]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/atheros/atlx/atl1.c
Merge tag 'spi-fix-v5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / atheros / atlx / atl1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
4 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
5 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
6 *
7 * Derived from Intel e1000 driver
8 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
9 *
10 * Contact Information:
11 * Xiong Huang <xiong.huang@atheros.com>
12 * Jie Yang <jie.yang@atheros.com>
13 * Chris Snook <csnook@redhat.com>
14 * Jay Cliburn <jcliburn@gmail.com>
15 *
16 * This version is adapted from the Attansic reference driver.
17 *
18 * TODO:
19 * Add more ethtool functions.
20 * Fix abstruse irq enable/disable condition described here:
21 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
22 *
23 * NEEDS TESTING:
24 * VLAN
25 * multicast
26 * promiscuous mode
27 * interrupt coalescing
28 * SMP torture testing
29 */
30
31 #include <linux/atomic.h>
32 #include <asm/byteorder.h>
33
34 #include <linux/compiler.h>
35 #include <linux/crc32.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/etherdevice.h>
39 #include <linux/hardirq.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <linux/in.h>
43 #include <linux/interrupt.h>
44 #include <linux/ip.h>
45 #include <linux/irqflags.h>
46 #include <linux/irqreturn.h>
47 #include <linux/jiffies.h>
48 #include <linux/mii.h>
49 #include <linux/module.h>
50 #include <linux/net.h>
51 #include <linux/netdevice.h>
52 #include <linux/pci.h>
53 #include <linux/pci_ids.h>
54 #include <linux/pm.h>
55 #include <linux/skbuff.h>
56 #include <linux/slab.h>
57 #include <linux/spinlock.h>
58 #include <linux/string.h>
59 #include <linux/tcp.h>
60 #include <linux/timer.h>
61 #include <linux/types.h>
62 #include <linux/workqueue.h>
63
64 #include <net/checksum.h>
65
66 #include "atl1.h"
67
68 #define ATLX_DRIVER_VERSION "2.1.3"
69 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
70 "Chris Snook <csnook@redhat.com>, "
71 "Jay Cliburn <jcliburn@gmail.com>");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(ATLX_DRIVER_VERSION);
74
75 /* Temporary hack for merging atl1 and atl2 */
76 #include "atlx.c"
77
78 static const struct ethtool_ops atl1_ethtool_ops;
79
80 /*
81 * This is the only thing that needs to be changed to adjust the
82 * maximum number of ports that the driver can manage.
83 */
84 #define ATL1_MAX_NIC 4
85
86 #define OPTION_UNSET -1
87 #define OPTION_DISABLED 0
88 #define OPTION_ENABLED 1
89
90 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
91
92 /*
93 * Interrupt Moderate Timer in units of 2 us
94 *
95 * Valid Range: 10-65535
96 *
97 * Default Value: 100 (200us)
98 */
99 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
100 static unsigned int num_int_mod_timer;
101 module_param_array_named(int_mod_timer, int_mod_timer, int,
102 &num_int_mod_timer, 0);
103 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
104
105 #define DEFAULT_INT_MOD_CNT 100 /* 200us */
106 #define MAX_INT_MOD_CNT 65000
107 #define MIN_INT_MOD_CNT 50
108
109 struct atl1_option {
110 enum { enable_option, range_option, list_option } type;
111 char *name;
112 char *err;
113 int def;
114 union {
115 struct { /* range_option info */
116 int min;
117 int max;
118 } r;
119 struct { /* list_option info */
120 int nr;
121 struct atl1_opt_list {
122 int i;
123 char *str;
124 } *p;
125 } l;
126 } arg;
127 };
128
129 static int atl1_validate_option(int *value, struct atl1_option *opt,
130 struct pci_dev *pdev)
131 {
132 if (*value == OPTION_UNSET) {
133 *value = opt->def;
134 return 0;
135 }
136
137 switch (opt->type) {
138 case enable_option:
139 switch (*value) {
140 case OPTION_ENABLED:
141 dev_info(&pdev->dev, "%s enabled\n", opt->name);
142 return 0;
143 case OPTION_DISABLED:
144 dev_info(&pdev->dev, "%s disabled\n", opt->name);
145 return 0;
146 }
147 break;
148 case range_option:
149 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
150 dev_info(&pdev->dev, "%s set to %i\n", opt->name,
151 *value);
152 return 0;
153 }
154 break;
155 case list_option:{
156 int i;
157 struct atl1_opt_list *ent;
158
159 for (i = 0; i < opt->arg.l.nr; i++) {
160 ent = &opt->arg.l.p[i];
161 if (*value == ent->i) {
162 if (ent->str[0] != '\0')
163 dev_info(&pdev->dev, "%s\n",
164 ent->str);
165 return 0;
166 }
167 }
168 }
169 break;
170
171 default:
172 break;
173 }
174
175 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
176 opt->name, *value, opt->err);
177 *value = opt->def;
178 return -1;
179 }
180
181 /**
182 * atl1_check_options - Range Checking for Command Line Parameters
183 * @adapter: board private structure
184 *
185 * This routine checks all command line parameters for valid user
186 * input. If an invalid value is given, or if no user specified
187 * value exists, a default value is used. The final value is stored
188 * in a variable in the adapter structure.
189 */
190 static void atl1_check_options(struct atl1_adapter *adapter)
191 {
192 struct pci_dev *pdev = adapter->pdev;
193 int bd = adapter->bd_number;
194 if (bd >= ATL1_MAX_NIC) {
195 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
196 dev_notice(&pdev->dev, "using defaults for all values\n");
197 }
198 { /* Interrupt Moderate Timer */
199 struct atl1_option opt = {
200 .type = range_option,
201 .name = "Interrupt Moderator Timer",
202 .err = "using default of "
203 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
204 .def = DEFAULT_INT_MOD_CNT,
205 .arg = {.r = {.min = MIN_INT_MOD_CNT,
206 .max = MAX_INT_MOD_CNT} }
207 };
208 int val;
209 if (num_int_mod_timer > bd) {
210 val = int_mod_timer[bd];
211 atl1_validate_option(&val, &opt, pdev);
212 adapter->imt = (u16) val;
213 } else
214 adapter->imt = (u16) (opt.def);
215 }
216 }
217
218 /*
219 * atl1_pci_tbl - PCI Device ID Table
220 */
221 static const struct pci_device_id atl1_pci_tbl[] = {
222 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
223 /* required last entry */
224 {0,}
225 };
226 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
227
228 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
229 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
230
231 static int debug = -1;
232 module_param(debug, int, 0);
233 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
234
235 /*
236 * Reset the transmit and receive units; mask and clear all interrupts.
237 * hw - Struct containing variables accessed by shared code
238 * return : 0 or idle status (if error)
239 */
240 static s32 atl1_reset_hw(struct atl1_hw *hw)
241 {
242 struct pci_dev *pdev = hw->back->pdev;
243 struct atl1_adapter *adapter = hw->back;
244 u32 icr;
245 int i;
246
247 /*
248 * Clear Interrupt mask to stop board from generating
249 * interrupts & Clear any pending interrupt events
250 */
251 /*
252 * atlx_irq_disable(adapter);
253 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
254 */
255
256 /*
257 * Issue Soft Reset to the MAC. This will reset the chip's
258 * transmit, receive, DMA. It will not effect
259 * the current PCI configuration. The global reset bit is self-
260 * clearing, and should clear within a microsecond.
261 */
262 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
263 ioread32(hw->hw_addr + REG_MASTER_CTRL);
264
265 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
266 ioread16(hw->hw_addr + REG_PHY_ENABLE);
267
268 /* delay about 1ms */
269 msleep(1);
270
271 /* Wait at least 10ms for All module to be Idle */
272 for (i = 0; i < 10; i++) {
273 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
274 if (!icr)
275 break;
276 /* delay 1 ms */
277 msleep(1);
278 /* FIXME: still the right way to do this? */
279 cpu_relax();
280 }
281
282 if (icr) {
283 if (netif_msg_hw(adapter))
284 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
285 return icr;
286 }
287
288 return 0;
289 }
290
291 /* function about EEPROM
292 *
293 * check_eeprom_exist
294 * return 0 if eeprom exist
295 */
296 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
297 {
298 u32 value;
299 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
300 if (value & SPI_FLASH_CTRL_EN_VPD) {
301 value &= ~SPI_FLASH_CTRL_EN_VPD;
302 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
303 }
304
305 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
306 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
307 }
308
309 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
310 {
311 int i;
312 u32 control;
313
314 if (offset & 3)
315 /* address do not align */
316 return false;
317
318 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
319 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
320 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
321 ioread32(hw->hw_addr + REG_VPD_CAP);
322
323 for (i = 0; i < 10; i++) {
324 msleep(2);
325 control = ioread32(hw->hw_addr + REG_VPD_CAP);
326 if (control & VPD_CAP_VPD_FLAG)
327 break;
328 }
329 if (control & VPD_CAP_VPD_FLAG) {
330 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
331 return true;
332 }
333 /* timeout */
334 return false;
335 }
336
337 /*
338 * Reads the value from a PHY register
339 * hw - Struct containing variables accessed by shared code
340 * reg_addr - address of the PHY register to read
341 */
342 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
343 {
344 u32 val;
345 int i;
346
347 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
348 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
349 MDIO_CLK_SEL_SHIFT;
350 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
351 ioread32(hw->hw_addr + REG_MDIO_CTRL);
352
353 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
354 udelay(2);
355 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
356 if (!(val & (MDIO_START | MDIO_BUSY)))
357 break;
358 }
359 if (!(val & (MDIO_START | MDIO_BUSY))) {
360 *phy_data = (u16) val;
361 return 0;
362 }
363 return ATLX_ERR_PHY;
364 }
365
366 #define CUSTOM_SPI_CS_SETUP 2
367 #define CUSTOM_SPI_CLK_HI 2
368 #define CUSTOM_SPI_CLK_LO 2
369 #define CUSTOM_SPI_CS_HOLD 2
370 #define CUSTOM_SPI_CS_HI 3
371
372 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
373 {
374 int i;
375 u32 value;
376
377 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
378 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
379
380 value = SPI_FLASH_CTRL_WAIT_READY |
381 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
382 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
383 SPI_FLASH_CTRL_CLK_HI_MASK) <<
384 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
385 SPI_FLASH_CTRL_CLK_LO_MASK) <<
386 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
387 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
388 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
389 SPI_FLASH_CTRL_CS_HI_MASK) <<
390 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
391 SPI_FLASH_CTRL_INS_SHIFT;
392
393 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
394
395 value |= SPI_FLASH_CTRL_START;
396 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
397 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
398
399 for (i = 0; i < 10; i++) {
400 msleep(1);
401 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
402 if (!(value & SPI_FLASH_CTRL_START))
403 break;
404 }
405
406 if (value & SPI_FLASH_CTRL_START)
407 return false;
408
409 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
410
411 return true;
412 }
413
414 /*
415 * get_permanent_address
416 * return 0 if get valid mac address,
417 */
418 static int atl1_get_permanent_address(struct atl1_hw *hw)
419 {
420 u32 addr[2];
421 u32 i, control;
422 u16 reg;
423 u8 eth_addr[ETH_ALEN];
424 bool key_valid;
425
426 if (is_valid_ether_addr(hw->perm_mac_addr))
427 return 0;
428
429 /* init */
430 addr[0] = addr[1] = 0;
431
432 if (!atl1_check_eeprom_exist(hw)) {
433 reg = 0;
434 key_valid = false;
435 /* Read out all EEPROM content */
436 i = 0;
437 while (1) {
438 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
439 if (key_valid) {
440 if (reg == REG_MAC_STA_ADDR)
441 addr[0] = control;
442 else if (reg == (REG_MAC_STA_ADDR + 4))
443 addr[1] = control;
444 key_valid = false;
445 } else if ((control & 0xff) == 0x5A) {
446 key_valid = true;
447 reg = (u16) (control >> 16);
448 } else
449 break;
450 } else
451 /* read error */
452 break;
453 i += 4;
454 }
455
456 *(u32 *) &eth_addr[2] = swab32(addr[0]);
457 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
458 if (is_valid_ether_addr(eth_addr)) {
459 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
460 return 0;
461 }
462 }
463
464 /* see if SPI FLAGS exist ? */
465 addr[0] = addr[1] = 0;
466 reg = 0;
467 key_valid = false;
468 i = 0;
469 while (1) {
470 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
471 if (key_valid) {
472 if (reg == REG_MAC_STA_ADDR)
473 addr[0] = control;
474 else if (reg == (REG_MAC_STA_ADDR + 4))
475 addr[1] = control;
476 key_valid = false;
477 } else if ((control & 0xff) == 0x5A) {
478 key_valid = true;
479 reg = (u16) (control >> 16);
480 } else
481 /* data end */
482 break;
483 } else
484 /* read error */
485 break;
486 i += 4;
487 }
488
489 *(u32 *) &eth_addr[2] = swab32(addr[0]);
490 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
491 if (is_valid_ether_addr(eth_addr)) {
492 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
493 return 0;
494 }
495
496 /*
497 * On some motherboards, the MAC address is written by the
498 * BIOS directly to the MAC register during POST, and is
499 * not stored in eeprom. If all else thus far has failed
500 * to fetch the permanent MAC address, try reading it directly.
501 */
502 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
503 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
504 *(u32 *) &eth_addr[2] = swab32(addr[0]);
505 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
506 if (is_valid_ether_addr(eth_addr)) {
507 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
508 return 0;
509 }
510
511 return 1;
512 }
513
514 /*
515 * Reads the adapter's MAC address from the EEPROM
516 * hw - Struct containing variables accessed by shared code
517 */
518 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
519 {
520 s32 ret = 0;
521 u16 i;
522
523 if (atl1_get_permanent_address(hw)) {
524 eth_random_addr(hw->perm_mac_addr);
525 ret = 1;
526 }
527
528 for (i = 0; i < ETH_ALEN; i++)
529 hw->mac_addr[i] = hw->perm_mac_addr[i];
530 return ret;
531 }
532
533 /*
534 * Hashes an address to determine its location in the multicast table
535 * hw - Struct containing variables accessed by shared code
536 * mc_addr - the multicast address to hash
537 *
538 * atl1_hash_mc_addr
539 * purpose
540 * set hash value for a multicast address
541 * hash calcu processing :
542 * 1. calcu 32bit CRC for multicast address
543 * 2. reverse crc with MSB to LSB
544 */
545 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
546 {
547 u32 crc32, value = 0;
548 int i;
549
550 crc32 = ether_crc_le(6, mc_addr);
551 for (i = 0; i < 32; i++)
552 value |= (((crc32 >> i) & 1) << (31 - i));
553
554 return value;
555 }
556
557 /*
558 * Sets the bit in the multicast table corresponding to the hash value.
559 * hw - Struct containing variables accessed by shared code
560 * hash_value - Multicast address hash value
561 */
562 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
563 {
564 u32 hash_bit, hash_reg;
565 u32 mta;
566
567 /*
568 * The HASH Table is a register array of 2 32-bit registers.
569 * It is treated like an array of 64 bits. We want to set
570 * bit BitArray[hash_value]. So we figure out what register
571 * the bit is in, read it, OR in the new bit, then write
572 * back the new value. The register is determined by the
573 * upper 7 bits of the hash value and the bit within that
574 * register are determined by the lower 5 bits of the value.
575 */
576 hash_reg = (hash_value >> 31) & 0x1;
577 hash_bit = (hash_value >> 26) & 0x1F;
578 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
579 mta |= (1 << hash_bit);
580 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
581 }
582
583 /*
584 * Writes a value to a PHY register
585 * hw - Struct containing variables accessed by shared code
586 * reg_addr - address of the PHY register to write
587 * data - data to write to the PHY
588 */
589 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
590 {
591 int i;
592 u32 val;
593
594 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
595 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
596 MDIO_SUP_PREAMBLE |
597 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
598 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
599 ioread32(hw->hw_addr + REG_MDIO_CTRL);
600
601 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
602 udelay(2);
603 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
604 if (!(val & (MDIO_START | MDIO_BUSY)))
605 break;
606 }
607
608 if (!(val & (MDIO_START | MDIO_BUSY)))
609 return 0;
610
611 return ATLX_ERR_PHY;
612 }
613
614 /*
615 * Make L001's PHY out of Power Saving State (bug)
616 * hw - Struct containing variables accessed by shared code
617 * when power on, L001's PHY always on Power saving State
618 * (Gigabit Link forbidden)
619 */
620 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
621 {
622 s32 ret;
623 ret = atl1_write_phy_reg(hw, 29, 0x0029);
624 if (ret)
625 return ret;
626 return atl1_write_phy_reg(hw, 30, 0);
627 }
628
629 /*
630 * Resets the PHY and make all config validate
631 * hw - Struct containing variables accessed by shared code
632 *
633 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
634 */
635 static s32 atl1_phy_reset(struct atl1_hw *hw)
636 {
637 struct pci_dev *pdev = hw->back->pdev;
638 struct atl1_adapter *adapter = hw->back;
639 s32 ret_val;
640 u16 phy_data;
641
642 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
643 hw->media_type == MEDIA_TYPE_1000M_FULL)
644 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
645 else {
646 switch (hw->media_type) {
647 case MEDIA_TYPE_100M_FULL:
648 phy_data =
649 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
650 MII_CR_RESET;
651 break;
652 case MEDIA_TYPE_100M_HALF:
653 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
654 break;
655 case MEDIA_TYPE_10M_FULL:
656 phy_data =
657 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
658 break;
659 default:
660 /* MEDIA_TYPE_10M_HALF: */
661 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
662 break;
663 }
664 }
665
666 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
667 if (ret_val) {
668 u32 val;
669 int i;
670 /* pcie serdes link may be down! */
671 if (netif_msg_hw(adapter))
672 dev_dbg(&pdev->dev, "pcie phy link down\n");
673
674 for (i = 0; i < 25; i++) {
675 msleep(1);
676 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
677 if (!(val & (MDIO_START | MDIO_BUSY)))
678 break;
679 }
680
681 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
682 if (netif_msg_hw(adapter))
683 dev_warn(&pdev->dev,
684 "pcie link down at least 25ms\n");
685 return ret_val;
686 }
687 }
688 return 0;
689 }
690
691 /*
692 * Configures PHY autoneg and flow control advertisement settings
693 * hw - Struct containing variables accessed by shared code
694 */
695 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
696 {
697 s32 ret_val;
698 s16 mii_autoneg_adv_reg;
699 s16 mii_1000t_ctrl_reg;
700
701 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
702 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
703
704 /* Read the MII 1000Base-T Control Register (Address 9). */
705 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
706
707 /*
708 * First we clear all the 10/100 mb speed bits in the Auto-Neg
709 * Advertisement Register (Address 4) and the 1000 mb speed bits in
710 * the 1000Base-T Control Register (Address 9).
711 */
712 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
713 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
714
715 /*
716 * Need to parse media_type and set up
717 * the appropriate PHY registers.
718 */
719 switch (hw->media_type) {
720 case MEDIA_TYPE_AUTO_SENSOR:
721 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
722 MII_AR_10T_FD_CAPS |
723 MII_AR_100TX_HD_CAPS |
724 MII_AR_100TX_FD_CAPS);
725 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
726 break;
727
728 case MEDIA_TYPE_1000M_FULL:
729 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
730 break;
731
732 case MEDIA_TYPE_100M_FULL:
733 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
734 break;
735
736 case MEDIA_TYPE_100M_HALF:
737 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
738 break;
739
740 case MEDIA_TYPE_10M_FULL:
741 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
742 break;
743
744 default:
745 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
746 break;
747 }
748
749 /* flow control fixed to enable all */
750 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
751
752 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
753 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
754
755 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
756 if (ret_val)
757 return ret_val;
758
759 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
760 if (ret_val)
761 return ret_val;
762
763 return 0;
764 }
765
766 /*
767 * Configures link settings.
768 * hw - Struct containing variables accessed by shared code
769 * Assumes the hardware has previously been reset and the
770 * transmitter and receiver are not enabled.
771 */
772 static s32 atl1_setup_link(struct atl1_hw *hw)
773 {
774 struct pci_dev *pdev = hw->back->pdev;
775 struct atl1_adapter *adapter = hw->back;
776 s32 ret_val;
777
778 /*
779 * Options:
780 * PHY will advertise value(s) parsed from
781 * autoneg_advertised and fc
782 * no matter what autoneg is , We will not wait link result.
783 */
784 ret_val = atl1_phy_setup_autoneg_adv(hw);
785 if (ret_val) {
786 if (netif_msg_link(adapter))
787 dev_dbg(&pdev->dev,
788 "error setting up autonegotiation\n");
789 return ret_val;
790 }
791 /* SW.Reset , En-Auto-Neg if needed */
792 ret_val = atl1_phy_reset(hw);
793 if (ret_val) {
794 if (netif_msg_link(adapter))
795 dev_dbg(&pdev->dev, "error resetting phy\n");
796 return ret_val;
797 }
798 hw->phy_configured = true;
799 return ret_val;
800 }
801
802 static void atl1_init_flash_opcode(struct atl1_hw *hw)
803 {
804 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
805 /* Atmel */
806 hw->flash_vendor = 0;
807
808 /* Init OP table */
809 iowrite8(flash_table[hw->flash_vendor].cmd_program,
810 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
811 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
812 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
813 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
814 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
815 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
816 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
817 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
818 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
819 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
820 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
821 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
822 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
823 iowrite8(flash_table[hw->flash_vendor].cmd_read,
824 hw->hw_addr + REG_SPI_FLASH_OP_READ);
825 }
826
827 /*
828 * Performs basic configuration of the adapter.
829 * hw - Struct containing variables accessed by shared code
830 * Assumes that the controller has previously been reset and is in a
831 * post-reset uninitialized state. Initializes multicast table,
832 * and Calls routines to setup link
833 * Leaves the transmit and receive units disabled and uninitialized.
834 */
835 static s32 atl1_init_hw(struct atl1_hw *hw)
836 {
837 u32 ret_val = 0;
838
839 /* Zero out the Multicast HASH table */
840 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
841 /* clear the old settings from the multicast hash table */
842 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
843
844 atl1_init_flash_opcode(hw);
845
846 if (!hw->phy_configured) {
847 /* enable GPHY LinkChange Interrupt */
848 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
849 if (ret_val)
850 return ret_val;
851 /* make PHY out of power-saving state */
852 ret_val = atl1_phy_leave_power_saving(hw);
853 if (ret_val)
854 return ret_val;
855 /* Call a subroutine to configure the link */
856 ret_val = atl1_setup_link(hw);
857 }
858 return ret_val;
859 }
860
861 /*
862 * Detects the current speed and duplex settings of the hardware.
863 * hw - Struct containing variables accessed by shared code
864 * speed - Speed of the connection
865 * duplex - Duplex setting of the connection
866 */
867 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
868 {
869 struct pci_dev *pdev = hw->back->pdev;
870 struct atl1_adapter *adapter = hw->back;
871 s32 ret_val;
872 u16 phy_data;
873
874 /* ; --- Read PHY Specific Status Register (17) */
875 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
876 if (ret_val)
877 return ret_val;
878
879 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
880 return ATLX_ERR_PHY_RES;
881
882 switch (phy_data & MII_ATLX_PSSR_SPEED) {
883 case MII_ATLX_PSSR_1000MBS:
884 *speed = SPEED_1000;
885 break;
886 case MII_ATLX_PSSR_100MBS:
887 *speed = SPEED_100;
888 break;
889 case MII_ATLX_PSSR_10MBS:
890 *speed = SPEED_10;
891 break;
892 default:
893 if (netif_msg_hw(adapter))
894 dev_dbg(&pdev->dev, "error getting speed\n");
895 return ATLX_ERR_PHY_SPEED;
896 }
897 if (phy_data & MII_ATLX_PSSR_DPLX)
898 *duplex = FULL_DUPLEX;
899 else
900 *duplex = HALF_DUPLEX;
901
902 return 0;
903 }
904
905 static void atl1_set_mac_addr(struct atl1_hw *hw)
906 {
907 u32 value;
908 /*
909 * 00-0B-6A-F6-00-DC
910 * 0: 6AF600DC 1: 000B
911 * low dword
912 */
913 value = (((u32) hw->mac_addr[2]) << 24) |
914 (((u32) hw->mac_addr[3]) << 16) |
915 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
916 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
917 /* high dword */
918 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
919 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
920 }
921
922 /**
923 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
924 * @adapter: board private structure to initialize
925 *
926 * atl1_sw_init initializes the Adapter private data structure.
927 * Fields are initialized based on PCI device information and
928 * OS network device settings (MTU size).
929 */
930 static int atl1_sw_init(struct atl1_adapter *adapter)
931 {
932 struct atl1_hw *hw = &adapter->hw;
933 struct net_device *netdev = adapter->netdev;
934
935 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
936 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
937
938 adapter->wol = 0;
939 device_set_wakeup_enable(&adapter->pdev->dev, false);
940 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
941 adapter->ict = 50000; /* 100ms */
942 adapter->link_speed = SPEED_0; /* hardware init */
943 adapter->link_duplex = FULL_DUPLEX;
944
945 hw->phy_configured = false;
946 hw->preamble_len = 7;
947 hw->ipgt = 0x60;
948 hw->min_ifg = 0x50;
949 hw->ipgr1 = 0x40;
950 hw->ipgr2 = 0x60;
951 hw->max_retry = 0xf;
952 hw->lcol = 0x37;
953 hw->jam_ipg = 7;
954 hw->rfd_burst = 8;
955 hw->rrd_burst = 8;
956 hw->rfd_fetch_gap = 1;
957 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
958 hw->rx_jumbo_lkah = 1;
959 hw->rrd_ret_timer = 16;
960 hw->tpd_burst = 4;
961 hw->tpd_fetch_th = 16;
962 hw->txf_burst = 0x100;
963 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
964 hw->tpd_fetch_gap = 1;
965 hw->rcb_value = atl1_rcb_64;
966 hw->dma_ord = atl1_dma_ord_enh;
967 hw->dmar_block = atl1_dma_req_256;
968 hw->dmaw_block = atl1_dma_req_256;
969 hw->cmb_rrd = 4;
970 hw->cmb_tpd = 4;
971 hw->cmb_rx_timer = 1; /* about 2us */
972 hw->cmb_tx_timer = 1; /* about 2us */
973 hw->smb_timer = 100000; /* about 200ms */
974
975 spin_lock_init(&adapter->lock);
976 spin_lock_init(&adapter->mb_lock);
977
978 return 0;
979 }
980
981 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
982 {
983 struct atl1_adapter *adapter = netdev_priv(netdev);
984 u16 result;
985
986 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
987
988 return result;
989 }
990
991 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
992 int val)
993 {
994 struct atl1_adapter *adapter = netdev_priv(netdev);
995
996 atl1_write_phy_reg(&adapter->hw, reg_num, val);
997 }
998
999 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1000 {
1001 struct atl1_adapter *adapter = netdev_priv(netdev);
1002 unsigned long flags;
1003 int retval;
1004
1005 if (!netif_running(netdev))
1006 return -EINVAL;
1007
1008 spin_lock_irqsave(&adapter->lock, flags);
1009 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1010 spin_unlock_irqrestore(&adapter->lock, flags);
1011
1012 return retval;
1013 }
1014
1015 /**
1016 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1017 * @adapter: board private structure
1018 *
1019 * Return 0 on success, negative on failure
1020 */
1021 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1022 {
1023 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1024 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1025 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1026 struct atl1_ring_header *ring_header = &adapter->ring_header;
1027 struct pci_dev *pdev = adapter->pdev;
1028 int size;
1029 u8 offset = 0;
1030
1031 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1032 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1033 if (unlikely(!tpd_ring->buffer_info)) {
1034 if (netif_msg_drv(adapter))
1035 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1036 size);
1037 goto err_nomem;
1038 }
1039 rfd_ring->buffer_info =
1040 (tpd_ring->buffer_info + tpd_ring->count);
1041
1042 /*
1043 * real ring DMA buffer
1044 * each ring/block may need up to 8 bytes for alignment, hence the
1045 * additional 40 bytes tacked onto the end.
1046 */
1047 ring_header->size = size =
1048 sizeof(struct tx_packet_desc) * tpd_ring->count
1049 + sizeof(struct rx_free_desc) * rfd_ring->count
1050 + sizeof(struct rx_return_desc) * rrd_ring->count
1051 + sizeof(struct coals_msg_block)
1052 + sizeof(struct stats_msg_block)
1053 + 40;
1054
1055 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1056 &ring_header->dma);
1057 if (unlikely(!ring_header->desc)) {
1058 if (netif_msg_drv(adapter))
1059 dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1060 goto err_nomem;
1061 }
1062
1063 memset(ring_header->desc, 0, ring_header->size);
1064
1065 /* init TPD ring */
1066 tpd_ring->dma = ring_header->dma;
1067 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1068 tpd_ring->dma += offset;
1069 tpd_ring->desc = (u8 *) ring_header->desc + offset;
1070 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1071
1072 /* init RFD ring */
1073 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1074 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1075 rfd_ring->dma += offset;
1076 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1077 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1078
1079
1080 /* init RRD ring */
1081 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1082 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1083 rrd_ring->dma += offset;
1084 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1085 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1086
1087
1088 /* init CMB */
1089 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1090 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1091 adapter->cmb.dma += offset;
1092 adapter->cmb.cmb = (struct coals_msg_block *)
1093 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1094
1095 /* init SMB */
1096 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1097 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1098 adapter->smb.dma += offset;
1099 adapter->smb.smb = (struct stats_msg_block *)
1100 ((u8 *) adapter->cmb.cmb +
1101 (sizeof(struct coals_msg_block) + offset));
1102
1103 return 0;
1104
1105 err_nomem:
1106 kfree(tpd_ring->buffer_info);
1107 return -ENOMEM;
1108 }
1109
1110 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1111 {
1112 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1113 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1114 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1115
1116 atomic_set(&tpd_ring->next_to_use, 0);
1117 atomic_set(&tpd_ring->next_to_clean, 0);
1118
1119 rfd_ring->next_to_clean = 0;
1120 atomic_set(&rfd_ring->next_to_use, 0);
1121
1122 rrd_ring->next_to_use = 0;
1123 atomic_set(&rrd_ring->next_to_clean, 0);
1124 }
1125
1126 /**
1127 * atl1_clean_rx_ring - Free RFD Buffers
1128 * @adapter: board private structure
1129 */
1130 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1131 {
1132 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1133 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1134 struct atl1_buffer *buffer_info;
1135 struct pci_dev *pdev = adapter->pdev;
1136 unsigned long size;
1137 unsigned int i;
1138
1139 /* Free all the Rx ring sk_buffs */
1140 for (i = 0; i < rfd_ring->count; i++) {
1141 buffer_info = &rfd_ring->buffer_info[i];
1142 if (buffer_info->dma) {
1143 pci_unmap_page(pdev, buffer_info->dma,
1144 buffer_info->length, PCI_DMA_FROMDEVICE);
1145 buffer_info->dma = 0;
1146 }
1147 if (buffer_info->skb) {
1148 dev_kfree_skb(buffer_info->skb);
1149 buffer_info->skb = NULL;
1150 }
1151 }
1152
1153 size = sizeof(struct atl1_buffer) * rfd_ring->count;
1154 memset(rfd_ring->buffer_info, 0, size);
1155
1156 /* Zero out the descriptor ring */
1157 memset(rfd_ring->desc, 0, rfd_ring->size);
1158
1159 rfd_ring->next_to_clean = 0;
1160 atomic_set(&rfd_ring->next_to_use, 0);
1161
1162 rrd_ring->next_to_use = 0;
1163 atomic_set(&rrd_ring->next_to_clean, 0);
1164 }
1165
1166 /**
1167 * atl1_clean_tx_ring - Free Tx Buffers
1168 * @adapter: board private structure
1169 */
1170 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1171 {
1172 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1173 struct atl1_buffer *buffer_info;
1174 struct pci_dev *pdev = adapter->pdev;
1175 unsigned long size;
1176 unsigned int i;
1177
1178 /* Free all the Tx ring sk_buffs */
1179 for (i = 0; i < tpd_ring->count; i++) {
1180 buffer_info = &tpd_ring->buffer_info[i];
1181 if (buffer_info->dma) {
1182 pci_unmap_page(pdev, buffer_info->dma,
1183 buffer_info->length, PCI_DMA_TODEVICE);
1184 buffer_info->dma = 0;
1185 }
1186 }
1187
1188 for (i = 0; i < tpd_ring->count; i++) {
1189 buffer_info = &tpd_ring->buffer_info[i];
1190 if (buffer_info->skb) {
1191 dev_kfree_skb_any(buffer_info->skb);
1192 buffer_info->skb = NULL;
1193 }
1194 }
1195
1196 size = sizeof(struct atl1_buffer) * tpd_ring->count;
1197 memset(tpd_ring->buffer_info, 0, size);
1198
1199 /* Zero out the descriptor ring */
1200 memset(tpd_ring->desc, 0, tpd_ring->size);
1201
1202 atomic_set(&tpd_ring->next_to_use, 0);
1203 atomic_set(&tpd_ring->next_to_clean, 0);
1204 }
1205
1206 /**
1207 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1208 * @adapter: board private structure
1209 *
1210 * Free all transmit software resources
1211 */
1212 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1213 {
1214 struct pci_dev *pdev = adapter->pdev;
1215 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1216 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1217 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1218 struct atl1_ring_header *ring_header = &adapter->ring_header;
1219
1220 atl1_clean_tx_ring(adapter);
1221 atl1_clean_rx_ring(adapter);
1222
1223 kfree(tpd_ring->buffer_info);
1224 pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1225 ring_header->dma);
1226
1227 tpd_ring->buffer_info = NULL;
1228 tpd_ring->desc = NULL;
1229 tpd_ring->dma = 0;
1230
1231 rfd_ring->buffer_info = NULL;
1232 rfd_ring->desc = NULL;
1233 rfd_ring->dma = 0;
1234
1235 rrd_ring->desc = NULL;
1236 rrd_ring->dma = 0;
1237
1238 adapter->cmb.dma = 0;
1239 adapter->cmb.cmb = NULL;
1240
1241 adapter->smb.dma = 0;
1242 adapter->smb.smb = NULL;
1243 }
1244
1245 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1246 {
1247 u32 value;
1248 struct atl1_hw *hw = &adapter->hw;
1249 struct net_device *netdev = adapter->netdev;
1250 /* Config MAC CTRL Register */
1251 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1252 /* duplex */
1253 if (FULL_DUPLEX == adapter->link_duplex)
1254 value |= MAC_CTRL_DUPLX;
1255 /* speed */
1256 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1257 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1258 MAC_CTRL_SPEED_SHIFT);
1259 /* flow control */
1260 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1261 /* PAD & CRC */
1262 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1263 /* preamble length */
1264 value |= (((u32) adapter->hw.preamble_len
1265 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1266 /* vlan */
1267 __atlx_vlan_mode(netdev->features, &value);
1268 /* rx checksum
1269 if (adapter->rx_csum)
1270 value |= MAC_CTRL_RX_CHKSUM_EN;
1271 */
1272 /* filter mode */
1273 value |= MAC_CTRL_BC_EN;
1274 if (netdev->flags & IFF_PROMISC)
1275 value |= MAC_CTRL_PROMIS_EN;
1276 else if (netdev->flags & IFF_ALLMULTI)
1277 value |= MAC_CTRL_MC_ALL_EN;
1278 /* value |= MAC_CTRL_LOOPBACK; */
1279 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1280 }
1281
1282 static u32 atl1_check_link(struct atl1_adapter *adapter)
1283 {
1284 struct atl1_hw *hw = &adapter->hw;
1285 struct net_device *netdev = adapter->netdev;
1286 u32 ret_val;
1287 u16 speed, duplex, phy_data;
1288 int reconfig = 0;
1289
1290 /* MII_BMSR must read twice */
1291 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1292 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1293 if (!(phy_data & BMSR_LSTATUS)) {
1294 /* link down */
1295 if (netif_carrier_ok(netdev)) {
1296 /* old link state: Up */
1297 if (netif_msg_link(adapter))
1298 dev_info(&adapter->pdev->dev, "link is down\n");
1299 adapter->link_speed = SPEED_0;
1300 netif_carrier_off(netdev);
1301 }
1302 return 0;
1303 }
1304
1305 /* Link Up */
1306 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1307 if (ret_val)
1308 return ret_val;
1309
1310 switch (hw->media_type) {
1311 case MEDIA_TYPE_1000M_FULL:
1312 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1313 reconfig = 1;
1314 break;
1315 case MEDIA_TYPE_100M_FULL:
1316 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1317 reconfig = 1;
1318 break;
1319 case MEDIA_TYPE_100M_HALF:
1320 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1321 reconfig = 1;
1322 break;
1323 case MEDIA_TYPE_10M_FULL:
1324 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1325 reconfig = 1;
1326 break;
1327 case MEDIA_TYPE_10M_HALF:
1328 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1329 reconfig = 1;
1330 break;
1331 }
1332
1333 /* link result is our setting */
1334 if (!reconfig) {
1335 if (adapter->link_speed != speed ||
1336 adapter->link_duplex != duplex) {
1337 adapter->link_speed = speed;
1338 adapter->link_duplex = duplex;
1339 atl1_setup_mac_ctrl(adapter);
1340 if (netif_msg_link(adapter))
1341 dev_info(&adapter->pdev->dev,
1342 "%s link is up %d Mbps %s\n",
1343 netdev->name, adapter->link_speed,
1344 adapter->link_duplex == FULL_DUPLEX ?
1345 "full duplex" : "half duplex");
1346 }
1347 if (!netif_carrier_ok(netdev)) {
1348 /* Link down -> Up */
1349 netif_carrier_on(netdev);
1350 }
1351 return 0;
1352 }
1353
1354 /* change original link status */
1355 if (netif_carrier_ok(netdev)) {
1356 adapter->link_speed = SPEED_0;
1357 netif_carrier_off(netdev);
1358 netif_stop_queue(netdev);
1359 }
1360
1361 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1362 hw->media_type != MEDIA_TYPE_1000M_FULL) {
1363 switch (hw->media_type) {
1364 case MEDIA_TYPE_100M_FULL:
1365 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1366 MII_CR_RESET;
1367 break;
1368 case MEDIA_TYPE_100M_HALF:
1369 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1370 break;
1371 case MEDIA_TYPE_10M_FULL:
1372 phy_data =
1373 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1374 break;
1375 default:
1376 /* MEDIA_TYPE_10M_HALF: */
1377 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1378 break;
1379 }
1380 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1381 return 0;
1382 }
1383
1384 /* auto-neg, insert timer to re-config phy */
1385 if (!adapter->phy_timer_pending) {
1386 adapter->phy_timer_pending = true;
1387 mod_timer(&adapter->phy_config_timer,
1388 round_jiffies(jiffies + 3 * HZ));
1389 }
1390
1391 return 0;
1392 }
1393
1394 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1395 {
1396 u32 hi, lo, value;
1397
1398 /* RFD Flow Control */
1399 value = adapter->rfd_ring.count;
1400 hi = value / 16;
1401 if (hi < 2)
1402 hi = 2;
1403 lo = value * 7 / 8;
1404
1405 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1406 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1407 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1408
1409 /* RRD Flow Control */
1410 value = adapter->rrd_ring.count;
1411 lo = value / 16;
1412 hi = value * 7 / 8;
1413 if (lo < 2)
1414 lo = 2;
1415 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1416 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1417 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1418 }
1419
1420 static void set_flow_ctrl_new(struct atl1_hw *hw)
1421 {
1422 u32 hi, lo, value;
1423
1424 /* RXF Flow Control */
1425 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1426 lo = value / 16;
1427 if (lo < 192)
1428 lo = 192;
1429 hi = value * 7 / 8;
1430 if (hi < lo)
1431 hi = lo + 16;
1432 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1433 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1434 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1435
1436 /* RRD Flow Control */
1437 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1438 lo = value / 8;
1439 hi = value * 7 / 8;
1440 if (lo < 2)
1441 lo = 2;
1442 if (hi < lo)
1443 hi = lo + 3;
1444 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1445 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1446 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1447 }
1448
1449 /**
1450 * atl1_configure - Configure Transmit&Receive Unit after Reset
1451 * @adapter: board private structure
1452 *
1453 * Configure the Tx /Rx unit of the MAC after a reset.
1454 */
1455 static u32 atl1_configure(struct atl1_adapter *adapter)
1456 {
1457 struct atl1_hw *hw = &adapter->hw;
1458 u32 value;
1459
1460 /* clear interrupt status */
1461 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1462
1463 /* set MAC Address */
1464 value = (((u32) hw->mac_addr[2]) << 24) |
1465 (((u32) hw->mac_addr[3]) << 16) |
1466 (((u32) hw->mac_addr[4]) << 8) |
1467 (((u32) hw->mac_addr[5]));
1468 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1469 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1470 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1471
1472 /* tx / rx ring */
1473
1474 /* HI base address */
1475 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1476 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1477 /* LO base address */
1478 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1479 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1480 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1481 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1482 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1483 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1484 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1485 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1486 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1487 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1488
1489 /* element count */
1490 value = adapter->rrd_ring.count;
1491 value <<= 16;
1492 value += adapter->rfd_ring.count;
1493 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1494 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1495 REG_DESC_TPD_RING_SIZE);
1496
1497 /* Load Ptr */
1498 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1499
1500 /* config Mailbox */
1501 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1502 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1503 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1504 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1505 ((atomic_read(&adapter->rfd_ring.next_to_use)
1506 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1507 iowrite32(value, hw->hw_addr + REG_MAILBOX);
1508
1509 /* config IPG/IFG */
1510 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1511 << MAC_IPG_IFG_IPGT_SHIFT) |
1512 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1513 << MAC_IPG_IFG_MIFG_SHIFT) |
1514 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1515 << MAC_IPG_IFG_IPGR1_SHIFT) |
1516 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1517 << MAC_IPG_IFG_IPGR2_SHIFT);
1518 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1519
1520 /* config Half-Duplex Control */
1521 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1522 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1523 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1524 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1525 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1526 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1527 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1528 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1529
1530 /* set Interrupt Moderator Timer */
1531 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1532 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1533
1534 /* set Interrupt Clear Timer */
1535 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1536
1537 /* set max frame size hw will accept */
1538 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1539
1540 /* jumbo size & rrd retirement timer */
1541 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1542 << RXQ_JMBOSZ_TH_SHIFT) |
1543 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1544 << RXQ_JMBO_LKAH_SHIFT) |
1545 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1546 << RXQ_RRD_TIMER_SHIFT);
1547 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1548
1549 /* Flow Control */
1550 switch (hw->dev_rev) {
1551 case 0x8001:
1552 case 0x9001:
1553 case 0x9002:
1554 case 0x9003:
1555 set_flow_ctrl_old(adapter);
1556 break;
1557 default:
1558 set_flow_ctrl_new(hw);
1559 break;
1560 }
1561
1562 /* config TXQ */
1563 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1564 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1565 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1566 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1567 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1568 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1569 TXQ_CTRL_EN;
1570 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1571
1572 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1573 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1574 << TX_JUMBO_TASK_TH_SHIFT) |
1575 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1576 << TX_TPD_MIN_IPG_SHIFT);
1577 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1578
1579 /* config RXQ */
1580 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1581 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1582 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1583 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1584 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1585 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1586 RXQ_CTRL_EN;
1587 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1588
1589 /* config DMA Engine */
1590 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1591 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1592 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1593 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1594 DMA_CTRL_DMAW_EN;
1595 value |= (u32) hw->dma_ord;
1596 if (atl1_rcb_128 == hw->rcb_value)
1597 value |= DMA_CTRL_RCB_VALUE;
1598 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1599
1600 /* config CMB / SMB */
1601 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1602 hw->cmb_tpd : adapter->tpd_ring.count;
1603 value <<= 16;
1604 value |= hw->cmb_rrd;
1605 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1606 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1607 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1608 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1609
1610 /* --- enable CMB / SMB */
1611 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1612 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1613
1614 value = ioread32(adapter->hw.hw_addr + REG_ISR);
1615 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1616 value = 1; /* config failed */
1617 else
1618 value = 0;
1619
1620 /* clear all interrupt status */
1621 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1622 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1623 return value;
1624 }
1625
1626 /*
1627 * atl1_pcie_patch - Patch for PCIE module
1628 */
1629 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1630 {
1631 u32 value;
1632
1633 /* much vendor magic here */
1634 value = 0x6500;
1635 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1636 /* pcie flow control mode change */
1637 value = ioread32(adapter->hw.hw_addr + 0x1008);
1638 value |= 0x8000;
1639 iowrite32(value, adapter->hw.hw_addr + 0x1008);
1640 }
1641
1642 /*
1643 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1644 * on PCI Command register is disable.
1645 * The function enable this bit.
1646 * Brackett, 2006/03/15
1647 */
1648 static void atl1_via_workaround(struct atl1_adapter *adapter)
1649 {
1650 unsigned long value;
1651
1652 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1653 if (value & PCI_COMMAND_INTX_DISABLE)
1654 value &= ~PCI_COMMAND_INTX_DISABLE;
1655 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1656 }
1657
1658 static void atl1_inc_smb(struct atl1_adapter *adapter)
1659 {
1660 struct net_device *netdev = adapter->netdev;
1661 struct stats_msg_block *smb = adapter->smb.smb;
1662
1663 u64 new_rx_errors = smb->rx_frag +
1664 smb->rx_fcs_err +
1665 smb->rx_len_err +
1666 smb->rx_sz_ov +
1667 smb->rx_rxf_ov +
1668 smb->rx_rrd_ov +
1669 smb->rx_align_err;
1670 u64 new_tx_errors = smb->tx_late_col +
1671 smb->tx_abort_col +
1672 smb->tx_underrun +
1673 smb->tx_trunc;
1674
1675 /* Fill out the OS statistics structure */
1676 adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1677 adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1678 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1679 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1680 adapter->soft_stats.multicast += smb->rx_mcast;
1681 adapter->soft_stats.collisions += smb->tx_1_col +
1682 smb->tx_2_col +
1683 smb->tx_late_col +
1684 smb->tx_abort_col;
1685
1686 /* Rx Errors */
1687 adapter->soft_stats.rx_errors += new_rx_errors;
1688 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1689 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1690 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1691 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1692
1693 adapter->soft_stats.rx_pause += smb->rx_pause;
1694 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1695 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1696
1697 /* Tx Errors */
1698 adapter->soft_stats.tx_errors += new_tx_errors;
1699 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1700 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1701 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1702
1703 adapter->soft_stats.excecol += smb->tx_abort_col;
1704 adapter->soft_stats.deffer += smb->tx_defer;
1705 adapter->soft_stats.scc += smb->tx_1_col;
1706 adapter->soft_stats.mcc += smb->tx_2_col;
1707 adapter->soft_stats.latecol += smb->tx_late_col;
1708 adapter->soft_stats.tx_underrun += smb->tx_underrun;
1709 adapter->soft_stats.tx_trunc += smb->tx_trunc;
1710 adapter->soft_stats.tx_pause += smb->tx_pause;
1711
1712 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1713 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1714 netdev->stats.multicast = adapter->soft_stats.multicast;
1715 netdev->stats.collisions = adapter->soft_stats.collisions;
1716 netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1717 netdev->stats.rx_length_errors =
1718 adapter->soft_stats.rx_length_errors;
1719 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1720 netdev->stats.rx_frame_errors =
1721 adapter->soft_stats.rx_frame_errors;
1722 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1723 netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1724 netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1725 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1726 netdev->stats.tx_aborted_errors =
1727 adapter->soft_stats.tx_aborted_errors;
1728 netdev->stats.tx_window_errors =
1729 adapter->soft_stats.tx_window_errors;
1730 netdev->stats.tx_carrier_errors =
1731 adapter->soft_stats.tx_carrier_errors;
1732
1733 netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1734 netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1735 }
1736
1737 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1738 {
1739 unsigned long flags;
1740 u32 tpd_next_to_use;
1741 u32 rfd_next_to_use;
1742 u32 rrd_next_to_clean;
1743 u32 value;
1744
1745 spin_lock_irqsave(&adapter->mb_lock, flags);
1746
1747 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1748 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1749 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1750
1751 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1752 MB_RFD_PROD_INDX_SHIFT) |
1753 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1754 MB_RRD_CONS_INDX_SHIFT) |
1755 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1756 MB_TPD_PROD_INDX_SHIFT);
1757 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1758
1759 spin_unlock_irqrestore(&adapter->mb_lock, flags);
1760 }
1761
1762 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1763 struct rx_return_desc *rrd, u16 offset)
1764 {
1765 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1766
1767 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1768 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1769 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1770 rfd_ring->next_to_clean = 0;
1771 }
1772 }
1773 }
1774
1775 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1776 struct rx_return_desc *rrd)
1777 {
1778 u16 num_buf;
1779
1780 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1781 adapter->rx_buffer_len;
1782 if (rrd->num_buf == num_buf)
1783 /* clean alloc flag for bad rrd */
1784 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1785 }
1786
1787 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1788 struct rx_return_desc *rrd, struct sk_buff *skb)
1789 {
1790 struct pci_dev *pdev = adapter->pdev;
1791
1792 /*
1793 * The L1 hardware contains a bug that erroneously sets the
1794 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1795 * fragmented IP packet is received, even though the packet
1796 * is perfectly valid and its checksum is correct. There's
1797 * no way to distinguish between one of these good packets
1798 * and a packet that actually contains a TCP/UDP checksum
1799 * error, so all we can do is allow it to be handed up to
1800 * the higher layers and let it be sorted out there.
1801 */
1802
1803 skb_checksum_none_assert(skb);
1804
1805 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1806 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1807 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1808 adapter->hw_csum_err++;
1809 if (netif_msg_rx_err(adapter))
1810 dev_printk(KERN_DEBUG, &pdev->dev,
1811 "rx checksum error\n");
1812 return;
1813 }
1814 }
1815
1816 /* not IPv4 */
1817 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1818 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1819 return;
1820
1821 /* IPv4 packet */
1822 if (likely(!(rrd->err_flg &
1823 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1824 skb->ip_summed = CHECKSUM_UNNECESSARY;
1825 adapter->hw_csum_good++;
1826 return;
1827 }
1828 }
1829
1830 /**
1831 * atl1_alloc_rx_buffers - Replace used receive buffers
1832 * @adapter: address of board private structure
1833 */
1834 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1835 {
1836 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1837 struct pci_dev *pdev = adapter->pdev;
1838 struct page *page;
1839 unsigned long offset;
1840 struct atl1_buffer *buffer_info, *next_info;
1841 struct sk_buff *skb;
1842 u16 num_alloc = 0;
1843 u16 rfd_next_to_use, next_next;
1844 struct rx_free_desc *rfd_desc;
1845
1846 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1847 if (++next_next == rfd_ring->count)
1848 next_next = 0;
1849 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1850 next_info = &rfd_ring->buffer_info[next_next];
1851
1852 while (!buffer_info->alloced && !next_info->alloced) {
1853 if (buffer_info->skb) {
1854 buffer_info->alloced = 1;
1855 goto next;
1856 }
1857
1858 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1859
1860 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1861 adapter->rx_buffer_len);
1862 if (unlikely(!skb)) {
1863 /* Better luck next round */
1864 adapter->soft_stats.rx_dropped++;
1865 break;
1866 }
1867
1868 buffer_info->alloced = 1;
1869 buffer_info->skb = skb;
1870 buffer_info->length = (u16) adapter->rx_buffer_len;
1871 page = virt_to_page(skb->data);
1872 offset = offset_in_page(skb->data);
1873 buffer_info->dma = pci_map_page(pdev, page, offset,
1874 adapter->rx_buffer_len,
1875 PCI_DMA_FROMDEVICE);
1876 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1877 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1878 rfd_desc->coalese = 0;
1879
1880 next:
1881 rfd_next_to_use = next_next;
1882 if (unlikely(++next_next == rfd_ring->count))
1883 next_next = 0;
1884
1885 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1886 next_info = &rfd_ring->buffer_info[next_next];
1887 num_alloc++;
1888 }
1889
1890 if (num_alloc) {
1891 /*
1892 * Force memory writes to complete before letting h/w
1893 * know there are new descriptors to fetch. (Only
1894 * applicable for weak-ordered memory model archs,
1895 * such as IA-64).
1896 */
1897 wmb();
1898 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1899 }
1900 return num_alloc;
1901 }
1902
1903 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1904 {
1905 int i, count;
1906 u16 length;
1907 u16 rrd_next_to_clean;
1908 u32 value;
1909 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1910 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1911 struct atl1_buffer *buffer_info;
1912 struct rx_return_desc *rrd;
1913 struct sk_buff *skb;
1914
1915 count = 0;
1916
1917 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1918
1919 while (count < budget) {
1920 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1921 i = 1;
1922 if (likely(rrd->xsz.valid)) { /* packet valid */
1923 chk_rrd:
1924 /* check rrd status */
1925 if (likely(rrd->num_buf == 1))
1926 goto rrd_ok;
1927 else if (netif_msg_rx_err(adapter)) {
1928 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1929 "unexpected RRD buffer count\n");
1930 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1931 "rx_buf_len = %d\n",
1932 adapter->rx_buffer_len);
1933 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1934 "RRD num_buf = %d\n",
1935 rrd->num_buf);
1936 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1937 "RRD pkt_len = %d\n",
1938 rrd->xsz.xsum_sz.pkt_size);
1939 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1940 "RRD pkt_flg = 0x%08X\n",
1941 rrd->pkt_flg);
1942 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1943 "RRD err_flg = 0x%08X\n",
1944 rrd->err_flg);
1945 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1946 "RRD vlan_tag = 0x%08X\n",
1947 rrd->vlan_tag);
1948 }
1949
1950 /* rrd seems to be bad */
1951 if (unlikely(i-- > 0)) {
1952 /* rrd may not be DMAed completely */
1953 udelay(1);
1954 goto chk_rrd;
1955 }
1956 /* bad rrd */
1957 if (netif_msg_rx_err(adapter))
1958 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1959 "bad RRD\n");
1960 /* see if update RFD index */
1961 if (rrd->num_buf > 1)
1962 atl1_update_rfd_index(adapter, rrd);
1963
1964 /* update rrd */
1965 rrd->xsz.valid = 0;
1966 if (++rrd_next_to_clean == rrd_ring->count)
1967 rrd_next_to_clean = 0;
1968 count++;
1969 continue;
1970 } else { /* current rrd still not be updated */
1971
1972 break;
1973 }
1974 rrd_ok:
1975 /* clean alloc flag for bad rrd */
1976 atl1_clean_alloc_flag(adapter, rrd, 0);
1977
1978 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1979 if (++rfd_ring->next_to_clean == rfd_ring->count)
1980 rfd_ring->next_to_clean = 0;
1981
1982 /* update rrd next to clean */
1983 if (++rrd_next_to_clean == rrd_ring->count)
1984 rrd_next_to_clean = 0;
1985 count++;
1986
1987 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1988 if (!(rrd->err_flg &
1989 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
1990 | ERR_FLAG_LEN))) {
1991 /* packet error, don't need upstream */
1992 buffer_info->alloced = 0;
1993 rrd->xsz.valid = 0;
1994 continue;
1995 }
1996 }
1997
1998 /* Good Receive */
1999 pci_unmap_page(adapter->pdev, buffer_info->dma,
2000 buffer_info->length, PCI_DMA_FROMDEVICE);
2001 buffer_info->dma = 0;
2002 skb = buffer_info->skb;
2003 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2004
2005 skb_put(skb, length - ETH_FCS_LEN);
2006
2007 /* Receive Checksum Offload */
2008 atl1_rx_checksum(adapter, rrd, skb);
2009 skb->protocol = eth_type_trans(skb, adapter->netdev);
2010
2011 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2012 u16 vlan_tag = (rrd->vlan_tag >> 4) |
2013 ((rrd->vlan_tag & 7) << 13) |
2014 ((rrd->vlan_tag & 8) << 9);
2015
2016 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2017 }
2018 netif_receive_skb(skb);
2019
2020 /* let protocol layer free skb */
2021 buffer_info->skb = NULL;
2022 buffer_info->alloced = 0;
2023 rrd->xsz.valid = 0;
2024 }
2025
2026 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2027
2028 atl1_alloc_rx_buffers(adapter);
2029
2030 /* update mailbox ? */
2031 if (count) {
2032 u32 tpd_next_to_use;
2033 u32 rfd_next_to_use;
2034
2035 spin_lock(&adapter->mb_lock);
2036
2037 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2038 rfd_next_to_use =
2039 atomic_read(&adapter->rfd_ring.next_to_use);
2040 rrd_next_to_clean =
2041 atomic_read(&adapter->rrd_ring.next_to_clean);
2042 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2043 MB_RFD_PROD_INDX_SHIFT) |
2044 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2045 MB_RRD_CONS_INDX_SHIFT) |
2046 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2047 MB_TPD_PROD_INDX_SHIFT);
2048 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2049 spin_unlock(&adapter->mb_lock);
2050 }
2051
2052 return count;
2053 }
2054
2055 static int atl1_intr_tx(struct atl1_adapter *adapter)
2056 {
2057 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2058 struct atl1_buffer *buffer_info;
2059 u16 sw_tpd_next_to_clean;
2060 u16 cmb_tpd_next_to_clean;
2061 int count = 0;
2062
2063 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2064 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2065
2066 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2067 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2068 if (buffer_info->dma) {
2069 pci_unmap_page(adapter->pdev, buffer_info->dma,
2070 buffer_info->length, PCI_DMA_TODEVICE);
2071 buffer_info->dma = 0;
2072 }
2073
2074 if (buffer_info->skb) {
2075 dev_consume_skb_irq(buffer_info->skb);
2076 buffer_info->skb = NULL;
2077 }
2078
2079 if (++sw_tpd_next_to_clean == tpd_ring->count)
2080 sw_tpd_next_to_clean = 0;
2081
2082 count++;
2083 }
2084 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2085
2086 if (netif_queue_stopped(adapter->netdev) &&
2087 netif_carrier_ok(adapter->netdev))
2088 netif_wake_queue(adapter->netdev);
2089
2090 return count;
2091 }
2092
2093 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2094 {
2095 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2096 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2097 return (next_to_clean > next_to_use) ?
2098 next_to_clean - next_to_use - 1 :
2099 tpd_ring->count + next_to_clean - next_to_use - 1;
2100 }
2101
2102 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2103 struct tx_packet_desc *ptpd)
2104 {
2105 u8 hdr_len, ip_off;
2106 u32 real_len;
2107
2108 if (skb_shinfo(skb)->gso_size) {
2109 int err;
2110
2111 err = skb_cow_head(skb, 0);
2112 if (err < 0)
2113 return err;
2114
2115 if (skb->protocol == htons(ETH_P_IP)) {
2116 struct iphdr *iph = ip_hdr(skb);
2117
2118 real_len = (((unsigned char *)iph - skb->data) +
2119 ntohs(iph->tot_len));
2120 if (real_len < skb->len)
2121 pskb_trim(skb, real_len);
2122 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2123 if (skb->len == hdr_len) {
2124 iph->check = 0;
2125 tcp_hdr(skb)->check =
2126 ~csum_tcpudp_magic(iph->saddr,
2127 iph->daddr, tcp_hdrlen(skb),
2128 IPPROTO_TCP, 0);
2129 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2130 TPD_IPHL_SHIFT;
2131 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2132 TPD_TCPHDRLEN_MASK) <<
2133 TPD_TCPHDRLEN_SHIFT;
2134 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2135 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2136 return 1;
2137 }
2138
2139 iph->check = 0;
2140 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2141 iph->daddr, 0, IPPROTO_TCP, 0);
2142 ip_off = (unsigned char *)iph -
2143 (unsigned char *) skb_network_header(skb);
2144 if (ip_off == 8) /* 802.3-SNAP frame */
2145 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2146 else if (ip_off != 0)
2147 return -2;
2148
2149 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2150 TPD_IPHL_SHIFT;
2151 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2152 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2153 ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2154 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2155 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2156 return 3;
2157 }
2158 }
2159 return 0;
2160 }
2161
2162 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2163 struct tx_packet_desc *ptpd)
2164 {
2165 u8 css, cso;
2166
2167 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2168 css = skb_checksum_start_offset(skb);
2169 cso = css + (u8) skb->csum_offset;
2170 if (unlikely(css & 0x1)) {
2171 /* L1 hardware requires an even number here */
2172 if (netif_msg_tx_err(adapter))
2173 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2174 "payload offset not an even number\n");
2175 return -1;
2176 }
2177 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2178 TPD_PLOADOFFSET_SHIFT;
2179 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2180 TPD_CCSUMOFFSET_SHIFT;
2181 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2182 return true;
2183 }
2184 return 0;
2185 }
2186
2187 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2188 struct tx_packet_desc *ptpd)
2189 {
2190 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2191 struct atl1_buffer *buffer_info;
2192 u16 buf_len = skb->len;
2193 struct page *page;
2194 unsigned long offset;
2195 unsigned int nr_frags;
2196 unsigned int f;
2197 int retval;
2198 u16 next_to_use;
2199 u16 data_len;
2200 u8 hdr_len;
2201
2202 buf_len -= skb->data_len;
2203 nr_frags = skb_shinfo(skb)->nr_frags;
2204 next_to_use = atomic_read(&tpd_ring->next_to_use);
2205 buffer_info = &tpd_ring->buffer_info[next_to_use];
2206 BUG_ON(buffer_info->skb);
2207 /* put skb in last TPD */
2208 buffer_info->skb = NULL;
2209
2210 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2211 if (retval) {
2212 /* TSO */
2213 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2214 buffer_info->length = hdr_len;
2215 page = virt_to_page(skb->data);
2216 offset = offset_in_page(skb->data);
2217 buffer_info->dma = pci_map_page(adapter->pdev, page,
2218 offset, hdr_len,
2219 PCI_DMA_TODEVICE);
2220
2221 if (++next_to_use == tpd_ring->count)
2222 next_to_use = 0;
2223
2224 if (buf_len > hdr_len) {
2225 int i, nseg;
2226
2227 data_len = buf_len - hdr_len;
2228 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2229 ATL1_MAX_TX_BUF_LEN;
2230 for (i = 0; i < nseg; i++) {
2231 buffer_info =
2232 &tpd_ring->buffer_info[next_to_use];
2233 buffer_info->skb = NULL;
2234 buffer_info->length =
2235 (ATL1_MAX_TX_BUF_LEN >=
2236 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2237 data_len -= buffer_info->length;
2238 page = virt_to_page(skb->data +
2239 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2240 offset = offset_in_page(skb->data +
2241 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2242 buffer_info->dma = pci_map_page(adapter->pdev,
2243 page, offset, buffer_info->length,
2244 PCI_DMA_TODEVICE);
2245 if (++next_to_use == tpd_ring->count)
2246 next_to_use = 0;
2247 }
2248 }
2249 } else {
2250 /* not TSO */
2251 buffer_info->length = buf_len;
2252 page = virt_to_page(skb->data);
2253 offset = offset_in_page(skb->data);
2254 buffer_info->dma = pci_map_page(adapter->pdev, page,
2255 offset, buf_len, PCI_DMA_TODEVICE);
2256 if (++next_to_use == tpd_ring->count)
2257 next_to_use = 0;
2258 }
2259
2260 for (f = 0; f < nr_frags; f++) {
2261 const struct skb_frag_struct *frag;
2262 u16 i, nseg;
2263
2264 frag = &skb_shinfo(skb)->frags[f];
2265 buf_len = skb_frag_size(frag);
2266
2267 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2268 ATL1_MAX_TX_BUF_LEN;
2269 for (i = 0; i < nseg; i++) {
2270 buffer_info = &tpd_ring->buffer_info[next_to_use];
2271 BUG_ON(buffer_info->skb);
2272
2273 buffer_info->skb = NULL;
2274 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2275 ATL1_MAX_TX_BUF_LEN : buf_len;
2276 buf_len -= buffer_info->length;
2277 buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2278 frag, i * ATL1_MAX_TX_BUF_LEN,
2279 buffer_info->length, DMA_TO_DEVICE);
2280
2281 if (++next_to_use == tpd_ring->count)
2282 next_to_use = 0;
2283 }
2284 }
2285
2286 /* last tpd's buffer-info */
2287 buffer_info->skb = skb;
2288 }
2289
2290 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2291 struct tx_packet_desc *ptpd)
2292 {
2293 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2294 struct atl1_buffer *buffer_info;
2295 struct tx_packet_desc *tpd;
2296 u16 j;
2297 u32 val;
2298 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2299
2300 for (j = 0; j < count; j++) {
2301 buffer_info = &tpd_ring->buffer_info[next_to_use];
2302 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2303 if (tpd != ptpd)
2304 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2305 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2306 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2307 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2308 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2309
2310 /*
2311 * if this is the first packet in a TSO chain, set
2312 * TPD_HDRFLAG, otherwise, clear it.
2313 */
2314 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2315 TPD_SEGMENT_EN_MASK;
2316 if (val) {
2317 if (!j)
2318 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2319 else
2320 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2321 }
2322
2323 if (j == (count - 1))
2324 tpd->word3 |= 1 << TPD_EOP_SHIFT;
2325
2326 if (++next_to_use == tpd_ring->count)
2327 next_to_use = 0;
2328 }
2329 /*
2330 * Force memory writes to complete before letting h/w
2331 * know there are new descriptors to fetch. (Only
2332 * applicable for weak-ordered memory model archs,
2333 * such as IA-64).
2334 */
2335 wmb();
2336
2337 atomic_set(&tpd_ring->next_to_use, next_to_use);
2338 }
2339
2340 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2341 struct net_device *netdev)
2342 {
2343 struct atl1_adapter *adapter = netdev_priv(netdev);
2344 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2345 int len;
2346 int tso;
2347 int count = 1;
2348 int ret_val;
2349 struct tx_packet_desc *ptpd;
2350 u16 vlan_tag;
2351 unsigned int nr_frags = 0;
2352 unsigned int mss = 0;
2353 unsigned int f;
2354 unsigned int proto_hdr_len;
2355
2356 len = skb_headlen(skb);
2357
2358 if (unlikely(skb->len <= 0)) {
2359 dev_kfree_skb_any(skb);
2360 return NETDEV_TX_OK;
2361 }
2362
2363 nr_frags = skb_shinfo(skb)->nr_frags;
2364 for (f = 0; f < nr_frags; f++) {
2365 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2366 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2367 ATL1_MAX_TX_BUF_LEN;
2368 }
2369
2370 mss = skb_shinfo(skb)->gso_size;
2371 if (mss) {
2372 if (skb->protocol == htons(ETH_P_IP)) {
2373 proto_hdr_len = (skb_transport_offset(skb) +
2374 tcp_hdrlen(skb));
2375 if (unlikely(proto_hdr_len > len)) {
2376 dev_kfree_skb_any(skb);
2377 return NETDEV_TX_OK;
2378 }
2379 /* need additional TPD ? */
2380 if (proto_hdr_len != len)
2381 count += (len - proto_hdr_len +
2382 ATL1_MAX_TX_BUF_LEN - 1) /
2383 ATL1_MAX_TX_BUF_LEN;
2384 }
2385 }
2386
2387 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2388 /* not enough descriptors */
2389 netif_stop_queue(netdev);
2390 if (netif_msg_tx_queued(adapter))
2391 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2392 "tx busy\n");
2393 return NETDEV_TX_BUSY;
2394 }
2395
2396 ptpd = ATL1_TPD_DESC(tpd_ring,
2397 (u16) atomic_read(&tpd_ring->next_to_use));
2398 memset(ptpd, 0, sizeof(struct tx_packet_desc));
2399
2400 if (skb_vlan_tag_present(skb)) {
2401 vlan_tag = skb_vlan_tag_get(skb);
2402 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2403 ((vlan_tag >> 9) & 0x8);
2404 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2405 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2406 TPD_VLANTAG_SHIFT;
2407 }
2408
2409 tso = atl1_tso(adapter, skb, ptpd);
2410 if (tso < 0) {
2411 dev_kfree_skb_any(skb);
2412 return NETDEV_TX_OK;
2413 }
2414
2415 if (!tso) {
2416 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2417 if (ret_val < 0) {
2418 dev_kfree_skb_any(skb);
2419 return NETDEV_TX_OK;
2420 }
2421 }
2422
2423 atl1_tx_map(adapter, skb, ptpd);
2424 atl1_tx_queue(adapter, count, ptpd);
2425 atl1_update_mailbox(adapter);
2426 return NETDEV_TX_OK;
2427 }
2428
2429 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2430 {
2431 struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2432 int work_done = atl1_intr_rx(adapter, budget);
2433
2434 if (atl1_intr_tx(adapter))
2435 work_done = budget;
2436
2437 /* Let's come again to process some more packets */
2438 if (work_done >= budget)
2439 return work_done;
2440
2441 napi_complete_done(napi, work_done);
2442 /* re-enable Interrupt */
2443 if (likely(adapter->int_enabled))
2444 atlx_imr_set(adapter, IMR_NORMAL_MASK);
2445 return work_done;
2446 }
2447
2448 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2449 {
2450 if (!napi_schedule_prep(&adapter->napi))
2451 /* It is possible in case even the RX/TX ints are disabled via IMR
2452 * register the ISR bits are set anyway (but do not produce IRQ).
2453 * To handle such situation the napi functions used to check is
2454 * something scheduled or not.
2455 */
2456 return 0;
2457
2458 __napi_schedule(&adapter->napi);
2459
2460 /*
2461 * Disable RX/TX ints via IMR register if it is
2462 * allowed. NAPI handler must reenable them in same
2463 * way.
2464 */
2465 if (!adapter->int_enabled)
2466 return 1;
2467
2468 atlx_imr_set(adapter, IMR_NORXTX_MASK);
2469 return 1;
2470 }
2471
2472 /**
2473 * atl1_intr - Interrupt Handler
2474 * @irq: interrupt number
2475 * @data: pointer to a network interface device structure
2476 */
2477 static irqreturn_t atl1_intr(int irq, void *data)
2478 {
2479 struct atl1_adapter *adapter = netdev_priv(data);
2480 u32 status;
2481
2482 status = adapter->cmb.cmb->int_stats;
2483 if (!status)
2484 return IRQ_NONE;
2485
2486 /* clear CMB interrupt status at once,
2487 * but leave rx/tx interrupt status in case it should be dropped
2488 * only if rx/tx processing queued. In other case interrupt
2489 * can be lost.
2490 */
2491 adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2492
2493 if (status & ISR_GPHY) /* clear phy status */
2494 atlx_clear_phy_int(adapter);
2495
2496 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2497 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2498
2499 /* check if SMB intr */
2500 if (status & ISR_SMB)
2501 atl1_inc_smb(adapter);
2502
2503 /* check if PCIE PHY Link down */
2504 if (status & ISR_PHY_LINKDOWN) {
2505 if (netif_msg_intr(adapter))
2506 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2507 "pcie phy link down %x\n", status);
2508 if (netif_running(adapter->netdev)) { /* reset MAC */
2509 atlx_irq_disable(adapter);
2510 schedule_work(&adapter->reset_dev_task);
2511 return IRQ_HANDLED;
2512 }
2513 }
2514
2515 /* check if DMA read/write error ? */
2516 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2517 if (netif_msg_intr(adapter))
2518 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2519 "pcie DMA r/w error (status = 0x%x)\n",
2520 status);
2521 atlx_irq_disable(adapter);
2522 schedule_work(&adapter->reset_dev_task);
2523 return IRQ_HANDLED;
2524 }
2525
2526 /* link event */
2527 if (status & ISR_GPHY) {
2528 adapter->soft_stats.tx_carrier_errors++;
2529 atl1_check_for_link(adapter);
2530 }
2531
2532 /* transmit or receive event */
2533 if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2534 atl1_sched_rings_clean(adapter))
2535 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2536 ~(ISR_CMB_TX | ISR_CMB_RX);
2537
2538 /* rx exception */
2539 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2540 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2541 ISR_HOST_RRD_OV))) {
2542 if (netif_msg_intr(adapter))
2543 dev_printk(KERN_DEBUG,
2544 &adapter->pdev->dev,
2545 "rx exception, ISR = 0x%x\n",
2546 status);
2547 atl1_sched_rings_clean(adapter);
2548 }
2549
2550 /* re-enable Interrupt */
2551 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2552 return IRQ_HANDLED;
2553 }
2554
2555
2556 /**
2557 * atl1_phy_config - Timer Call-back
2558 * @data: pointer to netdev cast into an unsigned long
2559 */
2560 static void atl1_phy_config(struct timer_list *t)
2561 {
2562 struct atl1_adapter *adapter = from_timer(adapter, t,
2563 phy_config_timer);
2564 struct atl1_hw *hw = &adapter->hw;
2565 unsigned long flags;
2566
2567 spin_lock_irqsave(&adapter->lock, flags);
2568 adapter->phy_timer_pending = false;
2569 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2570 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2571 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2572 spin_unlock_irqrestore(&adapter->lock, flags);
2573 }
2574
2575 /*
2576 * Orphaned vendor comment left intact here:
2577 * <vendor comment>
2578 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2579 * will assert. We do soft reset <0x1400=1> according
2580 * with the SPEC. BUT, it seemes that PCIE or DMA
2581 * state-machine will not be reset. DMAR_TO_INT will
2582 * assert again and again.
2583 * </vendor comment>
2584 */
2585
2586 static int atl1_reset(struct atl1_adapter *adapter)
2587 {
2588 int ret;
2589 ret = atl1_reset_hw(&adapter->hw);
2590 if (ret)
2591 return ret;
2592 return atl1_init_hw(&adapter->hw);
2593 }
2594
2595 static s32 atl1_up(struct atl1_adapter *adapter)
2596 {
2597 struct net_device *netdev = adapter->netdev;
2598 int err;
2599 int irq_flags = 0;
2600
2601 /* hardware has been reset, we need to reload some things */
2602 atlx_set_multi(netdev);
2603 atl1_init_ring_ptrs(adapter);
2604 atlx_restore_vlan(adapter);
2605 err = atl1_alloc_rx_buffers(adapter);
2606 if (unlikely(!err))
2607 /* no RX BUFFER allocated */
2608 return -ENOMEM;
2609
2610 if (unlikely(atl1_configure(adapter))) {
2611 err = -EIO;
2612 goto err_up;
2613 }
2614
2615 err = pci_enable_msi(adapter->pdev);
2616 if (err) {
2617 if (netif_msg_ifup(adapter))
2618 dev_info(&adapter->pdev->dev,
2619 "Unable to enable MSI: %d\n", err);
2620 irq_flags |= IRQF_SHARED;
2621 }
2622
2623 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2624 netdev->name, netdev);
2625 if (unlikely(err))
2626 goto err_up;
2627
2628 napi_enable(&adapter->napi);
2629 atlx_irq_enable(adapter);
2630 atl1_check_link(adapter);
2631 netif_start_queue(netdev);
2632 return 0;
2633
2634 err_up:
2635 pci_disable_msi(adapter->pdev);
2636 /* free rx_buffers */
2637 atl1_clean_rx_ring(adapter);
2638 return err;
2639 }
2640
2641 static void atl1_down(struct atl1_adapter *adapter)
2642 {
2643 struct net_device *netdev = adapter->netdev;
2644
2645 napi_disable(&adapter->napi);
2646 netif_stop_queue(netdev);
2647 del_timer_sync(&adapter->phy_config_timer);
2648 adapter->phy_timer_pending = false;
2649
2650 atlx_irq_disable(adapter);
2651 free_irq(adapter->pdev->irq, netdev);
2652 pci_disable_msi(adapter->pdev);
2653 atl1_reset_hw(&adapter->hw);
2654 adapter->cmb.cmb->int_stats = 0;
2655
2656 adapter->link_speed = SPEED_0;
2657 adapter->link_duplex = -1;
2658 netif_carrier_off(netdev);
2659
2660 atl1_clean_tx_ring(adapter);
2661 atl1_clean_rx_ring(adapter);
2662 }
2663
2664 static void atl1_reset_dev_task(struct work_struct *work)
2665 {
2666 struct atl1_adapter *adapter =
2667 container_of(work, struct atl1_adapter, reset_dev_task);
2668 struct net_device *netdev = adapter->netdev;
2669
2670 netif_device_detach(netdev);
2671 atl1_down(adapter);
2672 atl1_up(adapter);
2673 netif_device_attach(netdev);
2674 }
2675
2676 /**
2677 * atl1_change_mtu - Change the Maximum Transfer Unit
2678 * @netdev: network interface device structure
2679 * @new_mtu: new value for maximum frame size
2680 *
2681 * Returns 0 on success, negative on failure
2682 */
2683 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2684 {
2685 struct atl1_adapter *adapter = netdev_priv(netdev);
2686 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2687
2688 adapter->hw.max_frame_size = max_frame;
2689 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2690 adapter->rx_buffer_len = (max_frame + 7) & ~7;
2691 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2692
2693 netdev->mtu = new_mtu;
2694 if (netif_running(netdev)) {
2695 atl1_down(adapter);
2696 atl1_up(adapter);
2697 }
2698
2699 return 0;
2700 }
2701
2702 /**
2703 * atl1_open - Called when a network interface is made active
2704 * @netdev: network interface device structure
2705 *
2706 * Returns 0 on success, negative value on failure
2707 *
2708 * The open entry point is called when a network interface is made
2709 * active by the system (IFF_UP). At this point all resources needed
2710 * for transmit and receive operations are allocated, the interrupt
2711 * handler is registered with the OS, the watchdog timer is started,
2712 * and the stack is notified that the interface is ready.
2713 */
2714 static int atl1_open(struct net_device *netdev)
2715 {
2716 struct atl1_adapter *adapter = netdev_priv(netdev);
2717 int err;
2718
2719 netif_carrier_off(netdev);
2720
2721 /* allocate transmit descriptors */
2722 err = atl1_setup_ring_resources(adapter);
2723 if (err)
2724 return err;
2725
2726 err = atl1_up(adapter);
2727 if (err)
2728 goto err_up;
2729
2730 return 0;
2731
2732 err_up:
2733 atl1_reset(adapter);
2734 return err;
2735 }
2736
2737 /**
2738 * atl1_close - Disables a network interface
2739 * @netdev: network interface device structure
2740 *
2741 * Returns 0, this is not allowed to fail
2742 *
2743 * The close entry point is called when an interface is de-activated
2744 * by the OS. The hardware is still under the drivers control, but
2745 * needs to be disabled. A global MAC reset is issued to stop the
2746 * hardware, and all transmit and receive resources are freed.
2747 */
2748 static int atl1_close(struct net_device *netdev)
2749 {
2750 struct atl1_adapter *adapter = netdev_priv(netdev);
2751 atl1_down(adapter);
2752 atl1_free_ring_resources(adapter);
2753 return 0;
2754 }
2755
2756 #ifdef CONFIG_PM_SLEEP
2757 static int atl1_suspend(struct device *dev)
2758 {
2759 struct pci_dev *pdev = to_pci_dev(dev);
2760 struct net_device *netdev = pci_get_drvdata(pdev);
2761 struct atl1_adapter *adapter = netdev_priv(netdev);
2762 struct atl1_hw *hw = &adapter->hw;
2763 u32 ctrl = 0;
2764 u32 wufc = adapter->wol;
2765 u32 val;
2766 u16 speed;
2767 u16 duplex;
2768
2769 netif_device_detach(netdev);
2770 if (netif_running(netdev))
2771 atl1_down(adapter);
2772
2773 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2774 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2775 val = ctrl & BMSR_LSTATUS;
2776 if (val)
2777 wufc &= ~ATLX_WUFC_LNKC;
2778 if (!wufc)
2779 goto disable_wol;
2780
2781 if (val) {
2782 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2783 if (val) {
2784 if (netif_msg_ifdown(adapter))
2785 dev_printk(KERN_DEBUG, &pdev->dev,
2786 "error getting speed/duplex\n");
2787 goto disable_wol;
2788 }
2789
2790 ctrl = 0;
2791
2792 /* enable magic packet WOL */
2793 if (wufc & ATLX_WUFC_MAG)
2794 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2795 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2796 ioread32(hw->hw_addr + REG_WOL_CTRL);
2797
2798 /* configure the mac */
2799 ctrl = MAC_CTRL_RX_EN;
2800 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2801 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2802 if (duplex == FULL_DUPLEX)
2803 ctrl |= MAC_CTRL_DUPLX;
2804 ctrl |= (((u32)adapter->hw.preamble_len &
2805 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2806 __atlx_vlan_mode(netdev->features, &ctrl);
2807 if (wufc & ATLX_WUFC_MAG)
2808 ctrl |= MAC_CTRL_BC_EN;
2809 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2810 ioread32(hw->hw_addr + REG_MAC_CTRL);
2811
2812 /* poke the PHY */
2813 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2814 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2815 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2816 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2817 } else {
2818 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2819 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2820 ioread32(hw->hw_addr + REG_WOL_CTRL);
2821 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2822 ioread32(hw->hw_addr + REG_MAC_CTRL);
2823 hw->phy_configured = false;
2824 }
2825
2826 return 0;
2827
2828 disable_wol:
2829 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2830 ioread32(hw->hw_addr + REG_WOL_CTRL);
2831 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2832 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2833 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2834 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2835 hw->phy_configured = false;
2836
2837 return 0;
2838 }
2839
2840 static int atl1_resume(struct device *dev)
2841 {
2842 struct pci_dev *pdev = to_pci_dev(dev);
2843 struct net_device *netdev = pci_get_drvdata(pdev);
2844 struct atl1_adapter *adapter = netdev_priv(netdev);
2845
2846 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2847
2848 atl1_reset_hw(&adapter->hw);
2849
2850 if (netif_running(netdev)) {
2851 adapter->cmb.cmb->int_stats = 0;
2852 atl1_up(adapter);
2853 }
2854 netif_device_attach(netdev);
2855
2856 return 0;
2857 }
2858 #endif
2859
2860 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2861
2862 static void atl1_shutdown(struct pci_dev *pdev)
2863 {
2864 struct net_device *netdev = pci_get_drvdata(pdev);
2865 struct atl1_adapter *adapter = netdev_priv(netdev);
2866
2867 #ifdef CONFIG_PM_SLEEP
2868 atl1_suspend(&pdev->dev);
2869 #endif
2870 pci_wake_from_d3(pdev, adapter->wol);
2871 pci_set_power_state(pdev, PCI_D3hot);
2872 }
2873
2874 #ifdef CONFIG_NET_POLL_CONTROLLER
2875 static void atl1_poll_controller(struct net_device *netdev)
2876 {
2877 disable_irq(netdev->irq);
2878 atl1_intr(netdev->irq, netdev);
2879 enable_irq(netdev->irq);
2880 }
2881 #endif
2882
2883 static const struct net_device_ops atl1_netdev_ops = {
2884 .ndo_open = atl1_open,
2885 .ndo_stop = atl1_close,
2886 .ndo_start_xmit = atl1_xmit_frame,
2887 .ndo_set_rx_mode = atlx_set_multi,
2888 .ndo_validate_addr = eth_validate_addr,
2889 .ndo_set_mac_address = atl1_set_mac,
2890 .ndo_change_mtu = atl1_change_mtu,
2891 .ndo_fix_features = atlx_fix_features,
2892 .ndo_set_features = atlx_set_features,
2893 .ndo_do_ioctl = atlx_ioctl,
2894 .ndo_tx_timeout = atlx_tx_timeout,
2895 #ifdef CONFIG_NET_POLL_CONTROLLER
2896 .ndo_poll_controller = atl1_poll_controller,
2897 #endif
2898 };
2899
2900 /**
2901 * atl1_probe - Device Initialization Routine
2902 * @pdev: PCI device information struct
2903 * @ent: entry in atl1_pci_tbl
2904 *
2905 * Returns 0 on success, negative on failure
2906 *
2907 * atl1_probe initializes an adapter identified by a pci_dev structure.
2908 * The OS initialization, configuring of the adapter private structure,
2909 * and a hardware reset occur.
2910 */
2911 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2912 {
2913 struct net_device *netdev;
2914 struct atl1_adapter *adapter;
2915 static int cards_found = 0;
2916 int err;
2917
2918 err = pci_enable_device(pdev);
2919 if (err)
2920 return err;
2921
2922 /*
2923 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2924 * shared register for the high 32 bits, so only a single, aligned,
2925 * 4 GB physical address range can be used at a time.
2926 *
2927 * Supporting 64-bit DMA on this hardware is more trouble than it's
2928 * worth. It is far easier to limit to 32-bit DMA than update
2929 * various kernel subsystems to support the mechanics required by a
2930 * fixed-high-32-bit system.
2931 */
2932 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2933 if (err) {
2934 dev_err(&pdev->dev, "no usable DMA configuration\n");
2935 goto err_dma;
2936 }
2937 /*
2938 * Mark all PCI regions associated with PCI device
2939 * pdev as being reserved by owner atl1_driver_name
2940 */
2941 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2942 if (err)
2943 goto err_request_regions;
2944
2945 /*
2946 * Enables bus-mastering on the device and calls
2947 * pcibios_set_master to do the needed arch specific settings
2948 */
2949 pci_set_master(pdev);
2950
2951 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2952 if (!netdev) {
2953 err = -ENOMEM;
2954 goto err_alloc_etherdev;
2955 }
2956 SET_NETDEV_DEV(netdev, &pdev->dev);
2957
2958 pci_set_drvdata(pdev, netdev);
2959 adapter = netdev_priv(netdev);
2960 adapter->netdev = netdev;
2961 adapter->pdev = pdev;
2962 adapter->hw.back = adapter;
2963 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2964
2965 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2966 if (!adapter->hw.hw_addr) {
2967 err = -EIO;
2968 goto err_pci_iomap;
2969 }
2970 /* get device revision number */
2971 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2972 (REG_MASTER_CTRL + 2));
2973 if (netif_msg_probe(adapter))
2974 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2975
2976 /* set default ring resource counts */
2977 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2978 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2979
2980 adapter->mii.dev = netdev;
2981 adapter->mii.mdio_read = mdio_read;
2982 adapter->mii.mdio_write = mdio_write;
2983 adapter->mii.phy_id_mask = 0x1f;
2984 adapter->mii.reg_num_mask = 0x1f;
2985
2986 netdev->netdev_ops = &atl1_netdev_ops;
2987 netdev->watchdog_timeo = 5 * HZ;
2988 netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
2989
2990 netdev->ethtool_ops = &atl1_ethtool_ops;
2991 adapter->bd_number = cards_found;
2992
2993 /* setup the private structure */
2994 err = atl1_sw_init(adapter);
2995 if (err)
2996 goto err_common;
2997
2998 netdev->features = NETIF_F_HW_CSUM;
2999 netdev->features |= NETIF_F_SG;
3000 netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
3001
3002 netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3003 NETIF_F_HW_VLAN_CTAG_RX;
3004
3005 /* is this valid? see atl1_setup_mac_ctrl() */
3006 netdev->features |= NETIF_F_RXCSUM;
3007
3008 /* MTU range: 42 - 10218 */
3009 netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3010 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3011 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3012
3013 /*
3014 * patch for some L1 of old version,
3015 * the final version of L1 may not need these
3016 * patches
3017 */
3018 /* atl1_pcie_patch(adapter); */
3019
3020 /* really reset GPHY core */
3021 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3022
3023 /*
3024 * reset the controller to
3025 * put the device in a known good starting state
3026 */
3027 if (atl1_reset_hw(&adapter->hw)) {
3028 err = -EIO;
3029 goto err_common;
3030 }
3031
3032 /* copy the MAC address out of the EEPROM */
3033 if (atl1_read_mac_addr(&adapter->hw)) {
3034 /* mark random mac */
3035 netdev->addr_assign_type = NET_ADDR_RANDOM;
3036 }
3037 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3038
3039 if (!is_valid_ether_addr(netdev->dev_addr)) {
3040 err = -EIO;
3041 goto err_common;
3042 }
3043
3044 atl1_check_options(adapter);
3045
3046 /* pre-init the MAC, and setup link */
3047 err = atl1_init_hw(&adapter->hw);
3048 if (err) {
3049 err = -EIO;
3050 goto err_common;
3051 }
3052
3053 atl1_pcie_patch(adapter);
3054 /* assume we have no link for now */
3055 netif_carrier_off(netdev);
3056
3057 timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
3058 adapter->phy_timer_pending = false;
3059
3060 INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3061
3062 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3063
3064 err = register_netdev(netdev);
3065 if (err)
3066 goto err_common;
3067
3068 cards_found++;
3069 atl1_via_workaround(adapter);
3070 return 0;
3071
3072 err_common:
3073 pci_iounmap(pdev, adapter->hw.hw_addr);
3074 err_pci_iomap:
3075 free_netdev(netdev);
3076 err_alloc_etherdev:
3077 pci_release_regions(pdev);
3078 err_dma:
3079 err_request_regions:
3080 pci_disable_device(pdev);
3081 return err;
3082 }
3083
3084 /**
3085 * atl1_remove - Device Removal Routine
3086 * @pdev: PCI device information struct
3087 *
3088 * atl1_remove is called by the PCI subsystem to alert the driver
3089 * that it should release a PCI device. The could be caused by a
3090 * Hot-Plug event, or because the driver is going to be removed from
3091 * memory.
3092 */
3093 static void atl1_remove(struct pci_dev *pdev)
3094 {
3095 struct net_device *netdev = pci_get_drvdata(pdev);
3096 struct atl1_adapter *adapter;
3097 /* Device not available. Return. */
3098 if (!netdev)
3099 return;
3100
3101 adapter = netdev_priv(netdev);
3102
3103 /*
3104 * Some atl1 boards lack persistent storage for their MAC, and get it
3105 * from the BIOS during POST. If we've been messing with the MAC
3106 * address, we need to save the permanent one.
3107 */
3108 if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3109 adapter->hw.perm_mac_addr)) {
3110 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3111 ETH_ALEN);
3112 atl1_set_mac_addr(&adapter->hw);
3113 }
3114
3115 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3116 unregister_netdev(netdev);
3117 pci_iounmap(pdev, adapter->hw.hw_addr);
3118 pci_release_regions(pdev);
3119 free_netdev(netdev);
3120 pci_disable_device(pdev);
3121 }
3122
3123 static struct pci_driver atl1_driver = {
3124 .name = ATLX_DRIVER_NAME,
3125 .id_table = atl1_pci_tbl,
3126 .probe = atl1_probe,
3127 .remove = atl1_remove,
3128 .shutdown = atl1_shutdown,
3129 .driver.pm = &atl1_pm_ops,
3130 };
3131
3132 struct atl1_stats {
3133 char stat_string[ETH_GSTRING_LEN];
3134 int sizeof_stat;
3135 int stat_offset;
3136 };
3137
3138 #define ATL1_STAT(m) \
3139 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3140
3141 static struct atl1_stats atl1_gstrings_stats[] = {
3142 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3143 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3144 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3145 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3146 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3147 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3148 {"multicast", ATL1_STAT(soft_stats.multicast)},
3149 {"collisions", ATL1_STAT(soft_stats.collisions)},
3150 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3151 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3152 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3153 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3154 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3155 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3156 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3157 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3158 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3159 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3160 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3161 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3162 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3163 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3164 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3165 {"tx_underrun", ATL1_STAT(soft_stats.tx_underrun)},
3166 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3167 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3168 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3169 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3170 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3171 };
3172
3173 static void atl1_get_ethtool_stats(struct net_device *netdev,
3174 struct ethtool_stats *stats, u64 *data)
3175 {
3176 struct atl1_adapter *adapter = netdev_priv(netdev);
3177 int i;
3178 char *p;
3179
3180 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3181 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3182 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3183 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3184 }
3185
3186 }
3187
3188 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3189 {
3190 switch (sset) {
3191 case ETH_SS_STATS:
3192 return ARRAY_SIZE(atl1_gstrings_stats);
3193 default:
3194 return -EOPNOTSUPP;
3195 }
3196 }
3197
3198 static int atl1_get_link_ksettings(struct net_device *netdev,
3199 struct ethtool_link_ksettings *cmd)
3200 {
3201 struct atl1_adapter *adapter = netdev_priv(netdev);
3202 struct atl1_hw *hw = &adapter->hw;
3203 u32 supported, advertising;
3204
3205 supported = (SUPPORTED_10baseT_Half |
3206 SUPPORTED_10baseT_Full |
3207 SUPPORTED_100baseT_Half |
3208 SUPPORTED_100baseT_Full |
3209 SUPPORTED_1000baseT_Full |
3210 SUPPORTED_Autoneg | SUPPORTED_TP);
3211 advertising = ADVERTISED_TP;
3212 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3213 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3214 advertising |= ADVERTISED_Autoneg;
3215 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3216 advertising |= ADVERTISED_Autoneg;
3217 advertising |=
3218 (ADVERTISED_10baseT_Half |
3219 ADVERTISED_10baseT_Full |
3220 ADVERTISED_100baseT_Half |
3221 ADVERTISED_100baseT_Full |
3222 ADVERTISED_1000baseT_Full);
3223 } else
3224 advertising |= (ADVERTISED_1000baseT_Full);
3225 }
3226 cmd->base.port = PORT_TP;
3227 cmd->base.phy_address = 0;
3228
3229 if (netif_carrier_ok(adapter->netdev)) {
3230 u16 link_speed, link_duplex;
3231 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3232 cmd->base.speed = link_speed;
3233 if (link_duplex == FULL_DUPLEX)
3234 cmd->base.duplex = DUPLEX_FULL;
3235 else
3236 cmd->base.duplex = DUPLEX_HALF;
3237 } else {
3238 cmd->base.speed = SPEED_UNKNOWN;
3239 cmd->base.duplex = DUPLEX_UNKNOWN;
3240 }
3241 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3242 hw->media_type == MEDIA_TYPE_1000M_FULL)
3243 cmd->base.autoneg = AUTONEG_ENABLE;
3244 else
3245 cmd->base.autoneg = AUTONEG_DISABLE;
3246
3247 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3248 supported);
3249 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3250 advertising);
3251
3252 return 0;
3253 }
3254
3255 static int atl1_set_link_ksettings(struct net_device *netdev,
3256 const struct ethtool_link_ksettings *cmd)
3257 {
3258 struct atl1_adapter *adapter = netdev_priv(netdev);
3259 struct atl1_hw *hw = &adapter->hw;
3260 u16 phy_data;
3261 int ret_val = 0;
3262 u16 old_media_type = hw->media_type;
3263
3264 if (netif_running(adapter->netdev)) {
3265 if (netif_msg_link(adapter))
3266 dev_dbg(&adapter->pdev->dev,
3267 "ethtool shutting down adapter\n");
3268 atl1_down(adapter);
3269 }
3270
3271 if (cmd->base.autoneg == AUTONEG_ENABLE)
3272 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3273 else {
3274 u32 speed = cmd->base.speed;
3275 if (speed == SPEED_1000) {
3276 if (cmd->base.duplex != DUPLEX_FULL) {
3277 if (netif_msg_link(adapter))
3278 dev_warn(&adapter->pdev->dev,
3279 "1000M half is invalid\n");
3280 ret_val = -EINVAL;
3281 goto exit_sset;
3282 }
3283 hw->media_type = MEDIA_TYPE_1000M_FULL;
3284 } else if (speed == SPEED_100) {
3285 if (cmd->base.duplex == DUPLEX_FULL)
3286 hw->media_type = MEDIA_TYPE_100M_FULL;
3287 else
3288 hw->media_type = MEDIA_TYPE_100M_HALF;
3289 } else {
3290 if (cmd->base.duplex == DUPLEX_FULL)
3291 hw->media_type = MEDIA_TYPE_10M_FULL;
3292 else
3293 hw->media_type = MEDIA_TYPE_10M_HALF;
3294 }
3295 }
3296
3297 if (atl1_phy_setup_autoneg_adv(hw)) {
3298 ret_val = -EINVAL;
3299 if (netif_msg_link(adapter))
3300 dev_warn(&adapter->pdev->dev,
3301 "invalid ethtool speed/duplex setting\n");
3302 goto exit_sset;
3303 }
3304 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3305 hw->media_type == MEDIA_TYPE_1000M_FULL)
3306 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3307 else {
3308 switch (hw->media_type) {
3309 case MEDIA_TYPE_100M_FULL:
3310 phy_data =
3311 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3312 MII_CR_RESET;
3313 break;
3314 case MEDIA_TYPE_100M_HALF:
3315 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3316 break;
3317 case MEDIA_TYPE_10M_FULL:
3318 phy_data =
3319 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3320 break;
3321 default:
3322 /* MEDIA_TYPE_10M_HALF: */
3323 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3324 break;
3325 }
3326 }
3327 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3328 exit_sset:
3329 if (ret_val)
3330 hw->media_type = old_media_type;
3331
3332 if (netif_running(adapter->netdev)) {
3333 if (netif_msg_link(adapter))
3334 dev_dbg(&adapter->pdev->dev,
3335 "ethtool starting adapter\n");
3336 atl1_up(adapter);
3337 } else if (!ret_val) {
3338 if (netif_msg_link(adapter))
3339 dev_dbg(&adapter->pdev->dev,
3340 "ethtool resetting adapter\n");
3341 atl1_reset(adapter);
3342 }
3343 return ret_val;
3344 }
3345
3346 static void atl1_get_drvinfo(struct net_device *netdev,
3347 struct ethtool_drvinfo *drvinfo)
3348 {
3349 struct atl1_adapter *adapter = netdev_priv(netdev);
3350
3351 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3352 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3353 sizeof(drvinfo->version));
3354 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3355 sizeof(drvinfo->bus_info));
3356 }
3357
3358 static void atl1_get_wol(struct net_device *netdev,
3359 struct ethtool_wolinfo *wol)
3360 {
3361 struct atl1_adapter *adapter = netdev_priv(netdev);
3362
3363 wol->supported = WAKE_MAGIC;
3364 wol->wolopts = 0;
3365 if (adapter->wol & ATLX_WUFC_MAG)
3366 wol->wolopts |= WAKE_MAGIC;
3367 }
3368
3369 static int atl1_set_wol(struct net_device *netdev,
3370 struct ethtool_wolinfo *wol)
3371 {
3372 struct atl1_adapter *adapter = netdev_priv(netdev);
3373
3374 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3375 WAKE_ARP | WAKE_MAGICSECURE))
3376 return -EOPNOTSUPP;
3377 adapter->wol = 0;
3378 if (wol->wolopts & WAKE_MAGIC)
3379 adapter->wol |= ATLX_WUFC_MAG;
3380
3381 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3382
3383 return 0;
3384 }
3385
3386 static u32 atl1_get_msglevel(struct net_device *netdev)
3387 {
3388 struct atl1_adapter *adapter = netdev_priv(netdev);
3389 return adapter->msg_enable;
3390 }
3391
3392 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3393 {
3394 struct atl1_adapter *adapter = netdev_priv(netdev);
3395 adapter->msg_enable = value;
3396 }
3397
3398 static int atl1_get_regs_len(struct net_device *netdev)
3399 {
3400 return ATL1_REG_COUNT * sizeof(u32);
3401 }
3402
3403 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3404 void *p)
3405 {
3406 struct atl1_adapter *adapter = netdev_priv(netdev);
3407 struct atl1_hw *hw = &adapter->hw;
3408 unsigned int i;
3409 u32 *regbuf = p;
3410
3411 for (i = 0; i < ATL1_REG_COUNT; i++) {
3412 /*
3413 * This switch statement avoids reserved regions
3414 * of register space.
3415 */
3416 switch (i) {
3417 case 6 ... 9:
3418 case 14:
3419 case 29 ... 31:
3420 case 34 ... 63:
3421 case 75 ... 127:
3422 case 136 ... 1023:
3423 case 1027 ... 1087:
3424 case 1091 ... 1151:
3425 case 1194 ... 1195:
3426 case 1200 ... 1201:
3427 case 1206 ... 1213:
3428 case 1216 ... 1279:
3429 case 1290 ... 1311:
3430 case 1323 ... 1343:
3431 case 1358 ... 1359:
3432 case 1368 ... 1375:
3433 case 1378 ... 1383:
3434 case 1388 ... 1391:
3435 case 1393 ... 1395:
3436 case 1402 ... 1403:
3437 case 1410 ... 1471:
3438 case 1522 ... 1535:
3439 /* reserved region; don't read it */
3440 regbuf[i] = 0;
3441 break;
3442 default:
3443 /* unreserved region */
3444 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3445 }
3446 }
3447 }
3448
3449 static void atl1_get_ringparam(struct net_device *netdev,
3450 struct ethtool_ringparam *ring)
3451 {
3452 struct atl1_adapter *adapter = netdev_priv(netdev);
3453 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3454 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3455
3456 ring->rx_max_pending = ATL1_MAX_RFD;
3457 ring->tx_max_pending = ATL1_MAX_TPD;
3458 ring->rx_pending = rxdr->count;
3459 ring->tx_pending = txdr->count;
3460 }
3461
3462 static int atl1_set_ringparam(struct net_device *netdev,
3463 struct ethtool_ringparam *ring)
3464 {
3465 struct atl1_adapter *adapter = netdev_priv(netdev);
3466 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3467 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3468 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3469
3470 struct atl1_tpd_ring tpd_old, tpd_new;
3471 struct atl1_rfd_ring rfd_old, rfd_new;
3472 struct atl1_rrd_ring rrd_old, rrd_new;
3473 struct atl1_ring_header rhdr_old, rhdr_new;
3474 struct atl1_smb smb;
3475 struct atl1_cmb cmb;
3476 int err;
3477
3478 tpd_old = adapter->tpd_ring;
3479 rfd_old = adapter->rfd_ring;
3480 rrd_old = adapter->rrd_ring;
3481 rhdr_old = adapter->ring_header;
3482
3483 if (netif_running(adapter->netdev))
3484 atl1_down(adapter);
3485
3486 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3487 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3488 rfdr->count;
3489 rfdr->count = (rfdr->count + 3) & ~3;
3490 rrdr->count = rfdr->count;
3491
3492 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3493 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3494 tpdr->count;
3495 tpdr->count = (tpdr->count + 3) & ~3;
3496
3497 if (netif_running(adapter->netdev)) {
3498 /* try to get new resources before deleting old */
3499 err = atl1_setup_ring_resources(adapter);
3500 if (err)
3501 goto err_setup_ring;
3502
3503 /*
3504 * save the new, restore the old in order to free it,
3505 * then restore the new back again
3506 */
3507
3508 rfd_new = adapter->rfd_ring;
3509 rrd_new = adapter->rrd_ring;
3510 tpd_new = adapter->tpd_ring;
3511 rhdr_new = adapter->ring_header;
3512 adapter->rfd_ring = rfd_old;
3513 adapter->rrd_ring = rrd_old;
3514 adapter->tpd_ring = tpd_old;
3515 adapter->ring_header = rhdr_old;
3516 /*
3517 * Save SMB and CMB, since atl1_free_ring_resources
3518 * will clear them.
3519 */
3520 smb = adapter->smb;
3521 cmb = adapter->cmb;
3522 atl1_free_ring_resources(adapter);
3523 adapter->rfd_ring = rfd_new;
3524 adapter->rrd_ring = rrd_new;
3525 adapter->tpd_ring = tpd_new;
3526 adapter->ring_header = rhdr_new;
3527 adapter->smb = smb;
3528 adapter->cmb = cmb;
3529
3530 err = atl1_up(adapter);
3531 if (err)
3532 return err;
3533 }
3534 return 0;
3535
3536 err_setup_ring:
3537 adapter->rfd_ring = rfd_old;
3538 adapter->rrd_ring = rrd_old;
3539 adapter->tpd_ring = tpd_old;
3540 adapter->ring_header = rhdr_old;
3541 atl1_up(adapter);
3542 return err;
3543 }
3544
3545 static void atl1_get_pauseparam(struct net_device *netdev,
3546 struct ethtool_pauseparam *epause)
3547 {
3548 struct atl1_adapter *adapter = netdev_priv(netdev);
3549 struct atl1_hw *hw = &adapter->hw;
3550
3551 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3552 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3553 epause->autoneg = AUTONEG_ENABLE;
3554 } else {
3555 epause->autoneg = AUTONEG_DISABLE;
3556 }
3557 epause->rx_pause = 1;
3558 epause->tx_pause = 1;
3559 }
3560
3561 static int atl1_set_pauseparam(struct net_device *netdev,
3562 struct ethtool_pauseparam *epause)
3563 {
3564 struct atl1_adapter *adapter = netdev_priv(netdev);
3565 struct atl1_hw *hw = &adapter->hw;
3566
3567 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3568 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3569 epause->autoneg = AUTONEG_ENABLE;
3570 } else {
3571 epause->autoneg = AUTONEG_DISABLE;
3572 }
3573
3574 epause->rx_pause = 1;
3575 epause->tx_pause = 1;
3576
3577 return 0;
3578 }
3579
3580 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3581 u8 *data)
3582 {
3583 u8 *p = data;
3584 int i;
3585
3586 switch (stringset) {
3587 case ETH_SS_STATS:
3588 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3589 memcpy(p, atl1_gstrings_stats[i].stat_string,
3590 ETH_GSTRING_LEN);
3591 p += ETH_GSTRING_LEN;
3592 }
3593 break;
3594 }
3595 }
3596
3597 static int atl1_nway_reset(struct net_device *netdev)
3598 {
3599 struct atl1_adapter *adapter = netdev_priv(netdev);
3600 struct atl1_hw *hw = &adapter->hw;
3601
3602 if (netif_running(netdev)) {
3603 u16 phy_data;
3604 atl1_down(adapter);
3605
3606 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3607 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3608 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3609 } else {
3610 switch (hw->media_type) {
3611 case MEDIA_TYPE_100M_FULL:
3612 phy_data = MII_CR_FULL_DUPLEX |
3613 MII_CR_SPEED_100 | MII_CR_RESET;
3614 break;
3615 case MEDIA_TYPE_100M_HALF:
3616 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3617 break;
3618 case MEDIA_TYPE_10M_FULL:
3619 phy_data = MII_CR_FULL_DUPLEX |
3620 MII_CR_SPEED_10 | MII_CR_RESET;
3621 break;
3622 default:
3623 /* MEDIA_TYPE_10M_HALF */
3624 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3625 }
3626 }
3627 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3628 atl1_up(adapter);
3629 }
3630 return 0;
3631 }
3632
3633 static const struct ethtool_ops atl1_ethtool_ops = {
3634 .get_drvinfo = atl1_get_drvinfo,
3635 .get_wol = atl1_get_wol,
3636 .set_wol = atl1_set_wol,
3637 .get_msglevel = atl1_get_msglevel,
3638 .set_msglevel = atl1_set_msglevel,
3639 .get_regs_len = atl1_get_regs_len,
3640 .get_regs = atl1_get_regs,
3641 .get_ringparam = atl1_get_ringparam,
3642 .set_ringparam = atl1_set_ringparam,
3643 .get_pauseparam = atl1_get_pauseparam,
3644 .set_pauseparam = atl1_set_pauseparam,
3645 .get_link = ethtool_op_get_link,
3646 .get_strings = atl1_get_strings,
3647 .nway_reset = atl1_nway_reset,
3648 .get_ethtool_stats = atl1_get_ethtool_stats,
3649 .get_sset_count = atl1_get_sset_count,
3650 .get_link_ksettings = atl1_get_link_ksettings,
3651 .set_link_ksettings = atl1_set_link_ksettings,
3652 };
3653
3654 module_pci_driver(atl1_driver);