]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/aeroflex/greth.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / aeroflex / greth.c
1 /*
2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
3 *
4 * 2005-2010 (c) Aeroflex Gaisler AB
5 *
6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
7 * available in the GRLIB VHDL IP core library.
8 *
9 * Full documentation of both cores can be found here:
10 * http://www.gaisler.com/products/grlib/grip.pdf
11 *
12 * The Gigabit version supports scatter/gather DMA, any alignment of
13 * buffers and checksum offloading.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Contributors: Kristoffer Glembo
21 * Daniel Hellstrom
22 * Marko Isomaki
23 */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/module.h>
27 #include <linux/uaccess.h>
28 #include <linux/interrupt.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/ethtool.h>
32 #include <linux/skbuff.h>
33 #include <linux/io.h>
34 #include <linux/crc32.h>
35 #include <linux/mii.h>
36 #include <linux/of_device.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39 #include <linux/slab.h>
40 #include <asm/cacheflush.h>
41 #include <asm/byteorder.h>
42
43 #ifdef CONFIG_SPARC
44 #include <asm/idprom.h>
45 #endif
46
47 #include "greth.h"
48
49 #define GRETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_DRV | \
51 NETIF_MSG_PROBE | \
52 NETIF_MSG_LINK | \
53 NETIF_MSG_IFDOWN | \
54 NETIF_MSG_IFUP | \
55 NETIF_MSG_RX_ERR | \
56 NETIF_MSG_TX_ERR)
57
58 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
59 module_param(greth_debug, int, 0);
60 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
61
62 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
63 static int macaddr[6];
64 module_param_array(macaddr, int, NULL, 0);
65 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
66
67 static int greth_edcl = 1;
68 module_param(greth_edcl, int, 0);
69 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
70
71 static int greth_open(struct net_device *dev);
72 static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
73 struct net_device *dev);
74 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
75 struct net_device *dev);
76 static int greth_rx(struct net_device *dev, int limit);
77 static int greth_rx_gbit(struct net_device *dev, int limit);
78 static void greth_clean_tx(struct net_device *dev);
79 static void greth_clean_tx_gbit(struct net_device *dev);
80 static irqreturn_t greth_interrupt(int irq, void *dev_id);
81 static int greth_close(struct net_device *dev);
82 static int greth_set_mac_add(struct net_device *dev, void *p);
83 static void greth_set_multicast_list(struct net_device *dev);
84
85 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
86 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
87 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
88 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
89
90 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
91 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
92 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
93
94 static void greth_print_rx_packet(void *addr, int len)
95 {
96 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
97 addr, len, true);
98 }
99
100 static void greth_print_tx_packet(struct sk_buff *skb)
101 {
102 int i;
103 int length;
104
105 if (skb_shinfo(skb)->nr_frags == 0)
106 length = skb->len;
107 else
108 length = skb_headlen(skb);
109
110 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
111 skb->data, length, true);
112
113 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
114
115 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
116 skb_frag_address(&skb_shinfo(skb)->frags[i]),
117 skb_shinfo(skb)->frags[i].size, true);
118 }
119 }
120
121 static inline void greth_enable_tx(struct greth_private *greth)
122 {
123 wmb();
124 GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
125 }
126
127 static inline void greth_enable_tx_and_irq(struct greth_private *greth)
128 {
129 wmb(); /* BDs must been written to memory before enabling TX */
130 GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI);
131 }
132
133 static inline void greth_disable_tx(struct greth_private *greth)
134 {
135 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
136 }
137
138 static inline void greth_enable_rx(struct greth_private *greth)
139 {
140 wmb();
141 GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
142 }
143
144 static inline void greth_disable_rx(struct greth_private *greth)
145 {
146 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
147 }
148
149 static inline void greth_enable_irqs(struct greth_private *greth)
150 {
151 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
152 }
153
154 static inline void greth_disable_irqs(struct greth_private *greth)
155 {
156 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
157 }
158
159 static inline void greth_write_bd(u32 *bd, u32 val)
160 {
161 __raw_writel(cpu_to_be32(val), bd);
162 }
163
164 static inline u32 greth_read_bd(u32 *bd)
165 {
166 return be32_to_cpu(__raw_readl(bd));
167 }
168
169 static void greth_clean_rings(struct greth_private *greth)
170 {
171 int i;
172 struct greth_bd *rx_bdp = greth->rx_bd_base;
173 struct greth_bd *tx_bdp = greth->tx_bd_base;
174
175 if (greth->gbit_mac) {
176
177 /* Free and unmap RX buffers */
178 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
179 if (greth->rx_skbuff[i] != NULL) {
180 dev_kfree_skb(greth->rx_skbuff[i]);
181 dma_unmap_single(greth->dev,
182 greth_read_bd(&rx_bdp->addr),
183 MAX_FRAME_SIZE+NET_IP_ALIGN,
184 DMA_FROM_DEVICE);
185 }
186 }
187
188 /* TX buffers */
189 while (greth->tx_free < GRETH_TXBD_NUM) {
190
191 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
192 int nr_frags = skb_shinfo(skb)->nr_frags;
193 tx_bdp = greth->tx_bd_base + greth->tx_last;
194 greth->tx_last = NEXT_TX(greth->tx_last);
195
196 dma_unmap_single(greth->dev,
197 greth_read_bd(&tx_bdp->addr),
198 skb_headlen(skb),
199 DMA_TO_DEVICE);
200
201 for (i = 0; i < nr_frags; i++) {
202 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
203 tx_bdp = greth->tx_bd_base + greth->tx_last;
204
205 dma_unmap_page(greth->dev,
206 greth_read_bd(&tx_bdp->addr),
207 skb_frag_size(frag),
208 DMA_TO_DEVICE);
209
210 greth->tx_last = NEXT_TX(greth->tx_last);
211 }
212 greth->tx_free += nr_frags+1;
213 dev_kfree_skb(skb);
214 }
215
216
217 } else { /* 10/100 Mbps MAC */
218
219 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
220 kfree(greth->rx_bufs[i]);
221 dma_unmap_single(greth->dev,
222 greth_read_bd(&rx_bdp->addr),
223 MAX_FRAME_SIZE,
224 DMA_FROM_DEVICE);
225 }
226 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
227 kfree(greth->tx_bufs[i]);
228 dma_unmap_single(greth->dev,
229 greth_read_bd(&tx_bdp->addr),
230 MAX_FRAME_SIZE,
231 DMA_TO_DEVICE);
232 }
233 }
234 }
235
236 static int greth_init_rings(struct greth_private *greth)
237 {
238 struct sk_buff *skb;
239 struct greth_bd *rx_bd, *tx_bd;
240 u32 dma_addr;
241 int i;
242
243 rx_bd = greth->rx_bd_base;
244 tx_bd = greth->tx_bd_base;
245
246 /* Initialize descriptor rings and buffers */
247 if (greth->gbit_mac) {
248
249 for (i = 0; i < GRETH_RXBD_NUM; i++) {
250 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
251 if (skb == NULL) {
252 if (netif_msg_ifup(greth))
253 dev_err(greth->dev, "Error allocating DMA ring.\n");
254 goto cleanup;
255 }
256 skb_reserve(skb, NET_IP_ALIGN);
257 dma_addr = dma_map_single(greth->dev,
258 skb->data,
259 MAX_FRAME_SIZE+NET_IP_ALIGN,
260 DMA_FROM_DEVICE);
261
262 if (dma_mapping_error(greth->dev, dma_addr)) {
263 if (netif_msg_ifup(greth))
264 dev_err(greth->dev, "Could not create initial DMA mapping\n");
265 goto cleanup;
266 }
267 greth->rx_skbuff[i] = skb;
268 greth_write_bd(&rx_bd[i].addr, dma_addr);
269 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
270 }
271
272 } else {
273
274 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
275 for (i = 0; i < GRETH_RXBD_NUM; i++) {
276
277 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
278
279 if (greth->rx_bufs[i] == NULL) {
280 if (netif_msg_ifup(greth))
281 dev_err(greth->dev, "Error allocating DMA ring.\n");
282 goto cleanup;
283 }
284
285 dma_addr = dma_map_single(greth->dev,
286 greth->rx_bufs[i],
287 MAX_FRAME_SIZE,
288 DMA_FROM_DEVICE);
289
290 if (dma_mapping_error(greth->dev, dma_addr)) {
291 if (netif_msg_ifup(greth))
292 dev_err(greth->dev, "Could not create initial DMA mapping\n");
293 goto cleanup;
294 }
295 greth_write_bd(&rx_bd[i].addr, dma_addr);
296 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
297 }
298 for (i = 0; i < GRETH_TXBD_NUM; i++) {
299
300 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
301
302 if (greth->tx_bufs[i] == NULL) {
303 if (netif_msg_ifup(greth))
304 dev_err(greth->dev, "Error allocating DMA ring.\n");
305 goto cleanup;
306 }
307
308 dma_addr = dma_map_single(greth->dev,
309 greth->tx_bufs[i],
310 MAX_FRAME_SIZE,
311 DMA_TO_DEVICE);
312
313 if (dma_mapping_error(greth->dev, dma_addr)) {
314 if (netif_msg_ifup(greth))
315 dev_err(greth->dev, "Could not create initial DMA mapping\n");
316 goto cleanup;
317 }
318 greth_write_bd(&tx_bd[i].addr, dma_addr);
319 greth_write_bd(&tx_bd[i].stat, 0);
320 }
321 }
322 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
323 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
324
325 /* Initialize pointers. */
326 greth->rx_cur = 0;
327 greth->tx_next = 0;
328 greth->tx_last = 0;
329 greth->tx_free = GRETH_TXBD_NUM;
330
331 /* Initialize descriptor base address */
332 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
333 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
334
335 return 0;
336
337 cleanup:
338 greth_clean_rings(greth);
339 return -ENOMEM;
340 }
341
342 static int greth_open(struct net_device *dev)
343 {
344 struct greth_private *greth = netdev_priv(dev);
345 int err;
346
347 err = greth_init_rings(greth);
348 if (err) {
349 if (netif_msg_ifup(greth))
350 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
351 return err;
352 }
353
354 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
355 if (err) {
356 if (netif_msg_ifup(greth))
357 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
358 greth_clean_rings(greth);
359 return err;
360 }
361
362 if (netif_msg_ifup(greth))
363 dev_dbg(&dev->dev, " starting queue\n");
364 netif_start_queue(dev);
365
366 GRETH_REGSAVE(greth->regs->status, 0xFF);
367
368 napi_enable(&greth->napi);
369
370 greth_enable_irqs(greth);
371 greth_enable_tx(greth);
372 greth_enable_rx(greth);
373 return 0;
374
375 }
376
377 static int greth_close(struct net_device *dev)
378 {
379 struct greth_private *greth = netdev_priv(dev);
380
381 napi_disable(&greth->napi);
382
383 greth_disable_irqs(greth);
384 greth_disable_tx(greth);
385 greth_disable_rx(greth);
386
387 netif_stop_queue(dev);
388
389 free_irq(greth->irq, (void *) dev);
390
391 greth_clean_rings(greth);
392
393 return 0;
394 }
395
396 static netdev_tx_t
397 greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
398 {
399 struct greth_private *greth = netdev_priv(dev);
400 struct greth_bd *bdp;
401 int err = NETDEV_TX_OK;
402 u32 status, dma_addr, ctrl;
403 unsigned long flags;
404
405 /* Clean TX Ring */
406 greth_clean_tx(greth->netdev);
407
408 if (unlikely(greth->tx_free <= 0)) {
409 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
410 ctrl = GRETH_REGLOAD(greth->regs->control);
411 /* Enable TX IRQ only if not already in poll() routine */
412 if (ctrl & GRETH_RXI)
413 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
414 netif_stop_queue(dev);
415 spin_unlock_irqrestore(&greth->devlock, flags);
416 return NETDEV_TX_BUSY;
417 }
418
419 if (netif_msg_pktdata(greth))
420 greth_print_tx_packet(skb);
421
422
423 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
424 dev->stats.tx_errors++;
425 goto out;
426 }
427
428 bdp = greth->tx_bd_base + greth->tx_next;
429 dma_addr = greth_read_bd(&bdp->addr);
430
431 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
432
433 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
434
435 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
436 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN;
437
438 /* Wrap around descriptor ring */
439 if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
440 status |= GRETH_BD_WR;
441 }
442
443 greth->tx_next = NEXT_TX(greth->tx_next);
444 greth->tx_free--;
445
446 /* Write descriptor control word and enable transmission */
447 greth_write_bd(&bdp->stat, status);
448 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
449 greth_enable_tx(greth);
450 spin_unlock_irqrestore(&greth->devlock, flags);
451
452 out:
453 dev_kfree_skb(skb);
454 return err;
455 }
456
457 static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next)
458 {
459 if (tx_next < tx_last)
460 return (tx_last - tx_next) - 1;
461 else
462 return GRETH_TXBD_NUM - (tx_next - tx_last) - 1;
463 }
464
465 static netdev_tx_t
466 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
467 {
468 struct greth_private *greth = netdev_priv(dev);
469 struct greth_bd *bdp;
470 u32 status, dma_addr;
471 int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
472 unsigned long flags;
473 u16 tx_last;
474
475 nr_frags = skb_shinfo(skb)->nr_frags;
476 tx_last = greth->tx_last;
477 rmb(); /* tx_last is updated by the poll task */
478
479 if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) {
480 netif_stop_queue(dev);
481 err = NETDEV_TX_BUSY;
482 goto out;
483 }
484
485 if (netif_msg_pktdata(greth))
486 greth_print_tx_packet(skb);
487
488 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
489 dev->stats.tx_errors++;
490 goto out;
491 }
492
493 /* Save skb pointer. */
494 greth->tx_skbuff[greth->tx_next] = skb;
495
496 /* Linear buf */
497 if (nr_frags != 0)
498 status = GRETH_TXBD_MORE;
499 else
500 status = GRETH_BD_IE;
501
502 if (skb->ip_summed == CHECKSUM_PARTIAL)
503 status |= GRETH_TXBD_CSALL;
504 status |= skb_headlen(skb) & GRETH_BD_LEN;
505 if (greth->tx_next == GRETH_TXBD_NUM_MASK)
506 status |= GRETH_BD_WR;
507
508
509 bdp = greth->tx_bd_base + greth->tx_next;
510 greth_write_bd(&bdp->stat, status);
511 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
512
513 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
514 goto map_error;
515
516 greth_write_bd(&bdp->addr, dma_addr);
517
518 curr_tx = NEXT_TX(greth->tx_next);
519
520 /* Frags */
521 for (i = 0; i < nr_frags; i++) {
522 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
523 greth->tx_skbuff[curr_tx] = NULL;
524 bdp = greth->tx_bd_base + curr_tx;
525
526 status = GRETH_BD_EN;
527 if (skb->ip_summed == CHECKSUM_PARTIAL)
528 status |= GRETH_TXBD_CSALL;
529 status |= skb_frag_size(frag) & GRETH_BD_LEN;
530
531 /* Wrap around descriptor ring */
532 if (curr_tx == GRETH_TXBD_NUM_MASK)
533 status |= GRETH_BD_WR;
534
535 /* More fragments left */
536 if (i < nr_frags - 1)
537 status |= GRETH_TXBD_MORE;
538 else
539 status |= GRETH_BD_IE; /* enable IRQ on last fragment */
540
541 greth_write_bd(&bdp->stat, status);
542
543 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag),
544 DMA_TO_DEVICE);
545
546 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
547 goto frag_map_error;
548
549 greth_write_bd(&bdp->addr, dma_addr);
550
551 curr_tx = NEXT_TX(curr_tx);
552 }
553
554 wmb();
555
556 /* Enable the descriptor chain by enabling the first descriptor */
557 bdp = greth->tx_bd_base + greth->tx_next;
558 greth_write_bd(&bdp->stat,
559 greth_read_bd(&bdp->stat) | GRETH_BD_EN);
560
561 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
562 greth->tx_next = curr_tx;
563 greth_enable_tx_and_irq(greth);
564 spin_unlock_irqrestore(&greth->devlock, flags);
565
566 return NETDEV_TX_OK;
567
568 frag_map_error:
569 /* Unmap SKB mappings that succeeded and disable descriptor */
570 for (i = 0; greth->tx_next + i != curr_tx; i++) {
571 bdp = greth->tx_bd_base + greth->tx_next + i;
572 dma_unmap_single(greth->dev,
573 greth_read_bd(&bdp->addr),
574 greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
575 DMA_TO_DEVICE);
576 greth_write_bd(&bdp->stat, 0);
577 }
578 map_error:
579 if (net_ratelimit())
580 dev_warn(greth->dev, "Could not create TX DMA mapping\n");
581 dev_kfree_skb(skb);
582 out:
583 return err;
584 }
585
586 static irqreturn_t greth_interrupt(int irq, void *dev_id)
587 {
588 struct net_device *dev = dev_id;
589 struct greth_private *greth;
590 u32 status, ctrl;
591 irqreturn_t retval = IRQ_NONE;
592
593 greth = netdev_priv(dev);
594
595 spin_lock(&greth->devlock);
596
597 /* Get the interrupt events that caused us to be here. */
598 status = GRETH_REGLOAD(greth->regs->status);
599
600 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
601 * set regardless of whether IRQ is enabled or not. Especially
602 * important when shared IRQ.
603 */
604 ctrl = GRETH_REGLOAD(greth->regs->control);
605
606 /* Handle rx and tx interrupts through poll */
607 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
608 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
609 retval = IRQ_HANDLED;
610
611 /* Disable interrupts and schedule poll() */
612 greth_disable_irqs(greth);
613 napi_schedule(&greth->napi);
614 }
615
616 mmiowb();
617 spin_unlock(&greth->devlock);
618
619 return retval;
620 }
621
622 static void greth_clean_tx(struct net_device *dev)
623 {
624 struct greth_private *greth;
625 struct greth_bd *bdp;
626 u32 stat;
627
628 greth = netdev_priv(dev);
629
630 while (1) {
631 bdp = greth->tx_bd_base + greth->tx_last;
632 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
633 mb();
634 stat = greth_read_bd(&bdp->stat);
635
636 if (unlikely(stat & GRETH_BD_EN))
637 break;
638
639 if (greth->tx_free == GRETH_TXBD_NUM)
640 break;
641
642 /* Check status for errors */
643 if (unlikely(stat & GRETH_TXBD_STATUS)) {
644 dev->stats.tx_errors++;
645 if (stat & GRETH_TXBD_ERR_AL)
646 dev->stats.tx_aborted_errors++;
647 if (stat & GRETH_TXBD_ERR_UE)
648 dev->stats.tx_fifo_errors++;
649 }
650 dev->stats.tx_packets++;
651 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last];
652 greth->tx_last = NEXT_TX(greth->tx_last);
653 greth->tx_free++;
654 }
655
656 if (greth->tx_free > 0) {
657 netif_wake_queue(dev);
658 }
659 }
660
661 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
662 {
663 /* Check status for errors */
664 if (unlikely(stat & GRETH_TXBD_STATUS)) {
665 dev->stats.tx_errors++;
666 if (stat & GRETH_TXBD_ERR_AL)
667 dev->stats.tx_aborted_errors++;
668 if (stat & GRETH_TXBD_ERR_UE)
669 dev->stats.tx_fifo_errors++;
670 if (stat & GRETH_TXBD_ERR_LC)
671 dev->stats.tx_aborted_errors++;
672 }
673 dev->stats.tx_packets++;
674 }
675
676 static void greth_clean_tx_gbit(struct net_device *dev)
677 {
678 struct greth_private *greth;
679 struct greth_bd *bdp, *bdp_last_frag;
680 struct sk_buff *skb = NULL;
681 u32 stat;
682 int nr_frags, i;
683 u16 tx_last;
684
685 greth = netdev_priv(dev);
686 tx_last = greth->tx_last;
687
688 while (tx_last != greth->tx_next) {
689
690 skb = greth->tx_skbuff[tx_last];
691
692 nr_frags = skb_shinfo(skb)->nr_frags;
693
694 /* We only clean fully completed SKBs */
695 bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags);
696
697 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
698 mb();
699 stat = greth_read_bd(&bdp_last_frag->stat);
700
701 if (stat & GRETH_BD_EN)
702 break;
703
704 greth->tx_skbuff[tx_last] = NULL;
705
706 greth_update_tx_stats(dev, stat);
707 dev->stats.tx_bytes += skb->len;
708
709 bdp = greth->tx_bd_base + tx_last;
710
711 tx_last = NEXT_TX(tx_last);
712
713 dma_unmap_single(greth->dev,
714 greth_read_bd(&bdp->addr),
715 skb_headlen(skb),
716 DMA_TO_DEVICE);
717
718 for (i = 0; i < nr_frags; i++) {
719 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
720 bdp = greth->tx_bd_base + tx_last;
721
722 dma_unmap_page(greth->dev,
723 greth_read_bd(&bdp->addr),
724 skb_frag_size(frag),
725 DMA_TO_DEVICE);
726
727 tx_last = NEXT_TX(tx_last);
728 }
729 dev_kfree_skb(skb);
730 }
731 if (skb) { /* skb is set only if the above while loop was entered */
732 wmb();
733 greth->tx_last = tx_last;
734
735 if (netif_queue_stopped(dev) &&
736 (greth_num_free_bds(tx_last, greth->tx_next) >
737 (MAX_SKB_FRAGS+1)))
738 netif_wake_queue(dev);
739 }
740 }
741
742 static int greth_rx(struct net_device *dev, int limit)
743 {
744 struct greth_private *greth;
745 struct greth_bd *bdp;
746 struct sk_buff *skb;
747 int pkt_len;
748 int bad, count;
749 u32 status, dma_addr;
750 unsigned long flags;
751
752 greth = netdev_priv(dev);
753
754 for (count = 0; count < limit; ++count) {
755
756 bdp = greth->rx_bd_base + greth->rx_cur;
757 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
758 mb();
759 status = greth_read_bd(&bdp->stat);
760
761 if (unlikely(status & GRETH_BD_EN)) {
762 break;
763 }
764
765 dma_addr = greth_read_bd(&bdp->addr);
766 bad = 0;
767
768 /* Check status for errors. */
769 if (unlikely(status & GRETH_RXBD_STATUS)) {
770 if (status & GRETH_RXBD_ERR_FT) {
771 dev->stats.rx_length_errors++;
772 bad = 1;
773 }
774 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
775 dev->stats.rx_frame_errors++;
776 bad = 1;
777 }
778 if (status & GRETH_RXBD_ERR_CRC) {
779 dev->stats.rx_crc_errors++;
780 bad = 1;
781 }
782 }
783 if (unlikely(bad)) {
784 dev->stats.rx_errors++;
785
786 } else {
787
788 pkt_len = status & GRETH_BD_LEN;
789
790 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
791
792 if (unlikely(skb == NULL)) {
793
794 if (net_ratelimit())
795 dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
796
797 dev->stats.rx_dropped++;
798
799 } else {
800 skb_reserve(skb, NET_IP_ALIGN);
801
802 dma_sync_single_for_cpu(greth->dev,
803 dma_addr,
804 pkt_len,
805 DMA_FROM_DEVICE);
806
807 if (netif_msg_pktdata(greth))
808 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
809
810 skb_put_data(skb, phys_to_virt(dma_addr),
811 pkt_len);
812
813 skb->protocol = eth_type_trans(skb, dev);
814 dev->stats.rx_bytes += pkt_len;
815 dev->stats.rx_packets++;
816 netif_receive_skb(skb);
817 }
818 }
819
820 status = GRETH_BD_EN | GRETH_BD_IE;
821 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
822 status |= GRETH_BD_WR;
823 }
824
825 wmb();
826 greth_write_bd(&bdp->stat, status);
827
828 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
829
830 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
831 greth_enable_rx(greth);
832 spin_unlock_irqrestore(&greth->devlock, flags);
833
834 greth->rx_cur = NEXT_RX(greth->rx_cur);
835 }
836
837 return count;
838 }
839
840 static inline int hw_checksummed(u32 status)
841 {
842
843 if (status & GRETH_RXBD_IP_FRAG)
844 return 0;
845
846 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
847 return 0;
848
849 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
850 return 0;
851
852 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
853 return 0;
854
855 return 1;
856 }
857
858 static int greth_rx_gbit(struct net_device *dev, int limit)
859 {
860 struct greth_private *greth;
861 struct greth_bd *bdp;
862 struct sk_buff *skb, *newskb;
863 int pkt_len;
864 int bad, count = 0;
865 u32 status, dma_addr;
866 unsigned long flags;
867
868 greth = netdev_priv(dev);
869
870 for (count = 0; count < limit; ++count) {
871
872 bdp = greth->rx_bd_base + greth->rx_cur;
873 skb = greth->rx_skbuff[greth->rx_cur];
874 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
875 mb();
876 status = greth_read_bd(&bdp->stat);
877 bad = 0;
878
879 if (status & GRETH_BD_EN)
880 break;
881
882 /* Check status for errors. */
883 if (unlikely(status & GRETH_RXBD_STATUS)) {
884
885 if (status & GRETH_RXBD_ERR_FT) {
886 dev->stats.rx_length_errors++;
887 bad = 1;
888 } else if (status &
889 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
890 dev->stats.rx_frame_errors++;
891 bad = 1;
892 } else if (status & GRETH_RXBD_ERR_CRC) {
893 dev->stats.rx_crc_errors++;
894 bad = 1;
895 }
896 }
897
898 /* Allocate new skb to replace current, not needed if the
899 * current skb can be reused */
900 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
901 skb_reserve(newskb, NET_IP_ALIGN);
902
903 dma_addr = dma_map_single(greth->dev,
904 newskb->data,
905 MAX_FRAME_SIZE + NET_IP_ALIGN,
906 DMA_FROM_DEVICE);
907
908 if (!dma_mapping_error(greth->dev, dma_addr)) {
909 /* Process the incoming frame. */
910 pkt_len = status & GRETH_BD_LEN;
911
912 dma_unmap_single(greth->dev,
913 greth_read_bd(&bdp->addr),
914 MAX_FRAME_SIZE + NET_IP_ALIGN,
915 DMA_FROM_DEVICE);
916
917 if (netif_msg_pktdata(greth))
918 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
919
920 skb_put(skb, pkt_len);
921
922 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
923 skb->ip_summed = CHECKSUM_UNNECESSARY;
924 else
925 skb_checksum_none_assert(skb);
926
927 skb->protocol = eth_type_trans(skb, dev);
928 dev->stats.rx_packets++;
929 dev->stats.rx_bytes += pkt_len;
930 netif_receive_skb(skb);
931
932 greth->rx_skbuff[greth->rx_cur] = newskb;
933 greth_write_bd(&bdp->addr, dma_addr);
934 } else {
935 if (net_ratelimit())
936 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
937 dev_kfree_skb(newskb);
938 /* reusing current skb, so it is a drop */
939 dev->stats.rx_dropped++;
940 }
941 } else if (bad) {
942 /* Bad Frame transfer, the skb is reused */
943 dev->stats.rx_dropped++;
944 } else {
945 /* Failed Allocating a new skb. This is rather stupid
946 * but the current "filled" skb is reused, as if
947 * transfer failure. One could argue that RX descriptor
948 * table handling should be divided into cleaning and
949 * filling as the TX part of the driver
950 */
951 if (net_ratelimit())
952 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
953 /* reusing current skb, so it is a drop */
954 dev->stats.rx_dropped++;
955 }
956
957 status = GRETH_BD_EN | GRETH_BD_IE;
958 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
959 status |= GRETH_BD_WR;
960 }
961
962 wmb();
963 greth_write_bd(&bdp->stat, status);
964 spin_lock_irqsave(&greth->devlock, flags);
965 greth_enable_rx(greth);
966 spin_unlock_irqrestore(&greth->devlock, flags);
967 greth->rx_cur = NEXT_RX(greth->rx_cur);
968 }
969
970 return count;
971
972 }
973
974 static int greth_poll(struct napi_struct *napi, int budget)
975 {
976 struct greth_private *greth;
977 int work_done = 0;
978 unsigned long flags;
979 u32 mask, ctrl;
980 greth = container_of(napi, struct greth_private, napi);
981
982 restart_txrx_poll:
983 if (greth->gbit_mac) {
984 greth_clean_tx_gbit(greth->netdev);
985 work_done += greth_rx_gbit(greth->netdev, budget - work_done);
986 } else {
987 if (netif_queue_stopped(greth->netdev))
988 greth_clean_tx(greth->netdev);
989 work_done += greth_rx(greth->netdev, budget - work_done);
990 }
991
992 if (work_done < budget) {
993
994 spin_lock_irqsave(&greth->devlock, flags);
995
996 ctrl = GRETH_REGLOAD(greth->regs->control);
997 if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) ||
998 (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) {
999 GRETH_REGSAVE(greth->regs->control,
1000 ctrl | GRETH_TXI | GRETH_RXI);
1001 mask = GRETH_INT_RX | GRETH_INT_RE |
1002 GRETH_INT_TX | GRETH_INT_TE;
1003 } else {
1004 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
1005 mask = GRETH_INT_RX | GRETH_INT_RE;
1006 }
1007
1008 if (GRETH_REGLOAD(greth->regs->status) & mask) {
1009 GRETH_REGSAVE(greth->regs->control, ctrl);
1010 spin_unlock_irqrestore(&greth->devlock, flags);
1011 goto restart_txrx_poll;
1012 } else {
1013 napi_complete_done(napi, work_done);
1014 spin_unlock_irqrestore(&greth->devlock, flags);
1015 }
1016 }
1017
1018 return work_done;
1019 }
1020
1021 static int greth_set_mac_add(struct net_device *dev, void *p)
1022 {
1023 struct sockaddr *addr = p;
1024 struct greth_private *greth;
1025 struct greth_regs *regs;
1026
1027 greth = netdev_priv(dev);
1028 regs = greth->regs;
1029
1030 if (!is_valid_ether_addr(addr->sa_data))
1031 return -EADDRNOTAVAIL;
1032
1033 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1034 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1035 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1036 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1037
1038 return 0;
1039 }
1040
1041 static u32 greth_hash_get_index(__u8 *addr)
1042 {
1043 return (ether_crc(6, addr)) & 0x3F;
1044 }
1045
1046 static void greth_set_hash_filter(struct net_device *dev)
1047 {
1048 struct netdev_hw_addr *ha;
1049 struct greth_private *greth = netdev_priv(dev);
1050 struct greth_regs *regs = greth->regs;
1051 u32 mc_filter[2];
1052 unsigned int bitnr;
1053
1054 mc_filter[0] = mc_filter[1] = 0;
1055
1056 netdev_for_each_mc_addr(ha, dev) {
1057 bitnr = greth_hash_get_index(ha->addr);
1058 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1059 }
1060
1061 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
1062 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
1063 }
1064
1065 static void greth_set_multicast_list(struct net_device *dev)
1066 {
1067 int cfg;
1068 struct greth_private *greth = netdev_priv(dev);
1069 struct greth_regs *regs = greth->regs;
1070
1071 cfg = GRETH_REGLOAD(regs->control);
1072 if (dev->flags & IFF_PROMISC)
1073 cfg |= GRETH_CTRL_PR;
1074 else
1075 cfg &= ~GRETH_CTRL_PR;
1076
1077 if (greth->multicast) {
1078 if (dev->flags & IFF_ALLMULTI) {
1079 GRETH_REGSAVE(regs->hash_msb, -1);
1080 GRETH_REGSAVE(regs->hash_lsb, -1);
1081 cfg |= GRETH_CTRL_MCEN;
1082 GRETH_REGSAVE(regs->control, cfg);
1083 return;
1084 }
1085
1086 if (netdev_mc_empty(dev)) {
1087 cfg &= ~GRETH_CTRL_MCEN;
1088 GRETH_REGSAVE(regs->control, cfg);
1089 return;
1090 }
1091
1092 /* Setup multicast filter */
1093 greth_set_hash_filter(dev);
1094 cfg |= GRETH_CTRL_MCEN;
1095 }
1096 GRETH_REGSAVE(regs->control, cfg);
1097 }
1098
1099 static u32 greth_get_msglevel(struct net_device *dev)
1100 {
1101 struct greth_private *greth = netdev_priv(dev);
1102 return greth->msg_enable;
1103 }
1104
1105 static void greth_set_msglevel(struct net_device *dev, u32 value)
1106 {
1107 struct greth_private *greth = netdev_priv(dev);
1108 greth->msg_enable = value;
1109 }
1110
1111 static int greth_get_regs_len(struct net_device *dev)
1112 {
1113 return sizeof(struct greth_regs);
1114 }
1115
1116 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1117 {
1118 struct greth_private *greth = netdev_priv(dev);
1119
1120 strlcpy(info->driver, dev_driver_string(greth->dev),
1121 sizeof(info->driver));
1122 strlcpy(info->version, "revision: 1.0", sizeof(info->version));
1123 strlcpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info));
1124 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1125 }
1126
1127 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
1128 {
1129 int i;
1130 struct greth_private *greth = netdev_priv(dev);
1131 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
1132 u32 *buff = p;
1133
1134 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
1135 buff[i] = greth_read_bd(&greth_regs[i]);
1136 }
1137
1138 static const struct ethtool_ops greth_ethtool_ops = {
1139 .get_msglevel = greth_get_msglevel,
1140 .set_msglevel = greth_set_msglevel,
1141 .get_drvinfo = greth_get_drvinfo,
1142 .get_regs_len = greth_get_regs_len,
1143 .get_regs = greth_get_regs,
1144 .get_link = ethtool_op_get_link,
1145 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1146 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1147 };
1148
1149 static struct net_device_ops greth_netdev_ops = {
1150 .ndo_open = greth_open,
1151 .ndo_stop = greth_close,
1152 .ndo_start_xmit = greth_start_xmit,
1153 .ndo_set_mac_address = greth_set_mac_add,
1154 .ndo_validate_addr = eth_validate_addr,
1155 };
1156
1157 static inline int wait_for_mdio(struct greth_private *greth)
1158 {
1159 unsigned long timeout = jiffies + 4*HZ/100;
1160 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
1161 if (time_after(jiffies, timeout))
1162 return 0;
1163 }
1164 return 1;
1165 }
1166
1167 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
1168 {
1169 struct greth_private *greth = bus->priv;
1170 int data;
1171
1172 if (!wait_for_mdio(greth))
1173 return -EBUSY;
1174
1175 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
1176
1177 if (!wait_for_mdio(greth))
1178 return -EBUSY;
1179
1180 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
1181 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
1182 return data;
1183
1184 } else {
1185 return -1;
1186 }
1187 }
1188
1189 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
1190 {
1191 struct greth_private *greth = bus->priv;
1192
1193 if (!wait_for_mdio(greth))
1194 return -EBUSY;
1195
1196 GRETH_REGSAVE(greth->regs->mdio,
1197 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
1198
1199 if (!wait_for_mdio(greth))
1200 return -EBUSY;
1201
1202 return 0;
1203 }
1204
1205 static void greth_link_change(struct net_device *dev)
1206 {
1207 struct greth_private *greth = netdev_priv(dev);
1208 struct phy_device *phydev = dev->phydev;
1209 unsigned long flags;
1210 int status_change = 0;
1211 u32 ctrl;
1212
1213 spin_lock_irqsave(&greth->devlock, flags);
1214
1215 if (phydev->link) {
1216
1217 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
1218 ctrl = GRETH_REGLOAD(greth->regs->control) &
1219 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
1220
1221 if (phydev->duplex)
1222 ctrl |= GRETH_CTRL_FD;
1223
1224 if (phydev->speed == SPEED_100)
1225 ctrl |= GRETH_CTRL_SP;
1226 else if (phydev->speed == SPEED_1000)
1227 ctrl |= GRETH_CTRL_GB;
1228
1229 GRETH_REGSAVE(greth->regs->control, ctrl);
1230 greth->speed = phydev->speed;
1231 greth->duplex = phydev->duplex;
1232 status_change = 1;
1233 }
1234 }
1235
1236 if (phydev->link != greth->link) {
1237 if (!phydev->link) {
1238 greth->speed = 0;
1239 greth->duplex = -1;
1240 }
1241 greth->link = phydev->link;
1242
1243 status_change = 1;
1244 }
1245
1246 spin_unlock_irqrestore(&greth->devlock, flags);
1247
1248 if (status_change) {
1249 if (phydev->link)
1250 pr_debug("%s: link up (%d/%s)\n",
1251 dev->name, phydev->speed,
1252 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
1253 else
1254 pr_debug("%s: link down\n", dev->name);
1255 }
1256 }
1257
1258 static int greth_mdio_probe(struct net_device *dev)
1259 {
1260 struct greth_private *greth = netdev_priv(dev);
1261 struct phy_device *phy = NULL;
1262 int ret;
1263
1264 /* Find the first PHY */
1265 phy = phy_find_first(greth->mdio);
1266
1267 if (!phy) {
1268 if (netif_msg_probe(greth))
1269 dev_err(&dev->dev, "no PHY found\n");
1270 return -ENXIO;
1271 }
1272
1273 ret = phy_connect_direct(dev, phy, &greth_link_change,
1274 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII);
1275 if (ret) {
1276 if (netif_msg_ifup(greth))
1277 dev_err(&dev->dev, "could not attach to PHY\n");
1278 return ret;
1279 }
1280
1281 if (greth->gbit_mac)
1282 phy_set_max_speed(phy, SPEED_1000);
1283 else
1284 phy_set_max_speed(phy, SPEED_100);
1285
1286 linkmode_copy(phy->advertising, phy->supported);
1287
1288 greth->link = 0;
1289 greth->speed = 0;
1290 greth->duplex = -1;
1291
1292 return 0;
1293 }
1294
1295 static int greth_mdio_init(struct greth_private *greth)
1296 {
1297 int ret;
1298 unsigned long timeout;
1299 struct net_device *ndev = greth->netdev;
1300
1301 greth->mdio = mdiobus_alloc();
1302 if (!greth->mdio) {
1303 return -ENOMEM;
1304 }
1305
1306 greth->mdio->name = "greth-mdio";
1307 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
1308 greth->mdio->read = greth_mdio_read;
1309 greth->mdio->write = greth_mdio_write;
1310 greth->mdio->priv = greth;
1311
1312 ret = mdiobus_register(greth->mdio);
1313 if (ret) {
1314 goto error;
1315 }
1316
1317 ret = greth_mdio_probe(greth->netdev);
1318 if (ret) {
1319 if (netif_msg_probe(greth))
1320 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
1321 goto unreg_mdio;
1322 }
1323
1324 phy_start(ndev->phydev);
1325
1326 /* If Ethernet debug link is used make autoneg happen right away */
1327 if (greth->edcl && greth_edcl == 1) {
1328 phy_start_aneg(ndev->phydev);
1329 timeout = jiffies + 6*HZ;
1330 while (!phy_aneg_done(ndev->phydev) &&
1331 time_before(jiffies, timeout)) {
1332 }
1333 phy_read_status(ndev->phydev);
1334 greth_link_change(greth->netdev);
1335 }
1336
1337 return 0;
1338
1339 unreg_mdio:
1340 mdiobus_unregister(greth->mdio);
1341 error:
1342 mdiobus_free(greth->mdio);
1343 return ret;
1344 }
1345
1346 /* Initialize the GRETH MAC */
1347 static int greth_of_probe(struct platform_device *ofdev)
1348 {
1349 struct net_device *dev;
1350 struct greth_private *greth;
1351 struct greth_regs *regs;
1352
1353 int i;
1354 int err;
1355 int tmp;
1356 unsigned long timeout;
1357
1358 dev = alloc_etherdev(sizeof(struct greth_private));
1359
1360 if (dev == NULL)
1361 return -ENOMEM;
1362
1363 greth = netdev_priv(dev);
1364 greth->netdev = dev;
1365 greth->dev = &ofdev->dev;
1366
1367 if (greth_debug > 0)
1368 greth->msg_enable = greth_debug;
1369 else
1370 greth->msg_enable = GRETH_DEF_MSG_ENABLE;
1371
1372 spin_lock_init(&greth->devlock);
1373
1374 greth->regs = of_ioremap(&ofdev->resource[0], 0,
1375 resource_size(&ofdev->resource[0]),
1376 "grlib-greth regs");
1377
1378 if (greth->regs == NULL) {
1379 if (netif_msg_probe(greth))
1380 dev_err(greth->dev, "ioremap failure.\n");
1381 err = -EIO;
1382 goto error1;
1383 }
1384
1385 regs = greth->regs;
1386 greth->irq = ofdev->archdata.irqs[0];
1387
1388 dev_set_drvdata(greth->dev, dev);
1389 SET_NETDEV_DEV(dev, greth->dev);
1390
1391 if (netif_msg_probe(greth))
1392 dev_dbg(greth->dev, "resetting controller.\n");
1393
1394 /* Reset the controller. */
1395 GRETH_REGSAVE(regs->control, GRETH_RESET);
1396
1397 /* Wait for MAC to reset itself */
1398 timeout = jiffies + HZ/100;
1399 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
1400 if (time_after(jiffies, timeout)) {
1401 err = -EIO;
1402 if (netif_msg_probe(greth))
1403 dev_err(greth->dev, "timeout when waiting for reset.\n");
1404 goto error2;
1405 }
1406 }
1407
1408 /* Get default PHY address */
1409 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
1410
1411 /* Check if we have GBIT capable MAC */
1412 tmp = GRETH_REGLOAD(regs->control);
1413 greth->gbit_mac = (tmp >> 27) & 1;
1414
1415 /* Check for multicast capability */
1416 greth->multicast = (tmp >> 25) & 1;
1417
1418 greth->edcl = (tmp >> 31) & 1;
1419
1420 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1421 * it doesn't interfere with the software */
1422 if (greth->edcl != 0)
1423 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
1424
1425 /* Check if MAC can handle MDIO interrupts */
1426 greth->mdio_int_en = (tmp >> 26) & 1;
1427
1428 err = greth_mdio_init(greth);
1429 if (err) {
1430 if (netif_msg_probe(greth))
1431 dev_err(greth->dev, "failed to register MDIO bus\n");
1432 goto error2;
1433 }
1434
1435 /* Allocate TX descriptor ring in coherent memory */
1436 greth->tx_bd_base = dma_zalloc_coherent(greth->dev, 1024,
1437 &greth->tx_bd_base_phys,
1438 GFP_KERNEL);
1439 if (!greth->tx_bd_base) {
1440 err = -ENOMEM;
1441 goto error3;
1442 }
1443
1444 /* Allocate RX descriptor ring in coherent memory */
1445 greth->rx_bd_base = dma_zalloc_coherent(greth->dev, 1024,
1446 &greth->rx_bd_base_phys,
1447 GFP_KERNEL);
1448 if (!greth->rx_bd_base) {
1449 err = -ENOMEM;
1450 goto error4;
1451 }
1452
1453 /* Get MAC address from: module param, OF property or ID prom */
1454 for (i = 0; i < 6; i++) {
1455 if (macaddr[i] != 0)
1456 break;
1457 }
1458 if (i == 6) {
1459 const u8 *addr;
1460
1461 addr = of_get_mac_address(ofdev->dev.of_node);
1462 if (addr) {
1463 for (i = 0; i < 6; i++)
1464 macaddr[i] = (unsigned int) addr[i];
1465 } else {
1466 #ifdef CONFIG_SPARC
1467 for (i = 0; i < 6; i++)
1468 macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
1469 #endif
1470 }
1471 }
1472
1473 for (i = 0; i < 6; i++)
1474 dev->dev_addr[i] = macaddr[i];
1475
1476 macaddr[5]++;
1477
1478 if (!is_valid_ether_addr(&dev->dev_addr[0])) {
1479 if (netif_msg_probe(greth))
1480 dev_err(greth->dev, "no valid ethernet address, aborting.\n");
1481 err = -EINVAL;
1482 goto error5;
1483 }
1484
1485 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1486 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1487 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1488
1489 /* Clear all pending interrupts except PHY irq */
1490 GRETH_REGSAVE(regs->status, 0xFF);
1491
1492 if (greth->gbit_mac) {
1493 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1494 NETIF_F_RXCSUM;
1495 dev->features = dev->hw_features | NETIF_F_HIGHDMA;
1496 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
1497 }
1498
1499 if (greth->multicast) {
1500 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list;
1501 dev->flags |= IFF_MULTICAST;
1502 } else {
1503 dev->flags &= ~IFF_MULTICAST;
1504 }
1505
1506 dev->netdev_ops = &greth_netdev_ops;
1507 dev->ethtool_ops = &greth_ethtool_ops;
1508
1509 err = register_netdev(dev);
1510 if (err) {
1511 if (netif_msg_probe(greth))
1512 dev_err(greth->dev, "netdevice registration failed.\n");
1513 goto error5;
1514 }
1515
1516 /* setup NAPI */
1517 netif_napi_add(dev, &greth->napi, greth_poll, 64);
1518
1519 return 0;
1520
1521 error5:
1522 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1523 error4:
1524 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1525 error3:
1526 mdiobus_unregister(greth->mdio);
1527 error2:
1528 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
1529 error1:
1530 free_netdev(dev);
1531 return err;
1532 }
1533
1534 static int greth_of_remove(struct platform_device *of_dev)
1535 {
1536 struct net_device *ndev = platform_get_drvdata(of_dev);
1537 struct greth_private *greth = netdev_priv(ndev);
1538
1539 /* Free descriptor areas */
1540 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1541
1542 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1543
1544 if (ndev->phydev)
1545 phy_stop(ndev->phydev);
1546 mdiobus_unregister(greth->mdio);
1547
1548 unregister_netdev(ndev);
1549 free_netdev(ndev);
1550
1551 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
1552
1553 return 0;
1554 }
1555
1556 static const struct of_device_id greth_of_match[] = {
1557 {
1558 .name = "GAISLER_ETHMAC",
1559 },
1560 {
1561 .name = "01_01d",
1562 },
1563 {},
1564 };
1565
1566 MODULE_DEVICE_TABLE(of, greth_of_match);
1567
1568 static struct platform_driver greth_of_driver = {
1569 .driver = {
1570 .name = "grlib-greth",
1571 .of_match_table = greth_of_match,
1572 },
1573 .probe = greth_of_probe,
1574 .remove = greth_of_remove,
1575 };
1576
1577 module_platform_driver(greth_of_driver);
1578
1579 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1580 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1581 MODULE_LICENSE("GPL");