]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/alteon/acenic.c
Merge branch 'i2c/for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / alteon / acenic.c
1 /*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
4 *
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
6 *
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
9 *
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
51 */
52
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/delay.h>
65 #include <linux/mm.h>
66 #include <linux/highmem.h>
67 #include <linux/sockios.h>
68 #include <linux/firmware.h>
69 #include <linux/slab.h>
70 #include <linux/prefetch.h>
71 #include <linux/if_vlan.h>
72
73 #ifdef SIOCETHTOOL
74 #include <linux/ethtool.h>
75 #endif
76
77 #include <net/sock.h>
78 #include <net/ip.h>
79
80 #include <asm/io.h>
81 #include <asm/irq.h>
82 #include <asm/byteorder.h>
83 #include <asm/uaccess.h>
84
85
86 #define DRV_NAME "acenic"
87
88 #undef INDEX_DEBUG
89
90 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
91 #define ACE_IS_TIGON_I(ap) 0
92 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
93 #else
94 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
95 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
96 #endif
97
98 #ifndef PCI_VENDOR_ID_ALTEON
99 #define PCI_VENDOR_ID_ALTEON 0x12ae
100 #endif
101 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
102 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
103 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
104 #endif
105 #ifndef PCI_DEVICE_ID_3COM_3C985
106 #define PCI_DEVICE_ID_3COM_3C985 0x0001
107 #endif
108 #ifndef PCI_VENDOR_ID_NETGEAR
109 #define PCI_VENDOR_ID_NETGEAR 0x1385
110 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
111 #endif
112 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
113 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
114 #endif
115
116
117 /*
118 * Farallon used the DEC vendor ID by mistake and they seem not
119 * to care - stinky!
120 */
121 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
122 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
123 #endif
124 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
125 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
126 #endif
127 #ifndef PCI_VENDOR_ID_SGI
128 #define PCI_VENDOR_ID_SGI 0x10a9
129 #endif
130 #ifndef PCI_DEVICE_ID_SGI_ACENIC
131 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
132 #endif
133
134 static const struct pci_device_id acenic_pci_tbl[] = {
135 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
136 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
137 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
138 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
139 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
141 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
142 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
143 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
144 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
145 /*
146 * Farallon used the DEC vendor ID on their cards incorrectly,
147 * then later Alteon's ID.
148 */
149 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
150 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
151 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
152 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
153 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
154 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
155 { }
156 };
157 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
158
159 #define ace_sync_irq(irq) synchronize_irq(irq)
160
161 #ifndef offset_in_page
162 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
163 #endif
164
165 #define ACE_MAX_MOD_PARMS 8
166 #define BOARD_IDX_STATIC 0
167 #define BOARD_IDX_OVERFLOW -1
168
169 #include "acenic.h"
170
171 /*
172 * These must be defined before the firmware is included.
173 */
174 #define MAX_TEXT_LEN 96*1024
175 #define MAX_RODATA_LEN 8*1024
176 #define MAX_DATA_LEN 2*1024
177
178 #ifndef tigon2FwReleaseLocal
179 #define tigon2FwReleaseLocal 0
180 #endif
181
182 /*
183 * This driver currently supports Tigon I and Tigon II based cards
184 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
185 * GA620. The driver should also work on the SGI, DEC and Farallon
186 * versions of the card, however I have not been able to test that
187 * myself.
188 *
189 * This card is really neat, it supports receive hardware checksumming
190 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
191 * firmware. Also the programming interface is quite neat, except for
192 * the parts dealing with the i2c eeprom on the card ;-)
193 *
194 * Using jumbo frames:
195 *
196 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
197 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
198 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
199 * interface number and <MTU> being the MTU value.
200 *
201 * Module parameters:
202 *
203 * When compiled as a loadable module, the driver allows for a number
204 * of module parameters to be specified. The driver supports the
205 * following module parameters:
206 *
207 * trace=<val> - Firmware trace level. This requires special traced
208 * firmware to replace the firmware supplied with
209 * the driver - for debugging purposes only.
210 *
211 * link=<val> - Link state. Normally you want to use the default link
212 * parameters set by the driver. This can be used to
213 * override these in case your switch doesn't negotiate
214 * the link properly. Valid values are:
215 * 0x0001 - Force half duplex link.
216 * 0x0002 - Do not negotiate line speed with the other end.
217 * 0x0010 - 10Mbit/sec link.
218 * 0x0020 - 100Mbit/sec link.
219 * 0x0040 - 1000Mbit/sec link.
220 * 0x0100 - Do not negotiate flow control.
221 * 0x0200 - Enable RX flow control Y
222 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
223 * Default value is 0x0270, ie. enable link+flow
224 * control negotiation. Negotiating the highest
225 * possible link speed with RX flow control enabled.
226 *
227 * When disabling link speed negotiation, only one link
228 * speed is allowed to be specified!
229 *
230 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
231 * to wait for more packets to arive before
232 * interrupting the host, from the time the first
233 * packet arrives.
234 *
235 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
236 * to wait for more packets to arive in the transmit ring,
237 * before interrupting the host, after transmitting the
238 * first packet in the ring.
239 *
240 * max_tx_desc=<val> - maximum number of transmit descriptors
241 * (packets) transmitted before interrupting the host.
242 *
243 * max_rx_desc=<val> - maximum number of receive descriptors
244 * (packets) received before interrupting the host.
245 *
246 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
247 * increments of the NIC's on board memory to be used for
248 * transmit and receive buffers. For the 1MB NIC app. 800KB
249 * is available, on the 1/2MB NIC app. 300KB is available.
250 * 68KB will always be available as a minimum for both
251 * directions. The default value is a 50/50 split.
252 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
253 * operations, default (1) is to always disable this as
254 * that is what Alteon does on NT. I have not been able
255 * to measure any real performance differences with
256 * this on my systems. Set <val>=0 if you want to
257 * enable these operations.
258 *
259 * If you use more than one NIC, specify the parameters for the
260 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
261 * run tracing on NIC #2 but not on NIC #1 and #3.
262 *
263 * TODO:
264 *
265 * - Proper multicast support.
266 * - NIC dump support.
267 * - More tuning parameters.
268 *
269 * The mini ring is not used under Linux and I am not sure it makes sense
270 * to actually use it.
271 *
272 * New interrupt handler strategy:
273 *
274 * The old interrupt handler worked using the traditional method of
275 * replacing an skbuff with a new one when a packet arrives. However
276 * the rx rings do not need to contain a static number of buffer
277 * descriptors, thus it makes sense to move the memory allocation out
278 * of the main interrupt handler and do it in a bottom half handler
279 * and only allocate new buffers when the number of buffers in the
280 * ring is below a certain threshold. In order to avoid starving the
281 * NIC under heavy load it is however necessary to force allocation
282 * when hitting a minimum threshold. The strategy for alloction is as
283 * follows:
284 *
285 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
286 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
287 * the buffers in the interrupt handler
288 * RX_RING_THRES - maximum number of buffers in the rx ring
289 * RX_MINI_THRES - maximum number of buffers in the mini ring
290 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
291 *
292 * One advantagous side effect of this allocation approach is that the
293 * entire rx processing can be done without holding any spin lock
294 * since the rx rings and registers are totally independent of the tx
295 * ring and its registers. This of course includes the kmalloc's of
296 * new skb's. Thus start_xmit can run in parallel with rx processing
297 * and the memory allocation on SMP systems.
298 *
299 * Note that running the skb reallocation in a bottom half opens up
300 * another can of races which needs to be handled properly. In
301 * particular it can happen that the interrupt handler tries to run
302 * the reallocation while the bottom half is either running on another
303 * CPU or was interrupted on the same CPU. To get around this the
304 * driver uses bitops to prevent the reallocation routines from being
305 * reentered.
306 *
307 * TX handling can also be done without holding any spin lock, wheee
308 * this is fun! since tx_ret_csm is only written to by the interrupt
309 * handler. The case to be aware of is when shutting down the device
310 * and cleaning up where it is necessary to make sure that
311 * start_xmit() is not running while this is happening. Well DaveM
312 * informs me that this case is already protected against ... bye bye
313 * Mr. Spin Lock, it was nice to know you.
314 *
315 * TX interrupts are now partly disabled so the NIC will only generate
316 * TX interrupts for the number of coal ticks, not for the number of
317 * TX packets in the queue. This should reduce the number of TX only,
318 * ie. when no RX processing is done, interrupts seen.
319 */
320
321 /*
322 * Threshold values for RX buffer allocation - the low water marks for
323 * when to start refilling the rings are set to 75% of the ring
324 * sizes. It seems to make sense to refill the rings entirely from the
325 * intrrupt handler once it gets below the panic threshold, that way
326 * we don't risk that the refilling is moved to another CPU when the
327 * one running the interrupt handler just got the slab code hot in its
328 * cache.
329 */
330 #define RX_RING_SIZE 72
331 #define RX_MINI_SIZE 64
332 #define RX_JUMBO_SIZE 48
333
334 #define RX_PANIC_STD_THRES 16
335 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
336 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
337 #define RX_PANIC_MINI_THRES 12
338 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
339 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
340 #define RX_PANIC_JUMBO_THRES 6
341 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
342 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
343
344
345 /*
346 * Size of the mini ring entries, basically these just should be big
347 * enough to take TCP ACKs
348 */
349 #define ACE_MINI_SIZE 100
350
351 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
352 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
353 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
354
355 /*
356 * There seems to be a magic difference in the effect between 995 and 996
357 * but little difference between 900 and 995 ... no idea why.
358 *
359 * There is now a default set of tuning parameters which is set, depending
360 * on whether or not the user enables Jumbo frames. It's assumed that if
361 * Jumbo frames are enabled, the user wants optimal tuning for that case.
362 */
363 #define DEF_TX_COAL 400 /* 996 */
364 #define DEF_TX_MAX_DESC 60 /* was 40 */
365 #define DEF_RX_COAL 120 /* 1000 */
366 #define DEF_RX_MAX_DESC 25
367 #define DEF_TX_RATIO 21 /* 24 */
368
369 #define DEF_JUMBO_TX_COAL 20
370 #define DEF_JUMBO_TX_MAX_DESC 60
371 #define DEF_JUMBO_RX_COAL 30
372 #define DEF_JUMBO_RX_MAX_DESC 6
373 #define DEF_JUMBO_TX_RATIO 21
374
375 #if tigon2FwReleaseLocal < 20001118
376 /*
377 * Standard firmware and early modifications duplicate
378 * IRQ load without this flag (coal timer is never reset).
379 * Note that with this flag tx_coal should be less than
380 * time to xmit full tx ring.
381 * 400usec is not so bad for tx ring size of 128.
382 */
383 #define TX_COAL_INTS_ONLY 1 /* worth it */
384 #else
385 /*
386 * With modified firmware, this is not necessary, but still useful.
387 */
388 #define TX_COAL_INTS_ONLY 1
389 #endif
390
391 #define DEF_TRACE 0
392 #define DEF_STAT (2 * TICKS_PER_SEC)
393
394
395 static int link_state[ACE_MAX_MOD_PARMS];
396 static int trace[ACE_MAX_MOD_PARMS];
397 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
398 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
399 static int max_tx_desc[ACE_MAX_MOD_PARMS];
400 static int max_rx_desc[ACE_MAX_MOD_PARMS];
401 static int tx_ratio[ACE_MAX_MOD_PARMS];
402 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
403
404 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
405 MODULE_LICENSE("GPL");
406 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
407 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
408 MODULE_FIRMWARE("acenic/tg1.bin");
409 #endif
410 MODULE_FIRMWARE("acenic/tg2.bin");
411
412 module_param_array_named(link, link_state, int, NULL, 0);
413 module_param_array(trace, int, NULL, 0);
414 module_param_array(tx_coal_tick, int, NULL, 0);
415 module_param_array(max_tx_desc, int, NULL, 0);
416 module_param_array(rx_coal_tick, int, NULL, 0);
417 module_param_array(max_rx_desc, int, NULL, 0);
418 module_param_array(tx_ratio, int, NULL, 0);
419 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
420 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
421 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
422 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
423 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
424 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
425 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
426
427
428 static const char version[] =
429 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
430 " http://home.cern.ch/~jes/gige/acenic.html\n";
431
432 static int ace_get_link_ksettings(struct net_device *,
433 struct ethtool_link_ksettings *);
434 static int ace_set_link_ksettings(struct net_device *,
435 const struct ethtool_link_ksettings *);
436 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
437
438 static const struct ethtool_ops ace_ethtool_ops = {
439 .get_drvinfo = ace_get_drvinfo,
440 .get_link_ksettings = ace_get_link_ksettings,
441 .set_link_ksettings = ace_set_link_ksettings,
442 };
443
444 static void ace_watchdog(struct net_device *dev);
445
446 static const struct net_device_ops ace_netdev_ops = {
447 .ndo_open = ace_open,
448 .ndo_stop = ace_close,
449 .ndo_tx_timeout = ace_watchdog,
450 .ndo_get_stats = ace_get_stats,
451 .ndo_start_xmit = ace_start_xmit,
452 .ndo_set_rx_mode = ace_set_multicast_list,
453 .ndo_validate_addr = eth_validate_addr,
454 .ndo_set_mac_address = ace_set_mac_addr,
455 .ndo_change_mtu = ace_change_mtu,
456 };
457
458 static int acenic_probe_one(struct pci_dev *pdev,
459 const struct pci_device_id *id)
460 {
461 struct net_device *dev;
462 struct ace_private *ap;
463 static int boards_found;
464
465 dev = alloc_etherdev(sizeof(struct ace_private));
466 if (dev == NULL)
467 return -ENOMEM;
468
469 SET_NETDEV_DEV(dev, &pdev->dev);
470
471 ap = netdev_priv(dev);
472 ap->pdev = pdev;
473 ap->name = pci_name(pdev);
474
475 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
476 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
477
478 dev->watchdog_timeo = 5*HZ;
479 dev->min_mtu = 0;
480 dev->max_mtu = ACE_JUMBO_MTU;
481
482 dev->netdev_ops = &ace_netdev_ops;
483 dev->ethtool_ops = &ace_ethtool_ops;
484
485 /* we only display this string ONCE */
486 if (!boards_found)
487 printk(version);
488
489 if (pci_enable_device(pdev))
490 goto fail_free_netdev;
491
492 /*
493 * Enable master mode before we start playing with the
494 * pci_command word since pci_set_master() will modify
495 * it.
496 */
497 pci_set_master(pdev);
498
499 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
500
501 /* OpenFirmware on Mac's does not set this - DOH.. */
502 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
503 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
504 "access - was not enabled by BIOS/Firmware\n",
505 ap->name);
506 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
507 pci_write_config_word(ap->pdev, PCI_COMMAND,
508 ap->pci_command);
509 wmb();
510 }
511
512 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
513 if (ap->pci_latency <= 0x40) {
514 ap->pci_latency = 0x40;
515 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
516 }
517
518 /*
519 * Remap the regs into kernel space - this is abuse of
520 * dev->base_addr since it was means for I/O port
521 * addresses but who gives a damn.
522 */
523 dev->base_addr = pci_resource_start(pdev, 0);
524 ap->regs = ioremap(dev->base_addr, 0x4000);
525 if (!ap->regs) {
526 printk(KERN_ERR "%s: Unable to map I/O register, "
527 "AceNIC %i will be disabled.\n",
528 ap->name, boards_found);
529 goto fail_free_netdev;
530 }
531
532 switch(pdev->vendor) {
533 case PCI_VENDOR_ID_ALTEON:
534 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
535 printk(KERN_INFO "%s: Farallon PN9100-T ",
536 ap->name);
537 } else {
538 printk(KERN_INFO "%s: Alteon AceNIC ",
539 ap->name);
540 }
541 break;
542 case PCI_VENDOR_ID_3COM:
543 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
544 break;
545 case PCI_VENDOR_ID_NETGEAR:
546 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
547 break;
548 case PCI_VENDOR_ID_DEC:
549 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
550 printk(KERN_INFO "%s: Farallon PN9000-SX ",
551 ap->name);
552 break;
553 }
554 case PCI_VENDOR_ID_SGI:
555 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
556 break;
557 default:
558 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
559 break;
560 }
561
562 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
563 printk("irq %d\n", pdev->irq);
564
565 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
566 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
567 printk(KERN_ERR "%s: Driver compiled without Tigon I"
568 " support - NIC disabled\n", dev->name);
569 goto fail_uninit;
570 }
571 #endif
572
573 if (ace_allocate_descriptors(dev))
574 goto fail_free_netdev;
575
576 #ifdef MODULE
577 if (boards_found >= ACE_MAX_MOD_PARMS)
578 ap->board_idx = BOARD_IDX_OVERFLOW;
579 else
580 ap->board_idx = boards_found;
581 #else
582 ap->board_idx = BOARD_IDX_STATIC;
583 #endif
584
585 if (ace_init(dev))
586 goto fail_free_netdev;
587
588 if (register_netdev(dev)) {
589 printk(KERN_ERR "acenic: device registration failed\n");
590 goto fail_uninit;
591 }
592 ap->name = dev->name;
593
594 if (ap->pci_using_dac)
595 dev->features |= NETIF_F_HIGHDMA;
596
597 pci_set_drvdata(pdev, dev);
598
599 boards_found++;
600 return 0;
601
602 fail_uninit:
603 ace_init_cleanup(dev);
604 fail_free_netdev:
605 free_netdev(dev);
606 return -ENODEV;
607 }
608
609 static void acenic_remove_one(struct pci_dev *pdev)
610 {
611 struct net_device *dev = pci_get_drvdata(pdev);
612 struct ace_private *ap = netdev_priv(dev);
613 struct ace_regs __iomem *regs = ap->regs;
614 short i;
615
616 unregister_netdev(dev);
617
618 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
619 if (ap->version >= 2)
620 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
621
622 /*
623 * This clears any pending interrupts
624 */
625 writel(1, &regs->Mb0Lo);
626 readl(&regs->CpuCtrl); /* flush */
627
628 /*
629 * Make sure no other CPUs are processing interrupts
630 * on the card before the buffers are being released.
631 * Otherwise one might experience some `interesting'
632 * effects.
633 *
634 * Then release the RX buffers - jumbo buffers were
635 * already released in ace_close().
636 */
637 ace_sync_irq(dev->irq);
638
639 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
640 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
641
642 if (skb) {
643 struct ring_info *ringp;
644 dma_addr_t mapping;
645
646 ringp = &ap->skb->rx_std_skbuff[i];
647 mapping = dma_unmap_addr(ringp, mapping);
648 pci_unmap_page(ap->pdev, mapping,
649 ACE_STD_BUFSIZE,
650 PCI_DMA_FROMDEVICE);
651
652 ap->rx_std_ring[i].size = 0;
653 ap->skb->rx_std_skbuff[i].skb = NULL;
654 dev_kfree_skb(skb);
655 }
656 }
657
658 if (ap->version >= 2) {
659 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
660 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
661
662 if (skb) {
663 struct ring_info *ringp;
664 dma_addr_t mapping;
665
666 ringp = &ap->skb->rx_mini_skbuff[i];
667 mapping = dma_unmap_addr(ringp,mapping);
668 pci_unmap_page(ap->pdev, mapping,
669 ACE_MINI_BUFSIZE,
670 PCI_DMA_FROMDEVICE);
671
672 ap->rx_mini_ring[i].size = 0;
673 ap->skb->rx_mini_skbuff[i].skb = NULL;
674 dev_kfree_skb(skb);
675 }
676 }
677 }
678
679 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
680 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
681 if (skb) {
682 struct ring_info *ringp;
683 dma_addr_t mapping;
684
685 ringp = &ap->skb->rx_jumbo_skbuff[i];
686 mapping = dma_unmap_addr(ringp, mapping);
687 pci_unmap_page(ap->pdev, mapping,
688 ACE_JUMBO_BUFSIZE,
689 PCI_DMA_FROMDEVICE);
690
691 ap->rx_jumbo_ring[i].size = 0;
692 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
693 dev_kfree_skb(skb);
694 }
695 }
696
697 ace_init_cleanup(dev);
698 free_netdev(dev);
699 }
700
701 static struct pci_driver acenic_pci_driver = {
702 .name = "acenic",
703 .id_table = acenic_pci_tbl,
704 .probe = acenic_probe_one,
705 .remove = acenic_remove_one,
706 };
707
708 static void ace_free_descriptors(struct net_device *dev)
709 {
710 struct ace_private *ap = netdev_priv(dev);
711 int size;
712
713 if (ap->rx_std_ring != NULL) {
714 size = (sizeof(struct rx_desc) *
715 (RX_STD_RING_ENTRIES +
716 RX_JUMBO_RING_ENTRIES +
717 RX_MINI_RING_ENTRIES +
718 RX_RETURN_RING_ENTRIES));
719 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
720 ap->rx_ring_base_dma);
721 ap->rx_std_ring = NULL;
722 ap->rx_jumbo_ring = NULL;
723 ap->rx_mini_ring = NULL;
724 ap->rx_return_ring = NULL;
725 }
726 if (ap->evt_ring != NULL) {
727 size = (sizeof(struct event) * EVT_RING_ENTRIES);
728 pci_free_consistent(ap->pdev, size, ap->evt_ring,
729 ap->evt_ring_dma);
730 ap->evt_ring = NULL;
731 }
732 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
733 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
734 pci_free_consistent(ap->pdev, size, ap->tx_ring,
735 ap->tx_ring_dma);
736 }
737 ap->tx_ring = NULL;
738
739 if (ap->evt_prd != NULL) {
740 pci_free_consistent(ap->pdev, sizeof(u32),
741 (void *)ap->evt_prd, ap->evt_prd_dma);
742 ap->evt_prd = NULL;
743 }
744 if (ap->rx_ret_prd != NULL) {
745 pci_free_consistent(ap->pdev, sizeof(u32),
746 (void *)ap->rx_ret_prd,
747 ap->rx_ret_prd_dma);
748 ap->rx_ret_prd = NULL;
749 }
750 if (ap->tx_csm != NULL) {
751 pci_free_consistent(ap->pdev, sizeof(u32),
752 (void *)ap->tx_csm, ap->tx_csm_dma);
753 ap->tx_csm = NULL;
754 }
755 }
756
757
758 static int ace_allocate_descriptors(struct net_device *dev)
759 {
760 struct ace_private *ap = netdev_priv(dev);
761 int size;
762
763 size = (sizeof(struct rx_desc) *
764 (RX_STD_RING_ENTRIES +
765 RX_JUMBO_RING_ENTRIES +
766 RX_MINI_RING_ENTRIES +
767 RX_RETURN_RING_ENTRIES));
768
769 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
770 &ap->rx_ring_base_dma);
771 if (ap->rx_std_ring == NULL)
772 goto fail;
773
774 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
775 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
776 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
777
778 size = (sizeof(struct event) * EVT_RING_ENTRIES);
779
780 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
781
782 if (ap->evt_ring == NULL)
783 goto fail;
784
785 /*
786 * Only allocate a host TX ring for the Tigon II, the Tigon I
787 * has to use PCI registers for this ;-(
788 */
789 if (!ACE_IS_TIGON_I(ap)) {
790 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
791
792 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
793 &ap->tx_ring_dma);
794
795 if (ap->tx_ring == NULL)
796 goto fail;
797 }
798
799 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
800 &ap->evt_prd_dma);
801 if (ap->evt_prd == NULL)
802 goto fail;
803
804 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
805 &ap->rx_ret_prd_dma);
806 if (ap->rx_ret_prd == NULL)
807 goto fail;
808
809 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
810 &ap->tx_csm_dma);
811 if (ap->tx_csm == NULL)
812 goto fail;
813
814 return 0;
815
816 fail:
817 /* Clean up. */
818 ace_init_cleanup(dev);
819 return 1;
820 }
821
822
823 /*
824 * Generic cleanup handling data allocated during init. Used when the
825 * module is unloaded or if an error occurs during initialization
826 */
827 static void ace_init_cleanup(struct net_device *dev)
828 {
829 struct ace_private *ap;
830
831 ap = netdev_priv(dev);
832
833 ace_free_descriptors(dev);
834
835 if (ap->info)
836 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
837 ap->info, ap->info_dma);
838 kfree(ap->skb);
839 kfree(ap->trace_buf);
840
841 if (dev->irq)
842 free_irq(dev->irq, dev);
843
844 iounmap(ap->regs);
845 }
846
847
848 /*
849 * Commands are considered to be slow.
850 */
851 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
852 {
853 u32 idx;
854
855 idx = readl(&regs->CmdPrd);
856
857 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
858 idx = (idx + 1) % CMD_RING_ENTRIES;
859
860 writel(idx, &regs->CmdPrd);
861 }
862
863
864 static int ace_init(struct net_device *dev)
865 {
866 struct ace_private *ap;
867 struct ace_regs __iomem *regs;
868 struct ace_info *info = NULL;
869 struct pci_dev *pdev;
870 unsigned long myjif;
871 u64 tmp_ptr;
872 u32 tig_ver, mac1, mac2, tmp, pci_state;
873 int board_idx, ecode = 0;
874 short i;
875 unsigned char cache_size;
876
877 ap = netdev_priv(dev);
878 regs = ap->regs;
879
880 board_idx = ap->board_idx;
881
882 /*
883 * aman@sgi.com - its useful to do a NIC reset here to
884 * address the `Firmware not running' problem subsequent
885 * to any crashes involving the NIC
886 */
887 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
888 readl(&regs->HostCtrl); /* PCI write posting */
889 udelay(5);
890
891 /*
892 * Don't access any other registers before this point!
893 */
894 #ifdef __BIG_ENDIAN
895 /*
896 * This will most likely need BYTE_SWAP once we switch
897 * to using __raw_writel()
898 */
899 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
900 &regs->HostCtrl);
901 #else
902 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
903 &regs->HostCtrl);
904 #endif
905 readl(&regs->HostCtrl); /* PCI write posting */
906
907 /*
908 * Stop the NIC CPU and clear pending interrupts
909 */
910 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
911 readl(&regs->CpuCtrl); /* PCI write posting */
912 writel(0, &regs->Mb0Lo);
913
914 tig_ver = readl(&regs->HostCtrl) >> 28;
915
916 switch(tig_ver){
917 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
918 case 4:
919 case 5:
920 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
921 tig_ver, ap->firmware_major, ap->firmware_minor,
922 ap->firmware_fix);
923 writel(0, &regs->LocalCtrl);
924 ap->version = 1;
925 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
926 break;
927 #endif
928 case 6:
929 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
930 tig_ver, ap->firmware_major, ap->firmware_minor,
931 ap->firmware_fix);
932 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
933 readl(&regs->CpuBCtrl); /* PCI write posting */
934 /*
935 * The SRAM bank size does _not_ indicate the amount
936 * of memory on the card, it controls the _bank_ size!
937 * Ie. a 1MB AceNIC will have two banks of 512KB.
938 */
939 writel(SRAM_BANK_512K, &regs->LocalCtrl);
940 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
941 ap->version = 2;
942 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
943 break;
944 default:
945 printk(KERN_WARNING " Unsupported Tigon version detected "
946 "(%i)\n", tig_ver);
947 ecode = -ENODEV;
948 goto init_error;
949 }
950
951 /*
952 * ModeStat _must_ be set after the SRAM settings as this change
953 * seems to corrupt the ModeStat and possible other registers.
954 * The SRAM settings survive resets and setting it to the same
955 * value a second time works as well. This is what caused the
956 * `Firmware not running' problem on the Tigon II.
957 */
958 #ifdef __BIG_ENDIAN
959 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
960 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
961 #else
962 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
963 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
964 #endif
965 readl(&regs->ModeStat); /* PCI write posting */
966
967 mac1 = 0;
968 for(i = 0; i < 4; i++) {
969 int t;
970
971 mac1 = mac1 << 8;
972 t = read_eeprom_byte(dev, 0x8c+i);
973 if (t < 0) {
974 ecode = -EIO;
975 goto init_error;
976 } else
977 mac1 |= (t & 0xff);
978 }
979 mac2 = 0;
980 for(i = 4; i < 8; i++) {
981 int t;
982
983 mac2 = mac2 << 8;
984 t = read_eeprom_byte(dev, 0x8c+i);
985 if (t < 0) {
986 ecode = -EIO;
987 goto init_error;
988 } else
989 mac2 |= (t & 0xff);
990 }
991
992 writel(mac1, &regs->MacAddrHi);
993 writel(mac2, &regs->MacAddrLo);
994
995 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
996 dev->dev_addr[1] = mac1 & 0xff;
997 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
998 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
999 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1000 dev->dev_addr[5] = mac2 & 0xff;
1001
1002 printk("MAC: %pM\n", dev->dev_addr);
1003
1004 /*
1005 * Looks like this is necessary to deal with on all architectures,
1006 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1007 * Ie. having two NICs in the machine, one will have the cache
1008 * line set at boot time, the other will not.
1009 */
1010 pdev = ap->pdev;
1011 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1012 cache_size <<= 2;
1013 if (cache_size != SMP_CACHE_BYTES) {
1014 printk(KERN_INFO " PCI cache line size set incorrectly "
1015 "(%i bytes) by BIOS/FW, ", cache_size);
1016 if (cache_size > SMP_CACHE_BYTES)
1017 printk("expecting %i\n", SMP_CACHE_BYTES);
1018 else {
1019 printk("correcting to %i\n", SMP_CACHE_BYTES);
1020 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1021 SMP_CACHE_BYTES >> 2);
1022 }
1023 }
1024
1025 pci_state = readl(&regs->PciState);
1026 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1027 "latency: %i clks\n",
1028 (pci_state & PCI_32BIT) ? 32 : 64,
1029 (pci_state & PCI_66MHZ) ? 66 : 33,
1030 ap->pci_latency);
1031
1032 /*
1033 * Set the max DMA transfer size. Seems that for most systems
1034 * the performance is better when no MAX parameter is
1035 * set. However for systems enabling PCI write and invalidate,
1036 * DMA writes must be set to the L1 cache line size to get
1037 * optimal performance.
1038 *
1039 * The default is now to turn the PCI write and invalidate off
1040 * - that is what Alteon does for NT.
1041 */
1042 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1043 if (ap->version >= 2) {
1044 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1045 /*
1046 * Tuning parameters only supported for 8 cards
1047 */
1048 if (board_idx == BOARD_IDX_OVERFLOW ||
1049 dis_pci_mem_inval[board_idx]) {
1050 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1051 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1052 pci_write_config_word(pdev, PCI_COMMAND,
1053 ap->pci_command);
1054 printk(KERN_INFO " Disabling PCI memory "
1055 "write and invalidate\n");
1056 }
1057 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1058 printk(KERN_INFO " PCI memory write & invalidate "
1059 "enabled by BIOS, enabling counter measures\n");
1060
1061 switch(SMP_CACHE_BYTES) {
1062 case 16:
1063 tmp |= DMA_WRITE_MAX_16;
1064 break;
1065 case 32:
1066 tmp |= DMA_WRITE_MAX_32;
1067 break;
1068 case 64:
1069 tmp |= DMA_WRITE_MAX_64;
1070 break;
1071 case 128:
1072 tmp |= DMA_WRITE_MAX_128;
1073 break;
1074 default:
1075 printk(KERN_INFO " Cache line size %i not "
1076 "supported, PCI write and invalidate "
1077 "disabled\n", SMP_CACHE_BYTES);
1078 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1079 pci_write_config_word(pdev, PCI_COMMAND,
1080 ap->pci_command);
1081 }
1082 }
1083 }
1084
1085 #ifdef __sparc__
1086 /*
1087 * On this platform, we know what the best dma settings
1088 * are. We use 64-byte maximum bursts, because if we
1089 * burst larger than the cache line size (or even cross
1090 * a 64byte boundary in a single burst) the UltraSparc
1091 * PCI controller will disconnect at 64-byte multiples.
1092 *
1093 * Read-multiple will be properly enabled above, and when
1094 * set will give the PCI controller proper hints about
1095 * prefetching.
1096 */
1097 tmp &= ~DMA_READ_WRITE_MASK;
1098 tmp |= DMA_READ_MAX_64;
1099 tmp |= DMA_WRITE_MAX_64;
1100 #endif
1101 #ifdef __alpha__
1102 tmp &= ~DMA_READ_WRITE_MASK;
1103 tmp |= DMA_READ_MAX_128;
1104 /*
1105 * All the docs say MUST NOT. Well, I did.
1106 * Nothing terrible happens, if we load wrong size.
1107 * Bit w&i still works better!
1108 */
1109 tmp |= DMA_WRITE_MAX_128;
1110 #endif
1111 writel(tmp, &regs->PciState);
1112
1113 #if 0
1114 /*
1115 * The Host PCI bus controller driver has to set FBB.
1116 * If all devices on that PCI bus support FBB, then the controller
1117 * can enable FBB support in the Host PCI Bus controller (or on
1118 * the PCI-PCI bridge if that applies).
1119 * -ggg
1120 */
1121 /*
1122 * I have received reports from people having problems when this
1123 * bit is enabled.
1124 */
1125 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1126 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1127 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1128 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1129 }
1130 #endif
1131
1132 /*
1133 * Configure DMA attributes.
1134 */
1135 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1136 ap->pci_using_dac = 1;
1137 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1138 ap->pci_using_dac = 0;
1139 } else {
1140 ecode = -ENODEV;
1141 goto init_error;
1142 }
1143
1144 /*
1145 * Initialize the generic info block and the command+event rings
1146 * and the control blocks for the transmit and receive rings
1147 * as they need to be setup once and for all.
1148 */
1149 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1150 &ap->info_dma))) {
1151 ecode = -EAGAIN;
1152 goto init_error;
1153 }
1154 ap->info = info;
1155
1156 /*
1157 * Get the memory for the skb rings.
1158 */
1159 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1160 ecode = -EAGAIN;
1161 goto init_error;
1162 }
1163
1164 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1165 DRV_NAME, dev);
1166 if (ecode) {
1167 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1168 DRV_NAME, pdev->irq);
1169 goto init_error;
1170 } else
1171 dev->irq = pdev->irq;
1172
1173 #ifdef INDEX_DEBUG
1174 spin_lock_init(&ap->debug_lock);
1175 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1176 ap->last_std_rx = 0;
1177 ap->last_mini_rx = 0;
1178 #endif
1179
1180 memset(ap->info, 0, sizeof(struct ace_info));
1181 memset(ap->skb, 0, sizeof(struct ace_skb));
1182
1183 ecode = ace_load_firmware(dev);
1184 if (ecode)
1185 goto init_error;
1186
1187 ap->fw_running = 0;
1188
1189 tmp_ptr = ap->info_dma;
1190 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1191 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1192
1193 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1194
1195 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1196 info->evt_ctrl.flags = 0;
1197
1198 *(ap->evt_prd) = 0;
1199 wmb();
1200 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1201 writel(0, &regs->EvtCsm);
1202
1203 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1204 info->cmd_ctrl.flags = 0;
1205 info->cmd_ctrl.max_len = 0;
1206
1207 for (i = 0; i < CMD_RING_ENTRIES; i++)
1208 writel(0, &regs->CmdRng[i]);
1209
1210 writel(0, &regs->CmdPrd);
1211 writel(0, &regs->CmdCsm);
1212
1213 tmp_ptr = ap->info_dma;
1214 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1215 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1216
1217 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1218 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1219 info->rx_std_ctrl.flags =
1220 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1221
1222 memset(ap->rx_std_ring, 0,
1223 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1224
1225 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1226 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1227
1228 ap->rx_std_skbprd = 0;
1229 atomic_set(&ap->cur_rx_bufs, 0);
1230
1231 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1232 (ap->rx_ring_base_dma +
1233 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1234 info->rx_jumbo_ctrl.max_len = 0;
1235 info->rx_jumbo_ctrl.flags =
1236 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1237
1238 memset(ap->rx_jumbo_ring, 0,
1239 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1240
1241 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1242 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1243
1244 ap->rx_jumbo_skbprd = 0;
1245 atomic_set(&ap->cur_jumbo_bufs, 0);
1246
1247 memset(ap->rx_mini_ring, 0,
1248 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1249
1250 if (ap->version >= 2) {
1251 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1252 (ap->rx_ring_base_dma +
1253 (sizeof(struct rx_desc) *
1254 (RX_STD_RING_ENTRIES +
1255 RX_JUMBO_RING_ENTRIES))));
1256 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1257 info->rx_mini_ctrl.flags =
1258 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1259
1260 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1261 ap->rx_mini_ring[i].flags =
1262 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1263 } else {
1264 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1265 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1266 info->rx_mini_ctrl.max_len = 0;
1267 }
1268
1269 ap->rx_mini_skbprd = 0;
1270 atomic_set(&ap->cur_mini_bufs, 0);
1271
1272 set_aceaddr(&info->rx_return_ctrl.rngptr,
1273 (ap->rx_ring_base_dma +
1274 (sizeof(struct rx_desc) *
1275 (RX_STD_RING_ENTRIES +
1276 RX_JUMBO_RING_ENTRIES +
1277 RX_MINI_RING_ENTRIES))));
1278 info->rx_return_ctrl.flags = 0;
1279 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1280
1281 memset(ap->rx_return_ring, 0,
1282 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1283
1284 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1285 *(ap->rx_ret_prd) = 0;
1286
1287 writel(TX_RING_BASE, &regs->WinBase);
1288
1289 if (ACE_IS_TIGON_I(ap)) {
1290 ap->tx_ring = (__force struct tx_desc *) regs->Window;
1291 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1292 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1293 writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
1294
1295 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1296 } else {
1297 memset(ap->tx_ring, 0,
1298 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1299
1300 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1301 }
1302
1303 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1304 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1305
1306 /*
1307 * The Tigon I does not like having the TX ring in host memory ;-(
1308 */
1309 if (!ACE_IS_TIGON_I(ap))
1310 tmp |= RCB_FLG_TX_HOST_RING;
1311 #if TX_COAL_INTS_ONLY
1312 tmp |= RCB_FLG_COAL_INT_ONLY;
1313 #endif
1314 info->tx_ctrl.flags = tmp;
1315
1316 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1317
1318 /*
1319 * Potential item for tuning parameter
1320 */
1321 #if 0 /* NO */
1322 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1323 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1324 #else
1325 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1326 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1327 #endif
1328
1329 writel(0, &regs->MaskInt);
1330 writel(1, &regs->IfIdx);
1331 #if 0
1332 /*
1333 * McKinley boxes do not like us fiddling with AssistState
1334 * this early
1335 */
1336 writel(1, &regs->AssistState);
1337 #endif
1338
1339 writel(DEF_STAT, &regs->TuneStatTicks);
1340 writel(DEF_TRACE, &regs->TuneTrace);
1341
1342 ace_set_rxtx_parms(dev, 0);
1343
1344 if (board_idx == BOARD_IDX_OVERFLOW) {
1345 printk(KERN_WARNING "%s: more than %i NICs detected, "
1346 "ignoring module parameters!\n",
1347 ap->name, ACE_MAX_MOD_PARMS);
1348 } else if (board_idx >= 0) {
1349 if (tx_coal_tick[board_idx])
1350 writel(tx_coal_tick[board_idx],
1351 &regs->TuneTxCoalTicks);
1352 if (max_tx_desc[board_idx])
1353 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1354
1355 if (rx_coal_tick[board_idx])
1356 writel(rx_coal_tick[board_idx],
1357 &regs->TuneRxCoalTicks);
1358 if (max_rx_desc[board_idx])
1359 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1360
1361 if (trace[board_idx])
1362 writel(trace[board_idx], &regs->TuneTrace);
1363
1364 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1365 writel(tx_ratio[board_idx], &regs->TxBufRat);
1366 }
1367
1368 /*
1369 * Default link parameters
1370 */
1371 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1372 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1373 if(ap->version >= 2)
1374 tmp |= LNK_TX_FLOW_CTL_Y;
1375
1376 /*
1377 * Override link default parameters
1378 */
1379 if ((board_idx >= 0) && link_state[board_idx]) {
1380 int option = link_state[board_idx];
1381
1382 tmp = LNK_ENABLE;
1383
1384 if (option & 0x01) {
1385 printk(KERN_INFO "%s: Setting half duplex link\n",
1386 ap->name);
1387 tmp &= ~LNK_FULL_DUPLEX;
1388 }
1389 if (option & 0x02)
1390 tmp &= ~LNK_NEGOTIATE;
1391 if (option & 0x10)
1392 tmp |= LNK_10MB;
1393 if (option & 0x20)
1394 tmp |= LNK_100MB;
1395 if (option & 0x40)
1396 tmp |= LNK_1000MB;
1397 if ((option & 0x70) == 0) {
1398 printk(KERN_WARNING "%s: No media speed specified, "
1399 "forcing auto negotiation\n", ap->name);
1400 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1401 LNK_100MB | LNK_10MB;
1402 }
1403 if ((option & 0x100) == 0)
1404 tmp |= LNK_NEG_FCTL;
1405 else
1406 printk(KERN_INFO "%s: Disabling flow control "
1407 "negotiation\n", ap->name);
1408 if (option & 0x200)
1409 tmp |= LNK_RX_FLOW_CTL_Y;
1410 if ((option & 0x400) && (ap->version >= 2)) {
1411 printk(KERN_INFO "%s: Enabling TX flow control\n",
1412 ap->name);
1413 tmp |= LNK_TX_FLOW_CTL_Y;
1414 }
1415 }
1416
1417 ap->link = tmp;
1418 writel(tmp, &regs->TuneLink);
1419 if (ap->version >= 2)
1420 writel(tmp, &regs->TuneFastLink);
1421
1422 writel(ap->firmware_start, &regs->Pc);
1423
1424 writel(0, &regs->Mb0Lo);
1425
1426 /*
1427 * Set tx_csm before we start receiving interrupts, otherwise
1428 * the interrupt handler might think it is supposed to process
1429 * tx ints before we are up and running, which may cause a null
1430 * pointer access in the int handler.
1431 */
1432 ap->cur_rx = 0;
1433 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1434
1435 wmb();
1436 ace_set_txprd(regs, ap, 0);
1437 writel(0, &regs->RxRetCsm);
1438
1439 /*
1440 * Enable DMA engine now.
1441 * If we do this sooner, Mckinley box pukes.
1442 * I assume it's because Tigon II DMA engine wants to check
1443 * *something* even before the CPU is started.
1444 */
1445 writel(1, &regs->AssistState); /* enable DMA */
1446
1447 /*
1448 * Start the NIC CPU
1449 */
1450 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1451 readl(&regs->CpuCtrl);
1452
1453 /*
1454 * Wait for the firmware to spin up - max 3 seconds.
1455 */
1456 myjif = jiffies + 3 * HZ;
1457 while (time_before(jiffies, myjif) && !ap->fw_running)
1458 cpu_relax();
1459
1460 if (!ap->fw_running) {
1461 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1462
1463 ace_dump_trace(ap);
1464 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1465 readl(&regs->CpuCtrl);
1466
1467 /* aman@sgi.com - account for badly behaving firmware/NIC:
1468 * - have observed that the NIC may continue to generate
1469 * interrupts for some reason; attempt to stop it - halt
1470 * second CPU for Tigon II cards, and also clear Mb0
1471 * - if we're a module, we'll fail to load if this was
1472 * the only GbE card in the system => if the kernel does
1473 * see an interrupt from the NIC, code to handle it is
1474 * gone and OOps! - so free_irq also
1475 */
1476 if (ap->version >= 2)
1477 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1478 &regs->CpuBCtrl);
1479 writel(0, &regs->Mb0Lo);
1480 readl(&regs->Mb0Lo);
1481
1482 ecode = -EBUSY;
1483 goto init_error;
1484 }
1485
1486 /*
1487 * We load the ring here as there seem to be no way to tell the
1488 * firmware to wipe the ring without re-initializing it.
1489 */
1490 if (!test_and_set_bit(0, &ap->std_refill_busy))
1491 ace_load_std_rx_ring(dev, RX_RING_SIZE);
1492 else
1493 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1494 ap->name);
1495 if (ap->version >= 2) {
1496 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1497 ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1498 else
1499 printk(KERN_ERR "%s: Someone is busy refilling "
1500 "the RX mini ring\n", ap->name);
1501 }
1502 return 0;
1503
1504 init_error:
1505 ace_init_cleanup(dev);
1506 return ecode;
1507 }
1508
1509
1510 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1511 {
1512 struct ace_private *ap = netdev_priv(dev);
1513 struct ace_regs __iomem *regs = ap->regs;
1514 int board_idx = ap->board_idx;
1515
1516 if (board_idx >= 0) {
1517 if (!jumbo) {
1518 if (!tx_coal_tick[board_idx])
1519 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1520 if (!max_tx_desc[board_idx])
1521 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1522 if (!rx_coal_tick[board_idx])
1523 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1524 if (!max_rx_desc[board_idx])
1525 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1526 if (!tx_ratio[board_idx])
1527 writel(DEF_TX_RATIO, &regs->TxBufRat);
1528 } else {
1529 if (!tx_coal_tick[board_idx])
1530 writel(DEF_JUMBO_TX_COAL,
1531 &regs->TuneTxCoalTicks);
1532 if (!max_tx_desc[board_idx])
1533 writel(DEF_JUMBO_TX_MAX_DESC,
1534 &regs->TuneMaxTxDesc);
1535 if (!rx_coal_tick[board_idx])
1536 writel(DEF_JUMBO_RX_COAL,
1537 &regs->TuneRxCoalTicks);
1538 if (!max_rx_desc[board_idx])
1539 writel(DEF_JUMBO_RX_MAX_DESC,
1540 &regs->TuneMaxRxDesc);
1541 if (!tx_ratio[board_idx])
1542 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1543 }
1544 }
1545 }
1546
1547
1548 static void ace_watchdog(struct net_device *data)
1549 {
1550 struct net_device *dev = data;
1551 struct ace_private *ap = netdev_priv(dev);
1552 struct ace_regs __iomem *regs = ap->regs;
1553
1554 /*
1555 * We haven't received a stats update event for more than 2.5
1556 * seconds and there is data in the transmit queue, thus we
1557 * assume the card is stuck.
1558 */
1559 if (*ap->tx_csm != ap->tx_ret_csm) {
1560 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1561 dev->name, (unsigned int)readl(&regs->HostCtrl));
1562 /* This can happen due to ieee flow control. */
1563 } else {
1564 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1565 dev->name);
1566 #if 0
1567 netif_wake_queue(dev);
1568 #endif
1569 }
1570 }
1571
1572
1573 static void ace_tasklet(unsigned long arg)
1574 {
1575 struct net_device *dev = (struct net_device *) arg;
1576 struct ace_private *ap = netdev_priv(dev);
1577 int cur_size;
1578
1579 cur_size = atomic_read(&ap->cur_rx_bufs);
1580 if ((cur_size < RX_LOW_STD_THRES) &&
1581 !test_and_set_bit(0, &ap->std_refill_busy)) {
1582 #ifdef DEBUG
1583 printk("refilling buffers (current %i)\n", cur_size);
1584 #endif
1585 ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1586 }
1587
1588 if (ap->version >= 2) {
1589 cur_size = atomic_read(&ap->cur_mini_bufs);
1590 if ((cur_size < RX_LOW_MINI_THRES) &&
1591 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1592 #ifdef DEBUG
1593 printk("refilling mini buffers (current %i)\n",
1594 cur_size);
1595 #endif
1596 ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1597 }
1598 }
1599
1600 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1601 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1602 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1603 #ifdef DEBUG
1604 printk("refilling jumbo buffers (current %i)\n", cur_size);
1605 #endif
1606 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1607 }
1608 ap->tasklet_pending = 0;
1609 }
1610
1611
1612 /*
1613 * Copy the contents of the NIC's trace buffer to kernel memory.
1614 */
1615 static void ace_dump_trace(struct ace_private *ap)
1616 {
1617 #if 0
1618 if (!ap->trace_buf)
1619 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1620 return;
1621 #endif
1622 }
1623
1624
1625 /*
1626 * Load the standard rx ring.
1627 *
1628 * Loading rings is safe without holding the spin lock since this is
1629 * done only before the device is enabled, thus no interrupts are
1630 * generated and by the interrupt handler/tasklet handler.
1631 */
1632 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1633 {
1634 struct ace_private *ap = netdev_priv(dev);
1635 struct ace_regs __iomem *regs = ap->regs;
1636 short i, idx;
1637
1638
1639 prefetchw(&ap->cur_rx_bufs);
1640
1641 idx = ap->rx_std_skbprd;
1642
1643 for (i = 0; i < nr_bufs; i++) {
1644 struct sk_buff *skb;
1645 struct rx_desc *rd;
1646 dma_addr_t mapping;
1647
1648 skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1649 if (!skb)
1650 break;
1651
1652 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1653 offset_in_page(skb->data),
1654 ACE_STD_BUFSIZE,
1655 PCI_DMA_FROMDEVICE);
1656 ap->skb->rx_std_skbuff[idx].skb = skb;
1657 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1658 mapping, mapping);
1659
1660 rd = &ap->rx_std_ring[idx];
1661 set_aceaddr(&rd->addr, mapping);
1662 rd->size = ACE_STD_BUFSIZE;
1663 rd->idx = idx;
1664 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1665 }
1666
1667 if (!i)
1668 goto error_out;
1669
1670 atomic_add(i, &ap->cur_rx_bufs);
1671 ap->rx_std_skbprd = idx;
1672
1673 if (ACE_IS_TIGON_I(ap)) {
1674 struct cmd cmd;
1675 cmd.evt = C_SET_RX_PRD_IDX;
1676 cmd.code = 0;
1677 cmd.idx = ap->rx_std_skbprd;
1678 ace_issue_cmd(regs, &cmd);
1679 } else {
1680 writel(idx, &regs->RxStdPrd);
1681 wmb();
1682 }
1683
1684 out:
1685 clear_bit(0, &ap->std_refill_busy);
1686 return;
1687
1688 error_out:
1689 printk(KERN_INFO "Out of memory when allocating "
1690 "standard receive buffers\n");
1691 goto out;
1692 }
1693
1694
1695 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1696 {
1697 struct ace_private *ap = netdev_priv(dev);
1698 struct ace_regs __iomem *regs = ap->regs;
1699 short i, idx;
1700
1701 prefetchw(&ap->cur_mini_bufs);
1702
1703 idx = ap->rx_mini_skbprd;
1704 for (i = 0; i < nr_bufs; i++) {
1705 struct sk_buff *skb;
1706 struct rx_desc *rd;
1707 dma_addr_t mapping;
1708
1709 skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1710 if (!skb)
1711 break;
1712
1713 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1714 offset_in_page(skb->data),
1715 ACE_MINI_BUFSIZE,
1716 PCI_DMA_FROMDEVICE);
1717 ap->skb->rx_mini_skbuff[idx].skb = skb;
1718 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1719 mapping, mapping);
1720
1721 rd = &ap->rx_mini_ring[idx];
1722 set_aceaddr(&rd->addr, mapping);
1723 rd->size = ACE_MINI_BUFSIZE;
1724 rd->idx = idx;
1725 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1726 }
1727
1728 if (!i)
1729 goto error_out;
1730
1731 atomic_add(i, &ap->cur_mini_bufs);
1732
1733 ap->rx_mini_skbprd = idx;
1734
1735 writel(idx, &regs->RxMiniPrd);
1736 wmb();
1737
1738 out:
1739 clear_bit(0, &ap->mini_refill_busy);
1740 return;
1741 error_out:
1742 printk(KERN_INFO "Out of memory when allocating "
1743 "mini receive buffers\n");
1744 goto out;
1745 }
1746
1747
1748 /*
1749 * Load the jumbo rx ring, this may happen at any time if the MTU
1750 * is changed to a value > 1500.
1751 */
1752 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1753 {
1754 struct ace_private *ap = netdev_priv(dev);
1755 struct ace_regs __iomem *regs = ap->regs;
1756 short i, idx;
1757
1758 idx = ap->rx_jumbo_skbprd;
1759
1760 for (i = 0; i < nr_bufs; i++) {
1761 struct sk_buff *skb;
1762 struct rx_desc *rd;
1763 dma_addr_t mapping;
1764
1765 skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1766 if (!skb)
1767 break;
1768
1769 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1770 offset_in_page(skb->data),
1771 ACE_JUMBO_BUFSIZE,
1772 PCI_DMA_FROMDEVICE);
1773 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1774 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1775 mapping, mapping);
1776
1777 rd = &ap->rx_jumbo_ring[idx];
1778 set_aceaddr(&rd->addr, mapping);
1779 rd->size = ACE_JUMBO_BUFSIZE;
1780 rd->idx = idx;
1781 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1782 }
1783
1784 if (!i)
1785 goto error_out;
1786
1787 atomic_add(i, &ap->cur_jumbo_bufs);
1788 ap->rx_jumbo_skbprd = idx;
1789
1790 if (ACE_IS_TIGON_I(ap)) {
1791 struct cmd cmd;
1792 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1793 cmd.code = 0;
1794 cmd.idx = ap->rx_jumbo_skbprd;
1795 ace_issue_cmd(regs, &cmd);
1796 } else {
1797 writel(idx, &regs->RxJumboPrd);
1798 wmb();
1799 }
1800
1801 out:
1802 clear_bit(0, &ap->jumbo_refill_busy);
1803 return;
1804 error_out:
1805 if (net_ratelimit())
1806 printk(KERN_INFO "Out of memory when allocating "
1807 "jumbo receive buffers\n");
1808 goto out;
1809 }
1810
1811
1812 /*
1813 * All events are considered to be slow (RX/TX ints do not generate
1814 * events) and are handled here, outside the main interrupt handler,
1815 * to reduce the size of the handler.
1816 */
1817 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1818 {
1819 struct ace_private *ap;
1820
1821 ap = netdev_priv(dev);
1822
1823 while (evtcsm != evtprd) {
1824 switch (ap->evt_ring[evtcsm].evt) {
1825 case E_FW_RUNNING:
1826 printk(KERN_INFO "%s: Firmware up and running\n",
1827 ap->name);
1828 ap->fw_running = 1;
1829 wmb();
1830 break;
1831 case E_STATS_UPDATED:
1832 break;
1833 case E_LNK_STATE:
1834 {
1835 u16 code = ap->evt_ring[evtcsm].code;
1836 switch (code) {
1837 case E_C_LINK_UP:
1838 {
1839 u32 state = readl(&ap->regs->GigLnkState);
1840 printk(KERN_WARNING "%s: Optical link UP "
1841 "(%s Duplex, Flow Control: %s%s)\n",
1842 ap->name,
1843 state & LNK_FULL_DUPLEX ? "Full":"Half",
1844 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1845 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1846 break;
1847 }
1848 case E_C_LINK_DOWN:
1849 printk(KERN_WARNING "%s: Optical link DOWN\n",
1850 ap->name);
1851 break;
1852 case E_C_LINK_10_100:
1853 printk(KERN_WARNING "%s: 10/100BaseT link "
1854 "UP\n", ap->name);
1855 break;
1856 default:
1857 printk(KERN_ERR "%s: Unknown optical link "
1858 "state %02x\n", ap->name, code);
1859 }
1860 break;
1861 }
1862 case E_ERROR:
1863 switch(ap->evt_ring[evtcsm].code) {
1864 case E_C_ERR_INVAL_CMD:
1865 printk(KERN_ERR "%s: invalid command error\n",
1866 ap->name);
1867 break;
1868 case E_C_ERR_UNIMP_CMD:
1869 printk(KERN_ERR "%s: unimplemented command "
1870 "error\n", ap->name);
1871 break;
1872 case E_C_ERR_BAD_CFG:
1873 printk(KERN_ERR "%s: bad config error\n",
1874 ap->name);
1875 break;
1876 default:
1877 printk(KERN_ERR "%s: unknown error %02x\n",
1878 ap->name, ap->evt_ring[evtcsm].code);
1879 }
1880 break;
1881 case E_RESET_JUMBO_RNG:
1882 {
1883 int i;
1884 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1885 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1886 ap->rx_jumbo_ring[i].size = 0;
1887 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1888 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1889 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1890 }
1891 }
1892
1893 if (ACE_IS_TIGON_I(ap)) {
1894 struct cmd cmd;
1895 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1896 cmd.code = 0;
1897 cmd.idx = 0;
1898 ace_issue_cmd(ap->regs, &cmd);
1899 } else {
1900 writel(0, &((ap->regs)->RxJumboPrd));
1901 wmb();
1902 }
1903
1904 ap->jumbo = 0;
1905 ap->rx_jumbo_skbprd = 0;
1906 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1907 ap->name);
1908 clear_bit(0, &ap->jumbo_refill_busy);
1909 break;
1910 }
1911 default:
1912 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1913 ap->name, ap->evt_ring[evtcsm].evt);
1914 }
1915 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1916 }
1917
1918 return evtcsm;
1919 }
1920
1921
1922 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1923 {
1924 struct ace_private *ap = netdev_priv(dev);
1925 u32 idx;
1926 int mini_count = 0, std_count = 0;
1927
1928 idx = rxretcsm;
1929
1930 prefetchw(&ap->cur_rx_bufs);
1931 prefetchw(&ap->cur_mini_bufs);
1932
1933 while (idx != rxretprd) {
1934 struct ring_info *rip;
1935 struct sk_buff *skb;
1936 struct rx_desc *rxdesc, *retdesc;
1937 u32 skbidx;
1938 int bd_flags, desc_type, mapsize;
1939 u16 csum;
1940
1941
1942 /* make sure the rx descriptor isn't read before rxretprd */
1943 if (idx == rxretcsm)
1944 rmb();
1945
1946 retdesc = &ap->rx_return_ring[idx];
1947 skbidx = retdesc->idx;
1948 bd_flags = retdesc->flags;
1949 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1950
1951 switch(desc_type) {
1952 /*
1953 * Normal frames do not have any flags set
1954 *
1955 * Mini and normal frames arrive frequently,
1956 * so use a local counter to avoid doing
1957 * atomic operations for each packet arriving.
1958 */
1959 case 0:
1960 rip = &ap->skb->rx_std_skbuff[skbidx];
1961 mapsize = ACE_STD_BUFSIZE;
1962 rxdesc = &ap->rx_std_ring[skbidx];
1963 std_count++;
1964 break;
1965 case BD_FLG_JUMBO:
1966 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1967 mapsize = ACE_JUMBO_BUFSIZE;
1968 rxdesc = &ap->rx_jumbo_ring[skbidx];
1969 atomic_dec(&ap->cur_jumbo_bufs);
1970 break;
1971 case BD_FLG_MINI:
1972 rip = &ap->skb->rx_mini_skbuff[skbidx];
1973 mapsize = ACE_MINI_BUFSIZE;
1974 rxdesc = &ap->rx_mini_ring[skbidx];
1975 mini_count++;
1976 break;
1977 default:
1978 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1979 "returned by NIC\n", dev->name,
1980 retdesc->flags);
1981 goto error;
1982 }
1983
1984 skb = rip->skb;
1985 rip->skb = NULL;
1986 pci_unmap_page(ap->pdev,
1987 dma_unmap_addr(rip, mapping),
1988 mapsize,
1989 PCI_DMA_FROMDEVICE);
1990 skb_put(skb, retdesc->size);
1991
1992 /*
1993 * Fly baby, fly!
1994 */
1995 csum = retdesc->tcp_udp_csum;
1996
1997 skb->protocol = eth_type_trans(skb, dev);
1998
1999 /*
2000 * Instead of forcing the poor tigon mips cpu to calculate
2001 * pseudo hdr checksum, we do this ourselves.
2002 */
2003 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2004 skb->csum = htons(csum);
2005 skb->ip_summed = CHECKSUM_COMPLETE;
2006 } else {
2007 skb_checksum_none_assert(skb);
2008 }
2009
2010 /* send it up */
2011 if ((bd_flags & BD_FLG_VLAN_TAG))
2012 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
2013 netif_rx(skb);
2014
2015 dev->stats.rx_packets++;
2016 dev->stats.rx_bytes += retdesc->size;
2017
2018 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2019 }
2020
2021 atomic_sub(std_count, &ap->cur_rx_bufs);
2022 if (!ACE_IS_TIGON_I(ap))
2023 atomic_sub(mini_count, &ap->cur_mini_bufs);
2024
2025 out:
2026 /*
2027 * According to the documentation RxRetCsm is obsolete with
2028 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2029 */
2030 if (ACE_IS_TIGON_I(ap)) {
2031 writel(idx, &ap->regs->RxRetCsm);
2032 }
2033 ap->cur_rx = idx;
2034
2035 return;
2036 error:
2037 idx = rxretprd;
2038 goto out;
2039 }
2040
2041
2042 static inline void ace_tx_int(struct net_device *dev,
2043 u32 txcsm, u32 idx)
2044 {
2045 struct ace_private *ap = netdev_priv(dev);
2046
2047 do {
2048 struct sk_buff *skb;
2049 struct tx_ring_info *info;
2050
2051 info = ap->skb->tx_skbuff + idx;
2052 skb = info->skb;
2053
2054 if (dma_unmap_len(info, maplen)) {
2055 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2056 dma_unmap_len(info, maplen),
2057 PCI_DMA_TODEVICE);
2058 dma_unmap_len_set(info, maplen, 0);
2059 }
2060
2061 if (skb) {
2062 dev->stats.tx_packets++;
2063 dev->stats.tx_bytes += skb->len;
2064 dev_kfree_skb_irq(skb);
2065 info->skb = NULL;
2066 }
2067
2068 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2069 } while (idx != txcsm);
2070
2071 if (netif_queue_stopped(dev))
2072 netif_wake_queue(dev);
2073
2074 wmb();
2075 ap->tx_ret_csm = txcsm;
2076
2077 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2078 *
2079 * We could try to make it before. In this case we would get
2080 * the following race condition: hard_start_xmit on other cpu
2081 * enters after we advanced tx_ret_csm and fills space,
2082 * which we have just freed, so that we make illegal device wakeup.
2083 * There is no good way to workaround this (at entry
2084 * to ace_start_xmit detects this condition and prevents
2085 * ring corruption, but it is not a good workaround.)
2086 *
2087 * When tx_ret_csm is advanced after, we wake up device _only_
2088 * if we really have some space in ring (though the core doing
2089 * hard_start_xmit can see full ring for some period and has to
2090 * synchronize.) Superb.
2091 * BUT! We get another subtle race condition. hard_start_xmit
2092 * may think that ring is full between wakeup and advancing
2093 * tx_ret_csm and will stop device instantly! It is not so bad.
2094 * We are guaranteed that there is something in ring, so that
2095 * the next irq will resume transmission. To speedup this we could
2096 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2097 * (see ace_start_xmit).
2098 *
2099 * Well, this dilemma exists in all lock-free devices.
2100 * We, following scheme used in drivers by Donald Becker,
2101 * select the least dangerous.
2102 * --ANK
2103 */
2104 }
2105
2106
2107 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2108 {
2109 struct net_device *dev = (struct net_device *)dev_id;
2110 struct ace_private *ap = netdev_priv(dev);
2111 struct ace_regs __iomem *regs = ap->regs;
2112 u32 idx;
2113 u32 txcsm, rxretcsm, rxretprd;
2114 u32 evtcsm, evtprd;
2115
2116 /*
2117 * In case of PCI shared interrupts or spurious interrupts,
2118 * we want to make sure it is actually our interrupt before
2119 * spending any time in here.
2120 */
2121 if (!(readl(&regs->HostCtrl) & IN_INT))
2122 return IRQ_NONE;
2123
2124 /*
2125 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2126 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2127 * writel(0, &regs->Mb0Lo).
2128 *
2129 * "IRQ avoidance" recommended in docs applies to IRQs served
2130 * threads and it is wrong even for that case.
2131 */
2132 writel(0, &regs->Mb0Lo);
2133 readl(&regs->Mb0Lo);
2134
2135 /*
2136 * There is no conflict between transmit handling in
2137 * start_xmit and receive processing, thus there is no reason
2138 * to take a spin lock for RX handling. Wait until we start
2139 * working on the other stuff - hey we don't need a spin lock
2140 * anymore.
2141 */
2142 rxretprd = *ap->rx_ret_prd;
2143 rxretcsm = ap->cur_rx;
2144
2145 if (rxretprd != rxretcsm)
2146 ace_rx_int(dev, rxretprd, rxretcsm);
2147
2148 txcsm = *ap->tx_csm;
2149 idx = ap->tx_ret_csm;
2150
2151 if (txcsm != idx) {
2152 /*
2153 * If each skb takes only one descriptor this check degenerates
2154 * to identity, because new space has just been opened.
2155 * But if skbs are fragmented we must check that this index
2156 * update releases enough of space, otherwise we just
2157 * wait for device to make more work.
2158 */
2159 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2160 ace_tx_int(dev, txcsm, idx);
2161 }
2162
2163 evtcsm = readl(&regs->EvtCsm);
2164 evtprd = *ap->evt_prd;
2165
2166 if (evtcsm != evtprd) {
2167 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2168 writel(evtcsm, &regs->EvtCsm);
2169 }
2170
2171 /*
2172 * This has to go last in the interrupt handler and run with
2173 * the spin lock released ... what lock?
2174 */
2175 if (netif_running(dev)) {
2176 int cur_size;
2177 int run_tasklet = 0;
2178
2179 cur_size = atomic_read(&ap->cur_rx_bufs);
2180 if (cur_size < RX_LOW_STD_THRES) {
2181 if ((cur_size < RX_PANIC_STD_THRES) &&
2182 !test_and_set_bit(0, &ap->std_refill_busy)) {
2183 #ifdef DEBUG
2184 printk("low on std buffers %i\n", cur_size);
2185 #endif
2186 ace_load_std_rx_ring(dev,
2187 RX_RING_SIZE - cur_size);
2188 } else
2189 run_tasklet = 1;
2190 }
2191
2192 if (!ACE_IS_TIGON_I(ap)) {
2193 cur_size = atomic_read(&ap->cur_mini_bufs);
2194 if (cur_size < RX_LOW_MINI_THRES) {
2195 if ((cur_size < RX_PANIC_MINI_THRES) &&
2196 !test_and_set_bit(0,
2197 &ap->mini_refill_busy)) {
2198 #ifdef DEBUG
2199 printk("low on mini buffers %i\n",
2200 cur_size);
2201 #endif
2202 ace_load_mini_rx_ring(dev,
2203 RX_MINI_SIZE - cur_size);
2204 } else
2205 run_tasklet = 1;
2206 }
2207 }
2208
2209 if (ap->jumbo) {
2210 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2211 if (cur_size < RX_LOW_JUMBO_THRES) {
2212 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2213 !test_and_set_bit(0,
2214 &ap->jumbo_refill_busy)){
2215 #ifdef DEBUG
2216 printk("low on jumbo buffers %i\n",
2217 cur_size);
2218 #endif
2219 ace_load_jumbo_rx_ring(dev,
2220 RX_JUMBO_SIZE - cur_size);
2221 } else
2222 run_tasklet = 1;
2223 }
2224 }
2225 if (run_tasklet && !ap->tasklet_pending) {
2226 ap->tasklet_pending = 1;
2227 tasklet_schedule(&ap->ace_tasklet);
2228 }
2229 }
2230
2231 return IRQ_HANDLED;
2232 }
2233
2234 static int ace_open(struct net_device *dev)
2235 {
2236 struct ace_private *ap = netdev_priv(dev);
2237 struct ace_regs __iomem *regs = ap->regs;
2238 struct cmd cmd;
2239
2240 if (!(ap->fw_running)) {
2241 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2242 return -EBUSY;
2243 }
2244
2245 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2246
2247 cmd.evt = C_CLEAR_STATS;
2248 cmd.code = 0;
2249 cmd.idx = 0;
2250 ace_issue_cmd(regs, &cmd);
2251
2252 cmd.evt = C_HOST_STATE;
2253 cmd.code = C_C_STACK_UP;
2254 cmd.idx = 0;
2255 ace_issue_cmd(regs, &cmd);
2256
2257 if (ap->jumbo &&
2258 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2259 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2260
2261 if (dev->flags & IFF_PROMISC) {
2262 cmd.evt = C_SET_PROMISC_MODE;
2263 cmd.code = C_C_PROMISC_ENABLE;
2264 cmd.idx = 0;
2265 ace_issue_cmd(regs, &cmd);
2266
2267 ap->promisc = 1;
2268 }else
2269 ap->promisc = 0;
2270 ap->mcast_all = 0;
2271
2272 #if 0
2273 cmd.evt = C_LNK_NEGOTIATION;
2274 cmd.code = 0;
2275 cmd.idx = 0;
2276 ace_issue_cmd(regs, &cmd);
2277 #endif
2278
2279 netif_start_queue(dev);
2280
2281 /*
2282 * Setup the bottom half rx ring refill handler
2283 */
2284 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2285 return 0;
2286 }
2287
2288
2289 static int ace_close(struct net_device *dev)
2290 {
2291 struct ace_private *ap = netdev_priv(dev);
2292 struct ace_regs __iomem *regs = ap->regs;
2293 struct cmd cmd;
2294 unsigned long flags;
2295 short i;
2296
2297 /*
2298 * Without (or before) releasing irq and stopping hardware, this
2299 * is an absolute non-sense, by the way. It will be reset instantly
2300 * by the first irq.
2301 */
2302 netif_stop_queue(dev);
2303
2304
2305 if (ap->promisc) {
2306 cmd.evt = C_SET_PROMISC_MODE;
2307 cmd.code = C_C_PROMISC_DISABLE;
2308 cmd.idx = 0;
2309 ace_issue_cmd(regs, &cmd);
2310 ap->promisc = 0;
2311 }
2312
2313 cmd.evt = C_HOST_STATE;
2314 cmd.code = C_C_STACK_DOWN;
2315 cmd.idx = 0;
2316 ace_issue_cmd(regs, &cmd);
2317
2318 tasklet_kill(&ap->ace_tasklet);
2319
2320 /*
2321 * Make sure one CPU is not processing packets while
2322 * buffers are being released by another.
2323 */
2324
2325 local_irq_save(flags);
2326 ace_mask_irq(dev);
2327
2328 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2329 struct sk_buff *skb;
2330 struct tx_ring_info *info;
2331
2332 info = ap->skb->tx_skbuff + i;
2333 skb = info->skb;
2334
2335 if (dma_unmap_len(info, maplen)) {
2336 if (ACE_IS_TIGON_I(ap)) {
2337 /* NB: TIGON_1 is special, tx_ring is in io space */
2338 struct tx_desc __iomem *tx;
2339 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2340 writel(0, &tx->addr.addrhi);
2341 writel(0, &tx->addr.addrlo);
2342 writel(0, &tx->flagsize);
2343 } else
2344 memset(ap->tx_ring + i, 0,
2345 sizeof(struct tx_desc));
2346 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2347 dma_unmap_len(info, maplen),
2348 PCI_DMA_TODEVICE);
2349 dma_unmap_len_set(info, maplen, 0);
2350 }
2351 if (skb) {
2352 dev_kfree_skb(skb);
2353 info->skb = NULL;
2354 }
2355 }
2356
2357 if (ap->jumbo) {
2358 cmd.evt = C_RESET_JUMBO_RNG;
2359 cmd.code = 0;
2360 cmd.idx = 0;
2361 ace_issue_cmd(regs, &cmd);
2362 }
2363
2364 ace_unmask_irq(dev);
2365 local_irq_restore(flags);
2366
2367 return 0;
2368 }
2369
2370
2371 static inline dma_addr_t
2372 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2373 struct sk_buff *tail, u32 idx)
2374 {
2375 dma_addr_t mapping;
2376 struct tx_ring_info *info;
2377
2378 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2379 offset_in_page(skb->data),
2380 skb->len, PCI_DMA_TODEVICE);
2381
2382 info = ap->skb->tx_skbuff + idx;
2383 info->skb = tail;
2384 dma_unmap_addr_set(info, mapping, mapping);
2385 dma_unmap_len_set(info, maplen, skb->len);
2386 return mapping;
2387 }
2388
2389
2390 static inline void
2391 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2392 u32 flagsize, u32 vlan_tag)
2393 {
2394 #if !USE_TX_COAL_NOW
2395 flagsize &= ~BD_FLG_COAL_NOW;
2396 #endif
2397
2398 if (ACE_IS_TIGON_I(ap)) {
2399 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2400 writel(addr >> 32, &io->addr.addrhi);
2401 writel(addr & 0xffffffff, &io->addr.addrlo);
2402 writel(flagsize, &io->flagsize);
2403 writel(vlan_tag, &io->vlanres);
2404 } else {
2405 desc->addr.addrhi = addr >> 32;
2406 desc->addr.addrlo = addr;
2407 desc->flagsize = flagsize;
2408 desc->vlanres = vlan_tag;
2409 }
2410 }
2411
2412
2413 static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2414 struct net_device *dev)
2415 {
2416 struct ace_private *ap = netdev_priv(dev);
2417 struct ace_regs __iomem *regs = ap->regs;
2418 struct tx_desc *desc;
2419 u32 idx, flagsize;
2420 unsigned long maxjiff = jiffies + 3*HZ;
2421
2422 restart:
2423 idx = ap->tx_prd;
2424
2425 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2426 goto overflow;
2427
2428 if (!skb_shinfo(skb)->nr_frags) {
2429 dma_addr_t mapping;
2430 u32 vlan_tag = 0;
2431
2432 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2433 flagsize = (skb->len << 16) | (BD_FLG_END);
2434 if (skb->ip_summed == CHECKSUM_PARTIAL)
2435 flagsize |= BD_FLG_TCP_UDP_SUM;
2436 if (skb_vlan_tag_present(skb)) {
2437 flagsize |= BD_FLG_VLAN_TAG;
2438 vlan_tag = skb_vlan_tag_get(skb);
2439 }
2440 desc = ap->tx_ring + idx;
2441 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2442
2443 /* Look at ace_tx_int for explanations. */
2444 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2445 flagsize |= BD_FLG_COAL_NOW;
2446
2447 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2448 } else {
2449 dma_addr_t mapping;
2450 u32 vlan_tag = 0;
2451 int i, len = 0;
2452
2453 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2454 flagsize = (skb_headlen(skb) << 16);
2455 if (skb->ip_summed == CHECKSUM_PARTIAL)
2456 flagsize |= BD_FLG_TCP_UDP_SUM;
2457 if (skb_vlan_tag_present(skb)) {
2458 flagsize |= BD_FLG_VLAN_TAG;
2459 vlan_tag = skb_vlan_tag_get(skb);
2460 }
2461
2462 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2463
2464 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2465
2466 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2467 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2468 struct tx_ring_info *info;
2469
2470 len += skb_frag_size(frag);
2471 info = ap->skb->tx_skbuff + idx;
2472 desc = ap->tx_ring + idx;
2473
2474 mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2475 skb_frag_size(frag),
2476 DMA_TO_DEVICE);
2477
2478 flagsize = skb_frag_size(frag) << 16;
2479 if (skb->ip_summed == CHECKSUM_PARTIAL)
2480 flagsize |= BD_FLG_TCP_UDP_SUM;
2481 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2482
2483 if (i == skb_shinfo(skb)->nr_frags - 1) {
2484 flagsize |= BD_FLG_END;
2485 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2486 flagsize |= BD_FLG_COAL_NOW;
2487
2488 /*
2489 * Only the last fragment frees
2490 * the skb!
2491 */
2492 info->skb = skb;
2493 } else {
2494 info->skb = NULL;
2495 }
2496 dma_unmap_addr_set(info, mapping, mapping);
2497 dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2498 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2499 }
2500 }
2501
2502 wmb();
2503 ap->tx_prd = idx;
2504 ace_set_txprd(regs, ap, idx);
2505
2506 if (flagsize & BD_FLG_COAL_NOW) {
2507 netif_stop_queue(dev);
2508
2509 /*
2510 * A TX-descriptor producer (an IRQ) might have gotten
2511 * between, making the ring free again. Since xmit is
2512 * serialized, this is the only situation we have to
2513 * re-test.
2514 */
2515 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2516 netif_wake_queue(dev);
2517 }
2518
2519 return NETDEV_TX_OK;
2520
2521 overflow:
2522 /*
2523 * This race condition is unavoidable with lock-free drivers.
2524 * We wake up the queue _before_ tx_prd is advanced, so that we can
2525 * enter hard_start_xmit too early, while tx ring still looks closed.
2526 * This happens ~1-4 times per 100000 packets, so that we can allow
2527 * to loop syncing to other CPU. Probably, we need an additional
2528 * wmb() in ace_tx_intr as well.
2529 *
2530 * Note that this race is relieved by reserving one more entry
2531 * in tx ring than it is necessary (see original non-SG driver).
2532 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2533 * is already overkill.
2534 *
2535 * Alternative is to return with 1 not throttling queue. In this
2536 * case loop becomes longer, no more useful effects.
2537 */
2538 if (time_before(jiffies, maxjiff)) {
2539 barrier();
2540 cpu_relax();
2541 goto restart;
2542 }
2543
2544 /* The ring is stuck full. */
2545 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2546 return NETDEV_TX_BUSY;
2547 }
2548
2549
2550 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2551 {
2552 struct ace_private *ap = netdev_priv(dev);
2553 struct ace_regs __iomem *regs = ap->regs;
2554
2555 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2556 dev->mtu = new_mtu;
2557
2558 if (new_mtu > ACE_STD_MTU) {
2559 if (!(ap->jumbo)) {
2560 printk(KERN_INFO "%s: Enabling Jumbo frame "
2561 "support\n", dev->name);
2562 ap->jumbo = 1;
2563 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2564 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2565 ace_set_rxtx_parms(dev, 1);
2566 }
2567 } else {
2568 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2569 ace_sync_irq(dev->irq);
2570 ace_set_rxtx_parms(dev, 0);
2571 if (ap->jumbo) {
2572 struct cmd cmd;
2573
2574 cmd.evt = C_RESET_JUMBO_RNG;
2575 cmd.code = 0;
2576 cmd.idx = 0;
2577 ace_issue_cmd(regs, &cmd);
2578 }
2579 }
2580
2581 return 0;
2582 }
2583
2584 static int ace_get_link_ksettings(struct net_device *dev,
2585 struct ethtool_link_ksettings *cmd)
2586 {
2587 struct ace_private *ap = netdev_priv(dev);
2588 struct ace_regs __iomem *regs = ap->regs;
2589 u32 link;
2590 u32 supported;
2591
2592 memset(cmd, 0, sizeof(struct ethtool_link_ksettings));
2593
2594 supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2595 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2596 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2597 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2598
2599 cmd->base.port = PORT_FIBRE;
2600
2601 link = readl(&regs->GigLnkState);
2602 if (link & LNK_1000MB) {
2603 cmd->base.speed = SPEED_1000;
2604 } else {
2605 link = readl(&regs->FastLnkState);
2606 if (link & LNK_100MB)
2607 cmd->base.speed = SPEED_100;
2608 else if (link & LNK_10MB)
2609 cmd->base.speed = SPEED_10;
2610 else
2611 cmd->base.speed = 0;
2612 }
2613 if (link & LNK_FULL_DUPLEX)
2614 cmd->base.duplex = DUPLEX_FULL;
2615 else
2616 cmd->base.duplex = DUPLEX_HALF;
2617
2618 if (link & LNK_NEGOTIATE)
2619 cmd->base.autoneg = AUTONEG_ENABLE;
2620 else
2621 cmd->base.autoneg = AUTONEG_DISABLE;
2622
2623 #if 0
2624 /*
2625 * Current struct ethtool_cmd is insufficient
2626 */
2627 ecmd->trace = readl(&regs->TuneTrace);
2628
2629 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2630 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2631 #endif
2632
2633 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2634 supported);
2635
2636 return 0;
2637 }
2638
2639 static int ace_set_link_ksettings(struct net_device *dev,
2640 const struct ethtool_link_ksettings *cmd)
2641 {
2642 struct ace_private *ap = netdev_priv(dev);
2643 struct ace_regs __iomem *regs = ap->regs;
2644 u32 link, speed;
2645
2646 link = readl(&regs->GigLnkState);
2647 if (link & LNK_1000MB)
2648 speed = SPEED_1000;
2649 else {
2650 link = readl(&regs->FastLnkState);
2651 if (link & LNK_100MB)
2652 speed = SPEED_100;
2653 else if (link & LNK_10MB)
2654 speed = SPEED_10;
2655 else
2656 speed = SPEED_100;
2657 }
2658
2659 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2660 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2661 if (!ACE_IS_TIGON_I(ap))
2662 link |= LNK_TX_FLOW_CTL_Y;
2663 if (cmd->base.autoneg == AUTONEG_ENABLE)
2664 link |= LNK_NEGOTIATE;
2665 if (cmd->base.speed != speed) {
2666 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2667 switch (cmd->base.speed) {
2668 case SPEED_1000:
2669 link |= LNK_1000MB;
2670 break;
2671 case SPEED_100:
2672 link |= LNK_100MB;
2673 break;
2674 case SPEED_10:
2675 link |= LNK_10MB;
2676 break;
2677 }
2678 }
2679
2680 if (cmd->base.duplex == DUPLEX_FULL)
2681 link |= LNK_FULL_DUPLEX;
2682
2683 if (link != ap->link) {
2684 struct cmd cmd;
2685 printk(KERN_INFO "%s: Renegotiating link state\n",
2686 dev->name);
2687
2688 ap->link = link;
2689 writel(link, &regs->TuneLink);
2690 if (!ACE_IS_TIGON_I(ap))
2691 writel(link, &regs->TuneFastLink);
2692 wmb();
2693
2694 cmd.evt = C_LNK_NEGOTIATION;
2695 cmd.code = 0;
2696 cmd.idx = 0;
2697 ace_issue_cmd(regs, &cmd);
2698 }
2699 return 0;
2700 }
2701
2702 static void ace_get_drvinfo(struct net_device *dev,
2703 struct ethtool_drvinfo *info)
2704 {
2705 struct ace_private *ap = netdev_priv(dev);
2706
2707 strlcpy(info->driver, "acenic", sizeof(info->driver));
2708 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2709 ap->firmware_major, ap->firmware_minor,
2710 ap->firmware_fix);
2711
2712 if (ap->pdev)
2713 strlcpy(info->bus_info, pci_name(ap->pdev),
2714 sizeof(info->bus_info));
2715
2716 }
2717
2718 /*
2719 * Set the hardware MAC address.
2720 */
2721 static int ace_set_mac_addr(struct net_device *dev, void *p)
2722 {
2723 struct ace_private *ap = netdev_priv(dev);
2724 struct ace_regs __iomem *regs = ap->regs;
2725 struct sockaddr *addr=p;
2726 u8 *da;
2727 struct cmd cmd;
2728
2729 if(netif_running(dev))
2730 return -EBUSY;
2731
2732 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2733
2734 da = (u8 *)dev->dev_addr;
2735
2736 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2737 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2738 &regs->MacAddrLo);
2739
2740 cmd.evt = C_SET_MAC_ADDR;
2741 cmd.code = 0;
2742 cmd.idx = 0;
2743 ace_issue_cmd(regs, &cmd);
2744
2745 return 0;
2746 }
2747
2748
2749 static void ace_set_multicast_list(struct net_device *dev)
2750 {
2751 struct ace_private *ap = netdev_priv(dev);
2752 struct ace_regs __iomem *regs = ap->regs;
2753 struct cmd cmd;
2754
2755 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2756 cmd.evt = C_SET_MULTICAST_MODE;
2757 cmd.code = C_C_MCAST_ENABLE;
2758 cmd.idx = 0;
2759 ace_issue_cmd(regs, &cmd);
2760 ap->mcast_all = 1;
2761 } else if (ap->mcast_all) {
2762 cmd.evt = C_SET_MULTICAST_MODE;
2763 cmd.code = C_C_MCAST_DISABLE;
2764 cmd.idx = 0;
2765 ace_issue_cmd(regs, &cmd);
2766 ap->mcast_all = 0;
2767 }
2768
2769 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2770 cmd.evt = C_SET_PROMISC_MODE;
2771 cmd.code = C_C_PROMISC_ENABLE;
2772 cmd.idx = 0;
2773 ace_issue_cmd(regs, &cmd);
2774 ap->promisc = 1;
2775 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2776 cmd.evt = C_SET_PROMISC_MODE;
2777 cmd.code = C_C_PROMISC_DISABLE;
2778 cmd.idx = 0;
2779 ace_issue_cmd(regs, &cmd);
2780 ap->promisc = 0;
2781 }
2782
2783 /*
2784 * For the time being multicast relies on the upper layers
2785 * filtering it properly. The Firmware does not allow one to
2786 * set the entire multicast list at a time and keeping track of
2787 * it here is going to be messy.
2788 */
2789 if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2790 cmd.evt = C_SET_MULTICAST_MODE;
2791 cmd.code = C_C_MCAST_ENABLE;
2792 cmd.idx = 0;
2793 ace_issue_cmd(regs, &cmd);
2794 }else if (!ap->mcast_all) {
2795 cmd.evt = C_SET_MULTICAST_MODE;
2796 cmd.code = C_C_MCAST_DISABLE;
2797 cmd.idx = 0;
2798 ace_issue_cmd(regs, &cmd);
2799 }
2800 }
2801
2802
2803 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2804 {
2805 struct ace_private *ap = netdev_priv(dev);
2806 struct ace_mac_stats __iomem *mac_stats =
2807 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2808
2809 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2810 dev->stats.multicast = readl(&mac_stats->kept_mc);
2811 dev->stats.collisions = readl(&mac_stats->coll);
2812
2813 return &dev->stats;
2814 }
2815
2816
2817 static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2818 u32 dest, int size)
2819 {
2820 void __iomem *tdest;
2821 short tsize, i;
2822
2823 if (size <= 0)
2824 return;
2825
2826 while (size > 0) {
2827 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2828 min_t(u32, size, ACE_WINDOW_SIZE));
2829 tdest = (void __iomem *) &regs->Window +
2830 (dest & (ACE_WINDOW_SIZE - 1));
2831 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2832 for (i = 0; i < (tsize / 4); i++) {
2833 /* Firmware is big-endian */
2834 writel(be32_to_cpup(src), tdest);
2835 src++;
2836 tdest += 4;
2837 dest += 4;
2838 size -= 4;
2839 }
2840 }
2841 }
2842
2843
2844 static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2845 {
2846 void __iomem *tdest;
2847 short tsize = 0, i;
2848
2849 if (size <= 0)
2850 return;
2851
2852 while (size > 0) {
2853 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2854 min_t(u32, size, ACE_WINDOW_SIZE));
2855 tdest = (void __iomem *) &regs->Window +
2856 (dest & (ACE_WINDOW_SIZE - 1));
2857 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2858
2859 for (i = 0; i < (tsize / 4); i++) {
2860 writel(0, tdest + i*4);
2861 }
2862
2863 dest += tsize;
2864 size -= tsize;
2865 }
2866 }
2867
2868
2869 /*
2870 * Download the firmware into the SRAM on the NIC
2871 *
2872 * This operation requires the NIC to be halted and is performed with
2873 * interrupts disabled and with the spinlock hold.
2874 */
2875 static int ace_load_firmware(struct net_device *dev)
2876 {
2877 const struct firmware *fw;
2878 const char *fw_name = "acenic/tg2.bin";
2879 struct ace_private *ap = netdev_priv(dev);
2880 struct ace_regs __iomem *regs = ap->regs;
2881 const __be32 *fw_data;
2882 u32 load_addr;
2883 int ret;
2884
2885 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2886 printk(KERN_ERR "%s: trying to download firmware while the "
2887 "CPU is running!\n", ap->name);
2888 return -EFAULT;
2889 }
2890
2891 if (ACE_IS_TIGON_I(ap))
2892 fw_name = "acenic/tg1.bin";
2893
2894 ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2895 if (ret) {
2896 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2897 ap->name, fw_name);
2898 return ret;
2899 }
2900
2901 fw_data = (void *)fw->data;
2902
2903 /* Firmware blob starts with version numbers, followed by
2904 load and start address. Remainder is the blob to be loaded
2905 contiguously from load address. We don't bother to represent
2906 the BSS/SBSS sections any more, since we were clearing the
2907 whole thing anyway. */
2908 ap->firmware_major = fw->data[0];
2909 ap->firmware_minor = fw->data[1];
2910 ap->firmware_fix = fw->data[2];
2911
2912 ap->firmware_start = be32_to_cpu(fw_data[1]);
2913 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2914 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2915 ap->name, ap->firmware_start, fw_name);
2916 ret = -EINVAL;
2917 goto out;
2918 }
2919
2920 load_addr = be32_to_cpu(fw_data[2]);
2921 if (load_addr < 0x4000 || load_addr >= 0x80000) {
2922 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2923 ap->name, load_addr, fw_name);
2924 ret = -EINVAL;
2925 goto out;
2926 }
2927
2928 /*
2929 * Do not try to clear more than 512KiB or we end up seeing
2930 * funny things on NICs with only 512KiB SRAM
2931 */
2932 ace_clear(regs, 0x2000, 0x80000-0x2000);
2933 ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2934 out:
2935 release_firmware(fw);
2936 return ret;
2937 }
2938
2939
2940 /*
2941 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2942 *
2943 * Accessing the EEPROM is `interesting' to say the least - don't read
2944 * this code right after dinner.
2945 *
2946 * This is all about black magic and bit-banging the device .... I
2947 * wonder in what hospital they have put the guy who designed the i2c
2948 * specs.
2949 *
2950 * Oh yes, this is only the beginning!
2951 *
2952 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2953 * code i2c readout code by beta testing all my hacks.
2954 */
2955 static void eeprom_start(struct ace_regs __iomem *regs)
2956 {
2957 u32 local;
2958
2959 readl(&regs->LocalCtrl);
2960 udelay(ACE_SHORT_DELAY);
2961 local = readl(&regs->LocalCtrl);
2962 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2963 writel(local, &regs->LocalCtrl);
2964 readl(&regs->LocalCtrl);
2965 mb();
2966 udelay(ACE_SHORT_DELAY);
2967 local |= EEPROM_CLK_OUT;
2968 writel(local, &regs->LocalCtrl);
2969 readl(&regs->LocalCtrl);
2970 mb();
2971 udelay(ACE_SHORT_DELAY);
2972 local &= ~EEPROM_DATA_OUT;
2973 writel(local, &regs->LocalCtrl);
2974 readl(&regs->LocalCtrl);
2975 mb();
2976 udelay(ACE_SHORT_DELAY);
2977 local &= ~EEPROM_CLK_OUT;
2978 writel(local, &regs->LocalCtrl);
2979 readl(&regs->LocalCtrl);
2980 mb();
2981 }
2982
2983
2984 static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2985 {
2986 short i;
2987 u32 local;
2988
2989 udelay(ACE_SHORT_DELAY);
2990 local = readl(&regs->LocalCtrl);
2991 local &= ~EEPROM_DATA_OUT;
2992 local |= EEPROM_WRITE_ENABLE;
2993 writel(local, &regs->LocalCtrl);
2994 readl(&regs->LocalCtrl);
2995 mb();
2996
2997 for (i = 0; i < 8; i++, magic <<= 1) {
2998 udelay(ACE_SHORT_DELAY);
2999 if (magic & 0x80)
3000 local |= EEPROM_DATA_OUT;
3001 else
3002 local &= ~EEPROM_DATA_OUT;
3003 writel(local, &regs->LocalCtrl);
3004 readl(&regs->LocalCtrl);
3005 mb();
3006
3007 udelay(ACE_SHORT_DELAY);
3008 local |= EEPROM_CLK_OUT;
3009 writel(local, &regs->LocalCtrl);
3010 readl(&regs->LocalCtrl);
3011 mb();
3012 udelay(ACE_SHORT_DELAY);
3013 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3014 writel(local, &regs->LocalCtrl);
3015 readl(&regs->LocalCtrl);
3016 mb();
3017 }
3018 }
3019
3020
3021 static int eeprom_check_ack(struct ace_regs __iomem *regs)
3022 {
3023 int state;
3024 u32 local;
3025
3026 local = readl(&regs->LocalCtrl);
3027 local &= ~EEPROM_WRITE_ENABLE;
3028 writel(local, &regs->LocalCtrl);
3029 readl(&regs->LocalCtrl);
3030 mb();
3031 udelay(ACE_LONG_DELAY);
3032 local |= EEPROM_CLK_OUT;
3033 writel(local, &regs->LocalCtrl);
3034 readl(&regs->LocalCtrl);
3035 mb();
3036 udelay(ACE_SHORT_DELAY);
3037 /* sample data in middle of high clk */
3038 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3039 udelay(ACE_SHORT_DELAY);
3040 mb();
3041 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3042 readl(&regs->LocalCtrl);
3043 mb();
3044
3045 return state;
3046 }
3047
3048
3049 static void eeprom_stop(struct ace_regs __iomem *regs)
3050 {
3051 u32 local;
3052
3053 udelay(ACE_SHORT_DELAY);
3054 local = readl(&regs->LocalCtrl);
3055 local |= EEPROM_WRITE_ENABLE;
3056 writel(local, &regs->LocalCtrl);
3057 readl(&regs->LocalCtrl);
3058 mb();
3059 udelay(ACE_SHORT_DELAY);
3060 local &= ~EEPROM_DATA_OUT;
3061 writel(local, &regs->LocalCtrl);
3062 readl(&regs->LocalCtrl);
3063 mb();
3064 udelay(ACE_SHORT_DELAY);
3065 local |= EEPROM_CLK_OUT;
3066 writel(local, &regs->LocalCtrl);
3067 readl(&regs->LocalCtrl);
3068 mb();
3069 udelay(ACE_SHORT_DELAY);
3070 local |= EEPROM_DATA_OUT;
3071 writel(local, &regs->LocalCtrl);
3072 readl(&regs->LocalCtrl);
3073 mb();
3074 udelay(ACE_LONG_DELAY);
3075 local &= ~EEPROM_CLK_OUT;
3076 writel(local, &regs->LocalCtrl);
3077 mb();
3078 }
3079
3080
3081 /*
3082 * Read a whole byte from the EEPROM.
3083 */
3084 static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
3085 {
3086 struct ace_private *ap = netdev_priv(dev);
3087 struct ace_regs __iomem *regs = ap->regs;
3088 unsigned long flags;
3089 u32 local;
3090 int result = 0;
3091 short i;
3092
3093 /*
3094 * Don't take interrupts on this CPU will bit banging
3095 * the %#%#@$ I2C device
3096 */
3097 local_irq_save(flags);
3098
3099 eeprom_start(regs);
3100
3101 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3102 if (eeprom_check_ack(regs)) {
3103 local_irq_restore(flags);
3104 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3105 result = -EIO;
3106 goto eeprom_read_error;
3107 }
3108
3109 eeprom_prep(regs, (offset >> 8) & 0xff);
3110 if (eeprom_check_ack(regs)) {
3111 local_irq_restore(flags);
3112 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3113 ap->name);
3114 result = -EIO;
3115 goto eeprom_read_error;
3116 }
3117
3118 eeprom_prep(regs, offset & 0xff);
3119 if (eeprom_check_ack(regs)) {
3120 local_irq_restore(flags);
3121 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3122 ap->name);
3123 result = -EIO;
3124 goto eeprom_read_error;
3125 }
3126
3127 eeprom_start(regs);
3128 eeprom_prep(regs, EEPROM_READ_SELECT);
3129 if (eeprom_check_ack(regs)) {
3130 local_irq_restore(flags);
3131 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3132 ap->name);
3133 result = -EIO;
3134 goto eeprom_read_error;
3135 }
3136
3137 for (i = 0; i < 8; i++) {
3138 local = readl(&regs->LocalCtrl);
3139 local &= ~EEPROM_WRITE_ENABLE;
3140 writel(local, &regs->LocalCtrl);
3141 readl(&regs->LocalCtrl);
3142 udelay(ACE_LONG_DELAY);
3143 mb();
3144 local |= EEPROM_CLK_OUT;
3145 writel(local, &regs->LocalCtrl);
3146 readl(&regs->LocalCtrl);
3147 mb();
3148 udelay(ACE_SHORT_DELAY);
3149 /* sample data mid high clk */
3150 result = (result << 1) |
3151 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3152 udelay(ACE_SHORT_DELAY);
3153 mb();
3154 local = readl(&regs->LocalCtrl);
3155 local &= ~EEPROM_CLK_OUT;
3156 writel(local, &regs->LocalCtrl);
3157 readl(&regs->LocalCtrl);
3158 udelay(ACE_SHORT_DELAY);
3159 mb();
3160 if (i == 7) {
3161 local |= EEPROM_WRITE_ENABLE;
3162 writel(local, &regs->LocalCtrl);
3163 readl(&regs->LocalCtrl);
3164 mb();
3165 udelay(ACE_SHORT_DELAY);
3166 }
3167 }
3168
3169 local |= EEPROM_DATA_OUT;
3170 writel(local, &regs->LocalCtrl);
3171 readl(&regs->LocalCtrl);
3172 mb();
3173 udelay(ACE_SHORT_DELAY);
3174 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3175 readl(&regs->LocalCtrl);
3176 udelay(ACE_LONG_DELAY);
3177 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3178 readl(&regs->LocalCtrl);
3179 mb();
3180 udelay(ACE_SHORT_DELAY);
3181 eeprom_stop(regs);
3182
3183 local_irq_restore(flags);
3184 out:
3185 return result;
3186
3187 eeprom_read_error:
3188 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3189 ap->name, offset);
3190 goto out;
3191 }
3192
3193 module_pci_driver(acenic_pci_driver);