]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/amd/au1000_eth.c
Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / amd / au1000_eth.c
1 /*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
14 *
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
23 *
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
32 *
33 * ########################################################################
34 *
35 *
36 */
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/capability.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/string.h>
44 #include <linux/timer.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/ioport.h>
48 #include <linux/bitops.h>
49 #include <linux/slab.h>
50 #include <linux/interrupt.h>
51 #include <linux/init.h>
52 #include <linux/netdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/ethtool.h>
55 #include <linux/mii.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/crc32.h>
59 #include <linux/phy.h>
60 #include <linux/platform_device.h>
61 #include <linux/cpu.h>
62 #include <linux/io.h>
63
64 #include <asm/mipsregs.h>
65 #include <asm/irq.h>
66 #include <asm/processor.h>
67
68 #include <au1000.h>
69 #include <au1xxx_eth.h>
70 #include <prom.h>
71
72 #include "au1000_eth.h"
73
74 #ifdef AU1000_ETH_DEBUG
75 static int au1000_debug = 5;
76 #else
77 static int au1000_debug = 3;
78 #endif
79
80 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
81 NETIF_MSG_PROBE | \
82 NETIF_MSG_LINK)
83
84 #define DRV_NAME "au1000_eth"
85 #define DRV_VERSION "1.7"
86 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
87 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
88
89 MODULE_AUTHOR(DRV_AUTHOR);
90 MODULE_DESCRIPTION(DRV_DESC);
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93
94 /*
95 * Theory of operation
96 *
97 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
98 * There are four receive and four transmit descriptors. These
99 * descriptors are not in memory; rather, they are just a set of
100 * hardware registers.
101 *
102 * Since the Au1000 has a coherent data cache, the receive and
103 * transmit buffers are allocated from the KSEG0 segment. The
104 * hardware registers, however, are still mapped at KSEG1 to
105 * make sure there's no out-of-order writes, and that all writes
106 * complete immediately.
107 */
108
109 /*
110 * board-specific configurations
111 *
112 * PHY detection algorithm
113 *
114 * If phy_static_config is undefined, the PHY setup is
115 * autodetected:
116 *
117 * mii_probe() first searches the current MAC's MII bus for a PHY,
118 * selecting the first (or last, if phy_search_highest_addr is
119 * defined) PHY address not already claimed by another netdev.
120 *
121 * If nothing was found that way when searching for the 2nd ethernet
122 * controller's PHY and phy1_search_mac0 is defined, then
123 * the first MII bus is searched as well for an unclaimed PHY; this is
124 * needed in case of a dual-PHY accessible only through the MAC0's MII
125 * bus.
126 *
127 * Finally, if no PHY is found, then the corresponding ethernet
128 * controller is not registered to the network subsystem.
129 */
130
131 /* autodetection defaults: phy1_search_mac0 */
132
133 /* static PHY setup
134 *
135 * most boards PHY setup should be detectable properly with the
136 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
137 * you have a switch attached, or want to use the PHY's interrupt
138 * notification capabilities) you can provide a static PHY
139 * configuration here
140 *
141 * IRQs may only be set, if a PHY address was configured
142 * If a PHY address is given, also a bus id is required to be set
143 *
144 * ps: make sure the used irqs are configured properly in the board
145 * specific irq-map
146 */
147
148 static void au1000_enable_mac(struct net_device *dev, int force_reset)
149 {
150 unsigned long flags;
151 struct au1000_private *aup = netdev_priv(dev);
152
153 spin_lock_irqsave(&aup->lock, flags);
154
155 if (force_reset || (!aup->mac_enabled)) {
156 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
157 au_sync_delay(2);
158 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
159 | MAC_EN_CLOCK_ENABLE), aup->enable);
160 au_sync_delay(2);
161
162 aup->mac_enabled = 1;
163 }
164
165 spin_unlock_irqrestore(&aup->lock, flags);
166 }
167
168 /*
169 * MII operations
170 */
171 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
172 {
173 struct au1000_private *aup = netdev_priv(dev);
174 u32 *const mii_control_reg = &aup->mac->mii_control;
175 u32 *const mii_data_reg = &aup->mac->mii_data;
176 u32 timedout = 20;
177 u32 mii_control;
178
179 while (readl(mii_control_reg) & MAC_MII_BUSY) {
180 mdelay(1);
181 if (--timedout == 0) {
182 netdev_err(dev, "read_MII busy timeout!!\n");
183 return -1;
184 }
185 }
186
187 mii_control = MAC_SET_MII_SELECT_REG(reg) |
188 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
189
190 writel(mii_control, mii_control_reg);
191
192 timedout = 20;
193 while (readl(mii_control_reg) & MAC_MII_BUSY) {
194 mdelay(1);
195 if (--timedout == 0) {
196 netdev_err(dev, "mdio_read busy timeout!!\n");
197 return -1;
198 }
199 }
200 return readl(mii_data_reg);
201 }
202
203 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
204 int reg, u16 value)
205 {
206 struct au1000_private *aup = netdev_priv(dev);
207 u32 *const mii_control_reg = &aup->mac->mii_control;
208 u32 *const mii_data_reg = &aup->mac->mii_data;
209 u32 timedout = 20;
210 u32 mii_control;
211
212 while (readl(mii_control_reg) & MAC_MII_BUSY) {
213 mdelay(1);
214 if (--timedout == 0) {
215 netdev_err(dev, "mdio_write busy timeout!!\n");
216 return;
217 }
218 }
219
220 mii_control = MAC_SET_MII_SELECT_REG(reg) |
221 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
222
223 writel(value, mii_data_reg);
224 writel(mii_control, mii_control_reg);
225 }
226
227 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
228 {
229 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
230 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus)
231 */
232 struct net_device *const dev = bus->priv;
233
234 /* make sure the MAC associated with this
235 * mii_bus is enabled
236 */
237 au1000_enable_mac(dev, 0);
238
239 return au1000_mdio_read(dev, phy_addr, regnum);
240 }
241
242 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
243 u16 value)
244 {
245 struct net_device *const dev = bus->priv;
246
247 /* make sure the MAC associated with this
248 * mii_bus is enabled
249 */
250 au1000_enable_mac(dev, 0);
251
252 au1000_mdio_write(dev, phy_addr, regnum, value);
253 return 0;
254 }
255
256 static int au1000_mdiobus_reset(struct mii_bus *bus)
257 {
258 struct net_device *const dev = bus->priv;
259
260 /* make sure the MAC associated with this
261 * mii_bus is enabled
262 */
263 au1000_enable_mac(dev, 0);
264
265 return 0;
266 }
267
268 static void au1000_hard_stop(struct net_device *dev)
269 {
270 struct au1000_private *aup = netdev_priv(dev);
271 u32 reg;
272
273 netif_dbg(aup, drv, dev, "hard stop\n");
274
275 reg = readl(&aup->mac->control);
276 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
277 writel(reg, &aup->mac->control);
278 au_sync_delay(10);
279 }
280
281 static void au1000_enable_rx_tx(struct net_device *dev)
282 {
283 struct au1000_private *aup = netdev_priv(dev);
284 u32 reg;
285
286 netif_dbg(aup, hw, dev, "enable_rx_tx\n");
287
288 reg = readl(&aup->mac->control);
289 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
290 writel(reg, &aup->mac->control);
291 au_sync_delay(10);
292 }
293
294 static void
295 au1000_adjust_link(struct net_device *dev)
296 {
297 struct au1000_private *aup = netdev_priv(dev);
298 struct phy_device *phydev = aup->phy_dev;
299 unsigned long flags;
300 u32 reg;
301
302 int status_change = 0;
303
304 BUG_ON(!aup->phy_dev);
305
306 spin_lock_irqsave(&aup->lock, flags);
307
308 if (phydev->link && (aup->old_speed != phydev->speed)) {
309 /* speed changed */
310
311 switch (phydev->speed) {
312 case SPEED_10:
313 case SPEED_100:
314 break;
315 default:
316 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
317 phydev->speed);
318 break;
319 }
320
321 aup->old_speed = phydev->speed;
322
323 status_change = 1;
324 }
325
326 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
327 /* duplex mode changed */
328
329 /* switching duplex mode requires to disable rx and tx! */
330 au1000_hard_stop(dev);
331
332 reg = readl(&aup->mac->control);
333 if (DUPLEX_FULL == phydev->duplex) {
334 reg |= MAC_FULL_DUPLEX;
335 reg &= ~MAC_DISABLE_RX_OWN;
336 } else {
337 reg &= ~MAC_FULL_DUPLEX;
338 reg |= MAC_DISABLE_RX_OWN;
339 }
340 writel(reg, &aup->mac->control);
341 au_sync_delay(1);
342
343 au1000_enable_rx_tx(dev);
344 aup->old_duplex = phydev->duplex;
345
346 status_change = 1;
347 }
348
349 if (phydev->link != aup->old_link) {
350 /* link state changed */
351
352 if (!phydev->link) {
353 /* link went down */
354 aup->old_speed = 0;
355 aup->old_duplex = -1;
356 }
357
358 aup->old_link = phydev->link;
359 status_change = 1;
360 }
361
362 spin_unlock_irqrestore(&aup->lock, flags);
363
364 if (status_change) {
365 if (phydev->link)
366 netdev_info(dev, "link up (%d/%s)\n",
367 phydev->speed,
368 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
369 else
370 netdev_info(dev, "link down\n");
371 }
372 }
373
374 static int au1000_mii_probe(struct net_device *dev)
375 {
376 struct au1000_private *const aup = netdev_priv(dev);
377 struct phy_device *phydev = NULL;
378 int phy_addr;
379
380 if (aup->phy_static_config) {
381 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
382
383 if (aup->phy_addr)
384 phydev = aup->mii_bus->phy_map[aup->phy_addr];
385 else
386 netdev_info(dev, "using PHY-less setup\n");
387 return 0;
388 }
389
390 /* find the first (lowest address) PHY
391 * on the current MAC's MII bus
392 */
393 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
394 if (aup->mii_bus->phy_map[phy_addr]) {
395 phydev = aup->mii_bus->phy_map[phy_addr];
396 if (!aup->phy_search_highest_addr)
397 /* break out with first one found */
398 break;
399 }
400
401 if (aup->phy1_search_mac0) {
402 /* try harder to find a PHY */
403 if (!phydev && (aup->mac_id == 1)) {
404 /* no PHY found, maybe we have a dual PHY? */
405 dev_info(&dev->dev, ": no PHY found on MAC1, "
406 "let's see if it's attached to MAC0...\n");
407
408 /* find the first (lowest address) non-attached
409 * PHY on the MAC0 MII bus
410 */
411 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
412 struct phy_device *const tmp_phydev =
413 aup->mii_bus->phy_map[phy_addr];
414
415 if (aup->mac_id == 1)
416 break;
417
418 /* no PHY here... */
419 if (!tmp_phydev)
420 continue;
421
422 /* already claimed by MAC0 */
423 if (tmp_phydev->attached_dev)
424 continue;
425
426 phydev = tmp_phydev;
427 break; /* found it */
428 }
429 }
430 }
431
432 if (!phydev) {
433 netdev_err(dev, "no PHY found\n");
434 return -1;
435 }
436
437 /* now we are supposed to have a proper phydev, to attach to... */
438 BUG_ON(phydev->attached_dev);
439
440 phydev = phy_connect(dev, dev_name(&phydev->dev), &au1000_adjust_link,
441 0, PHY_INTERFACE_MODE_MII);
442
443 if (IS_ERR(phydev)) {
444 netdev_err(dev, "Could not attach to PHY\n");
445 return PTR_ERR(phydev);
446 }
447
448 /* mask with MAC supported features */
449 phydev->supported &= (SUPPORTED_10baseT_Half
450 | SUPPORTED_10baseT_Full
451 | SUPPORTED_100baseT_Half
452 | SUPPORTED_100baseT_Full
453 | SUPPORTED_Autoneg
454 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
455 | SUPPORTED_MII
456 | SUPPORTED_TP);
457
458 phydev->advertising = phydev->supported;
459
460 aup->old_link = 0;
461 aup->old_speed = 0;
462 aup->old_duplex = -1;
463 aup->phy_dev = phydev;
464
465 netdev_info(dev, "attached PHY driver [%s] "
466 "(mii_bus:phy_addr=%s, irq=%d)\n",
467 phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
468
469 return 0;
470 }
471
472
473 /*
474 * Buffer allocation/deallocation routines. The buffer descriptor returned
475 * has the virtual and dma address of a buffer suitable for
476 * both, receive and transmit operations.
477 */
478 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
479 {
480 struct db_dest *pDB;
481 pDB = aup->pDBfree;
482
483 if (pDB)
484 aup->pDBfree = pDB->pnext;
485
486 return pDB;
487 }
488
489 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
490 {
491 struct db_dest *pDBfree = aup->pDBfree;
492 if (pDBfree)
493 pDBfree->pnext = pDB;
494 aup->pDBfree = pDB;
495 }
496
497 static void au1000_reset_mac_unlocked(struct net_device *dev)
498 {
499 struct au1000_private *const aup = netdev_priv(dev);
500 int i;
501
502 au1000_hard_stop(dev);
503
504 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
505 au_sync_delay(2);
506 writel(0, aup->enable);
507 au_sync_delay(2);
508
509 aup->tx_full = 0;
510 for (i = 0; i < NUM_RX_DMA; i++) {
511 /* reset control bits */
512 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
513 }
514 for (i = 0; i < NUM_TX_DMA; i++) {
515 /* reset control bits */
516 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
517 }
518
519 aup->mac_enabled = 0;
520
521 }
522
523 static void au1000_reset_mac(struct net_device *dev)
524 {
525 struct au1000_private *const aup = netdev_priv(dev);
526 unsigned long flags;
527
528 netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
529 (unsigned)aup);
530
531 spin_lock_irqsave(&aup->lock, flags);
532
533 au1000_reset_mac_unlocked(dev);
534
535 spin_unlock_irqrestore(&aup->lock, flags);
536 }
537
538 /*
539 * Setup the receive and transmit "rings". These pointers are the addresses
540 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
541 * these are not descriptors sitting in memory.
542 */
543 static void
544 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
545 {
546 int i;
547
548 for (i = 0; i < NUM_RX_DMA; i++) {
549 aup->rx_dma_ring[i] = (struct rx_dma *)
550 (tx_base + 0x100 + sizeof(struct rx_dma) * i);
551 }
552 for (i = 0; i < NUM_TX_DMA; i++) {
553 aup->tx_dma_ring[i] = (struct tx_dma *)
554 (tx_base + sizeof(struct tx_dma) * i);
555 }
556 }
557
558 /*
559 * ethtool operations
560 */
561
562 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
563 {
564 struct au1000_private *aup = netdev_priv(dev);
565
566 if (aup->phy_dev)
567 return phy_ethtool_gset(aup->phy_dev, cmd);
568
569 return -EINVAL;
570 }
571
572 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
573 {
574 struct au1000_private *aup = netdev_priv(dev);
575
576 if (!capable(CAP_NET_ADMIN))
577 return -EPERM;
578
579 if (aup->phy_dev)
580 return phy_ethtool_sset(aup->phy_dev, cmd);
581
582 return -EINVAL;
583 }
584
585 static void
586 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
587 {
588 struct au1000_private *aup = netdev_priv(dev);
589
590 strcpy(info->driver, DRV_NAME);
591 strcpy(info->version, DRV_VERSION);
592 info->fw_version[0] = '\0';
593 sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
594 info->regdump_len = 0;
595 }
596
597 static void au1000_set_msglevel(struct net_device *dev, u32 value)
598 {
599 struct au1000_private *aup = netdev_priv(dev);
600 aup->msg_enable = value;
601 }
602
603 static u32 au1000_get_msglevel(struct net_device *dev)
604 {
605 struct au1000_private *aup = netdev_priv(dev);
606 return aup->msg_enable;
607 }
608
609 static const struct ethtool_ops au1000_ethtool_ops = {
610 .get_settings = au1000_get_settings,
611 .set_settings = au1000_set_settings,
612 .get_drvinfo = au1000_get_drvinfo,
613 .get_link = ethtool_op_get_link,
614 .get_msglevel = au1000_get_msglevel,
615 .set_msglevel = au1000_set_msglevel,
616 };
617
618
619 /*
620 * Initialize the interface.
621 *
622 * When the device powers up, the clocks are disabled and the
623 * mac is in reset state. When the interface is closed, we
624 * do the same -- reset the device and disable the clocks to
625 * conserve power. Thus, whenever au1000_init() is called,
626 * the device should already be in reset state.
627 */
628 static int au1000_init(struct net_device *dev)
629 {
630 struct au1000_private *aup = netdev_priv(dev);
631 unsigned long flags;
632 int i;
633 u32 control;
634
635 netif_dbg(aup, hw, dev, "au1000_init\n");
636
637 /* bring the device out of reset */
638 au1000_enable_mac(dev, 1);
639
640 spin_lock_irqsave(&aup->lock, flags);
641
642 writel(0, &aup->mac->control);
643 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
644 aup->tx_tail = aup->tx_head;
645 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
646
647 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
648 &aup->mac->mac_addr_high);
649 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
650 dev->dev_addr[1]<<8 | dev->dev_addr[0],
651 &aup->mac->mac_addr_low);
652
653
654 for (i = 0; i < NUM_RX_DMA; i++)
655 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
656
657 au_sync();
658
659 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
660 #ifndef CONFIG_CPU_LITTLE_ENDIAN
661 control |= MAC_BIG_ENDIAN;
662 #endif
663 if (aup->phy_dev) {
664 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
665 control |= MAC_FULL_DUPLEX;
666 else
667 control |= MAC_DISABLE_RX_OWN;
668 } else { /* PHY-less op, assume full-duplex */
669 control |= MAC_FULL_DUPLEX;
670 }
671
672 writel(control, &aup->mac->control);
673 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
674 au_sync();
675
676 spin_unlock_irqrestore(&aup->lock, flags);
677 return 0;
678 }
679
680 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
681 {
682 struct net_device_stats *ps = &dev->stats;
683
684 ps->rx_packets++;
685 if (status & RX_MCAST_FRAME)
686 ps->multicast++;
687
688 if (status & RX_ERROR) {
689 ps->rx_errors++;
690 if (status & RX_MISSED_FRAME)
691 ps->rx_missed_errors++;
692 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
693 ps->rx_length_errors++;
694 if (status & RX_CRC_ERROR)
695 ps->rx_crc_errors++;
696 if (status & RX_COLL)
697 ps->collisions++;
698 } else
699 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
700
701 }
702
703 /*
704 * Au1000 receive routine.
705 */
706 static int au1000_rx(struct net_device *dev)
707 {
708 struct au1000_private *aup = netdev_priv(dev);
709 struct sk_buff *skb;
710 struct rx_dma *prxd;
711 u32 buff_stat, status;
712 struct db_dest *pDB;
713 u32 frmlen;
714
715 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
716
717 prxd = aup->rx_dma_ring[aup->rx_head];
718 buff_stat = prxd->buff_stat;
719 while (buff_stat & RX_T_DONE) {
720 status = prxd->status;
721 pDB = aup->rx_db_inuse[aup->rx_head];
722 au1000_update_rx_stats(dev, status);
723 if (!(status & RX_ERROR)) {
724
725 /* good frame */
726 frmlen = (status & RX_FRAME_LEN_MASK);
727 frmlen -= 4; /* Remove FCS */
728 skb = dev_alloc_skb(frmlen + 2);
729 if (skb == NULL) {
730 netdev_err(dev, "Memory squeeze, dropping packet.\n");
731 dev->stats.rx_dropped++;
732 continue;
733 }
734 skb_reserve(skb, 2); /* 16 byte IP header align */
735 skb_copy_to_linear_data(skb,
736 (unsigned char *)pDB->vaddr, frmlen);
737 skb_put(skb, frmlen);
738 skb->protocol = eth_type_trans(skb, dev);
739 netif_rx(skb); /* pass the packet to upper layers */
740 } else {
741 if (au1000_debug > 4) {
742 pr_err("rx_error(s):");
743 if (status & RX_MISSED_FRAME)
744 pr_cont(" miss");
745 if (status & RX_WDOG_TIMER)
746 pr_cont(" wdog");
747 if (status & RX_RUNT)
748 pr_cont(" runt");
749 if (status & RX_OVERLEN)
750 pr_cont(" overlen");
751 if (status & RX_COLL)
752 pr_cont(" coll");
753 if (status & RX_MII_ERROR)
754 pr_cont(" mii error");
755 if (status & RX_CRC_ERROR)
756 pr_cont(" crc error");
757 if (status & RX_LEN_ERROR)
758 pr_cont(" len error");
759 if (status & RX_U_CNTRL_FRAME)
760 pr_cont(" u control frame");
761 pr_cont("\n");
762 }
763 }
764 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
765 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
766 au_sync();
767
768 /* next descriptor */
769 prxd = aup->rx_dma_ring[aup->rx_head];
770 buff_stat = prxd->buff_stat;
771 }
772 return 0;
773 }
774
775 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
776 {
777 struct au1000_private *aup = netdev_priv(dev);
778 struct net_device_stats *ps = &dev->stats;
779
780 if (status & TX_FRAME_ABORTED) {
781 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
782 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
783 /* any other tx errors are only valid
784 * in half duplex mode
785 */
786 ps->tx_errors++;
787 ps->tx_aborted_errors++;
788 }
789 } else {
790 ps->tx_errors++;
791 ps->tx_aborted_errors++;
792 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
793 ps->tx_carrier_errors++;
794 }
795 }
796 }
797
798 /*
799 * Called from the interrupt service routine to acknowledge
800 * the TX DONE bits. This is a must if the irq is setup as
801 * edge triggered.
802 */
803 static void au1000_tx_ack(struct net_device *dev)
804 {
805 struct au1000_private *aup = netdev_priv(dev);
806 struct tx_dma *ptxd;
807
808 ptxd = aup->tx_dma_ring[aup->tx_tail];
809
810 while (ptxd->buff_stat & TX_T_DONE) {
811 au1000_update_tx_stats(dev, ptxd->status);
812 ptxd->buff_stat &= ~TX_T_DONE;
813 ptxd->len = 0;
814 au_sync();
815
816 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
817 ptxd = aup->tx_dma_ring[aup->tx_tail];
818
819 if (aup->tx_full) {
820 aup->tx_full = 0;
821 netif_wake_queue(dev);
822 }
823 }
824 }
825
826 /*
827 * Au1000 interrupt service routine.
828 */
829 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
830 {
831 struct net_device *dev = dev_id;
832
833 /* Handle RX interrupts first to minimize chance of overrun */
834
835 au1000_rx(dev);
836 au1000_tx_ack(dev);
837 return IRQ_RETVAL(1);
838 }
839
840 static int au1000_open(struct net_device *dev)
841 {
842 int retval;
843 struct au1000_private *aup = netdev_priv(dev);
844
845 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
846
847 retval = request_irq(dev->irq, au1000_interrupt, 0,
848 dev->name, dev);
849 if (retval) {
850 netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
851 return retval;
852 }
853
854 retval = au1000_init(dev);
855 if (retval) {
856 netdev_err(dev, "error in au1000_init\n");
857 free_irq(dev->irq, dev);
858 return retval;
859 }
860
861 if (aup->phy_dev) {
862 /* cause the PHY state machine to schedule a link state check */
863 aup->phy_dev->state = PHY_CHANGELINK;
864 phy_start(aup->phy_dev);
865 }
866
867 netif_start_queue(dev);
868
869 netif_dbg(aup, drv, dev, "open: Initialization done.\n");
870
871 return 0;
872 }
873
874 static int au1000_close(struct net_device *dev)
875 {
876 unsigned long flags;
877 struct au1000_private *const aup = netdev_priv(dev);
878
879 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
880
881 if (aup->phy_dev)
882 phy_stop(aup->phy_dev);
883
884 spin_lock_irqsave(&aup->lock, flags);
885
886 au1000_reset_mac_unlocked(dev);
887
888 /* stop the device */
889 netif_stop_queue(dev);
890
891 /* disable the interrupt */
892 free_irq(dev->irq, dev);
893 spin_unlock_irqrestore(&aup->lock, flags);
894
895 return 0;
896 }
897
898 /*
899 * Au1000 transmit routine.
900 */
901 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
902 {
903 struct au1000_private *aup = netdev_priv(dev);
904 struct net_device_stats *ps = &dev->stats;
905 struct tx_dma *ptxd;
906 u32 buff_stat;
907 struct db_dest *pDB;
908 int i;
909
910 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
911 (unsigned)aup, skb->len,
912 skb->data, aup->tx_head);
913
914 ptxd = aup->tx_dma_ring[aup->tx_head];
915 buff_stat = ptxd->buff_stat;
916 if (buff_stat & TX_DMA_ENABLE) {
917 /* We've wrapped around and the transmitter is still busy */
918 netif_stop_queue(dev);
919 aup->tx_full = 1;
920 return NETDEV_TX_BUSY;
921 } else if (buff_stat & TX_T_DONE) {
922 au1000_update_tx_stats(dev, ptxd->status);
923 ptxd->len = 0;
924 }
925
926 if (aup->tx_full) {
927 aup->tx_full = 0;
928 netif_wake_queue(dev);
929 }
930
931 pDB = aup->tx_db_inuse[aup->tx_head];
932 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
933 if (skb->len < ETH_ZLEN) {
934 for (i = skb->len; i < ETH_ZLEN; i++)
935 ((char *)pDB->vaddr)[i] = 0;
936
937 ptxd->len = ETH_ZLEN;
938 } else
939 ptxd->len = skb->len;
940
941 ps->tx_packets++;
942 ps->tx_bytes += ptxd->len;
943
944 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
945 au_sync();
946 dev_kfree_skb(skb);
947 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
948 return NETDEV_TX_OK;
949 }
950
951 /*
952 * The Tx ring has been full longer than the watchdog timeout
953 * value. The transmitter must be hung?
954 */
955 static void au1000_tx_timeout(struct net_device *dev)
956 {
957 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
958 au1000_reset_mac(dev);
959 au1000_init(dev);
960 dev->trans_start = jiffies; /* prevent tx timeout */
961 netif_wake_queue(dev);
962 }
963
964 static void au1000_multicast_list(struct net_device *dev)
965 {
966 struct au1000_private *aup = netdev_priv(dev);
967 u32 reg;
968
969 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
970 reg = readl(&aup->mac->control);
971 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
972 reg |= MAC_PROMISCUOUS;
973 } else if ((dev->flags & IFF_ALLMULTI) ||
974 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
975 reg |= MAC_PASS_ALL_MULTI;
976 reg &= ~MAC_PROMISCUOUS;
977 netdev_info(dev, "Pass all multicast\n");
978 } else {
979 struct netdev_hw_addr *ha;
980 u32 mc_filter[2]; /* Multicast hash filter */
981
982 mc_filter[1] = mc_filter[0] = 0;
983 netdev_for_each_mc_addr(ha, dev)
984 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
985 (long *)mc_filter);
986 writel(mc_filter[1], &aup->mac->multi_hash_high);
987 writel(mc_filter[0], &aup->mac->multi_hash_low);
988 reg &= ~MAC_PROMISCUOUS;
989 reg |= MAC_HASH_MODE;
990 }
991 writel(reg, &aup->mac->control);
992 }
993
994 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
995 {
996 struct au1000_private *aup = netdev_priv(dev);
997
998 if (!netif_running(dev))
999 return -EINVAL;
1000
1001 if (!aup->phy_dev)
1002 return -EINVAL; /* PHY not controllable */
1003
1004 return phy_mii_ioctl(aup->phy_dev, rq, cmd);
1005 }
1006
1007 static const struct net_device_ops au1000_netdev_ops = {
1008 .ndo_open = au1000_open,
1009 .ndo_stop = au1000_close,
1010 .ndo_start_xmit = au1000_tx,
1011 .ndo_set_rx_mode = au1000_multicast_list,
1012 .ndo_do_ioctl = au1000_ioctl,
1013 .ndo_tx_timeout = au1000_tx_timeout,
1014 .ndo_set_mac_address = eth_mac_addr,
1015 .ndo_validate_addr = eth_validate_addr,
1016 .ndo_change_mtu = eth_change_mtu,
1017 };
1018
1019 static int __devinit au1000_probe(struct platform_device *pdev)
1020 {
1021 static unsigned version_printed;
1022 struct au1000_private *aup = NULL;
1023 struct au1000_eth_platform_data *pd;
1024 struct net_device *dev = NULL;
1025 struct db_dest *pDB, *pDBfree;
1026 int irq, i, err = 0;
1027 struct resource *base, *macen, *macdma;
1028
1029 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1030 if (!base) {
1031 dev_err(&pdev->dev, "failed to retrieve base register\n");
1032 err = -ENODEV;
1033 goto out;
1034 }
1035
1036 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1037 if (!macen) {
1038 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1039 err = -ENODEV;
1040 goto out;
1041 }
1042
1043 irq = platform_get_irq(pdev, 0);
1044 if (irq < 0) {
1045 dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1046 err = -ENODEV;
1047 goto out;
1048 }
1049
1050 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1051 if (!macdma) {
1052 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1053 err = -ENODEV;
1054 goto out;
1055 }
1056
1057 if (!request_mem_region(base->start, resource_size(base),
1058 pdev->name)) {
1059 dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1060 err = -ENXIO;
1061 goto out;
1062 }
1063
1064 if (!request_mem_region(macen->start, resource_size(macen),
1065 pdev->name)) {
1066 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1067 err = -ENXIO;
1068 goto err_request;
1069 }
1070
1071 if (!request_mem_region(macdma->start, resource_size(macdma),
1072 pdev->name)) {
1073 dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1074 err = -ENXIO;
1075 goto err_macdma;
1076 }
1077
1078 dev = alloc_etherdev(sizeof(struct au1000_private));
1079 if (!dev) {
1080 dev_err(&pdev->dev, "alloc_etherdev failed\n");
1081 err = -ENOMEM;
1082 goto err_alloc;
1083 }
1084
1085 SET_NETDEV_DEV(dev, &pdev->dev);
1086 platform_set_drvdata(pdev, dev);
1087 aup = netdev_priv(dev);
1088
1089 spin_lock_init(&aup->lock);
1090 aup->msg_enable = (au1000_debug < 4 ?
1091 AU1000_DEF_MSG_ENABLE : au1000_debug);
1092
1093 /* Allocate the data buffers
1094 * Snooping works fine with eth on all au1xxx
1095 */
1096 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1097 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1098 &aup->dma_addr, 0);
1099 if (!aup->vaddr) {
1100 dev_err(&pdev->dev, "failed to allocate data buffers\n");
1101 err = -ENOMEM;
1102 goto err_vaddr;
1103 }
1104
1105 /* aup->mac is the base address of the MAC's registers */
1106 aup->mac = (struct mac_reg *)
1107 ioremap_nocache(base->start, resource_size(base));
1108 if (!aup->mac) {
1109 dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1110 err = -ENXIO;
1111 goto err_remap1;
1112 }
1113
1114 /* Setup some variables for quick register address access */
1115 aup->enable = (u32 *)ioremap_nocache(macen->start,
1116 resource_size(macen));
1117 if (!aup->enable) {
1118 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1119 err = -ENXIO;
1120 goto err_remap2;
1121 }
1122 aup->mac_id = pdev->id;
1123
1124 aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1125 if (!aup->macdma) {
1126 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1127 err = -ENXIO;
1128 goto err_remap3;
1129 }
1130
1131 au1000_setup_hw_rings(aup, aup->macdma);
1132
1133 /* set a random MAC now in case platform_data doesn't provide one */
1134 random_ether_addr(dev->dev_addr);
1135
1136 writel(0, aup->enable);
1137 aup->mac_enabled = 0;
1138
1139 pd = pdev->dev.platform_data;
1140 if (!pd) {
1141 dev_info(&pdev->dev, "no platform_data passed,"
1142 " PHY search on MAC0\n");
1143 aup->phy1_search_mac0 = 1;
1144 } else {
1145 if (is_valid_ether_addr(pd->mac))
1146 memcpy(dev->dev_addr, pd->mac, 6);
1147
1148 aup->phy_static_config = pd->phy_static_config;
1149 aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1150 aup->phy1_search_mac0 = pd->phy1_search_mac0;
1151 aup->phy_addr = pd->phy_addr;
1152 aup->phy_busid = pd->phy_busid;
1153 aup->phy_irq = pd->phy_irq;
1154 }
1155
1156 if (aup->phy_busid && aup->phy_busid > 0) {
1157 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1158 err = -ENODEV;
1159 goto err_mdiobus_alloc;
1160 }
1161
1162 aup->mii_bus = mdiobus_alloc();
1163 if (aup->mii_bus == NULL) {
1164 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1165 err = -ENOMEM;
1166 goto err_mdiobus_alloc;
1167 }
1168
1169 aup->mii_bus->priv = dev;
1170 aup->mii_bus->read = au1000_mdiobus_read;
1171 aup->mii_bus->write = au1000_mdiobus_write;
1172 aup->mii_bus->reset = au1000_mdiobus_reset;
1173 aup->mii_bus->name = "au1000_eth_mii";
1174 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%x", aup->mac_id);
1175 aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1176 if (aup->mii_bus->irq == NULL)
1177 goto err_out;
1178
1179 for (i = 0; i < PHY_MAX_ADDR; ++i)
1180 aup->mii_bus->irq[i] = PHY_POLL;
1181 /* if known, set corresponding PHY IRQs */
1182 if (aup->phy_static_config)
1183 if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1184 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1185
1186 err = mdiobus_register(aup->mii_bus);
1187 if (err) {
1188 dev_err(&pdev->dev, "failed to register MDIO bus\n");
1189 goto err_mdiobus_reg;
1190 }
1191
1192 if (au1000_mii_probe(dev) != 0)
1193 goto err_out;
1194
1195 pDBfree = NULL;
1196 /* setup the data buffer descriptors and attach a buffer to each one */
1197 pDB = aup->db;
1198 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1199 pDB->pnext = pDBfree;
1200 pDBfree = pDB;
1201 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1202 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1203 pDB++;
1204 }
1205 aup->pDBfree = pDBfree;
1206
1207 for (i = 0; i < NUM_RX_DMA; i++) {
1208 pDB = au1000_GetFreeDB(aup);
1209 if (!pDB)
1210 goto err_out;
1211
1212 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1213 aup->rx_db_inuse[i] = pDB;
1214 }
1215 for (i = 0; i < NUM_TX_DMA; i++) {
1216 pDB = au1000_GetFreeDB(aup);
1217 if (!pDB)
1218 goto err_out;
1219
1220 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1221 aup->tx_dma_ring[i]->len = 0;
1222 aup->tx_db_inuse[i] = pDB;
1223 }
1224
1225 dev->base_addr = base->start;
1226 dev->irq = irq;
1227 dev->netdev_ops = &au1000_netdev_ops;
1228 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1229 dev->watchdog_timeo = ETH_TX_TIMEOUT;
1230
1231 /*
1232 * The boot code uses the ethernet controller, so reset it to start
1233 * fresh. au1000_init() expects that the device is in reset state.
1234 */
1235 au1000_reset_mac(dev);
1236
1237 err = register_netdev(dev);
1238 if (err) {
1239 netdev_err(dev, "Cannot register net device, aborting.\n");
1240 goto err_out;
1241 }
1242
1243 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1244 (unsigned long)base->start, irq);
1245 if (version_printed++ == 0)
1246 pr_info("%s version %s %s\n",
1247 DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1248
1249 return 0;
1250
1251 err_out:
1252 if (aup->mii_bus != NULL)
1253 mdiobus_unregister(aup->mii_bus);
1254
1255 /* here we should have a valid dev plus aup-> register addresses
1256 * so we can reset the mac properly.
1257 */
1258 au1000_reset_mac(dev);
1259
1260 for (i = 0; i < NUM_RX_DMA; i++) {
1261 if (aup->rx_db_inuse[i])
1262 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1263 }
1264 for (i = 0; i < NUM_TX_DMA; i++) {
1265 if (aup->tx_db_inuse[i])
1266 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1267 }
1268 err_mdiobus_reg:
1269 mdiobus_free(aup->mii_bus);
1270 err_mdiobus_alloc:
1271 iounmap(aup->macdma);
1272 err_remap3:
1273 iounmap(aup->enable);
1274 err_remap2:
1275 iounmap(aup->mac);
1276 err_remap1:
1277 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1278 (void *)aup->vaddr, aup->dma_addr);
1279 err_vaddr:
1280 free_netdev(dev);
1281 err_alloc:
1282 release_mem_region(macdma->start, resource_size(macdma));
1283 err_macdma:
1284 release_mem_region(macen->start, resource_size(macen));
1285 err_request:
1286 release_mem_region(base->start, resource_size(base));
1287 out:
1288 return err;
1289 }
1290
1291 static int __devexit au1000_remove(struct platform_device *pdev)
1292 {
1293 struct net_device *dev = platform_get_drvdata(pdev);
1294 struct au1000_private *aup = netdev_priv(dev);
1295 int i;
1296 struct resource *base, *macen;
1297
1298 platform_set_drvdata(pdev, NULL);
1299
1300 unregister_netdev(dev);
1301 mdiobus_unregister(aup->mii_bus);
1302 mdiobus_free(aup->mii_bus);
1303
1304 for (i = 0; i < NUM_RX_DMA; i++)
1305 if (aup->rx_db_inuse[i])
1306 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1307
1308 for (i = 0; i < NUM_TX_DMA; i++)
1309 if (aup->tx_db_inuse[i])
1310 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1311
1312 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1313 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1314 (void *)aup->vaddr, aup->dma_addr);
1315
1316 iounmap(aup->macdma);
1317 iounmap(aup->mac);
1318 iounmap(aup->enable);
1319
1320 base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1321 release_mem_region(base->start, resource_size(base));
1322
1323 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1324 release_mem_region(base->start, resource_size(base));
1325
1326 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1327 release_mem_region(macen->start, resource_size(macen));
1328
1329 free_netdev(dev);
1330
1331 return 0;
1332 }
1333
1334 static struct platform_driver au1000_eth_driver = {
1335 .probe = au1000_probe,
1336 .remove = __devexit_p(au1000_remove),
1337 .driver = {
1338 .name = "au1000-eth",
1339 .owner = THIS_MODULE,
1340 },
1341 };
1342 MODULE_ALIAS("platform:au1000-eth");
1343
1344
1345 static int __init au1000_init_module(void)
1346 {
1347 return platform_driver_register(&au1000_eth_driver);
1348 }
1349
1350 static void __exit au1000_exit_module(void)
1351 {
1352 platform_driver_unregister(&au1000_eth_driver);
1353 }
1354
1355 module_init(au1000_init_module);
1356 module_exit(au1000_exit_module);