]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/atheros/atlx/atl1.c
Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / atheros / atlx / atl1.c
1 /*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 *
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
31 *
32 * This version is adapted from the Attansic reference driver.
33 *
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38 *
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
45 */
46
47 #include <linux/atomic.h>
48 #include <asm/byteorder.h>
49
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/net.h>
67 #include <linux/netdevice.h>
68 #include <linux/pci.h>
69 #include <linux/pci_ids.h>
70 #include <linux/pm.h>
71 #include <linux/skbuff.h>
72 #include <linux/slab.h>
73 #include <linux/spinlock.h>
74 #include <linux/string.h>
75 #include <linux/tcp.h>
76 #include <linux/timer.h>
77 #include <linux/types.h>
78 #include <linux/workqueue.h>
79
80 #include <net/checksum.h>
81
82 #include "atl1.h"
83
84 #define ATLX_DRIVER_VERSION "2.1.3"
85 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
86 "Chris Snook <csnook@redhat.com>, "
87 "Jay Cliburn <jcliburn@gmail.com>");
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(ATLX_DRIVER_VERSION);
90
91 /* Temporary hack for merging atl1 and atl2 */
92 #include "atlx.c"
93
94 static const struct ethtool_ops atl1_ethtool_ops;
95
96 /*
97 * This is the only thing that needs to be changed to adjust the
98 * maximum number of ports that the driver can manage.
99 */
100 #define ATL1_MAX_NIC 4
101
102 #define OPTION_UNSET -1
103 #define OPTION_DISABLED 0
104 #define OPTION_ENABLED 1
105
106 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
107
108 /*
109 * Interrupt Moderate Timer in units of 2 us
110 *
111 * Valid Range: 10-65535
112 *
113 * Default Value: 100 (200us)
114 */
115 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
116 static unsigned int num_int_mod_timer;
117 module_param_array_named(int_mod_timer, int_mod_timer, int,
118 &num_int_mod_timer, 0);
119 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
120
121 #define DEFAULT_INT_MOD_CNT 100 /* 200us */
122 #define MAX_INT_MOD_CNT 65000
123 #define MIN_INT_MOD_CNT 50
124
125 struct atl1_option {
126 enum { enable_option, range_option, list_option } type;
127 char *name;
128 char *err;
129 int def;
130 union {
131 struct { /* range_option info */
132 int min;
133 int max;
134 } r;
135 struct { /* list_option info */
136 int nr;
137 struct atl1_opt_list {
138 int i;
139 char *str;
140 } *p;
141 } l;
142 } arg;
143 };
144
145 static int atl1_validate_option(int *value, struct atl1_option *opt,
146 struct pci_dev *pdev)
147 {
148 if (*value == OPTION_UNSET) {
149 *value = opt->def;
150 return 0;
151 }
152
153 switch (opt->type) {
154 case enable_option:
155 switch (*value) {
156 case OPTION_ENABLED:
157 dev_info(&pdev->dev, "%s enabled\n", opt->name);
158 return 0;
159 case OPTION_DISABLED:
160 dev_info(&pdev->dev, "%s disabled\n", opt->name);
161 return 0;
162 }
163 break;
164 case range_option:
165 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
166 dev_info(&pdev->dev, "%s set to %i\n", opt->name,
167 *value);
168 return 0;
169 }
170 break;
171 case list_option:{
172 int i;
173 struct atl1_opt_list *ent;
174
175 for (i = 0; i < opt->arg.l.nr; i++) {
176 ent = &opt->arg.l.p[i];
177 if (*value == ent->i) {
178 if (ent->str[0] != '\0')
179 dev_info(&pdev->dev, "%s\n",
180 ent->str);
181 return 0;
182 }
183 }
184 }
185 break;
186
187 default:
188 break;
189 }
190
191 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
192 opt->name, *value, opt->err);
193 *value = opt->def;
194 return -1;
195 }
196
197 /**
198 * atl1_check_options - Range Checking for Command Line Parameters
199 * @adapter: board private structure
200 *
201 * This routine checks all command line parameters for valid user
202 * input. If an invalid value is given, or if no user specified
203 * value exists, a default value is used. The final value is stored
204 * in a variable in the adapter structure.
205 */
206 static void atl1_check_options(struct atl1_adapter *adapter)
207 {
208 struct pci_dev *pdev = adapter->pdev;
209 int bd = adapter->bd_number;
210 if (bd >= ATL1_MAX_NIC) {
211 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
212 dev_notice(&pdev->dev, "using defaults for all values\n");
213 }
214 { /* Interrupt Moderate Timer */
215 struct atl1_option opt = {
216 .type = range_option,
217 .name = "Interrupt Moderator Timer",
218 .err = "using default of "
219 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
220 .def = DEFAULT_INT_MOD_CNT,
221 .arg = {.r = {.min = MIN_INT_MOD_CNT,
222 .max = MAX_INT_MOD_CNT} }
223 };
224 int val;
225 if (num_int_mod_timer > bd) {
226 val = int_mod_timer[bd];
227 atl1_validate_option(&val, &opt, pdev);
228 adapter->imt = (u16) val;
229 } else
230 adapter->imt = (u16) (opt.def);
231 }
232 }
233
234 /*
235 * atl1_pci_tbl - PCI Device ID Table
236 */
237 static const struct pci_device_id atl1_pci_tbl[] = {
238 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
239 /* required last entry */
240 {0,}
241 };
242 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
243
244 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
245 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
246
247 static int debug = -1;
248 module_param(debug, int, 0);
249 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
250
251 /*
252 * Reset the transmit and receive units; mask and clear all interrupts.
253 * hw - Struct containing variables accessed by shared code
254 * return : 0 or idle status (if error)
255 */
256 static s32 atl1_reset_hw(struct atl1_hw *hw)
257 {
258 struct pci_dev *pdev = hw->back->pdev;
259 struct atl1_adapter *adapter = hw->back;
260 u32 icr;
261 int i;
262
263 /*
264 * Clear Interrupt mask to stop board from generating
265 * interrupts & Clear any pending interrupt events
266 */
267 /*
268 * atlx_irq_disable(adapter);
269 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
270 */
271
272 /*
273 * Issue Soft Reset to the MAC. This will reset the chip's
274 * transmit, receive, DMA. It will not effect
275 * the current PCI configuration. The global reset bit is self-
276 * clearing, and should clear within a microsecond.
277 */
278 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
279 ioread32(hw->hw_addr + REG_MASTER_CTRL);
280
281 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
282 ioread16(hw->hw_addr + REG_PHY_ENABLE);
283
284 /* delay about 1ms */
285 msleep(1);
286
287 /* Wait at least 10ms for All module to be Idle */
288 for (i = 0; i < 10; i++) {
289 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
290 if (!icr)
291 break;
292 /* delay 1 ms */
293 msleep(1);
294 /* FIXME: still the right way to do this? */
295 cpu_relax();
296 }
297
298 if (icr) {
299 if (netif_msg_hw(adapter))
300 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
301 return icr;
302 }
303
304 return 0;
305 }
306
307 /* function about EEPROM
308 *
309 * check_eeprom_exist
310 * return 0 if eeprom exist
311 */
312 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
313 {
314 u32 value;
315 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
316 if (value & SPI_FLASH_CTRL_EN_VPD) {
317 value &= ~SPI_FLASH_CTRL_EN_VPD;
318 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
319 }
320
321 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
322 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
323 }
324
325 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
326 {
327 int i;
328 u32 control;
329
330 if (offset & 3)
331 /* address do not align */
332 return false;
333
334 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
335 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
336 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
337 ioread32(hw->hw_addr + REG_VPD_CAP);
338
339 for (i = 0; i < 10; i++) {
340 msleep(2);
341 control = ioread32(hw->hw_addr + REG_VPD_CAP);
342 if (control & VPD_CAP_VPD_FLAG)
343 break;
344 }
345 if (control & VPD_CAP_VPD_FLAG) {
346 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
347 return true;
348 }
349 /* timeout */
350 return false;
351 }
352
353 /*
354 * Reads the value from a PHY register
355 * hw - Struct containing variables accessed by shared code
356 * reg_addr - address of the PHY register to read
357 */
358 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
359 {
360 u32 val;
361 int i;
362
363 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
364 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
365 MDIO_CLK_SEL_SHIFT;
366 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
367 ioread32(hw->hw_addr + REG_MDIO_CTRL);
368
369 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
370 udelay(2);
371 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
372 if (!(val & (MDIO_START | MDIO_BUSY)))
373 break;
374 }
375 if (!(val & (MDIO_START | MDIO_BUSY))) {
376 *phy_data = (u16) val;
377 return 0;
378 }
379 return ATLX_ERR_PHY;
380 }
381
382 #define CUSTOM_SPI_CS_SETUP 2
383 #define CUSTOM_SPI_CLK_HI 2
384 #define CUSTOM_SPI_CLK_LO 2
385 #define CUSTOM_SPI_CS_HOLD 2
386 #define CUSTOM_SPI_CS_HI 3
387
388 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
389 {
390 int i;
391 u32 value;
392
393 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
394 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
395
396 value = SPI_FLASH_CTRL_WAIT_READY |
397 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
398 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
399 SPI_FLASH_CTRL_CLK_HI_MASK) <<
400 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
401 SPI_FLASH_CTRL_CLK_LO_MASK) <<
402 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
403 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
404 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
405 SPI_FLASH_CTRL_CS_HI_MASK) <<
406 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
407 SPI_FLASH_CTRL_INS_SHIFT;
408
409 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
410
411 value |= SPI_FLASH_CTRL_START;
412 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
413 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
414
415 for (i = 0; i < 10; i++) {
416 msleep(1);
417 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
418 if (!(value & SPI_FLASH_CTRL_START))
419 break;
420 }
421
422 if (value & SPI_FLASH_CTRL_START)
423 return false;
424
425 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
426
427 return true;
428 }
429
430 /*
431 * get_permanent_address
432 * return 0 if get valid mac address,
433 */
434 static int atl1_get_permanent_address(struct atl1_hw *hw)
435 {
436 u32 addr[2];
437 u32 i, control;
438 u16 reg;
439 u8 eth_addr[ETH_ALEN];
440 bool key_valid;
441
442 if (is_valid_ether_addr(hw->perm_mac_addr))
443 return 0;
444
445 /* init */
446 addr[0] = addr[1] = 0;
447
448 if (!atl1_check_eeprom_exist(hw)) {
449 reg = 0;
450 key_valid = false;
451 /* Read out all EEPROM content */
452 i = 0;
453 while (1) {
454 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
455 if (key_valid) {
456 if (reg == REG_MAC_STA_ADDR)
457 addr[0] = control;
458 else if (reg == (REG_MAC_STA_ADDR + 4))
459 addr[1] = control;
460 key_valid = false;
461 } else if ((control & 0xff) == 0x5A) {
462 key_valid = true;
463 reg = (u16) (control >> 16);
464 } else
465 break;
466 } else
467 /* read error */
468 break;
469 i += 4;
470 }
471
472 *(u32 *) &eth_addr[2] = swab32(addr[0]);
473 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
474 if (is_valid_ether_addr(eth_addr)) {
475 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
476 return 0;
477 }
478 }
479
480 /* see if SPI FLAGS exist ? */
481 addr[0] = addr[1] = 0;
482 reg = 0;
483 key_valid = false;
484 i = 0;
485 while (1) {
486 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
487 if (key_valid) {
488 if (reg == REG_MAC_STA_ADDR)
489 addr[0] = control;
490 else if (reg == (REG_MAC_STA_ADDR + 4))
491 addr[1] = control;
492 key_valid = false;
493 } else if ((control & 0xff) == 0x5A) {
494 key_valid = true;
495 reg = (u16) (control >> 16);
496 } else
497 /* data end */
498 break;
499 } else
500 /* read error */
501 break;
502 i += 4;
503 }
504
505 *(u32 *) &eth_addr[2] = swab32(addr[0]);
506 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
507 if (is_valid_ether_addr(eth_addr)) {
508 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
509 return 0;
510 }
511
512 /*
513 * On some motherboards, the MAC address is written by the
514 * BIOS directly to the MAC register during POST, and is
515 * not stored in eeprom. If all else thus far has failed
516 * to fetch the permanent MAC address, try reading it directly.
517 */
518 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
519 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
520 *(u32 *) &eth_addr[2] = swab32(addr[0]);
521 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
522 if (is_valid_ether_addr(eth_addr)) {
523 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
524 return 0;
525 }
526
527 return 1;
528 }
529
530 /*
531 * Reads the adapter's MAC address from the EEPROM
532 * hw - Struct containing variables accessed by shared code
533 */
534 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
535 {
536 s32 ret = 0;
537 u16 i;
538
539 if (atl1_get_permanent_address(hw)) {
540 eth_random_addr(hw->perm_mac_addr);
541 ret = 1;
542 }
543
544 for (i = 0; i < ETH_ALEN; i++)
545 hw->mac_addr[i] = hw->perm_mac_addr[i];
546 return ret;
547 }
548
549 /*
550 * Hashes an address to determine its location in the multicast table
551 * hw - Struct containing variables accessed by shared code
552 * mc_addr - the multicast address to hash
553 *
554 * atl1_hash_mc_addr
555 * purpose
556 * set hash value for a multicast address
557 * hash calcu processing :
558 * 1. calcu 32bit CRC for multicast address
559 * 2. reverse crc with MSB to LSB
560 */
561 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
562 {
563 u32 crc32, value = 0;
564 int i;
565
566 crc32 = ether_crc_le(6, mc_addr);
567 for (i = 0; i < 32; i++)
568 value |= (((crc32 >> i) & 1) << (31 - i));
569
570 return value;
571 }
572
573 /*
574 * Sets the bit in the multicast table corresponding to the hash value.
575 * hw - Struct containing variables accessed by shared code
576 * hash_value - Multicast address hash value
577 */
578 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
579 {
580 u32 hash_bit, hash_reg;
581 u32 mta;
582
583 /*
584 * The HASH Table is a register array of 2 32-bit registers.
585 * It is treated like an array of 64 bits. We want to set
586 * bit BitArray[hash_value]. So we figure out what register
587 * the bit is in, read it, OR in the new bit, then write
588 * back the new value. The register is determined by the
589 * upper 7 bits of the hash value and the bit within that
590 * register are determined by the lower 5 bits of the value.
591 */
592 hash_reg = (hash_value >> 31) & 0x1;
593 hash_bit = (hash_value >> 26) & 0x1F;
594 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
595 mta |= (1 << hash_bit);
596 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
597 }
598
599 /*
600 * Writes a value to a PHY register
601 * hw - Struct containing variables accessed by shared code
602 * reg_addr - address of the PHY register to write
603 * data - data to write to the PHY
604 */
605 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
606 {
607 int i;
608 u32 val;
609
610 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
611 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
612 MDIO_SUP_PREAMBLE |
613 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
614 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
615 ioread32(hw->hw_addr + REG_MDIO_CTRL);
616
617 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
618 udelay(2);
619 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
620 if (!(val & (MDIO_START | MDIO_BUSY)))
621 break;
622 }
623
624 if (!(val & (MDIO_START | MDIO_BUSY)))
625 return 0;
626
627 return ATLX_ERR_PHY;
628 }
629
630 /*
631 * Make L001's PHY out of Power Saving State (bug)
632 * hw - Struct containing variables accessed by shared code
633 * when power on, L001's PHY always on Power saving State
634 * (Gigabit Link forbidden)
635 */
636 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
637 {
638 s32 ret;
639 ret = atl1_write_phy_reg(hw, 29, 0x0029);
640 if (ret)
641 return ret;
642 return atl1_write_phy_reg(hw, 30, 0);
643 }
644
645 /*
646 * Resets the PHY and make all config validate
647 * hw - Struct containing variables accessed by shared code
648 *
649 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
650 */
651 static s32 atl1_phy_reset(struct atl1_hw *hw)
652 {
653 struct pci_dev *pdev = hw->back->pdev;
654 struct atl1_adapter *adapter = hw->back;
655 s32 ret_val;
656 u16 phy_data;
657
658 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
659 hw->media_type == MEDIA_TYPE_1000M_FULL)
660 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
661 else {
662 switch (hw->media_type) {
663 case MEDIA_TYPE_100M_FULL:
664 phy_data =
665 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
666 MII_CR_RESET;
667 break;
668 case MEDIA_TYPE_100M_HALF:
669 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
670 break;
671 case MEDIA_TYPE_10M_FULL:
672 phy_data =
673 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
674 break;
675 default:
676 /* MEDIA_TYPE_10M_HALF: */
677 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
678 break;
679 }
680 }
681
682 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
683 if (ret_val) {
684 u32 val;
685 int i;
686 /* pcie serdes link may be down! */
687 if (netif_msg_hw(adapter))
688 dev_dbg(&pdev->dev, "pcie phy link down\n");
689
690 for (i = 0; i < 25; i++) {
691 msleep(1);
692 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
693 if (!(val & (MDIO_START | MDIO_BUSY)))
694 break;
695 }
696
697 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
698 if (netif_msg_hw(adapter))
699 dev_warn(&pdev->dev,
700 "pcie link down at least 25ms\n");
701 return ret_val;
702 }
703 }
704 return 0;
705 }
706
707 /*
708 * Configures PHY autoneg and flow control advertisement settings
709 * hw - Struct containing variables accessed by shared code
710 */
711 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
712 {
713 s32 ret_val;
714 s16 mii_autoneg_adv_reg;
715 s16 mii_1000t_ctrl_reg;
716
717 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
718 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
719
720 /* Read the MII 1000Base-T Control Register (Address 9). */
721 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
722
723 /*
724 * First we clear all the 10/100 mb speed bits in the Auto-Neg
725 * Advertisement Register (Address 4) and the 1000 mb speed bits in
726 * the 1000Base-T Control Register (Address 9).
727 */
728 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
729 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
730
731 /*
732 * Need to parse media_type and set up
733 * the appropriate PHY registers.
734 */
735 switch (hw->media_type) {
736 case MEDIA_TYPE_AUTO_SENSOR:
737 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
738 MII_AR_10T_FD_CAPS |
739 MII_AR_100TX_HD_CAPS |
740 MII_AR_100TX_FD_CAPS);
741 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
742 break;
743
744 case MEDIA_TYPE_1000M_FULL:
745 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
746 break;
747
748 case MEDIA_TYPE_100M_FULL:
749 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
750 break;
751
752 case MEDIA_TYPE_100M_HALF:
753 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
754 break;
755
756 case MEDIA_TYPE_10M_FULL:
757 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
758 break;
759
760 default:
761 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
762 break;
763 }
764
765 /* flow control fixed to enable all */
766 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
767
768 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
769 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
770
771 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
772 if (ret_val)
773 return ret_val;
774
775 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
776 if (ret_val)
777 return ret_val;
778
779 return 0;
780 }
781
782 /*
783 * Configures link settings.
784 * hw - Struct containing variables accessed by shared code
785 * Assumes the hardware has previously been reset and the
786 * transmitter and receiver are not enabled.
787 */
788 static s32 atl1_setup_link(struct atl1_hw *hw)
789 {
790 struct pci_dev *pdev = hw->back->pdev;
791 struct atl1_adapter *adapter = hw->back;
792 s32 ret_val;
793
794 /*
795 * Options:
796 * PHY will advertise value(s) parsed from
797 * autoneg_advertised and fc
798 * no matter what autoneg is , We will not wait link result.
799 */
800 ret_val = atl1_phy_setup_autoneg_adv(hw);
801 if (ret_val) {
802 if (netif_msg_link(adapter))
803 dev_dbg(&pdev->dev,
804 "error setting up autonegotiation\n");
805 return ret_val;
806 }
807 /* SW.Reset , En-Auto-Neg if needed */
808 ret_val = atl1_phy_reset(hw);
809 if (ret_val) {
810 if (netif_msg_link(adapter))
811 dev_dbg(&pdev->dev, "error resetting phy\n");
812 return ret_val;
813 }
814 hw->phy_configured = true;
815 return ret_val;
816 }
817
818 static void atl1_init_flash_opcode(struct atl1_hw *hw)
819 {
820 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
821 /* Atmel */
822 hw->flash_vendor = 0;
823
824 /* Init OP table */
825 iowrite8(flash_table[hw->flash_vendor].cmd_program,
826 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
827 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
828 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
829 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
830 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
831 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
832 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
833 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
834 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
835 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
836 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
837 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
838 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
839 iowrite8(flash_table[hw->flash_vendor].cmd_read,
840 hw->hw_addr + REG_SPI_FLASH_OP_READ);
841 }
842
843 /*
844 * Performs basic configuration of the adapter.
845 * hw - Struct containing variables accessed by shared code
846 * Assumes that the controller has previously been reset and is in a
847 * post-reset uninitialized state. Initializes multicast table,
848 * and Calls routines to setup link
849 * Leaves the transmit and receive units disabled and uninitialized.
850 */
851 static s32 atl1_init_hw(struct atl1_hw *hw)
852 {
853 u32 ret_val = 0;
854
855 /* Zero out the Multicast HASH table */
856 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
857 /* clear the old settings from the multicast hash table */
858 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
859
860 atl1_init_flash_opcode(hw);
861
862 if (!hw->phy_configured) {
863 /* enable GPHY LinkChange Interrupt */
864 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
865 if (ret_val)
866 return ret_val;
867 /* make PHY out of power-saving state */
868 ret_val = atl1_phy_leave_power_saving(hw);
869 if (ret_val)
870 return ret_val;
871 /* Call a subroutine to configure the link */
872 ret_val = atl1_setup_link(hw);
873 }
874 return ret_val;
875 }
876
877 /*
878 * Detects the current speed and duplex settings of the hardware.
879 * hw - Struct containing variables accessed by shared code
880 * speed - Speed of the connection
881 * duplex - Duplex setting of the connection
882 */
883 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
884 {
885 struct pci_dev *pdev = hw->back->pdev;
886 struct atl1_adapter *adapter = hw->back;
887 s32 ret_val;
888 u16 phy_data;
889
890 /* ; --- Read PHY Specific Status Register (17) */
891 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
892 if (ret_val)
893 return ret_val;
894
895 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
896 return ATLX_ERR_PHY_RES;
897
898 switch (phy_data & MII_ATLX_PSSR_SPEED) {
899 case MII_ATLX_PSSR_1000MBS:
900 *speed = SPEED_1000;
901 break;
902 case MII_ATLX_PSSR_100MBS:
903 *speed = SPEED_100;
904 break;
905 case MII_ATLX_PSSR_10MBS:
906 *speed = SPEED_10;
907 break;
908 default:
909 if (netif_msg_hw(adapter))
910 dev_dbg(&pdev->dev, "error getting speed\n");
911 return ATLX_ERR_PHY_SPEED;
912 }
913 if (phy_data & MII_ATLX_PSSR_DPLX)
914 *duplex = FULL_DUPLEX;
915 else
916 *duplex = HALF_DUPLEX;
917
918 return 0;
919 }
920
921 static void atl1_set_mac_addr(struct atl1_hw *hw)
922 {
923 u32 value;
924 /*
925 * 00-0B-6A-F6-00-DC
926 * 0: 6AF600DC 1: 000B
927 * low dword
928 */
929 value = (((u32) hw->mac_addr[2]) << 24) |
930 (((u32) hw->mac_addr[3]) << 16) |
931 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
932 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
933 /* high dword */
934 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
935 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
936 }
937
938 /**
939 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
940 * @adapter: board private structure to initialize
941 *
942 * atl1_sw_init initializes the Adapter private data structure.
943 * Fields are initialized based on PCI device information and
944 * OS network device settings (MTU size).
945 */
946 static int atl1_sw_init(struct atl1_adapter *adapter)
947 {
948 struct atl1_hw *hw = &adapter->hw;
949 struct net_device *netdev = adapter->netdev;
950
951 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
952 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
953
954 adapter->wol = 0;
955 device_set_wakeup_enable(&adapter->pdev->dev, false);
956 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
957 adapter->ict = 50000; /* 100ms */
958 adapter->link_speed = SPEED_0; /* hardware init */
959 adapter->link_duplex = FULL_DUPLEX;
960
961 hw->phy_configured = false;
962 hw->preamble_len = 7;
963 hw->ipgt = 0x60;
964 hw->min_ifg = 0x50;
965 hw->ipgr1 = 0x40;
966 hw->ipgr2 = 0x60;
967 hw->max_retry = 0xf;
968 hw->lcol = 0x37;
969 hw->jam_ipg = 7;
970 hw->rfd_burst = 8;
971 hw->rrd_burst = 8;
972 hw->rfd_fetch_gap = 1;
973 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
974 hw->rx_jumbo_lkah = 1;
975 hw->rrd_ret_timer = 16;
976 hw->tpd_burst = 4;
977 hw->tpd_fetch_th = 16;
978 hw->txf_burst = 0x100;
979 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
980 hw->tpd_fetch_gap = 1;
981 hw->rcb_value = atl1_rcb_64;
982 hw->dma_ord = atl1_dma_ord_enh;
983 hw->dmar_block = atl1_dma_req_256;
984 hw->dmaw_block = atl1_dma_req_256;
985 hw->cmb_rrd = 4;
986 hw->cmb_tpd = 4;
987 hw->cmb_rx_timer = 1; /* about 2us */
988 hw->cmb_tx_timer = 1; /* about 2us */
989 hw->smb_timer = 100000; /* about 200ms */
990
991 spin_lock_init(&adapter->lock);
992 spin_lock_init(&adapter->mb_lock);
993
994 return 0;
995 }
996
997 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
998 {
999 struct atl1_adapter *adapter = netdev_priv(netdev);
1000 u16 result;
1001
1002 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1003
1004 return result;
1005 }
1006
1007 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1008 int val)
1009 {
1010 struct atl1_adapter *adapter = netdev_priv(netdev);
1011
1012 atl1_write_phy_reg(&adapter->hw, reg_num, val);
1013 }
1014
1015 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1016 {
1017 struct atl1_adapter *adapter = netdev_priv(netdev);
1018 unsigned long flags;
1019 int retval;
1020
1021 if (!netif_running(netdev))
1022 return -EINVAL;
1023
1024 spin_lock_irqsave(&adapter->lock, flags);
1025 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1026 spin_unlock_irqrestore(&adapter->lock, flags);
1027
1028 return retval;
1029 }
1030
1031 /**
1032 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1033 * @adapter: board private structure
1034 *
1035 * Return 0 on success, negative on failure
1036 */
1037 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1038 {
1039 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1040 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1041 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1042 struct atl1_ring_header *ring_header = &adapter->ring_header;
1043 struct pci_dev *pdev = adapter->pdev;
1044 int size;
1045 u8 offset = 0;
1046
1047 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1048 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1049 if (unlikely(!tpd_ring->buffer_info)) {
1050 if (netif_msg_drv(adapter))
1051 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1052 size);
1053 goto err_nomem;
1054 }
1055 rfd_ring->buffer_info =
1056 (tpd_ring->buffer_info + tpd_ring->count);
1057
1058 /*
1059 * real ring DMA buffer
1060 * each ring/block may need up to 8 bytes for alignment, hence the
1061 * additional 40 bytes tacked onto the end.
1062 */
1063 ring_header->size = size =
1064 sizeof(struct tx_packet_desc) * tpd_ring->count
1065 + sizeof(struct rx_free_desc) * rfd_ring->count
1066 + sizeof(struct rx_return_desc) * rrd_ring->count
1067 + sizeof(struct coals_msg_block)
1068 + sizeof(struct stats_msg_block)
1069 + 40;
1070
1071 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1072 &ring_header->dma);
1073 if (unlikely(!ring_header->desc)) {
1074 if (netif_msg_drv(adapter))
1075 dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1076 goto err_nomem;
1077 }
1078
1079 memset(ring_header->desc, 0, ring_header->size);
1080
1081 /* init TPD ring */
1082 tpd_ring->dma = ring_header->dma;
1083 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1084 tpd_ring->dma += offset;
1085 tpd_ring->desc = (u8 *) ring_header->desc + offset;
1086 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1087
1088 /* init RFD ring */
1089 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1090 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1091 rfd_ring->dma += offset;
1092 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1093 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1094
1095
1096 /* init RRD ring */
1097 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1098 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1099 rrd_ring->dma += offset;
1100 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1101 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1102
1103
1104 /* init CMB */
1105 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1106 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1107 adapter->cmb.dma += offset;
1108 adapter->cmb.cmb = (struct coals_msg_block *)
1109 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1110
1111 /* init SMB */
1112 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1113 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1114 adapter->smb.dma += offset;
1115 adapter->smb.smb = (struct stats_msg_block *)
1116 ((u8 *) adapter->cmb.cmb +
1117 (sizeof(struct coals_msg_block) + offset));
1118
1119 return 0;
1120
1121 err_nomem:
1122 kfree(tpd_ring->buffer_info);
1123 return -ENOMEM;
1124 }
1125
1126 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1127 {
1128 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1129 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1130 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1131
1132 atomic_set(&tpd_ring->next_to_use, 0);
1133 atomic_set(&tpd_ring->next_to_clean, 0);
1134
1135 rfd_ring->next_to_clean = 0;
1136 atomic_set(&rfd_ring->next_to_use, 0);
1137
1138 rrd_ring->next_to_use = 0;
1139 atomic_set(&rrd_ring->next_to_clean, 0);
1140 }
1141
1142 /**
1143 * atl1_clean_rx_ring - Free RFD Buffers
1144 * @adapter: board private structure
1145 */
1146 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1147 {
1148 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1149 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1150 struct atl1_buffer *buffer_info;
1151 struct pci_dev *pdev = adapter->pdev;
1152 unsigned long size;
1153 unsigned int i;
1154
1155 /* Free all the Rx ring sk_buffs */
1156 for (i = 0; i < rfd_ring->count; i++) {
1157 buffer_info = &rfd_ring->buffer_info[i];
1158 if (buffer_info->dma) {
1159 pci_unmap_page(pdev, buffer_info->dma,
1160 buffer_info->length, PCI_DMA_FROMDEVICE);
1161 buffer_info->dma = 0;
1162 }
1163 if (buffer_info->skb) {
1164 dev_kfree_skb(buffer_info->skb);
1165 buffer_info->skb = NULL;
1166 }
1167 }
1168
1169 size = sizeof(struct atl1_buffer) * rfd_ring->count;
1170 memset(rfd_ring->buffer_info, 0, size);
1171
1172 /* Zero out the descriptor ring */
1173 memset(rfd_ring->desc, 0, rfd_ring->size);
1174
1175 rfd_ring->next_to_clean = 0;
1176 atomic_set(&rfd_ring->next_to_use, 0);
1177
1178 rrd_ring->next_to_use = 0;
1179 atomic_set(&rrd_ring->next_to_clean, 0);
1180 }
1181
1182 /**
1183 * atl1_clean_tx_ring - Free Tx Buffers
1184 * @adapter: board private structure
1185 */
1186 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1187 {
1188 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1189 struct atl1_buffer *buffer_info;
1190 struct pci_dev *pdev = adapter->pdev;
1191 unsigned long size;
1192 unsigned int i;
1193
1194 /* Free all the Tx ring sk_buffs */
1195 for (i = 0; i < tpd_ring->count; i++) {
1196 buffer_info = &tpd_ring->buffer_info[i];
1197 if (buffer_info->dma) {
1198 pci_unmap_page(pdev, buffer_info->dma,
1199 buffer_info->length, PCI_DMA_TODEVICE);
1200 buffer_info->dma = 0;
1201 }
1202 }
1203
1204 for (i = 0; i < tpd_ring->count; i++) {
1205 buffer_info = &tpd_ring->buffer_info[i];
1206 if (buffer_info->skb) {
1207 dev_kfree_skb_any(buffer_info->skb);
1208 buffer_info->skb = NULL;
1209 }
1210 }
1211
1212 size = sizeof(struct atl1_buffer) * tpd_ring->count;
1213 memset(tpd_ring->buffer_info, 0, size);
1214
1215 /* Zero out the descriptor ring */
1216 memset(tpd_ring->desc, 0, tpd_ring->size);
1217
1218 atomic_set(&tpd_ring->next_to_use, 0);
1219 atomic_set(&tpd_ring->next_to_clean, 0);
1220 }
1221
1222 /**
1223 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1224 * @adapter: board private structure
1225 *
1226 * Free all transmit software resources
1227 */
1228 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1229 {
1230 struct pci_dev *pdev = adapter->pdev;
1231 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1232 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1233 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1234 struct atl1_ring_header *ring_header = &adapter->ring_header;
1235
1236 atl1_clean_tx_ring(adapter);
1237 atl1_clean_rx_ring(adapter);
1238
1239 kfree(tpd_ring->buffer_info);
1240 pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1241 ring_header->dma);
1242
1243 tpd_ring->buffer_info = NULL;
1244 tpd_ring->desc = NULL;
1245 tpd_ring->dma = 0;
1246
1247 rfd_ring->buffer_info = NULL;
1248 rfd_ring->desc = NULL;
1249 rfd_ring->dma = 0;
1250
1251 rrd_ring->desc = NULL;
1252 rrd_ring->dma = 0;
1253
1254 adapter->cmb.dma = 0;
1255 adapter->cmb.cmb = NULL;
1256
1257 adapter->smb.dma = 0;
1258 adapter->smb.smb = NULL;
1259 }
1260
1261 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1262 {
1263 u32 value;
1264 struct atl1_hw *hw = &adapter->hw;
1265 struct net_device *netdev = adapter->netdev;
1266 /* Config MAC CTRL Register */
1267 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1268 /* duplex */
1269 if (FULL_DUPLEX == adapter->link_duplex)
1270 value |= MAC_CTRL_DUPLX;
1271 /* speed */
1272 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1273 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1274 MAC_CTRL_SPEED_SHIFT);
1275 /* flow control */
1276 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1277 /* PAD & CRC */
1278 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1279 /* preamble length */
1280 value |= (((u32) adapter->hw.preamble_len
1281 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1282 /* vlan */
1283 __atlx_vlan_mode(netdev->features, &value);
1284 /* rx checksum
1285 if (adapter->rx_csum)
1286 value |= MAC_CTRL_RX_CHKSUM_EN;
1287 */
1288 /* filter mode */
1289 value |= MAC_CTRL_BC_EN;
1290 if (netdev->flags & IFF_PROMISC)
1291 value |= MAC_CTRL_PROMIS_EN;
1292 else if (netdev->flags & IFF_ALLMULTI)
1293 value |= MAC_CTRL_MC_ALL_EN;
1294 /* value |= MAC_CTRL_LOOPBACK; */
1295 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1296 }
1297
1298 static u32 atl1_check_link(struct atl1_adapter *adapter)
1299 {
1300 struct atl1_hw *hw = &adapter->hw;
1301 struct net_device *netdev = adapter->netdev;
1302 u32 ret_val;
1303 u16 speed, duplex, phy_data;
1304 int reconfig = 0;
1305
1306 /* MII_BMSR must read twice */
1307 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1308 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1309 if (!(phy_data & BMSR_LSTATUS)) {
1310 /* link down */
1311 if (netif_carrier_ok(netdev)) {
1312 /* old link state: Up */
1313 if (netif_msg_link(adapter))
1314 dev_info(&adapter->pdev->dev, "link is down\n");
1315 adapter->link_speed = SPEED_0;
1316 netif_carrier_off(netdev);
1317 }
1318 return 0;
1319 }
1320
1321 /* Link Up */
1322 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1323 if (ret_val)
1324 return ret_val;
1325
1326 switch (hw->media_type) {
1327 case MEDIA_TYPE_1000M_FULL:
1328 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1329 reconfig = 1;
1330 break;
1331 case MEDIA_TYPE_100M_FULL:
1332 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1333 reconfig = 1;
1334 break;
1335 case MEDIA_TYPE_100M_HALF:
1336 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1337 reconfig = 1;
1338 break;
1339 case MEDIA_TYPE_10M_FULL:
1340 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1341 reconfig = 1;
1342 break;
1343 case MEDIA_TYPE_10M_HALF:
1344 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1345 reconfig = 1;
1346 break;
1347 }
1348
1349 /* link result is our setting */
1350 if (!reconfig) {
1351 if (adapter->link_speed != speed ||
1352 adapter->link_duplex != duplex) {
1353 adapter->link_speed = speed;
1354 adapter->link_duplex = duplex;
1355 atl1_setup_mac_ctrl(adapter);
1356 if (netif_msg_link(adapter))
1357 dev_info(&adapter->pdev->dev,
1358 "%s link is up %d Mbps %s\n",
1359 netdev->name, adapter->link_speed,
1360 adapter->link_duplex == FULL_DUPLEX ?
1361 "full duplex" : "half duplex");
1362 }
1363 if (!netif_carrier_ok(netdev)) {
1364 /* Link down -> Up */
1365 netif_carrier_on(netdev);
1366 }
1367 return 0;
1368 }
1369
1370 /* change original link status */
1371 if (netif_carrier_ok(netdev)) {
1372 adapter->link_speed = SPEED_0;
1373 netif_carrier_off(netdev);
1374 netif_stop_queue(netdev);
1375 }
1376
1377 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1378 hw->media_type != MEDIA_TYPE_1000M_FULL) {
1379 switch (hw->media_type) {
1380 case MEDIA_TYPE_100M_FULL:
1381 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1382 MII_CR_RESET;
1383 break;
1384 case MEDIA_TYPE_100M_HALF:
1385 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1386 break;
1387 case MEDIA_TYPE_10M_FULL:
1388 phy_data =
1389 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1390 break;
1391 default:
1392 /* MEDIA_TYPE_10M_HALF: */
1393 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1394 break;
1395 }
1396 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1397 return 0;
1398 }
1399
1400 /* auto-neg, insert timer to re-config phy */
1401 if (!adapter->phy_timer_pending) {
1402 adapter->phy_timer_pending = true;
1403 mod_timer(&adapter->phy_config_timer,
1404 round_jiffies(jiffies + 3 * HZ));
1405 }
1406
1407 return 0;
1408 }
1409
1410 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1411 {
1412 u32 hi, lo, value;
1413
1414 /* RFD Flow Control */
1415 value = adapter->rfd_ring.count;
1416 hi = value / 16;
1417 if (hi < 2)
1418 hi = 2;
1419 lo = value * 7 / 8;
1420
1421 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1422 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1423 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1424
1425 /* RRD Flow Control */
1426 value = adapter->rrd_ring.count;
1427 lo = value / 16;
1428 hi = value * 7 / 8;
1429 if (lo < 2)
1430 lo = 2;
1431 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1432 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1433 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1434 }
1435
1436 static void set_flow_ctrl_new(struct atl1_hw *hw)
1437 {
1438 u32 hi, lo, value;
1439
1440 /* RXF Flow Control */
1441 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1442 lo = value / 16;
1443 if (lo < 192)
1444 lo = 192;
1445 hi = value * 7 / 8;
1446 if (hi < lo)
1447 hi = lo + 16;
1448 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1449 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1450 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1451
1452 /* RRD Flow Control */
1453 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1454 lo = value / 8;
1455 hi = value * 7 / 8;
1456 if (lo < 2)
1457 lo = 2;
1458 if (hi < lo)
1459 hi = lo + 3;
1460 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1461 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1462 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1463 }
1464
1465 /**
1466 * atl1_configure - Configure Transmit&Receive Unit after Reset
1467 * @adapter: board private structure
1468 *
1469 * Configure the Tx /Rx unit of the MAC after a reset.
1470 */
1471 static u32 atl1_configure(struct atl1_adapter *adapter)
1472 {
1473 struct atl1_hw *hw = &adapter->hw;
1474 u32 value;
1475
1476 /* clear interrupt status */
1477 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1478
1479 /* set MAC Address */
1480 value = (((u32) hw->mac_addr[2]) << 24) |
1481 (((u32) hw->mac_addr[3]) << 16) |
1482 (((u32) hw->mac_addr[4]) << 8) |
1483 (((u32) hw->mac_addr[5]));
1484 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1485 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1486 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1487
1488 /* tx / rx ring */
1489
1490 /* HI base address */
1491 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1492 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1493 /* LO base address */
1494 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1495 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1496 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1497 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1498 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1499 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1500 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1501 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1502 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1503 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1504
1505 /* element count */
1506 value = adapter->rrd_ring.count;
1507 value <<= 16;
1508 value += adapter->rfd_ring.count;
1509 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1510 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1511 REG_DESC_TPD_RING_SIZE);
1512
1513 /* Load Ptr */
1514 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1515
1516 /* config Mailbox */
1517 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1518 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1519 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1520 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1521 ((atomic_read(&adapter->rfd_ring.next_to_use)
1522 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1523 iowrite32(value, hw->hw_addr + REG_MAILBOX);
1524
1525 /* config IPG/IFG */
1526 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1527 << MAC_IPG_IFG_IPGT_SHIFT) |
1528 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1529 << MAC_IPG_IFG_MIFG_SHIFT) |
1530 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1531 << MAC_IPG_IFG_IPGR1_SHIFT) |
1532 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1533 << MAC_IPG_IFG_IPGR2_SHIFT);
1534 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1535
1536 /* config Half-Duplex Control */
1537 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1538 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1539 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1540 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1541 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1542 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1543 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1544 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1545
1546 /* set Interrupt Moderator Timer */
1547 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1548 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1549
1550 /* set Interrupt Clear Timer */
1551 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1552
1553 /* set max frame size hw will accept */
1554 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1555
1556 /* jumbo size & rrd retirement timer */
1557 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1558 << RXQ_JMBOSZ_TH_SHIFT) |
1559 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1560 << RXQ_JMBO_LKAH_SHIFT) |
1561 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1562 << RXQ_RRD_TIMER_SHIFT);
1563 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1564
1565 /* Flow Control */
1566 switch (hw->dev_rev) {
1567 case 0x8001:
1568 case 0x9001:
1569 case 0x9002:
1570 case 0x9003:
1571 set_flow_ctrl_old(adapter);
1572 break;
1573 default:
1574 set_flow_ctrl_new(hw);
1575 break;
1576 }
1577
1578 /* config TXQ */
1579 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1580 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1581 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1582 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1583 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1584 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1585 TXQ_CTRL_EN;
1586 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1587
1588 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1589 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1590 << TX_JUMBO_TASK_TH_SHIFT) |
1591 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1592 << TX_TPD_MIN_IPG_SHIFT);
1593 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1594
1595 /* config RXQ */
1596 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1597 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1598 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1599 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1600 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1601 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1602 RXQ_CTRL_EN;
1603 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1604
1605 /* config DMA Engine */
1606 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1607 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1608 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1609 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1610 DMA_CTRL_DMAW_EN;
1611 value |= (u32) hw->dma_ord;
1612 if (atl1_rcb_128 == hw->rcb_value)
1613 value |= DMA_CTRL_RCB_VALUE;
1614 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1615
1616 /* config CMB / SMB */
1617 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1618 hw->cmb_tpd : adapter->tpd_ring.count;
1619 value <<= 16;
1620 value |= hw->cmb_rrd;
1621 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1622 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1623 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1624 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1625
1626 /* --- enable CMB / SMB */
1627 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1628 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1629
1630 value = ioread32(adapter->hw.hw_addr + REG_ISR);
1631 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1632 value = 1; /* config failed */
1633 else
1634 value = 0;
1635
1636 /* clear all interrupt status */
1637 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1638 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1639 return value;
1640 }
1641
1642 /*
1643 * atl1_pcie_patch - Patch for PCIE module
1644 */
1645 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1646 {
1647 u32 value;
1648
1649 /* much vendor magic here */
1650 value = 0x6500;
1651 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1652 /* pcie flow control mode change */
1653 value = ioread32(adapter->hw.hw_addr + 0x1008);
1654 value |= 0x8000;
1655 iowrite32(value, adapter->hw.hw_addr + 0x1008);
1656 }
1657
1658 /*
1659 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1660 * on PCI Command register is disable.
1661 * The function enable this bit.
1662 * Brackett, 2006/03/15
1663 */
1664 static void atl1_via_workaround(struct atl1_adapter *adapter)
1665 {
1666 unsigned long value;
1667
1668 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1669 if (value & PCI_COMMAND_INTX_DISABLE)
1670 value &= ~PCI_COMMAND_INTX_DISABLE;
1671 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1672 }
1673
1674 static void atl1_inc_smb(struct atl1_adapter *adapter)
1675 {
1676 struct net_device *netdev = adapter->netdev;
1677 struct stats_msg_block *smb = adapter->smb.smb;
1678
1679 u64 new_rx_errors = smb->rx_frag +
1680 smb->rx_fcs_err +
1681 smb->rx_len_err +
1682 smb->rx_sz_ov +
1683 smb->rx_rxf_ov +
1684 smb->rx_rrd_ov +
1685 smb->rx_align_err;
1686 u64 new_tx_errors = smb->tx_late_col +
1687 smb->tx_abort_col +
1688 smb->tx_underrun +
1689 smb->tx_trunc;
1690
1691 /* Fill out the OS statistics structure */
1692 adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1693 adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1694 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1695 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1696 adapter->soft_stats.multicast += smb->rx_mcast;
1697 adapter->soft_stats.collisions += smb->tx_1_col +
1698 smb->tx_2_col +
1699 smb->tx_late_col +
1700 smb->tx_abort_col;
1701
1702 /* Rx Errors */
1703 adapter->soft_stats.rx_errors += new_rx_errors;
1704 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1705 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1706 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1707 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1708
1709 adapter->soft_stats.rx_pause += smb->rx_pause;
1710 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1711 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1712
1713 /* Tx Errors */
1714 adapter->soft_stats.tx_errors += new_tx_errors;
1715 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1716 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1717 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1718
1719 adapter->soft_stats.excecol += smb->tx_abort_col;
1720 adapter->soft_stats.deffer += smb->tx_defer;
1721 adapter->soft_stats.scc += smb->tx_1_col;
1722 adapter->soft_stats.mcc += smb->tx_2_col;
1723 adapter->soft_stats.latecol += smb->tx_late_col;
1724 adapter->soft_stats.tx_underrun += smb->tx_underrun;
1725 adapter->soft_stats.tx_trunc += smb->tx_trunc;
1726 adapter->soft_stats.tx_pause += smb->tx_pause;
1727
1728 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1729 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1730 netdev->stats.multicast = adapter->soft_stats.multicast;
1731 netdev->stats.collisions = adapter->soft_stats.collisions;
1732 netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1733 netdev->stats.rx_length_errors =
1734 adapter->soft_stats.rx_length_errors;
1735 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1736 netdev->stats.rx_frame_errors =
1737 adapter->soft_stats.rx_frame_errors;
1738 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1739 netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1740 netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1741 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1742 netdev->stats.tx_aborted_errors =
1743 adapter->soft_stats.tx_aborted_errors;
1744 netdev->stats.tx_window_errors =
1745 adapter->soft_stats.tx_window_errors;
1746 netdev->stats.tx_carrier_errors =
1747 adapter->soft_stats.tx_carrier_errors;
1748
1749 netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1750 netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1751 }
1752
1753 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1754 {
1755 unsigned long flags;
1756 u32 tpd_next_to_use;
1757 u32 rfd_next_to_use;
1758 u32 rrd_next_to_clean;
1759 u32 value;
1760
1761 spin_lock_irqsave(&adapter->mb_lock, flags);
1762
1763 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1764 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1765 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1766
1767 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1768 MB_RFD_PROD_INDX_SHIFT) |
1769 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1770 MB_RRD_CONS_INDX_SHIFT) |
1771 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1772 MB_TPD_PROD_INDX_SHIFT);
1773 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1774
1775 spin_unlock_irqrestore(&adapter->mb_lock, flags);
1776 }
1777
1778 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1779 struct rx_return_desc *rrd, u16 offset)
1780 {
1781 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1782
1783 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1784 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1785 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1786 rfd_ring->next_to_clean = 0;
1787 }
1788 }
1789 }
1790
1791 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1792 struct rx_return_desc *rrd)
1793 {
1794 u16 num_buf;
1795
1796 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1797 adapter->rx_buffer_len;
1798 if (rrd->num_buf == num_buf)
1799 /* clean alloc flag for bad rrd */
1800 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1801 }
1802
1803 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1804 struct rx_return_desc *rrd, struct sk_buff *skb)
1805 {
1806 struct pci_dev *pdev = adapter->pdev;
1807
1808 /*
1809 * The L1 hardware contains a bug that erroneously sets the
1810 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1811 * fragmented IP packet is received, even though the packet
1812 * is perfectly valid and its checksum is correct. There's
1813 * no way to distinguish between one of these good packets
1814 * and a packet that actually contains a TCP/UDP checksum
1815 * error, so all we can do is allow it to be handed up to
1816 * the higher layers and let it be sorted out there.
1817 */
1818
1819 skb_checksum_none_assert(skb);
1820
1821 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1822 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1823 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1824 adapter->hw_csum_err++;
1825 if (netif_msg_rx_err(adapter))
1826 dev_printk(KERN_DEBUG, &pdev->dev,
1827 "rx checksum error\n");
1828 return;
1829 }
1830 }
1831
1832 /* not IPv4 */
1833 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1834 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1835 return;
1836
1837 /* IPv4 packet */
1838 if (likely(!(rrd->err_flg &
1839 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1840 skb->ip_summed = CHECKSUM_UNNECESSARY;
1841 adapter->hw_csum_good++;
1842 return;
1843 }
1844 }
1845
1846 /**
1847 * atl1_alloc_rx_buffers - Replace used receive buffers
1848 * @adapter: address of board private structure
1849 */
1850 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1851 {
1852 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1853 struct pci_dev *pdev = adapter->pdev;
1854 struct page *page;
1855 unsigned long offset;
1856 struct atl1_buffer *buffer_info, *next_info;
1857 struct sk_buff *skb;
1858 u16 num_alloc = 0;
1859 u16 rfd_next_to_use, next_next;
1860 struct rx_free_desc *rfd_desc;
1861
1862 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1863 if (++next_next == rfd_ring->count)
1864 next_next = 0;
1865 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1866 next_info = &rfd_ring->buffer_info[next_next];
1867
1868 while (!buffer_info->alloced && !next_info->alloced) {
1869 if (buffer_info->skb) {
1870 buffer_info->alloced = 1;
1871 goto next;
1872 }
1873
1874 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1875
1876 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1877 adapter->rx_buffer_len);
1878 if (unlikely(!skb)) {
1879 /* Better luck next round */
1880 adapter->soft_stats.rx_dropped++;
1881 break;
1882 }
1883
1884 buffer_info->alloced = 1;
1885 buffer_info->skb = skb;
1886 buffer_info->length = (u16) adapter->rx_buffer_len;
1887 page = virt_to_page(skb->data);
1888 offset = offset_in_page(skb->data);
1889 buffer_info->dma = pci_map_page(pdev, page, offset,
1890 adapter->rx_buffer_len,
1891 PCI_DMA_FROMDEVICE);
1892 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1893 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1894 rfd_desc->coalese = 0;
1895
1896 next:
1897 rfd_next_to_use = next_next;
1898 if (unlikely(++next_next == rfd_ring->count))
1899 next_next = 0;
1900
1901 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1902 next_info = &rfd_ring->buffer_info[next_next];
1903 num_alloc++;
1904 }
1905
1906 if (num_alloc) {
1907 /*
1908 * Force memory writes to complete before letting h/w
1909 * know there are new descriptors to fetch. (Only
1910 * applicable for weak-ordered memory model archs,
1911 * such as IA-64).
1912 */
1913 wmb();
1914 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1915 }
1916 return num_alloc;
1917 }
1918
1919 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1920 {
1921 int i, count;
1922 u16 length;
1923 u16 rrd_next_to_clean;
1924 u32 value;
1925 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1926 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1927 struct atl1_buffer *buffer_info;
1928 struct rx_return_desc *rrd;
1929 struct sk_buff *skb;
1930
1931 count = 0;
1932
1933 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1934
1935 while (count < budget) {
1936 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1937 i = 1;
1938 if (likely(rrd->xsz.valid)) { /* packet valid */
1939 chk_rrd:
1940 /* check rrd status */
1941 if (likely(rrd->num_buf == 1))
1942 goto rrd_ok;
1943 else if (netif_msg_rx_err(adapter)) {
1944 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1945 "unexpected RRD buffer count\n");
1946 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1947 "rx_buf_len = %d\n",
1948 adapter->rx_buffer_len);
1949 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1950 "RRD num_buf = %d\n",
1951 rrd->num_buf);
1952 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1953 "RRD pkt_len = %d\n",
1954 rrd->xsz.xsum_sz.pkt_size);
1955 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1956 "RRD pkt_flg = 0x%08X\n",
1957 rrd->pkt_flg);
1958 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1959 "RRD err_flg = 0x%08X\n",
1960 rrd->err_flg);
1961 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1962 "RRD vlan_tag = 0x%08X\n",
1963 rrd->vlan_tag);
1964 }
1965
1966 /* rrd seems to be bad */
1967 if (unlikely(i-- > 0)) {
1968 /* rrd may not be DMAed completely */
1969 udelay(1);
1970 goto chk_rrd;
1971 }
1972 /* bad rrd */
1973 if (netif_msg_rx_err(adapter))
1974 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1975 "bad RRD\n");
1976 /* see if update RFD index */
1977 if (rrd->num_buf > 1)
1978 atl1_update_rfd_index(adapter, rrd);
1979
1980 /* update rrd */
1981 rrd->xsz.valid = 0;
1982 if (++rrd_next_to_clean == rrd_ring->count)
1983 rrd_next_to_clean = 0;
1984 count++;
1985 continue;
1986 } else { /* current rrd still not be updated */
1987
1988 break;
1989 }
1990 rrd_ok:
1991 /* clean alloc flag for bad rrd */
1992 atl1_clean_alloc_flag(adapter, rrd, 0);
1993
1994 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1995 if (++rfd_ring->next_to_clean == rfd_ring->count)
1996 rfd_ring->next_to_clean = 0;
1997
1998 /* update rrd next to clean */
1999 if (++rrd_next_to_clean == rrd_ring->count)
2000 rrd_next_to_clean = 0;
2001 count++;
2002
2003 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2004 if (!(rrd->err_flg &
2005 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2006 | ERR_FLAG_LEN))) {
2007 /* packet error, don't need upstream */
2008 buffer_info->alloced = 0;
2009 rrd->xsz.valid = 0;
2010 continue;
2011 }
2012 }
2013
2014 /* Good Receive */
2015 pci_unmap_page(adapter->pdev, buffer_info->dma,
2016 buffer_info->length, PCI_DMA_FROMDEVICE);
2017 buffer_info->dma = 0;
2018 skb = buffer_info->skb;
2019 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2020
2021 skb_put(skb, length - ETH_FCS_LEN);
2022
2023 /* Receive Checksum Offload */
2024 atl1_rx_checksum(adapter, rrd, skb);
2025 skb->protocol = eth_type_trans(skb, adapter->netdev);
2026
2027 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2028 u16 vlan_tag = (rrd->vlan_tag >> 4) |
2029 ((rrd->vlan_tag & 7) << 13) |
2030 ((rrd->vlan_tag & 8) << 9);
2031
2032 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2033 }
2034 netif_receive_skb(skb);
2035
2036 /* let protocol layer free skb */
2037 buffer_info->skb = NULL;
2038 buffer_info->alloced = 0;
2039 rrd->xsz.valid = 0;
2040 }
2041
2042 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2043
2044 atl1_alloc_rx_buffers(adapter);
2045
2046 /* update mailbox ? */
2047 if (count) {
2048 u32 tpd_next_to_use;
2049 u32 rfd_next_to_use;
2050
2051 spin_lock(&adapter->mb_lock);
2052
2053 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2054 rfd_next_to_use =
2055 atomic_read(&adapter->rfd_ring.next_to_use);
2056 rrd_next_to_clean =
2057 atomic_read(&adapter->rrd_ring.next_to_clean);
2058 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2059 MB_RFD_PROD_INDX_SHIFT) |
2060 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2061 MB_RRD_CONS_INDX_SHIFT) |
2062 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2063 MB_TPD_PROD_INDX_SHIFT);
2064 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2065 spin_unlock(&adapter->mb_lock);
2066 }
2067
2068 return count;
2069 }
2070
2071 static int atl1_intr_tx(struct atl1_adapter *adapter)
2072 {
2073 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2074 struct atl1_buffer *buffer_info;
2075 u16 sw_tpd_next_to_clean;
2076 u16 cmb_tpd_next_to_clean;
2077 int count = 0;
2078
2079 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2080 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2081
2082 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2083 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2084 if (buffer_info->dma) {
2085 pci_unmap_page(adapter->pdev, buffer_info->dma,
2086 buffer_info->length, PCI_DMA_TODEVICE);
2087 buffer_info->dma = 0;
2088 }
2089
2090 if (buffer_info->skb) {
2091 dev_consume_skb_irq(buffer_info->skb);
2092 buffer_info->skb = NULL;
2093 }
2094
2095 if (++sw_tpd_next_to_clean == tpd_ring->count)
2096 sw_tpd_next_to_clean = 0;
2097
2098 count++;
2099 }
2100 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2101
2102 if (netif_queue_stopped(adapter->netdev) &&
2103 netif_carrier_ok(adapter->netdev))
2104 netif_wake_queue(adapter->netdev);
2105
2106 return count;
2107 }
2108
2109 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2110 {
2111 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2112 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2113 return (next_to_clean > next_to_use) ?
2114 next_to_clean - next_to_use - 1 :
2115 tpd_ring->count + next_to_clean - next_to_use - 1;
2116 }
2117
2118 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2119 struct tx_packet_desc *ptpd)
2120 {
2121 u8 hdr_len, ip_off;
2122 u32 real_len;
2123
2124 if (skb_shinfo(skb)->gso_size) {
2125 int err;
2126
2127 err = skb_cow_head(skb, 0);
2128 if (err < 0)
2129 return err;
2130
2131 if (skb->protocol == htons(ETH_P_IP)) {
2132 struct iphdr *iph = ip_hdr(skb);
2133
2134 real_len = (((unsigned char *)iph - skb->data) +
2135 ntohs(iph->tot_len));
2136 if (real_len < skb->len)
2137 pskb_trim(skb, real_len);
2138 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2139 if (skb->len == hdr_len) {
2140 iph->check = 0;
2141 tcp_hdr(skb)->check =
2142 ~csum_tcpudp_magic(iph->saddr,
2143 iph->daddr, tcp_hdrlen(skb),
2144 IPPROTO_TCP, 0);
2145 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2146 TPD_IPHL_SHIFT;
2147 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2148 TPD_TCPHDRLEN_MASK) <<
2149 TPD_TCPHDRLEN_SHIFT;
2150 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2151 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2152 return 1;
2153 }
2154
2155 iph->check = 0;
2156 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2157 iph->daddr, 0, IPPROTO_TCP, 0);
2158 ip_off = (unsigned char *)iph -
2159 (unsigned char *) skb_network_header(skb);
2160 if (ip_off == 8) /* 802.3-SNAP frame */
2161 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2162 else if (ip_off != 0)
2163 return -2;
2164
2165 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2166 TPD_IPHL_SHIFT;
2167 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2168 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2169 ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2170 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2171 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2172 return 3;
2173 }
2174 }
2175 return 0;
2176 }
2177
2178 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2179 struct tx_packet_desc *ptpd)
2180 {
2181 u8 css, cso;
2182
2183 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2184 css = skb_checksum_start_offset(skb);
2185 cso = css + (u8) skb->csum_offset;
2186 if (unlikely(css & 0x1)) {
2187 /* L1 hardware requires an even number here */
2188 if (netif_msg_tx_err(adapter))
2189 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2190 "payload offset not an even number\n");
2191 return -1;
2192 }
2193 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2194 TPD_PLOADOFFSET_SHIFT;
2195 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2196 TPD_CCSUMOFFSET_SHIFT;
2197 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2198 return true;
2199 }
2200 return 0;
2201 }
2202
2203 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2204 struct tx_packet_desc *ptpd)
2205 {
2206 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2207 struct atl1_buffer *buffer_info;
2208 u16 buf_len = skb->len;
2209 struct page *page;
2210 unsigned long offset;
2211 unsigned int nr_frags;
2212 unsigned int f;
2213 int retval;
2214 u16 next_to_use;
2215 u16 data_len;
2216 u8 hdr_len;
2217
2218 buf_len -= skb->data_len;
2219 nr_frags = skb_shinfo(skb)->nr_frags;
2220 next_to_use = atomic_read(&tpd_ring->next_to_use);
2221 buffer_info = &tpd_ring->buffer_info[next_to_use];
2222 BUG_ON(buffer_info->skb);
2223 /* put skb in last TPD */
2224 buffer_info->skb = NULL;
2225
2226 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2227 if (retval) {
2228 /* TSO */
2229 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2230 buffer_info->length = hdr_len;
2231 page = virt_to_page(skb->data);
2232 offset = offset_in_page(skb->data);
2233 buffer_info->dma = pci_map_page(adapter->pdev, page,
2234 offset, hdr_len,
2235 PCI_DMA_TODEVICE);
2236
2237 if (++next_to_use == tpd_ring->count)
2238 next_to_use = 0;
2239
2240 if (buf_len > hdr_len) {
2241 int i, nseg;
2242
2243 data_len = buf_len - hdr_len;
2244 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2245 ATL1_MAX_TX_BUF_LEN;
2246 for (i = 0; i < nseg; i++) {
2247 buffer_info =
2248 &tpd_ring->buffer_info[next_to_use];
2249 buffer_info->skb = NULL;
2250 buffer_info->length =
2251 (ATL1_MAX_TX_BUF_LEN >=
2252 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2253 data_len -= buffer_info->length;
2254 page = virt_to_page(skb->data +
2255 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2256 offset = offset_in_page(skb->data +
2257 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2258 buffer_info->dma = pci_map_page(adapter->pdev,
2259 page, offset, buffer_info->length,
2260 PCI_DMA_TODEVICE);
2261 if (++next_to_use == tpd_ring->count)
2262 next_to_use = 0;
2263 }
2264 }
2265 } else {
2266 /* not TSO */
2267 buffer_info->length = buf_len;
2268 page = virt_to_page(skb->data);
2269 offset = offset_in_page(skb->data);
2270 buffer_info->dma = pci_map_page(adapter->pdev, page,
2271 offset, buf_len, PCI_DMA_TODEVICE);
2272 if (++next_to_use == tpd_ring->count)
2273 next_to_use = 0;
2274 }
2275
2276 for (f = 0; f < nr_frags; f++) {
2277 const struct skb_frag_struct *frag;
2278 u16 i, nseg;
2279
2280 frag = &skb_shinfo(skb)->frags[f];
2281 buf_len = skb_frag_size(frag);
2282
2283 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2284 ATL1_MAX_TX_BUF_LEN;
2285 for (i = 0; i < nseg; i++) {
2286 buffer_info = &tpd_ring->buffer_info[next_to_use];
2287 BUG_ON(buffer_info->skb);
2288
2289 buffer_info->skb = NULL;
2290 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2291 ATL1_MAX_TX_BUF_LEN : buf_len;
2292 buf_len -= buffer_info->length;
2293 buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2294 frag, i * ATL1_MAX_TX_BUF_LEN,
2295 buffer_info->length, DMA_TO_DEVICE);
2296
2297 if (++next_to_use == tpd_ring->count)
2298 next_to_use = 0;
2299 }
2300 }
2301
2302 /* last tpd's buffer-info */
2303 buffer_info->skb = skb;
2304 }
2305
2306 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2307 struct tx_packet_desc *ptpd)
2308 {
2309 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2310 struct atl1_buffer *buffer_info;
2311 struct tx_packet_desc *tpd;
2312 u16 j;
2313 u32 val;
2314 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2315
2316 for (j = 0; j < count; j++) {
2317 buffer_info = &tpd_ring->buffer_info[next_to_use];
2318 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2319 if (tpd != ptpd)
2320 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2321 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2322 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2323 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2324 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2325
2326 /*
2327 * if this is the first packet in a TSO chain, set
2328 * TPD_HDRFLAG, otherwise, clear it.
2329 */
2330 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2331 TPD_SEGMENT_EN_MASK;
2332 if (val) {
2333 if (!j)
2334 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2335 else
2336 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2337 }
2338
2339 if (j == (count - 1))
2340 tpd->word3 |= 1 << TPD_EOP_SHIFT;
2341
2342 if (++next_to_use == tpd_ring->count)
2343 next_to_use = 0;
2344 }
2345 /*
2346 * Force memory writes to complete before letting h/w
2347 * know there are new descriptors to fetch. (Only
2348 * applicable for weak-ordered memory model archs,
2349 * such as IA-64).
2350 */
2351 wmb();
2352
2353 atomic_set(&tpd_ring->next_to_use, next_to_use);
2354 }
2355
2356 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2357 struct net_device *netdev)
2358 {
2359 struct atl1_adapter *adapter = netdev_priv(netdev);
2360 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2361 int len;
2362 int tso;
2363 int count = 1;
2364 int ret_val;
2365 struct tx_packet_desc *ptpd;
2366 u16 vlan_tag;
2367 unsigned int nr_frags = 0;
2368 unsigned int mss = 0;
2369 unsigned int f;
2370 unsigned int proto_hdr_len;
2371
2372 len = skb_headlen(skb);
2373
2374 if (unlikely(skb->len <= 0)) {
2375 dev_kfree_skb_any(skb);
2376 return NETDEV_TX_OK;
2377 }
2378
2379 nr_frags = skb_shinfo(skb)->nr_frags;
2380 for (f = 0; f < nr_frags; f++) {
2381 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2382 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2383 ATL1_MAX_TX_BUF_LEN;
2384 }
2385
2386 mss = skb_shinfo(skb)->gso_size;
2387 if (mss) {
2388 if (skb->protocol == htons(ETH_P_IP)) {
2389 proto_hdr_len = (skb_transport_offset(skb) +
2390 tcp_hdrlen(skb));
2391 if (unlikely(proto_hdr_len > len)) {
2392 dev_kfree_skb_any(skb);
2393 return NETDEV_TX_OK;
2394 }
2395 /* need additional TPD ? */
2396 if (proto_hdr_len != len)
2397 count += (len - proto_hdr_len +
2398 ATL1_MAX_TX_BUF_LEN - 1) /
2399 ATL1_MAX_TX_BUF_LEN;
2400 }
2401 }
2402
2403 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2404 /* not enough descriptors */
2405 netif_stop_queue(netdev);
2406 if (netif_msg_tx_queued(adapter))
2407 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2408 "tx busy\n");
2409 return NETDEV_TX_BUSY;
2410 }
2411
2412 ptpd = ATL1_TPD_DESC(tpd_ring,
2413 (u16) atomic_read(&tpd_ring->next_to_use));
2414 memset(ptpd, 0, sizeof(struct tx_packet_desc));
2415
2416 if (skb_vlan_tag_present(skb)) {
2417 vlan_tag = skb_vlan_tag_get(skb);
2418 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2419 ((vlan_tag >> 9) & 0x8);
2420 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2421 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2422 TPD_VLANTAG_SHIFT;
2423 }
2424
2425 tso = atl1_tso(adapter, skb, ptpd);
2426 if (tso < 0) {
2427 dev_kfree_skb_any(skb);
2428 return NETDEV_TX_OK;
2429 }
2430
2431 if (!tso) {
2432 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2433 if (ret_val < 0) {
2434 dev_kfree_skb_any(skb);
2435 return NETDEV_TX_OK;
2436 }
2437 }
2438
2439 atl1_tx_map(adapter, skb, ptpd);
2440 atl1_tx_queue(adapter, count, ptpd);
2441 atl1_update_mailbox(adapter);
2442 return NETDEV_TX_OK;
2443 }
2444
2445 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2446 {
2447 struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2448 int work_done = atl1_intr_rx(adapter, budget);
2449
2450 if (atl1_intr_tx(adapter))
2451 work_done = budget;
2452
2453 /* Let's come again to process some more packets */
2454 if (work_done >= budget)
2455 return work_done;
2456
2457 napi_complete_done(napi, work_done);
2458 /* re-enable Interrupt */
2459 if (likely(adapter->int_enabled))
2460 atlx_imr_set(adapter, IMR_NORMAL_MASK);
2461 return work_done;
2462 }
2463
2464 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2465 {
2466 if (!napi_schedule_prep(&adapter->napi))
2467 /* It is possible in case even the RX/TX ints are disabled via IMR
2468 * register the ISR bits are set anyway (but do not produce IRQ).
2469 * To handle such situation the napi functions used to check is
2470 * something scheduled or not.
2471 */
2472 return 0;
2473
2474 __napi_schedule(&adapter->napi);
2475
2476 /*
2477 * Disable RX/TX ints via IMR register if it is
2478 * allowed. NAPI handler must reenable them in same
2479 * way.
2480 */
2481 if (!adapter->int_enabled)
2482 return 1;
2483
2484 atlx_imr_set(adapter, IMR_NORXTX_MASK);
2485 return 1;
2486 }
2487
2488 /**
2489 * atl1_intr - Interrupt Handler
2490 * @irq: interrupt number
2491 * @data: pointer to a network interface device structure
2492 */
2493 static irqreturn_t atl1_intr(int irq, void *data)
2494 {
2495 struct atl1_adapter *adapter = netdev_priv(data);
2496 u32 status;
2497
2498 status = adapter->cmb.cmb->int_stats;
2499 if (!status)
2500 return IRQ_NONE;
2501
2502 /* clear CMB interrupt status at once,
2503 * but leave rx/tx interrupt status in case it should be dropped
2504 * only if rx/tx processing queued. In other case interrupt
2505 * can be lost.
2506 */
2507 adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2508
2509 if (status & ISR_GPHY) /* clear phy status */
2510 atlx_clear_phy_int(adapter);
2511
2512 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2513 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2514
2515 /* check if SMB intr */
2516 if (status & ISR_SMB)
2517 atl1_inc_smb(adapter);
2518
2519 /* check if PCIE PHY Link down */
2520 if (status & ISR_PHY_LINKDOWN) {
2521 if (netif_msg_intr(adapter))
2522 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2523 "pcie phy link down %x\n", status);
2524 if (netif_running(adapter->netdev)) { /* reset MAC */
2525 atlx_irq_disable(adapter);
2526 schedule_work(&adapter->reset_dev_task);
2527 return IRQ_HANDLED;
2528 }
2529 }
2530
2531 /* check if DMA read/write error ? */
2532 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2533 if (netif_msg_intr(adapter))
2534 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2535 "pcie DMA r/w error (status = 0x%x)\n",
2536 status);
2537 atlx_irq_disable(adapter);
2538 schedule_work(&adapter->reset_dev_task);
2539 return IRQ_HANDLED;
2540 }
2541
2542 /* link event */
2543 if (status & ISR_GPHY) {
2544 adapter->soft_stats.tx_carrier_errors++;
2545 atl1_check_for_link(adapter);
2546 }
2547
2548 /* transmit or receive event */
2549 if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2550 atl1_sched_rings_clean(adapter))
2551 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2552 ~(ISR_CMB_TX | ISR_CMB_RX);
2553
2554 /* rx exception */
2555 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2556 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2557 ISR_HOST_RRD_OV))) {
2558 if (netif_msg_intr(adapter))
2559 dev_printk(KERN_DEBUG,
2560 &adapter->pdev->dev,
2561 "rx exception, ISR = 0x%x\n",
2562 status);
2563 atl1_sched_rings_clean(adapter);
2564 }
2565
2566 /* re-enable Interrupt */
2567 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2568 return IRQ_HANDLED;
2569 }
2570
2571
2572 /**
2573 * atl1_phy_config - Timer Call-back
2574 * @data: pointer to netdev cast into an unsigned long
2575 */
2576 static void atl1_phy_config(struct timer_list *t)
2577 {
2578 struct atl1_adapter *adapter = from_timer(adapter, t,
2579 phy_config_timer);
2580 struct atl1_hw *hw = &adapter->hw;
2581 unsigned long flags;
2582
2583 spin_lock_irqsave(&adapter->lock, flags);
2584 adapter->phy_timer_pending = false;
2585 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2586 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2587 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2588 spin_unlock_irqrestore(&adapter->lock, flags);
2589 }
2590
2591 /*
2592 * Orphaned vendor comment left intact here:
2593 * <vendor comment>
2594 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2595 * will assert. We do soft reset <0x1400=1> according
2596 * with the SPEC. BUT, it seemes that PCIE or DMA
2597 * state-machine will not be reset. DMAR_TO_INT will
2598 * assert again and again.
2599 * </vendor comment>
2600 */
2601
2602 static int atl1_reset(struct atl1_adapter *adapter)
2603 {
2604 int ret;
2605 ret = atl1_reset_hw(&adapter->hw);
2606 if (ret)
2607 return ret;
2608 return atl1_init_hw(&adapter->hw);
2609 }
2610
2611 static s32 atl1_up(struct atl1_adapter *adapter)
2612 {
2613 struct net_device *netdev = adapter->netdev;
2614 int err;
2615 int irq_flags = 0;
2616
2617 /* hardware has been reset, we need to reload some things */
2618 atlx_set_multi(netdev);
2619 atl1_init_ring_ptrs(adapter);
2620 atlx_restore_vlan(adapter);
2621 err = atl1_alloc_rx_buffers(adapter);
2622 if (unlikely(!err))
2623 /* no RX BUFFER allocated */
2624 return -ENOMEM;
2625
2626 if (unlikely(atl1_configure(adapter))) {
2627 err = -EIO;
2628 goto err_up;
2629 }
2630
2631 err = pci_enable_msi(adapter->pdev);
2632 if (err) {
2633 if (netif_msg_ifup(adapter))
2634 dev_info(&adapter->pdev->dev,
2635 "Unable to enable MSI: %d\n", err);
2636 irq_flags |= IRQF_SHARED;
2637 }
2638
2639 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2640 netdev->name, netdev);
2641 if (unlikely(err))
2642 goto err_up;
2643
2644 napi_enable(&adapter->napi);
2645 atlx_irq_enable(adapter);
2646 atl1_check_link(adapter);
2647 netif_start_queue(netdev);
2648 return 0;
2649
2650 err_up:
2651 pci_disable_msi(adapter->pdev);
2652 /* free rx_buffers */
2653 atl1_clean_rx_ring(adapter);
2654 return err;
2655 }
2656
2657 static void atl1_down(struct atl1_adapter *adapter)
2658 {
2659 struct net_device *netdev = adapter->netdev;
2660
2661 napi_disable(&adapter->napi);
2662 netif_stop_queue(netdev);
2663 del_timer_sync(&adapter->phy_config_timer);
2664 adapter->phy_timer_pending = false;
2665
2666 atlx_irq_disable(adapter);
2667 free_irq(adapter->pdev->irq, netdev);
2668 pci_disable_msi(adapter->pdev);
2669 atl1_reset_hw(&adapter->hw);
2670 adapter->cmb.cmb->int_stats = 0;
2671
2672 adapter->link_speed = SPEED_0;
2673 adapter->link_duplex = -1;
2674 netif_carrier_off(netdev);
2675
2676 atl1_clean_tx_ring(adapter);
2677 atl1_clean_rx_ring(adapter);
2678 }
2679
2680 static void atl1_reset_dev_task(struct work_struct *work)
2681 {
2682 struct atl1_adapter *adapter =
2683 container_of(work, struct atl1_adapter, reset_dev_task);
2684 struct net_device *netdev = adapter->netdev;
2685
2686 netif_device_detach(netdev);
2687 atl1_down(adapter);
2688 atl1_up(adapter);
2689 netif_device_attach(netdev);
2690 }
2691
2692 /**
2693 * atl1_change_mtu - Change the Maximum Transfer Unit
2694 * @netdev: network interface device structure
2695 * @new_mtu: new value for maximum frame size
2696 *
2697 * Returns 0 on success, negative on failure
2698 */
2699 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2700 {
2701 struct atl1_adapter *adapter = netdev_priv(netdev);
2702 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2703
2704 adapter->hw.max_frame_size = max_frame;
2705 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2706 adapter->rx_buffer_len = (max_frame + 7) & ~7;
2707 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2708
2709 netdev->mtu = new_mtu;
2710 if (netif_running(netdev)) {
2711 atl1_down(adapter);
2712 atl1_up(adapter);
2713 }
2714
2715 return 0;
2716 }
2717
2718 /**
2719 * atl1_open - Called when a network interface is made active
2720 * @netdev: network interface device structure
2721 *
2722 * Returns 0 on success, negative value on failure
2723 *
2724 * The open entry point is called when a network interface is made
2725 * active by the system (IFF_UP). At this point all resources needed
2726 * for transmit and receive operations are allocated, the interrupt
2727 * handler is registered with the OS, the watchdog timer is started,
2728 * and the stack is notified that the interface is ready.
2729 */
2730 static int atl1_open(struct net_device *netdev)
2731 {
2732 struct atl1_adapter *adapter = netdev_priv(netdev);
2733 int err;
2734
2735 netif_carrier_off(netdev);
2736
2737 /* allocate transmit descriptors */
2738 err = atl1_setup_ring_resources(adapter);
2739 if (err)
2740 return err;
2741
2742 err = atl1_up(adapter);
2743 if (err)
2744 goto err_up;
2745
2746 return 0;
2747
2748 err_up:
2749 atl1_reset(adapter);
2750 return err;
2751 }
2752
2753 /**
2754 * atl1_close - Disables a network interface
2755 * @netdev: network interface device structure
2756 *
2757 * Returns 0, this is not allowed to fail
2758 *
2759 * The close entry point is called when an interface is de-activated
2760 * by the OS. The hardware is still under the drivers control, but
2761 * needs to be disabled. A global MAC reset is issued to stop the
2762 * hardware, and all transmit and receive resources are freed.
2763 */
2764 static int atl1_close(struct net_device *netdev)
2765 {
2766 struct atl1_adapter *adapter = netdev_priv(netdev);
2767 atl1_down(adapter);
2768 atl1_free_ring_resources(adapter);
2769 return 0;
2770 }
2771
2772 #ifdef CONFIG_PM_SLEEP
2773 static int atl1_suspend(struct device *dev)
2774 {
2775 struct pci_dev *pdev = to_pci_dev(dev);
2776 struct net_device *netdev = pci_get_drvdata(pdev);
2777 struct atl1_adapter *adapter = netdev_priv(netdev);
2778 struct atl1_hw *hw = &adapter->hw;
2779 u32 ctrl = 0;
2780 u32 wufc = adapter->wol;
2781 u32 val;
2782 u16 speed;
2783 u16 duplex;
2784
2785 netif_device_detach(netdev);
2786 if (netif_running(netdev))
2787 atl1_down(adapter);
2788
2789 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2790 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2791 val = ctrl & BMSR_LSTATUS;
2792 if (val)
2793 wufc &= ~ATLX_WUFC_LNKC;
2794 if (!wufc)
2795 goto disable_wol;
2796
2797 if (val) {
2798 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2799 if (val) {
2800 if (netif_msg_ifdown(adapter))
2801 dev_printk(KERN_DEBUG, &pdev->dev,
2802 "error getting speed/duplex\n");
2803 goto disable_wol;
2804 }
2805
2806 ctrl = 0;
2807
2808 /* enable magic packet WOL */
2809 if (wufc & ATLX_WUFC_MAG)
2810 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2811 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2812 ioread32(hw->hw_addr + REG_WOL_CTRL);
2813
2814 /* configure the mac */
2815 ctrl = MAC_CTRL_RX_EN;
2816 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2817 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2818 if (duplex == FULL_DUPLEX)
2819 ctrl |= MAC_CTRL_DUPLX;
2820 ctrl |= (((u32)adapter->hw.preamble_len &
2821 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2822 __atlx_vlan_mode(netdev->features, &ctrl);
2823 if (wufc & ATLX_WUFC_MAG)
2824 ctrl |= MAC_CTRL_BC_EN;
2825 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2826 ioread32(hw->hw_addr + REG_MAC_CTRL);
2827
2828 /* poke the PHY */
2829 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2830 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2831 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2832 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2833 } else {
2834 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2835 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2836 ioread32(hw->hw_addr + REG_WOL_CTRL);
2837 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2838 ioread32(hw->hw_addr + REG_MAC_CTRL);
2839 hw->phy_configured = false;
2840 }
2841
2842 return 0;
2843
2844 disable_wol:
2845 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2846 ioread32(hw->hw_addr + REG_WOL_CTRL);
2847 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2848 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2849 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2850 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2851 hw->phy_configured = false;
2852
2853 return 0;
2854 }
2855
2856 static int atl1_resume(struct device *dev)
2857 {
2858 struct pci_dev *pdev = to_pci_dev(dev);
2859 struct net_device *netdev = pci_get_drvdata(pdev);
2860 struct atl1_adapter *adapter = netdev_priv(netdev);
2861
2862 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2863
2864 atl1_reset_hw(&adapter->hw);
2865
2866 if (netif_running(netdev)) {
2867 adapter->cmb.cmb->int_stats = 0;
2868 atl1_up(adapter);
2869 }
2870 netif_device_attach(netdev);
2871
2872 return 0;
2873 }
2874 #endif
2875
2876 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2877
2878 static void atl1_shutdown(struct pci_dev *pdev)
2879 {
2880 struct net_device *netdev = pci_get_drvdata(pdev);
2881 struct atl1_adapter *adapter = netdev_priv(netdev);
2882
2883 #ifdef CONFIG_PM_SLEEP
2884 atl1_suspend(&pdev->dev);
2885 #endif
2886 pci_wake_from_d3(pdev, adapter->wol);
2887 pci_set_power_state(pdev, PCI_D3hot);
2888 }
2889
2890 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 static void atl1_poll_controller(struct net_device *netdev)
2892 {
2893 disable_irq(netdev->irq);
2894 atl1_intr(netdev->irq, netdev);
2895 enable_irq(netdev->irq);
2896 }
2897 #endif
2898
2899 static const struct net_device_ops atl1_netdev_ops = {
2900 .ndo_open = atl1_open,
2901 .ndo_stop = atl1_close,
2902 .ndo_start_xmit = atl1_xmit_frame,
2903 .ndo_set_rx_mode = atlx_set_multi,
2904 .ndo_validate_addr = eth_validate_addr,
2905 .ndo_set_mac_address = atl1_set_mac,
2906 .ndo_change_mtu = atl1_change_mtu,
2907 .ndo_fix_features = atlx_fix_features,
2908 .ndo_set_features = atlx_set_features,
2909 .ndo_do_ioctl = atlx_ioctl,
2910 .ndo_tx_timeout = atlx_tx_timeout,
2911 #ifdef CONFIG_NET_POLL_CONTROLLER
2912 .ndo_poll_controller = atl1_poll_controller,
2913 #endif
2914 };
2915
2916 /**
2917 * atl1_probe - Device Initialization Routine
2918 * @pdev: PCI device information struct
2919 * @ent: entry in atl1_pci_tbl
2920 *
2921 * Returns 0 on success, negative on failure
2922 *
2923 * atl1_probe initializes an adapter identified by a pci_dev structure.
2924 * The OS initialization, configuring of the adapter private structure,
2925 * and a hardware reset occur.
2926 */
2927 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2928 {
2929 struct net_device *netdev;
2930 struct atl1_adapter *adapter;
2931 static int cards_found = 0;
2932 int err;
2933
2934 err = pci_enable_device(pdev);
2935 if (err)
2936 return err;
2937
2938 /*
2939 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2940 * shared register for the high 32 bits, so only a single, aligned,
2941 * 4 GB physical address range can be used at a time.
2942 *
2943 * Supporting 64-bit DMA on this hardware is more trouble than it's
2944 * worth. It is far easier to limit to 32-bit DMA than update
2945 * various kernel subsystems to support the mechanics required by a
2946 * fixed-high-32-bit system.
2947 */
2948 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2949 if (err) {
2950 dev_err(&pdev->dev, "no usable DMA configuration\n");
2951 goto err_dma;
2952 }
2953 /*
2954 * Mark all PCI regions associated with PCI device
2955 * pdev as being reserved by owner atl1_driver_name
2956 */
2957 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2958 if (err)
2959 goto err_request_regions;
2960
2961 /*
2962 * Enables bus-mastering on the device and calls
2963 * pcibios_set_master to do the needed arch specific settings
2964 */
2965 pci_set_master(pdev);
2966
2967 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2968 if (!netdev) {
2969 err = -ENOMEM;
2970 goto err_alloc_etherdev;
2971 }
2972 SET_NETDEV_DEV(netdev, &pdev->dev);
2973
2974 pci_set_drvdata(pdev, netdev);
2975 adapter = netdev_priv(netdev);
2976 adapter->netdev = netdev;
2977 adapter->pdev = pdev;
2978 adapter->hw.back = adapter;
2979 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2980
2981 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2982 if (!adapter->hw.hw_addr) {
2983 err = -EIO;
2984 goto err_pci_iomap;
2985 }
2986 /* get device revision number */
2987 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2988 (REG_MASTER_CTRL + 2));
2989 if (netif_msg_probe(adapter))
2990 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2991
2992 /* set default ring resource counts */
2993 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2994 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2995
2996 adapter->mii.dev = netdev;
2997 adapter->mii.mdio_read = mdio_read;
2998 adapter->mii.mdio_write = mdio_write;
2999 adapter->mii.phy_id_mask = 0x1f;
3000 adapter->mii.reg_num_mask = 0x1f;
3001
3002 netdev->netdev_ops = &atl1_netdev_ops;
3003 netdev->watchdog_timeo = 5 * HZ;
3004 netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
3005
3006 netdev->ethtool_ops = &atl1_ethtool_ops;
3007 adapter->bd_number = cards_found;
3008
3009 /* setup the private structure */
3010 err = atl1_sw_init(adapter);
3011 if (err)
3012 goto err_common;
3013
3014 netdev->features = NETIF_F_HW_CSUM;
3015 netdev->features |= NETIF_F_SG;
3016 netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
3017
3018 netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3019 NETIF_F_HW_VLAN_CTAG_RX;
3020
3021 /* is this valid? see atl1_setup_mac_ctrl() */
3022 netdev->features |= NETIF_F_RXCSUM;
3023
3024 /* MTU range: 42 - 10218 */
3025 netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3026 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3027 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3028
3029 /*
3030 * patch for some L1 of old version,
3031 * the final version of L1 may not need these
3032 * patches
3033 */
3034 /* atl1_pcie_patch(adapter); */
3035
3036 /* really reset GPHY core */
3037 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3038
3039 /*
3040 * reset the controller to
3041 * put the device in a known good starting state
3042 */
3043 if (atl1_reset_hw(&adapter->hw)) {
3044 err = -EIO;
3045 goto err_common;
3046 }
3047
3048 /* copy the MAC address out of the EEPROM */
3049 if (atl1_read_mac_addr(&adapter->hw)) {
3050 /* mark random mac */
3051 netdev->addr_assign_type = NET_ADDR_RANDOM;
3052 }
3053 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3054
3055 if (!is_valid_ether_addr(netdev->dev_addr)) {
3056 err = -EIO;
3057 goto err_common;
3058 }
3059
3060 atl1_check_options(adapter);
3061
3062 /* pre-init the MAC, and setup link */
3063 err = atl1_init_hw(&adapter->hw);
3064 if (err) {
3065 err = -EIO;
3066 goto err_common;
3067 }
3068
3069 atl1_pcie_patch(adapter);
3070 /* assume we have no link for now */
3071 netif_carrier_off(netdev);
3072
3073 timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
3074 adapter->phy_timer_pending = false;
3075
3076 INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3077
3078 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3079
3080 err = register_netdev(netdev);
3081 if (err)
3082 goto err_common;
3083
3084 cards_found++;
3085 atl1_via_workaround(adapter);
3086 return 0;
3087
3088 err_common:
3089 pci_iounmap(pdev, adapter->hw.hw_addr);
3090 err_pci_iomap:
3091 free_netdev(netdev);
3092 err_alloc_etherdev:
3093 pci_release_regions(pdev);
3094 err_dma:
3095 err_request_regions:
3096 pci_disable_device(pdev);
3097 return err;
3098 }
3099
3100 /**
3101 * atl1_remove - Device Removal Routine
3102 * @pdev: PCI device information struct
3103 *
3104 * atl1_remove is called by the PCI subsystem to alert the driver
3105 * that it should release a PCI device. The could be caused by a
3106 * Hot-Plug event, or because the driver is going to be removed from
3107 * memory.
3108 */
3109 static void atl1_remove(struct pci_dev *pdev)
3110 {
3111 struct net_device *netdev = pci_get_drvdata(pdev);
3112 struct atl1_adapter *adapter;
3113 /* Device not available. Return. */
3114 if (!netdev)
3115 return;
3116
3117 adapter = netdev_priv(netdev);
3118
3119 /*
3120 * Some atl1 boards lack persistent storage for their MAC, and get it
3121 * from the BIOS during POST. If we've been messing with the MAC
3122 * address, we need to save the permanent one.
3123 */
3124 if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3125 adapter->hw.perm_mac_addr)) {
3126 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3127 ETH_ALEN);
3128 atl1_set_mac_addr(&adapter->hw);
3129 }
3130
3131 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3132 unregister_netdev(netdev);
3133 pci_iounmap(pdev, adapter->hw.hw_addr);
3134 pci_release_regions(pdev);
3135 free_netdev(netdev);
3136 pci_disable_device(pdev);
3137 }
3138
3139 static struct pci_driver atl1_driver = {
3140 .name = ATLX_DRIVER_NAME,
3141 .id_table = atl1_pci_tbl,
3142 .probe = atl1_probe,
3143 .remove = atl1_remove,
3144 .shutdown = atl1_shutdown,
3145 .driver.pm = &atl1_pm_ops,
3146 };
3147
3148 struct atl1_stats {
3149 char stat_string[ETH_GSTRING_LEN];
3150 int sizeof_stat;
3151 int stat_offset;
3152 };
3153
3154 #define ATL1_STAT(m) \
3155 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3156
3157 static struct atl1_stats atl1_gstrings_stats[] = {
3158 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3159 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3160 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3161 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3162 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3163 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3164 {"multicast", ATL1_STAT(soft_stats.multicast)},
3165 {"collisions", ATL1_STAT(soft_stats.collisions)},
3166 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3167 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3168 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3169 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3170 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3171 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3172 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3173 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3174 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3175 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3176 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3177 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3178 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3179 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3180 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3181 {"tx_underrun", ATL1_STAT(soft_stats.tx_underrun)},
3182 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3183 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3184 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3185 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3186 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3187 };
3188
3189 static void atl1_get_ethtool_stats(struct net_device *netdev,
3190 struct ethtool_stats *stats, u64 *data)
3191 {
3192 struct atl1_adapter *adapter = netdev_priv(netdev);
3193 int i;
3194 char *p;
3195
3196 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3197 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3198 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3199 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3200 }
3201
3202 }
3203
3204 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3205 {
3206 switch (sset) {
3207 case ETH_SS_STATS:
3208 return ARRAY_SIZE(atl1_gstrings_stats);
3209 default:
3210 return -EOPNOTSUPP;
3211 }
3212 }
3213
3214 static int atl1_get_link_ksettings(struct net_device *netdev,
3215 struct ethtool_link_ksettings *cmd)
3216 {
3217 struct atl1_adapter *adapter = netdev_priv(netdev);
3218 struct atl1_hw *hw = &adapter->hw;
3219 u32 supported, advertising;
3220
3221 supported = (SUPPORTED_10baseT_Half |
3222 SUPPORTED_10baseT_Full |
3223 SUPPORTED_100baseT_Half |
3224 SUPPORTED_100baseT_Full |
3225 SUPPORTED_1000baseT_Full |
3226 SUPPORTED_Autoneg | SUPPORTED_TP);
3227 advertising = ADVERTISED_TP;
3228 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3229 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3230 advertising |= ADVERTISED_Autoneg;
3231 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3232 advertising |= ADVERTISED_Autoneg;
3233 advertising |=
3234 (ADVERTISED_10baseT_Half |
3235 ADVERTISED_10baseT_Full |
3236 ADVERTISED_100baseT_Half |
3237 ADVERTISED_100baseT_Full |
3238 ADVERTISED_1000baseT_Full);
3239 } else
3240 advertising |= (ADVERTISED_1000baseT_Full);
3241 }
3242 cmd->base.port = PORT_TP;
3243 cmd->base.phy_address = 0;
3244
3245 if (netif_carrier_ok(adapter->netdev)) {
3246 u16 link_speed, link_duplex;
3247 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3248 cmd->base.speed = link_speed;
3249 if (link_duplex == FULL_DUPLEX)
3250 cmd->base.duplex = DUPLEX_FULL;
3251 else
3252 cmd->base.duplex = DUPLEX_HALF;
3253 } else {
3254 cmd->base.speed = SPEED_UNKNOWN;
3255 cmd->base.duplex = DUPLEX_UNKNOWN;
3256 }
3257 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3258 hw->media_type == MEDIA_TYPE_1000M_FULL)
3259 cmd->base.autoneg = AUTONEG_ENABLE;
3260 else
3261 cmd->base.autoneg = AUTONEG_DISABLE;
3262
3263 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3264 supported);
3265 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3266 advertising);
3267
3268 return 0;
3269 }
3270
3271 static int atl1_set_link_ksettings(struct net_device *netdev,
3272 const struct ethtool_link_ksettings *cmd)
3273 {
3274 struct atl1_adapter *adapter = netdev_priv(netdev);
3275 struct atl1_hw *hw = &adapter->hw;
3276 u16 phy_data;
3277 int ret_val = 0;
3278 u16 old_media_type = hw->media_type;
3279
3280 if (netif_running(adapter->netdev)) {
3281 if (netif_msg_link(adapter))
3282 dev_dbg(&adapter->pdev->dev,
3283 "ethtool shutting down adapter\n");
3284 atl1_down(adapter);
3285 }
3286
3287 if (cmd->base.autoneg == AUTONEG_ENABLE)
3288 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3289 else {
3290 u32 speed = cmd->base.speed;
3291 if (speed == SPEED_1000) {
3292 if (cmd->base.duplex != DUPLEX_FULL) {
3293 if (netif_msg_link(adapter))
3294 dev_warn(&adapter->pdev->dev,
3295 "1000M half is invalid\n");
3296 ret_val = -EINVAL;
3297 goto exit_sset;
3298 }
3299 hw->media_type = MEDIA_TYPE_1000M_FULL;
3300 } else if (speed == SPEED_100) {
3301 if (cmd->base.duplex == DUPLEX_FULL)
3302 hw->media_type = MEDIA_TYPE_100M_FULL;
3303 else
3304 hw->media_type = MEDIA_TYPE_100M_HALF;
3305 } else {
3306 if (cmd->base.duplex == DUPLEX_FULL)
3307 hw->media_type = MEDIA_TYPE_10M_FULL;
3308 else
3309 hw->media_type = MEDIA_TYPE_10M_HALF;
3310 }
3311 }
3312
3313 if (atl1_phy_setup_autoneg_adv(hw)) {
3314 ret_val = -EINVAL;
3315 if (netif_msg_link(adapter))
3316 dev_warn(&adapter->pdev->dev,
3317 "invalid ethtool speed/duplex setting\n");
3318 goto exit_sset;
3319 }
3320 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3321 hw->media_type == MEDIA_TYPE_1000M_FULL)
3322 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3323 else {
3324 switch (hw->media_type) {
3325 case MEDIA_TYPE_100M_FULL:
3326 phy_data =
3327 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3328 MII_CR_RESET;
3329 break;
3330 case MEDIA_TYPE_100M_HALF:
3331 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3332 break;
3333 case MEDIA_TYPE_10M_FULL:
3334 phy_data =
3335 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3336 break;
3337 default:
3338 /* MEDIA_TYPE_10M_HALF: */
3339 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3340 break;
3341 }
3342 }
3343 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3344 exit_sset:
3345 if (ret_val)
3346 hw->media_type = old_media_type;
3347
3348 if (netif_running(adapter->netdev)) {
3349 if (netif_msg_link(adapter))
3350 dev_dbg(&adapter->pdev->dev,
3351 "ethtool starting adapter\n");
3352 atl1_up(adapter);
3353 } else if (!ret_val) {
3354 if (netif_msg_link(adapter))
3355 dev_dbg(&adapter->pdev->dev,
3356 "ethtool resetting adapter\n");
3357 atl1_reset(adapter);
3358 }
3359 return ret_val;
3360 }
3361
3362 static void atl1_get_drvinfo(struct net_device *netdev,
3363 struct ethtool_drvinfo *drvinfo)
3364 {
3365 struct atl1_adapter *adapter = netdev_priv(netdev);
3366
3367 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3368 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3369 sizeof(drvinfo->version));
3370 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3371 sizeof(drvinfo->bus_info));
3372 }
3373
3374 static void atl1_get_wol(struct net_device *netdev,
3375 struct ethtool_wolinfo *wol)
3376 {
3377 struct atl1_adapter *adapter = netdev_priv(netdev);
3378
3379 wol->supported = WAKE_MAGIC;
3380 wol->wolopts = 0;
3381 if (adapter->wol & ATLX_WUFC_MAG)
3382 wol->wolopts |= WAKE_MAGIC;
3383 }
3384
3385 static int atl1_set_wol(struct net_device *netdev,
3386 struct ethtool_wolinfo *wol)
3387 {
3388 struct atl1_adapter *adapter = netdev_priv(netdev);
3389
3390 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3391 WAKE_ARP | WAKE_MAGICSECURE))
3392 return -EOPNOTSUPP;
3393 adapter->wol = 0;
3394 if (wol->wolopts & WAKE_MAGIC)
3395 adapter->wol |= ATLX_WUFC_MAG;
3396
3397 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3398
3399 return 0;
3400 }
3401
3402 static u32 atl1_get_msglevel(struct net_device *netdev)
3403 {
3404 struct atl1_adapter *adapter = netdev_priv(netdev);
3405 return adapter->msg_enable;
3406 }
3407
3408 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3409 {
3410 struct atl1_adapter *adapter = netdev_priv(netdev);
3411 adapter->msg_enable = value;
3412 }
3413
3414 static int atl1_get_regs_len(struct net_device *netdev)
3415 {
3416 return ATL1_REG_COUNT * sizeof(u32);
3417 }
3418
3419 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3420 void *p)
3421 {
3422 struct atl1_adapter *adapter = netdev_priv(netdev);
3423 struct atl1_hw *hw = &adapter->hw;
3424 unsigned int i;
3425 u32 *regbuf = p;
3426
3427 for (i = 0; i < ATL1_REG_COUNT; i++) {
3428 /*
3429 * This switch statement avoids reserved regions
3430 * of register space.
3431 */
3432 switch (i) {
3433 case 6 ... 9:
3434 case 14:
3435 case 29 ... 31:
3436 case 34 ... 63:
3437 case 75 ... 127:
3438 case 136 ... 1023:
3439 case 1027 ... 1087:
3440 case 1091 ... 1151:
3441 case 1194 ... 1195:
3442 case 1200 ... 1201:
3443 case 1206 ... 1213:
3444 case 1216 ... 1279:
3445 case 1290 ... 1311:
3446 case 1323 ... 1343:
3447 case 1358 ... 1359:
3448 case 1368 ... 1375:
3449 case 1378 ... 1383:
3450 case 1388 ... 1391:
3451 case 1393 ... 1395:
3452 case 1402 ... 1403:
3453 case 1410 ... 1471:
3454 case 1522 ... 1535:
3455 /* reserved region; don't read it */
3456 regbuf[i] = 0;
3457 break;
3458 default:
3459 /* unreserved region */
3460 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3461 }
3462 }
3463 }
3464
3465 static void atl1_get_ringparam(struct net_device *netdev,
3466 struct ethtool_ringparam *ring)
3467 {
3468 struct atl1_adapter *adapter = netdev_priv(netdev);
3469 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3470 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3471
3472 ring->rx_max_pending = ATL1_MAX_RFD;
3473 ring->tx_max_pending = ATL1_MAX_TPD;
3474 ring->rx_pending = rxdr->count;
3475 ring->tx_pending = txdr->count;
3476 }
3477
3478 static int atl1_set_ringparam(struct net_device *netdev,
3479 struct ethtool_ringparam *ring)
3480 {
3481 struct atl1_adapter *adapter = netdev_priv(netdev);
3482 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3483 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3484 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3485
3486 struct atl1_tpd_ring tpd_old, tpd_new;
3487 struct atl1_rfd_ring rfd_old, rfd_new;
3488 struct atl1_rrd_ring rrd_old, rrd_new;
3489 struct atl1_ring_header rhdr_old, rhdr_new;
3490 struct atl1_smb smb;
3491 struct atl1_cmb cmb;
3492 int err;
3493
3494 tpd_old = adapter->tpd_ring;
3495 rfd_old = adapter->rfd_ring;
3496 rrd_old = adapter->rrd_ring;
3497 rhdr_old = adapter->ring_header;
3498
3499 if (netif_running(adapter->netdev))
3500 atl1_down(adapter);
3501
3502 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3503 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3504 rfdr->count;
3505 rfdr->count = (rfdr->count + 3) & ~3;
3506 rrdr->count = rfdr->count;
3507
3508 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3509 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3510 tpdr->count;
3511 tpdr->count = (tpdr->count + 3) & ~3;
3512
3513 if (netif_running(adapter->netdev)) {
3514 /* try to get new resources before deleting old */
3515 err = atl1_setup_ring_resources(adapter);
3516 if (err)
3517 goto err_setup_ring;
3518
3519 /*
3520 * save the new, restore the old in order to free it,
3521 * then restore the new back again
3522 */
3523
3524 rfd_new = adapter->rfd_ring;
3525 rrd_new = adapter->rrd_ring;
3526 tpd_new = adapter->tpd_ring;
3527 rhdr_new = adapter->ring_header;
3528 adapter->rfd_ring = rfd_old;
3529 adapter->rrd_ring = rrd_old;
3530 adapter->tpd_ring = tpd_old;
3531 adapter->ring_header = rhdr_old;
3532 /*
3533 * Save SMB and CMB, since atl1_free_ring_resources
3534 * will clear them.
3535 */
3536 smb = adapter->smb;
3537 cmb = adapter->cmb;
3538 atl1_free_ring_resources(adapter);
3539 adapter->rfd_ring = rfd_new;
3540 adapter->rrd_ring = rrd_new;
3541 adapter->tpd_ring = tpd_new;
3542 adapter->ring_header = rhdr_new;
3543 adapter->smb = smb;
3544 adapter->cmb = cmb;
3545
3546 err = atl1_up(adapter);
3547 if (err)
3548 return err;
3549 }
3550 return 0;
3551
3552 err_setup_ring:
3553 adapter->rfd_ring = rfd_old;
3554 adapter->rrd_ring = rrd_old;
3555 adapter->tpd_ring = tpd_old;
3556 adapter->ring_header = rhdr_old;
3557 atl1_up(adapter);
3558 return err;
3559 }
3560
3561 static void atl1_get_pauseparam(struct net_device *netdev,
3562 struct ethtool_pauseparam *epause)
3563 {
3564 struct atl1_adapter *adapter = netdev_priv(netdev);
3565 struct atl1_hw *hw = &adapter->hw;
3566
3567 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3568 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3569 epause->autoneg = AUTONEG_ENABLE;
3570 } else {
3571 epause->autoneg = AUTONEG_DISABLE;
3572 }
3573 epause->rx_pause = 1;
3574 epause->tx_pause = 1;
3575 }
3576
3577 static int atl1_set_pauseparam(struct net_device *netdev,
3578 struct ethtool_pauseparam *epause)
3579 {
3580 struct atl1_adapter *adapter = netdev_priv(netdev);
3581 struct atl1_hw *hw = &adapter->hw;
3582
3583 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3584 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3585 epause->autoneg = AUTONEG_ENABLE;
3586 } else {
3587 epause->autoneg = AUTONEG_DISABLE;
3588 }
3589
3590 epause->rx_pause = 1;
3591 epause->tx_pause = 1;
3592
3593 return 0;
3594 }
3595
3596 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3597 u8 *data)
3598 {
3599 u8 *p = data;
3600 int i;
3601
3602 switch (stringset) {
3603 case ETH_SS_STATS:
3604 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3605 memcpy(p, atl1_gstrings_stats[i].stat_string,
3606 ETH_GSTRING_LEN);
3607 p += ETH_GSTRING_LEN;
3608 }
3609 break;
3610 }
3611 }
3612
3613 static int atl1_nway_reset(struct net_device *netdev)
3614 {
3615 struct atl1_adapter *adapter = netdev_priv(netdev);
3616 struct atl1_hw *hw = &adapter->hw;
3617
3618 if (netif_running(netdev)) {
3619 u16 phy_data;
3620 atl1_down(adapter);
3621
3622 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3623 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3624 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3625 } else {
3626 switch (hw->media_type) {
3627 case MEDIA_TYPE_100M_FULL:
3628 phy_data = MII_CR_FULL_DUPLEX |
3629 MII_CR_SPEED_100 | MII_CR_RESET;
3630 break;
3631 case MEDIA_TYPE_100M_HALF:
3632 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3633 break;
3634 case MEDIA_TYPE_10M_FULL:
3635 phy_data = MII_CR_FULL_DUPLEX |
3636 MII_CR_SPEED_10 | MII_CR_RESET;
3637 break;
3638 default:
3639 /* MEDIA_TYPE_10M_HALF */
3640 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3641 }
3642 }
3643 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3644 atl1_up(adapter);
3645 }
3646 return 0;
3647 }
3648
3649 static const struct ethtool_ops atl1_ethtool_ops = {
3650 .get_drvinfo = atl1_get_drvinfo,
3651 .get_wol = atl1_get_wol,
3652 .set_wol = atl1_set_wol,
3653 .get_msglevel = atl1_get_msglevel,
3654 .set_msglevel = atl1_set_msglevel,
3655 .get_regs_len = atl1_get_regs_len,
3656 .get_regs = atl1_get_regs,
3657 .get_ringparam = atl1_get_ringparam,
3658 .set_ringparam = atl1_set_ringparam,
3659 .get_pauseparam = atl1_get_pauseparam,
3660 .set_pauseparam = atl1_set_pauseparam,
3661 .get_link = ethtool_op_get_link,
3662 .get_strings = atl1_get_strings,
3663 .nway_reset = atl1_nway_reset,
3664 .get_ethtool_stats = atl1_get_ethtool_stats,
3665 .get_sset_count = atl1_get_sset_count,
3666 .get_link_ksettings = atl1_get_link_ksettings,
3667 .set_link_ksettings = atl1_set_link_ksettings,
3668 };
3669
3670 module_pci_driver(atl1_driver);