]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/broadcom/bcm63xx_enet.c
8b1929e9f698c4d8da22573b483795af1bf5bc5b
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / broadcom / bcm63xx_enet.c
1 /*
2 * Driver for BCM963xx builtin Ethernet mac
3 *
4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46
47 /*
48 * io helpers to access mac registers
49 */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 return bcm_readl(priv->base + off);
53 }
54
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 u32 val, u32 off)
57 {
58 bcm_writel(val, priv->base + off);
59 }
60
61 /*
62 * io helpers to access switch registers
63 */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 return bcm_readl(priv->base + off);
67 }
68
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 u32 val, u32 off)
71 {
72 bcm_writel(val, priv->base + off);
73 }
74
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 return bcm_readw(priv->base + off);
78 }
79
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 u16 val, u32 off)
82 {
83 bcm_writew(val, priv->base + off);
84 }
85
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 return bcm_readb(priv->base + off);
89 }
90
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 u8 val, u32 off)
93 {
94 bcm_writeb(val, priv->base + off);
95 }
96
97
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 u32 val, u32 off)
106 {
107 bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 return bcm_readl(bcm_enet_shared_base[1] +
113 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 u32 val, u32 off, int chan)
118 {
119 bcm_writel(val, bcm_enet_shared_base[1] +
120 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 u32 val, u32 off, int chan)
130 {
131 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133
134 /*
135 * write given data into mii register and wait for transfer to end
136 * with timeout (average measured transfer time is 25us)
137 */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 int limit;
141
142 /* make sure mii interrupt status is cleared */
143 enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144
145 enet_writel(priv, data, ENET_MIIDATA_REG);
146 wmb();
147
148 /* busy wait on mii interrupt bit, with timeout */
149 limit = 1000;
150 do {
151 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 break;
153 udelay(1);
154 } while (limit-- > 0);
155
156 return (limit < 0) ? 1 : 0;
157 }
158
159 /*
160 * MII internal read callback
161 */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 int regnum)
164 {
165 u32 tmp, val;
166
167 tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 tmp |= ENET_MIIDATA_OP_READ_MASK;
171
172 if (do_mdio_op(priv, tmp))
173 return -1;
174
175 val = enet_readl(priv, ENET_MIIDATA_REG);
176 val &= 0xffff;
177 return val;
178 }
179
180 /*
181 * MII internal write callback
182 */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 int regnum, u16 value)
185 {
186 u32 tmp;
187
188 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193
194 (void)do_mdio_op(priv, tmp);
195 return 0;
196 }
197
198 /*
199 * MII read callback from phylib
200 */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 int regnum)
203 {
204 return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206
207 /*
208 * MII write callback from phylib
209 */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 int regnum, u16 value)
212 {
213 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215
216 /*
217 * MII read callback from mii core
218 */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 int regnum)
221 {
222 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224
225 /*
226 * MII write callback from mii core
227 */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 int regnum, int value)
230 {
231 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233
234 /*
235 * refill rx queue
236 */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 struct bcm_enet_priv *priv;
240
241 priv = netdev_priv(dev);
242
243 while (priv->rx_desc_count < priv->rx_ring_size) {
244 struct bcm_enet_desc *desc;
245 struct sk_buff *skb;
246 dma_addr_t p;
247 int desc_idx;
248 u32 len_stat;
249
250 desc_idx = priv->rx_dirty_desc;
251 desc = &priv->rx_desc_cpu[desc_idx];
252
253 if (!priv->rx_skb[desc_idx]) {
254 skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 if (!skb)
256 break;
257 priv->rx_skb[desc_idx] = skb;
258 p = dma_map_single(&priv->pdev->dev, skb->data,
259 priv->rx_skb_size,
260 DMA_FROM_DEVICE);
261 desc->address = p;
262 }
263
264 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 len_stat |= DMADESC_OWNER_MASK;
266 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 priv->rx_dirty_desc = 0;
269 } else {
270 priv->rx_dirty_desc++;
271 }
272 wmb();
273 desc->len_stat = len_stat;
274
275 priv->rx_desc_count++;
276
277 /* tell dma engine we allocated one buffer */
278 if (priv->dma_has_sram)
279 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 else
281 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 }
283
284 /* If rx ring is still empty, set a timer to try allocating
285 * again at a later time. */
286 if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 priv->rx_timeout.expires = jiffies + HZ;
289 add_timer(&priv->rx_timeout);
290 }
291
292 return 0;
293 }
294
295 /*
296 * timer callback to defer refill rx queue in case we're OOM
297 */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 struct net_device *dev;
301 struct bcm_enet_priv *priv;
302
303 dev = (struct net_device *)data;
304 priv = netdev_priv(dev);
305
306 spin_lock(&priv->rx_lock);
307 bcm_enet_refill_rx((struct net_device *)data);
308 spin_unlock(&priv->rx_lock);
309 }
310
311 /*
312 * extract packet from rx queue
313 */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 struct bcm_enet_priv *priv;
317 struct device *kdev;
318 int processed;
319
320 priv = netdev_priv(dev);
321 kdev = &priv->pdev->dev;
322 processed = 0;
323
324 /* don't scan ring further than number of refilled
325 * descriptor */
326 if (budget > priv->rx_desc_count)
327 budget = priv->rx_desc_count;
328
329 do {
330 struct bcm_enet_desc *desc;
331 struct sk_buff *skb;
332 int desc_idx;
333 u32 len_stat;
334 unsigned int len;
335
336 desc_idx = priv->rx_curr_desc;
337 desc = &priv->rx_desc_cpu[desc_idx];
338
339 /* make sure we actually read the descriptor status at
340 * each loop */
341 rmb();
342
343 len_stat = desc->len_stat;
344
345 /* break if dma ownership belongs to hw */
346 if (len_stat & DMADESC_OWNER_MASK)
347 break;
348
349 processed++;
350 priv->rx_curr_desc++;
351 if (priv->rx_curr_desc == priv->rx_ring_size)
352 priv->rx_curr_desc = 0;
353 priv->rx_desc_count--;
354
355 /* if the packet does not have start of packet _and_
356 * end of packet flag set, then just recycle it */
357 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 dev->stats.rx_dropped++;
360 continue;
361 }
362
363 /* recycle packet if it's marked as bad */
364 if (!priv->enet_is_sw &&
365 unlikely(len_stat & DMADESC_ERR_MASK)) {
366 dev->stats.rx_errors++;
367
368 if (len_stat & DMADESC_OVSIZE_MASK)
369 dev->stats.rx_length_errors++;
370 if (len_stat & DMADESC_CRC_MASK)
371 dev->stats.rx_crc_errors++;
372 if (len_stat & DMADESC_UNDER_MASK)
373 dev->stats.rx_frame_errors++;
374 if (len_stat & DMADESC_OV_MASK)
375 dev->stats.rx_fifo_errors++;
376 continue;
377 }
378
379 /* valid packet */
380 skb = priv->rx_skb[desc_idx];
381 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 /* don't include FCS */
383 len -= 4;
384
385 if (len < copybreak) {
386 struct sk_buff *nskb;
387
388 nskb = napi_alloc_skb(&priv->napi, len);
389 if (!nskb) {
390 /* forget packet, just rearm desc */
391 dev->stats.rx_dropped++;
392 continue;
393 }
394
395 dma_sync_single_for_cpu(kdev, desc->address,
396 len, DMA_FROM_DEVICE);
397 memcpy(nskb->data, skb->data, len);
398 dma_sync_single_for_device(kdev, desc->address,
399 len, DMA_FROM_DEVICE);
400 skb = nskb;
401 } else {
402 dma_unmap_single(&priv->pdev->dev, desc->address,
403 priv->rx_skb_size, DMA_FROM_DEVICE);
404 priv->rx_skb[desc_idx] = NULL;
405 }
406
407 skb_put(skb, len);
408 skb->protocol = eth_type_trans(skb, dev);
409 dev->stats.rx_packets++;
410 dev->stats.rx_bytes += len;
411 netif_receive_skb(skb);
412
413 } while (--budget > 0);
414
415 if (processed || !priv->rx_desc_count) {
416 bcm_enet_refill_rx(dev);
417
418 /* kick rx dma */
419 enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 ENETDMAC_CHANCFG, priv->rx_chan);
421 }
422
423 return processed;
424 }
425
426
427 /*
428 * try to or force reclaim of transmitted buffers
429 */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 struct bcm_enet_priv *priv;
433 int released;
434
435 priv = netdev_priv(dev);
436 released = 0;
437
438 while (priv->tx_desc_count < priv->tx_ring_size) {
439 struct bcm_enet_desc *desc;
440 struct sk_buff *skb;
441
442 /* We run in a bh and fight against start_xmit, which
443 * is called with bh disabled */
444 spin_lock(&priv->tx_lock);
445
446 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447
448 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 spin_unlock(&priv->tx_lock);
450 break;
451 }
452
453 /* ensure other field of the descriptor were not read
454 * before we checked ownership */
455 rmb();
456
457 skb = priv->tx_skb[priv->tx_dirty_desc];
458 priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 DMA_TO_DEVICE);
461
462 priv->tx_dirty_desc++;
463 if (priv->tx_dirty_desc == priv->tx_ring_size)
464 priv->tx_dirty_desc = 0;
465 priv->tx_desc_count++;
466
467 spin_unlock(&priv->tx_lock);
468
469 if (desc->len_stat & DMADESC_UNDER_MASK)
470 dev->stats.tx_errors++;
471
472 dev_kfree_skb(skb);
473 released++;
474 }
475
476 if (netif_queue_stopped(dev) && released)
477 netif_wake_queue(dev);
478
479 return released;
480 }
481
482 /*
483 * poll func, called by network core
484 */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 struct bcm_enet_priv *priv;
488 struct net_device *dev;
489 int rx_work_done;
490
491 priv = container_of(napi, struct bcm_enet_priv, napi);
492 dev = priv->net_dev;
493
494 /* ack interrupts */
495 enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 ENETDMAC_IR, priv->rx_chan);
497 enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 ENETDMAC_IR, priv->tx_chan);
499
500 /* reclaim sent skb */
501 bcm_enet_tx_reclaim(dev, 0);
502
503 spin_lock(&priv->rx_lock);
504 rx_work_done = bcm_enet_receive_queue(dev, budget);
505 spin_unlock(&priv->rx_lock);
506
507 if (rx_work_done >= budget) {
508 /* rx queue is not yet empty/clean */
509 return rx_work_done;
510 }
511
512 /* no more packet in rx/tx queue, remove device from poll
513 * queue */
514 napi_complete(napi);
515
516 /* restore rx/tx interrupt */
517 enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 ENETDMAC_IRMASK, priv->rx_chan);
519 enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 ENETDMAC_IRMASK, priv->tx_chan);
521
522 return rx_work_done;
523 }
524
525 /*
526 * mac interrupt handler
527 */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 struct net_device *dev;
531 struct bcm_enet_priv *priv;
532 u32 stat;
533
534 dev = dev_id;
535 priv = netdev_priv(dev);
536
537 stat = enet_readl(priv, ENET_IR_REG);
538 if (!(stat & ENET_IR_MIB))
539 return IRQ_NONE;
540
541 /* clear & mask interrupt */
542 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 enet_writel(priv, 0, ENET_IRMASK_REG);
544
545 /* read mib registers in workqueue */
546 schedule_work(&priv->mib_update_task);
547
548 return IRQ_HANDLED;
549 }
550
551 /*
552 * rx/tx dma interrupt handler
553 */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 struct net_device *dev;
557 struct bcm_enet_priv *priv;
558
559 dev = dev_id;
560 priv = netdev_priv(dev);
561
562 /* mask rx/tx interrupts */
563 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565
566 napi_schedule(&priv->napi);
567
568 return IRQ_HANDLED;
569 }
570
571 /*
572 * tx request callback
573 */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 struct bcm_enet_priv *priv;
577 struct bcm_enet_desc *desc;
578 u32 len_stat;
579 int ret;
580
581 priv = netdev_priv(dev);
582
583 /* lock against tx reclaim */
584 spin_lock(&priv->tx_lock);
585
586 /* make sure the tx hw queue is not full, should not happen
587 * since we stop queue before it's the case */
588 if (unlikely(!priv->tx_desc_count)) {
589 netif_stop_queue(dev);
590 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 "available?\n");
592 ret = NETDEV_TX_BUSY;
593 goto out_unlock;
594 }
595
596 /* pad small packets sent on a switch device */
597 if (priv->enet_is_sw && skb->len < 64) {
598 int needed = 64 - skb->len;
599 char *data;
600
601 if (unlikely(skb_tailroom(skb) < needed)) {
602 struct sk_buff *nskb;
603
604 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 if (!nskb) {
606 ret = NETDEV_TX_BUSY;
607 goto out_unlock;
608 }
609 dev_kfree_skb(skb);
610 skb = nskb;
611 }
612 data = skb_put(skb, needed);
613 memset(data, 0, needed);
614 }
615
616 /* point to the next available desc */
617 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618 priv->tx_skb[priv->tx_curr_desc] = skb;
619
620 /* fill descriptor */
621 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622 DMA_TO_DEVICE);
623
624 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626 DMADESC_APPEND_CRC |
627 DMADESC_OWNER_MASK;
628
629 priv->tx_curr_desc++;
630 if (priv->tx_curr_desc == priv->tx_ring_size) {
631 priv->tx_curr_desc = 0;
632 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633 }
634 priv->tx_desc_count--;
635
636 /* dma might be already polling, make sure we update desc
637 * fields in correct order */
638 wmb();
639 desc->len_stat = len_stat;
640 wmb();
641
642 /* kick tx dma */
643 enet_dmac_writel(priv, priv->dma_chan_en_mask,
644 ENETDMAC_CHANCFG, priv->tx_chan);
645
646 /* stop queue if no more desc available */
647 if (!priv->tx_desc_count)
648 netif_stop_queue(dev);
649
650 dev->stats.tx_bytes += skb->len;
651 dev->stats.tx_packets++;
652 ret = NETDEV_TX_OK;
653
654 out_unlock:
655 spin_unlock(&priv->tx_lock);
656 return ret;
657 }
658
659 /*
660 * Change the interface's mac address.
661 */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664 struct bcm_enet_priv *priv;
665 struct sockaddr *addr = p;
666 u32 val;
667
668 priv = netdev_priv(dev);
669 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670
671 /* use perfect match register 0 to store my mac address */
672 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
674 enet_writel(priv, val, ENET_PML_REG(0));
675
676 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677 val |= ENET_PMH_DATAVALID_MASK;
678 enet_writel(priv, val, ENET_PMH_REG(0));
679
680 return 0;
681 }
682
683 /*
684 * Change rx mode (promiscuous/allmulti) and update multicast list
685 */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688 struct bcm_enet_priv *priv;
689 struct netdev_hw_addr *ha;
690 u32 val;
691 int i;
692
693 priv = netdev_priv(dev);
694
695 val = enet_readl(priv, ENET_RXCFG_REG);
696
697 if (dev->flags & IFF_PROMISC)
698 val |= ENET_RXCFG_PROMISC_MASK;
699 else
700 val &= ~ENET_RXCFG_PROMISC_MASK;
701
702 /* only 3 perfect match registers left, first one is used for
703 * own mac address */
704 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705 val |= ENET_RXCFG_ALLMCAST_MASK;
706 else
707 val &= ~ENET_RXCFG_ALLMCAST_MASK;
708
709 /* no need to set perfect match registers if we catch all
710 * multicast */
711 if (val & ENET_RXCFG_ALLMCAST_MASK) {
712 enet_writel(priv, val, ENET_RXCFG_REG);
713 return;
714 }
715
716 i = 0;
717 netdev_for_each_mc_addr(ha, dev) {
718 u8 *dmi_addr;
719 u32 tmp;
720
721 if (i == 3)
722 break;
723 /* update perfect match registers */
724 dmi_addr = ha->addr;
725 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726 (dmi_addr[4] << 8) | dmi_addr[5];
727 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728
729 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730 tmp |= ENET_PMH_DATAVALID_MASK;
731 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732 }
733
734 for (; i < 3; i++) {
735 enet_writel(priv, 0, ENET_PML_REG(i + 1));
736 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737 }
738
739 enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741
742 /*
743 * set mac duplex parameters
744 */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747 u32 val;
748
749 val = enet_readl(priv, ENET_TXCTL_REG);
750 if (fullduplex)
751 val |= ENET_TXCTL_FD_MASK;
752 else
753 val &= ~ENET_TXCTL_FD_MASK;
754 enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756
757 /*
758 * set mac flow control parameters
759 */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762 u32 val;
763
764 /* rx flow control (pause frame handling) */
765 val = enet_readl(priv, ENET_RXCFG_REG);
766 if (rx_en)
767 val |= ENET_RXCFG_ENFLOW_MASK;
768 else
769 val &= ~ENET_RXCFG_ENFLOW_MASK;
770 enet_writel(priv, val, ENET_RXCFG_REG);
771
772 if (!priv->dma_has_sram)
773 return;
774
775 /* tx flow control (pause frame generation) */
776 val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777 if (tx_en)
778 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779 else
780 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781 enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783
784 /*
785 * link changed callback (from phylib)
786 */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789 struct bcm_enet_priv *priv;
790 struct phy_device *phydev;
791 int status_changed;
792
793 priv = netdev_priv(dev);
794 phydev = priv->phydev;
795 status_changed = 0;
796
797 if (priv->old_link != phydev->link) {
798 status_changed = 1;
799 priv->old_link = phydev->link;
800 }
801
802 /* reflect duplex change in mac configuration */
803 if (phydev->link && phydev->duplex != priv->old_duplex) {
804 bcm_enet_set_duplex(priv,
805 (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806 status_changed = 1;
807 priv->old_duplex = phydev->duplex;
808 }
809
810 /* enable flow control if remote advertise it (trust phylib to
811 * check that duplex is full */
812 if (phydev->link && phydev->pause != priv->old_pause) {
813 int rx_pause_en, tx_pause_en;
814
815 if (phydev->pause) {
816 /* pause was advertised by lpa and us */
817 rx_pause_en = 1;
818 tx_pause_en = 1;
819 } else if (!priv->pause_auto) {
820 /* pause setting overrided by user */
821 rx_pause_en = priv->pause_rx;
822 tx_pause_en = priv->pause_tx;
823 } else {
824 rx_pause_en = 0;
825 tx_pause_en = 0;
826 }
827
828 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829 status_changed = 1;
830 priv->old_pause = phydev->pause;
831 }
832
833 if (status_changed) {
834 pr_info("%s: link %s", dev->name, phydev->link ?
835 "UP" : "DOWN");
836 if (phydev->link)
837 pr_cont(" - %d/%s - flow control %s", phydev->speed,
838 DUPLEX_FULL == phydev->duplex ? "full" : "half",
839 phydev->pause == 1 ? "rx&tx" : "off");
840
841 pr_cont("\n");
842 }
843 }
844
845 /*
846 * link changed callback (if phylib is not used)
847 */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850 struct bcm_enet_priv *priv;
851
852 priv = netdev_priv(dev);
853 bcm_enet_set_duplex(priv, priv->force_duplex_full);
854 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855 netif_carrier_on(dev);
856
857 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858 dev->name,
859 priv->force_speed_100 ? 100 : 10,
860 priv->force_duplex_full ? "full" : "half",
861 priv->pause_rx ? "rx" : "off",
862 priv->pause_tx ? "tx" : "off");
863 }
864
865 /*
866 * open callback, allocate dma rings & buffers and start rx operation
867 */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870 struct bcm_enet_priv *priv;
871 struct sockaddr addr;
872 struct device *kdev;
873 struct phy_device *phydev;
874 int i, ret;
875 unsigned int size;
876 char phy_id[MII_BUS_ID_SIZE + 3];
877 void *p;
878 u32 val;
879
880 priv = netdev_priv(dev);
881 kdev = &priv->pdev->dev;
882
883 if (priv->has_phy) {
884 /* connect to PHY */
885 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886 priv->mii_bus->id, priv->phy_id);
887
888 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889 PHY_INTERFACE_MODE_MII);
890
891 if (IS_ERR(phydev)) {
892 dev_err(kdev, "could not attach to PHY\n");
893 return PTR_ERR(phydev);
894 }
895
896 /* mask with MAC supported features */
897 phydev->supported &= (SUPPORTED_10baseT_Half |
898 SUPPORTED_10baseT_Full |
899 SUPPORTED_100baseT_Half |
900 SUPPORTED_100baseT_Full |
901 SUPPORTED_Autoneg |
902 SUPPORTED_Pause |
903 SUPPORTED_MII);
904 phydev->advertising = phydev->supported;
905
906 if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907 phydev->advertising |= SUPPORTED_Pause;
908 else
909 phydev->advertising &= ~SUPPORTED_Pause;
910
911 dev_info(kdev, "attached PHY at address %d [%s]\n",
912 phydev->addr, phydev->drv->name);
913
914 priv->old_link = 0;
915 priv->old_duplex = -1;
916 priv->old_pause = -1;
917 priv->phydev = phydev;
918 }
919
920 /* mask all interrupts and request them */
921 enet_writel(priv, 0, ENET_IRMASK_REG);
922 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
923 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
924
925 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
926 if (ret)
927 goto out_phy_disconnect;
928
929 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
930 dev->name, dev);
931 if (ret)
932 goto out_freeirq;
933
934 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
935 0, dev->name, dev);
936 if (ret)
937 goto out_freeirq_rx;
938
939 /* initialize perfect match registers */
940 for (i = 0; i < 4; i++) {
941 enet_writel(priv, 0, ENET_PML_REG(i));
942 enet_writel(priv, 0, ENET_PMH_REG(i));
943 }
944
945 /* write device mac address */
946 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
947 bcm_enet_set_mac_address(dev, &addr);
948
949 /* allocate rx dma ring */
950 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
951 p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
952 if (!p) {
953 ret = -ENOMEM;
954 goto out_freeirq_tx;
955 }
956
957 priv->rx_desc_alloc_size = size;
958 priv->rx_desc_cpu = p;
959
960 /* allocate tx dma ring */
961 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
962 p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
963 if (!p) {
964 ret = -ENOMEM;
965 goto out_free_rx_ring;
966 }
967
968 priv->tx_desc_alloc_size = size;
969 priv->tx_desc_cpu = p;
970
971 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
972 GFP_KERNEL);
973 if (!priv->tx_skb) {
974 ret = -ENOMEM;
975 goto out_free_tx_ring;
976 }
977
978 priv->tx_desc_count = priv->tx_ring_size;
979 priv->tx_dirty_desc = 0;
980 priv->tx_curr_desc = 0;
981 spin_lock_init(&priv->tx_lock);
982
983 /* init & fill rx ring with skbs */
984 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
985 GFP_KERNEL);
986 if (!priv->rx_skb) {
987 ret = -ENOMEM;
988 goto out_free_tx_skb;
989 }
990
991 priv->rx_desc_count = 0;
992 priv->rx_dirty_desc = 0;
993 priv->rx_curr_desc = 0;
994
995 /* initialize flow control buffer allocation */
996 if (priv->dma_has_sram)
997 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
998 ENETDMA_BUFALLOC_REG(priv->rx_chan));
999 else
1000 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1001 ENETDMAC_BUFALLOC, priv->rx_chan);
1002
1003 if (bcm_enet_refill_rx(dev)) {
1004 dev_err(kdev, "cannot allocate rx skb queue\n");
1005 ret = -ENOMEM;
1006 goto out;
1007 }
1008
1009 /* write rx & tx ring addresses */
1010 if (priv->dma_has_sram) {
1011 enet_dmas_writel(priv, priv->rx_desc_dma,
1012 ENETDMAS_RSTART_REG, priv->rx_chan);
1013 enet_dmas_writel(priv, priv->tx_desc_dma,
1014 ENETDMAS_RSTART_REG, priv->tx_chan);
1015 } else {
1016 enet_dmac_writel(priv, priv->rx_desc_dma,
1017 ENETDMAC_RSTART, priv->rx_chan);
1018 enet_dmac_writel(priv, priv->tx_desc_dma,
1019 ENETDMAC_RSTART, priv->tx_chan);
1020 }
1021
1022 /* clear remaining state ram for rx & tx channel */
1023 if (priv->dma_has_sram) {
1024 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1025 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1026 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1027 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1028 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1029 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1030 } else {
1031 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1032 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1033 }
1034
1035 /* set max rx/tx length */
1036 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1037 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1038
1039 /* set dma maximum burst len */
1040 enet_dmac_writel(priv, priv->dma_maxburst,
1041 ENETDMAC_MAXBURST, priv->rx_chan);
1042 enet_dmac_writel(priv, priv->dma_maxburst,
1043 ENETDMAC_MAXBURST, priv->tx_chan);
1044
1045 /* set correct transmit fifo watermark */
1046 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1047
1048 /* set flow control low/high threshold to 1/3 / 2/3 */
1049 if (priv->dma_has_sram) {
1050 val = priv->rx_ring_size / 3;
1051 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1052 val = (priv->rx_ring_size * 2) / 3;
1053 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1054 } else {
1055 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1056 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1057 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1058 }
1059
1060 /* all set, enable mac and interrupts, start dma engine and
1061 * kick rx dma channel */
1062 wmb();
1063 val = enet_readl(priv, ENET_CTL_REG);
1064 val |= ENET_CTL_ENABLE_MASK;
1065 enet_writel(priv, val, ENET_CTL_REG);
1066 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1067 enet_dmac_writel(priv, priv->dma_chan_en_mask,
1068 ENETDMAC_CHANCFG, priv->rx_chan);
1069
1070 /* watch "mib counters about to overflow" interrupt */
1071 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1072 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1073
1074 /* watch "packet transferred" interrupt in rx and tx */
1075 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076 ENETDMAC_IR, priv->rx_chan);
1077 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1078 ENETDMAC_IR, priv->tx_chan);
1079
1080 /* make sure we enable napi before rx interrupt */
1081 napi_enable(&priv->napi);
1082
1083 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084 ENETDMAC_IRMASK, priv->rx_chan);
1085 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1086 ENETDMAC_IRMASK, priv->tx_chan);
1087
1088 if (priv->has_phy)
1089 phy_start(priv->phydev);
1090 else
1091 bcm_enet_adjust_link(dev);
1092
1093 netif_start_queue(dev);
1094 return 0;
1095
1096 out:
1097 for (i = 0; i < priv->rx_ring_size; i++) {
1098 struct bcm_enet_desc *desc;
1099
1100 if (!priv->rx_skb[i])
1101 continue;
1102
1103 desc = &priv->rx_desc_cpu[i];
1104 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1105 DMA_FROM_DEVICE);
1106 kfree_skb(priv->rx_skb[i]);
1107 }
1108 kfree(priv->rx_skb);
1109
1110 out_free_tx_skb:
1111 kfree(priv->tx_skb);
1112
1113 out_free_tx_ring:
1114 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1115 priv->tx_desc_cpu, priv->tx_desc_dma);
1116
1117 out_free_rx_ring:
1118 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1119 priv->rx_desc_cpu, priv->rx_desc_dma);
1120
1121 out_freeirq_tx:
1122 free_irq(priv->irq_tx, dev);
1123
1124 out_freeirq_rx:
1125 free_irq(priv->irq_rx, dev);
1126
1127 out_freeirq:
1128 free_irq(dev->irq, dev);
1129
1130 out_phy_disconnect:
1131 phy_disconnect(priv->phydev);
1132
1133 return ret;
1134 }
1135
1136 /*
1137 * disable mac
1138 */
1139 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1140 {
1141 int limit;
1142 u32 val;
1143
1144 val = enet_readl(priv, ENET_CTL_REG);
1145 val |= ENET_CTL_DISABLE_MASK;
1146 enet_writel(priv, val, ENET_CTL_REG);
1147
1148 limit = 1000;
1149 do {
1150 u32 val;
1151
1152 val = enet_readl(priv, ENET_CTL_REG);
1153 if (!(val & ENET_CTL_DISABLE_MASK))
1154 break;
1155 udelay(1);
1156 } while (limit--);
1157 }
1158
1159 /*
1160 * disable dma in given channel
1161 */
1162 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1163 {
1164 int limit;
1165
1166 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1167
1168 limit = 1000;
1169 do {
1170 u32 val;
1171
1172 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1173 if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1174 break;
1175 udelay(1);
1176 } while (limit--);
1177 }
1178
1179 /*
1180 * stop callback
1181 */
1182 static int bcm_enet_stop(struct net_device *dev)
1183 {
1184 struct bcm_enet_priv *priv;
1185 struct device *kdev;
1186 int i;
1187
1188 priv = netdev_priv(dev);
1189 kdev = &priv->pdev->dev;
1190
1191 netif_stop_queue(dev);
1192 napi_disable(&priv->napi);
1193 if (priv->has_phy)
1194 phy_stop(priv->phydev);
1195 del_timer_sync(&priv->rx_timeout);
1196
1197 /* mask all interrupts */
1198 enet_writel(priv, 0, ENET_IRMASK_REG);
1199 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1200 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1201
1202 /* make sure no mib update is scheduled */
1203 cancel_work_sync(&priv->mib_update_task);
1204
1205 /* disable dma & mac */
1206 bcm_enet_disable_dma(priv, priv->tx_chan);
1207 bcm_enet_disable_dma(priv, priv->rx_chan);
1208 bcm_enet_disable_mac(priv);
1209
1210 /* force reclaim of all tx buffers */
1211 bcm_enet_tx_reclaim(dev, 1);
1212
1213 /* free the rx skb ring */
1214 for (i = 0; i < priv->rx_ring_size; i++) {
1215 struct bcm_enet_desc *desc;
1216
1217 if (!priv->rx_skb[i])
1218 continue;
1219
1220 desc = &priv->rx_desc_cpu[i];
1221 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1222 DMA_FROM_DEVICE);
1223 kfree_skb(priv->rx_skb[i]);
1224 }
1225
1226 /* free remaining allocated memory */
1227 kfree(priv->rx_skb);
1228 kfree(priv->tx_skb);
1229 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1230 priv->rx_desc_cpu, priv->rx_desc_dma);
1231 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1232 priv->tx_desc_cpu, priv->tx_desc_dma);
1233 free_irq(priv->irq_tx, dev);
1234 free_irq(priv->irq_rx, dev);
1235 free_irq(dev->irq, dev);
1236
1237 /* release phy */
1238 if (priv->has_phy) {
1239 phy_disconnect(priv->phydev);
1240 priv->phydev = NULL;
1241 }
1242
1243 return 0;
1244 }
1245
1246 /*
1247 * ethtool callbacks
1248 */
1249 struct bcm_enet_stats {
1250 char stat_string[ETH_GSTRING_LEN];
1251 int sizeof_stat;
1252 int stat_offset;
1253 int mib_reg;
1254 };
1255
1256 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
1257 offsetof(struct bcm_enet_priv, m)
1258 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \
1259 offsetof(struct net_device_stats, m)
1260
1261 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1262 { "rx_packets", DEV_STAT(rx_packets), -1 },
1263 { "tx_packets", DEV_STAT(tx_packets), -1 },
1264 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
1265 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
1266 { "rx_errors", DEV_STAT(rx_errors), -1 },
1267 { "tx_errors", DEV_STAT(tx_errors), -1 },
1268 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
1269 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
1270
1271 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1272 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1273 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1274 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1275 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1276 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1277 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1278 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1279 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1280 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1281 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1282 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1283 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1284 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1285 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1286 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1287 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1288 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1289 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1290 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1291 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1292
1293 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1294 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1295 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1296 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1297 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1298 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1299 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1300 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1301 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1302 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1303 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1304 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1305 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1306 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1307 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1308 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1309 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1310 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1311 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1312 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1313 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1314 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1315
1316 };
1317
1318 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats)
1319
1320 static const u32 unused_mib_regs[] = {
1321 ETH_MIB_TX_ALL_OCTETS,
1322 ETH_MIB_TX_ALL_PKTS,
1323 ETH_MIB_RX_ALL_OCTETS,
1324 ETH_MIB_RX_ALL_PKTS,
1325 };
1326
1327
1328 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1329 struct ethtool_drvinfo *drvinfo)
1330 {
1331 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1332 strlcpy(drvinfo->version, bcm_enet_driver_version,
1333 sizeof(drvinfo->version));
1334 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1335 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1336 }
1337
1338 static int bcm_enet_get_sset_count(struct net_device *netdev,
1339 int string_set)
1340 {
1341 switch (string_set) {
1342 case ETH_SS_STATS:
1343 return BCM_ENET_STATS_LEN;
1344 default:
1345 return -EINVAL;
1346 }
1347 }
1348
1349 static void bcm_enet_get_strings(struct net_device *netdev,
1350 u32 stringset, u8 *data)
1351 {
1352 int i;
1353
1354 switch (stringset) {
1355 case ETH_SS_STATS:
1356 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1357 memcpy(data + i * ETH_GSTRING_LEN,
1358 bcm_enet_gstrings_stats[i].stat_string,
1359 ETH_GSTRING_LEN);
1360 }
1361 break;
1362 }
1363 }
1364
1365 static void update_mib_counters(struct bcm_enet_priv *priv)
1366 {
1367 int i;
1368
1369 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1370 const struct bcm_enet_stats *s;
1371 u32 val;
1372 char *p;
1373
1374 s = &bcm_enet_gstrings_stats[i];
1375 if (s->mib_reg == -1)
1376 continue;
1377
1378 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1379 p = (char *)priv + s->stat_offset;
1380
1381 if (s->sizeof_stat == sizeof(u64))
1382 *(u64 *)p += val;
1383 else
1384 *(u32 *)p += val;
1385 }
1386
1387 /* also empty unused mib counters to make sure mib counter
1388 * overflow interrupt is cleared */
1389 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1390 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1391 }
1392
1393 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1394 {
1395 struct bcm_enet_priv *priv;
1396
1397 priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1398 mutex_lock(&priv->mib_update_lock);
1399 update_mib_counters(priv);
1400 mutex_unlock(&priv->mib_update_lock);
1401
1402 /* reenable mib interrupt */
1403 if (netif_running(priv->net_dev))
1404 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1405 }
1406
1407 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1408 struct ethtool_stats *stats,
1409 u64 *data)
1410 {
1411 struct bcm_enet_priv *priv;
1412 int i;
1413
1414 priv = netdev_priv(netdev);
1415
1416 mutex_lock(&priv->mib_update_lock);
1417 update_mib_counters(priv);
1418
1419 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1420 const struct bcm_enet_stats *s;
1421 char *p;
1422
1423 s = &bcm_enet_gstrings_stats[i];
1424 if (s->mib_reg == -1)
1425 p = (char *)&netdev->stats;
1426 else
1427 p = (char *)priv;
1428 p += s->stat_offset;
1429 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1430 *(u64 *)p : *(u32 *)p;
1431 }
1432 mutex_unlock(&priv->mib_update_lock);
1433 }
1434
1435 static int bcm_enet_nway_reset(struct net_device *dev)
1436 {
1437 struct bcm_enet_priv *priv;
1438
1439 priv = netdev_priv(dev);
1440 if (priv->has_phy) {
1441 if (!priv->phydev)
1442 return -ENODEV;
1443 return genphy_restart_aneg(priv->phydev);
1444 }
1445
1446 return -EOPNOTSUPP;
1447 }
1448
1449 static int bcm_enet_get_settings(struct net_device *dev,
1450 struct ethtool_cmd *cmd)
1451 {
1452 struct bcm_enet_priv *priv;
1453
1454 priv = netdev_priv(dev);
1455
1456 cmd->maxrxpkt = 0;
1457 cmd->maxtxpkt = 0;
1458
1459 if (priv->has_phy) {
1460 if (!priv->phydev)
1461 return -ENODEV;
1462 return phy_ethtool_gset(priv->phydev, cmd);
1463 } else {
1464 cmd->autoneg = 0;
1465 ethtool_cmd_speed_set(cmd, ((priv->force_speed_100)
1466 ? SPEED_100 : SPEED_10));
1467 cmd->duplex = (priv->force_duplex_full) ?
1468 DUPLEX_FULL : DUPLEX_HALF;
1469 cmd->supported = ADVERTISED_10baseT_Half |
1470 ADVERTISED_10baseT_Full |
1471 ADVERTISED_100baseT_Half |
1472 ADVERTISED_100baseT_Full;
1473 cmd->advertising = 0;
1474 cmd->port = PORT_MII;
1475 cmd->transceiver = XCVR_EXTERNAL;
1476 }
1477 return 0;
1478 }
1479
1480 static int bcm_enet_set_settings(struct net_device *dev,
1481 struct ethtool_cmd *cmd)
1482 {
1483 struct bcm_enet_priv *priv;
1484
1485 priv = netdev_priv(dev);
1486 if (priv->has_phy) {
1487 if (!priv->phydev)
1488 return -ENODEV;
1489 return phy_ethtool_sset(priv->phydev, cmd);
1490 } else {
1491
1492 if (cmd->autoneg ||
1493 (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1494 cmd->port != PORT_MII)
1495 return -EINVAL;
1496
1497 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1498 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1499
1500 if (netif_running(dev))
1501 bcm_enet_adjust_link(dev);
1502 return 0;
1503 }
1504 }
1505
1506 static void bcm_enet_get_ringparam(struct net_device *dev,
1507 struct ethtool_ringparam *ering)
1508 {
1509 struct bcm_enet_priv *priv;
1510
1511 priv = netdev_priv(dev);
1512
1513 /* rx/tx ring is actually only limited by memory */
1514 ering->rx_max_pending = 8192;
1515 ering->tx_max_pending = 8192;
1516 ering->rx_pending = priv->rx_ring_size;
1517 ering->tx_pending = priv->tx_ring_size;
1518 }
1519
1520 static int bcm_enet_set_ringparam(struct net_device *dev,
1521 struct ethtool_ringparam *ering)
1522 {
1523 struct bcm_enet_priv *priv;
1524 int was_running;
1525
1526 priv = netdev_priv(dev);
1527
1528 was_running = 0;
1529 if (netif_running(dev)) {
1530 bcm_enet_stop(dev);
1531 was_running = 1;
1532 }
1533
1534 priv->rx_ring_size = ering->rx_pending;
1535 priv->tx_ring_size = ering->tx_pending;
1536
1537 if (was_running) {
1538 int err;
1539
1540 err = bcm_enet_open(dev);
1541 if (err)
1542 dev_close(dev);
1543 else
1544 bcm_enet_set_multicast_list(dev);
1545 }
1546 return 0;
1547 }
1548
1549 static void bcm_enet_get_pauseparam(struct net_device *dev,
1550 struct ethtool_pauseparam *ecmd)
1551 {
1552 struct bcm_enet_priv *priv;
1553
1554 priv = netdev_priv(dev);
1555 ecmd->autoneg = priv->pause_auto;
1556 ecmd->rx_pause = priv->pause_rx;
1557 ecmd->tx_pause = priv->pause_tx;
1558 }
1559
1560 static int bcm_enet_set_pauseparam(struct net_device *dev,
1561 struct ethtool_pauseparam *ecmd)
1562 {
1563 struct bcm_enet_priv *priv;
1564
1565 priv = netdev_priv(dev);
1566
1567 if (priv->has_phy) {
1568 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1569 /* asymetric pause mode not supported,
1570 * actually possible but integrated PHY has RO
1571 * asym_pause bit */
1572 return -EINVAL;
1573 }
1574 } else {
1575 /* no pause autoneg on direct mii connection */
1576 if (ecmd->autoneg)
1577 return -EINVAL;
1578 }
1579
1580 priv->pause_auto = ecmd->autoneg;
1581 priv->pause_rx = ecmd->rx_pause;
1582 priv->pause_tx = ecmd->tx_pause;
1583
1584 return 0;
1585 }
1586
1587 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1588 .get_strings = bcm_enet_get_strings,
1589 .get_sset_count = bcm_enet_get_sset_count,
1590 .get_ethtool_stats = bcm_enet_get_ethtool_stats,
1591 .nway_reset = bcm_enet_nway_reset,
1592 .get_settings = bcm_enet_get_settings,
1593 .set_settings = bcm_enet_set_settings,
1594 .get_drvinfo = bcm_enet_get_drvinfo,
1595 .get_link = ethtool_op_get_link,
1596 .get_ringparam = bcm_enet_get_ringparam,
1597 .set_ringparam = bcm_enet_set_ringparam,
1598 .get_pauseparam = bcm_enet_get_pauseparam,
1599 .set_pauseparam = bcm_enet_set_pauseparam,
1600 };
1601
1602 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1603 {
1604 struct bcm_enet_priv *priv;
1605
1606 priv = netdev_priv(dev);
1607 if (priv->has_phy) {
1608 if (!priv->phydev)
1609 return -ENODEV;
1610 return phy_mii_ioctl(priv->phydev, rq, cmd);
1611 } else {
1612 struct mii_if_info mii;
1613
1614 mii.dev = dev;
1615 mii.mdio_read = bcm_enet_mdio_read_mii;
1616 mii.mdio_write = bcm_enet_mdio_write_mii;
1617 mii.phy_id = 0;
1618 mii.phy_id_mask = 0x3f;
1619 mii.reg_num_mask = 0x1f;
1620 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1621 }
1622 }
1623
1624 /*
1625 * calculate actual hardware mtu
1626 */
1627 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1628 {
1629 int actual_mtu;
1630
1631 actual_mtu = mtu;
1632
1633 /* add ethernet header + vlan tag size */
1634 actual_mtu += VLAN_ETH_HLEN;
1635
1636 if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1637 return -EINVAL;
1638
1639 /*
1640 * setup maximum size before we get overflow mark in
1641 * descriptor, note that this will not prevent reception of
1642 * big frames, they will be split into multiple buffers
1643 * anyway
1644 */
1645 priv->hw_mtu = actual_mtu;
1646
1647 /*
1648 * align rx buffer size to dma burst len, account FCS since
1649 * it's appended
1650 */
1651 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1652 priv->dma_maxburst * 4);
1653 return 0;
1654 }
1655
1656 /*
1657 * adjust mtu, can't be called while device is running
1658 */
1659 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1660 {
1661 int ret;
1662
1663 if (netif_running(dev))
1664 return -EBUSY;
1665
1666 ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1667 if (ret)
1668 return ret;
1669 dev->mtu = new_mtu;
1670 return 0;
1671 }
1672
1673 /*
1674 * preinit hardware to allow mii operation while device is down
1675 */
1676 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1677 {
1678 u32 val;
1679 int limit;
1680
1681 /* make sure mac is disabled */
1682 bcm_enet_disable_mac(priv);
1683
1684 /* soft reset mac */
1685 val = ENET_CTL_SRESET_MASK;
1686 enet_writel(priv, val, ENET_CTL_REG);
1687 wmb();
1688
1689 limit = 1000;
1690 do {
1691 val = enet_readl(priv, ENET_CTL_REG);
1692 if (!(val & ENET_CTL_SRESET_MASK))
1693 break;
1694 udelay(1);
1695 } while (limit--);
1696
1697 /* select correct mii interface */
1698 val = enet_readl(priv, ENET_CTL_REG);
1699 if (priv->use_external_mii)
1700 val |= ENET_CTL_EPHYSEL_MASK;
1701 else
1702 val &= ~ENET_CTL_EPHYSEL_MASK;
1703 enet_writel(priv, val, ENET_CTL_REG);
1704
1705 /* turn on mdc clock */
1706 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1707 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1708
1709 /* set mib counters to self-clear when read */
1710 val = enet_readl(priv, ENET_MIBCTL_REG);
1711 val |= ENET_MIBCTL_RDCLEAR_MASK;
1712 enet_writel(priv, val, ENET_MIBCTL_REG);
1713 }
1714
1715 static const struct net_device_ops bcm_enet_ops = {
1716 .ndo_open = bcm_enet_open,
1717 .ndo_stop = bcm_enet_stop,
1718 .ndo_start_xmit = bcm_enet_start_xmit,
1719 .ndo_set_mac_address = bcm_enet_set_mac_address,
1720 .ndo_set_rx_mode = bcm_enet_set_multicast_list,
1721 .ndo_do_ioctl = bcm_enet_ioctl,
1722 .ndo_change_mtu = bcm_enet_change_mtu,
1723 };
1724
1725 /*
1726 * allocate netdevice, request register memory and register device.
1727 */
1728 static int bcm_enet_probe(struct platform_device *pdev)
1729 {
1730 struct bcm_enet_priv *priv;
1731 struct net_device *dev;
1732 struct bcm63xx_enet_platform_data *pd;
1733 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1734 struct mii_bus *bus;
1735 const char *clk_name;
1736 int i, ret;
1737
1738 /* stop if shared driver failed, assume driver->probe will be
1739 * called in the same order we register devices (correct ?) */
1740 if (!bcm_enet_shared_base[0])
1741 return -ENODEV;
1742
1743 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1744 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1745 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1746 if (!res_irq || !res_irq_rx || !res_irq_tx)
1747 return -ENODEV;
1748
1749 ret = 0;
1750 dev = alloc_etherdev(sizeof(*priv));
1751 if (!dev)
1752 return -ENOMEM;
1753 priv = netdev_priv(dev);
1754
1755 priv->enet_is_sw = false;
1756 priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1757
1758 ret = compute_hw_mtu(priv, dev->mtu);
1759 if (ret)
1760 goto out;
1761
1762 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1763 priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1764 if (IS_ERR(priv->base)) {
1765 ret = PTR_ERR(priv->base);
1766 goto out;
1767 }
1768
1769 dev->irq = priv->irq = res_irq->start;
1770 priv->irq_rx = res_irq_rx->start;
1771 priv->irq_tx = res_irq_tx->start;
1772 priv->mac_id = pdev->id;
1773
1774 /* get rx & tx dma channel id for this mac */
1775 if (priv->mac_id == 0) {
1776 priv->rx_chan = 0;
1777 priv->tx_chan = 1;
1778 clk_name = "enet0";
1779 } else {
1780 priv->rx_chan = 2;
1781 priv->tx_chan = 3;
1782 clk_name = "enet1";
1783 }
1784
1785 priv->mac_clk = clk_get(&pdev->dev, clk_name);
1786 if (IS_ERR(priv->mac_clk)) {
1787 ret = PTR_ERR(priv->mac_clk);
1788 goto out;
1789 }
1790 clk_prepare_enable(priv->mac_clk);
1791
1792 /* initialize default and fetch platform data */
1793 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1794 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1795
1796 pd = dev_get_platdata(&pdev->dev);
1797 if (pd) {
1798 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1799 priv->has_phy = pd->has_phy;
1800 priv->phy_id = pd->phy_id;
1801 priv->has_phy_interrupt = pd->has_phy_interrupt;
1802 priv->phy_interrupt = pd->phy_interrupt;
1803 priv->use_external_mii = !pd->use_internal_phy;
1804 priv->pause_auto = pd->pause_auto;
1805 priv->pause_rx = pd->pause_rx;
1806 priv->pause_tx = pd->pause_tx;
1807 priv->force_duplex_full = pd->force_duplex_full;
1808 priv->force_speed_100 = pd->force_speed_100;
1809 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1810 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1811 priv->dma_chan_width = pd->dma_chan_width;
1812 priv->dma_has_sram = pd->dma_has_sram;
1813 priv->dma_desc_shift = pd->dma_desc_shift;
1814 }
1815
1816 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1817 /* using internal PHY, enable clock */
1818 priv->phy_clk = clk_get(&pdev->dev, "ephy");
1819 if (IS_ERR(priv->phy_clk)) {
1820 ret = PTR_ERR(priv->phy_clk);
1821 priv->phy_clk = NULL;
1822 goto out_put_clk_mac;
1823 }
1824 clk_prepare_enable(priv->phy_clk);
1825 }
1826
1827 /* do minimal hardware init to be able to probe mii bus */
1828 bcm_enet_hw_preinit(priv);
1829
1830 /* MII bus registration */
1831 if (priv->has_phy) {
1832
1833 priv->mii_bus = mdiobus_alloc();
1834 if (!priv->mii_bus) {
1835 ret = -ENOMEM;
1836 goto out_uninit_hw;
1837 }
1838
1839 bus = priv->mii_bus;
1840 bus->name = "bcm63xx_enet MII bus";
1841 bus->parent = &pdev->dev;
1842 bus->priv = priv;
1843 bus->read = bcm_enet_mdio_read_phylib;
1844 bus->write = bcm_enet_mdio_write_phylib;
1845 sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1846
1847 /* only probe bus where we think the PHY is, because
1848 * the mdio read operation return 0 instead of 0xffff
1849 * if a slave is not present on hw */
1850 bus->phy_mask = ~(1 << priv->phy_id);
1851
1852 bus->irq = devm_kzalloc(&pdev->dev, sizeof(int) * PHY_MAX_ADDR,
1853 GFP_KERNEL);
1854 if (!bus->irq) {
1855 ret = -ENOMEM;
1856 goto out_free_mdio;
1857 }
1858
1859 if (priv->has_phy_interrupt)
1860 bus->irq[priv->phy_id] = priv->phy_interrupt;
1861 else
1862 bus->irq[priv->phy_id] = PHY_POLL;
1863
1864 ret = mdiobus_register(bus);
1865 if (ret) {
1866 dev_err(&pdev->dev, "unable to register mdio bus\n");
1867 goto out_free_mdio;
1868 }
1869 } else {
1870
1871 /* run platform code to initialize PHY device */
1872 if (pd->mii_config &&
1873 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1874 bcm_enet_mdio_write_mii)) {
1875 dev_err(&pdev->dev, "unable to configure mdio bus\n");
1876 goto out_uninit_hw;
1877 }
1878 }
1879
1880 spin_lock_init(&priv->rx_lock);
1881
1882 /* init rx timeout (used for oom) */
1883 init_timer(&priv->rx_timeout);
1884 priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1885 priv->rx_timeout.data = (unsigned long)dev;
1886
1887 /* init the mib update lock&work */
1888 mutex_init(&priv->mib_update_lock);
1889 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1890
1891 /* zero mib counters */
1892 for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1893 enet_writel(priv, 0, ENET_MIB_REG(i));
1894
1895 /* register netdevice */
1896 dev->netdev_ops = &bcm_enet_ops;
1897 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1898
1899 dev->ethtool_ops = &bcm_enet_ethtool_ops;
1900 SET_NETDEV_DEV(dev, &pdev->dev);
1901
1902 ret = register_netdev(dev);
1903 if (ret)
1904 goto out_unregister_mdio;
1905
1906 netif_carrier_off(dev);
1907 platform_set_drvdata(pdev, dev);
1908 priv->pdev = pdev;
1909 priv->net_dev = dev;
1910
1911 return 0;
1912
1913 out_unregister_mdio:
1914 if (priv->mii_bus)
1915 mdiobus_unregister(priv->mii_bus);
1916
1917 out_free_mdio:
1918 if (priv->mii_bus)
1919 mdiobus_free(priv->mii_bus);
1920
1921 out_uninit_hw:
1922 /* turn off mdc clock */
1923 enet_writel(priv, 0, ENET_MIISC_REG);
1924 if (priv->phy_clk) {
1925 clk_disable_unprepare(priv->phy_clk);
1926 clk_put(priv->phy_clk);
1927 }
1928
1929 out_put_clk_mac:
1930 clk_disable_unprepare(priv->mac_clk);
1931 clk_put(priv->mac_clk);
1932 out:
1933 free_netdev(dev);
1934 return ret;
1935 }
1936
1937
1938 /*
1939 * exit func, stops hardware and unregisters netdevice
1940 */
1941 static int bcm_enet_remove(struct platform_device *pdev)
1942 {
1943 struct bcm_enet_priv *priv;
1944 struct net_device *dev;
1945
1946 /* stop netdevice */
1947 dev = platform_get_drvdata(pdev);
1948 priv = netdev_priv(dev);
1949 unregister_netdev(dev);
1950
1951 /* turn off mdc clock */
1952 enet_writel(priv, 0, ENET_MIISC_REG);
1953
1954 if (priv->has_phy) {
1955 mdiobus_unregister(priv->mii_bus);
1956 mdiobus_free(priv->mii_bus);
1957 } else {
1958 struct bcm63xx_enet_platform_data *pd;
1959
1960 pd = dev_get_platdata(&pdev->dev);
1961 if (pd && pd->mii_config)
1962 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1963 bcm_enet_mdio_write_mii);
1964 }
1965
1966 /* disable hw block clocks */
1967 if (priv->phy_clk) {
1968 clk_disable_unprepare(priv->phy_clk);
1969 clk_put(priv->phy_clk);
1970 }
1971 clk_disable_unprepare(priv->mac_clk);
1972 clk_put(priv->mac_clk);
1973
1974 free_netdev(dev);
1975 return 0;
1976 }
1977
1978 struct platform_driver bcm63xx_enet_driver = {
1979 .probe = bcm_enet_probe,
1980 .remove = bcm_enet_remove,
1981 .driver = {
1982 .name = "bcm63xx_enet",
1983 .owner = THIS_MODULE,
1984 },
1985 };
1986
1987 /*
1988 * switch mii access callbacks
1989 */
1990 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1991 int ext, int phy_id, int location)
1992 {
1993 u32 reg;
1994 int ret;
1995
1996 spin_lock_bh(&priv->enetsw_mdio_lock);
1997 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1998
1999 reg = ENETSW_MDIOC_RD_MASK |
2000 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2001 (location << ENETSW_MDIOC_REG_SHIFT);
2002
2003 if (ext)
2004 reg |= ENETSW_MDIOC_EXT_MASK;
2005
2006 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2007 udelay(50);
2008 ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
2009 spin_unlock_bh(&priv->enetsw_mdio_lock);
2010 return ret;
2011 }
2012
2013 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
2014 int ext, int phy_id, int location,
2015 uint16_t data)
2016 {
2017 u32 reg;
2018
2019 spin_lock_bh(&priv->enetsw_mdio_lock);
2020 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2021
2022 reg = ENETSW_MDIOC_WR_MASK |
2023 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2024 (location << ENETSW_MDIOC_REG_SHIFT);
2025
2026 if (ext)
2027 reg |= ENETSW_MDIOC_EXT_MASK;
2028
2029 reg |= data;
2030
2031 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2032 udelay(50);
2033 spin_unlock_bh(&priv->enetsw_mdio_lock);
2034 }
2035
2036 static inline int bcm_enet_port_is_rgmii(int portid)
2037 {
2038 return portid >= ENETSW_RGMII_PORT0;
2039 }
2040
2041 /*
2042 * enet sw PHY polling
2043 */
2044 static void swphy_poll_timer(unsigned long data)
2045 {
2046 struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2047 unsigned int i;
2048
2049 for (i = 0; i < priv->num_ports; i++) {
2050 struct bcm63xx_enetsw_port *port;
2051 int val, j, up, advertise, lpa, speed, duplex, media;
2052 int external_phy = bcm_enet_port_is_rgmii(i);
2053 u8 override;
2054
2055 port = &priv->used_ports[i];
2056 if (!port->used)
2057 continue;
2058
2059 if (port->bypass_link)
2060 continue;
2061
2062 /* dummy read to clear */
2063 for (j = 0; j < 2; j++)
2064 val = bcmenet_sw_mdio_read(priv, external_phy,
2065 port->phy_id, MII_BMSR);
2066
2067 if (val == 0xffff)
2068 continue;
2069
2070 up = (val & BMSR_LSTATUS) ? 1 : 0;
2071 if (!(up ^ priv->sw_port_link[i]))
2072 continue;
2073
2074 priv->sw_port_link[i] = up;
2075
2076 /* link changed */
2077 if (!up) {
2078 dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2079 port->name);
2080 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2081 ENETSW_PORTOV_REG(i));
2082 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2083 ENETSW_PTCTRL_TXDIS_MASK,
2084 ENETSW_PTCTRL_REG(i));
2085 continue;
2086 }
2087
2088 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2089 port->phy_id, MII_ADVERTISE);
2090
2091 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2092 MII_LPA);
2093
2094 /* figure out media and duplex from advertise and LPA values */
2095 media = mii_nway_result(lpa & advertise);
2096 duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2097
2098 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2099 speed = 100;
2100 else
2101 speed = 10;
2102
2103 if (val & BMSR_ESTATEN) {
2104 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2105 port->phy_id, MII_CTRL1000);
2106
2107 lpa = bcmenet_sw_mdio_read(priv, external_phy,
2108 port->phy_id, MII_STAT1000);
2109
2110 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2111 && lpa & (LPA_1000FULL | LPA_1000HALF)) {
2112 speed = 1000;
2113 duplex = (lpa & LPA_1000FULL);
2114 }
2115 }
2116
2117 dev_info(&priv->pdev->dev,
2118 "link UP on %s, %dMbps, %s-duplex\n",
2119 port->name, speed, duplex ? "full" : "half");
2120
2121 override = ENETSW_PORTOV_ENABLE_MASK |
2122 ENETSW_PORTOV_LINKUP_MASK;
2123
2124 if (speed == 1000)
2125 override |= ENETSW_IMPOV_1000_MASK;
2126 else if (speed == 100)
2127 override |= ENETSW_IMPOV_100_MASK;
2128 if (duplex)
2129 override |= ENETSW_IMPOV_FDX_MASK;
2130
2131 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2132 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2133 }
2134
2135 priv->swphy_poll.expires = jiffies + HZ;
2136 add_timer(&priv->swphy_poll);
2137 }
2138
2139 /*
2140 * open callback, allocate dma rings & buffers and start rx operation
2141 */
2142 static int bcm_enetsw_open(struct net_device *dev)
2143 {
2144 struct bcm_enet_priv *priv;
2145 struct device *kdev;
2146 int i, ret;
2147 unsigned int size;
2148 void *p;
2149 u32 val;
2150
2151 priv = netdev_priv(dev);
2152 kdev = &priv->pdev->dev;
2153
2154 /* mask all interrupts and request them */
2155 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2156 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2157
2158 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2159 0, dev->name, dev);
2160 if (ret)
2161 goto out_freeirq;
2162
2163 if (priv->irq_tx != -1) {
2164 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2165 0, dev->name, dev);
2166 if (ret)
2167 goto out_freeirq_rx;
2168 }
2169
2170 /* allocate rx dma ring */
2171 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2172 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2173 if (!p) {
2174 dev_err(kdev, "cannot allocate rx ring %u\n", size);
2175 ret = -ENOMEM;
2176 goto out_freeirq_tx;
2177 }
2178
2179 memset(p, 0, size);
2180 priv->rx_desc_alloc_size = size;
2181 priv->rx_desc_cpu = p;
2182
2183 /* allocate tx dma ring */
2184 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2185 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2186 if (!p) {
2187 dev_err(kdev, "cannot allocate tx ring\n");
2188 ret = -ENOMEM;
2189 goto out_free_rx_ring;
2190 }
2191
2192 memset(p, 0, size);
2193 priv->tx_desc_alloc_size = size;
2194 priv->tx_desc_cpu = p;
2195
2196 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2197 GFP_KERNEL);
2198 if (!priv->tx_skb) {
2199 dev_err(kdev, "cannot allocate rx skb queue\n");
2200 ret = -ENOMEM;
2201 goto out_free_tx_ring;
2202 }
2203
2204 priv->tx_desc_count = priv->tx_ring_size;
2205 priv->tx_dirty_desc = 0;
2206 priv->tx_curr_desc = 0;
2207 spin_lock_init(&priv->tx_lock);
2208
2209 /* init & fill rx ring with skbs */
2210 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2211 GFP_KERNEL);
2212 if (!priv->rx_skb) {
2213 dev_err(kdev, "cannot allocate rx skb queue\n");
2214 ret = -ENOMEM;
2215 goto out_free_tx_skb;
2216 }
2217
2218 priv->rx_desc_count = 0;
2219 priv->rx_dirty_desc = 0;
2220 priv->rx_curr_desc = 0;
2221
2222 /* disable all ports */
2223 for (i = 0; i < priv->num_ports; i++) {
2224 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2225 ENETSW_PORTOV_REG(i));
2226 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2227 ENETSW_PTCTRL_TXDIS_MASK,
2228 ENETSW_PTCTRL_REG(i));
2229
2230 priv->sw_port_link[i] = 0;
2231 }
2232
2233 /* reset mib */
2234 val = enetsw_readb(priv, ENETSW_GMCR_REG);
2235 val |= ENETSW_GMCR_RST_MIB_MASK;
2236 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2237 mdelay(1);
2238 val &= ~ENETSW_GMCR_RST_MIB_MASK;
2239 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2240 mdelay(1);
2241
2242 /* force CPU port state */
2243 val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2244 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2245 enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2246
2247 /* enable switch forward engine */
2248 val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2249 val |= ENETSW_SWMODE_FWD_EN_MASK;
2250 enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2251
2252 /* enable jumbo on all ports */
2253 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2254 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2255
2256 /* initialize flow control buffer allocation */
2257 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2258 ENETDMA_BUFALLOC_REG(priv->rx_chan));
2259
2260 if (bcm_enet_refill_rx(dev)) {
2261 dev_err(kdev, "cannot allocate rx skb queue\n");
2262 ret = -ENOMEM;
2263 goto out;
2264 }
2265
2266 /* write rx & tx ring addresses */
2267 enet_dmas_writel(priv, priv->rx_desc_dma,
2268 ENETDMAS_RSTART_REG, priv->rx_chan);
2269 enet_dmas_writel(priv, priv->tx_desc_dma,
2270 ENETDMAS_RSTART_REG, priv->tx_chan);
2271
2272 /* clear remaining state ram for rx & tx channel */
2273 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2274 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2275 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2276 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2277 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2278 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2279
2280 /* set dma maximum burst len */
2281 enet_dmac_writel(priv, priv->dma_maxburst,
2282 ENETDMAC_MAXBURST, priv->rx_chan);
2283 enet_dmac_writel(priv, priv->dma_maxburst,
2284 ENETDMAC_MAXBURST, priv->tx_chan);
2285
2286 /* set flow control low/high threshold to 1/3 / 2/3 */
2287 val = priv->rx_ring_size / 3;
2288 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2289 val = (priv->rx_ring_size * 2) / 3;
2290 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2291
2292 /* all set, enable mac and interrupts, start dma engine and
2293 * kick rx dma channel
2294 */
2295 wmb();
2296 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2297 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2298 ENETDMAC_CHANCFG, priv->rx_chan);
2299
2300 /* watch "packet transferred" interrupt in rx and tx */
2301 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2302 ENETDMAC_IR, priv->rx_chan);
2303 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2304 ENETDMAC_IR, priv->tx_chan);
2305
2306 /* make sure we enable napi before rx interrupt */
2307 napi_enable(&priv->napi);
2308
2309 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2310 ENETDMAC_IRMASK, priv->rx_chan);
2311 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2312 ENETDMAC_IRMASK, priv->tx_chan);
2313
2314 netif_carrier_on(dev);
2315 netif_start_queue(dev);
2316
2317 /* apply override config for bypass_link ports here. */
2318 for (i = 0; i < priv->num_ports; i++) {
2319 struct bcm63xx_enetsw_port *port;
2320 u8 override;
2321 port = &priv->used_ports[i];
2322 if (!port->used)
2323 continue;
2324
2325 if (!port->bypass_link)
2326 continue;
2327
2328 override = ENETSW_PORTOV_ENABLE_MASK |
2329 ENETSW_PORTOV_LINKUP_MASK;
2330
2331 switch (port->force_speed) {
2332 case 1000:
2333 override |= ENETSW_IMPOV_1000_MASK;
2334 break;
2335 case 100:
2336 override |= ENETSW_IMPOV_100_MASK;
2337 break;
2338 case 10:
2339 break;
2340 default:
2341 pr_warn("invalid forced speed on port %s: assume 10\n",
2342 port->name);
2343 break;
2344 }
2345
2346 if (port->force_duplex_full)
2347 override |= ENETSW_IMPOV_FDX_MASK;
2348
2349
2350 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2351 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2352 }
2353
2354 /* start phy polling timer */
2355 init_timer(&priv->swphy_poll);
2356 priv->swphy_poll.function = swphy_poll_timer;
2357 priv->swphy_poll.data = (unsigned long)priv;
2358 priv->swphy_poll.expires = jiffies;
2359 add_timer(&priv->swphy_poll);
2360 return 0;
2361
2362 out:
2363 for (i = 0; i < priv->rx_ring_size; i++) {
2364 struct bcm_enet_desc *desc;
2365
2366 if (!priv->rx_skb[i])
2367 continue;
2368
2369 desc = &priv->rx_desc_cpu[i];
2370 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2371 DMA_FROM_DEVICE);
2372 kfree_skb(priv->rx_skb[i]);
2373 }
2374 kfree(priv->rx_skb);
2375
2376 out_free_tx_skb:
2377 kfree(priv->tx_skb);
2378
2379 out_free_tx_ring:
2380 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2381 priv->tx_desc_cpu, priv->tx_desc_dma);
2382
2383 out_free_rx_ring:
2384 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2385 priv->rx_desc_cpu, priv->rx_desc_dma);
2386
2387 out_freeirq_tx:
2388 if (priv->irq_tx != -1)
2389 free_irq(priv->irq_tx, dev);
2390
2391 out_freeirq_rx:
2392 free_irq(priv->irq_rx, dev);
2393
2394 out_freeirq:
2395 return ret;
2396 }
2397
2398 /* stop callback */
2399 static int bcm_enetsw_stop(struct net_device *dev)
2400 {
2401 struct bcm_enet_priv *priv;
2402 struct device *kdev;
2403 int i;
2404
2405 priv = netdev_priv(dev);
2406 kdev = &priv->pdev->dev;
2407
2408 del_timer_sync(&priv->swphy_poll);
2409 netif_stop_queue(dev);
2410 napi_disable(&priv->napi);
2411 del_timer_sync(&priv->rx_timeout);
2412
2413 /* mask all interrupts */
2414 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2415 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2416
2417 /* disable dma & mac */
2418 bcm_enet_disable_dma(priv, priv->tx_chan);
2419 bcm_enet_disable_dma(priv, priv->rx_chan);
2420
2421 /* force reclaim of all tx buffers */
2422 bcm_enet_tx_reclaim(dev, 1);
2423
2424 /* free the rx skb ring */
2425 for (i = 0; i < priv->rx_ring_size; i++) {
2426 struct bcm_enet_desc *desc;
2427
2428 if (!priv->rx_skb[i])
2429 continue;
2430
2431 desc = &priv->rx_desc_cpu[i];
2432 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2433 DMA_FROM_DEVICE);
2434 kfree_skb(priv->rx_skb[i]);
2435 }
2436
2437 /* free remaining allocated memory */
2438 kfree(priv->rx_skb);
2439 kfree(priv->tx_skb);
2440 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2441 priv->rx_desc_cpu, priv->rx_desc_dma);
2442 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2443 priv->tx_desc_cpu, priv->tx_desc_dma);
2444 if (priv->irq_tx != -1)
2445 free_irq(priv->irq_tx, dev);
2446 free_irq(priv->irq_rx, dev);
2447
2448 return 0;
2449 }
2450
2451 /* try to sort out phy external status by walking the used_port field
2452 * in the bcm_enet_priv structure. in case the phy address is not
2453 * assigned to any physical port on the switch, assume it is external
2454 * (and yell at the user).
2455 */
2456 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2457 {
2458 int i;
2459
2460 for (i = 0; i < priv->num_ports; ++i) {
2461 if (!priv->used_ports[i].used)
2462 continue;
2463 if (priv->used_ports[i].phy_id == phy_id)
2464 return bcm_enet_port_is_rgmii(i);
2465 }
2466
2467 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2468 phy_id);
2469 return 1;
2470 }
2471
2472 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2473 * external/internal status of the given phy_id first.
2474 */
2475 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2476 int location)
2477 {
2478 struct bcm_enet_priv *priv;
2479
2480 priv = netdev_priv(dev);
2481 return bcmenet_sw_mdio_read(priv,
2482 bcm_enetsw_phy_is_external(priv, phy_id),
2483 phy_id, location);
2484 }
2485
2486 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2487 * external/internal status of the given phy_id first.
2488 */
2489 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2490 int location,
2491 int val)
2492 {
2493 struct bcm_enet_priv *priv;
2494
2495 priv = netdev_priv(dev);
2496 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2497 phy_id, location, val);
2498 }
2499
2500 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2501 {
2502 struct mii_if_info mii;
2503
2504 mii.dev = dev;
2505 mii.mdio_read = bcm_enetsw_mii_mdio_read;
2506 mii.mdio_write = bcm_enetsw_mii_mdio_write;
2507 mii.phy_id = 0;
2508 mii.phy_id_mask = 0x3f;
2509 mii.reg_num_mask = 0x1f;
2510 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2511
2512 }
2513
2514 static const struct net_device_ops bcm_enetsw_ops = {
2515 .ndo_open = bcm_enetsw_open,
2516 .ndo_stop = bcm_enetsw_stop,
2517 .ndo_start_xmit = bcm_enet_start_xmit,
2518 .ndo_change_mtu = bcm_enet_change_mtu,
2519 .ndo_do_ioctl = bcm_enetsw_ioctl,
2520 };
2521
2522
2523 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2524 { "rx_packets", DEV_STAT(rx_packets), -1 },
2525 { "tx_packets", DEV_STAT(tx_packets), -1 },
2526 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
2527 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
2528 { "rx_errors", DEV_STAT(rx_errors), -1 },
2529 { "tx_errors", DEV_STAT(tx_errors), -1 },
2530 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
2531 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
2532
2533 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2534 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2535 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2536 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2537 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2538 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2539 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2540 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2541 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2542 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2543 ETHSW_MIB_RX_1024_1522 },
2544 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2545 ETHSW_MIB_RX_1523_2047 },
2546 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2547 ETHSW_MIB_RX_2048_4095 },
2548 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2549 ETHSW_MIB_RX_4096_8191 },
2550 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2551 ETHSW_MIB_RX_8192_9728 },
2552 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2553 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2554 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2555 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2556 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2557
2558 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2559 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2560 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2561 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2562 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2563 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2564
2565 };
2566
2567 #define BCM_ENETSW_STATS_LEN \
2568 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2569
2570 static void bcm_enetsw_get_strings(struct net_device *netdev,
2571 u32 stringset, u8 *data)
2572 {
2573 int i;
2574
2575 switch (stringset) {
2576 case ETH_SS_STATS:
2577 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2578 memcpy(data + i * ETH_GSTRING_LEN,
2579 bcm_enetsw_gstrings_stats[i].stat_string,
2580 ETH_GSTRING_LEN);
2581 }
2582 break;
2583 }
2584 }
2585
2586 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2587 int string_set)
2588 {
2589 switch (string_set) {
2590 case ETH_SS_STATS:
2591 return BCM_ENETSW_STATS_LEN;
2592 default:
2593 return -EINVAL;
2594 }
2595 }
2596
2597 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2598 struct ethtool_drvinfo *drvinfo)
2599 {
2600 strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2601 strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2602 strncpy(drvinfo->fw_version, "N/A", 32);
2603 strncpy(drvinfo->bus_info, "bcm63xx", 32);
2604 }
2605
2606 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2607 struct ethtool_stats *stats,
2608 u64 *data)
2609 {
2610 struct bcm_enet_priv *priv;
2611 int i;
2612
2613 priv = netdev_priv(netdev);
2614
2615 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2616 const struct bcm_enet_stats *s;
2617 u32 lo, hi;
2618 char *p;
2619 int reg;
2620
2621 s = &bcm_enetsw_gstrings_stats[i];
2622
2623 reg = s->mib_reg;
2624 if (reg == -1)
2625 continue;
2626
2627 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2628 p = (char *)priv + s->stat_offset;
2629
2630 if (s->sizeof_stat == sizeof(u64)) {
2631 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2632 *(u64 *)p = ((u64)hi << 32 | lo);
2633 } else {
2634 *(u32 *)p = lo;
2635 }
2636 }
2637
2638 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2639 const struct bcm_enet_stats *s;
2640 char *p;
2641
2642 s = &bcm_enetsw_gstrings_stats[i];
2643
2644 if (s->mib_reg == -1)
2645 p = (char *)&netdev->stats + s->stat_offset;
2646 else
2647 p = (char *)priv + s->stat_offset;
2648
2649 data[i] = (s->sizeof_stat == sizeof(u64)) ?
2650 *(u64 *)p : *(u32 *)p;
2651 }
2652 }
2653
2654 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2655 struct ethtool_ringparam *ering)
2656 {
2657 struct bcm_enet_priv *priv;
2658
2659 priv = netdev_priv(dev);
2660
2661 /* rx/tx ring is actually only limited by memory */
2662 ering->rx_max_pending = 8192;
2663 ering->tx_max_pending = 8192;
2664 ering->rx_mini_max_pending = 0;
2665 ering->rx_jumbo_max_pending = 0;
2666 ering->rx_pending = priv->rx_ring_size;
2667 ering->tx_pending = priv->tx_ring_size;
2668 }
2669
2670 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2671 struct ethtool_ringparam *ering)
2672 {
2673 struct bcm_enet_priv *priv;
2674 int was_running;
2675
2676 priv = netdev_priv(dev);
2677
2678 was_running = 0;
2679 if (netif_running(dev)) {
2680 bcm_enetsw_stop(dev);
2681 was_running = 1;
2682 }
2683
2684 priv->rx_ring_size = ering->rx_pending;
2685 priv->tx_ring_size = ering->tx_pending;
2686
2687 if (was_running) {
2688 int err;
2689
2690 err = bcm_enetsw_open(dev);
2691 if (err)
2692 dev_close(dev);
2693 }
2694 return 0;
2695 }
2696
2697 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2698 .get_strings = bcm_enetsw_get_strings,
2699 .get_sset_count = bcm_enetsw_get_sset_count,
2700 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats,
2701 .get_drvinfo = bcm_enetsw_get_drvinfo,
2702 .get_ringparam = bcm_enetsw_get_ringparam,
2703 .set_ringparam = bcm_enetsw_set_ringparam,
2704 };
2705
2706 /* allocate netdevice, request register memory and register device. */
2707 static int bcm_enetsw_probe(struct platform_device *pdev)
2708 {
2709 struct bcm_enet_priv *priv;
2710 struct net_device *dev;
2711 struct bcm63xx_enetsw_platform_data *pd;
2712 struct resource *res_mem;
2713 int ret, irq_rx, irq_tx;
2714
2715 /* stop if shared driver failed, assume driver->probe will be
2716 * called in the same order we register devices (correct ?)
2717 */
2718 if (!bcm_enet_shared_base[0])
2719 return -ENODEV;
2720
2721 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2722 irq_rx = platform_get_irq(pdev, 0);
2723 irq_tx = platform_get_irq(pdev, 1);
2724 if (!res_mem || irq_rx < 0)
2725 return -ENODEV;
2726
2727 ret = 0;
2728 dev = alloc_etherdev(sizeof(*priv));
2729 if (!dev)
2730 return -ENOMEM;
2731 priv = netdev_priv(dev);
2732 memset(priv, 0, sizeof(*priv));
2733
2734 /* initialize default and fetch platform data */
2735 priv->enet_is_sw = true;
2736 priv->irq_rx = irq_rx;
2737 priv->irq_tx = irq_tx;
2738 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2739 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2740 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2741
2742 pd = dev_get_platdata(&pdev->dev);
2743 if (pd) {
2744 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2745 memcpy(priv->used_ports, pd->used_ports,
2746 sizeof(pd->used_ports));
2747 priv->num_ports = pd->num_ports;
2748 priv->dma_has_sram = pd->dma_has_sram;
2749 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2750 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2751 priv->dma_chan_width = pd->dma_chan_width;
2752 }
2753
2754 ret = compute_hw_mtu(priv, dev->mtu);
2755 if (ret)
2756 goto out;
2757
2758 if (!request_mem_region(res_mem->start, resource_size(res_mem),
2759 "bcm63xx_enetsw")) {
2760 ret = -EBUSY;
2761 goto out;
2762 }
2763
2764 priv->base = ioremap(res_mem->start, resource_size(res_mem));
2765 if (priv->base == NULL) {
2766 ret = -ENOMEM;
2767 goto out_release_mem;
2768 }
2769
2770 priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2771 if (IS_ERR(priv->mac_clk)) {
2772 ret = PTR_ERR(priv->mac_clk);
2773 goto out_unmap;
2774 }
2775 clk_enable(priv->mac_clk);
2776
2777 priv->rx_chan = 0;
2778 priv->tx_chan = 1;
2779 spin_lock_init(&priv->rx_lock);
2780
2781 /* init rx timeout (used for oom) */
2782 init_timer(&priv->rx_timeout);
2783 priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2784 priv->rx_timeout.data = (unsigned long)dev;
2785
2786 /* register netdevice */
2787 dev->netdev_ops = &bcm_enetsw_ops;
2788 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2789 dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2790 SET_NETDEV_DEV(dev, &pdev->dev);
2791
2792 spin_lock_init(&priv->enetsw_mdio_lock);
2793
2794 ret = register_netdev(dev);
2795 if (ret)
2796 goto out_put_clk;
2797
2798 netif_carrier_off(dev);
2799 platform_set_drvdata(pdev, dev);
2800 priv->pdev = pdev;
2801 priv->net_dev = dev;
2802
2803 return 0;
2804
2805 out_put_clk:
2806 clk_put(priv->mac_clk);
2807
2808 out_unmap:
2809 iounmap(priv->base);
2810
2811 out_release_mem:
2812 release_mem_region(res_mem->start, resource_size(res_mem));
2813 out:
2814 free_netdev(dev);
2815 return ret;
2816 }
2817
2818
2819 /* exit func, stops hardware and unregisters netdevice */
2820 static int bcm_enetsw_remove(struct platform_device *pdev)
2821 {
2822 struct bcm_enet_priv *priv;
2823 struct net_device *dev;
2824 struct resource *res;
2825
2826 /* stop netdevice */
2827 dev = platform_get_drvdata(pdev);
2828 priv = netdev_priv(dev);
2829 unregister_netdev(dev);
2830
2831 /* release device resources */
2832 iounmap(priv->base);
2833 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2834 release_mem_region(res->start, resource_size(res));
2835
2836 free_netdev(dev);
2837 return 0;
2838 }
2839
2840 struct platform_driver bcm63xx_enetsw_driver = {
2841 .probe = bcm_enetsw_probe,
2842 .remove = bcm_enetsw_remove,
2843 .driver = {
2844 .name = "bcm63xx_enetsw",
2845 .owner = THIS_MODULE,
2846 },
2847 };
2848
2849 /* reserve & remap memory space shared between all macs */
2850 static int bcm_enet_shared_probe(struct platform_device *pdev)
2851 {
2852 struct resource *res;
2853 void __iomem *p[3];
2854 unsigned int i;
2855
2856 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2857
2858 for (i = 0; i < 3; i++) {
2859 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2860 p[i] = devm_ioremap_resource(&pdev->dev, res);
2861 if (IS_ERR(p[i]))
2862 return PTR_ERR(p[i]);
2863 }
2864
2865 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2866
2867 return 0;
2868 }
2869
2870 static int bcm_enet_shared_remove(struct platform_device *pdev)
2871 {
2872 return 0;
2873 }
2874
2875 /* this "shared" driver is needed because both macs share a single
2876 * address space
2877 */
2878 struct platform_driver bcm63xx_enet_shared_driver = {
2879 .probe = bcm_enet_shared_probe,
2880 .remove = bcm_enet_shared_remove,
2881 .driver = {
2882 .name = "bcm63xx_enet_shared",
2883 .owner = THIS_MODULE,
2884 },
2885 };
2886
2887 /* entry point */
2888 static int __init bcm_enet_init(void)
2889 {
2890 int ret;
2891
2892 ret = platform_driver_register(&bcm63xx_enet_shared_driver);
2893 if (ret)
2894 return ret;
2895
2896 ret = platform_driver_register(&bcm63xx_enet_driver);
2897 if (ret)
2898 platform_driver_unregister(&bcm63xx_enet_shared_driver);
2899
2900 ret = platform_driver_register(&bcm63xx_enetsw_driver);
2901 if (ret) {
2902 platform_driver_unregister(&bcm63xx_enet_driver);
2903 platform_driver_unregister(&bcm63xx_enet_shared_driver);
2904 }
2905
2906 return ret;
2907 }
2908
2909 static void __exit bcm_enet_exit(void)
2910 {
2911 platform_driver_unregister(&bcm63xx_enet_driver);
2912 platform_driver_unregister(&bcm63xx_enetsw_driver);
2913 platform_driver_unregister(&bcm63xx_enet_shared_driver);
2914 }
2915
2916
2917 module_init(bcm_enet_init);
2918 module_exit(bcm_enet_exit);
2919
2920 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2921 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2922 MODULE_LICENSE("GPL");