]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/amazon/ena/ena_netdev.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / amazon / ena / ena_netdev.c
1 /*
2 * Copyright 2015 Amazon.com, Inc. or its affiliates.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #ifdef CONFIG_RFS_ACCEL
36 #include <linux/cpu_rmap.h>
37 #endif /* CONFIG_RFS_ACCEL */
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/moduleparam.h>
43 #include <linux/numa.h>
44 #include <linux/pci.h>
45 #include <linux/utsname.h>
46 #include <linux/version.h>
47 #include <linux/vmalloc.h>
48 #include <net/ip.h>
49
50 #include "ena_netdev.h"
51 #include "ena_pci_id_tbl.h"
52
53 static char version[] = DEVICE_NAME " v" DRV_MODULE_VERSION "\n";
54
55 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
56 MODULE_DESCRIPTION(DEVICE_NAME);
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(DRV_MODULE_VERSION);
59
60 /* Time in jiffies before concluding the transmitter is hung. */
61 #define TX_TIMEOUT (5 * HZ)
62
63 #define ENA_NAPI_BUDGET 64
64
65 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
66 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
67 static int debug = -1;
68 module_param(debug, int, 0);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 static struct ena_aenq_handlers aenq_handlers;
72
73 static struct workqueue_struct *ena_wq;
74
75 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
76
77 static int ena_rss_init_default(struct ena_adapter *adapter);
78
79 static void ena_tx_timeout(struct net_device *dev)
80 {
81 struct ena_adapter *adapter = netdev_priv(dev);
82
83 /* Change the state of the device to trigger reset
84 * Check that we are not in the middle or a trigger already
85 */
86
87 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
88 return;
89
90 u64_stats_update_begin(&adapter->syncp);
91 adapter->dev_stats.tx_timeout++;
92 u64_stats_update_end(&adapter->syncp);
93
94 netif_err(adapter, tx_err, dev, "Transmit time out\n");
95 }
96
97 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
98 {
99 int i;
100
101 for (i = 0; i < adapter->num_queues; i++)
102 adapter->rx_ring[i].mtu = mtu;
103 }
104
105 static int ena_change_mtu(struct net_device *dev, int new_mtu)
106 {
107 struct ena_adapter *adapter = netdev_priv(dev);
108 int ret;
109
110 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
111 if (!ret) {
112 netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu);
113 update_rx_ring_mtu(adapter, new_mtu);
114 dev->mtu = new_mtu;
115 } else {
116 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
117 new_mtu);
118 }
119
120 return ret;
121 }
122
123 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
124 {
125 #ifdef CONFIG_RFS_ACCEL
126 u32 i;
127 int rc;
128
129 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_queues);
130 if (!adapter->netdev->rx_cpu_rmap)
131 return -ENOMEM;
132 for (i = 0; i < adapter->num_queues; i++) {
133 int irq_idx = ENA_IO_IRQ_IDX(i);
134
135 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
136 pci_irq_vector(adapter->pdev, irq_idx));
137 if (rc) {
138 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
139 adapter->netdev->rx_cpu_rmap = NULL;
140 return rc;
141 }
142 }
143 #endif /* CONFIG_RFS_ACCEL */
144 return 0;
145 }
146
147 static void ena_init_io_rings_common(struct ena_adapter *adapter,
148 struct ena_ring *ring, u16 qid)
149 {
150 ring->qid = qid;
151 ring->pdev = adapter->pdev;
152 ring->dev = &adapter->pdev->dev;
153 ring->netdev = adapter->netdev;
154 ring->napi = &adapter->ena_napi[qid].napi;
155 ring->adapter = adapter;
156 ring->ena_dev = adapter->ena_dev;
157 ring->per_napi_packets = 0;
158 ring->per_napi_bytes = 0;
159 ring->cpu = 0;
160 u64_stats_init(&ring->syncp);
161 }
162
163 static void ena_init_io_rings(struct ena_adapter *adapter)
164 {
165 struct ena_com_dev *ena_dev;
166 struct ena_ring *txr, *rxr;
167 int i;
168
169 ena_dev = adapter->ena_dev;
170
171 for (i = 0; i < adapter->num_queues; i++) {
172 txr = &adapter->tx_ring[i];
173 rxr = &adapter->rx_ring[i];
174
175 /* TX/RX common ring state */
176 ena_init_io_rings_common(adapter, txr, i);
177 ena_init_io_rings_common(adapter, rxr, i);
178
179 /* TX specific ring state */
180 txr->ring_size = adapter->tx_ring_size;
181 txr->tx_max_header_size = ena_dev->tx_max_header_size;
182 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
183 txr->sgl_size = adapter->max_tx_sgl_size;
184 txr->smoothed_interval =
185 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
186
187 /* RX specific ring state */
188 rxr->ring_size = adapter->rx_ring_size;
189 rxr->rx_copybreak = adapter->rx_copybreak;
190 rxr->sgl_size = adapter->max_rx_sgl_size;
191 rxr->smoothed_interval =
192 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
193 }
194 }
195
196 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
197 * @adapter: network interface device structure
198 * @qid: queue index
199 *
200 * Return 0 on success, negative on failure
201 */
202 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
203 {
204 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
205 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
206 int size, i, node;
207
208 if (tx_ring->tx_buffer_info) {
209 netif_err(adapter, ifup,
210 adapter->netdev, "tx_buffer_info info is not NULL");
211 return -EEXIST;
212 }
213
214 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
215 node = cpu_to_node(ena_irq->cpu);
216
217 tx_ring->tx_buffer_info = vzalloc_node(size, node);
218 if (!tx_ring->tx_buffer_info) {
219 tx_ring->tx_buffer_info = vzalloc(size);
220 if (!tx_ring->tx_buffer_info)
221 return -ENOMEM;
222 }
223
224 size = sizeof(u16) * tx_ring->ring_size;
225 tx_ring->free_tx_ids = vzalloc_node(size, node);
226 if (!tx_ring->free_tx_ids) {
227 tx_ring->free_tx_ids = vzalloc(size);
228 if (!tx_ring->free_tx_ids) {
229 vfree(tx_ring->tx_buffer_info);
230 return -ENOMEM;
231 }
232 }
233
234 /* Req id ring for TX out of order completions */
235 for (i = 0; i < tx_ring->ring_size; i++)
236 tx_ring->free_tx_ids[i] = i;
237
238 /* Reset tx statistics */
239 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
240
241 tx_ring->next_to_use = 0;
242 tx_ring->next_to_clean = 0;
243 tx_ring->cpu = ena_irq->cpu;
244 return 0;
245 }
246
247 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
248 * @adapter: network interface device structure
249 * @qid: queue index
250 *
251 * Free all transmit software resources
252 */
253 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
254 {
255 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
256
257 vfree(tx_ring->tx_buffer_info);
258 tx_ring->tx_buffer_info = NULL;
259
260 vfree(tx_ring->free_tx_ids);
261 tx_ring->free_tx_ids = NULL;
262 }
263
264 /* ena_setup_all_tx_resources - allocate I/O Tx queues resources for All queues
265 * @adapter: private structure
266 *
267 * Return 0 on success, negative on failure
268 */
269 static int ena_setup_all_tx_resources(struct ena_adapter *adapter)
270 {
271 int i, rc = 0;
272
273 for (i = 0; i < adapter->num_queues; i++) {
274 rc = ena_setup_tx_resources(adapter, i);
275 if (rc)
276 goto err_setup_tx;
277 }
278
279 return 0;
280
281 err_setup_tx:
282
283 netif_err(adapter, ifup, adapter->netdev,
284 "Tx queue %d: allocation failed\n", i);
285
286 /* rewind the index freeing the rings as we go */
287 while (i--)
288 ena_free_tx_resources(adapter, i);
289 return rc;
290 }
291
292 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
293 * @adapter: board private structure
294 *
295 * Free all transmit software resources
296 */
297 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
298 {
299 int i;
300
301 for (i = 0; i < adapter->num_queues; i++)
302 ena_free_tx_resources(adapter, i);
303 }
304
305 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
306 * @adapter: network interface device structure
307 * @qid: queue index
308 *
309 * Returns 0 on success, negative on failure
310 */
311 static int ena_setup_rx_resources(struct ena_adapter *adapter,
312 u32 qid)
313 {
314 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
315 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
316 int size, node;
317
318 if (rx_ring->rx_buffer_info) {
319 netif_err(adapter, ifup, adapter->netdev,
320 "rx_buffer_info is not NULL");
321 return -EEXIST;
322 }
323
324 /* alloc extra element so in rx path
325 * we can always prefetch rx_info + 1
326 */
327 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
328 node = cpu_to_node(ena_irq->cpu);
329
330 rx_ring->rx_buffer_info = vzalloc_node(size, node);
331 if (!rx_ring->rx_buffer_info) {
332 rx_ring->rx_buffer_info = vzalloc(size);
333 if (!rx_ring->rx_buffer_info)
334 return -ENOMEM;
335 }
336
337 /* Reset rx statistics */
338 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
339
340 rx_ring->next_to_clean = 0;
341 rx_ring->next_to_use = 0;
342 rx_ring->cpu = ena_irq->cpu;
343
344 return 0;
345 }
346
347 /* ena_free_rx_resources - Free I/O Rx Resources
348 * @adapter: network interface device structure
349 * @qid: queue index
350 *
351 * Free all receive software resources
352 */
353 static void ena_free_rx_resources(struct ena_adapter *adapter,
354 u32 qid)
355 {
356 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
357
358 vfree(rx_ring->rx_buffer_info);
359 rx_ring->rx_buffer_info = NULL;
360 }
361
362 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
363 * @adapter: board private structure
364 *
365 * Return 0 on success, negative on failure
366 */
367 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
368 {
369 int i, rc = 0;
370
371 for (i = 0; i < adapter->num_queues; i++) {
372 rc = ena_setup_rx_resources(adapter, i);
373 if (rc)
374 goto err_setup_rx;
375 }
376
377 return 0;
378
379 err_setup_rx:
380
381 netif_err(adapter, ifup, adapter->netdev,
382 "Rx queue %d: allocation failed\n", i);
383
384 /* rewind the index freeing the rings as we go */
385 while (i--)
386 ena_free_rx_resources(adapter, i);
387 return rc;
388 }
389
390 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
391 * @adapter: board private structure
392 *
393 * Free all receive software resources
394 */
395 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
396 {
397 int i;
398
399 for (i = 0; i < adapter->num_queues; i++)
400 ena_free_rx_resources(adapter, i);
401 }
402
403 static inline int ena_alloc_rx_page(struct ena_ring *rx_ring,
404 struct ena_rx_buffer *rx_info, gfp_t gfp)
405 {
406 struct ena_com_buf *ena_buf;
407 struct page *page;
408 dma_addr_t dma;
409
410 /* if previous allocated page is not used */
411 if (unlikely(rx_info->page))
412 return 0;
413
414 page = alloc_page(gfp);
415 if (unlikely(!page)) {
416 u64_stats_update_begin(&rx_ring->syncp);
417 rx_ring->rx_stats.page_alloc_fail++;
418 u64_stats_update_end(&rx_ring->syncp);
419 return -ENOMEM;
420 }
421
422 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE,
423 DMA_FROM_DEVICE);
424 if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
425 u64_stats_update_begin(&rx_ring->syncp);
426 rx_ring->rx_stats.dma_mapping_err++;
427 u64_stats_update_end(&rx_ring->syncp);
428
429 __free_page(page);
430 return -EIO;
431 }
432 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
433 "alloc page %p, rx_info %p\n", page, rx_info);
434
435 rx_info->page = page;
436 rx_info->page_offset = 0;
437 ena_buf = &rx_info->ena_buf;
438 ena_buf->paddr = dma;
439 ena_buf->len = PAGE_SIZE;
440
441 return 0;
442 }
443
444 static void ena_free_rx_page(struct ena_ring *rx_ring,
445 struct ena_rx_buffer *rx_info)
446 {
447 struct page *page = rx_info->page;
448 struct ena_com_buf *ena_buf = &rx_info->ena_buf;
449
450 if (unlikely(!page)) {
451 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
452 "Trying to free unallocated buffer\n");
453 return;
454 }
455
456 dma_unmap_page(rx_ring->dev, ena_buf->paddr, PAGE_SIZE,
457 DMA_FROM_DEVICE);
458
459 __free_page(page);
460 rx_info->page = NULL;
461 }
462
463 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
464 {
465 u16 next_to_use;
466 u32 i;
467 int rc;
468
469 next_to_use = rx_ring->next_to_use;
470
471 for (i = 0; i < num; i++) {
472 struct ena_rx_buffer *rx_info =
473 &rx_ring->rx_buffer_info[next_to_use];
474
475 rc = ena_alloc_rx_page(rx_ring, rx_info,
476 __GFP_COLD | GFP_ATOMIC | __GFP_COMP);
477 if (unlikely(rc < 0)) {
478 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
479 "failed to alloc buffer for rx queue %d\n",
480 rx_ring->qid);
481 break;
482 }
483 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
484 &rx_info->ena_buf,
485 next_to_use);
486 if (unlikely(rc)) {
487 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
488 "failed to add buffer for rx queue %d\n",
489 rx_ring->qid);
490 break;
491 }
492 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
493 rx_ring->ring_size);
494 }
495
496 if (unlikely(i < num)) {
497 u64_stats_update_begin(&rx_ring->syncp);
498 rx_ring->rx_stats.refil_partial++;
499 u64_stats_update_end(&rx_ring->syncp);
500 netdev_warn(rx_ring->netdev,
501 "refilled rx qid %d with only %d buffers (from %d)\n",
502 rx_ring->qid, i, num);
503 }
504
505 if (likely(i)) {
506 /* Add memory barrier to make sure the desc were written before
507 * issue a doorbell
508 */
509 wmb();
510 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
511 }
512
513 rx_ring->next_to_use = next_to_use;
514
515 return i;
516 }
517
518 static void ena_free_rx_bufs(struct ena_adapter *adapter,
519 u32 qid)
520 {
521 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
522 u32 i;
523
524 for (i = 0; i < rx_ring->ring_size; i++) {
525 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
526
527 if (rx_info->page)
528 ena_free_rx_page(rx_ring, rx_info);
529 }
530 }
531
532 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
533 * @adapter: board private structure
534 *
535 */
536 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
537 {
538 struct ena_ring *rx_ring;
539 int i, rc, bufs_num;
540
541 for (i = 0; i < adapter->num_queues; i++) {
542 rx_ring = &adapter->rx_ring[i];
543 bufs_num = rx_ring->ring_size - 1;
544 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
545
546 if (unlikely(rc != bufs_num))
547 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
548 "refilling Queue %d failed. allocated %d buffers from: %d\n",
549 i, rc, bufs_num);
550 }
551 }
552
553 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
554 {
555 int i;
556
557 for (i = 0; i < adapter->num_queues; i++)
558 ena_free_rx_bufs(adapter, i);
559 }
560
561 /* ena_free_tx_bufs - Free Tx Buffers per Queue
562 * @tx_ring: TX ring for which buffers be freed
563 */
564 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
565 {
566 bool print_once = true;
567 u32 i;
568
569 for (i = 0; i < tx_ring->ring_size; i++) {
570 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
571 struct ena_com_buf *ena_buf;
572 int nr_frags;
573 int j;
574
575 if (!tx_info->skb)
576 continue;
577
578 if (print_once) {
579 netdev_notice(tx_ring->netdev,
580 "free uncompleted tx skb qid %d idx 0x%x\n",
581 tx_ring->qid, i);
582 print_once = false;
583 } else {
584 netdev_dbg(tx_ring->netdev,
585 "free uncompleted tx skb qid %d idx 0x%x\n",
586 tx_ring->qid, i);
587 }
588
589 ena_buf = tx_info->bufs;
590 dma_unmap_single(tx_ring->dev,
591 ena_buf->paddr,
592 ena_buf->len,
593 DMA_TO_DEVICE);
594
595 /* unmap remaining mapped pages */
596 nr_frags = tx_info->num_of_bufs - 1;
597 for (j = 0; j < nr_frags; j++) {
598 ena_buf++;
599 dma_unmap_page(tx_ring->dev,
600 ena_buf->paddr,
601 ena_buf->len,
602 DMA_TO_DEVICE);
603 }
604
605 dev_kfree_skb_any(tx_info->skb);
606 }
607 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
608 tx_ring->qid));
609 }
610
611 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
612 {
613 struct ena_ring *tx_ring;
614 int i;
615
616 for (i = 0; i < adapter->num_queues; i++) {
617 tx_ring = &adapter->tx_ring[i];
618 ena_free_tx_bufs(tx_ring);
619 }
620 }
621
622 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
623 {
624 u16 ena_qid;
625 int i;
626
627 for (i = 0; i < adapter->num_queues; i++) {
628 ena_qid = ENA_IO_TXQ_IDX(i);
629 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
630 }
631 }
632
633 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
634 {
635 u16 ena_qid;
636 int i;
637
638 for (i = 0; i < adapter->num_queues; i++) {
639 ena_qid = ENA_IO_RXQ_IDX(i);
640 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
641 }
642 }
643
644 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
645 {
646 ena_destroy_all_tx_queues(adapter);
647 ena_destroy_all_rx_queues(adapter);
648 }
649
650 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
651 {
652 struct ena_tx_buffer *tx_info = NULL;
653
654 if (likely(req_id < tx_ring->ring_size)) {
655 tx_info = &tx_ring->tx_buffer_info[req_id];
656 if (likely(tx_info->skb))
657 return 0;
658 }
659
660 if (tx_info)
661 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
662 "tx_info doesn't have valid skb\n");
663 else
664 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
665 "Invalid req_id: %hu\n", req_id);
666
667 u64_stats_update_begin(&tx_ring->syncp);
668 tx_ring->tx_stats.bad_req_id++;
669 u64_stats_update_end(&tx_ring->syncp);
670
671 /* Trigger device reset */
672 set_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags);
673 return -EFAULT;
674 }
675
676 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
677 {
678 struct netdev_queue *txq;
679 bool above_thresh;
680 u32 tx_bytes = 0;
681 u32 total_done = 0;
682 u16 next_to_clean;
683 u16 req_id;
684 int tx_pkts = 0;
685 int rc;
686
687 next_to_clean = tx_ring->next_to_clean;
688 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
689
690 while (tx_pkts < budget) {
691 struct ena_tx_buffer *tx_info;
692 struct sk_buff *skb;
693 struct ena_com_buf *ena_buf;
694 int i, nr_frags;
695
696 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
697 &req_id);
698 if (rc)
699 break;
700
701 rc = validate_tx_req_id(tx_ring, req_id);
702 if (rc)
703 break;
704
705 tx_info = &tx_ring->tx_buffer_info[req_id];
706 skb = tx_info->skb;
707
708 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
709 prefetch(&skb->end);
710
711 tx_info->skb = NULL;
712 tx_info->last_jiffies = 0;
713
714 if (likely(tx_info->num_of_bufs != 0)) {
715 ena_buf = tx_info->bufs;
716
717 dma_unmap_single(tx_ring->dev,
718 dma_unmap_addr(ena_buf, paddr),
719 dma_unmap_len(ena_buf, len),
720 DMA_TO_DEVICE);
721
722 /* unmap remaining mapped pages */
723 nr_frags = tx_info->num_of_bufs - 1;
724 for (i = 0; i < nr_frags; i++) {
725 ena_buf++;
726 dma_unmap_page(tx_ring->dev,
727 dma_unmap_addr(ena_buf, paddr),
728 dma_unmap_len(ena_buf, len),
729 DMA_TO_DEVICE);
730 }
731 }
732
733 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
734 "tx_poll: q %d skb %p completed\n", tx_ring->qid,
735 skb);
736
737 tx_bytes += skb->len;
738 dev_kfree_skb(skb);
739 tx_pkts++;
740 total_done += tx_info->tx_descs;
741
742 tx_ring->free_tx_ids[next_to_clean] = req_id;
743 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
744 tx_ring->ring_size);
745 }
746
747 tx_ring->next_to_clean = next_to_clean;
748 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
749 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
750
751 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
752
753 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
754 "tx_poll: q %d done. total pkts: %d\n",
755 tx_ring->qid, tx_pkts);
756
757 /* need to make the rings circular update visible to
758 * ena_start_xmit() before checking for netif_queue_stopped().
759 */
760 smp_mb();
761
762 above_thresh = ena_com_sq_empty_space(tx_ring->ena_com_io_sq) >
763 ENA_TX_WAKEUP_THRESH;
764 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
765 __netif_tx_lock(txq, smp_processor_id());
766 above_thresh = ena_com_sq_empty_space(tx_ring->ena_com_io_sq) >
767 ENA_TX_WAKEUP_THRESH;
768 if (netif_tx_queue_stopped(txq) && above_thresh) {
769 netif_tx_wake_queue(txq);
770 u64_stats_update_begin(&tx_ring->syncp);
771 tx_ring->tx_stats.queue_wakeup++;
772 u64_stats_update_end(&tx_ring->syncp);
773 }
774 __netif_tx_unlock(txq);
775 }
776
777 tx_ring->per_napi_bytes += tx_bytes;
778 tx_ring->per_napi_packets += tx_pkts;
779
780 return tx_pkts;
781 }
782
783 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
784 struct ena_com_rx_buf_info *ena_bufs,
785 u32 descs,
786 u16 *next_to_clean)
787 {
788 struct sk_buff *skb;
789 struct ena_rx_buffer *rx_info =
790 &rx_ring->rx_buffer_info[*next_to_clean];
791 u32 len;
792 u32 buf = 0;
793 void *va;
794
795 len = ena_bufs[0].len;
796 if (unlikely(!rx_info->page)) {
797 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
798 "Page is NULL\n");
799 return NULL;
800 }
801
802 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
803 "rx_info %p page %p\n",
804 rx_info, rx_info->page);
805
806 /* save virt address of first buffer */
807 va = page_address(rx_info->page) + rx_info->page_offset;
808 prefetch(va + NET_IP_ALIGN);
809
810 if (len <= rx_ring->rx_copybreak) {
811 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
812 rx_ring->rx_copybreak);
813 if (unlikely(!skb)) {
814 u64_stats_update_begin(&rx_ring->syncp);
815 rx_ring->rx_stats.skb_alloc_fail++;
816 u64_stats_update_end(&rx_ring->syncp);
817 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
818 "Failed to allocate skb\n");
819 return NULL;
820 }
821
822 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
823 "rx allocated small packet. len %d. data_len %d\n",
824 skb->len, skb->data_len);
825
826 /* sync this buffer for CPU use */
827 dma_sync_single_for_cpu(rx_ring->dev,
828 dma_unmap_addr(&rx_info->ena_buf, paddr),
829 len,
830 DMA_FROM_DEVICE);
831 skb_copy_to_linear_data(skb, va, len);
832 dma_sync_single_for_device(rx_ring->dev,
833 dma_unmap_addr(&rx_info->ena_buf, paddr),
834 len,
835 DMA_FROM_DEVICE);
836
837 skb_put(skb, len);
838 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
839 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
840 rx_ring->ring_size);
841 return skb;
842 }
843
844 skb = napi_get_frags(rx_ring->napi);
845 if (unlikely(!skb)) {
846 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
847 "Failed allocating skb\n");
848 u64_stats_update_begin(&rx_ring->syncp);
849 rx_ring->rx_stats.skb_alloc_fail++;
850 u64_stats_update_end(&rx_ring->syncp);
851 return NULL;
852 }
853
854 do {
855 dma_unmap_page(rx_ring->dev,
856 dma_unmap_addr(&rx_info->ena_buf, paddr),
857 PAGE_SIZE, DMA_FROM_DEVICE);
858
859 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
860 rx_info->page_offset, len, PAGE_SIZE);
861
862 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
863 "rx skb updated. len %d. data_len %d\n",
864 skb->len, skb->data_len);
865
866 rx_info->page = NULL;
867 *next_to_clean =
868 ENA_RX_RING_IDX_NEXT(*next_to_clean,
869 rx_ring->ring_size);
870 if (likely(--descs == 0))
871 break;
872 rx_info = &rx_ring->rx_buffer_info[*next_to_clean];
873 len = ena_bufs[++buf].len;
874 } while (1);
875
876 return skb;
877 }
878
879 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
880 * @adapter: structure containing adapter specific data
881 * @ena_rx_ctx: received packet context/metadata
882 * @skb: skb currently being received and modified
883 */
884 static inline void ena_rx_checksum(struct ena_ring *rx_ring,
885 struct ena_com_rx_ctx *ena_rx_ctx,
886 struct sk_buff *skb)
887 {
888 /* Rx csum disabled */
889 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
890 skb->ip_summed = CHECKSUM_NONE;
891 return;
892 }
893
894 /* For fragmented packets the checksum isn't valid */
895 if (ena_rx_ctx->frag) {
896 skb->ip_summed = CHECKSUM_NONE;
897 return;
898 }
899
900 /* if IP and error */
901 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
902 (ena_rx_ctx->l3_csum_err))) {
903 /* ipv4 checksum error */
904 skb->ip_summed = CHECKSUM_NONE;
905 u64_stats_update_begin(&rx_ring->syncp);
906 rx_ring->rx_stats.bad_csum++;
907 u64_stats_update_end(&rx_ring->syncp);
908 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
909 "RX IPv4 header checksum error\n");
910 return;
911 }
912
913 /* if TCP/UDP */
914 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
915 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
916 if (unlikely(ena_rx_ctx->l4_csum_err)) {
917 /* TCP/UDP checksum error */
918 u64_stats_update_begin(&rx_ring->syncp);
919 rx_ring->rx_stats.bad_csum++;
920 u64_stats_update_end(&rx_ring->syncp);
921 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
922 "RX L4 checksum error\n");
923 skb->ip_summed = CHECKSUM_NONE;
924 return;
925 }
926
927 skb->ip_summed = CHECKSUM_UNNECESSARY;
928 }
929 }
930
931 static void ena_set_rx_hash(struct ena_ring *rx_ring,
932 struct ena_com_rx_ctx *ena_rx_ctx,
933 struct sk_buff *skb)
934 {
935 enum pkt_hash_types hash_type;
936
937 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
938 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
939 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
940
941 hash_type = PKT_HASH_TYPE_L4;
942 else
943 hash_type = PKT_HASH_TYPE_NONE;
944
945 /* Override hash type if the packet is fragmented */
946 if (ena_rx_ctx->frag)
947 hash_type = PKT_HASH_TYPE_NONE;
948
949 skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
950 }
951 }
952
953 /* ena_clean_rx_irq - Cleanup RX irq
954 * @rx_ring: RX ring to clean
955 * @napi: napi handler
956 * @budget: how many packets driver is allowed to clean
957 *
958 * Returns the number of cleaned buffers.
959 */
960 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
961 u32 budget)
962 {
963 u16 next_to_clean = rx_ring->next_to_clean;
964 u32 res_budget, work_done;
965
966 struct ena_com_rx_ctx ena_rx_ctx;
967 struct ena_adapter *adapter;
968 struct sk_buff *skb;
969 int refill_required;
970 int refill_threshold;
971 int rc = 0;
972 int total_len = 0;
973 int rx_copybreak_pkt = 0;
974
975 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
976 "%s qid %d\n", __func__, rx_ring->qid);
977 res_budget = budget;
978
979 do {
980 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
981 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
982 ena_rx_ctx.descs = 0;
983 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
984 rx_ring->ena_com_io_sq,
985 &ena_rx_ctx);
986 if (unlikely(rc))
987 goto error;
988
989 if (unlikely(ena_rx_ctx.descs == 0))
990 break;
991
992 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
993 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
994 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
995 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
996
997 /* allocate skb and fill it */
998 skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs,
999 &next_to_clean);
1000
1001 /* exit if we failed to retrieve a buffer */
1002 if (unlikely(!skb)) {
1003 next_to_clean = ENA_RX_RING_IDX_ADD(next_to_clean,
1004 ena_rx_ctx.descs,
1005 rx_ring->ring_size);
1006 break;
1007 }
1008
1009 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1010
1011 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1012
1013 skb_record_rx_queue(skb, rx_ring->qid);
1014
1015 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
1016 total_len += rx_ring->ena_bufs[0].len;
1017 rx_copybreak_pkt++;
1018 napi_gro_receive(napi, skb);
1019 } else {
1020 total_len += skb->len;
1021 napi_gro_frags(napi);
1022 }
1023
1024 res_budget--;
1025 } while (likely(res_budget));
1026
1027 work_done = budget - res_budget;
1028 rx_ring->per_napi_bytes += total_len;
1029 rx_ring->per_napi_packets += work_done;
1030 u64_stats_update_begin(&rx_ring->syncp);
1031 rx_ring->rx_stats.bytes += total_len;
1032 rx_ring->rx_stats.cnt += work_done;
1033 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1034 u64_stats_update_end(&rx_ring->syncp);
1035
1036 rx_ring->next_to_clean = next_to_clean;
1037
1038 refill_required = ena_com_sq_empty_space(rx_ring->ena_com_io_sq);
1039 refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1040
1041 /* Optimization, try to batch new rx buffers */
1042 if (refill_required > refill_threshold) {
1043 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1044 ena_refill_rx_bufs(rx_ring, refill_required);
1045 }
1046
1047 return work_done;
1048
1049 error:
1050 adapter = netdev_priv(rx_ring->netdev);
1051
1052 u64_stats_update_begin(&rx_ring->syncp);
1053 rx_ring->rx_stats.bad_desc_num++;
1054 u64_stats_update_end(&rx_ring->syncp);
1055
1056 /* Too many desc from the device. Trigger reset */
1057 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
1058
1059 return 0;
1060 }
1061
1062 inline void ena_adjust_intr_moderation(struct ena_ring *rx_ring,
1063 struct ena_ring *tx_ring)
1064 {
1065 /* We apply adaptive moderation on Rx path only.
1066 * Tx uses static interrupt moderation.
1067 */
1068 ena_com_calculate_interrupt_delay(rx_ring->ena_dev,
1069 rx_ring->per_napi_packets,
1070 rx_ring->per_napi_bytes,
1071 &rx_ring->smoothed_interval,
1072 &rx_ring->moder_tbl_idx);
1073
1074 /* Reset per napi packets/bytes */
1075 tx_ring->per_napi_packets = 0;
1076 tx_ring->per_napi_bytes = 0;
1077 rx_ring->per_napi_packets = 0;
1078 rx_ring->per_napi_bytes = 0;
1079 }
1080
1081 static inline void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1082 struct ena_ring *rx_ring)
1083 {
1084 int cpu = get_cpu();
1085 int numa_node;
1086
1087 /* Check only one ring since the 2 rings are running on the same cpu */
1088 if (likely(tx_ring->cpu == cpu))
1089 goto out;
1090
1091 numa_node = cpu_to_node(cpu);
1092 put_cpu();
1093
1094 if (numa_node != NUMA_NO_NODE) {
1095 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1096 ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node);
1097 }
1098
1099 tx_ring->cpu = cpu;
1100 rx_ring->cpu = cpu;
1101
1102 return;
1103 out:
1104 put_cpu();
1105 }
1106
1107 static int ena_io_poll(struct napi_struct *napi, int budget)
1108 {
1109 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1110 struct ena_ring *tx_ring, *rx_ring;
1111 struct ena_eth_io_intr_reg intr_reg;
1112
1113 u32 tx_work_done;
1114 u32 rx_work_done;
1115 int tx_budget;
1116 int napi_comp_call = 0;
1117 int ret;
1118
1119 tx_ring = ena_napi->tx_ring;
1120 rx_ring = ena_napi->rx_ring;
1121
1122 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1123
1124 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1125 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1126 napi_complete_done(napi, 0);
1127 return 0;
1128 }
1129
1130 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1131 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1132
1133 /* If the device is about to reset or down, avoid unmask
1134 * the interrupt and return 0 so NAPI won't reschedule
1135 */
1136 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1137 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1138 napi_complete_done(napi, 0);
1139 ret = 0;
1140
1141 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1142 napi_comp_call = 1;
1143
1144 /* Update numa and unmask the interrupt only when schedule
1145 * from the interrupt context (vs from sk_busy_loop)
1146 */
1147 if (napi_complete_done(napi, rx_work_done)) {
1148 /* Tx and Rx share the same interrupt vector */
1149 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1150 ena_adjust_intr_moderation(rx_ring, tx_ring);
1151
1152 /* Update intr register: rx intr delay,
1153 * tx intr delay and interrupt unmask
1154 */
1155 ena_com_update_intr_reg(&intr_reg,
1156 rx_ring->smoothed_interval,
1157 tx_ring->smoothed_interval,
1158 true);
1159
1160 /* It is a shared MSI-X.
1161 * Tx and Rx CQ have pointer to it.
1162 * So we use one of them to reach the intr reg
1163 */
1164 ena_com_unmask_intr(rx_ring->ena_com_io_cq, &intr_reg);
1165 }
1166
1167
1168 ena_update_ring_numa_node(tx_ring, rx_ring);
1169
1170 ret = rx_work_done;
1171 } else {
1172 ret = budget;
1173 }
1174
1175 u64_stats_update_begin(&tx_ring->syncp);
1176 tx_ring->tx_stats.napi_comp += napi_comp_call;
1177 tx_ring->tx_stats.tx_poll++;
1178 u64_stats_update_end(&tx_ring->syncp);
1179
1180 return ret;
1181 }
1182
1183 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1184 {
1185 struct ena_adapter *adapter = (struct ena_adapter *)data;
1186
1187 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1188
1189 /* Don't call the aenq handler before probe is done */
1190 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1191 ena_com_aenq_intr_handler(adapter->ena_dev, data);
1192
1193 return IRQ_HANDLED;
1194 }
1195
1196 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1197 * @irq: interrupt number
1198 * @data: pointer to a network interface private napi device structure
1199 */
1200 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1201 {
1202 struct ena_napi *ena_napi = data;
1203
1204 napi_schedule(&ena_napi->napi);
1205
1206 return IRQ_HANDLED;
1207 }
1208
1209 static int ena_enable_msix(struct ena_adapter *adapter, int num_queues)
1210 {
1211 int msix_vecs, rc;
1212
1213 /* Reserved the max msix vectors we might need */
1214 msix_vecs = ENA_MAX_MSIX_VEC(num_queues);
1215
1216 netif_dbg(adapter, probe, adapter->netdev,
1217 "trying to enable MSI-X, vectors %d\n", msix_vecs);
1218
1219 rc = pci_alloc_irq_vectors(adapter->pdev, msix_vecs, msix_vecs,
1220 PCI_IRQ_MSIX);
1221 if (rc < 0) {
1222 netif_err(adapter, probe, adapter->netdev,
1223 "Failed to enable MSI-X, vectors %d rc %d\n",
1224 msix_vecs, rc);
1225 return -ENOSPC;
1226 }
1227
1228 netif_dbg(adapter, probe, adapter->netdev, "enable MSI-X, vectors %d\n",
1229 msix_vecs);
1230
1231 if (msix_vecs >= 1) {
1232 if (ena_init_rx_cpu_rmap(adapter))
1233 netif_warn(adapter, probe, adapter->netdev,
1234 "Failed to map IRQs to CPUs\n");
1235 }
1236
1237 adapter->msix_vecs = msix_vecs;
1238
1239 return 0;
1240 }
1241
1242 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
1243 {
1244 u32 cpu;
1245
1246 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
1247 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
1248 pci_name(adapter->pdev));
1249 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
1250 ena_intr_msix_mgmnt;
1251 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
1252 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
1253 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
1254 cpu = cpumask_first(cpu_online_mask);
1255 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
1256 cpumask_set_cpu(cpu,
1257 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
1258 }
1259
1260 static void ena_setup_io_intr(struct ena_adapter *adapter)
1261 {
1262 struct net_device *netdev;
1263 int irq_idx, i, cpu;
1264
1265 netdev = adapter->netdev;
1266
1267 for (i = 0; i < adapter->num_queues; i++) {
1268 irq_idx = ENA_IO_IRQ_IDX(i);
1269 cpu = i % num_online_cpus();
1270
1271 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1272 "%s-Tx-Rx-%d", netdev->name, i);
1273 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
1274 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
1275 adapter->irq_tbl[irq_idx].vector =
1276 pci_irq_vector(adapter->pdev, irq_idx);
1277 adapter->irq_tbl[irq_idx].cpu = cpu;
1278
1279 cpumask_set_cpu(cpu,
1280 &adapter->irq_tbl[irq_idx].affinity_hint_mask);
1281 }
1282 }
1283
1284 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
1285 {
1286 unsigned long flags = 0;
1287 struct ena_irq *irq;
1288 int rc;
1289
1290 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1291 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1292 irq->data);
1293 if (rc) {
1294 netif_err(adapter, probe, adapter->netdev,
1295 "failed to request admin irq\n");
1296 return rc;
1297 }
1298
1299 netif_dbg(adapter, probe, adapter->netdev,
1300 "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
1301 irq->affinity_hint_mask.bits[0], irq->vector);
1302
1303 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1304
1305 return rc;
1306 }
1307
1308 static int ena_request_io_irq(struct ena_adapter *adapter)
1309 {
1310 unsigned long flags = 0;
1311 struct ena_irq *irq;
1312 int rc = 0, i, k;
1313
1314 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
1315 irq = &adapter->irq_tbl[i];
1316 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1317 irq->data);
1318 if (rc) {
1319 netif_err(adapter, ifup, adapter->netdev,
1320 "Failed to request I/O IRQ. index %d rc %d\n",
1321 i, rc);
1322 goto err;
1323 }
1324
1325 netif_dbg(adapter, ifup, adapter->netdev,
1326 "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
1327 i, irq->affinity_hint_mask.bits[0], irq->vector);
1328
1329 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1330 }
1331
1332 return rc;
1333
1334 err:
1335 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
1336 irq = &adapter->irq_tbl[k];
1337 free_irq(irq->vector, irq->data);
1338 }
1339
1340 return rc;
1341 }
1342
1343 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
1344 {
1345 struct ena_irq *irq;
1346
1347 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1348 synchronize_irq(irq->vector);
1349 irq_set_affinity_hint(irq->vector, NULL);
1350 free_irq(irq->vector, irq->data);
1351 }
1352
1353 static void ena_free_io_irq(struct ena_adapter *adapter)
1354 {
1355 struct ena_irq *irq;
1356 int i;
1357
1358 #ifdef CONFIG_RFS_ACCEL
1359 if (adapter->msix_vecs >= 1) {
1360 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
1361 adapter->netdev->rx_cpu_rmap = NULL;
1362 }
1363 #endif /* CONFIG_RFS_ACCEL */
1364
1365 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
1366 irq = &adapter->irq_tbl[i];
1367 irq_set_affinity_hint(irq->vector, NULL);
1368 free_irq(irq->vector, irq->data);
1369 }
1370 }
1371
1372 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
1373 {
1374 int i;
1375
1376 if (!netif_running(adapter->netdev))
1377 return;
1378
1379 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++)
1380 synchronize_irq(adapter->irq_tbl[i].vector);
1381 }
1382
1383 static void ena_del_napi(struct ena_adapter *adapter)
1384 {
1385 int i;
1386
1387 for (i = 0; i < adapter->num_queues; i++)
1388 netif_napi_del(&adapter->ena_napi[i].napi);
1389 }
1390
1391 static void ena_init_napi(struct ena_adapter *adapter)
1392 {
1393 struct ena_napi *napi;
1394 int i;
1395
1396 for (i = 0; i < adapter->num_queues; i++) {
1397 napi = &adapter->ena_napi[i];
1398
1399 netif_napi_add(adapter->netdev,
1400 &adapter->ena_napi[i].napi,
1401 ena_io_poll,
1402 ENA_NAPI_BUDGET);
1403 napi->rx_ring = &adapter->rx_ring[i];
1404 napi->tx_ring = &adapter->tx_ring[i];
1405 napi->qid = i;
1406 }
1407 }
1408
1409 static void ena_napi_disable_all(struct ena_adapter *adapter)
1410 {
1411 int i;
1412
1413 for (i = 0; i < adapter->num_queues; i++)
1414 napi_disable(&adapter->ena_napi[i].napi);
1415 }
1416
1417 static void ena_napi_enable_all(struct ena_adapter *adapter)
1418 {
1419 int i;
1420
1421 for (i = 0; i < adapter->num_queues; i++)
1422 napi_enable(&adapter->ena_napi[i].napi);
1423 }
1424
1425 static void ena_restore_ethtool_params(struct ena_adapter *adapter)
1426 {
1427 adapter->tx_usecs = 0;
1428 adapter->rx_usecs = 0;
1429 adapter->tx_frames = 1;
1430 adapter->rx_frames = 1;
1431 }
1432
1433 /* Configure the Rx forwarding */
1434 static int ena_rss_configure(struct ena_adapter *adapter)
1435 {
1436 struct ena_com_dev *ena_dev = adapter->ena_dev;
1437 int rc;
1438
1439 /* In case the RSS table wasn't initialized by probe */
1440 if (!ena_dev->rss.tbl_log_size) {
1441 rc = ena_rss_init_default(adapter);
1442 if (rc && (rc != -EPERM)) {
1443 netif_err(adapter, ifup, adapter->netdev,
1444 "Failed to init RSS rc: %d\n", rc);
1445 return rc;
1446 }
1447 }
1448
1449 /* Set indirect table */
1450 rc = ena_com_indirect_table_set(ena_dev);
1451 if (unlikely(rc && rc != -EPERM))
1452 return rc;
1453
1454 /* Configure hash function (if supported) */
1455 rc = ena_com_set_hash_function(ena_dev);
1456 if (unlikely(rc && (rc != -EPERM)))
1457 return rc;
1458
1459 /* Configure hash inputs (if supported) */
1460 rc = ena_com_set_hash_ctrl(ena_dev);
1461 if (unlikely(rc && (rc != -EPERM)))
1462 return rc;
1463
1464 return 0;
1465 }
1466
1467 static int ena_up_complete(struct ena_adapter *adapter)
1468 {
1469 int rc, i;
1470
1471 rc = ena_rss_configure(adapter);
1472 if (rc)
1473 return rc;
1474
1475 ena_init_napi(adapter);
1476
1477 ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
1478
1479 ena_refill_all_rx_bufs(adapter);
1480
1481 /* enable transmits */
1482 netif_tx_start_all_queues(adapter->netdev);
1483
1484 ena_restore_ethtool_params(adapter);
1485
1486 ena_napi_enable_all(adapter);
1487
1488 /* schedule napi in case we had pending packets
1489 * from the last time we disable napi
1490 */
1491 for (i = 0; i < adapter->num_queues; i++)
1492 napi_schedule(&adapter->ena_napi[i].napi);
1493
1494 return 0;
1495 }
1496
1497 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
1498 {
1499 struct ena_com_create_io_ctx ctx = { 0 };
1500 struct ena_com_dev *ena_dev;
1501 struct ena_ring *tx_ring;
1502 u32 msix_vector;
1503 u16 ena_qid;
1504 int rc;
1505
1506 ena_dev = adapter->ena_dev;
1507
1508 tx_ring = &adapter->tx_ring[qid];
1509 msix_vector = ENA_IO_IRQ_IDX(qid);
1510 ena_qid = ENA_IO_TXQ_IDX(qid);
1511
1512 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1513 ctx.qid = ena_qid;
1514 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1515 ctx.msix_vector = msix_vector;
1516 ctx.queue_size = adapter->tx_ring_size;
1517 ctx.numa_node = cpu_to_node(tx_ring->cpu);
1518
1519 rc = ena_com_create_io_queue(ena_dev, &ctx);
1520 if (rc) {
1521 netif_err(adapter, ifup, adapter->netdev,
1522 "Failed to create I/O TX queue num %d rc: %d\n",
1523 qid, rc);
1524 return rc;
1525 }
1526
1527 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1528 &tx_ring->ena_com_io_sq,
1529 &tx_ring->ena_com_io_cq);
1530 if (rc) {
1531 netif_err(adapter, ifup, adapter->netdev,
1532 "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
1533 qid, rc);
1534 ena_com_destroy_io_queue(ena_dev, ena_qid);
1535 }
1536
1537 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
1538 return rc;
1539 }
1540
1541 static int ena_create_all_io_tx_queues(struct ena_adapter *adapter)
1542 {
1543 struct ena_com_dev *ena_dev = adapter->ena_dev;
1544 int rc, i;
1545
1546 for (i = 0; i < adapter->num_queues; i++) {
1547 rc = ena_create_io_tx_queue(adapter, i);
1548 if (rc)
1549 goto create_err;
1550 }
1551
1552 return 0;
1553
1554 create_err:
1555 while (i--)
1556 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1557
1558 return rc;
1559 }
1560
1561 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
1562 {
1563 struct ena_com_dev *ena_dev;
1564 struct ena_com_create_io_ctx ctx = { 0 };
1565 struct ena_ring *rx_ring;
1566 u32 msix_vector;
1567 u16 ena_qid;
1568 int rc;
1569
1570 ena_dev = adapter->ena_dev;
1571
1572 rx_ring = &adapter->rx_ring[qid];
1573 msix_vector = ENA_IO_IRQ_IDX(qid);
1574 ena_qid = ENA_IO_RXQ_IDX(qid);
1575
1576 ctx.qid = ena_qid;
1577 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1578 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1579 ctx.msix_vector = msix_vector;
1580 ctx.queue_size = adapter->rx_ring_size;
1581 ctx.numa_node = cpu_to_node(rx_ring->cpu);
1582
1583 rc = ena_com_create_io_queue(ena_dev, &ctx);
1584 if (rc) {
1585 netif_err(adapter, ifup, adapter->netdev,
1586 "Failed to create I/O RX queue num %d rc: %d\n",
1587 qid, rc);
1588 return rc;
1589 }
1590
1591 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1592 &rx_ring->ena_com_io_sq,
1593 &rx_ring->ena_com_io_cq);
1594 if (rc) {
1595 netif_err(adapter, ifup, adapter->netdev,
1596 "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
1597 qid, rc);
1598 ena_com_destroy_io_queue(ena_dev, ena_qid);
1599 }
1600
1601 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
1602
1603 return rc;
1604 }
1605
1606 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
1607 {
1608 struct ena_com_dev *ena_dev = adapter->ena_dev;
1609 int rc, i;
1610
1611 for (i = 0; i < adapter->num_queues; i++) {
1612 rc = ena_create_io_rx_queue(adapter, i);
1613 if (rc)
1614 goto create_err;
1615 }
1616
1617 return 0;
1618
1619 create_err:
1620 while (i--)
1621 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1622
1623 return rc;
1624 }
1625
1626 static int ena_up(struct ena_adapter *adapter)
1627 {
1628 int rc;
1629
1630 netdev_dbg(adapter->netdev, "%s\n", __func__);
1631
1632 ena_setup_io_intr(adapter);
1633
1634 rc = ena_request_io_irq(adapter);
1635 if (rc)
1636 goto err_req_irq;
1637
1638 /* allocate transmit descriptors */
1639 rc = ena_setup_all_tx_resources(adapter);
1640 if (rc)
1641 goto err_setup_tx;
1642
1643 /* allocate receive descriptors */
1644 rc = ena_setup_all_rx_resources(adapter);
1645 if (rc)
1646 goto err_setup_rx;
1647
1648 /* Create TX queues */
1649 rc = ena_create_all_io_tx_queues(adapter);
1650 if (rc)
1651 goto err_create_tx_queues;
1652
1653 /* Create RX queues */
1654 rc = ena_create_all_io_rx_queues(adapter);
1655 if (rc)
1656 goto err_create_rx_queues;
1657
1658 rc = ena_up_complete(adapter);
1659 if (rc)
1660 goto err_up;
1661
1662 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
1663 netif_carrier_on(adapter->netdev);
1664
1665 u64_stats_update_begin(&adapter->syncp);
1666 adapter->dev_stats.interface_up++;
1667 u64_stats_update_end(&adapter->syncp);
1668
1669 set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
1670
1671 return rc;
1672
1673 err_up:
1674 ena_destroy_all_rx_queues(adapter);
1675 err_create_rx_queues:
1676 ena_destroy_all_tx_queues(adapter);
1677 err_create_tx_queues:
1678 ena_free_all_io_rx_resources(adapter);
1679 err_setup_rx:
1680 ena_free_all_io_tx_resources(adapter);
1681 err_setup_tx:
1682 ena_free_io_irq(adapter);
1683 err_req_irq:
1684
1685 return rc;
1686 }
1687
1688 static void ena_down(struct ena_adapter *adapter)
1689 {
1690 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
1691
1692 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
1693
1694 u64_stats_update_begin(&adapter->syncp);
1695 adapter->dev_stats.interface_down++;
1696 u64_stats_update_end(&adapter->syncp);
1697
1698 netif_carrier_off(adapter->netdev);
1699 netif_tx_disable(adapter->netdev);
1700
1701 /* After this point the napi handler won't enable the tx queue */
1702 ena_napi_disable_all(adapter);
1703
1704 /* After destroy the queue there won't be any new interrupts */
1705
1706 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
1707 int rc;
1708
1709 rc = ena_com_dev_reset(adapter->ena_dev);
1710 if (rc)
1711 dev_err(&adapter->pdev->dev, "Device reset failed\n");
1712 }
1713
1714 ena_destroy_all_io_queues(adapter);
1715
1716 ena_disable_io_intr_sync(adapter);
1717 ena_free_io_irq(adapter);
1718 ena_del_napi(adapter);
1719
1720 ena_free_all_tx_bufs(adapter);
1721 ena_free_all_rx_bufs(adapter);
1722 ena_free_all_io_tx_resources(adapter);
1723 ena_free_all_io_rx_resources(adapter);
1724 }
1725
1726 /* ena_open - Called when a network interface is made active
1727 * @netdev: network interface device structure
1728 *
1729 * Returns 0 on success, negative value on failure
1730 *
1731 * The open entry point is called when a network interface is made
1732 * active by the system (IFF_UP). At this point all resources needed
1733 * for transmit and receive operations are allocated, the interrupt
1734 * handler is registered with the OS, the watchdog timer is started,
1735 * and the stack is notified that the interface is ready.
1736 */
1737 static int ena_open(struct net_device *netdev)
1738 {
1739 struct ena_adapter *adapter = netdev_priv(netdev);
1740 int rc;
1741
1742 /* Notify the stack of the actual queue counts. */
1743 rc = netif_set_real_num_tx_queues(netdev, adapter->num_queues);
1744 if (rc) {
1745 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
1746 return rc;
1747 }
1748
1749 rc = netif_set_real_num_rx_queues(netdev, adapter->num_queues);
1750 if (rc) {
1751 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
1752 return rc;
1753 }
1754
1755 rc = ena_up(adapter);
1756 if (rc)
1757 return rc;
1758
1759 return rc;
1760 }
1761
1762 /* ena_close - Disables a network interface
1763 * @netdev: network interface device structure
1764 *
1765 * Returns 0, this is not allowed to fail
1766 *
1767 * The close entry point is called when an interface is de-activated
1768 * by the OS. The hardware is still under the drivers control, but
1769 * needs to be disabled. A global MAC reset is issued to stop the
1770 * hardware, and all transmit and receive resources are freed.
1771 */
1772 static int ena_close(struct net_device *netdev)
1773 {
1774 struct ena_adapter *adapter = netdev_priv(netdev);
1775
1776 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
1777
1778 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
1779 ena_down(adapter);
1780
1781 return 0;
1782 }
1783
1784 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb)
1785 {
1786 u32 mss = skb_shinfo(skb)->gso_size;
1787 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
1788 u8 l4_protocol = 0;
1789
1790 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
1791 ena_tx_ctx->l4_csum_enable = 1;
1792 if (mss) {
1793 ena_tx_ctx->tso_enable = 1;
1794 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
1795 ena_tx_ctx->l4_csum_partial = 0;
1796 } else {
1797 ena_tx_ctx->tso_enable = 0;
1798 ena_meta->l4_hdr_len = 0;
1799 ena_tx_ctx->l4_csum_partial = 1;
1800 }
1801
1802 switch (ip_hdr(skb)->version) {
1803 case IPVERSION:
1804 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
1805 if (ip_hdr(skb)->frag_off & htons(IP_DF))
1806 ena_tx_ctx->df = 1;
1807 if (mss)
1808 ena_tx_ctx->l3_csum_enable = 1;
1809 l4_protocol = ip_hdr(skb)->protocol;
1810 break;
1811 case 6:
1812 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
1813 l4_protocol = ipv6_hdr(skb)->nexthdr;
1814 break;
1815 default:
1816 break;
1817 }
1818
1819 if (l4_protocol == IPPROTO_TCP)
1820 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
1821 else
1822 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
1823
1824 ena_meta->mss = mss;
1825 ena_meta->l3_hdr_len = skb_network_header_len(skb);
1826 ena_meta->l3_hdr_offset = skb_network_offset(skb);
1827 ena_tx_ctx->meta_valid = 1;
1828
1829 } else {
1830 ena_tx_ctx->meta_valid = 0;
1831 }
1832 }
1833
1834 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
1835 struct sk_buff *skb)
1836 {
1837 int num_frags, header_len, rc;
1838
1839 num_frags = skb_shinfo(skb)->nr_frags;
1840 header_len = skb_headlen(skb);
1841
1842 if (num_frags < tx_ring->sgl_size)
1843 return 0;
1844
1845 if ((num_frags == tx_ring->sgl_size) &&
1846 (header_len < tx_ring->tx_max_header_size))
1847 return 0;
1848
1849 u64_stats_update_begin(&tx_ring->syncp);
1850 tx_ring->tx_stats.linearize++;
1851 u64_stats_update_end(&tx_ring->syncp);
1852
1853 rc = skb_linearize(skb);
1854 if (unlikely(rc)) {
1855 u64_stats_update_begin(&tx_ring->syncp);
1856 tx_ring->tx_stats.linearize_failed++;
1857 u64_stats_update_end(&tx_ring->syncp);
1858 }
1859
1860 return rc;
1861 }
1862
1863 /* Called with netif_tx_lock. */
1864 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
1865 {
1866 struct ena_adapter *adapter = netdev_priv(dev);
1867 struct ena_tx_buffer *tx_info;
1868 struct ena_com_tx_ctx ena_tx_ctx;
1869 struct ena_ring *tx_ring;
1870 struct netdev_queue *txq;
1871 struct ena_com_buf *ena_buf;
1872 void *push_hdr;
1873 u32 len, last_frag;
1874 u16 next_to_use;
1875 u16 req_id;
1876 u16 push_len;
1877 u16 header_len;
1878 dma_addr_t dma;
1879 int qid, rc, nb_hw_desc;
1880 int i = -1;
1881
1882 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
1883 /* Determine which tx ring we will be placed on */
1884 qid = skb_get_queue_mapping(skb);
1885 tx_ring = &adapter->tx_ring[qid];
1886 txq = netdev_get_tx_queue(dev, qid);
1887
1888 rc = ena_check_and_linearize_skb(tx_ring, skb);
1889 if (unlikely(rc))
1890 goto error_drop_packet;
1891
1892 skb_tx_timestamp(skb);
1893 len = skb_headlen(skb);
1894
1895 next_to_use = tx_ring->next_to_use;
1896 req_id = tx_ring->free_tx_ids[next_to_use];
1897 tx_info = &tx_ring->tx_buffer_info[req_id];
1898 tx_info->num_of_bufs = 0;
1899
1900 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
1901 ena_buf = tx_info->bufs;
1902 tx_info->skb = skb;
1903
1904 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1905 /* prepared the push buffer */
1906 push_len = min_t(u32, len, tx_ring->tx_max_header_size);
1907 header_len = push_len;
1908 push_hdr = skb->data;
1909 } else {
1910 push_len = 0;
1911 header_len = min_t(u32, len, tx_ring->tx_max_header_size);
1912 push_hdr = NULL;
1913 }
1914
1915 netif_dbg(adapter, tx_queued, dev,
1916 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
1917 push_hdr, push_len);
1918
1919 if (len > push_len) {
1920 dma = dma_map_single(tx_ring->dev, skb->data + push_len,
1921 len - push_len, DMA_TO_DEVICE);
1922 if (dma_mapping_error(tx_ring->dev, dma))
1923 goto error_report_dma_error;
1924
1925 ena_buf->paddr = dma;
1926 ena_buf->len = len - push_len;
1927
1928 ena_buf++;
1929 tx_info->num_of_bufs++;
1930 }
1931
1932 last_frag = skb_shinfo(skb)->nr_frags;
1933
1934 for (i = 0; i < last_frag; i++) {
1935 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1936
1937 len = skb_frag_size(frag);
1938 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
1939 DMA_TO_DEVICE);
1940 if (dma_mapping_error(tx_ring->dev, dma))
1941 goto error_report_dma_error;
1942
1943 ena_buf->paddr = dma;
1944 ena_buf->len = len;
1945 ena_buf++;
1946 }
1947
1948 tx_info->num_of_bufs += last_frag;
1949
1950 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
1951 ena_tx_ctx.ena_bufs = tx_info->bufs;
1952 ena_tx_ctx.push_header = push_hdr;
1953 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
1954 ena_tx_ctx.req_id = req_id;
1955 ena_tx_ctx.header_len = header_len;
1956
1957 /* set flags and meta data */
1958 ena_tx_csum(&ena_tx_ctx, skb);
1959
1960 /* prepare the packet's descriptors to dma engine */
1961 rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
1962 &nb_hw_desc);
1963
1964 if (unlikely(rc)) {
1965 netif_err(adapter, tx_queued, dev,
1966 "failed to prepare tx bufs\n");
1967 u64_stats_update_begin(&tx_ring->syncp);
1968 tx_ring->tx_stats.queue_stop++;
1969 tx_ring->tx_stats.prepare_ctx_err++;
1970 u64_stats_update_end(&tx_ring->syncp);
1971 netif_tx_stop_queue(txq);
1972 goto error_unmap_dma;
1973 }
1974
1975 netdev_tx_sent_queue(txq, skb->len);
1976
1977 u64_stats_update_begin(&tx_ring->syncp);
1978 tx_ring->tx_stats.cnt++;
1979 tx_ring->tx_stats.bytes += skb->len;
1980 u64_stats_update_end(&tx_ring->syncp);
1981
1982 tx_info->tx_descs = nb_hw_desc;
1983 tx_info->last_jiffies = jiffies;
1984
1985 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
1986 tx_ring->ring_size);
1987
1988 /* This WMB is aimed to:
1989 * 1 - perform smp barrier before reading next_to_completion
1990 * 2 - make sure the desc were written before trigger DB
1991 */
1992 wmb();
1993
1994 /* stop the queue when no more space available, the packet can have up
1995 * to sgl_size + 2. one for the meta descriptor and one for header
1996 * (if the header is larger than tx_max_header_size).
1997 */
1998 if (unlikely(ena_com_sq_empty_space(tx_ring->ena_com_io_sq) <
1999 (tx_ring->sgl_size + 2))) {
2000 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
2001 __func__, qid);
2002
2003 netif_tx_stop_queue(txq);
2004 u64_stats_update_begin(&tx_ring->syncp);
2005 tx_ring->tx_stats.queue_stop++;
2006 u64_stats_update_end(&tx_ring->syncp);
2007
2008 /* There is a rare condition where this function decide to
2009 * stop the queue but meanwhile clean_tx_irq updates
2010 * next_to_completion and terminates.
2011 * The queue will remain stopped forever.
2012 * To solve this issue this function perform rmb, check
2013 * the wakeup condition and wake up the queue if needed.
2014 */
2015 smp_rmb();
2016
2017 if (ena_com_sq_empty_space(tx_ring->ena_com_io_sq)
2018 > ENA_TX_WAKEUP_THRESH) {
2019 netif_tx_wake_queue(txq);
2020 u64_stats_update_begin(&tx_ring->syncp);
2021 tx_ring->tx_stats.queue_wakeup++;
2022 u64_stats_update_end(&tx_ring->syncp);
2023 }
2024 }
2025
2026 if (netif_xmit_stopped(txq) || !skb->xmit_more) {
2027 /* trigger the dma engine */
2028 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2029 u64_stats_update_begin(&tx_ring->syncp);
2030 tx_ring->tx_stats.doorbells++;
2031 u64_stats_update_end(&tx_ring->syncp);
2032 }
2033
2034 return NETDEV_TX_OK;
2035
2036 error_report_dma_error:
2037 u64_stats_update_begin(&tx_ring->syncp);
2038 tx_ring->tx_stats.dma_mapping_err++;
2039 u64_stats_update_end(&tx_ring->syncp);
2040 netdev_warn(adapter->netdev, "failed to map skb\n");
2041
2042 tx_info->skb = NULL;
2043
2044 error_unmap_dma:
2045 if (i >= 0) {
2046 /* save value of frag that failed */
2047 last_frag = i;
2048
2049 /* start back at beginning and unmap skb */
2050 tx_info->skb = NULL;
2051 ena_buf = tx_info->bufs;
2052 dma_unmap_single(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
2053 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
2054
2055 /* unmap remaining mapped pages */
2056 for (i = 0; i < last_frag; i++) {
2057 ena_buf++;
2058 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
2059 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
2060 }
2061 }
2062
2063 error_drop_packet:
2064
2065 dev_kfree_skb(skb);
2066 return NETDEV_TX_OK;
2067 }
2068
2069 #ifdef CONFIG_NET_POLL_CONTROLLER
2070 static void ena_netpoll(struct net_device *netdev)
2071 {
2072 struct ena_adapter *adapter = netdev_priv(netdev);
2073 int i;
2074
2075 /* Dont schedule NAPI if the driver is in the middle of reset
2076 * or netdev is down.
2077 */
2078
2079 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags) ||
2080 test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
2081 return;
2082
2083 for (i = 0; i < adapter->num_queues; i++)
2084 napi_schedule(&adapter->ena_napi[i].napi);
2085 }
2086 #endif /* CONFIG_NET_POLL_CONTROLLER */
2087
2088 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
2089 void *accel_priv, select_queue_fallback_t fallback)
2090 {
2091 u16 qid;
2092 /* we suspect that this is good for in--kernel network services that
2093 * want to loop incoming skb rx to tx in normal user generated traffic,
2094 * most probably we will not get to this
2095 */
2096 if (skb_rx_queue_recorded(skb))
2097 qid = skb_get_rx_queue(skb);
2098 else
2099 qid = fallback(dev, skb);
2100
2101 return qid;
2102 }
2103
2104 static void ena_config_host_info(struct ena_com_dev *ena_dev)
2105 {
2106 struct ena_admin_host_info *host_info;
2107 int rc;
2108
2109 /* Allocate only the host info */
2110 rc = ena_com_allocate_host_info(ena_dev);
2111 if (rc) {
2112 pr_err("Cannot allocate host info\n");
2113 return;
2114 }
2115
2116 host_info = ena_dev->host_attr.host_info;
2117
2118 host_info->os_type = ENA_ADMIN_OS_LINUX;
2119 host_info->kernel_ver = LINUX_VERSION_CODE;
2120 strncpy(host_info->kernel_ver_str, utsname()->version,
2121 sizeof(host_info->kernel_ver_str) - 1);
2122 host_info->os_dist = 0;
2123 strncpy(host_info->os_dist_str, utsname()->release,
2124 sizeof(host_info->os_dist_str) - 1);
2125 host_info->driver_version =
2126 (DRV_MODULE_VER_MAJOR) |
2127 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
2128 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
2129
2130 rc = ena_com_set_host_attributes(ena_dev);
2131 if (rc) {
2132 if (rc == -EPERM)
2133 pr_warn("Cannot set host attributes\n");
2134 else
2135 pr_err("Cannot set host attributes\n");
2136
2137 goto err;
2138 }
2139
2140 return;
2141
2142 err:
2143 ena_com_delete_host_info(ena_dev);
2144 }
2145
2146 static void ena_config_debug_area(struct ena_adapter *adapter)
2147 {
2148 u32 debug_area_size;
2149 int rc, ss_count;
2150
2151 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
2152 if (ss_count <= 0) {
2153 netif_err(adapter, drv, adapter->netdev,
2154 "SS count is negative\n");
2155 return;
2156 }
2157
2158 /* allocate 32 bytes for each string and 64bit for the value */
2159 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
2160
2161 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
2162 if (rc) {
2163 pr_err("Cannot allocate debug area\n");
2164 return;
2165 }
2166
2167 rc = ena_com_set_host_attributes(adapter->ena_dev);
2168 if (rc) {
2169 if (rc == -EPERM)
2170 netif_warn(adapter, drv, adapter->netdev,
2171 "Cannot set host attributes\n");
2172 else
2173 netif_err(adapter, drv, adapter->netdev,
2174 "Cannot set host attributes\n");
2175 goto err;
2176 }
2177
2178 return;
2179 err:
2180 ena_com_delete_debug_area(adapter->ena_dev);
2181 }
2182
2183 static void ena_get_stats64(struct net_device *netdev,
2184 struct rtnl_link_stats64 *stats)
2185 {
2186 struct ena_adapter *adapter = netdev_priv(netdev);
2187 struct ena_ring *rx_ring, *tx_ring;
2188 unsigned int start;
2189 u64 rx_drops;
2190 int i;
2191
2192 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2193 return;
2194
2195 for (i = 0; i < adapter->num_queues; i++) {
2196 u64 bytes, packets;
2197
2198 tx_ring = &adapter->tx_ring[i];
2199
2200 do {
2201 start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
2202 packets = tx_ring->tx_stats.cnt;
2203 bytes = tx_ring->tx_stats.bytes;
2204 } while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
2205
2206 stats->tx_packets += packets;
2207 stats->tx_bytes += bytes;
2208
2209 rx_ring = &adapter->rx_ring[i];
2210
2211 do {
2212 start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
2213 packets = rx_ring->rx_stats.cnt;
2214 bytes = rx_ring->rx_stats.bytes;
2215 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
2216
2217 stats->rx_packets += packets;
2218 stats->rx_bytes += bytes;
2219 }
2220
2221 do {
2222 start = u64_stats_fetch_begin_irq(&adapter->syncp);
2223 rx_drops = adapter->dev_stats.rx_drops;
2224 } while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
2225
2226 stats->rx_dropped = rx_drops;
2227
2228 stats->multicast = 0;
2229 stats->collisions = 0;
2230
2231 stats->rx_length_errors = 0;
2232 stats->rx_crc_errors = 0;
2233 stats->rx_frame_errors = 0;
2234 stats->rx_fifo_errors = 0;
2235 stats->rx_missed_errors = 0;
2236 stats->tx_window_errors = 0;
2237
2238 stats->rx_errors = 0;
2239 stats->tx_errors = 0;
2240 }
2241
2242 static const struct net_device_ops ena_netdev_ops = {
2243 .ndo_open = ena_open,
2244 .ndo_stop = ena_close,
2245 .ndo_start_xmit = ena_start_xmit,
2246 .ndo_select_queue = ena_select_queue,
2247 .ndo_get_stats64 = ena_get_stats64,
2248 .ndo_tx_timeout = ena_tx_timeout,
2249 .ndo_change_mtu = ena_change_mtu,
2250 .ndo_set_mac_address = NULL,
2251 .ndo_validate_addr = eth_validate_addr,
2252 #ifdef CONFIG_NET_POLL_CONTROLLER
2253 .ndo_poll_controller = ena_netpoll,
2254 #endif /* CONFIG_NET_POLL_CONTROLLER */
2255 };
2256
2257 static void ena_device_io_suspend(struct work_struct *work)
2258 {
2259 struct ena_adapter *adapter =
2260 container_of(work, struct ena_adapter, suspend_io_task);
2261 struct net_device *netdev = adapter->netdev;
2262
2263 /* ena_napi_disable_all disables only the IO handling.
2264 * We are still subject to AENQ keep alive watchdog.
2265 */
2266 u64_stats_update_begin(&adapter->syncp);
2267 adapter->dev_stats.io_suspend++;
2268 u64_stats_update_begin(&adapter->syncp);
2269 ena_napi_disable_all(adapter);
2270 netif_tx_lock(netdev);
2271 netif_device_detach(netdev);
2272 netif_tx_unlock(netdev);
2273 }
2274
2275 static void ena_device_io_resume(struct work_struct *work)
2276 {
2277 struct ena_adapter *adapter =
2278 container_of(work, struct ena_adapter, resume_io_task);
2279 struct net_device *netdev = adapter->netdev;
2280
2281 u64_stats_update_begin(&adapter->syncp);
2282 adapter->dev_stats.io_resume++;
2283 u64_stats_update_end(&adapter->syncp);
2284
2285 netif_device_attach(netdev);
2286 ena_napi_enable_all(adapter);
2287 }
2288
2289 static int ena_device_validate_params(struct ena_adapter *adapter,
2290 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2291 {
2292 struct net_device *netdev = adapter->netdev;
2293 int rc;
2294
2295 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
2296 adapter->mac_addr);
2297 if (!rc) {
2298 netif_err(adapter, drv, netdev,
2299 "Error, mac address are different\n");
2300 return -EINVAL;
2301 }
2302
2303 if ((get_feat_ctx->max_queues.max_cq_num < adapter->num_queues) ||
2304 (get_feat_ctx->max_queues.max_sq_num < adapter->num_queues)) {
2305 netif_err(adapter, drv, netdev,
2306 "Error, device doesn't support enough queues\n");
2307 return -EINVAL;
2308 }
2309
2310 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
2311 netif_err(adapter, drv, netdev,
2312 "Error, device max mtu is smaller than netdev MTU\n");
2313 return -EINVAL;
2314 }
2315
2316 return 0;
2317 }
2318
2319 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
2320 struct ena_com_dev_get_features_ctx *get_feat_ctx,
2321 bool *wd_state)
2322 {
2323 struct device *dev = &pdev->dev;
2324 bool readless_supported;
2325 u32 aenq_groups;
2326 int dma_width;
2327 int rc;
2328
2329 rc = ena_com_mmio_reg_read_request_init(ena_dev);
2330 if (rc) {
2331 dev_err(dev, "failed to init mmio read less\n");
2332 return rc;
2333 }
2334
2335 /* The PCIe configuration space revision id indicate if mmio reg
2336 * read is disabled
2337 */
2338 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
2339 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
2340
2341 rc = ena_com_dev_reset(ena_dev);
2342 if (rc) {
2343 dev_err(dev, "Can not reset device\n");
2344 goto err_mmio_read_less;
2345 }
2346
2347 rc = ena_com_validate_version(ena_dev);
2348 if (rc) {
2349 dev_err(dev, "device version is too low\n");
2350 goto err_mmio_read_less;
2351 }
2352
2353 dma_width = ena_com_get_dma_width(ena_dev);
2354 if (dma_width < 0) {
2355 dev_err(dev, "Invalid dma width value %d", dma_width);
2356 rc = dma_width;
2357 goto err_mmio_read_less;
2358 }
2359
2360 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width));
2361 if (rc) {
2362 dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc);
2363 goto err_mmio_read_less;
2364 }
2365
2366 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width));
2367 if (rc) {
2368 dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n",
2369 rc);
2370 goto err_mmio_read_less;
2371 }
2372
2373 /* ENA admin level init */
2374 rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
2375 if (rc) {
2376 dev_err(dev,
2377 "Can not initialize ena admin queue with device\n");
2378 goto err_mmio_read_less;
2379 }
2380
2381 /* To enable the msix interrupts the driver needs to know the number
2382 * of queues. So the driver uses polling mode to retrieve this
2383 * information
2384 */
2385 ena_com_set_admin_polling_mode(ena_dev, true);
2386
2387 ena_config_host_info(ena_dev);
2388
2389 /* Get Device Attributes*/
2390 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
2391 if (rc) {
2392 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
2393 goto err_admin_init;
2394 }
2395
2396 /* Try to turn all the available aenq groups */
2397 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
2398 BIT(ENA_ADMIN_FATAL_ERROR) |
2399 BIT(ENA_ADMIN_WARNING) |
2400 BIT(ENA_ADMIN_NOTIFICATION) |
2401 BIT(ENA_ADMIN_KEEP_ALIVE);
2402
2403 aenq_groups &= get_feat_ctx->aenq.supported_groups;
2404
2405 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
2406 if (rc) {
2407 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
2408 goto err_admin_init;
2409 }
2410
2411 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
2412
2413 return 0;
2414
2415 err_admin_init:
2416 ena_com_delete_host_info(ena_dev);
2417 ena_com_admin_destroy(ena_dev);
2418 err_mmio_read_less:
2419 ena_com_mmio_reg_read_request_destroy(ena_dev);
2420
2421 return rc;
2422 }
2423
2424 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
2425 int io_vectors)
2426 {
2427 struct ena_com_dev *ena_dev = adapter->ena_dev;
2428 struct device *dev = &adapter->pdev->dev;
2429 int rc;
2430
2431 rc = ena_enable_msix(adapter, io_vectors);
2432 if (rc) {
2433 dev_err(dev, "Can not reserve msix vectors\n");
2434 return rc;
2435 }
2436
2437 ena_setup_mgmnt_intr(adapter);
2438
2439 rc = ena_request_mgmnt_irq(adapter);
2440 if (rc) {
2441 dev_err(dev, "Can not setup management interrupts\n");
2442 goto err_disable_msix;
2443 }
2444
2445 ena_com_set_admin_polling_mode(ena_dev, false);
2446
2447 ena_com_admin_aenq_enable(ena_dev);
2448
2449 return 0;
2450
2451 err_disable_msix:
2452 pci_free_irq_vectors(adapter->pdev);
2453 return rc;
2454 }
2455
2456 static void ena_fw_reset_device(struct work_struct *work)
2457 {
2458 struct ena_com_dev_get_features_ctx get_feat_ctx;
2459 struct ena_adapter *adapter =
2460 container_of(work, struct ena_adapter, reset_task);
2461 struct net_device *netdev = adapter->netdev;
2462 struct ena_com_dev *ena_dev = adapter->ena_dev;
2463 struct pci_dev *pdev = adapter->pdev;
2464 bool dev_up, wd_state;
2465 int rc;
2466
2467 if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2468 dev_err(&pdev->dev,
2469 "device reset schedule while reset bit is off\n");
2470 return;
2471 }
2472
2473 netif_carrier_off(netdev);
2474
2475 del_timer_sync(&adapter->timer_service);
2476
2477 rtnl_lock();
2478
2479 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2480 ena_com_set_admin_running_state(ena_dev, false);
2481
2482 /* After calling ena_close the tx queues and the napi
2483 * are disabled so no one can interfere or touch the
2484 * data structures
2485 */
2486 ena_close(netdev);
2487
2488 ena_free_mgmnt_irq(adapter);
2489
2490 pci_free_irq_vectors(adapter->pdev);
2491
2492 ena_com_abort_admin_commands(ena_dev);
2493
2494 ena_com_wait_for_abort_completion(ena_dev);
2495
2496 ena_com_admin_destroy(ena_dev);
2497
2498 ena_com_mmio_reg_read_request_destroy(ena_dev);
2499
2500 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2501
2502 /* Finish with the destroy part. Start the init part */
2503
2504 rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
2505 if (rc) {
2506 dev_err(&pdev->dev, "Can not initialize device\n");
2507 goto err;
2508 }
2509 adapter->wd_state = wd_state;
2510
2511 rc = ena_device_validate_params(adapter, &get_feat_ctx);
2512 if (rc) {
2513 dev_err(&pdev->dev, "Validation of device parameters failed\n");
2514 goto err_device_destroy;
2515 }
2516
2517 rc = ena_enable_msix_and_set_admin_interrupts(adapter,
2518 adapter->num_queues);
2519 if (rc) {
2520 dev_err(&pdev->dev, "Enable MSI-X failed\n");
2521 goto err_device_destroy;
2522 }
2523 /* If the interface was up before the reset bring it up */
2524 if (dev_up) {
2525 rc = ena_up(adapter);
2526 if (rc) {
2527 dev_err(&pdev->dev, "Failed to create I/O queues\n");
2528 goto err_disable_msix;
2529 }
2530 }
2531
2532 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
2533
2534 rtnl_unlock();
2535
2536 dev_err(&pdev->dev, "Device reset completed successfully\n");
2537
2538 return;
2539 err_disable_msix:
2540 ena_free_mgmnt_irq(adapter);
2541 pci_free_irq_vectors(adapter->pdev);
2542 err_device_destroy:
2543 ena_com_admin_destroy(ena_dev);
2544 err:
2545 rtnl_unlock();
2546
2547 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
2548
2549 dev_err(&pdev->dev,
2550 "Reset attempt failed. Can not reset the device\n");
2551 }
2552
2553 static void check_for_missing_tx_completions(struct ena_adapter *adapter)
2554 {
2555 struct ena_tx_buffer *tx_buf;
2556 unsigned long last_jiffies;
2557 struct ena_ring *tx_ring;
2558 int i, j, budget;
2559 u32 missed_tx;
2560
2561 /* Make sure the driver doesn't turn the device in other process */
2562 smp_rmb();
2563
2564 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2565 return;
2566
2567 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
2568 return;
2569
2570 budget = ENA_MONITORED_TX_QUEUES;
2571
2572 for (i = adapter->last_monitored_tx_qid; i < adapter->num_queues; i++) {
2573 tx_ring = &adapter->tx_ring[i];
2574
2575 for (j = 0; j < tx_ring->ring_size; j++) {
2576 tx_buf = &tx_ring->tx_buffer_info[j];
2577 last_jiffies = tx_buf->last_jiffies;
2578 if (unlikely(last_jiffies && time_is_before_jiffies(last_jiffies + TX_TIMEOUT))) {
2579 netif_notice(adapter, tx_err, adapter->netdev,
2580 "Found a Tx that wasn't completed on time, qid %d, index %d.\n",
2581 tx_ring->qid, j);
2582
2583 u64_stats_update_begin(&tx_ring->syncp);
2584 missed_tx = tx_ring->tx_stats.missing_tx_comp++;
2585 u64_stats_update_end(&tx_ring->syncp);
2586
2587 /* Clear last jiffies so the lost buffer won't
2588 * be counted twice.
2589 */
2590 tx_buf->last_jiffies = 0;
2591
2592 if (unlikely(missed_tx > MAX_NUM_OF_TIMEOUTED_PACKETS)) {
2593 netif_err(adapter, tx_err, adapter->netdev,
2594 "The number of lost tx completion is above the threshold (%d > %d). Reset the device\n",
2595 missed_tx, MAX_NUM_OF_TIMEOUTED_PACKETS);
2596 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2597 }
2598 }
2599 }
2600
2601 budget--;
2602 if (!budget)
2603 break;
2604 }
2605
2606 adapter->last_monitored_tx_qid = i % adapter->num_queues;
2607 }
2608
2609 /* Check for keep alive expiration */
2610 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
2611 {
2612 unsigned long keep_alive_expired;
2613
2614 if (!adapter->wd_state)
2615 return;
2616
2617 keep_alive_expired = round_jiffies(adapter->last_keep_alive_jiffies
2618 + ENA_DEVICE_KALIVE_TIMEOUT);
2619 if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
2620 netif_err(adapter, drv, adapter->netdev,
2621 "Keep alive watchdog timeout.\n");
2622 u64_stats_update_begin(&adapter->syncp);
2623 adapter->dev_stats.wd_expired++;
2624 u64_stats_update_end(&adapter->syncp);
2625 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2626 }
2627 }
2628
2629 static void check_for_admin_com_state(struct ena_adapter *adapter)
2630 {
2631 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
2632 netif_err(adapter, drv, adapter->netdev,
2633 "ENA admin queue is not in running state!\n");
2634 u64_stats_update_begin(&adapter->syncp);
2635 adapter->dev_stats.admin_q_pause++;
2636 u64_stats_update_end(&adapter->syncp);
2637 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2638 }
2639 }
2640
2641 static void ena_update_host_info(struct ena_admin_host_info *host_info,
2642 struct net_device *netdev)
2643 {
2644 host_info->supported_network_features[0] =
2645 netdev->features & GENMASK_ULL(31, 0);
2646 host_info->supported_network_features[1] =
2647 (netdev->features & GENMASK_ULL(63, 32)) >> 32;
2648 }
2649
2650 static void ena_timer_service(unsigned long data)
2651 {
2652 struct ena_adapter *adapter = (struct ena_adapter *)data;
2653 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
2654 struct ena_admin_host_info *host_info =
2655 adapter->ena_dev->host_attr.host_info;
2656
2657 check_for_missing_keep_alive(adapter);
2658
2659 check_for_admin_com_state(adapter);
2660
2661 check_for_missing_tx_completions(adapter);
2662
2663 if (debug_area)
2664 ena_dump_stats_to_buf(adapter, debug_area);
2665
2666 if (host_info)
2667 ena_update_host_info(host_info, adapter->netdev);
2668
2669 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2670 netif_err(adapter, drv, adapter->netdev,
2671 "Trigger reset is on\n");
2672 ena_dump_stats_to_dmesg(adapter);
2673 queue_work(ena_wq, &adapter->reset_task);
2674 return;
2675 }
2676
2677 /* Reset the timer */
2678 mod_timer(&adapter->timer_service, jiffies + HZ);
2679 }
2680
2681 static int ena_calc_io_queue_num(struct pci_dev *pdev,
2682 struct ena_com_dev *ena_dev,
2683 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2684 {
2685 int io_sq_num, io_queue_num;
2686
2687 /* In case of LLQ use the llq number in the get feature cmd */
2688 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2689 io_sq_num = get_feat_ctx->max_queues.max_llq_num;
2690
2691 if (io_sq_num == 0) {
2692 dev_err(&pdev->dev,
2693 "Trying to use LLQ but llq_num is 0. Fall back into regular queues\n");
2694
2695 ena_dev->tx_mem_queue_type =
2696 ENA_ADMIN_PLACEMENT_POLICY_HOST;
2697 io_sq_num = get_feat_ctx->max_queues.max_sq_num;
2698 }
2699 } else {
2700 io_sq_num = get_feat_ctx->max_queues.max_sq_num;
2701 }
2702
2703 io_queue_num = min_t(int, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
2704 io_queue_num = min_t(int, io_queue_num, io_sq_num);
2705 io_queue_num = min_t(int, io_queue_num,
2706 get_feat_ctx->max_queues.max_cq_num);
2707 /* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
2708 io_queue_num = min_t(int, io_queue_num, pci_msix_vec_count(pdev) - 1);
2709 if (unlikely(!io_queue_num)) {
2710 dev_err(&pdev->dev, "The device doesn't have io queues\n");
2711 return -EFAULT;
2712 }
2713
2714 return io_queue_num;
2715 }
2716
2717 static void ena_set_push_mode(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
2718 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2719 {
2720 bool has_mem_bar;
2721
2722 has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR);
2723
2724 /* Enable push mode if device supports LLQ */
2725 if (has_mem_bar && (get_feat_ctx->max_queues.max_llq_num > 0))
2726 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_DEV;
2727 else
2728 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2729 }
2730
2731 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
2732 struct net_device *netdev)
2733 {
2734 netdev_features_t dev_features = 0;
2735
2736 /* Set offload features */
2737 if (feat->offload.tx &
2738 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2739 dev_features |= NETIF_F_IP_CSUM;
2740
2741 if (feat->offload.tx &
2742 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2743 dev_features |= NETIF_F_IPV6_CSUM;
2744
2745 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2746 dev_features |= NETIF_F_TSO;
2747
2748 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
2749 dev_features |= NETIF_F_TSO6;
2750
2751 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
2752 dev_features |= NETIF_F_TSO_ECN;
2753
2754 if (feat->offload.rx_supported &
2755 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2756 dev_features |= NETIF_F_RXCSUM;
2757
2758 if (feat->offload.rx_supported &
2759 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2760 dev_features |= NETIF_F_RXCSUM;
2761
2762 netdev->features =
2763 dev_features |
2764 NETIF_F_SG |
2765 NETIF_F_RXHASH |
2766 NETIF_F_HIGHDMA;
2767
2768 netdev->hw_features |= netdev->features;
2769 netdev->vlan_features |= netdev->features;
2770 }
2771
2772 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
2773 struct ena_com_dev_get_features_ctx *feat)
2774 {
2775 struct net_device *netdev = adapter->netdev;
2776
2777 /* Copy mac address */
2778 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
2779 eth_hw_addr_random(netdev);
2780 ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
2781 } else {
2782 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
2783 ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
2784 }
2785
2786 /* Set offload features */
2787 ena_set_dev_offloads(feat, netdev);
2788
2789 adapter->max_mtu = feat->dev_attr.max_mtu;
2790 netdev->max_mtu = adapter->max_mtu;
2791 netdev->min_mtu = ENA_MIN_MTU;
2792 }
2793
2794 static int ena_rss_init_default(struct ena_adapter *adapter)
2795 {
2796 struct ena_com_dev *ena_dev = adapter->ena_dev;
2797 struct device *dev = &adapter->pdev->dev;
2798 int rc, i;
2799 u32 val;
2800
2801 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2802 if (unlikely(rc)) {
2803 dev_err(dev, "Cannot init indirect table\n");
2804 goto err_rss_init;
2805 }
2806
2807 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
2808 val = ethtool_rxfh_indir_default(i, adapter->num_queues);
2809 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
2810 ENA_IO_RXQ_IDX(val));
2811 if (unlikely(rc && (rc != -EPERM))) {
2812 dev_err(dev, "Cannot fill indirect table\n");
2813 goto err_fill_indir;
2814 }
2815 }
2816
2817 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
2818 ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
2819 if (unlikely(rc && (rc != -EPERM))) {
2820 dev_err(dev, "Cannot fill hash function\n");
2821 goto err_fill_indir;
2822 }
2823
2824 rc = ena_com_set_default_hash_ctrl(ena_dev);
2825 if (unlikely(rc && (rc != -EPERM))) {
2826 dev_err(dev, "Cannot fill hash control\n");
2827 goto err_fill_indir;
2828 }
2829
2830 return 0;
2831
2832 err_fill_indir:
2833 ena_com_rss_destroy(ena_dev);
2834 err_rss_init:
2835
2836 return rc;
2837 }
2838
2839 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
2840 {
2841 int release_bars;
2842
2843 release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
2844 pci_release_selected_regions(pdev, release_bars);
2845 }
2846
2847 static int ena_calc_queue_size(struct pci_dev *pdev,
2848 struct ena_com_dev *ena_dev,
2849 u16 *max_tx_sgl_size,
2850 u16 *max_rx_sgl_size,
2851 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2852 {
2853 u32 queue_size = ENA_DEFAULT_RING_SIZE;
2854
2855 queue_size = min_t(u32, queue_size,
2856 get_feat_ctx->max_queues.max_cq_depth);
2857 queue_size = min_t(u32, queue_size,
2858 get_feat_ctx->max_queues.max_sq_depth);
2859
2860 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2861 queue_size = min_t(u32, queue_size,
2862 get_feat_ctx->max_queues.max_llq_depth);
2863
2864 queue_size = rounddown_pow_of_two(queue_size);
2865
2866 if (unlikely(!queue_size)) {
2867 dev_err(&pdev->dev, "Invalid queue size\n");
2868 return -EFAULT;
2869 }
2870
2871 *max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2872 get_feat_ctx->max_queues.max_packet_tx_descs);
2873 *max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2874 get_feat_ctx->max_queues.max_packet_rx_descs);
2875
2876 return queue_size;
2877 }
2878
2879 /* ena_probe - Device Initialization Routine
2880 * @pdev: PCI device information struct
2881 * @ent: entry in ena_pci_tbl
2882 *
2883 * Returns 0 on success, negative on failure
2884 *
2885 * ena_probe initializes an adapter identified by a pci_dev structure.
2886 * The OS initialization, configuring of the adapter private structure,
2887 * and a hardware reset occur.
2888 */
2889 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2890 {
2891 struct ena_com_dev_get_features_ctx get_feat_ctx;
2892 static int version_printed;
2893 struct net_device *netdev;
2894 struct ena_adapter *adapter;
2895 struct ena_com_dev *ena_dev = NULL;
2896 static int adapters_found;
2897 int io_queue_num, bars, rc;
2898 int queue_size;
2899 u16 tx_sgl_size = 0;
2900 u16 rx_sgl_size = 0;
2901 bool wd_state;
2902
2903 dev_dbg(&pdev->dev, "%s\n", __func__);
2904
2905 if (version_printed++ == 0)
2906 dev_info(&pdev->dev, "%s", version);
2907
2908 rc = pci_enable_device_mem(pdev);
2909 if (rc) {
2910 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
2911 return rc;
2912 }
2913
2914 pci_set_master(pdev);
2915
2916 ena_dev = vzalloc(sizeof(*ena_dev));
2917 if (!ena_dev) {
2918 rc = -ENOMEM;
2919 goto err_disable_device;
2920 }
2921
2922 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
2923 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
2924 if (rc) {
2925 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
2926 rc);
2927 goto err_free_ena_dev;
2928 }
2929
2930 ena_dev->reg_bar = ioremap(pci_resource_start(pdev, ENA_REG_BAR),
2931 pci_resource_len(pdev, ENA_REG_BAR));
2932 if (!ena_dev->reg_bar) {
2933 dev_err(&pdev->dev, "failed to remap regs bar\n");
2934 rc = -EFAULT;
2935 goto err_free_region;
2936 }
2937
2938 ena_dev->dmadev = &pdev->dev;
2939
2940 rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
2941 if (rc) {
2942 dev_err(&pdev->dev, "ena device init failed\n");
2943 if (rc == -ETIME)
2944 rc = -EPROBE_DEFER;
2945 goto err_free_region;
2946 }
2947
2948 ena_set_push_mode(pdev, ena_dev, &get_feat_ctx);
2949
2950 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2951 ena_dev->mem_bar = ioremap_wc(pci_resource_start(pdev, ENA_MEM_BAR),
2952 pci_resource_len(pdev, ENA_MEM_BAR));
2953 if (!ena_dev->mem_bar) {
2954 rc = -EFAULT;
2955 goto err_device_destroy;
2956 }
2957 }
2958
2959 /* initial Tx interrupt delay, Assumes 1 usec granularity.
2960 * Updated during device initialization with the real granularity
2961 */
2962 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
2963 io_queue_num = ena_calc_io_queue_num(pdev, ena_dev, &get_feat_ctx);
2964 queue_size = ena_calc_queue_size(pdev, ena_dev, &tx_sgl_size,
2965 &rx_sgl_size, &get_feat_ctx);
2966 if ((queue_size <= 0) || (io_queue_num <= 0)) {
2967 rc = -EFAULT;
2968 goto err_device_destroy;
2969 }
2970
2971 dev_info(&pdev->dev, "creating %d io queues. queue size: %d\n",
2972 io_queue_num, queue_size);
2973
2974 /* dev zeroed in init_etherdev */
2975 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), io_queue_num);
2976 if (!netdev) {
2977 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
2978 rc = -ENOMEM;
2979 goto err_device_destroy;
2980 }
2981
2982 SET_NETDEV_DEV(netdev, &pdev->dev);
2983
2984 adapter = netdev_priv(netdev);
2985 pci_set_drvdata(pdev, adapter);
2986
2987 adapter->ena_dev = ena_dev;
2988 adapter->netdev = netdev;
2989 adapter->pdev = pdev;
2990
2991 ena_set_conf_feat_params(adapter, &get_feat_ctx);
2992
2993 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2994
2995 adapter->tx_ring_size = queue_size;
2996 adapter->rx_ring_size = queue_size;
2997
2998 adapter->max_tx_sgl_size = tx_sgl_size;
2999 adapter->max_rx_sgl_size = rx_sgl_size;
3000
3001 adapter->num_queues = io_queue_num;
3002 adapter->last_monitored_tx_qid = 0;
3003
3004 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
3005 adapter->wd_state = wd_state;
3006
3007 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
3008
3009 rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
3010 if (rc) {
3011 dev_err(&pdev->dev,
3012 "Failed to query interrupt moderation feature\n");
3013 goto err_netdev_destroy;
3014 }
3015 ena_init_io_rings(adapter);
3016
3017 netdev->netdev_ops = &ena_netdev_ops;
3018 netdev->watchdog_timeo = TX_TIMEOUT;
3019 ena_set_ethtool_ops(netdev);
3020
3021 netdev->priv_flags |= IFF_UNICAST_FLT;
3022
3023 u64_stats_init(&adapter->syncp);
3024
3025 rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3026 if (rc) {
3027 dev_err(&pdev->dev,
3028 "Failed to enable and set the admin interrupts\n");
3029 goto err_worker_destroy;
3030 }
3031 rc = ena_rss_init_default(adapter);
3032 if (rc && (rc != -EPERM)) {
3033 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
3034 goto err_free_msix;
3035 }
3036
3037 ena_config_debug_area(adapter);
3038
3039 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
3040
3041 netif_carrier_off(netdev);
3042
3043 rc = register_netdev(netdev);
3044 if (rc) {
3045 dev_err(&pdev->dev, "Cannot register net device\n");
3046 goto err_rss;
3047 }
3048
3049 INIT_WORK(&adapter->suspend_io_task, ena_device_io_suspend);
3050 INIT_WORK(&adapter->resume_io_task, ena_device_io_resume);
3051 INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
3052
3053 adapter->last_keep_alive_jiffies = jiffies;
3054
3055 setup_timer(&adapter->timer_service, ena_timer_service,
3056 (unsigned long)adapter);
3057 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3058
3059 dev_info(&pdev->dev, "%s found at mem %lx, mac addr %pM Queues %d\n",
3060 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
3061 netdev->dev_addr, io_queue_num);
3062
3063 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3064
3065 adapters_found++;
3066
3067 return 0;
3068
3069 err_rss:
3070 ena_com_delete_debug_area(ena_dev);
3071 ena_com_rss_destroy(ena_dev);
3072 err_free_msix:
3073 ena_com_dev_reset(ena_dev);
3074 ena_free_mgmnt_irq(adapter);
3075 pci_free_irq_vectors(adapter->pdev);
3076 err_worker_destroy:
3077 ena_com_destroy_interrupt_moderation(ena_dev);
3078 del_timer(&adapter->timer_service);
3079 cancel_work_sync(&adapter->suspend_io_task);
3080 cancel_work_sync(&adapter->resume_io_task);
3081 err_netdev_destroy:
3082 free_netdev(netdev);
3083 err_device_destroy:
3084 ena_com_delete_host_info(ena_dev);
3085 ena_com_admin_destroy(ena_dev);
3086 err_free_region:
3087 ena_release_bars(ena_dev, pdev);
3088 err_free_ena_dev:
3089 vfree(ena_dev);
3090 err_disable_device:
3091 pci_disable_device(pdev);
3092 return rc;
3093 }
3094
3095 /*****************************************************************************/
3096 static int ena_sriov_configure(struct pci_dev *dev, int numvfs)
3097 {
3098 int rc;
3099
3100 if (numvfs > 0) {
3101 rc = pci_enable_sriov(dev, numvfs);
3102 if (rc != 0) {
3103 dev_err(&dev->dev,
3104 "pci_enable_sriov failed to enable: %d vfs with the error: %d\n",
3105 numvfs, rc);
3106 return rc;
3107 }
3108
3109 return numvfs;
3110 }
3111
3112 if (numvfs == 0) {
3113 pci_disable_sriov(dev);
3114 return 0;
3115 }
3116
3117 return -EINVAL;
3118 }
3119
3120 /*****************************************************************************/
3121 /*****************************************************************************/
3122
3123 /* ena_remove - Device Removal Routine
3124 * @pdev: PCI device information struct
3125 *
3126 * ena_remove is called by the PCI subsystem to alert the driver
3127 * that it should release a PCI device.
3128 */
3129 static void ena_remove(struct pci_dev *pdev)
3130 {
3131 struct ena_adapter *adapter = pci_get_drvdata(pdev);
3132 struct ena_com_dev *ena_dev;
3133 struct net_device *netdev;
3134
3135 ena_dev = adapter->ena_dev;
3136 netdev = adapter->netdev;
3137
3138 #ifdef CONFIG_RFS_ACCEL
3139 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
3140 free_irq_cpu_rmap(netdev->rx_cpu_rmap);
3141 netdev->rx_cpu_rmap = NULL;
3142 }
3143 #endif /* CONFIG_RFS_ACCEL */
3144
3145 unregister_netdev(netdev);
3146 del_timer_sync(&adapter->timer_service);
3147
3148 cancel_work_sync(&adapter->reset_task);
3149
3150 cancel_work_sync(&adapter->suspend_io_task);
3151
3152 cancel_work_sync(&adapter->resume_io_task);
3153
3154 /* Reset the device only if the device is running. */
3155 if (test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3156 ena_com_dev_reset(ena_dev);
3157
3158 ena_free_mgmnt_irq(adapter);
3159
3160 pci_free_irq_vectors(adapter->pdev);
3161
3162 free_netdev(netdev);
3163
3164 ena_com_mmio_reg_read_request_destroy(ena_dev);
3165
3166 ena_com_abort_admin_commands(ena_dev);
3167
3168 ena_com_wait_for_abort_completion(ena_dev);
3169
3170 ena_com_admin_destroy(ena_dev);
3171
3172 ena_com_rss_destroy(ena_dev);
3173
3174 ena_com_delete_debug_area(ena_dev);
3175
3176 ena_com_delete_host_info(ena_dev);
3177
3178 ena_release_bars(ena_dev, pdev);
3179
3180 pci_disable_device(pdev);
3181
3182 ena_com_destroy_interrupt_moderation(ena_dev);
3183
3184 vfree(ena_dev);
3185 }
3186
3187 static struct pci_driver ena_pci_driver = {
3188 .name = DRV_MODULE_NAME,
3189 .id_table = ena_pci_tbl,
3190 .probe = ena_probe,
3191 .remove = ena_remove,
3192 .sriov_configure = ena_sriov_configure,
3193 };
3194
3195 static int __init ena_init(void)
3196 {
3197 pr_info("%s", version);
3198
3199 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
3200 if (!ena_wq) {
3201 pr_err("Failed to create workqueue\n");
3202 return -ENOMEM;
3203 }
3204
3205 return pci_register_driver(&ena_pci_driver);
3206 }
3207
3208 static void __exit ena_cleanup(void)
3209 {
3210 pci_unregister_driver(&ena_pci_driver);
3211
3212 if (ena_wq) {
3213 destroy_workqueue(ena_wq);
3214 ena_wq = NULL;
3215 }
3216 }
3217
3218 /******************************************************************************
3219 ******************************** AENQ Handlers *******************************
3220 *****************************************************************************/
3221 /* ena_update_on_link_change:
3222 * Notify the network interface about the change in link status
3223 */
3224 static void ena_update_on_link_change(void *adapter_data,
3225 struct ena_admin_aenq_entry *aenq_e)
3226 {
3227 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3228 struct ena_admin_aenq_link_change_desc *aenq_desc =
3229 (struct ena_admin_aenq_link_change_desc *)aenq_e;
3230 int status = aenq_desc->flags &
3231 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3232
3233 if (status) {
3234 netdev_dbg(adapter->netdev, "%s\n", __func__);
3235 set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
3236 netif_carrier_on(adapter->netdev);
3237 } else {
3238 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
3239 netif_carrier_off(adapter->netdev);
3240 }
3241 }
3242
3243 static void ena_keep_alive_wd(void *adapter_data,
3244 struct ena_admin_aenq_entry *aenq_e)
3245 {
3246 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3247
3248 adapter->last_keep_alive_jiffies = jiffies;
3249 }
3250
3251 static void ena_notification(void *adapter_data,
3252 struct ena_admin_aenq_entry *aenq_e)
3253 {
3254 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3255
3256 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
3257 "Invalid group(%x) expected %x\n",
3258 aenq_e->aenq_common_desc.group,
3259 ENA_ADMIN_NOTIFICATION);
3260
3261 switch (aenq_e->aenq_common_desc.syndrom) {
3262 case ENA_ADMIN_SUSPEND:
3263 /* Suspend just the IO queues.
3264 * We deliberately don't suspend admin so the timer and
3265 * the keep_alive events should remain.
3266 */
3267 queue_work(ena_wq, &adapter->suspend_io_task);
3268 break;
3269 case ENA_ADMIN_RESUME:
3270 queue_work(ena_wq, &adapter->resume_io_task);
3271 break;
3272 default:
3273 netif_err(adapter, drv, adapter->netdev,
3274 "Invalid aenq notification link state %d\n",
3275 aenq_e->aenq_common_desc.syndrom);
3276 }
3277 }
3278
3279 /* This handler will called for unknown event group or unimplemented handlers*/
3280 static void unimplemented_aenq_handler(void *data,
3281 struct ena_admin_aenq_entry *aenq_e)
3282 {
3283 struct ena_adapter *adapter = (struct ena_adapter *)data;
3284
3285 netif_err(adapter, drv, adapter->netdev,
3286 "Unknown event was received or event with unimplemented handler\n");
3287 }
3288
3289 static struct ena_aenq_handlers aenq_handlers = {
3290 .handlers = {
3291 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3292 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3293 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3294 },
3295 .unimplemented_handler = unimplemented_aenq_handler
3296 };
3297
3298 module_init(ena_init);
3299 module_exit(ena_cleanup);