev_kfree_skb(newskb);
925 /* reusing current skb, so it is a drop */
926 dev->stats.rx_dropped++;
927 }
928 } else if (bad) {
929 /* Bad Frame transfer, the skb is reused */
930 dev->stats.rx_dropped++;
931 } else {
932 /* Failed Allocating a new skb. This is rather stupid
933 * but the current "filled" skb is reused, as if
934 * transfer failure. One could argue that RX descriptor
935 * table handling should be divided into cleaning and
936 * filling as the TX part of the driver
937 */
938 if (net_ratelimit())
939 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
940 /* reusing current skb, so it is a drop */
941 dev->stats.rx_dropped++;
942 }
943
944 status = GRETH_BD_EN | GRETH_BD_IE;
945 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
946 status |= GRETH_BD_WR;
947 }
948
949 wmb();
950 greth_write_bd(&bdp->stat, status);
951 spin_lock_irqsave(&greth->devlock, flags);
952 greth_enable_rx(greth);
953 spin_unlock_irqrestore(&greth->devlock, flags);
954 greth->rx_cur = NEXT_RX(greth->rx_cur);
955 }
956
957 return count;
958
959 }
960
961 static int greth_poll(struct napi_struct *napi, int budget)
962 {
963 struct greth_private *greth;
964 int work_done = 0;
965 unsigned long flags;
966 u32 mask, ctrl;
967 greth = container_of(napi, struct greth_private, napi);
968
969 restart_txrx_poll:
970 if (netif_queue_stopped(greth->netdev)) {
971 if (greth->gbit_mac)
972 greth_clean_tx_gbit(greth->netdev);
973 else
974 greth_clean_tx(greth->netdev);
975 }
976
977 if (greth->gbit_mac) {
978 work_done += greth_rx_gbit(greth->netdev, budget - work_done);
979 } else {
980 work_done += greth_rx(greth->netdev, budget - work_done);
981 }
982
983 if (work_done < budget) {
984
985 spin_lock_irqsave(&greth->devlock, flags);
986
987 ctrl = GRETH_REGLOAD(greth->regs->control);
988 if (netif_queue_stopped(greth->netdev)) {
989 GRETH_REGSAVE(greth->regs->control,
990 ctrl | GRETH_TXI | GRETH_RXI);
991 mask = GRETH_INT_RX | GRETH_INT_RE |
992 GRETH_INT_TX | GRETH_INT_TE;
993 } else {
994 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
995 mask = GRETH_INT_RX | GRETH_INT_RE;
996 }
997
998 if (GRETH_REGLOAD(greth->regs->status) & mask) {
999 GRETH_REGSAVE(greth->regs->control, ctrl);
1000 spin_unlock_irqrestore(&greth->devlock, flags);
1001 goto restart_txrx_poll;
1002 } else {
1003 __napi_complete(napi);
1004 spin_unlock_irqrestore(&greth->devlock, flags);
1005 }
1006 }
1007
1008 return work_done;
1009 }
1010
1011 static int greth_set_mac_add(struct net_device *dev, void *p)
1012 {
1013 struct sockaddr *addr = p;
1014 struct greth_private *greth;
1015 struct greth_regs *regs;
1016
1017 greth = netdev_priv(dev);
1018 regs = (struct greth_regs *) greth->regs;
1019
1020 if (!is_valid_ether_addr(addr->sa_data))
1021 return -EINVAL;
1022
1023 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1024 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1025 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1026 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1027
1028 return 0;
1029 }
1030
1031 static u32 greth_hash_get_index(__u8 *addr)
1032 {
1033 return (ether_crc(6, addr)) & 0x3F;
1034 }
1035
1036 static void greth_set_hash_filter(struct net_device *dev)
1037 {
1038 struct netdev_hw_addr *ha;
1039 struct greth_private *greth = netdev_priv(dev);
1040 struct greth_regs *regs = (struct greth_regs *) greth->regs;
1041 u32 mc_filter[2];
1042 unsigned int bitnr;
1043
1044 mc_filter[0] = mc_filter[1] = 0;
1045
1046 netdev_for_each_mc_addr(ha, dev) {
1047 bitnr = greth_hash_get_index(ha->addr);
1048 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1049 }
1050
1051 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
1052 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
1053 }
1054
1055 static void greth_set_multicast_list(struct net_device *dev)
1056 {
1057 int cfg;
1058 struct greth_private *greth = netdev_priv(dev);
1059 struct greth_regs *regs = (struct greth_regs *) greth->regs;
1060
1061 cfg = GRETH_REGLOAD(regs->control);
1062 if (dev->flags & IFF_PROMISC)
1063 cfg |= GRETH_CTRL_PR;
1064 else
1065 cfg &= ~GRETH_CTRL_PR;
1066
1067 if (greth->multicast) {
1068 if (dev->flags & IFF_ALLMULTI) {
1069 GRETH_REGSAVE(regs->hash_msb, -1);
1070 GRETH_REGSAVE(regs->hash_lsb, -1);
1071 cfg |= GRETH_CTRL_MCEN;
1072 GRETH_REGSAVE(regs->control, cfg);
1073 return;
1074 }
1075
1076 if (netdev_mc_empty(dev)) {
1077 cfg &= ~GRETH_CTRL_MCEN;
1078 GRETH_REGSAVE(regs->control, cfg);
1079 return;
1080 }
1081
1082 /* Setup multicast filter */
1083 greth_set_hash_filter(dev);
1084 cfg |= GRETH_CTRL_MCEN;
1085 }
1086 GRETH_REGSAVE(regs->control, cfg);
1087 }
1088
1089 static u32 greth_get_msglevel(struct net_device *dev)
1090 {
1091 struct greth_private *greth = netdev_priv(dev);
1092 return greth->msg_enable;
1093 }
1094
1095 static void greth_set_msglevel(struct net_device *dev, u32 value)
1096 {
1097 struct greth_private *greth = netdev_priv(dev);
1098 greth->msg_enable = value;
1099 }
1100 static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1101 {
1102 struct greth_private *greth = netdev_priv(dev);
1103 struct phy_device *phy = greth->phy;
1104
1105 if (!phy)
1106 return -ENODEV;
1107
1108 return phy_ethtool_gset(phy, cmd);
1109 }
1110
1111 static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1112 {
1113 struct greth_private *greth = netdev_priv(dev);
1114 struct phy_device *phy = greth->phy;
1115
1116 if (!phy)
1117 return -ENODEV;
1118
1119 return phy_ethtool_sset(phy, cmd);
1120 }
1121
1122 static int greth_get_regs_len(struct net_device *dev)
1123 {
1124 return sizeof(struct greth_regs);
1125 }
1126
1127 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1128 {
1129 struct greth_private *greth = netdev_priv(dev);
1130
1131 strncpy(info->driver, dev_driver_string(greth->dev), 32);
1132 strncpy(info->version, "revision: 1.0", 32);
1133 strncpy(info->bus_info, greth->dev->bus->name, 32);
1134 strncpy(info->fw_version, "N/A", 32);
1135 info->eedump_len = 0;
1136 info->regdump_len = sizeof(struct greth_regs);
1137 }
1138
1139 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
1140 {
1141 int i;
1142 struct greth_private *greth = netdev_priv(dev);
1143 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
1144 u32 *buff = p;
1145
1146 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
1147 buff[i] = greth_read_bd(&greth_regs[i]);
1148 }
1149
1150 static const struct ethtool_ops greth_ethtool_ops = {
1151 .get_msglevel = greth_get_msglevel,
1152 .set_msglevel = greth_set_msglevel,
1153 .get_settings = greth_get_settings,
1154 .set_settings = greth_set_settings,
1155 .get_drvinfo = greth_get_drvinfo,
1156 .get_regs_len = greth_get_regs_len,
1157 .get_regs = greth_get_regs,
1158 .get_link = ethtool_op_get_link,
1159 };
1160
1161 static struct net_device_ops greth_netdev_ops = {
1162 .ndo_open = greth_open,
1163 .ndo_stop = greth_close,
1164 .ndo_start_xmit = greth_start_xmit,
1165 .ndo_set_mac_address = greth_set_mac_add,
1166 .ndo_validate_addr = eth_validate_addr,
1167 };
1168
1169 static inline int wait_for_mdio(struct greth_private *greth)
1170 {
1171 unsigned long timeout = jiffies + 4*HZ/100;
1172 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
1173 if (time_after(jiffies, timeout))
1174 return 0;
1175 }
1176 return 1;
1177 }
1178
1179 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
1180 {
1181 struct greth_private *greth = bus->priv;
1182 int data;
1183
1184 if (!wait_for_mdio(greth))
1185 return -EBUSY;
1186
1187 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
1188
1189 if (!wait_for_mdio(greth))
1190 return -EBUSY;
1191
1192 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
1193 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
1194 return data;
1195
1196 } else {
1197 return -1;
1198 }
1199 }
1200
1201 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
1202 {
1203 struct greth_private *greth = bus->priv;
1204
1205 if (!wait_for_mdio(greth))
1206 return -EBUSY;
1207
1208 GRETH_REGSAVE(greth->regs->mdio,
1209 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
1210
1211 if (!wait_for_mdio(greth))
1212 return -EBUSY;
1213
1214 return 0;
1215 }
1216
1217 static int greth_mdio_reset(struct mii_bus *bus)
1218 {
1219 return 0;
1220 }
1221
1222 static void greth_link_change(struct net_device *dev)
1223 {
1224 struct greth_private *greth = netdev_priv(dev);
1225 struct phy_device *phydev = greth->phy;
1226 unsigned long flags;
1227 int status_change = 0;
1228 u32 ctrl;
1229
1230 spin_lock_irqsave(&greth->devlock, flags);
1231
1232 if (phydev->link) {
1233
1234 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
1235 ctrl = GRETH_REGLOAD(greth->regs->control) &
1236 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
1237
1238 if (phydev->duplex)
1239 ctrl |= GRETH_CTRL_FD;
1240
1241 if (phydev->speed == SPEED_100)
1242 ctrl |= GRETH_CTRL_SP;
1243 else if (phydev->speed == SPEED_1000)
1244 ctrl |= GRETH_CTRL_GB;
1245
1246 GRETH_REGSAVE(greth->regs->control, ctrl);
1247 greth->speed = phydev->speed;
1248 greth->duplex = phydev->duplex;
1249 status_change = 1;
1250 }
1251 }
1252
1253 if (phydev->link != greth->link) {
1254 if (!phydev->link) {
1255 greth->speed = 0;
1256 greth->duplex = -1;
1257 }
1258 greth->link = phydev->link;
1259
1260 status_change = 1;
1261 }
1262
1263 spin_unlock_irqrestore(&greth->devlock, flags);
1264
1265 if (status_change) {
1266 if (phydev->link)
1267 pr_debug("%s: link up (%d/%s)\n",
1268 dev->name, phydev->speed,
1269 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
1270 else
1271 pr_debug("%s: link down\n", dev->name);
1272 }
1273 }
1274
1275 static int greth_mdio_probe(struct net_device *dev)
1276 {
1277 struct greth_private *greth = netdev_priv(dev);
1278 struct phy_device *phy = NULL;
1279 int ret;
1280
1281 /* Find the first PHY */
1282 phy = phy_find_first(greth->mdio);
1283
1284 if (!phy) {
1285 if (netif_msg_probe(greth))
1286 dev_err(&dev->dev, "no PHY found\n");
1287 return -ENXIO;
1288 }
1289
1290 ret = phy_connect_direct(dev, phy, &greth_link_change,
1291 0, greth->gbit_mac ?
1292 PHY_INTERFACE_MODE_GMII :
1293 PHY_INTERFACE_MODE_MII);
1294 if (ret) {
1295 if (netif_msg_ifup(greth))
1296 dev_err(&dev->dev, "could not attach to PHY\n");
1297 return ret;
1298 }
1299
1300 if (greth->gbit_mac)
1301 phy->supported &= PHY_GBIT_FEATURES;
1302 else
1303 phy->supported &= PHY_BASIC_FEATURES;
1304
1305 phy->advertising = phy->supported;
1306
1307 greth->link = 0;
1308 greth->speed = 0;
1309 greth->duplex = -1;
1310 greth->phy = phy;
1311
1312 return 0;
1313 }
1314
1315 static inline int phy_aneg_done(struct phy_device *phydev)
1316 {
1317 int retval;
1318
1319 retval = phy_read(phydev, MII_BMSR);
1320
1321 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
1322 }
1323
1324 static int greth_mdio_init(struct greth_private *greth)
1325 {
1326 int ret, phy;
1327 unsigned long timeout;
1328
1329 greth->mdio = mdiobus_alloc();
1330 if (!greth->mdio) {
1331 return -ENOMEM;
1332 }
1333
1334 greth->mdio->name = "greth-mdio";
1335 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
1336 greth->mdio->read = greth_mdio_read;
1337 greth->mdio->write = greth_mdio_write;
1338 greth->mdio->reset = greth_mdio_reset;
1339 greth->mdio->priv = greth;
1340
1341 greth->mdio->irq = greth->mdio_irqs;
1342
1343 for (phy = 0; phy < PHY_MAX_ADDR; phy++)
1344 greth->mdio->irq[phy] = PHY_POLL;
1345
1346 ret = mdiobus_register(greth->mdio);
1347 if (ret) {
1348 goto error;
1349 }
1350
1351 ret = greth_mdio_probe(greth->netdev);
1352 if (ret) {
1353 if (netif_msg_probe(greth))
1354 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
1355 goto unreg_mdio;
1356 }
1357
1358 phy_start(greth->phy);
1359
1360 /* If Ethernet debug link is used make autoneg happen right away */
1361 if (greth->edcl && greth_edcl == 1) {
1362 phy_start_aneg(greth->phy);
1363 timeout = jiffies + 6*HZ;
1364 while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
1365 }
1366 genphy_read_status(greth->phy);
1367 greth_link_change(greth->netdev);
1368 }
1369
1370 return 0;
1371
1372 unreg_mdio:
1373 mdiobus_unregister(greth->mdio);
1374 error:
1375 mdiobus_free(greth->mdio);
1376 return ret;
1377 }
1378
1379 /* Initialize the GRETH MAC */
1380 static int __devinit greth_of_probe(struct platform_device *ofdev)
1381 {
1382 struct net_device *dev;
1383 struct greth_private *greth;
1384 struct greth_regs *regs;
1385
1386 int i;
1387 int err;
1388 int tmp;
1389 unsigned long timeout;
1390
1391 dev = alloc_etherdev(sizeof(struct greth_private));
1392
1393 if (dev == NULL)
1394 return -ENOMEM;
1395
1396 greth = netdev_priv(dev);
1397 greth->netdev = dev;
1398 greth->dev = &ofdev->dev;
1399
1400 if (greth_debug > 0)
1401 greth->msg_enable = greth_debug;
1402 else
1403 greth->msg_enable = GRETH_DEF_MSG_ENABLE;
1404
1405 spin_lock_init(&greth->devlock);
1406
1407 greth->regs = of_ioremap(&ofdev->resource[0], 0,
1408 resource_size(&ofdev->resource[0]),
1409 "grlib-greth regs");
1410
1411 if (greth->regs == NULL) {
1412 if (netif_msg_probe(greth))
1413 dev_err(greth->dev, "ioremap failure.\n");
1414 err = -EIO;
1415 goto error1;
1416 }
1417
1418 regs = (struct greth_regs *) greth->regs;
1419 greth->irq = ofdev->archdata.irqs[0];
1420
1421 dev_set_drvdata(greth->dev, dev);
1422 SET_NETDEV_DEV(dev, greth->dev);
1423
1424 if (netif_msg_probe(greth))
1425 dev_dbg(greth->dev, "reseting controller.\n");
1426
1427 /* Reset the controller. */
1428 GRETH_REGSAVE(regs->control, GRETH_RESET);
1429
1430 /* Wait for MAC to reset itself */
1431 timeout = jiffies + HZ/100;
1432 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
1433 if (time_after(jiffies, timeout)) {
1434 err = -EIO;
1435 if (netif_msg_probe(greth))
1436 dev_err(greth->dev, "timeout when waiting for reset.\n");
1437 goto error2;
1438 }
1439 }
1440
1441 /* Get default PHY address */
1442 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
1443
1444 /* Check if we have GBIT capable MAC */
1445 tmp = GRETH_REGLOAD(regs->control);
1446 greth->gbit_mac = (tmp >> 27) & 1;
1447
1448 /* Check for multicast capability */
1449 greth->multicast = (tmp >> 25) & 1;
1450
1451 greth->edcl = (tmp >> 31) & 1;
1452
1453 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1454 * it doesn't interfere with the software */
1455 if (greth->edcl != 0)
1456 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
1457
1458 /* Check if MAC can handle MDIO interrupts */
1459 greth->mdio_int_en = (tmp >> 26) & 1;
1460
1461 err = greth_mdio_init(greth);
1462 if (err) {
1463 if (netif_msg_probe(greth))
1464 dev_err(greth->dev, "failed to register MDIO bus\n");
1465 goto error2;
1466 }
1467
1468 /* Allocate TX descriptor ring in coherent memory */
1469 greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1470 1024,
1471 &greth->tx_bd_base_phys,
1472 GFP_KERNEL);
1473
1474 if (!greth->tx_bd_base) {
1475 if (netif_msg_probe(greth))
1476 dev_err(&dev->dev, "could not allocate descriptor memory.\n");
1477 err = -ENOMEM;
1478 goto error3;
1479 }
1480
1481 memset(greth->tx_bd_base, 0, 1024);
1482
1483 /* Allocate RX descriptor ring in coherent memory */
1484 greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1485 1024,
1486 &greth->rx_bd_base_phys,
1487 GFP_KERNEL);
1488
1489 if (!greth->rx_bd_base) {
1490 if (netif_msg_probe(greth))
1491 dev_err(greth->dev, "could not allocate descriptor memory.\n");
1492 err = -ENOMEM;
1493 goto error4;
1494 }
1495
1496 memset(greth->rx_bd_base, 0, 1024);
1497
1498 /* Get MAC address from: module param, OF property or ID prom */
1499 for (i = 0; i < 6; i++) {
1500 if (macaddr[i] != 0)
1501 break;
1502 }
1503 if (i == 6) {
1504 const unsigned char *addr;
1505 int len;
1506 addr = of_get_property(ofdev->dev.of_node, "local-mac-address",
1507 &len);
1508 if (addr != NULL && len == 6) {
1509 for (i = 0; i < 6; i++)
1510 macaddr[i] = (unsigned int) addr[i];
1511 } else {
1512 #ifdef CONFIG_SPARC
1513 for (i = 0; i < 6; i++)
1514 macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
1515 #endif
1516 }
1517 }
1518
1519 for (i = 0; i < 6; i++)
1520 dev->dev_addr[i] = macaddr[i];
1521
1522 macaddr[5]++;
1523
1524 if (!is_valid_ether_addr(&dev->dev_addr[0])) {
1525 if (netif_msg_probe(greth))
1526 dev_err(greth->dev, "no valid ethernet address, aborting.\n");
1527 err = -EINVAL;
1528 goto error5;
1529 }
1530
1531 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1532 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1533 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1534
1535 /* Clear all pending interrupts except PHY irq */
1536 GRETH_REGSAVE(regs->status, 0xFF);
1537
1538 if (greth->gbit_mac) {
1539 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1540 NETIF_F_RXCSUM;
1541 dev->features = dev->hw_features | NETIF_F_HIGHDMA;
1542 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
1543 }
1544
1545 if (greth->multicast) {
1546 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list;
1547 dev->flags |= IFF_MULTICAST;
1548 } else {
1549 dev->flags &= ~IFF_MULTICAST;
1550 }
1551
1552 dev->netdev_ops = &greth_netdev_ops;
1553 dev->ethtool_ops = &greth_ethtool_ops;
1554
1555 err = register_netdev(dev);
1556 if (err) {
1557 if (netif_msg_probe(greth))
1558 dev_err(greth->dev, "netdevice registration failed.\n");
1559 goto error5;
1560 }
1561
1562 /* setup NAPI */
1563 netif_napi_add(dev, &greth->napi, greth_poll, 64);
1564
1565 return 0;
1566
1567 error5:
1568 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1569 error4:
1570 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1571 error3:
1572 mdiobus_unregister(greth->mdio);
1573 error2:
1574 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
1575 error1:
1576 free_netdev(dev);
1577 return err;
1578 }
1579
1580 static int __devexit greth_of_remove(struct platform_device *of_dev)
1581 {
1582 struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
1583 struct greth_private *greth = netdev_priv(ndev);
1584
1585 /* Free descriptor areas */
1586 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1587
1588 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1589
1590 dev_set_drvdata(&of_dev->dev, NULL);
1591
1592 if (greth->phy)
1593 phy_stop(greth->phy);
1594 mdiobus_unregister(greth->mdio);
1595
1596 unregister_netdev(ndev);
1597 free_netdev(ndev);
1598
1599 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
1600
1601 return 0;
1602 }
1603
1604 static struct of_device_id greth_of_match[] = {
1605 {
1606 .name = "GAISLER_ETHMAC",
1607 },
1608 {
1609 .name = "01_01d",
1610 },
1611 {},
1612 };
1613
1614 MODULE_DEVICE_TABLE(of, greth_of_match);
1615
1616 static struct platform_driver greth_of_driver = {
1617 .driver = {
1618 .name = "grlib-greth",
1619 .owner = THIS_MODULE,
1620 .of_match_table = greth_of_match,
1621 },
1622 .probe = greth_of_probe,
1623 .remove = __devexit_p(greth_of_remove),
1624 };
1625
1626 static int __init greth_init(void)
1627 {
1628 return platform_driver_register(&greth_of_driver);
1629 }
1630
1631 static void __exit greth_cleanup(void)
1632 {
1633 platform_driver_unregister(&greth_of_driver);
1634 }
1635
1636 module_init(greth_init);
1637 module_exit(greth_cleanup);
1638
1639 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1640 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1641 MODULE_LICENSE("GPL");