]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/aeroflex/greth.c
Merge tag 'ep93xx-fixes-for-3.8' of git://github.com/RyanMallon/linux-ep93xx into...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / aeroflex / greth.c
1 /*
2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
3 *
4 * 2005-2010 (c) Aeroflex Gaisler AB
5 *
6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
7 * available in the GRLIB VHDL IP core library.
8 *
9 * Full documentation of both cores can be found here:
10 * http://www.gaisler.com/products/grlib/grip.pdf
11 *
12 * The Gigabit version supports scatter/gather DMA, any alignment of
13 * buffers and checksum offloading.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Contributors: Kristoffer Glembo
21 * Daniel Hellstrom
22 * Marko Isomaki
23 */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/module.h>
27 #include <linux/uaccess.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
34 #include <linux/io.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/of_device.h>
38 #include <linux/of_platform.h>
39 #include <linux/slab.h>
40 #include <asm/cacheflush.h>
41 #include <asm/byteorder.h>
42
43 #ifdef CONFIG_SPARC
44 #include <asm/idprom.h>
45 #endif
46
47 #include "greth.h"
48
49 #define GRETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_DRV | \
51 NETIF_MSG_PROBE | \
52 NETIF_MSG_LINK | \
53 NETIF_MSG_IFDOWN | \
54 NETIF_MSG_IFUP | \
55 NETIF_MSG_RX_ERR | \
56 NETIF_MSG_TX_ERR)
57
58 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
59 module_param(greth_debug, int, 0);
60 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
61
62 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
63 static int macaddr[6];
64 module_param_array(macaddr, int, NULL, 0);
65 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
66
67 static int greth_edcl = 1;
68 module_param(greth_edcl, int, 0);
69 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
70
71 static int greth_open(struct net_device *dev);
72 static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
73 struct net_device *dev);
74 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
75 struct net_device *dev);
76 static int greth_rx(struct net_device *dev, int limit);
77 static int greth_rx_gbit(struct net_device *dev, int limit);
78 static void greth_clean_tx(struct net_device *dev);
79 static void greth_clean_tx_gbit(struct net_device *dev);
80 static irqreturn_t greth_interrupt(int irq, void *dev_id);
81 static int greth_close(struct net_device *dev);
82 static int greth_set_mac_add(struct net_device *dev, void *p);
83 static void greth_set_multicast_list(struct net_device *dev);
84
85 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
86 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
87 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
88 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
89
90 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
91 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
92 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
93
94 static void greth_print_rx_packet(void *addr, int len)
95 {
96 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
97 addr, len, true);
98 }
99
100 static void greth_print_tx_packet(struct sk_buff *skb)
101 {
102 int i;
103 int length;
104
105 if (skb_shinfo(skb)->nr_frags == 0)
106 length = skb->len;
107 else
108 length = skb_headlen(skb);
109
110 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
111 skb->data, length, true);
112
113 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
114
115 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
116 skb_frag_address(&skb_shinfo(skb)->frags[i]),
117 skb_shinfo(skb)->frags[i].size, true);
118 }
119 }
120
121 static inline void greth_enable_tx(struct greth_private *greth)
122 {
123 wmb();
124 GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
125 }
126
127 static inline void greth_disable_tx(struct greth_private *greth)
128 {
129 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
130 }
131
132 static inline void greth_enable_rx(struct greth_private *greth)
133 {
134 wmb();
135 GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
136 }
137
138 static inline void greth_disable_rx(struct greth_private *greth)
139 {
140 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
141 }
142
143 static inline void greth_enable_irqs(struct greth_private *greth)
144 {
145 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
146 }
147
148 static inline void greth_disable_irqs(struct greth_private *greth)
149 {
150 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
151 }
152
153 static inline void greth_write_bd(u32 *bd, u32 val)
154 {
155 __raw_writel(cpu_to_be32(val), bd);
156 }
157
158 static inline u32 greth_read_bd(u32 *bd)
159 {
160 return be32_to_cpu(__raw_readl(bd));
161 }
162
163 static void greth_clean_rings(struct greth_private *greth)
164 {
165 int i;
166 struct greth_bd *rx_bdp = greth->rx_bd_base;
167 struct greth_bd *tx_bdp = greth->tx_bd_base;
168
169 if (greth->gbit_mac) {
170
171 /* Free and unmap RX buffers */
172 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
173 if (greth->rx_skbuff[i] != NULL) {
174 dev_kfree_skb(greth->rx_skbuff[i]);
175 dma_unmap_single(greth->dev,
176 greth_read_bd(&rx_bdp->addr),
177 MAX_FRAME_SIZE+NET_IP_ALIGN,
178 DMA_FROM_DEVICE);
179 }
180 }
181
182 /* TX buffers */
183 while (greth->tx_free < GRETH_TXBD_NUM) {
184
185 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
186 int nr_frags = skb_shinfo(skb)->nr_frags;
187 tx_bdp = greth->tx_bd_base + greth->tx_last;
188 greth->tx_last = NEXT_TX(greth->tx_last);
189
190 dma_unmap_single(greth->dev,
191 greth_read_bd(&tx_bdp->addr),
192 skb_headlen(skb),
193 DMA_TO_DEVICE);
194
195 for (i = 0; i < nr_frags; i++) {
196 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
197 tx_bdp = greth->tx_bd_base + greth->tx_last;
198
199 dma_unmap_page(greth->dev,
200 greth_read_bd(&tx_bdp->addr),
201 skb_frag_size(frag),
202 DMA_TO_DEVICE);
203
204 greth->tx_last = NEXT_TX(greth->tx_last);
205 }
206 greth->tx_free += nr_frags+1;
207 dev_kfree_skb(skb);
208 }
209
210
211 } else { /* 10/100 Mbps MAC */
212
213 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
214 kfree(greth->rx_bufs[i]);
215 dma_unmap_single(greth->dev,
216 greth_read_bd(&rx_bdp->addr),
217 MAX_FRAME_SIZE,
218 DMA_FROM_DEVICE);
219 }
220 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
221 kfree(greth->tx_bufs[i]);
222 dma_unmap_single(greth->dev,
223 greth_read_bd(&tx_bdp->addr),
224 MAX_FRAME_SIZE,
225 DMA_TO_DEVICE);
226 }
227 }
228 }
229
230 static int greth_init_rings(struct greth_private *greth)
231 {
232 struct sk_buff *skb;
233 struct greth_bd *rx_bd, *tx_bd;
234 u32 dma_addr;
235 int i;
236
237 rx_bd = greth->rx_bd_base;
238 tx_bd = greth->tx_bd_base;
239
240 /* Initialize descriptor rings and buffers */
241 if (greth->gbit_mac) {
242
243 for (i = 0; i < GRETH_RXBD_NUM; i++) {
244 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
245 if (skb == NULL) {
246 if (netif_msg_ifup(greth))
247 dev_err(greth->dev, "Error allocating DMA ring.\n");
248 goto cleanup;
249 }
250 skb_reserve(skb, NET_IP_ALIGN);
251 dma_addr = dma_map_single(greth->dev,
252 skb->data,
253 MAX_FRAME_SIZE+NET_IP_ALIGN,
254 DMA_FROM_DEVICE);
255
256 if (dma_mapping_error(greth->dev, dma_addr)) {
257 if (netif_msg_ifup(greth))
258 dev_err(greth->dev, "Could not create initial DMA mapping\n");
259 goto cleanup;
260 }
261 greth->rx_skbuff[i] = skb;
262 greth_write_bd(&rx_bd[i].addr, dma_addr);
263 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
264 }
265
266 } else {
267
268 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
269 for (i = 0; i < GRETH_RXBD_NUM; i++) {
270
271 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
272
273 if (greth->rx_bufs[i] == NULL) {
274 if (netif_msg_ifup(greth))
275 dev_err(greth->dev, "Error allocating DMA ring.\n");
276 goto cleanup;
277 }
278
279 dma_addr = dma_map_single(greth->dev,
280 greth->rx_bufs[i],
281 MAX_FRAME_SIZE,
282 DMA_FROM_DEVICE);
283
284 if (dma_mapping_error(greth->dev, dma_addr)) {
285 if (netif_msg_ifup(greth))
286 dev_err(greth->dev, "Could not create initial DMA mapping\n");
287 goto cleanup;
288 }
289 greth_write_bd(&rx_bd[i].addr, dma_addr);
290 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
291 }
292 for (i = 0; i < GRETH_TXBD_NUM; i++) {
293
294 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
295
296 if (greth->tx_bufs[i] == NULL) {
297 if (netif_msg_ifup(greth))
298 dev_err(greth->dev, "Error allocating DMA ring.\n");
299 goto cleanup;
300 }
301
302 dma_addr = dma_map_single(greth->dev,
303 greth->tx_bufs[i],
304 MAX_FRAME_SIZE,
305 DMA_TO_DEVICE);
306
307 if (dma_mapping_error(greth->dev, dma_addr)) {
308 if (netif_msg_ifup(greth))
309 dev_err(greth->dev, "Could not create initial DMA mapping\n");
310 goto cleanup;
311 }
312 greth_write_bd(&tx_bd[i].addr, dma_addr);
313 greth_write_bd(&tx_bd[i].stat, 0);
314 }
315 }
316 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
317 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
318
319 /* Initialize pointers. */
320 greth->rx_cur = 0;
321 greth->tx_next = 0;
322 greth->tx_last = 0;
323 greth->tx_free = GRETH_TXBD_NUM;
324
325 /* Initialize descriptor base address */
326 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
327 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
328
329 return 0;
330
331 cleanup:
332 greth_clean_rings(greth);
333 return -ENOMEM;
334 }
335
336 static int greth_open(struct net_device *dev)
337 {
338 struct greth_private *greth = netdev_priv(dev);
339 int err;
340
341 err = greth_init_rings(greth);
342 if (err) {
343 if (netif_msg_ifup(greth))
344 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
345 return err;
346 }
347
348 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
349 if (err) {
350 if (netif_msg_ifup(greth))
351 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
352 greth_clean_rings(greth);
353 return err;
354 }
355
356 if (netif_msg_ifup(greth))
357 dev_dbg(&dev->dev, " starting queue\n");
358 netif_start_queue(dev);
359
360 GRETH_REGSAVE(greth->regs->status, 0xFF);
361
362 napi_enable(&greth->napi);
363
364 greth_enable_irqs(greth);
365 greth_enable_tx(greth);
366 greth_enable_rx(greth);
367 return 0;
368
369 }
370
371 static int greth_close(struct net_device *dev)
372 {
373 struct greth_private *greth = netdev_priv(dev);
374
375 napi_disable(&greth->napi);
376
377 greth_disable_irqs(greth);
378 greth_disable_tx(greth);
379 greth_disable_rx(greth);
380
381 netif_stop_queue(dev);
382
383 free_irq(greth->irq, (void *) dev);
384
385 greth_clean_rings(greth);
386
387 return 0;
388 }
389
390 static netdev_tx_t
391 greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
392 {
393 struct greth_private *greth = netdev_priv(dev);
394 struct greth_bd *bdp;
395 int err = NETDEV_TX_OK;
396 u32 status, dma_addr, ctrl;
397 unsigned long flags;
398
399 /* Clean TX Ring */
400 greth_clean_tx(greth->netdev);
401
402 if (unlikely(greth->tx_free <= 0)) {
403 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
404 ctrl = GRETH_REGLOAD(greth->regs->control);
405 /* Enable TX IRQ only if not already in poll() routine */
406 if (ctrl & GRETH_RXI)
407 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
408 netif_stop_queue(dev);
409 spin_unlock_irqrestore(&greth->devlock, flags);
410 return NETDEV_TX_BUSY;
411 }
412
413 if (netif_msg_pktdata(greth))
414 greth_print_tx_packet(skb);
415
416
417 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
418 dev->stats.tx_errors++;
419 goto out;
420 }
421
422 bdp = greth->tx_bd_base + greth->tx_next;
423 dma_addr = greth_read_bd(&bdp->addr);
424
425 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
426
427 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
428
429 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
430 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN;
431
432 /* Wrap around descriptor ring */
433 if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
434 status |= GRETH_BD_WR;
435 }
436
437 greth->tx_next = NEXT_TX(greth->tx_next);
438 greth->tx_free--;
439
440 /* Write descriptor control word and enable transmission */
441 greth_write_bd(&bdp->stat, status);
442 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
443 greth_enable_tx(greth);
444 spin_unlock_irqrestore(&greth->devlock, flags);
445
446 out:
447 dev_kfree_skb(skb);
448 return err;
449 }
450
451
452 static netdev_tx_t
453 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
454 {
455 struct greth_private *greth = netdev_priv(dev);
456 struct greth_bd *bdp;
457 u32 status = 0, dma_addr, ctrl;
458 int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
459 unsigned long flags;
460
461 nr_frags = skb_shinfo(skb)->nr_frags;
462
463 /* Clean TX Ring */
464 greth_clean_tx_gbit(dev);
465
466 if (greth->tx_free < nr_frags + 1) {
467 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
468 ctrl = GRETH_REGLOAD(greth->regs->control);
469 /* Enable TX IRQ only if not already in poll() routine */
470 if (ctrl & GRETH_RXI)
471 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
472 netif_stop_queue(dev);
473 spin_unlock_irqrestore(&greth->devlock, flags);
474 err = NETDEV_TX_BUSY;
475 goto out;
476 }
477
478 if (netif_msg_pktdata(greth))
479 greth_print_tx_packet(skb);
480
481 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
482 dev->stats.tx_errors++;
483 goto out;
484 }
485
486 /* Save skb pointer. */
487 greth->tx_skbuff[greth->tx_next] = skb;
488
489 /* Linear buf */
490 if (nr_frags != 0)
491 status = GRETH_TXBD_MORE;
492
493 if (skb->ip_summed == CHECKSUM_PARTIAL)
494 status |= GRETH_TXBD_CSALL;
495 status |= skb_headlen(skb) & GRETH_BD_LEN;
496 if (greth->tx_next == GRETH_TXBD_NUM_MASK)
497 status |= GRETH_BD_WR;
498
499
500 bdp = greth->tx_bd_base + greth->tx_next;
501 greth_write_bd(&bdp->stat, status);
502 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
503
504 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
505 goto map_error;
506
507 greth_write_bd(&bdp->addr, dma_addr);
508
509 curr_tx = NEXT_TX(greth->tx_next);
510
511 /* Frags */
512 for (i = 0; i < nr_frags; i++) {
513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
514 greth->tx_skbuff[curr_tx] = NULL;
515 bdp = greth->tx_bd_base + curr_tx;
516
517 status = GRETH_BD_EN;
518 if (skb->ip_summed == CHECKSUM_PARTIAL)
519 status |= GRETH_TXBD_CSALL;
520 status |= skb_frag_size(frag) & GRETH_BD_LEN;
521
522 /* Wrap around descriptor ring */
523 if (curr_tx == GRETH_TXBD_NUM_MASK)
524 status |= GRETH_BD_WR;
525
526 /* More fragments left */
527 if (i < nr_frags - 1)
528 status |= GRETH_TXBD_MORE;
529 else
530 status |= GRETH_BD_IE; /* enable IRQ on last fragment */
531
532 greth_write_bd(&bdp->stat, status);
533
534 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag),
535 DMA_TO_DEVICE);
536
537 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
538 goto frag_map_error;
539
540 greth_write_bd(&bdp->addr, dma_addr);
541
542 curr_tx = NEXT_TX(curr_tx);
543 }
544
545 wmb();
546
547 /* Enable the descriptor chain by enabling the first descriptor */
548 bdp = greth->tx_bd_base + greth->tx_next;
549 greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
550 greth->tx_next = curr_tx;
551 greth->tx_free -= nr_frags + 1;
552
553 wmb();
554
555 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
556 greth_enable_tx(greth);
557 spin_unlock_irqrestore(&greth->devlock, flags);
558
559 return NETDEV_TX_OK;
560
561 frag_map_error:
562 /* Unmap SKB mappings that succeeded and disable descriptor */
563 for (i = 0; greth->tx_next + i != curr_tx; i++) {
564 bdp = greth->tx_bd_base + greth->tx_next + i;
565 dma_unmap_single(greth->dev,
566 greth_read_bd(&bdp->addr),
567 greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
568 DMA_TO_DEVICE);
569 greth_write_bd(&bdp->stat, 0);
570 }
571 map_error:
572 if (net_ratelimit())
573 dev_warn(greth->dev, "Could not create TX DMA mapping\n");
574 dev_kfree_skb(skb);
575 out:
576 return err;
577 }
578
579 static irqreturn_t greth_interrupt(int irq, void *dev_id)
580 {
581 struct net_device *dev = dev_id;
582 struct greth_private *greth;
583 u32 status, ctrl;
584 irqreturn_t retval = IRQ_NONE;
585
586 greth = netdev_priv(dev);
587
588 spin_lock(&greth->devlock);
589
590 /* Get the interrupt events that caused us to be here. */
591 status = GRETH_REGLOAD(greth->regs->status);
592
593 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
594 * set regardless of whether IRQ is enabled or not. Especially
595 * important when shared IRQ.
596 */
597 ctrl = GRETH_REGLOAD(greth->regs->control);
598
599 /* Handle rx and tx interrupts through poll */
600 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
601 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
602 retval = IRQ_HANDLED;
603
604 /* Disable interrupts and schedule poll() */
605 greth_disable_irqs(greth);
606 napi_schedule(&greth->napi);
607 }
608
609 mmiowb();
610 spin_unlock(&greth->devlock);
611
612 return retval;
613 }
614
615 static void greth_clean_tx(struct net_device *dev)
616 {
617 struct greth_private *greth;
618 struct greth_bd *bdp;
619 u32 stat;
620
621 greth = netdev_priv(dev);
622
623 while (1) {
624 bdp = greth->tx_bd_base + greth->tx_last;
625 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
626 mb();
627 stat = greth_read_bd(&bdp->stat);
628
629 if (unlikely(stat & GRETH_BD_EN))
630 break;
631
632 if (greth->tx_free == GRETH_TXBD_NUM)
633 break;
634
635 /* Check status for errors */
636 if (unlikely(stat & GRETH_TXBD_STATUS)) {
637 dev->stats.tx_errors++;
638 if (stat & GRETH_TXBD_ERR_AL)
639 dev->stats.tx_aborted_errors++;
640 if (stat & GRETH_TXBD_ERR_UE)
641 dev->stats.tx_fifo_errors++;
642 }
643 dev->stats.tx_packets++;
644 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last];
645 greth->tx_last = NEXT_TX(greth->tx_last);
646 greth->tx_free++;
647 }
648
649 if (greth->tx_free > 0) {
650 netif_wake_queue(dev);
651 }
652
653 }
654
655 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
656 {
657 /* Check status for errors */
658 if (unlikely(stat & GRETH_TXBD_STATUS)) {
659 dev->stats.tx_errors++;
660 if (stat & GRETH_TXBD_ERR_AL)
661 dev->stats.tx_aborted_errors++;
662 if (stat & GRETH_TXBD_ERR_UE)
663 dev->stats.tx_fifo_errors++;
664 if (stat & GRETH_TXBD_ERR_LC)
665 dev->stats.tx_aborted_errors++;
666 }
667 dev->stats.tx_packets++;
668 }
669
670 static void greth_clean_tx_gbit(struct net_device *dev)
671 {
672 struct greth_private *greth;
673 struct greth_bd *bdp, *bdp_last_frag;
674 struct sk_buff *skb;
675 u32 stat;
676 int nr_frags, i;
677
678 greth = netdev_priv(dev);
679
680 while (greth->tx_free < GRETH_TXBD_NUM) {
681
682 skb = greth->tx_skbuff[greth->tx_last];
683
684 nr_frags = skb_shinfo(skb)->nr_frags;
685
686 /* We only clean fully completed SKBs */
687 bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
688
689 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
690 mb();
691 stat = greth_read_bd(&bdp_last_frag->stat);
692
693 if (stat & GRETH_BD_EN)
694 break;
695
696 greth->tx_skbuff[greth->tx_last] = NULL;
697
698 greth_update_tx_stats(dev, stat);
699 dev->stats.tx_bytes += skb->len;
700
701 bdp = greth->tx_bd_base + greth->tx_last;
702
703 greth->tx_last = NEXT_TX(greth->tx_last);
704
705 dma_unmap_single(greth->dev,
706 greth_read_bd(&bdp->addr),
707 skb_headlen(skb),
708 DMA_TO_DEVICE);
709
710 for (i = 0; i < nr_frags; i++) {
711 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
712 bdp = greth->tx_bd_base + greth->tx_last;
713
714 dma_unmap_page(greth->dev,
715 greth_read_bd(&bdp->addr),
716 skb_frag_size(frag),
717 DMA_TO_DEVICE);
718
719 greth->tx_last = NEXT_TX(greth->tx_last);
720 }
721 greth->tx_free += nr_frags+1;
722 dev_kfree_skb(skb);
723 }
724
725 if (netif_queue_stopped(dev) && (greth->tx_free > (MAX_SKB_FRAGS+1)))
726 netif_wake_queue(dev);
727 }
728
729 static int greth_rx(struct net_device *dev, int limit)
730 {
731 struct greth_private *greth;
732 struct greth_bd *bdp;
733 struct sk_buff *skb;
734 int pkt_len;
735 int bad, count;
736 u32 status, dma_addr;
737 unsigned long flags;
738
739 greth = netdev_priv(dev);
740
741 for (count = 0; count < limit; ++count) {
742
743 bdp = greth->rx_bd_base + greth->rx_cur;
744 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
745 mb();
746 status = greth_read_bd(&bdp->stat);
747
748 if (unlikely(status & GRETH_BD_EN)) {
749 break;
750 }
751
752 dma_addr = greth_read_bd(&bdp->addr);
753 bad = 0;
754
755 /* Check status for errors. */
756 if (unlikely(status & GRETH_RXBD_STATUS)) {
757 if (status & GRETH_RXBD_ERR_FT) {
758 dev->stats.rx_length_errors++;
759 bad = 1;
760 }
761 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
762 dev->stats.rx_frame_errors++;
763 bad = 1;
764 }
765 if (status & GRETH_RXBD_ERR_CRC) {
766 dev->stats.rx_crc_errors++;
767 bad = 1;
768 }
769 }
770 if (unlikely(bad)) {
771 dev->stats.rx_errors++;
772
773 } else {
774
775 pkt_len = status & GRETH_BD_LEN;
776
777 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
778
779 if (unlikely(skb == NULL)) {
780
781 if (net_ratelimit())
782 dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
783
784 dev->stats.rx_dropped++;
785
786 } else {
787 skb_reserve(skb, NET_IP_ALIGN);
788
789 dma_sync_single_for_cpu(greth->dev,
790 dma_addr,
791 pkt_len,
792 DMA_FROM_DEVICE);
793
794 if (netif_msg_pktdata(greth))
795 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
796
797 memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
798
799 skb->protocol = eth_type_trans(skb, dev);
800 dev->stats.rx_bytes += pkt_len;
801 dev->stats.rx_packets++;
802 netif_receive_skb(skb);
803 }
804 }
805
806 status = GRETH_BD_EN | GRETH_BD_IE;
807 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
808 status |= GRETH_BD_WR;
809 }
810
811 wmb();
812 greth_write_bd(&bdp->stat, status);
813
814 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
815
816 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
817 greth_enable_rx(greth);
818 spin_unlock_irqrestore(&greth->devlock, flags);
819
820 greth->rx_cur = NEXT_RX(greth->rx_cur);
821 }
822
823 return count;
824 }
825
826 static inline int hw_checksummed(u32 status)
827 {
828
829 if (status & GRETH_RXBD_IP_FRAG)
830 return 0;
831
832 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
833 return 0;
834
835 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
836 return 0;
837
838 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
839 return 0;
840
841 return 1;
842 }
843
844 static int greth_rx_gbit(struct net_device *dev, int limit)
845 {
846 struct greth_private *greth;
847 struct greth_bd *bdp;
848 struct sk_buff *skb, *newskb;
849 int pkt_len;
850 int bad, count = 0;
851 u32 status, dma_addr;
852 unsigned long flags;
853
854 greth = netdev_priv(dev);
855
856 for (count = 0; count < limit; ++count) {
857
858 bdp = greth->rx_bd_base + greth->rx_cur;
859 skb = greth->rx_skbuff[greth->rx_cur];
860 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
861 mb();
862 status = greth_read_bd(&bdp->stat);
863 bad = 0;
864
865 if (status & GRETH_BD_EN)
866 break;
867
868 /* Check status for errors. */
869 if (unlikely(status & GRETH_RXBD_STATUS)) {
870
871 if (status & GRETH_RXBD_ERR_FT) {
872 dev->stats.rx_length_errors++;
873 bad = 1;
874 } else if (status &
875 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
876 dev->stats.rx_frame_errors++;
877 bad = 1;
878 } else if (status & GRETH_RXBD_ERR_CRC) {
879 dev->stats.rx_crc_errors++;
880 bad = 1;
881 }
882 }
883
884 /* Allocate new skb to replace current, not needed if the
885 * current skb can be reused */
886 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
887 skb_reserve(newskb, NET_IP_ALIGN);
888
889 dma_addr = dma_map_single(greth->dev,
890 newskb->data,
891 MAX_FRAME_SIZE + NET_IP_ALIGN,
892 DMA_FROM_DEVICE);
893
894 if (!dma_mapping_error(greth->dev, dma_addr)) {
895 /* Process the incoming frame. */
896 pkt_len = status & GRETH_BD_LEN;
897
898 dma_unmap_single(greth->dev,
899 greth_read_bd(&bdp->addr),
900 MAX_FRAME_SIZE + NET_IP_ALIGN,
901 DMA_FROM_DEVICE);
902
903 if (netif_msg_pktdata(greth))
904 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
905
906 skb_put(skb, pkt_len);
907
908 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
909 skb->ip_summed = CHECKSUM_UNNECESSARY;
910 else
911 skb_checksum_none_assert(skb);
912
913 skb->protocol = eth_type_trans(skb, dev);
914 dev->stats.rx_packets++;
915 dev->stats.rx_bytes += pkt_len;
916 netif_receive_skb(skb);
917
918 greth->rx_skbuff[greth->rx_cur] = newskb;
919 greth_write_bd(&bdp->addr, dma_addr);
920 } else {
921 if (net_ratelimit())
922 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
923 dev_kfree_skb(newskb);
924 /* reusing current skb, so it is a drop */
925 dev->stats.rx_dropped++;
926 }
927 } else if (bad) {
928 /* Bad Frame transfer, the skb is reused */
929 dev->stats.rx_dropped++;
930 } else {
931 /* Failed Allocating a new skb. This is rather stupid
932 * but the current "filled" skb is reused, as if
933 * transfer failure. One could argue that RX descriptor
934 * table handling should be divided into cleaning and
935 * filling as the TX part of the driver
936 */
937 if (net_ratelimit())
938 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
939 /* reusing current skb, so it is a drop */
940 dev->stats.rx_dropped++;
941 }
942
943 status = GRETH_BD_EN | GRETH_BD_IE;
944 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
945 status |= GRETH_BD_WR;
946 }
947
948 wmb();
949 greth_write_bd(&bdp->stat, status);
950 spin_lock_irqsave(&greth->devlock, flags);
951 greth_enable_rx(greth);
952 spin_unlock_irqrestore(&greth->devlock, flags);
953 greth->rx_cur = NEXT_RX(greth->rx_cur);
954 }
955
956 return count;
957
958 }
959
960 static int greth_poll(struct napi_struct *napi, int budget)
961 {
962 struct greth_private *greth;
963 int work_done = 0;
964 unsigned long flags;
965 u32 mask, ctrl;
966 greth = container_of(napi, struct greth_private, napi);
967
968 restart_txrx_poll:
969 if (netif_queue_stopped(greth->netdev)) {
970 if (greth->gbit_mac)
971 greth_clean_tx_gbit(greth->netdev);
972 else
973 greth_clean_tx(greth->netdev);
974 }
975
976 if (greth->gbit_mac) {
977 work_done += greth_rx_gbit(greth->netdev, budget - work_done);
978 } else {
979 work_done += greth_rx(greth->netdev, budget - work_done);
980 }
981
982 if (work_done < budget) {
983
984 spin_lock_irqsave(&greth->devlock, flags);
985
986 ctrl = GRETH_REGLOAD(greth->regs->control);
987 if (netif_queue_stopped(greth->netdev)) {
988 GRETH_REGSAVE(greth->regs->control,
989 ctrl | GRETH_TXI | GRETH_RXI);
990 mask = GRETH_INT_RX | GRETH_INT_RE |
991 GRETH_INT_TX | GRETH_INT_TE;
992 } else {
993 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
994 mask = GRETH_INT_RX | GRETH_INT_RE;
995 }
996
997 if (GRETH_REGLOAD(greth->regs->status) & mask) {
998 GRETH_REGSAVE(greth->regs->control, ctrl);
999 spin_unlock_irqrestore(&greth->devlock, flags);
1000 goto restart_txrx_poll;
1001 } else {
1002 __napi_complete(napi);
1003 spin_unlock_irqrestore(&greth->devlock, flags);
1004 }
1005 }
1006
1007 return work_done;
1008 }
1009
1010 static int greth_set_mac_add(struct net_device *dev, void *p)
1011 {
1012 struct sockaddr *addr = p;
1013 struct greth_private *greth;
1014 struct greth_regs *regs;
1015
1016 greth = netdev_priv(dev);
1017 regs = greth->regs;
1018
1019 if (!is_valid_ether_addr(addr->sa_data))
1020 return -EADDRNOTAVAIL;
1021
1022 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1023 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1024 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1025 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1026
1027 return 0;
1028 }
1029
1030 static u32 greth_hash_get_index(__u8 *addr)
1031 {
1032 return (ether_crc(6, addr)) & 0x3F;
1033 }
1034
1035 static void greth_set_hash_filter(struct net_device *dev)
1036 {
1037 struct netdev_hw_addr *ha;
1038 struct greth_private *greth = netdev_priv(dev);
1039 struct greth_regs *regs = greth->regs;
1040 u32 mc_filter[2];
1041 unsigned int bitnr;
1042
1043 mc_filter[0] = mc_filter[1] = 0;
1044
1045 netdev_for_each_mc_addr(ha, dev) {
1046 bitnr = greth_hash_get_index(ha->addr);
1047 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1048 }
1049
1050 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
1051 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
1052 }
1053
1054 static void greth_set_multicast_list(struct net_device *dev)
1055 {
1056 int cfg;
1057 struct greth_private *greth = netdev_priv(dev);
1058 struct greth_regs *regs = greth->regs;
1059
1060 cfg = GRETH_REGLOAD(regs->control);
1061 if (dev->flags & IFF_PROMISC)
1062 cfg |= GRETH_CTRL_PR;
1063 else
1064 cfg &= ~GRETH_CTRL_PR;
1065
1066 if (greth->multicast) {
1067 if (dev->flags & IFF_ALLMULTI) {
1068 GRETH_REGSAVE(regs->hash_msb, -1);
1069 GRETH_REGSAVE(regs->hash_lsb, -1);
1070 cfg |= GRETH_CTRL_MCEN;
1071 GRETH_REGSAVE(regs->control, cfg);
1072 return;
1073 }
1074
1075 if (netdev_mc_empty(dev)) {
1076 cfg &= ~GRETH_CTRL_MCEN;
1077 GRETH_REGSAVE(regs->control, cfg);
1078 return;
1079 }
1080
1081 /* Setup multicast filter */
1082 greth_set_hash_filter(dev);
1083 cfg |= GRETH_CTRL_MCEN;
1084 }
1085 GRETH_REGSAVE(regs->control, cfg);
1086 }
1087
1088 static u32 greth_get_msglevel(struct net_device *dev)
1089 {
1090 struct greth_private *greth = netdev_priv(dev);
1091 return greth->msg_enable;
1092 }
1093
1094 static void greth_set_msglevel(struct net_device *dev, u32 value)
1095 {
1096 struct greth_private *greth = netdev_priv(dev);
1097 greth->msg_enable = value;
1098 }
1099 static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1100 {
1101 struct greth_private *greth = netdev_priv(dev);
1102 struct phy_device *phy = greth->phy;
1103
1104 if (!phy)
1105 return -ENODEV;
1106
1107 return phy_ethtool_gset(phy, cmd);
1108 }
1109
1110 static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1111 {
1112 struct greth_private *greth = netdev_priv(dev);
1113 struct phy_device *phy = greth->phy;
1114
1115 if (!phy)
1116 return -ENODEV;
1117
1118 return phy_ethtool_sset(phy, cmd);
1119 }
1120
1121 static int greth_get_regs_len(struct net_device *dev)
1122 {
1123 return sizeof(struct greth_regs);
1124 }
1125
1126 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1127 {
1128 struct greth_private *greth = netdev_priv(dev);
1129
1130 strncpy(info->driver, dev_driver_string(greth->dev), 32);
1131 strncpy(info->version, "revision: 1.0", 32);
1132 strncpy(info->bus_info, greth->dev->bus->name, 32);
1133 strncpy(info->fw_version, "N/A", 32);
1134 info->eedump_len = 0;
1135 info->regdump_len = sizeof(struct greth_regs);
1136 }
1137
1138 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
1139 {
1140 int i;
1141 struct greth_private *greth = netdev_priv(dev);
1142 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
1143 u32 *buff = p;
1144
1145 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
1146 buff[i] = greth_read_bd(&greth_regs[i]);
1147 }
1148
1149 static const struct ethtool_ops greth_ethtool_ops = {
1150 .get_msglevel = greth_get_msglevel,
1151 .set_msglevel = greth_set_msglevel,
1152 .get_settings = greth_get_settings,
1153 .set_settings = greth_set_settings,
1154 .get_drvinfo = greth_get_drvinfo,
1155 .get_regs_len = greth_get_regs_len,
1156 .get_regs = greth_get_regs,
1157 .get_link = ethtool_op_get_link,
1158 };
1159
1160 static struct net_device_ops greth_netdev_ops = {
1161 .ndo_open = greth_open,
1162 .ndo_stop = greth_close,
1163 .ndo_start_xmit = greth_start_xmit,
1164 .ndo_set_mac_address = greth_set_mac_add,
1165 .ndo_validate_addr = eth_validate_addr,
1166 };
1167
1168 static inline int wait_for_mdio(struct greth_private *greth)
1169 {
1170 unsigned long timeout = jiffies + 4*HZ/100;
1171 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
1172 if (time_after(jiffies, timeout))
1173 return 0;
1174 }
1175 return 1;
1176 }
1177
1178 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
1179 {
1180 struct greth_private *greth = bus->priv;
1181 int data;
1182
1183 if (!wait_for_mdio(greth))
1184 return -EBUSY;
1185
1186 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
1187
1188 if (!wait_for_mdio(greth))
1189 return -EBUSY;
1190
1191 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
1192 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
1193 return data;
1194
1195 } else {
1196 return -1;
1197 }
1198 }
1199
1200 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
1201 {
1202 struct greth_private *greth = bus->priv;
1203
1204 if (!wait_for_mdio(greth))
1205 return -EBUSY;
1206
1207 GRETH_REGSAVE(greth->regs->mdio,
1208 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
1209
1210 if (!wait_for_mdio(greth))
1211 return -EBUSY;
1212
1213 return 0;
1214 }
1215
1216 static int greth_mdio_reset(struct mii_bus *bus)
1217 {
1218 return 0;
1219 }
1220
1221 static void greth_link_change(struct net_device *dev)
1222 {
1223 struct greth_private *greth = netdev_priv(dev);
1224 struct phy_device *phydev = greth->phy;
1225 unsigned long flags;
1226 int status_change = 0;
1227 u32 ctrl;
1228
1229 spin_lock_irqsave(&greth->devlock, flags);
1230
1231 if (phydev->link) {
1232
1233 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
1234 ctrl = GRETH_REGLOAD(greth->regs->control) &
1235 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
1236
1237 if (phydev->duplex)
1238 ctrl |= GRETH_CTRL_FD;
1239
1240 if (phydev->speed == SPEED_100)
1241 ctrl |= GRETH_CTRL_SP;
1242 else if (phydev->speed == SPEED_1000)
1243 ctrl |= GRETH_CTRL_GB;
1244
1245 GRETH_REGSAVE(greth->regs->control, ctrl);
1246 greth->speed = phydev->speed;
1247 greth->duplex = phydev->duplex;
1248 status_change = 1;
1249 }
1250 }
1251
1252 if (phydev->link != greth->link) {
1253 if (!phydev->link) {
1254 greth->speed = 0;
1255 greth->duplex = -1;
1256 }
1257 greth->link = phydev->link;
1258
1259 status_change = 1;
1260 }
1261
1262 spin_unlock_irqrestore(&greth->devlock, flags);
1263
1264 if (status_change) {
1265 if (phydev->link)
1266 pr_debug("%s: link up (%d/%s)\n",
1267 dev->name, phydev->speed,
1268 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
1269 else
1270 pr_debug("%s: link down\n", dev->name);
1271 }
1272 }
1273
1274 static int greth_mdio_probe(struct net_device *dev)
1275 {
1276 struct greth_private *greth = netdev_priv(dev);
1277 struct phy_device *phy = NULL;
1278 int ret;
1279
1280 /* Find the first PHY */
1281 phy = phy_find_first(greth->mdio);
1282
1283 if (!phy) {
1284 if (netif_msg_probe(greth))
1285 dev_err(&dev->dev, "no PHY found\n");
1286 return -ENXIO;
1287 }
1288
1289 ret = phy_connect_direct(dev, phy, &greth_link_change,
1290 0, greth->gbit_mac ?
1291 PHY_INTERFACE_MODE_GMII :
1292 PHY_INTERFACE_MODE_MII);
1293 if (ret) {
1294 if (netif_msg_ifup(greth))
1295 dev_err(&dev->dev, "could not attach to PHY\n");
1296 return ret;
1297 }
1298
1299 if (greth->gbit_mac)
1300 phy->supported &= PHY_GBIT_FEATURES;
1301 else
1302 phy->supported &= PHY_BASIC_FEATURES;
1303
1304 phy->advertising = phy->supported;
1305
1306 greth->link = 0;
1307 greth->speed = 0;
1308 greth->duplex = -1;
1309 greth->phy = phy;
1310
1311 return 0;
1312 }
1313
1314 static inline int phy_aneg_done(struct phy_device *phydev)
1315 {
1316 int retval;
1317
1318 retval = phy_read(phydev, MII_BMSR);
1319
1320 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
1321 }
1322
1323 static int greth_mdio_init(struct greth_private *greth)
1324 {
1325 int ret, phy;
1326 unsigned long timeout;
1327
1328 greth->mdio = mdiobus_alloc();
1329 if (!greth->mdio) {
1330 return -ENOMEM;
1331 }
1332
1333 greth->mdio->name = "greth-mdio";
1334 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
1335 greth->mdio->read = greth_mdio_read;
1336 greth->mdio->write = greth_mdio_write;
1337 greth->mdio->reset = greth_mdio_reset;
1338 greth->mdio->priv = greth;
1339
1340 greth->mdio->irq = greth->mdio_irqs;
1341
1342 for (phy = 0; phy < PHY_MAX_ADDR; phy++)
1343 greth->mdio->irq[phy] = PHY_POLL;
1344
1345 ret = mdiobus_register(greth->mdio);
1346 if (ret) {
1347 goto error;
1348 }
1349
1350 ret = greth_mdio_probe(greth->netdev);
1351 if (ret) {
1352 if (netif_msg_probe(greth))
1353 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
1354 goto unreg_mdio;
1355 }
1356
1357 phy_start(greth->phy);
1358
1359 /* If Ethernet debug link is used make autoneg happen right away */
1360 if (greth->edcl && greth_edcl == 1) {
1361 phy_start_aneg(greth->phy);
1362 timeout = jiffies + 6*HZ;
1363 while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
1364 }
1365 genphy_read_status(greth->phy);
1366 greth_link_change(greth->netdev);
1367 }
1368
1369 return 0;
1370
1371 unreg_mdio:
1372 mdiobus_unregister(greth->mdio);
1373 error:
1374 mdiobus_free(greth->mdio);
1375 return ret;
1376 }
1377
1378 /* Initialize the GRETH MAC */
1379 static int greth_of_probe(struct platform_device *ofdev)
1380 {
1381 struct net_device *dev;
1382 struct greth_private *greth;
1383 struct greth_regs *regs;
1384
1385 int i;
1386 int err;
1387 int tmp;
1388 unsigned long timeout;
1389
1390 dev = alloc_etherdev(sizeof(struct greth_private));
1391
1392 if (dev == NULL)
1393 return -ENOMEM;
1394
1395 greth = netdev_priv(dev);
1396 greth->netdev = dev;
1397 greth->dev = &ofdev->dev;
1398
1399 if (greth_debug > 0)
1400 greth->msg_enable = greth_debug;
1401 else
1402 greth->msg_enable = GRETH_DEF_MSG_ENABLE;
1403
1404 spin_lock_init(&greth->devlock);
1405
1406 greth->regs = of_ioremap(&ofdev->resource[0], 0,
1407 resource_size(&ofdev->resource[0]),
1408 "grlib-greth regs");
1409
1410 if (greth->regs == NULL) {
1411 if (netif_msg_probe(greth))
1412 dev_err(greth->dev, "ioremap failure.\n");
1413 err = -EIO;
1414 goto error1;
1415 }
1416
1417 regs = greth->regs;
1418 greth->irq = ofdev->archdata.irqs[0];
1419
1420 dev_set_drvdata(greth->dev, dev);
1421 SET_NETDEV_DEV(dev, greth->dev);
1422
1423 if (netif_msg_probe(greth))
1424 dev_dbg(greth->dev, "resetting controller.\n");
1425
1426 /* Reset the controller. */
1427 GRETH_REGSAVE(regs->control, GRETH_RESET);
1428
1429 /* Wait for MAC to reset itself */
1430 timeout = jiffies + HZ/100;
1431 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
1432 if (time_after(jiffies, timeout)) {
1433 err = -EIO;
1434 if (netif_msg_probe(greth))
1435 dev_err(greth->dev, "timeout when waiting for reset.\n");
1436 goto error2;
1437 }
1438 }
1439
1440 /* Get default PHY address */
1441 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
1442
1443 /* Check if we have GBIT capable MAC */
1444 tmp = GRETH_REGLOAD(regs->control);
1445 greth->gbit_mac = (tmp >> 27) & 1;
1446
1447 /* Check for multicast capability */
1448 greth->multicast = (tmp >> 25) & 1;
1449
1450 greth->edcl = (tmp >> 31) & 1;
1451
1452 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1453 * it doesn't interfere with the software */
1454 if (greth->edcl != 0)
1455 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
1456
1457 /* Check if MAC can handle MDIO interrupts */
1458 greth->mdio_int_en = (tmp >> 26) & 1;
1459
1460 err = greth_mdio_init(greth);
1461 if (err) {
1462 if (netif_msg_probe(greth))
1463 dev_err(greth->dev, "failed to register MDIO bus\n");
1464 goto error2;
1465 }
1466
1467 /* Allocate TX descriptor ring in coherent memory */
1468 greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1469 1024,
1470 &greth->tx_bd_base_phys,
1471 GFP_KERNEL);
1472
1473 if (!greth->tx_bd_base) {
1474 if (netif_msg_probe(greth))
1475 dev_err(&dev->dev, "could not allocate descriptor memory.\n");
1476 err = -ENOMEM;
1477 goto error3;
1478 }
1479
1480 memset(greth->tx_bd_base, 0, 1024);
1481
1482 /* Allocate RX descriptor ring in coherent memory */
1483 greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1484 1024,
1485 &greth->rx_bd_base_phys,
1486 GFP_KERNEL);
1487
1488 if (!greth->rx_bd_base) {
1489 if (netif_msg_probe(greth))
1490 dev_err(greth->dev, "could not allocate descriptor memory.\n");
1491 err = -ENOMEM;
1492 goto error4;
1493 }
1494
1495 memset(greth->rx_bd_base, 0, 1024);
1496
1497 /* Get MAC address from: module param, OF property or ID prom */
1498 for (i = 0; i < 6; i++) {
1499 if (macaddr[i] != 0)
1500 break;
1501 }
1502 if (i == 6) {
1503 const unsigned char *addr;
1504 int len;
1505 addr = of_get_property(ofdev->dev.of_node, "local-mac-address",
1506 &len);
1507 if (addr != NULL && len == 6) {
1508 for (i = 0; i < 6; i++)
1509 macaddr[i] = (unsigned int) addr[i];
1510 } else {
1511 #ifdef CONFIG_SPARC
1512 for (i = 0; i < 6; i++)
1513 macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
1514 #endif
1515 }
1516 }
1517
1518 for (i = 0; i < 6; i++)
1519 dev->dev_addr[i] = macaddr[i];
1520
1521 macaddr[5]++;
1522
1523 if (!is_valid_ether_addr(&dev->dev_addr[0])) {
1524 if (netif_msg_probe(greth))
1525 dev_err(greth->dev, "no valid ethernet address, aborting.\n");
1526 err = -EINVAL;
1527 goto error5;
1528 }
1529
1530 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1531 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1532 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1533
1534 /* Clear all pending interrupts except PHY irq */
1535 GRETH_REGSAVE(regs->status, 0xFF);
1536
1537 if (greth->gbit_mac) {
1538 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1539 NETIF_F_RXCSUM;
1540 dev->features = dev->hw_features | NETIF_F_HIGHDMA;
1541 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
1542 }
1543
1544 if (greth->multicast) {
1545 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list;
1546 dev->flags |= IFF_MULTICAST;
1547 } else {
1548 dev->flags &= ~IFF_MULTICAST;
1549 }
1550
1551 dev->netdev_ops = &greth_netdev_ops;
1552 dev->ethtool_ops = &greth_ethtool_ops;
1553
1554 err = register_netdev(dev);
1555 if (err) {
1556 if (netif_msg_probe(greth))
1557 dev_err(greth->dev, "netdevice registration failed.\n");
1558 goto error5;
1559 }
1560
1561 /* setup NAPI */
1562 netif_napi_add(dev, &greth->napi, greth_poll, 64);
1563
1564 return 0;
1565
1566 error5:
1567 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1568 error4:
1569 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1570 error3:
1571 mdiobus_unregister(greth->mdio);
1572 error2:
1573 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
1574 error1:
1575 free_netdev(dev);
1576 return err;
1577 }
1578
1579 static int greth_of_remove(struct platform_device *of_dev)
1580 {
1581 struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
1582 struct greth_private *greth = netdev_priv(ndev);
1583
1584 /* Free descriptor areas */
1585 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1586
1587 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1588
1589 dev_set_drvdata(&of_dev->dev, NULL);
1590
1591 if (greth->phy)
1592 phy_stop(greth->phy);
1593 mdiobus_unregister(greth->mdio);
1594
1595 unregister_netdev(ndev);
1596 free_netdev(ndev);
1597
1598 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
1599
1600 return 0;
1601 }
1602
1603 static struct of_device_id greth_of_match[] = {
1604 {
1605 .name = "GAISLER_ETHMAC",
1606 },
1607 {
1608 .name = "01_01d",
1609 },
1610 {},
1611 };
1612
1613 MODULE_DEVICE_TABLE(of, greth_of_match);
1614
1615 static struct platform_driver greth_of_driver = {
1616 .driver = {
1617 .name = "grlib-greth",
1618 .owner = THIS_MODULE,
1619 .of_match_table = greth_of_match,
1620 },
1621 .probe = greth_of_probe,
1622 .remove = greth_of_remove,
1623 };
1624
1625 module_platform_driver(greth_of_driver);
1626
1627 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1628 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1629 MODULE_LICENSE("GPL");