]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/amazon/ena/ena_netdev.c
Merge branch 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / amazon / ena / ena_netdev.c
1 /*
2 * Copyright 2015 Amazon.com, Inc. or its affiliates.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #ifdef CONFIG_RFS_ACCEL
36 #include <linux/cpu_rmap.h>
37 #endif /* CONFIG_RFS_ACCEL */
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/moduleparam.h>
43 #include <linux/numa.h>
44 #include <linux/pci.h>
45 #include <linux/utsname.h>
46 #include <linux/version.h>
47 #include <linux/vmalloc.h>
48 #include <net/ip.h>
49
50 #include "ena_netdev.h"
51 #include "ena_pci_id_tbl.h"
52
53 static char version[] = DEVICE_NAME " v" DRV_MODULE_VERSION "\n";
54
55 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
56 MODULE_DESCRIPTION(DEVICE_NAME);
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(DRV_MODULE_VERSION);
59
60 /* Time in jiffies before concluding the transmitter is hung. */
61 #define TX_TIMEOUT (5 * HZ)
62
63 #define ENA_NAPI_BUDGET 64
64
65 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
66 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
67 static int debug = -1;
68 module_param(debug, int, 0);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 static struct ena_aenq_handlers aenq_handlers;
72
73 static struct workqueue_struct *ena_wq;
74
75 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
76
77 static int ena_rss_init_default(struct ena_adapter *adapter);
78
79 static void ena_tx_timeout(struct net_device *dev)
80 {
81 struct ena_adapter *adapter = netdev_priv(dev);
82
83 u64_stats_update_begin(&adapter->syncp);
84 adapter->dev_stats.tx_timeout++;
85 u64_stats_update_end(&adapter->syncp);
86
87 netif_err(adapter, tx_err, dev, "Transmit time out\n");
88
89 /* Change the state of the device to trigger reset */
90 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
91 }
92
93 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
94 {
95 int i;
96
97 for (i = 0; i < adapter->num_queues; i++)
98 adapter->rx_ring[i].mtu = mtu;
99 }
100
101 static int ena_change_mtu(struct net_device *dev, int new_mtu)
102 {
103 struct ena_adapter *adapter = netdev_priv(dev);
104 int ret;
105
106 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
107 if (!ret) {
108 netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu);
109 update_rx_ring_mtu(adapter, new_mtu);
110 dev->mtu = new_mtu;
111 } else {
112 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
113 new_mtu);
114 }
115
116 return ret;
117 }
118
119 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
120 {
121 #ifdef CONFIG_RFS_ACCEL
122 u32 i;
123 int rc;
124
125 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_queues);
126 if (!adapter->netdev->rx_cpu_rmap)
127 return -ENOMEM;
128 for (i = 0; i < adapter->num_queues; i++) {
129 int irq_idx = ENA_IO_IRQ_IDX(i);
130
131 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
132 adapter->msix_entries[irq_idx].vector);
133 if (rc) {
134 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
135 adapter->netdev->rx_cpu_rmap = NULL;
136 return rc;
137 }
138 }
139 #endif /* CONFIG_RFS_ACCEL */
140 return 0;
141 }
142
143 static void ena_init_io_rings_common(struct ena_adapter *adapter,
144 struct ena_ring *ring, u16 qid)
145 {
146 ring->qid = qid;
147 ring->pdev = adapter->pdev;
148 ring->dev = &adapter->pdev->dev;
149 ring->netdev = adapter->netdev;
150 ring->napi = &adapter->ena_napi[qid].napi;
151 ring->adapter = adapter;
152 ring->ena_dev = adapter->ena_dev;
153 ring->per_napi_packets = 0;
154 ring->per_napi_bytes = 0;
155 ring->cpu = 0;
156 u64_stats_init(&ring->syncp);
157 }
158
159 static void ena_init_io_rings(struct ena_adapter *adapter)
160 {
161 struct ena_com_dev *ena_dev;
162 struct ena_ring *txr, *rxr;
163 int i;
164
165 ena_dev = adapter->ena_dev;
166
167 for (i = 0; i < adapter->num_queues; i++) {
168 txr = &adapter->tx_ring[i];
169 rxr = &adapter->rx_ring[i];
170
171 /* TX/RX common ring state */
172 ena_init_io_rings_common(adapter, txr, i);
173 ena_init_io_rings_common(adapter, rxr, i);
174
175 /* TX specific ring state */
176 txr->ring_size = adapter->tx_ring_size;
177 txr->tx_max_header_size = ena_dev->tx_max_header_size;
178 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
179 txr->sgl_size = adapter->max_tx_sgl_size;
180 txr->smoothed_interval =
181 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
182
183 /* RX specific ring state */
184 rxr->ring_size = adapter->rx_ring_size;
185 rxr->rx_copybreak = adapter->rx_copybreak;
186 rxr->sgl_size = adapter->max_rx_sgl_size;
187 rxr->smoothed_interval =
188 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
189 }
190 }
191
192 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
193 * @adapter: network interface device structure
194 * @qid: queue index
195 *
196 * Return 0 on success, negative on failure
197 */
198 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
199 {
200 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
201 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
202 int size, i, node;
203
204 if (tx_ring->tx_buffer_info) {
205 netif_err(adapter, ifup,
206 adapter->netdev, "tx_buffer_info info is not NULL");
207 return -EEXIST;
208 }
209
210 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
211 node = cpu_to_node(ena_irq->cpu);
212
213 tx_ring->tx_buffer_info = vzalloc_node(size, node);
214 if (!tx_ring->tx_buffer_info) {
215 tx_ring->tx_buffer_info = vzalloc(size);
216 if (!tx_ring->tx_buffer_info)
217 return -ENOMEM;
218 }
219
220 size = sizeof(u16) * tx_ring->ring_size;
221 tx_ring->free_tx_ids = vzalloc_node(size, node);
222 if (!tx_ring->free_tx_ids) {
223 tx_ring->free_tx_ids = vzalloc(size);
224 if (!tx_ring->free_tx_ids) {
225 vfree(tx_ring->tx_buffer_info);
226 return -ENOMEM;
227 }
228 }
229
230 /* Req id ring for TX out of order completions */
231 for (i = 0; i < tx_ring->ring_size; i++)
232 tx_ring->free_tx_ids[i] = i;
233
234 /* Reset tx statistics */
235 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
236
237 tx_ring->next_to_use = 0;
238 tx_ring->next_to_clean = 0;
239 tx_ring->cpu = ena_irq->cpu;
240 return 0;
241 }
242
243 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
244 * @adapter: network interface device structure
245 * @qid: queue index
246 *
247 * Free all transmit software resources
248 */
249 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
250 {
251 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
252
253 vfree(tx_ring->tx_buffer_info);
254 tx_ring->tx_buffer_info = NULL;
255
256 vfree(tx_ring->free_tx_ids);
257 tx_ring->free_tx_ids = NULL;
258 }
259
260 /* ena_setup_all_tx_resources - allocate I/O Tx queues resources for All queues
261 * @adapter: private structure
262 *
263 * Return 0 on success, negative on failure
264 */
265 static int ena_setup_all_tx_resources(struct ena_adapter *adapter)
266 {
267 int i, rc = 0;
268
269 for (i = 0; i < adapter->num_queues; i++) {
270 rc = ena_setup_tx_resources(adapter, i);
271 if (rc)
272 goto err_setup_tx;
273 }
274
275 return 0;
276
277 err_setup_tx:
278
279 netif_err(adapter, ifup, adapter->netdev,
280 "Tx queue %d: allocation failed\n", i);
281
282 /* rewind the index freeing the rings as we go */
283 while (i--)
284 ena_free_tx_resources(adapter, i);
285 return rc;
286 }
287
288 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
289 * @adapter: board private structure
290 *
291 * Free all transmit software resources
292 */
293 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
294 {
295 int i;
296
297 for (i = 0; i < adapter->num_queues; i++)
298 ena_free_tx_resources(adapter, i);
299 }
300
301 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
302 * @adapter: network interface device structure
303 * @qid: queue index
304 *
305 * Returns 0 on success, negative on failure
306 */
307 static int ena_setup_rx_resources(struct ena_adapter *adapter,
308 u32 qid)
309 {
310 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
311 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
312 int size, node;
313
314 if (rx_ring->rx_buffer_info) {
315 netif_err(adapter, ifup, adapter->netdev,
316 "rx_buffer_info is not NULL");
317 return -EEXIST;
318 }
319
320 /* alloc extra element so in rx path
321 * we can always prefetch rx_info + 1
322 */
323 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
324 node = cpu_to_node(ena_irq->cpu);
325
326 rx_ring->rx_buffer_info = vzalloc_node(size, node);
327 if (!rx_ring->rx_buffer_info) {
328 rx_ring->rx_buffer_info = vzalloc(size);
329 if (!rx_ring->rx_buffer_info)
330 return -ENOMEM;
331 }
332
333 /* Reset rx statistics */
334 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
335
336 rx_ring->next_to_clean = 0;
337 rx_ring->next_to_use = 0;
338 rx_ring->cpu = ena_irq->cpu;
339
340 return 0;
341 }
342
343 /* ena_free_rx_resources - Free I/O Rx Resources
344 * @adapter: network interface device structure
345 * @qid: queue index
346 *
347 * Free all receive software resources
348 */
349 static void ena_free_rx_resources(struct ena_adapter *adapter,
350 u32 qid)
351 {
352 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
353
354 vfree(rx_ring->rx_buffer_info);
355 rx_ring->rx_buffer_info = NULL;
356 }
357
358 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
359 * @adapter: board private structure
360 *
361 * Return 0 on success, negative on failure
362 */
363 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
364 {
365 int i, rc = 0;
366
367 for (i = 0; i < adapter->num_queues; i++) {
368 rc = ena_setup_rx_resources(adapter, i);
369 if (rc)
370 goto err_setup_rx;
371 }
372
373 return 0;
374
375 err_setup_rx:
376
377 netif_err(adapter, ifup, adapter->netdev,
378 "Rx queue %d: allocation failed\n", i);
379
380 /* rewind the index freeing the rings as we go */
381 while (i--)
382 ena_free_rx_resources(adapter, i);
383 return rc;
384 }
385
386 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
387 * @adapter: board private structure
388 *
389 * Free all receive software resources
390 */
391 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
392 {
393 int i;
394
395 for (i = 0; i < adapter->num_queues; i++)
396 ena_free_rx_resources(adapter, i);
397 }
398
399 static inline int ena_alloc_rx_page(struct ena_ring *rx_ring,
400 struct ena_rx_buffer *rx_info, gfp_t gfp)
401 {
402 struct ena_com_buf *ena_buf;
403 struct page *page;
404 dma_addr_t dma;
405
406 /* if previous allocated page is not used */
407 if (unlikely(rx_info->page))
408 return 0;
409
410 page = alloc_page(gfp);
411 if (unlikely(!page)) {
412 u64_stats_update_begin(&rx_ring->syncp);
413 rx_ring->rx_stats.page_alloc_fail++;
414 u64_stats_update_end(&rx_ring->syncp);
415 return -ENOMEM;
416 }
417
418 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE,
419 DMA_FROM_DEVICE);
420 if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
421 u64_stats_update_begin(&rx_ring->syncp);
422 rx_ring->rx_stats.dma_mapping_err++;
423 u64_stats_update_end(&rx_ring->syncp);
424
425 __free_page(page);
426 return -EIO;
427 }
428 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
429 "alloc page %p, rx_info %p\n", page, rx_info);
430
431 rx_info->page = page;
432 rx_info->page_offset = 0;
433 ena_buf = &rx_info->ena_buf;
434 ena_buf->paddr = dma;
435 ena_buf->len = PAGE_SIZE;
436
437 return 0;
438 }
439
440 static void ena_free_rx_page(struct ena_ring *rx_ring,
441 struct ena_rx_buffer *rx_info)
442 {
443 struct page *page = rx_info->page;
444 struct ena_com_buf *ena_buf = &rx_info->ena_buf;
445
446 if (unlikely(!page)) {
447 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
448 "Trying to free unallocated buffer\n");
449 return;
450 }
451
452 dma_unmap_page(rx_ring->dev, ena_buf->paddr, PAGE_SIZE,
453 DMA_FROM_DEVICE);
454
455 __free_page(page);
456 rx_info->page = NULL;
457 }
458
459 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
460 {
461 u16 next_to_use;
462 u32 i;
463 int rc;
464
465 next_to_use = rx_ring->next_to_use;
466
467 for (i = 0; i < num; i++) {
468 struct ena_rx_buffer *rx_info =
469 &rx_ring->rx_buffer_info[next_to_use];
470
471 rc = ena_alloc_rx_page(rx_ring, rx_info,
472 __GFP_COLD | GFP_ATOMIC | __GFP_COMP);
473 if (unlikely(rc < 0)) {
474 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
475 "failed to alloc buffer for rx queue %d\n",
476 rx_ring->qid);
477 break;
478 }
479 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
480 &rx_info->ena_buf,
481 next_to_use);
482 if (unlikely(rc)) {
483 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
484 "failed to add buffer for rx queue %d\n",
485 rx_ring->qid);
486 break;
487 }
488 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
489 rx_ring->ring_size);
490 }
491
492 if (unlikely(i < num)) {
493 u64_stats_update_begin(&rx_ring->syncp);
494 rx_ring->rx_stats.refil_partial++;
495 u64_stats_update_end(&rx_ring->syncp);
496 netdev_warn(rx_ring->netdev,
497 "refilled rx qid %d with only %d buffers (from %d)\n",
498 rx_ring->qid, i, num);
499 }
500
501 if (likely(i)) {
502 /* Add memory barrier to make sure the desc were written before
503 * issue a doorbell
504 */
505 wmb();
506 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
507 }
508
509 rx_ring->next_to_use = next_to_use;
510
511 return i;
512 }
513
514 static void ena_free_rx_bufs(struct ena_adapter *adapter,
515 u32 qid)
516 {
517 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
518 u32 i;
519
520 for (i = 0; i < rx_ring->ring_size; i++) {
521 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
522
523 if (rx_info->page)
524 ena_free_rx_page(rx_ring, rx_info);
525 }
526 }
527
528 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
529 * @adapter: board private structure
530 *
531 */
532 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
533 {
534 struct ena_ring *rx_ring;
535 int i, rc, bufs_num;
536
537 for (i = 0; i < adapter->num_queues; i++) {
538 rx_ring = &adapter->rx_ring[i];
539 bufs_num = rx_ring->ring_size - 1;
540 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
541
542 if (unlikely(rc != bufs_num))
543 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
544 "refilling Queue %d failed. allocated %d buffers from: %d\n",
545 i, rc, bufs_num);
546 }
547 }
548
549 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
550 {
551 int i;
552
553 for (i = 0; i < adapter->num_queues; i++)
554 ena_free_rx_bufs(adapter, i);
555 }
556
557 /* ena_free_tx_bufs - Free Tx Buffers per Queue
558 * @tx_ring: TX ring for which buffers be freed
559 */
560 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
561 {
562 u32 i;
563
564 for (i = 0; i < tx_ring->ring_size; i++) {
565 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
566 struct ena_com_buf *ena_buf;
567 int nr_frags;
568 int j;
569
570 if (!tx_info->skb)
571 continue;
572
573 netdev_notice(tx_ring->netdev,
574 "free uncompleted tx skb qid %d idx 0x%x\n",
575 tx_ring->qid, i);
576
577 ena_buf = tx_info->bufs;
578 dma_unmap_single(tx_ring->dev,
579 ena_buf->paddr,
580 ena_buf->len,
581 DMA_TO_DEVICE);
582
583 /* unmap remaining mapped pages */
584 nr_frags = tx_info->num_of_bufs - 1;
585 for (j = 0; j < nr_frags; j++) {
586 ena_buf++;
587 dma_unmap_page(tx_ring->dev,
588 ena_buf->paddr,
589 ena_buf->len,
590 DMA_TO_DEVICE);
591 }
592
593 dev_kfree_skb_any(tx_info->skb);
594 }
595 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
596 tx_ring->qid));
597 }
598
599 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
600 {
601 struct ena_ring *tx_ring;
602 int i;
603
604 for (i = 0; i < adapter->num_queues; i++) {
605 tx_ring = &adapter->tx_ring[i];
606 ena_free_tx_bufs(tx_ring);
607 }
608 }
609
610 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
611 {
612 u16 ena_qid;
613 int i;
614
615 for (i = 0; i < adapter->num_queues; i++) {
616 ena_qid = ENA_IO_TXQ_IDX(i);
617 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
618 }
619 }
620
621 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
622 {
623 u16 ena_qid;
624 int i;
625
626 for (i = 0; i < adapter->num_queues; i++) {
627 ena_qid = ENA_IO_RXQ_IDX(i);
628 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
629 }
630 }
631
632 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
633 {
634 ena_destroy_all_tx_queues(adapter);
635 ena_destroy_all_rx_queues(adapter);
636 }
637
638 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
639 {
640 struct ena_tx_buffer *tx_info = NULL;
641
642 if (likely(req_id < tx_ring->ring_size)) {
643 tx_info = &tx_ring->tx_buffer_info[req_id];
644 if (likely(tx_info->skb))
645 return 0;
646 }
647
648 if (tx_info)
649 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
650 "tx_info doesn't have valid skb\n");
651 else
652 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
653 "Invalid req_id: %hu\n", req_id);
654
655 u64_stats_update_begin(&tx_ring->syncp);
656 tx_ring->tx_stats.bad_req_id++;
657 u64_stats_update_end(&tx_ring->syncp);
658
659 /* Trigger device reset */
660 set_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags);
661 return -EFAULT;
662 }
663
664 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
665 {
666 struct netdev_queue *txq;
667 bool above_thresh;
668 u32 tx_bytes = 0;
669 u32 total_done = 0;
670 u16 next_to_clean;
671 u16 req_id;
672 int tx_pkts = 0;
673 int rc;
674
675 next_to_clean = tx_ring->next_to_clean;
676 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
677
678 while (tx_pkts < budget) {
679 struct ena_tx_buffer *tx_info;
680 struct sk_buff *skb;
681 struct ena_com_buf *ena_buf;
682 int i, nr_frags;
683
684 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
685 &req_id);
686 if (rc)
687 break;
688
689 rc = validate_tx_req_id(tx_ring, req_id);
690 if (rc)
691 break;
692
693 tx_info = &tx_ring->tx_buffer_info[req_id];
694 skb = tx_info->skb;
695
696 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
697 prefetch(&skb->end);
698
699 tx_info->skb = NULL;
700 tx_info->last_jiffies = 0;
701
702 if (likely(tx_info->num_of_bufs != 0)) {
703 ena_buf = tx_info->bufs;
704
705 dma_unmap_single(tx_ring->dev,
706 dma_unmap_addr(ena_buf, paddr),
707 dma_unmap_len(ena_buf, len),
708 DMA_TO_DEVICE);
709
710 /* unmap remaining mapped pages */
711 nr_frags = tx_info->num_of_bufs - 1;
712 for (i = 0; i < nr_frags; i++) {
713 ena_buf++;
714 dma_unmap_page(tx_ring->dev,
715 dma_unmap_addr(ena_buf, paddr),
716 dma_unmap_len(ena_buf, len),
717 DMA_TO_DEVICE);
718 }
719 }
720
721 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
722 "tx_poll: q %d skb %p completed\n", tx_ring->qid,
723 skb);
724
725 tx_bytes += skb->len;
726 dev_kfree_skb(skb);
727 tx_pkts++;
728 total_done += tx_info->tx_descs;
729
730 tx_ring->free_tx_ids[next_to_clean] = req_id;
731 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
732 tx_ring->ring_size);
733 }
734
735 tx_ring->next_to_clean = next_to_clean;
736 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
737 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
738
739 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
740
741 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
742 "tx_poll: q %d done. total pkts: %d\n",
743 tx_ring->qid, tx_pkts);
744
745 /* need to make the rings circular update visible to
746 * ena_start_xmit() before checking for netif_queue_stopped().
747 */
748 smp_mb();
749
750 above_thresh = ena_com_sq_empty_space(tx_ring->ena_com_io_sq) >
751 ENA_TX_WAKEUP_THRESH;
752 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
753 __netif_tx_lock(txq, smp_processor_id());
754 above_thresh = ena_com_sq_empty_space(tx_ring->ena_com_io_sq) >
755 ENA_TX_WAKEUP_THRESH;
756 if (netif_tx_queue_stopped(txq) && above_thresh) {
757 netif_tx_wake_queue(txq);
758 u64_stats_update_begin(&tx_ring->syncp);
759 tx_ring->tx_stats.queue_wakeup++;
760 u64_stats_update_end(&tx_ring->syncp);
761 }
762 __netif_tx_unlock(txq);
763 }
764
765 tx_ring->per_napi_bytes += tx_bytes;
766 tx_ring->per_napi_packets += tx_pkts;
767
768 return tx_pkts;
769 }
770
771 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
772 struct ena_com_rx_buf_info *ena_bufs,
773 u32 descs,
774 u16 *next_to_clean)
775 {
776 struct sk_buff *skb;
777 struct ena_rx_buffer *rx_info =
778 &rx_ring->rx_buffer_info[*next_to_clean];
779 u32 len;
780 u32 buf = 0;
781 void *va;
782
783 len = ena_bufs[0].len;
784 if (unlikely(!rx_info->page)) {
785 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
786 "Page is NULL\n");
787 return NULL;
788 }
789
790 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
791 "rx_info %p page %p\n",
792 rx_info, rx_info->page);
793
794 /* save virt address of first buffer */
795 va = page_address(rx_info->page) + rx_info->page_offset;
796 prefetch(va + NET_IP_ALIGN);
797
798 if (len <= rx_ring->rx_copybreak) {
799 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
800 rx_ring->rx_copybreak);
801 if (unlikely(!skb)) {
802 u64_stats_update_begin(&rx_ring->syncp);
803 rx_ring->rx_stats.skb_alloc_fail++;
804 u64_stats_update_end(&rx_ring->syncp);
805 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
806 "Failed to allocate skb\n");
807 return NULL;
808 }
809
810 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
811 "rx allocated small packet. len %d. data_len %d\n",
812 skb->len, skb->data_len);
813
814 /* sync this buffer for CPU use */
815 dma_sync_single_for_cpu(rx_ring->dev,
816 dma_unmap_addr(&rx_info->ena_buf, paddr),
817 len,
818 DMA_FROM_DEVICE);
819 skb_copy_to_linear_data(skb, va, len);
820 dma_sync_single_for_device(rx_ring->dev,
821 dma_unmap_addr(&rx_info->ena_buf, paddr),
822 len,
823 DMA_FROM_DEVICE);
824
825 skb_put(skb, len);
826 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
827 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
828 rx_ring->ring_size);
829 return skb;
830 }
831
832 skb = napi_get_frags(rx_ring->napi);
833 if (unlikely(!skb)) {
834 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
835 "Failed allocating skb\n");
836 u64_stats_update_begin(&rx_ring->syncp);
837 rx_ring->rx_stats.skb_alloc_fail++;
838 u64_stats_update_end(&rx_ring->syncp);
839 return NULL;
840 }
841
842 do {
843 dma_unmap_page(rx_ring->dev,
844 dma_unmap_addr(&rx_info->ena_buf, paddr),
845 PAGE_SIZE, DMA_FROM_DEVICE);
846
847 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
848 rx_info->page_offset, len, PAGE_SIZE);
849
850 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
851 "rx skb updated. len %d. data_len %d\n",
852 skb->len, skb->data_len);
853
854 rx_info->page = NULL;
855 *next_to_clean =
856 ENA_RX_RING_IDX_NEXT(*next_to_clean,
857 rx_ring->ring_size);
858 if (likely(--descs == 0))
859 break;
860 rx_info = &rx_ring->rx_buffer_info[*next_to_clean];
861 len = ena_bufs[++buf].len;
862 } while (1);
863
864 return skb;
865 }
866
867 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
868 * @adapter: structure containing adapter specific data
869 * @ena_rx_ctx: received packet context/metadata
870 * @skb: skb currently being received and modified
871 */
872 static inline void ena_rx_checksum(struct ena_ring *rx_ring,
873 struct ena_com_rx_ctx *ena_rx_ctx,
874 struct sk_buff *skb)
875 {
876 /* Rx csum disabled */
877 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
878 skb->ip_summed = CHECKSUM_NONE;
879 return;
880 }
881
882 /* For fragmented packets the checksum isn't valid */
883 if (ena_rx_ctx->frag) {
884 skb->ip_summed = CHECKSUM_NONE;
885 return;
886 }
887
888 /* if IP and error */
889 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
890 (ena_rx_ctx->l3_csum_err))) {
891 /* ipv4 checksum error */
892 skb->ip_summed = CHECKSUM_NONE;
893 u64_stats_update_begin(&rx_ring->syncp);
894 rx_ring->rx_stats.bad_csum++;
895 u64_stats_update_end(&rx_ring->syncp);
896 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
897 "RX IPv4 header checksum error\n");
898 return;
899 }
900
901 /* if TCP/UDP */
902 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
903 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
904 if (unlikely(ena_rx_ctx->l4_csum_err)) {
905 /* TCP/UDP checksum error */
906 u64_stats_update_begin(&rx_ring->syncp);
907 rx_ring->rx_stats.bad_csum++;
908 u64_stats_update_end(&rx_ring->syncp);
909 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
910 "RX L4 checksum error\n");
911 skb->ip_summed = CHECKSUM_NONE;
912 return;
913 }
914
915 skb->ip_summed = CHECKSUM_UNNECESSARY;
916 }
917 }
918
919 static void ena_set_rx_hash(struct ena_ring *rx_ring,
920 struct ena_com_rx_ctx *ena_rx_ctx,
921 struct sk_buff *skb)
922 {
923 enum pkt_hash_types hash_type;
924
925 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
926 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
927 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
928
929 hash_type = PKT_HASH_TYPE_L4;
930 else
931 hash_type = PKT_HASH_TYPE_NONE;
932
933 /* Override hash type if the packet is fragmented */
934 if (ena_rx_ctx->frag)
935 hash_type = PKT_HASH_TYPE_NONE;
936
937 skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
938 }
939 }
940
941 /* ena_clean_rx_irq - Cleanup RX irq
942 * @rx_ring: RX ring to clean
943 * @napi: napi handler
944 * @budget: how many packets driver is allowed to clean
945 *
946 * Returns the number of cleaned buffers.
947 */
948 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
949 u32 budget)
950 {
951 u16 next_to_clean = rx_ring->next_to_clean;
952 u32 res_budget, work_done;
953
954 struct ena_com_rx_ctx ena_rx_ctx;
955 struct ena_adapter *adapter;
956 struct sk_buff *skb;
957 int refill_required;
958 int refill_threshold;
959 int rc = 0;
960 int total_len = 0;
961 int rx_copybreak_pkt = 0;
962
963 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
964 "%s qid %d\n", __func__, rx_ring->qid);
965 res_budget = budget;
966
967 do {
968 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
969 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
970 ena_rx_ctx.descs = 0;
971 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
972 rx_ring->ena_com_io_sq,
973 &ena_rx_ctx);
974 if (unlikely(rc))
975 goto error;
976
977 if (unlikely(ena_rx_ctx.descs == 0))
978 break;
979
980 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
981 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
982 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
983 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
984
985 /* allocate skb and fill it */
986 skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs,
987 &next_to_clean);
988
989 /* exit if we failed to retrieve a buffer */
990 if (unlikely(!skb)) {
991 next_to_clean = ENA_RX_RING_IDX_ADD(next_to_clean,
992 ena_rx_ctx.descs,
993 rx_ring->ring_size);
994 break;
995 }
996
997 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
998
999 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1000
1001 skb_record_rx_queue(skb, rx_ring->qid);
1002
1003 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
1004 total_len += rx_ring->ena_bufs[0].len;
1005 rx_copybreak_pkt++;
1006 napi_gro_receive(napi, skb);
1007 } else {
1008 total_len += skb->len;
1009 napi_gro_frags(napi);
1010 }
1011
1012 res_budget--;
1013 } while (likely(res_budget));
1014
1015 work_done = budget - res_budget;
1016 rx_ring->per_napi_bytes += total_len;
1017 rx_ring->per_napi_packets += work_done;
1018 u64_stats_update_begin(&rx_ring->syncp);
1019 rx_ring->rx_stats.bytes += total_len;
1020 rx_ring->rx_stats.cnt += work_done;
1021 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1022 u64_stats_update_end(&rx_ring->syncp);
1023
1024 rx_ring->next_to_clean = next_to_clean;
1025
1026 refill_required = ena_com_sq_empty_space(rx_ring->ena_com_io_sq);
1027 refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1028
1029 /* Optimization, try to batch new rx buffers */
1030 if (refill_required > refill_threshold) {
1031 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1032 ena_refill_rx_bufs(rx_ring, refill_required);
1033 }
1034
1035 return work_done;
1036
1037 error:
1038 adapter = netdev_priv(rx_ring->netdev);
1039
1040 u64_stats_update_begin(&rx_ring->syncp);
1041 rx_ring->rx_stats.bad_desc_num++;
1042 u64_stats_update_end(&rx_ring->syncp);
1043
1044 /* Too many desc from the device. Trigger reset */
1045 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
1046
1047 return 0;
1048 }
1049
1050 inline void ena_adjust_intr_moderation(struct ena_ring *rx_ring,
1051 struct ena_ring *tx_ring)
1052 {
1053 /* We apply adaptive moderation on Rx path only.
1054 * Tx uses static interrupt moderation.
1055 */
1056 ena_com_calculate_interrupt_delay(rx_ring->ena_dev,
1057 rx_ring->per_napi_packets,
1058 rx_ring->per_napi_bytes,
1059 &rx_ring->smoothed_interval,
1060 &rx_ring->moder_tbl_idx);
1061
1062 /* Reset per napi packets/bytes */
1063 tx_ring->per_napi_packets = 0;
1064 tx_ring->per_napi_bytes = 0;
1065 rx_ring->per_napi_packets = 0;
1066 rx_ring->per_napi_bytes = 0;
1067 }
1068
1069 static inline void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1070 struct ena_ring *rx_ring)
1071 {
1072 int cpu = get_cpu();
1073 int numa_node;
1074
1075 /* Check only one ring since the 2 rings are running on the same cpu */
1076 if (likely(tx_ring->cpu == cpu))
1077 goto out;
1078
1079 numa_node = cpu_to_node(cpu);
1080 put_cpu();
1081
1082 if (numa_node != NUMA_NO_NODE) {
1083 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1084 ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node);
1085 }
1086
1087 tx_ring->cpu = cpu;
1088 rx_ring->cpu = cpu;
1089
1090 return;
1091 out:
1092 put_cpu();
1093 }
1094
1095 static int ena_io_poll(struct napi_struct *napi, int budget)
1096 {
1097 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1098 struct ena_ring *tx_ring, *rx_ring;
1099 struct ena_eth_io_intr_reg intr_reg;
1100
1101 u32 tx_work_done;
1102 u32 rx_work_done;
1103 int tx_budget;
1104 int napi_comp_call = 0;
1105 int ret;
1106
1107 tx_ring = ena_napi->tx_ring;
1108 rx_ring = ena_napi->rx_ring;
1109
1110 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1111
1112 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
1113 napi_complete_done(napi, 0);
1114 return 0;
1115 }
1116
1117 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1118 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1119
1120 if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1121 napi_complete_done(napi, rx_work_done);
1122
1123 napi_comp_call = 1;
1124 /* Tx and Rx share the same interrupt vector */
1125 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1126 ena_adjust_intr_moderation(rx_ring, tx_ring);
1127
1128 /* Update intr register: rx intr delay, tx intr delay and
1129 * interrupt unmask
1130 */
1131 ena_com_update_intr_reg(&intr_reg,
1132 rx_ring->smoothed_interval,
1133 tx_ring->smoothed_interval,
1134 true);
1135
1136 /* It is a shared MSI-X. Tx and Rx CQ have pointer to it.
1137 * So we use one of them to reach the intr reg
1138 */
1139 ena_com_unmask_intr(rx_ring->ena_com_io_cq, &intr_reg);
1140
1141 ena_update_ring_numa_node(tx_ring, rx_ring);
1142
1143 ret = rx_work_done;
1144 } else {
1145 ret = budget;
1146 }
1147
1148 u64_stats_update_begin(&tx_ring->syncp);
1149 tx_ring->tx_stats.napi_comp += napi_comp_call;
1150 tx_ring->tx_stats.tx_poll++;
1151 u64_stats_update_end(&tx_ring->syncp);
1152
1153 return ret;
1154 }
1155
1156 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1157 {
1158 struct ena_adapter *adapter = (struct ena_adapter *)data;
1159
1160 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1161
1162 /* Don't call the aenq handler before probe is done */
1163 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1164 ena_com_aenq_intr_handler(adapter->ena_dev, data);
1165
1166 return IRQ_HANDLED;
1167 }
1168
1169 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1170 * @irq: interrupt number
1171 * @data: pointer to a network interface private napi device structure
1172 */
1173 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1174 {
1175 struct ena_napi *ena_napi = data;
1176
1177 napi_schedule(&ena_napi->napi);
1178
1179 return IRQ_HANDLED;
1180 }
1181
1182 static int ena_enable_msix(struct ena_adapter *adapter, int num_queues)
1183 {
1184 int i, msix_vecs, rc;
1185
1186 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1187 netif_err(adapter, probe, adapter->netdev,
1188 "Error, MSI-X is already enabled\n");
1189 return -EPERM;
1190 }
1191
1192 /* Reserved the max msix vectors we might need */
1193 msix_vecs = ENA_MAX_MSIX_VEC(num_queues);
1194
1195 netif_dbg(adapter, probe, adapter->netdev,
1196 "trying to enable MSI-X, vectors %d\n", msix_vecs);
1197
1198 adapter->msix_entries = vzalloc(msix_vecs * sizeof(struct msix_entry));
1199
1200 if (!adapter->msix_entries)
1201 return -ENOMEM;
1202
1203 for (i = 0; i < msix_vecs; i++)
1204 adapter->msix_entries[i].entry = i;
1205
1206 rc = pci_enable_msix(adapter->pdev, adapter->msix_entries, msix_vecs);
1207 if (rc != 0) {
1208 netif_err(adapter, probe, adapter->netdev,
1209 "Failed to enable MSI-X, vectors %d rc %d\n",
1210 msix_vecs, rc);
1211 return -ENOSPC;
1212 }
1213
1214 netif_dbg(adapter, probe, adapter->netdev, "enable MSI-X, vectors %d\n",
1215 msix_vecs);
1216
1217 if (msix_vecs >= 1) {
1218 if (ena_init_rx_cpu_rmap(adapter))
1219 netif_warn(adapter, probe, adapter->netdev,
1220 "Failed to map IRQs to CPUs\n");
1221 }
1222
1223 adapter->msix_vecs = msix_vecs;
1224 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
1225
1226 return 0;
1227 }
1228
1229 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
1230 {
1231 u32 cpu;
1232
1233 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
1234 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
1235 pci_name(adapter->pdev));
1236 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
1237 ena_intr_msix_mgmnt;
1238 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
1239 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
1240 adapter->msix_entries[ENA_MGMNT_IRQ_IDX].vector;
1241 cpu = cpumask_first(cpu_online_mask);
1242 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
1243 cpumask_set_cpu(cpu,
1244 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
1245 }
1246
1247 static void ena_setup_io_intr(struct ena_adapter *adapter)
1248 {
1249 struct net_device *netdev;
1250 int irq_idx, i, cpu;
1251
1252 netdev = adapter->netdev;
1253
1254 for (i = 0; i < adapter->num_queues; i++) {
1255 irq_idx = ENA_IO_IRQ_IDX(i);
1256 cpu = i % num_online_cpus();
1257
1258 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1259 "%s-Tx-Rx-%d", netdev->name, i);
1260 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
1261 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
1262 adapter->irq_tbl[irq_idx].vector =
1263 adapter->msix_entries[irq_idx].vector;
1264 adapter->irq_tbl[irq_idx].cpu = cpu;
1265
1266 cpumask_set_cpu(cpu,
1267 &adapter->irq_tbl[irq_idx].affinity_hint_mask);
1268 }
1269 }
1270
1271 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
1272 {
1273 unsigned long flags = 0;
1274 struct ena_irq *irq;
1275 int rc;
1276
1277 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1278 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1279 irq->data);
1280 if (rc) {
1281 netif_err(adapter, probe, adapter->netdev,
1282 "failed to request admin irq\n");
1283 return rc;
1284 }
1285
1286 netif_dbg(adapter, probe, adapter->netdev,
1287 "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
1288 irq->affinity_hint_mask.bits[0], irq->vector);
1289
1290 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1291
1292 return rc;
1293 }
1294
1295 static int ena_request_io_irq(struct ena_adapter *adapter)
1296 {
1297 unsigned long flags = 0;
1298 struct ena_irq *irq;
1299 int rc = 0, i, k;
1300
1301 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1302 netif_err(adapter, ifup, adapter->netdev,
1303 "Failed to request I/O IRQ: MSI-X is not enabled\n");
1304 return -EINVAL;
1305 }
1306
1307 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
1308 irq = &adapter->irq_tbl[i];
1309 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1310 irq->data);
1311 if (rc) {
1312 netif_err(adapter, ifup, adapter->netdev,
1313 "Failed to request I/O IRQ. index %d rc %d\n",
1314 i, rc);
1315 goto err;
1316 }
1317
1318 netif_dbg(adapter, ifup, adapter->netdev,
1319 "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
1320 i, irq->affinity_hint_mask.bits[0], irq->vector);
1321
1322 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1323 }
1324
1325 return rc;
1326
1327 err:
1328 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
1329 irq = &adapter->irq_tbl[k];
1330 free_irq(irq->vector, irq->data);
1331 }
1332
1333 return rc;
1334 }
1335
1336 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
1337 {
1338 struct ena_irq *irq;
1339
1340 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1341 synchronize_irq(irq->vector);
1342 irq_set_affinity_hint(irq->vector, NULL);
1343 free_irq(irq->vector, irq->data);
1344 }
1345
1346 static void ena_free_io_irq(struct ena_adapter *adapter)
1347 {
1348 struct ena_irq *irq;
1349 int i;
1350
1351 #ifdef CONFIG_RFS_ACCEL
1352 if (adapter->msix_vecs >= 1) {
1353 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
1354 adapter->netdev->rx_cpu_rmap = NULL;
1355 }
1356 #endif /* CONFIG_RFS_ACCEL */
1357
1358 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
1359 irq = &adapter->irq_tbl[i];
1360 irq_set_affinity_hint(irq->vector, NULL);
1361 free_irq(irq->vector, irq->data);
1362 }
1363 }
1364
1365 static void ena_disable_msix(struct ena_adapter *adapter)
1366 {
1367 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
1368 pci_disable_msix(adapter->pdev);
1369
1370 if (adapter->msix_entries)
1371 vfree(adapter->msix_entries);
1372 adapter->msix_entries = NULL;
1373 }
1374
1375 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
1376 {
1377 int i;
1378
1379 if (!netif_running(adapter->netdev))
1380 return;
1381
1382 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++)
1383 synchronize_irq(adapter->irq_tbl[i].vector);
1384 }
1385
1386 static void ena_del_napi(struct ena_adapter *adapter)
1387 {
1388 int i;
1389
1390 for (i = 0; i < adapter->num_queues; i++)
1391 netif_napi_del(&adapter->ena_napi[i].napi);
1392 }
1393
1394 static void ena_init_napi(struct ena_adapter *adapter)
1395 {
1396 struct ena_napi *napi;
1397 int i;
1398
1399 for (i = 0; i < adapter->num_queues; i++) {
1400 napi = &adapter->ena_napi[i];
1401
1402 netif_napi_add(adapter->netdev,
1403 &adapter->ena_napi[i].napi,
1404 ena_io_poll,
1405 ENA_NAPI_BUDGET);
1406 napi->rx_ring = &adapter->rx_ring[i];
1407 napi->tx_ring = &adapter->tx_ring[i];
1408 napi->qid = i;
1409 }
1410 }
1411
1412 static void ena_napi_disable_all(struct ena_adapter *adapter)
1413 {
1414 int i;
1415
1416 for (i = 0; i < adapter->num_queues; i++)
1417 napi_disable(&adapter->ena_napi[i].napi);
1418 }
1419
1420 static void ena_napi_enable_all(struct ena_adapter *adapter)
1421 {
1422 int i;
1423
1424 for (i = 0; i < adapter->num_queues; i++)
1425 napi_enable(&adapter->ena_napi[i].napi);
1426 }
1427
1428 static void ena_restore_ethtool_params(struct ena_adapter *adapter)
1429 {
1430 adapter->tx_usecs = 0;
1431 adapter->rx_usecs = 0;
1432 adapter->tx_frames = 1;
1433 adapter->rx_frames = 1;
1434 }
1435
1436 /* Configure the Rx forwarding */
1437 static int ena_rss_configure(struct ena_adapter *adapter)
1438 {
1439 struct ena_com_dev *ena_dev = adapter->ena_dev;
1440 int rc;
1441
1442 /* In case the RSS table wasn't initialized by probe */
1443 if (!ena_dev->rss.tbl_log_size) {
1444 rc = ena_rss_init_default(adapter);
1445 if (rc && (rc != -EPERM)) {
1446 netif_err(adapter, ifup, adapter->netdev,
1447 "Failed to init RSS rc: %d\n", rc);
1448 return rc;
1449 }
1450 }
1451
1452 /* Set indirect table */
1453 rc = ena_com_indirect_table_set(ena_dev);
1454 if (unlikely(rc && rc != -EPERM))
1455 return rc;
1456
1457 /* Configure hash function (if supported) */
1458 rc = ena_com_set_hash_function(ena_dev);
1459 if (unlikely(rc && (rc != -EPERM)))
1460 return rc;
1461
1462 /* Configure hash inputs (if supported) */
1463 rc = ena_com_set_hash_ctrl(ena_dev);
1464 if (unlikely(rc && (rc != -EPERM)))
1465 return rc;
1466
1467 return 0;
1468 }
1469
1470 static int ena_up_complete(struct ena_adapter *adapter)
1471 {
1472 int rc, i;
1473
1474 rc = ena_rss_configure(adapter);
1475 if (rc)
1476 return rc;
1477
1478 ena_init_napi(adapter);
1479
1480 ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
1481
1482 ena_refill_all_rx_bufs(adapter);
1483
1484 /* enable transmits */
1485 netif_tx_start_all_queues(adapter->netdev);
1486
1487 ena_restore_ethtool_params(adapter);
1488
1489 ena_napi_enable_all(adapter);
1490
1491 /* schedule napi in case we had pending packets
1492 * from the last time we disable napi
1493 */
1494 for (i = 0; i < adapter->num_queues; i++)
1495 napi_schedule(&adapter->ena_napi[i].napi);
1496
1497 return 0;
1498 }
1499
1500 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
1501 {
1502 struct ena_com_create_io_ctx ctx = { 0 };
1503 struct ena_com_dev *ena_dev;
1504 struct ena_ring *tx_ring;
1505 u32 msix_vector;
1506 u16 ena_qid;
1507 int rc;
1508
1509 ena_dev = adapter->ena_dev;
1510
1511 tx_ring = &adapter->tx_ring[qid];
1512 msix_vector = ENA_IO_IRQ_IDX(qid);
1513 ena_qid = ENA_IO_TXQ_IDX(qid);
1514
1515 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1516 ctx.qid = ena_qid;
1517 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1518 ctx.msix_vector = msix_vector;
1519 ctx.queue_size = adapter->tx_ring_size;
1520 ctx.numa_node = cpu_to_node(tx_ring->cpu);
1521
1522 rc = ena_com_create_io_queue(ena_dev, &ctx);
1523 if (rc) {
1524 netif_err(adapter, ifup, adapter->netdev,
1525 "Failed to create I/O TX queue num %d rc: %d\n",
1526 qid, rc);
1527 return rc;
1528 }
1529
1530 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1531 &tx_ring->ena_com_io_sq,
1532 &tx_ring->ena_com_io_cq);
1533 if (rc) {
1534 netif_err(adapter, ifup, adapter->netdev,
1535 "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
1536 qid, rc);
1537 ena_com_destroy_io_queue(ena_dev, ena_qid);
1538 }
1539
1540 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
1541 return rc;
1542 }
1543
1544 static int ena_create_all_io_tx_queues(struct ena_adapter *adapter)
1545 {
1546 struct ena_com_dev *ena_dev = adapter->ena_dev;
1547 int rc, i;
1548
1549 for (i = 0; i < adapter->num_queues; i++) {
1550 rc = ena_create_io_tx_queue(adapter, i);
1551 if (rc)
1552 goto create_err;
1553 }
1554
1555 return 0;
1556
1557 create_err:
1558 while (i--)
1559 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1560
1561 return rc;
1562 }
1563
1564 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
1565 {
1566 struct ena_com_dev *ena_dev;
1567 struct ena_com_create_io_ctx ctx = { 0 };
1568 struct ena_ring *rx_ring;
1569 u32 msix_vector;
1570 u16 ena_qid;
1571 int rc;
1572
1573 ena_dev = adapter->ena_dev;
1574
1575 rx_ring = &adapter->rx_ring[qid];
1576 msix_vector = ENA_IO_IRQ_IDX(qid);
1577 ena_qid = ENA_IO_RXQ_IDX(qid);
1578
1579 ctx.qid = ena_qid;
1580 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1581 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1582 ctx.msix_vector = msix_vector;
1583 ctx.queue_size = adapter->rx_ring_size;
1584 ctx.numa_node = cpu_to_node(rx_ring->cpu);
1585
1586 rc = ena_com_create_io_queue(ena_dev, &ctx);
1587 if (rc) {
1588 netif_err(adapter, ifup, adapter->netdev,
1589 "Failed to create I/O RX queue num %d rc: %d\n",
1590 qid, rc);
1591 return rc;
1592 }
1593
1594 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1595 &rx_ring->ena_com_io_sq,
1596 &rx_ring->ena_com_io_cq);
1597 if (rc) {
1598 netif_err(adapter, ifup, adapter->netdev,
1599 "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
1600 qid, rc);
1601 ena_com_destroy_io_queue(ena_dev, ena_qid);
1602 }
1603
1604 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
1605
1606 return rc;
1607 }
1608
1609 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
1610 {
1611 struct ena_com_dev *ena_dev = adapter->ena_dev;
1612 int rc, i;
1613
1614 for (i = 0; i < adapter->num_queues; i++) {
1615 rc = ena_create_io_rx_queue(adapter, i);
1616 if (rc)
1617 goto create_err;
1618 }
1619
1620 return 0;
1621
1622 create_err:
1623 while (i--)
1624 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1625
1626 return rc;
1627 }
1628
1629 static int ena_up(struct ena_adapter *adapter)
1630 {
1631 int rc;
1632
1633 netdev_dbg(adapter->netdev, "%s\n", __func__);
1634
1635 ena_setup_io_intr(adapter);
1636
1637 rc = ena_request_io_irq(adapter);
1638 if (rc)
1639 goto err_req_irq;
1640
1641 /* allocate transmit descriptors */
1642 rc = ena_setup_all_tx_resources(adapter);
1643 if (rc)
1644 goto err_setup_tx;
1645
1646 /* allocate receive descriptors */
1647 rc = ena_setup_all_rx_resources(adapter);
1648 if (rc)
1649 goto err_setup_rx;
1650
1651 /* Create TX queues */
1652 rc = ena_create_all_io_tx_queues(adapter);
1653 if (rc)
1654 goto err_create_tx_queues;
1655
1656 /* Create RX queues */
1657 rc = ena_create_all_io_rx_queues(adapter);
1658 if (rc)
1659 goto err_create_rx_queues;
1660
1661 rc = ena_up_complete(adapter);
1662 if (rc)
1663 goto err_up;
1664
1665 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
1666 netif_carrier_on(adapter->netdev);
1667
1668 u64_stats_update_begin(&adapter->syncp);
1669 adapter->dev_stats.interface_up++;
1670 u64_stats_update_end(&adapter->syncp);
1671
1672 set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
1673
1674 return rc;
1675
1676 err_up:
1677 ena_destroy_all_rx_queues(adapter);
1678 err_create_rx_queues:
1679 ena_destroy_all_tx_queues(adapter);
1680 err_create_tx_queues:
1681 ena_free_all_io_rx_resources(adapter);
1682 err_setup_rx:
1683 ena_free_all_io_tx_resources(adapter);
1684 err_setup_tx:
1685 ena_free_io_irq(adapter);
1686 err_req_irq:
1687
1688 return rc;
1689 }
1690
1691 static void ena_down(struct ena_adapter *adapter)
1692 {
1693 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
1694
1695 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
1696
1697 u64_stats_update_begin(&adapter->syncp);
1698 adapter->dev_stats.interface_down++;
1699 u64_stats_update_end(&adapter->syncp);
1700
1701 /* After this point the napi handler won't enable the tx queue */
1702 ena_napi_disable_all(adapter);
1703 netif_carrier_off(adapter->netdev);
1704 netif_tx_disable(adapter->netdev);
1705
1706 /* After destroy the queue there won't be any new interrupts */
1707 ena_destroy_all_io_queues(adapter);
1708
1709 ena_disable_io_intr_sync(adapter);
1710 ena_free_io_irq(adapter);
1711 ena_del_napi(adapter);
1712
1713 ena_free_all_tx_bufs(adapter);
1714 ena_free_all_rx_bufs(adapter);
1715 ena_free_all_io_tx_resources(adapter);
1716 ena_free_all_io_rx_resources(adapter);
1717 }
1718
1719 /* ena_open - Called when a network interface is made active
1720 * @netdev: network interface device structure
1721 *
1722 * Returns 0 on success, negative value on failure
1723 *
1724 * The open entry point is called when a network interface is made
1725 * active by the system (IFF_UP). At this point all resources needed
1726 * for transmit and receive operations are allocated, the interrupt
1727 * handler is registered with the OS, the watchdog timer is started,
1728 * and the stack is notified that the interface is ready.
1729 */
1730 static int ena_open(struct net_device *netdev)
1731 {
1732 struct ena_adapter *adapter = netdev_priv(netdev);
1733 int rc;
1734
1735 /* Notify the stack of the actual queue counts. */
1736 rc = netif_set_real_num_tx_queues(netdev, adapter->num_queues);
1737 if (rc) {
1738 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
1739 return rc;
1740 }
1741
1742 rc = netif_set_real_num_rx_queues(netdev, adapter->num_queues);
1743 if (rc) {
1744 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
1745 return rc;
1746 }
1747
1748 rc = ena_up(adapter);
1749 if (rc)
1750 return rc;
1751
1752 return rc;
1753 }
1754
1755 /* ena_close - Disables a network interface
1756 * @netdev: network interface device structure
1757 *
1758 * Returns 0, this is not allowed to fail
1759 *
1760 * The close entry point is called when an interface is de-activated
1761 * by the OS. The hardware is still under the drivers control, but
1762 * needs to be disabled. A global MAC reset is issued to stop the
1763 * hardware, and all transmit and receive resources are freed.
1764 */
1765 static int ena_close(struct net_device *netdev)
1766 {
1767 struct ena_adapter *adapter = netdev_priv(netdev);
1768
1769 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
1770
1771 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
1772 ena_down(adapter);
1773
1774 return 0;
1775 }
1776
1777 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb)
1778 {
1779 u32 mss = skb_shinfo(skb)->gso_size;
1780 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
1781 u8 l4_protocol = 0;
1782
1783 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
1784 ena_tx_ctx->l4_csum_enable = 1;
1785 if (mss) {
1786 ena_tx_ctx->tso_enable = 1;
1787 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
1788 ena_tx_ctx->l4_csum_partial = 0;
1789 } else {
1790 ena_tx_ctx->tso_enable = 0;
1791 ena_meta->l4_hdr_len = 0;
1792 ena_tx_ctx->l4_csum_partial = 1;
1793 }
1794
1795 switch (ip_hdr(skb)->version) {
1796 case IPVERSION:
1797 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
1798 if (ip_hdr(skb)->frag_off & htons(IP_DF))
1799 ena_tx_ctx->df = 1;
1800 if (mss)
1801 ena_tx_ctx->l3_csum_enable = 1;
1802 l4_protocol = ip_hdr(skb)->protocol;
1803 break;
1804 case 6:
1805 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
1806 l4_protocol = ipv6_hdr(skb)->nexthdr;
1807 break;
1808 default:
1809 break;
1810 }
1811
1812 if (l4_protocol == IPPROTO_TCP)
1813 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
1814 else
1815 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
1816
1817 ena_meta->mss = mss;
1818 ena_meta->l3_hdr_len = skb_network_header_len(skb);
1819 ena_meta->l3_hdr_offset = skb_network_offset(skb);
1820 ena_tx_ctx->meta_valid = 1;
1821
1822 } else {
1823 ena_tx_ctx->meta_valid = 0;
1824 }
1825 }
1826
1827 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
1828 struct sk_buff *skb)
1829 {
1830 int num_frags, header_len, rc;
1831
1832 num_frags = skb_shinfo(skb)->nr_frags;
1833 header_len = skb_headlen(skb);
1834
1835 if (num_frags < tx_ring->sgl_size)
1836 return 0;
1837
1838 if ((num_frags == tx_ring->sgl_size) &&
1839 (header_len < tx_ring->tx_max_header_size))
1840 return 0;
1841
1842 u64_stats_update_begin(&tx_ring->syncp);
1843 tx_ring->tx_stats.linearize++;
1844 u64_stats_update_end(&tx_ring->syncp);
1845
1846 rc = skb_linearize(skb);
1847 if (unlikely(rc)) {
1848 u64_stats_update_begin(&tx_ring->syncp);
1849 tx_ring->tx_stats.linearize_failed++;
1850 u64_stats_update_end(&tx_ring->syncp);
1851 }
1852
1853 return rc;
1854 }
1855
1856 /* Called with netif_tx_lock. */
1857 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
1858 {
1859 struct ena_adapter *adapter = netdev_priv(dev);
1860 struct ena_tx_buffer *tx_info;
1861 struct ena_com_tx_ctx ena_tx_ctx;
1862 struct ena_ring *tx_ring;
1863 struct netdev_queue *txq;
1864 struct ena_com_buf *ena_buf;
1865 void *push_hdr;
1866 u32 len, last_frag;
1867 u16 next_to_use;
1868 u16 req_id;
1869 u16 push_len;
1870 u16 header_len;
1871 dma_addr_t dma;
1872 int qid, rc, nb_hw_desc;
1873 int i = -1;
1874
1875 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
1876 /* Determine which tx ring we will be placed on */
1877 qid = skb_get_queue_mapping(skb);
1878 tx_ring = &adapter->tx_ring[qid];
1879 txq = netdev_get_tx_queue(dev, qid);
1880
1881 rc = ena_check_and_linearize_skb(tx_ring, skb);
1882 if (unlikely(rc))
1883 goto error_drop_packet;
1884
1885 skb_tx_timestamp(skb);
1886 len = skb_headlen(skb);
1887
1888 next_to_use = tx_ring->next_to_use;
1889 req_id = tx_ring->free_tx_ids[next_to_use];
1890 tx_info = &tx_ring->tx_buffer_info[req_id];
1891 tx_info->num_of_bufs = 0;
1892
1893 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
1894 ena_buf = tx_info->bufs;
1895 tx_info->skb = skb;
1896
1897 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1898 /* prepared the push buffer */
1899 push_len = min_t(u32, len, tx_ring->tx_max_header_size);
1900 header_len = push_len;
1901 push_hdr = skb->data;
1902 } else {
1903 push_len = 0;
1904 header_len = min_t(u32, len, tx_ring->tx_max_header_size);
1905 push_hdr = NULL;
1906 }
1907
1908 netif_dbg(adapter, tx_queued, dev,
1909 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
1910 push_hdr, push_len);
1911
1912 if (len > push_len) {
1913 dma = dma_map_single(tx_ring->dev, skb->data + push_len,
1914 len - push_len, DMA_TO_DEVICE);
1915 if (dma_mapping_error(tx_ring->dev, dma))
1916 goto error_report_dma_error;
1917
1918 ena_buf->paddr = dma;
1919 ena_buf->len = len - push_len;
1920
1921 ena_buf++;
1922 tx_info->num_of_bufs++;
1923 }
1924
1925 last_frag = skb_shinfo(skb)->nr_frags;
1926
1927 for (i = 0; i < last_frag; i++) {
1928 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1929
1930 len = skb_frag_size(frag);
1931 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
1932 DMA_TO_DEVICE);
1933 if (dma_mapping_error(tx_ring->dev, dma))
1934 goto error_report_dma_error;
1935
1936 ena_buf->paddr = dma;
1937 ena_buf->len = len;
1938 ena_buf++;
1939 }
1940
1941 tx_info->num_of_bufs += last_frag;
1942
1943 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
1944 ena_tx_ctx.ena_bufs = tx_info->bufs;
1945 ena_tx_ctx.push_header = push_hdr;
1946 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
1947 ena_tx_ctx.req_id = req_id;
1948 ena_tx_ctx.header_len = header_len;
1949
1950 /* set flags and meta data */
1951 ena_tx_csum(&ena_tx_ctx, skb);
1952
1953 /* prepare the packet's descriptors to dma engine */
1954 rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
1955 &nb_hw_desc);
1956
1957 if (unlikely(rc)) {
1958 netif_err(adapter, tx_queued, dev,
1959 "failed to prepare tx bufs\n");
1960 u64_stats_update_begin(&tx_ring->syncp);
1961 tx_ring->tx_stats.queue_stop++;
1962 tx_ring->tx_stats.prepare_ctx_err++;
1963 u64_stats_update_end(&tx_ring->syncp);
1964 netif_tx_stop_queue(txq);
1965 goto error_unmap_dma;
1966 }
1967
1968 netdev_tx_sent_queue(txq, skb->len);
1969
1970 u64_stats_update_begin(&tx_ring->syncp);
1971 tx_ring->tx_stats.cnt++;
1972 tx_ring->tx_stats.bytes += skb->len;
1973 u64_stats_update_end(&tx_ring->syncp);
1974
1975 tx_info->tx_descs = nb_hw_desc;
1976 tx_info->last_jiffies = jiffies;
1977
1978 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
1979 tx_ring->ring_size);
1980
1981 /* This WMB is aimed to:
1982 * 1 - perform smp barrier before reading next_to_completion
1983 * 2 - make sure the desc were written before trigger DB
1984 */
1985 wmb();
1986
1987 /* stop the queue when no more space available, the packet can have up
1988 * to sgl_size + 2. one for the meta descriptor and one for header
1989 * (if the header is larger than tx_max_header_size).
1990 */
1991 if (unlikely(ena_com_sq_empty_space(tx_ring->ena_com_io_sq) <
1992 (tx_ring->sgl_size + 2))) {
1993 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
1994 __func__, qid);
1995
1996 netif_tx_stop_queue(txq);
1997 u64_stats_update_begin(&tx_ring->syncp);
1998 tx_ring->tx_stats.queue_stop++;
1999 u64_stats_update_end(&tx_ring->syncp);
2000
2001 /* There is a rare condition where this function decide to
2002 * stop the queue but meanwhile clean_tx_irq updates
2003 * next_to_completion and terminates.
2004 * The queue will remain stopped forever.
2005 * To solve this issue this function perform rmb, check
2006 * the wakeup condition and wake up the queue if needed.
2007 */
2008 smp_rmb();
2009
2010 if (ena_com_sq_empty_space(tx_ring->ena_com_io_sq)
2011 > ENA_TX_WAKEUP_THRESH) {
2012 netif_tx_wake_queue(txq);
2013 u64_stats_update_begin(&tx_ring->syncp);
2014 tx_ring->tx_stats.queue_wakeup++;
2015 u64_stats_update_end(&tx_ring->syncp);
2016 }
2017 }
2018
2019 if (netif_xmit_stopped(txq) || !skb->xmit_more) {
2020 /* trigger the dma engine */
2021 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2022 u64_stats_update_begin(&tx_ring->syncp);
2023 tx_ring->tx_stats.doorbells++;
2024 u64_stats_update_end(&tx_ring->syncp);
2025 }
2026
2027 return NETDEV_TX_OK;
2028
2029 error_report_dma_error:
2030 u64_stats_update_begin(&tx_ring->syncp);
2031 tx_ring->tx_stats.dma_mapping_err++;
2032 u64_stats_update_end(&tx_ring->syncp);
2033 netdev_warn(adapter->netdev, "failed to map skb\n");
2034
2035 tx_info->skb = NULL;
2036
2037 error_unmap_dma:
2038 if (i >= 0) {
2039 /* save value of frag that failed */
2040 last_frag = i;
2041
2042 /* start back at beginning and unmap skb */
2043 tx_info->skb = NULL;
2044 ena_buf = tx_info->bufs;
2045 dma_unmap_single(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
2046 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
2047
2048 /* unmap remaining mapped pages */
2049 for (i = 0; i < last_frag; i++) {
2050 ena_buf++;
2051 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
2052 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
2053 }
2054 }
2055
2056 error_drop_packet:
2057
2058 dev_kfree_skb(skb);
2059 return NETDEV_TX_OK;
2060 }
2061
2062 #ifdef CONFIG_NET_POLL_CONTROLLER
2063 static void ena_netpoll(struct net_device *netdev)
2064 {
2065 struct ena_adapter *adapter = netdev_priv(netdev);
2066 int i;
2067
2068 for (i = 0; i < adapter->num_queues; i++)
2069 napi_schedule(&adapter->ena_napi[i].napi);
2070 }
2071 #endif /* CONFIG_NET_POLL_CONTROLLER */
2072
2073 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
2074 void *accel_priv, select_queue_fallback_t fallback)
2075 {
2076 u16 qid;
2077 /* we suspect that this is good for in--kernel network services that
2078 * want to loop incoming skb rx to tx in normal user generated traffic,
2079 * most probably we will not get to this
2080 */
2081 if (skb_rx_queue_recorded(skb))
2082 qid = skb_get_rx_queue(skb);
2083 else
2084 qid = fallback(dev, skb);
2085
2086 return qid;
2087 }
2088
2089 static void ena_config_host_info(struct ena_com_dev *ena_dev)
2090 {
2091 struct ena_admin_host_info *host_info;
2092 int rc;
2093
2094 /* Allocate only the host info */
2095 rc = ena_com_allocate_host_info(ena_dev);
2096 if (rc) {
2097 pr_err("Cannot allocate host info\n");
2098 return;
2099 }
2100
2101 host_info = ena_dev->host_attr.host_info;
2102
2103 host_info->os_type = ENA_ADMIN_OS_LINUX;
2104 host_info->kernel_ver = LINUX_VERSION_CODE;
2105 strncpy(host_info->kernel_ver_str, utsname()->version,
2106 sizeof(host_info->kernel_ver_str) - 1);
2107 host_info->os_dist = 0;
2108 strncpy(host_info->os_dist_str, utsname()->release,
2109 sizeof(host_info->os_dist_str) - 1);
2110 host_info->driver_version =
2111 (DRV_MODULE_VER_MAJOR) |
2112 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
2113 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
2114
2115 rc = ena_com_set_host_attributes(ena_dev);
2116 if (rc) {
2117 if (rc == -EPERM)
2118 pr_warn("Cannot set host attributes\n");
2119 else
2120 pr_err("Cannot set host attributes\n");
2121
2122 goto err;
2123 }
2124
2125 return;
2126
2127 err:
2128 ena_com_delete_host_info(ena_dev);
2129 }
2130
2131 static void ena_config_debug_area(struct ena_adapter *adapter)
2132 {
2133 u32 debug_area_size;
2134 int rc, ss_count;
2135
2136 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
2137 if (ss_count <= 0) {
2138 netif_err(adapter, drv, adapter->netdev,
2139 "SS count is negative\n");
2140 return;
2141 }
2142
2143 /* allocate 32 bytes for each string and 64bit for the value */
2144 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
2145
2146 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
2147 if (rc) {
2148 pr_err("Cannot allocate debug area\n");
2149 return;
2150 }
2151
2152 rc = ena_com_set_host_attributes(adapter->ena_dev);
2153 if (rc) {
2154 if (rc == -EPERM)
2155 netif_warn(adapter, drv, adapter->netdev,
2156 "Cannot set host attributes\n");
2157 else
2158 netif_err(adapter, drv, adapter->netdev,
2159 "Cannot set host attributes\n");
2160 goto err;
2161 }
2162
2163 return;
2164 err:
2165 ena_com_delete_debug_area(adapter->ena_dev);
2166 }
2167
2168 static struct rtnl_link_stats64 *ena_get_stats64(struct net_device *netdev,
2169 struct rtnl_link_stats64 *stats)
2170 {
2171 struct ena_adapter *adapter = netdev_priv(netdev);
2172 struct ena_admin_basic_stats ena_stats;
2173 int rc;
2174
2175 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2176 return NULL;
2177
2178 rc = ena_com_get_dev_basic_stats(adapter->ena_dev, &ena_stats);
2179 if (rc)
2180 return NULL;
2181
2182 stats->tx_bytes = ((u64)ena_stats.tx_bytes_high << 32) |
2183 ena_stats.tx_bytes_low;
2184 stats->rx_bytes = ((u64)ena_stats.rx_bytes_high << 32) |
2185 ena_stats.rx_bytes_low;
2186
2187 stats->rx_packets = ((u64)ena_stats.rx_pkts_high << 32) |
2188 ena_stats.rx_pkts_low;
2189 stats->tx_packets = ((u64)ena_stats.tx_pkts_high << 32) |
2190 ena_stats.tx_pkts_low;
2191
2192 stats->rx_dropped = ((u64)ena_stats.rx_drops_high << 32) |
2193 ena_stats.rx_drops_low;
2194
2195 stats->multicast = 0;
2196 stats->collisions = 0;
2197
2198 stats->rx_length_errors = 0;
2199 stats->rx_crc_errors = 0;
2200 stats->rx_frame_errors = 0;
2201 stats->rx_fifo_errors = 0;
2202 stats->rx_missed_errors = 0;
2203 stats->tx_window_errors = 0;
2204
2205 stats->rx_errors = 0;
2206 stats->tx_errors = 0;
2207
2208 return stats;
2209 }
2210
2211 static const struct net_device_ops ena_netdev_ops = {
2212 .ndo_open = ena_open,
2213 .ndo_stop = ena_close,
2214 .ndo_start_xmit = ena_start_xmit,
2215 .ndo_select_queue = ena_select_queue,
2216 .ndo_get_stats64 = ena_get_stats64,
2217 .ndo_tx_timeout = ena_tx_timeout,
2218 .ndo_change_mtu = ena_change_mtu,
2219 .ndo_set_mac_address = NULL,
2220 .ndo_validate_addr = eth_validate_addr,
2221 #ifdef CONFIG_NET_POLL_CONTROLLER
2222 .ndo_poll_controller = ena_netpoll,
2223 #endif /* CONFIG_NET_POLL_CONTROLLER */
2224 };
2225
2226 static void ena_device_io_suspend(struct work_struct *work)
2227 {
2228 struct ena_adapter *adapter =
2229 container_of(work, struct ena_adapter, suspend_io_task);
2230 struct net_device *netdev = adapter->netdev;
2231
2232 /* ena_napi_disable_all disables only the IO handling.
2233 * We are still subject to AENQ keep alive watchdog.
2234 */
2235 u64_stats_update_begin(&adapter->syncp);
2236 adapter->dev_stats.io_suspend++;
2237 u64_stats_update_begin(&adapter->syncp);
2238 ena_napi_disable_all(adapter);
2239 netif_tx_lock(netdev);
2240 netif_device_detach(netdev);
2241 netif_tx_unlock(netdev);
2242 }
2243
2244 static void ena_device_io_resume(struct work_struct *work)
2245 {
2246 struct ena_adapter *adapter =
2247 container_of(work, struct ena_adapter, resume_io_task);
2248 struct net_device *netdev = adapter->netdev;
2249
2250 u64_stats_update_begin(&adapter->syncp);
2251 adapter->dev_stats.io_resume++;
2252 u64_stats_update_end(&adapter->syncp);
2253
2254 netif_device_attach(netdev);
2255 ena_napi_enable_all(adapter);
2256 }
2257
2258 static int ena_device_validate_params(struct ena_adapter *adapter,
2259 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2260 {
2261 struct net_device *netdev = adapter->netdev;
2262 int rc;
2263
2264 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
2265 adapter->mac_addr);
2266 if (!rc) {
2267 netif_err(adapter, drv, netdev,
2268 "Error, mac address are different\n");
2269 return -EINVAL;
2270 }
2271
2272 if ((get_feat_ctx->max_queues.max_cq_num < adapter->num_queues) ||
2273 (get_feat_ctx->max_queues.max_sq_num < adapter->num_queues)) {
2274 netif_err(adapter, drv, netdev,
2275 "Error, device doesn't support enough queues\n");
2276 return -EINVAL;
2277 }
2278
2279 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
2280 netif_err(adapter, drv, netdev,
2281 "Error, device max mtu is smaller than netdev MTU\n");
2282 return -EINVAL;
2283 }
2284
2285 return 0;
2286 }
2287
2288 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
2289 struct ena_com_dev_get_features_ctx *get_feat_ctx,
2290 bool *wd_state)
2291 {
2292 struct device *dev = &pdev->dev;
2293 bool readless_supported;
2294 u32 aenq_groups;
2295 int dma_width;
2296 int rc;
2297
2298 rc = ena_com_mmio_reg_read_request_init(ena_dev);
2299 if (rc) {
2300 dev_err(dev, "failed to init mmio read less\n");
2301 return rc;
2302 }
2303
2304 /* The PCIe configuration space revision id indicate if mmio reg
2305 * read is disabled
2306 */
2307 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
2308 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
2309
2310 rc = ena_com_dev_reset(ena_dev);
2311 if (rc) {
2312 dev_err(dev, "Can not reset device\n");
2313 goto err_mmio_read_less;
2314 }
2315
2316 rc = ena_com_validate_version(ena_dev);
2317 if (rc) {
2318 dev_err(dev, "device version is too low\n");
2319 goto err_mmio_read_less;
2320 }
2321
2322 dma_width = ena_com_get_dma_width(ena_dev);
2323 if (dma_width < 0) {
2324 dev_err(dev, "Invalid dma width value %d", dma_width);
2325 rc = dma_width;
2326 goto err_mmio_read_less;
2327 }
2328
2329 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width));
2330 if (rc) {
2331 dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc);
2332 goto err_mmio_read_less;
2333 }
2334
2335 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width));
2336 if (rc) {
2337 dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n",
2338 rc);
2339 goto err_mmio_read_less;
2340 }
2341
2342 /* ENA admin level init */
2343 rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
2344 if (rc) {
2345 dev_err(dev,
2346 "Can not initialize ena admin queue with device\n");
2347 goto err_mmio_read_less;
2348 }
2349
2350 /* To enable the msix interrupts the driver needs to know the number
2351 * of queues. So the driver uses polling mode to retrieve this
2352 * information
2353 */
2354 ena_com_set_admin_polling_mode(ena_dev, true);
2355
2356 /* Get Device Attributes*/
2357 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
2358 if (rc) {
2359 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
2360 goto err_admin_init;
2361 }
2362
2363 /* Try to turn all the available aenq groups */
2364 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
2365 BIT(ENA_ADMIN_FATAL_ERROR) |
2366 BIT(ENA_ADMIN_WARNING) |
2367 BIT(ENA_ADMIN_NOTIFICATION) |
2368 BIT(ENA_ADMIN_KEEP_ALIVE);
2369
2370 aenq_groups &= get_feat_ctx->aenq.supported_groups;
2371
2372 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
2373 if (rc) {
2374 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
2375 goto err_admin_init;
2376 }
2377
2378 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
2379
2380 ena_config_host_info(ena_dev);
2381
2382 return 0;
2383
2384 err_admin_init:
2385 ena_com_admin_destroy(ena_dev);
2386 err_mmio_read_less:
2387 ena_com_mmio_reg_read_request_destroy(ena_dev);
2388
2389 return rc;
2390 }
2391
2392 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
2393 int io_vectors)
2394 {
2395 struct ena_com_dev *ena_dev = adapter->ena_dev;
2396 struct device *dev = &adapter->pdev->dev;
2397 int rc;
2398
2399 rc = ena_enable_msix(adapter, io_vectors);
2400 if (rc) {
2401 dev_err(dev, "Can not reserve msix vectors\n");
2402 return rc;
2403 }
2404
2405 ena_setup_mgmnt_intr(adapter);
2406
2407 rc = ena_request_mgmnt_irq(adapter);
2408 if (rc) {
2409 dev_err(dev, "Can not setup management interrupts\n");
2410 goto err_disable_msix;
2411 }
2412
2413 ena_com_set_admin_polling_mode(ena_dev, false);
2414
2415 ena_com_admin_aenq_enable(ena_dev);
2416
2417 return 0;
2418
2419 err_disable_msix:
2420 ena_disable_msix(adapter);
2421
2422 return rc;
2423 }
2424
2425 static void ena_fw_reset_device(struct work_struct *work)
2426 {
2427 struct ena_com_dev_get_features_ctx get_feat_ctx;
2428 struct ena_adapter *adapter =
2429 container_of(work, struct ena_adapter, reset_task);
2430 struct net_device *netdev = adapter->netdev;
2431 struct ena_com_dev *ena_dev = adapter->ena_dev;
2432 struct pci_dev *pdev = adapter->pdev;
2433 bool dev_up, wd_state;
2434 int rc;
2435
2436 del_timer_sync(&adapter->timer_service);
2437
2438 rtnl_lock();
2439
2440 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2441 ena_com_set_admin_running_state(ena_dev, false);
2442
2443 /* After calling ena_close the tx queues and the napi
2444 * are disabled so no one can interfere or touch the
2445 * data structures
2446 */
2447 ena_close(netdev);
2448
2449 rc = ena_com_dev_reset(ena_dev);
2450 if (rc) {
2451 dev_err(&pdev->dev, "Device reset failed\n");
2452 goto err;
2453 }
2454
2455 ena_free_mgmnt_irq(adapter);
2456
2457 ena_disable_msix(adapter);
2458
2459 ena_com_abort_admin_commands(ena_dev);
2460
2461 ena_com_wait_for_abort_completion(ena_dev);
2462
2463 ena_com_admin_destroy(ena_dev);
2464
2465 ena_com_mmio_reg_read_request_destroy(ena_dev);
2466
2467 /* Finish with the destroy part. Start the init part */
2468
2469 rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
2470 if (rc) {
2471 dev_err(&pdev->dev, "Can not initialize device\n");
2472 goto err;
2473 }
2474 adapter->wd_state = wd_state;
2475
2476 rc = ena_device_validate_params(adapter, &get_feat_ctx);
2477 if (rc) {
2478 dev_err(&pdev->dev, "Validation of device parameters failed\n");
2479 goto err_device_destroy;
2480 }
2481
2482 rc = ena_enable_msix_and_set_admin_interrupts(adapter,
2483 adapter->num_queues);
2484 if (rc) {
2485 dev_err(&pdev->dev, "Enable MSI-X failed\n");
2486 goto err_device_destroy;
2487 }
2488 /* If the interface was up before the reset bring it up */
2489 if (dev_up) {
2490 rc = ena_up(adapter);
2491 if (rc) {
2492 dev_err(&pdev->dev, "Failed to create I/O queues\n");
2493 goto err_disable_msix;
2494 }
2495 }
2496
2497 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
2498
2499 rtnl_unlock();
2500
2501 dev_err(&pdev->dev, "Device reset completed successfully\n");
2502
2503 return;
2504 err_disable_msix:
2505 ena_free_mgmnt_irq(adapter);
2506 ena_disable_msix(adapter);
2507 err_device_destroy:
2508 ena_com_admin_destroy(ena_dev);
2509 err:
2510 rtnl_unlock();
2511
2512 dev_err(&pdev->dev,
2513 "Reset attempt failed. Can not reset the device\n");
2514 }
2515
2516 static void check_for_missing_tx_completions(struct ena_adapter *adapter)
2517 {
2518 struct ena_tx_buffer *tx_buf;
2519 unsigned long last_jiffies;
2520 struct ena_ring *tx_ring;
2521 int i, j, budget;
2522 u32 missed_tx;
2523
2524 /* Make sure the driver doesn't turn the device in other process */
2525 smp_rmb();
2526
2527 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2528 return;
2529
2530 budget = ENA_MONITORED_TX_QUEUES;
2531
2532 for (i = adapter->last_monitored_tx_qid; i < adapter->num_queues; i++) {
2533 tx_ring = &adapter->tx_ring[i];
2534
2535 for (j = 0; j < tx_ring->ring_size; j++) {
2536 tx_buf = &tx_ring->tx_buffer_info[j];
2537 last_jiffies = tx_buf->last_jiffies;
2538 if (unlikely(last_jiffies && time_is_before_jiffies(last_jiffies + TX_TIMEOUT))) {
2539 netif_notice(adapter, tx_err, adapter->netdev,
2540 "Found a Tx that wasn't completed on time, qid %d, index %d.\n",
2541 tx_ring->qid, j);
2542
2543 u64_stats_update_begin(&tx_ring->syncp);
2544 missed_tx = tx_ring->tx_stats.missing_tx_comp++;
2545 u64_stats_update_end(&tx_ring->syncp);
2546
2547 /* Clear last jiffies so the lost buffer won't
2548 * be counted twice.
2549 */
2550 tx_buf->last_jiffies = 0;
2551
2552 if (unlikely(missed_tx > MAX_NUM_OF_TIMEOUTED_PACKETS)) {
2553 netif_err(adapter, tx_err, adapter->netdev,
2554 "The number of lost tx completion is above the threshold (%d > %d). Reset the device\n",
2555 missed_tx, MAX_NUM_OF_TIMEOUTED_PACKETS);
2556 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2557 }
2558 }
2559 }
2560
2561 budget--;
2562 if (!budget)
2563 break;
2564 }
2565
2566 adapter->last_monitored_tx_qid = i % adapter->num_queues;
2567 }
2568
2569 /* Check for keep alive expiration */
2570 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
2571 {
2572 unsigned long keep_alive_expired;
2573
2574 if (!adapter->wd_state)
2575 return;
2576
2577 keep_alive_expired = round_jiffies(adapter->last_keep_alive_jiffies
2578 + ENA_DEVICE_KALIVE_TIMEOUT);
2579 if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
2580 netif_err(adapter, drv, adapter->netdev,
2581 "Keep alive watchdog timeout.\n");
2582 u64_stats_update_begin(&adapter->syncp);
2583 adapter->dev_stats.wd_expired++;
2584 u64_stats_update_end(&adapter->syncp);
2585 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2586 }
2587 }
2588
2589 static void check_for_admin_com_state(struct ena_adapter *adapter)
2590 {
2591 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
2592 netif_err(adapter, drv, adapter->netdev,
2593 "ENA admin queue is not in running state!\n");
2594 u64_stats_update_begin(&adapter->syncp);
2595 adapter->dev_stats.admin_q_pause++;
2596 u64_stats_update_end(&adapter->syncp);
2597 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
2598 }
2599 }
2600
2601 static void ena_update_host_info(struct ena_admin_host_info *host_info,
2602 struct net_device *netdev)
2603 {
2604 host_info->supported_network_features[0] =
2605 netdev->features & GENMASK_ULL(31, 0);
2606 host_info->supported_network_features[1] =
2607 (netdev->features & GENMASK_ULL(63, 32)) >> 32;
2608 }
2609
2610 static void ena_timer_service(unsigned long data)
2611 {
2612 struct ena_adapter *adapter = (struct ena_adapter *)data;
2613 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
2614 struct ena_admin_host_info *host_info =
2615 adapter->ena_dev->host_attr.host_info;
2616
2617 check_for_missing_keep_alive(adapter);
2618
2619 check_for_admin_com_state(adapter);
2620
2621 check_for_missing_tx_completions(adapter);
2622
2623 if (debug_area)
2624 ena_dump_stats_to_buf(adapter, debug_area);
2625
2626 if (host_info)
2627 ena_update_host_info(host_info, adapter->netdev);
2628
2629 if (unlikely(test_and_clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2630 netif_err(adapter, drv, adapter->netdev,
2631 "Trigger reset is on\n");
2632 ena_dump_stats_to_dmesg(adapter);
2633 queue_work(ena_wq, &adapter->reset_task);
2634 return;
2635 }
2636
2637 /* Reset the timer */
2638 mod_timer(&adapter->timer_service, jiffies + HZ);
2639 }
2640
2641 static int ena_calc_io_queue_num(struct pci_dev *pdev,
2642 struct ena_com_dev *ena_dev,
2643 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2644 {
2645 int io_sq_num, io_queue_num;
2646
2647 /* In case of LLQ use the llq number in the get feature cmd */
2648 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2649 io_sq_num = get_feat_ctx->max_queues.max_llq_num;
2650
2651 if (io_sq_num == 0) {
2652 dev_err(&pdev->dev,
2653 "Trying to use LLQ but llq_num is 0. Fall back into regular queues\n");
2654
2655 ena_dev->tx_mem_queue_type =
2656 ENA_ADMIN_PLACEMENT_POLICY_HOST;
2657 io_sq_num = get_feat_ctx->max_queues.max_sq_num;
2658 }
2659 } else {
2660 io_sq_num = get_feat_ctx->max_queues.max_sq_num;
2661 }
2662
2663 io_queue_num = min_t(int, num_possible_cpus(), ENA_MAX_NUM_IO_QUEUES);
2664 io_queue_num = min_t(int, io_queue_num, io_sq_num);
2665 io_queue_num = min_t(int, io_queue_num,
2666 get_feat_ctx->max_queues.max_cq_num);
2667 /* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
2668 io_queue_num = min_t(int, io_queue_num, pci_msix_vec_count(pdev) - 1);
2669 if (unlikely(!io_queue_num)) {
2670 dev_err(&pdev->dev, "The device doesn't have io queues\n");
2671 return -EFAULT;
2672 }
2673
2674 return io_queue_num;
2675 }
2676
2677 static void ena_set_push_mode(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
2678 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2679 {
2680 bool has_mem_bar;
2681
2682 has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR);
2683
2684 /* Enable push mode if device supports LLQ */
2685 if (has_mem_bar && (get_feat_ctx->max_queues.max_llq_num > 0))
2686 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_DEV;
2687 else
2688 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2689 }
2690
2691 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
2692 struct net_device *netdev)
2693 {
2694 netdev_features_t dev_features = 0;
2695
2696 /* Set offload features */
2697 if (feat->offload.tx &
2698 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2699 dev_features |= NETIF_F_IP_CSUM;
2700
2701 if (feat->offload.tx &
2702 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2703 dev_features |= NETIF_F_IPV6_CSUM;
2704
2705 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2706 dev_features |= NETIF_F_TSO;
2707
2708 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
2709 dev_features |= NETIF_F_TSO6;
2710
2711 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
2712 dev_features |= NETIF_F_TSO_ECN;
2713
2714 if (feat->offload.rx_supported &
2715 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2716 dev_features |= NETIF_F_RXCSUM;
2717
2718 if (feat->offload.rx_supported &
2719 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2720 dev_features |= NETIF_F_RXCSUM;
2721
2722 netdev->features =
2723 dev_features |
2724 NETIF_F_SG |
2725 NETIF_F_NTUPLE |
2726 NETIF_F_RXHASH |
2727 NETIF_F_HIGHDMA;
2728
2729 netdev->hw_features |= netdev->features;
2730 netdev->vlan_features |= netdev->features;
2731 }
2732
2733 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
2734 struct ena_com_dev_get_features_ctx *feat)
2735 {
2736 struct net_device *netdev = adapter->netdev;
2737
2738 /* Copy mac address */
2739 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
2740 eth_hw_addr_random(netdev);
2741 ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
2742 } else {
2743 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
2744 ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
2745 }
2746
2747 /* Set offload features */
2748 ena_set_dev_offloads(feat, netdev);
2749
2750 adapter->max_mtu = feat->dev_attr.max_mtu;
2751 netdev->max_mtu = adapter->max_mtu;
2752 netdev->min_mtu = ENA_MIN_MTU;
2753 }
2754
2755 static int ena_rss_init_default(struct ena_adapter *adapter)
2756 {
2757 struct ena_com_dev *ena_dev = adapter->ena_dev;
2758 struct device *dev = &adapter->pdev->dev;
2759 int rc, i;
2760 u32 val;
2761
2762 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2763 if (unlikely(rc)) {
2764 dev_err(dev, "Cannot init indirect table\n");
2765 goto err_rss_init;
2766 }
2767
2768 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
2769 val = ethtool_rxfh_indir_default(i, adapter->num_queues);
2770 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
2771 ENA_IO_RXQ_IDX(val));
2772 if (unlikely(rc && (rc != -EPERM))) {
2773 dev_err(dev, "Cannot fill indirect table\n");
2774 goto err_fill_indir;
2775 }
2776 }
2777
2778 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
2779 ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
2780 if (unlikely(rc && (rc != -EPERM))) {
2781 dev_err(dev, "Cannot fill hash function\n");
2782 goto err_fill_indir;
2783 }
2784
2785 rc = ena_com_set_default_hash_ctrl(ena_dev);
2786 if (unlikely(rc && (rc != -EPERM))) {
2787 dev_err(dev, "Cannot fill hash control\n");
2788 goto err_fill_indir;
2789 }
2790
2791 return 0;
2792
2793 err_fill_indir:
2794 ena_com_rss_destroy(ena_dev);
2795 err_rss_init:
2796
2797 return rc;
2798 }
2799
2800 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
2801 {
2802 int release_bars;
2803
2804 release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
2805 pci_release_selected_regions(pdev, release_bars);
2806 }
2807
2808 static int ena_calc_queue_size(struct pci_dev *pdev,
2809 struct ena_com_dev *ena_dev,
2810 u16 *max_tx_sgl_size,
2811 u16 *max_rx_sgl_size,
2812 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2813 {
2814 u32 queue_size = ENA_DEFAULT_RING_SIZE;
2815
2816 queue_size = min_t(u32, queue_size,
2817 get_feat_ctx->max_queues.max_cq_depth);
2818 queue_size = min_t(u32, queue_size,
2819 get_feat_ctx->max_queues.max_sq_depth);
2820
2821 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2822 queue_size = min_t(u32, queue_size,
2823 get_feat_ctx->max_queues.max_llq_depth);
2824
2825 queue_size = rounddown_pow_of_two(queue_size);
2826
2827 if (unlikely(!queue_size)) {
2828 dev_err(&pdev->dev, "Invalid queue size\n");
2829 return -EFAULT;
2830 }
2831
2832 *max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2833 get_feat_ctx->max_queues.max_packet_tx_descs);
2834 *max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2835 get_feat_ctx->max_queues.max_packet_rx_descs);
2836
2837 return queue_size;
2838 }
2839
2840 /* ena_probe - Device Initialization Routine
2841 * @pdev: PCI device information struct
2842 * @ent: entry in ena_pci_tbl
2843 *
2844 * Returns 0 on success, negative on failure
2845 *
2846 * ena_probe initializes an adapter identified by a pci_dev structure.
2847 * The OS initialization, configuring of the adapter private structure,
2848 * and a hardware reset occur.
2849 */
2850 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2851 {
2852 struct ena_com_dev_get_features_ctx get_feat_ctx;
2853 static int version_printed;
2854 struct net_device *netdev;
2855 struct ena_adapter *adapter;
2856 struct ena_com_dev *ena_dev = NULL;
2857 static int adapters_found;
2858 int io_queue_num, bars, rc;
2859 int queue_size;
2860 u16 tx_sgl_size = 0;
2861 u16 rx_sgl_size = 0;
2862 bool wd_state;
2863
2864 dev_dbg(&pdev->dev, "%s\n", __func__);
2865
2866 if (version_printed++ == 0)
2867 dev_info(&pdev->dev, "%s", version);
2868
2869 rc = pci_enable_device_mem(pdev);
2870 if (rc) {
2871 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
2872 return rc;
2873 }
2874
2875 pci_set_master(pdev);
2876
2877 ena_dev = vzalloc(sizeof(*ena_dev));
2878 if (!ena_dev) {
2879 rc = -ENOMEM;
2880 goto err_disable_device;
2881 }
2882
2883 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
2884 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
2885 if (rc) {
2886 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
2887 rc);
2888 goto err_free_ena_dev;
2889 }
2890
2891 ena_dev->reg_bar = ioremap(pci_resource_start(pdev, ENA_REG_BAR),
2892 pci_resource_len(pdev, ENA_REG_BAR));
2893 if (!ena_dev->reg_bar) {
2894 dev_err(&pdev->dev, "failed to remap regs bar\n");
2895 rc = -EFAULT;
2896 goto err_free_region;
2897 }
2898
2899 ena_dev->dmadev = &pdev->dev;
2900
2901 rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
2902 if (rc) {
2903 dev_err(&pdev->dev, "ena device init failed\n");
2904 if (rc == -ETIME)
2905 rc = -EPROBE_DEFER;
2906 goto err_free_region;
2907 }
2908
2909 ena_set_push_mode(pdev, ena_dev, &get_feat_ctx);
2910
2911 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2912 ena_dev->mem_bar = ioremap_wc(pci_resource_start(pdev, ENA_MEM_BAR),
2913 pci_resource_len(pdev, ENA_MEM_BAR));
2914 if (!ena_dev->mem_bar) {
2915 rc = -EFAULT;
2916 goto err_device_destroy;
2917 }
2918 }
2919
2920 /* initial Tx interrupt delay, Assumes 1 usec granularity.
2921 * Updated during device initialization with the real granularity
2922 */
2923 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
2924 io_queue_num = ena_calc_io_queue_num(pdev, ena_dev, &get_feat_ctx);
2925 queue_size = ena_calc_queue_size(pdev, ena_dev, &tx_sgl_size,
2926 &rx_sgl_size, &get_feat_ctx);
2927 if ((queue_size <= 0) || (io_queue_num <= 0)) {
2928 rc = -EFAULT;
2929 goto err_device_destroy;
2930 }
2931
2932 dev_info(&pdev->dev, "creating %d io queues. queue size: %d\n",
2933 io_queue_num, queue_size);
2934
2935 /* dev zeroed in init_etherdev */
2936 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), io_queue_num);
2937 if (!netdev) {
2938 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
2939 rc = -ENOMEM;
2940 goto err_device_destroy;
2941 }
2942
2943 SET_NETDEV_DEV(netdev, &pdev->dev);
2944
2945 adapter = netdev_priv(netdev);
2946 pci_set_drvdata(pdev, adapter);
2947
2948 adapter->ena_dev = ena_dev;
2949 adapter->netdev = netdev;
2950 adapter->pdev = pdev;
2951
2952 ena_set_conf_feat_params(adapter, &get_feat_ctx);
2953
2954 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2955
2956 adapter->tx_ring_size = queue_size;
2957 adapter->rx_ring_size = queue_size;
2958
2959 adapter->max_tx_sgl_size = tx_sgl_size;
2960 adapter->max_rx_sgl_size = rx_sgl_size;
2961
2962 adapter->num_queues = io_queue_num;
2963 adapter->last_monitored_tx_qid = 0;
2964
2965 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
2966 adapter->wd_state = wd_state;
2967
2968 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
2969
2970 rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
2971 if (rc) {
2972 dev_err(&pdev->dev,
2973 "Failed to query interrupt moderation feature\n");
2974 goto err_netdev_destroy;
2975 }
2976 ena_init_io_rings(adapter);
2977
2978 netdev->netdev_ops = &ena_netdev_ops;
2979 netdev->watchdog_timeo = TX_TIMEOUT;
2980 ena_set_ethtool_ops(netdev);
2981
2982 netdev->priv_flags |= IFF_UNICAST_FLT;
2983
2984 u64_stats_init(&adapter->syncp);
2985
2986 rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
2987 if (rc) {
2988 dev_err(&pdev->dev,
2989 "Failed to enable and set the admin interrupts\n");
2990 goto err_worker_destroy;
2991 }
2992 rc = ena_rss_init_default(adapter);
2993 if (rc && (rc != -EPERM)) {
2994 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
2995 goto err_free_msix;
2996 }
2997
2998 ena_config_debug_area(adapter);
2999
3000 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
3001
3002 netif_carrier_off(netdev);
3003
3004 rc = register_netdev(netdev);
3005 if (rc) {
3006 dev_err(&pdev->dev, "Cannot register net device\n");
3007 goto err_rss;
3008 }
3009
3010 INIT_WORK(&adapter->suspend_io_task, ena_device_io_suspend);
3011 INIT_WORK(&adapter->resume_io_task, ena_device_io_resume);
3012 INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
3013
3014 adapter->last_keep_alive_jiffies = jiffies;
3015
3016 setup_timer(&adapter->timer_service, ena_timer_service,
3017 (unsigned long)adapter);
3018 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3019
3020 dev_info(&pdev->dev, "%s found at mem %lx, mac addr %pM Queues %d\n",
3021 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
3022 netdev->dev_addr, io_queue_num);
3023
3024 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3025
3026 adapters_found++;
3027
3028 return 0;
3029
3030 err_rss:
3031 ena_com_delete_debug_area(ena_dev);
3032 ena_com_rss_destroy(ena_dev);
3033 err_free_msix:
3034 ena_com_dev_reset(ena_dev);
3035 ena_free_mgmnt_irq(adapter);
3036 ena_disable_msix(adapter);
3037 err_worker_destroy:
3038 ena_com_destroy_interrupt_moderation(ena_dev);
3039 del_timer(&adapter->timer_service);
3040 cancel_work_sync(&adapter->suspend_io_task);
3041 cancel_work_sync(&adapter->resume_io_task);
3042 err_netdev_destroy:
3043 free_netdev(netdev);
3044 err_device_destroy:
3045 ena_com_delete_host_info(ena_dev);
3046 ena_com_admin_destroy(ena_dev);
3047 err_free_region:
3048 ena_release_bars(ena_dev, pdev);
3049 err_free_ena_dev:
3050 vfree(ena_dev);
3051 err_disable_device:
3052 pci_disable_device(pdev);
3053 return rc;
3054 }
3055
3056 /*****************************************************************************/
3057 static int ena_sriov_configure(struct pci_dev *dev, int numvfs)
3058 {
3059 int rc;
3060
3061 if (numvfs > 0) {
3062 rc = pci_enable_sriov(dev, numvfs);
3063 if (rc != 0) {
3064 dev_err(&dev->dev,
3065 "pci_enable_sriov failed to enable: %d vfs with the error: %d\n",
3066 numvfs, rc);
3067 return rc;
3068 }
3069
3070 return numvfs;
3071 }
3072
3073 if (numvfs == 0) {
3074 pci_disable_sriov(dev);
3075 return 0;
3076 }
3077
3078 return -EINVAL;
3079 }
3080
3081 /*****************************************************************************/
3082 /*****************************************************************************/
3083
3084 /* ena_remove - Device Removal Routine
3085 * @pdev: PCI device information struct
3086 *
3087 * ena_remove is called by the PCI subsystem to alert the driver
3088 * that it should release a PCI device.
3089 */
3090 static void ena_remove(struct pci_dev *pdev)
3091 {
3092 struct ena_adapter *adapter = pci_get_drvdata(pdev);
3093 struct ena_com_dev *ena_dev;
3094 struct net_device *netdev;
3095
3096 if (!adapter)
3097 /* This device didn't load properly and it's resources
3098 * already released, nothing to do
3099 */
3100 return;
3101
3102 ena_dev = adapter->ena_dev;
3103 netdev = adapter->netdev;
3104
3105 #ifdef CONFIG_RFS_ACCEL
3106 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
3107 free_irq_cpu_rmap(netdev->rx_cpu_rmap);
3108 netdev->rx_cpu_rmap = NULL;
3109 }
3110 #endif /* CONFIG_RFS_ACCEL */
3111
3112 unregister_netdev(netdev);
3113 del_timer_sync(&adapter->timer_service);
3114
3115 cancel_work_sync(&adapter->reset_task);
3116
3117 cancel_work_sync(&adapter->suspend_io_task);
3118
3119 cancel_work_sync(&adapter->resume_io_task);
3120
3121 ena_com_dev_reset(ena_dev);
3122
3123 ena_free_mgmnt_irq(adapter);
3124
3125 ena_disable_msix(adapter);
3126
3127 free_netdev(netdev);
3128
3129 ena_com_mmio_reg_read_request_destroy(ena_dev);
3130
3131 ena_com_abort_admin_commands(ena_dev);
3132
3133 ena_com_wait_for_abort_completion(ena_dev);
3134
3135 ena_com_admin_destroy(ena_dev);
3136
3137 ena_com_rss_destroy(ena_dev);
3138
3139 ena_com_delete_debug_area(ena_dev);
3140
3141 ena_com_delete_host_info(ena_dev);
3142
3143 ena_release_bars(ena_dev, pdev);
3144
3145 pci_disable_device(pdev);
3146
3147 ena_com_destroy_interrupt_moderation(ena_dev);
3148
3149 vfree(ena_dev);
3150 }
3151
3152 static struct pci_driver ena_pci_driver = {
3153 .name = DRV_MODULE_NAME,
3154 .id_table = ena_pci_tbl,
3155 .probe = ena_probe,
3156 .remove = ena_remove,
3157 .sriov_configure = ena_sriov_configure,
3158 };
3159
3160 static int __init ena_init(void)
3161 {
3162 pr_info("%s", version);
3163
3164 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
3165 if (!ena_wq) {
3166 pr_err("Failed to create workqueue\n");
3167 return -ENOMEM;
3168 }
3169
3170 return pci_register_driver(&ena_pci_driver);
3171 }
3172
3173 static void __exit ena_cleanup(void)
3174 {
3175 pci_unregister_driver(&ena_pci_driver);
3176
3177 if (ena_wq) {
3178 destroy_workqueue(ena_wq);
3179 ena_wq = NULL;
3180 }
3181 }
3182
3183 /******************************************************************************
3184 ******************************** AENQ Handlers *******************************
3185 *****************************************************************************/
3186 /* ena_update_on_link_change:
3187 * Notify the network interface about the change in link status
3188 */
3189 static void ena_update_on_link_change(void *adapter_data,
3190 struct ena_admin_aenq_entry *aenq_e)
3191 {
3192 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3193 struct ena_admin_aenq_link_change_desc *aenq_desc =
3194 (struct ena_admin_aenq_link_change_desc *)aenq_e;
3195 int status = aenq_desc->flags &
3196 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3197
3198 if (status) {
3199 netdev_dbg(adapter->netdev, "%s\n", __func__);
3200 set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
3201 netif_carrier_on(adapter->netdev);
3202 } else {
3203 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
3204 netif_carrier_off(adapter->netdev);
3205 }
3206 }
3207
3208 static void ena_keep_alive_wd(void *adapter_data,
3209 struct ena_admin_aenq_entry *aenq_e)
3210 {
3211 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3212
3213 adapter->last_keep_alive_jiffies = jiffies;
3214 }
3215
3216 static void ena_notification(void *adapter_data,
3217 struct ena_admin_aenq_entry *aenq_e)
3218 {
3219 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3220
3221 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
3222 "Invalid group(%x) expected %x\n",
3223 aenq_e->aenq_common_desc.group,
3224 ENA_ADMIN_NOTIFICATION);
3225
3226 switch (aenq_e->aenq_common_desc.syndrom) {
3227 case ENA_ADMIN_SUSPEND:
3228 /* Suspend just the IO queues.
3229 * We deliberately don't suspend admin so the timer and
3230 * the keep_alive events should remain.
3231 */
3232 queue_work(ena_wq, &adapter->suspend_io_task);
3233 break;
3234 case ENA_ADMIN_RESUME:
3235 queue_work(ena_wq, &adapter->resume_io_task);
3236 break;
3237 default:
3238 netif_err(adapter, drv, adapter->netdev,
3239 "Invalid aenq notification link state %d\n",
3240 aenq_e->aenq_common_desc.syndrom);
3241 }
3242 }
3243
3244 /* This handler will called for unknown event group or unimplemented handlers*/
3245 static void unimplemented_aenq_handler(void *data,
3246 struct ena_admin_aenq_entry *aenq_e)
3247 {
3248 struct ena_adapter *adapter = (struct ena_adapter *)data;
3249
3250 netif_err(adapter, drv, adapter->netdev,
3251 "Unknown event was received or event with unimplemented handler\n");
3252 }
3253
3254 static struct ena_aenq_handlers aenq_handlers = {
3255 .handlers = {
3256 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3257 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3258 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3259 },
3260 .unimplemented_handler = unimplemented_aenq_handler
3261 };
3262
3263 module_init(ena_init);
3264 module_exit(ena_cleanup);