]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/broadcom/bcm63xx_enet.c
ASoC: max98504: Add missing MAX98504 on SND_SOC_ALL_CODECS
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / broadcom / bcm63xx_enet.c
1 /*
2 * Driver for BCM963xx builtin Ethernet mac
3 *
4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46
47 /*
48 * io helpers to access mac registers
49 */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 return bcm_readl(priv->base + off);
53 }
54
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 u32 val, u32 off)
57 {
58 bcm_writel(val, priv->base + off);
59 }
60
61 /*
62 * io helpers to access switch registers
63 */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 return bcm_readl(priv->base + off);
67 }
68
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 u32 val, u32 off)
71 {
72 bcm_writel(val, priv->base + off);
73 }
74
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 return bcm_readw(priv->base + off);
78 }
79
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 u16 val, u32 off)
82 {
83 bcm_writew(val, priv->base + off);
84 }
85
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 return bcm_readb(priv->base + off);
89 }
90
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 u8 val, u32 off)
93 {
94 bcm_writeb(val, priv->base + off);
95 }
96
97
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 u32 val, u32 off)
106 {
107 bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 return bcm_readl(bcm_enet_shared_base[1] +
113 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 u32 val, u32 off, int chan)
118 {
119 bcm_writel(val, bcm_enet_shared_base[1] +
120 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 u32 val, u32 off, int chan)
130 {
131 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133
134 /*
135 * write given data into mii register and wait for transfer to end
136 * with timeout (average measured transfer time is 25us)
137 */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 int limit;
141
142 /* make sure mii interrupt status is cleared */
143 enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144
145 enet_writel(priv, data, ENET_MIIDATA_REG);
146 wmb();
147
148 /* busy wait on mii interrupt bit, with timeout */
149 limit = 1000;
150 do {
151 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 break;
153 udelay(1);
154 } while (limit-- > 0);
155
156 return (limit < 0) ? 1 : 0;
157 }
158
159 /*
160 * MII internal read callback
161 */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 int regnum)
164 {
165 u32 tmp, val;
166
167 tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 tmp |= ENET_MIIDATA_OP_READ_MASK;
171
172 if (do_mdio_op(priv, tmp))
173 return -1;
174
175 val = enet_readl(priv, ENET_MIIDATA_REG);
176 val &= 0xffff;
177 return val;
178 }
179
180 /*
181 * MII internal write callback
182 */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 int regnum, u16 value)
185 {
186 u32 tmp;
187
188 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193
194 (void)do_mdio_op(priv, tmp);
195 return 0;
196 }
197
198 /*
199 * MII read callback from phylib
200 */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 int regnum)
203 {
204 return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206
207 /*
208 * MII write callback from phylib
209 */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 int regnum, u16 value)
212 {
213 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215
216 /*
217 * MII read callback from mii core
218 */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 int regnum)
221 {
222 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224
225 /*
226 * MII write callback from mii core
227 */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 int regnum, int value)
230 {
231 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233
234 /*
235 * refill rx queue
236 */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 struct bcm_enet_priv *priv;
240
241 priv = netdev_priv(dev);
242
243 while (priv->rx_desc_count < priv->rx_ring_size) {
244 struct bcm_enet_desc *desc;
245 struct sk_buff *skb;
246 dma_addr_t p;
247 int desc_idx;
248 u32 len_stat;
249
250 desc_idx = priv->rx_dirty_desc;
251 desc = &priv->rx_desc_cpu[desc_idx];
252
253 if (!priv->rx_skb[desc_idx]) {
254 skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 if (!skb)
256 break;
257 priv->rx_skb[desc_idx] = skb;
258 p = dma_map_single(&priv->pdev->dev, skb->data,
259 priv->rx_skb_size,
260 DMA_FROM_DEVICE);
261 desc->address = p;
262 }
263
264 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 len_stat |= DMADESC_OWNER_MASK;
266 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 priv->rx_dirty_desc = 0;
269 } else {
270 priv->rx_dirty_desc++;
271 }
272 wmb();
273 desc->len_stat = len_stat;
274
275 priv->rx_desc_count++;
276
277 /* tell dma engine we allocated one buffer */
278 if (priv->dma_has_sram)
279 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 else
281 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 }
283
284 /* If rx ring is still empty, set a timer to try allocating
285 * again at a later time. */
286 if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 priv->rx_timeout.expires = jiffies + HZ;
289 add_timer(&priv->rx_timeout);
290 }
291
292 return 0;
293 }
294
295 /*
296 * timer callback to defer refill rx queue in case we're OOM
297 */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 struct net_device *dev;
301 struct bcm_enet_priv *priv;
302
303 dev = (struct net_device *)data;
304 priv = netdev_priv(dev);
305
306 spin_lock(&priv->rx_lock);
307 bcm_enet_refill_rx((struct net_device *)data);
308 spin_unlock(&priv->rx_lock);
309 }
310
311 /*
312 * extract packet from rx queue
313 */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 struct bcm_enet_priv *priv;
317 struct device *kdev;
318 int processed;
319
320 priv = netdev_priv(dev);
321 kdev = &priv->pdev->dev;
322 processed = 0;
323
324 /* don't scan ring further than number of refilled
325 * descriptor */
326 if (budget > priv->rx_desc_count)
327 budget = priv->rx_desc_count;
328
329 do {
330 struct bcm_enet_desc *desc;
331 struct sk_buff *skb;
332 int desc_idx;
333 u32 len_stat;
334 unsigned int len;
335
336 desc_idx = priv->rx_curr_desc;
337 desc = &priv->rx_desc_cpu[desc_idx];
338
339 /* make sure we actually read the descriptor status at
340 * each loop */
341 rmb();
342
343 len_stat = desc->len_stat;
344
345 /* break if dma ownership belongs to hw */
346 if (len_stat & DMADESC_OWNER_MASK)
347 break;
348
349 processed++;
350 priv->rx_curr_desc++;
351 if (priv->rx_curr_desc == priv->rx_ring_size)
352 priv->rx_curr_desc = 0;
353 priv->rx_desc_count--;
354
355 /* if the packet does not have start of packet _and_
356 * end of packet flag set, then just recycle it */
357 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 dev->stats.rx_dropped++;
360 continue;
361 }
362
363 /* recycle packet if it's marked as bad */
364 if (!priv->enet_is_sw &&
365 unlikely(len_stat & DMADESC_ERR_MASK)) {
366 dev->stats.rx_errors++;
367
368 if (len_stat & DMADESC_OVSIZE_MASK)
369 dev->stats.rx_length_errors++;
370 if (len_stat & DMADESC_CRC_MASK)
371 dev->stats.rx_crc_errors++;
372 if (len_stat & DMADESC_UNDER_MASK)
373 dev->stats.rx_frame_errors++;
374 if (len_stat & DMADESC_OV_MASK)
375 dev->stats.rx_fifo_errors++;
376 continue;
377 }
378
379 /* valid packet */
380 skb = priv->rx_skb[desc_idx];
381 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 /* don't include FCS */
383 len -= 4;
384
385 if (len < copybreak) {
386 struct sk_buff *nskb;
387
388 nskb = napi_alloc_skb(&priv->napi, len);
389 if (!nskb) {
390 /* forget packet, just rearm desc */
391 dev->stats.rx_dropped++;
392 continue;
393 }
394
395 dma_sync_single_for_cpu(kdev, desc->address,
396 len, DMA_FROM_DEVICE);
397 memcpy(nskb->data, skb->data, len);
398 dma_sync_single_for_device(kdev, desc->address,
399 len, DMA_FROM_DEVICE);
400 skb = nskb;
401 } else {
402 dma_unmap_single(&priv->pdev->dev, desc->address,
403 priv->rx_skb_size, DMA_FROM_DEVICE);
404 priv->rx_skb[desc_idx] = NULL;
405 }
406
407 skb_put(skb, len);
408 skb->protocol = eth_type_trans(skb, dev);
409 dev->stats.rx_packets++;
410 dev->stats.rx_bytes += len;
411 netif_receive_skb(skb);
412
413 } while (--budget > 0);
414
415 if (processed || !priv->rx_desc_count) {
416 bcm_enet_refill_rx(dev);
417
418 /* kick rx dma */
419 enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 ENETDMAC_CHANCFG, priv->rx_chan);
421 }
422
423 return processed;
424 }
425
426
427 /*
428 * try to or force reclaim of transmitted buffers
429 */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 struct bcm_enet_priv *priv;
433 int released;
434
435 priv = netdev_priv(dev);
436 released = 0;
437
438 while (priv->tx_desc_count < priv->tx_ring_size) {
439 struct bcm_enet_desc *desc;
440 struct sk_buff *skb;
441
442 /* We run in a bh and fight against start_xmit, which
443 * is called with bh disabled */
444 spin_lock(&priv->tx_lock);
445
446 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447
448 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 spin_unlock(&priv->tx_lock);
450 break;
451 }
452
453 /* ensure other field of the descriptor were not read
454 * before we checked ownership */
455 rmb();
456
457 skb = priv->tx_skb[priv->tx_dirty_desc];
458 priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 DMA_TO_DEVICE);
461
462 priv->tx_dirty_desc++;
463 if (priv->tx_dirty_desc == priv->tx_ring_size)
464 priv->tx_dirty_desc = 0;
465 priv->tx_desc_count++;
466
467 spin_unlock(&priv->tx_lock);
468
469 if (desc->len_stat & DMADESC_UNDER_MASK)
470 dev->stats.tx_errors++;
471
472 dev_kfree_skb(skb);
473 released++;
474 }
475
476 if (netif_queue_stopped(dev) && released)
477 netif_wake_queue(dev);
478
479 return released;
480 }
481
482 /*
483 * poll func, called by network core
484 */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 struct bcm_enet_priv *priv;
488 struct net_device *dev;
489 int rx_work_done;
490
491 priv = container_of(napi, struct bcm_enet_priv, napi);
492 dev = priv->net_dev;
493
494 /* ack interrupts */
495 enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 ENETDMAC_IR, priv->rx_chan);
497 enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 ENETDMAC_IR, priv->tx_chan);
499
500 /* reclaim sent skb */
501 bcm_enet_tx_reclaim(dev, 0);
502
503 spin_lock(&priv->rx_lock);
504 rx_work_done = bcm_enet_receive_queue(dev, budget);
505 spin_unlock(&priv->rx_lock);
506
507 if (rx_work_done >= budget) {
508 /* rx queue is not yet empty/clean */
509 return rx_work_done;
510 }
511
512 /* no more packet in rx/tx queue, remove device from poll
513 * queue */
514 napi_complete(napi);
515
516 /* restore rx/tx interrupt */
517 enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 ENETDMAC_IRMASK, priv->rx_chan);
519 enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 ENETDMAC_IRMASK, priv->tx_chan);
521
522 return rx_work_done;
523 }
524
525 /*
526 * mac interrupt handler
527 */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 struct net_device *dev;
531 struct bcm_enet_priv *priv;
532 u32 stat;
533
534 dev = dev_id;
535 priv = netdev_priv(dev);
536
537 stat = enet_readl(priv, ENET_IR_REG);
538 if (!(stat & ENET_IR_MIB))
539 return IRQ_NONE;
540
541 /* clear & mask interrupt */
542 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 enet_writel(priv, 0, ENET_IRMASK_REG);
544
545 /* read mib registers in workqueue */
546 schedule_work(&priv->mib_update_task);
547
548 return IRQ_HANDLED;
549 }
550
551 /*
552 * rx/tx dma interrupt handler
553 */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 struct net_device *dev;
557 struct bcm_enet_priv *priv;
558
559 dev = dev_id;
560 priv = netdev_priv(dev);
561
562 /* mask rx/tx interrupts */
563 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565
566 napi_schedule(&priv->napi);
567
568 return IRQ_HANDLED;
569 }
570
571 /*
572 * tx request callback
573 */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 struct bcm_enet_priv *priv;
577 struct bcm_enet_desc *desc;
578 u32 len_stat;
579 int ret;
580
581 priv = netdev_priv(dev);
582
583 /* lock against tx reclaim */
584 spin_lock(&priv->tx_lock);
585
586 /* make sure the tx hw queue is not full, should not happen
587 * since we stop queue before it's the case */
588 if (unlikely(!priv->tx_desc_count)) {
589 netif_stop_queue(dev);
590 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 "available?\n");
592 ret = NETDEV_TX_BUSY;
593 goto out_unlock;
594 }
595
596 /* pad small packets sent on a switch device */
597 if (priv->enet_is_sw && skb->len < 64) {
598 int needed = 64 - skb->len;
599 char *data;
600
601 if (unlikely(skb_tailroom(skb) < needed)) {
602 struct sk_buff *nskb;
603
604 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 if (!nskb) {
606 ret = NETDEV_TX_BUSY;
607 goto out_unlock;
608 }
609 dev_kfree_skb(skb);
610 skb = nskb;
611 }
612 data = skb_put(skb, needed);
613 memset(data, 0, needed);
614 }
615
616 /* point to the next available desc */
617 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618 priv->tx_skb[priv->tx_curr_desc] = skb;
619
620 /* fill descriptor */
621 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622 DMA_TO_DEVICE);
623
624 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626 DMADESC_APPEND_CRC |
627 DMADESC_OWNER_MASK;
628
629 priv->tx_curr_desc++;
630 if (priv->tx_curr_desc == priv->tx_ring_size) {
631 priv->tx_curr_desc = 0;
632 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633 }
634 priv->tx_desc_count--;
635
636 /* dma might be already polling, make sure we update desc
637 * fields in correct order */
638 wmb();
639 desc->len_stat = len_stat;
640 wmb();
641
642 /* kick tx dma */
643 enet_dmac_writel(priv, priv->dma_chan_en_mask,
644 ENETDMAC_CHANCFG, priv->tx_chan);
645
646 /* stop queue if no more desc available */
647 if (!priv->tx_desc_count)
648 netif_stop_queue(dev);
649
650 dev->stats.tx_bytes += skb->len;
651 dev->stats.tx_packets++;
652 ret = NETDEV_TX_OK;
653
654 out_unlock:
655 spin_unlock(&priv->tx_lock);
656 return ret;
657 }
658
659 /*
660 * Change the interface's mac address.
661 */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664 struct bcm_enet_priv *priv;
665 struct sockaddr *addr = p;
666 u32 val;
667
668 priv = netdev_priv(dev);
669 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670
671 /* use perfect match register 0 to store my mac address */
672 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
674 enet_writel(priv, val, ENET_PML_REG(0));
675
676 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677 val |= ENET_PMH_DATAVALID_MASK;
678 enet_writel(priv, val, ENET_PMH_REG(0));
679
680 return 0;
681 }
682
683 /*
684 * Change rx mode (promiscuous/allmulti) and update multicast list
685 */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688 struct bcm_enet_priv *priv;
689 struct netdev_hw_addr *ha;
690 u32 val;
691 int i;
692
693 priv = netdev_priv(dev);
694
695 val = enet_readl(priv, ENET_RXCFG_REG);
696
697 if (dev->flags & IFF_PROMISC)
698 val |= ENET_RXCFG_PROMISC_MASK;
699 else
700 val &= ~ENET_RXCFG_PROMISC_MASK;
701
702 /* only 3 perfect match registers left, first one is used for
703 * own mac address */
704 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705 val |= ENET_RXCFG_ALLMCAST_MASK;
706 else
707 val &= ~ENET_RXCFG_ALLMCAST_MASK;
708
709 /* no need to set perfect match registers if we catch all
710 * multicast */
711 if (val & ENET_RXCFG_ALLMCAST_MASK) {
712 enet_writel(priv, val, ENET_RXCFG_REG);
713 return;
714 }
715
716 i = 0;
717 netdev_for_each_mc_addr(ha, dev) {
718 u8 *dmi_addr;
719 u32 tmp;
720
721 if (i == 3)
722 break;
723 /* update perfect match registers */
724 dmi_addr = ha->addr;
725 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726 (dmi_addr[4] << 8) | dmi_addr[5];
727 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728
729 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730 tmp |= ENET_PMH_DATAVALID_MASK;
731 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732 }
733
734 for (; i < 3; i++) {
735 enet_writel(priv, 0, ENET_PML_REG(i + 1));
736 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737 }
738
739 enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741
742 /*
743 * set mac duplex parameters
744 */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747 u32 val;
748
749 val = enet_readl(priv, ENET_TXCTL_REG);
750 if (fullduplex)
751 val |= ENET_TXCTL_FD_MASK;
752 else
753 val &= ~ENET_TXCTL_FD_MASK;
754 enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756
757 /*
758 * set mac flow control parameters
759 */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762 u32 val;
763
764 /* rx flow control (pause frame handling) */
765 val = enet_readl(priv, ENET_RXCFG_REG);
766 if (rx_en)
767 val |= ENET_RXCFG_ENFLOW_MASK;
768 else
769 val &= ~ENET_RXCFG_ENFLOW_MASK;
770 enet_writel(priv, val, ENET_RXCFG_REG);
771
772 if (!priv->dma_has_sram)
773 return;
774
775 /* tx flow control (pause frame generation) */
776 val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777 if (tx_en)
778 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779 else
780 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781 enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783
784 /*
785 * link changed callback (from phylib)
786 */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789 struct bcm_enet_priv *priv;
790 struct phy_device *phydev;
791 int status_changed;
792
793 priv = netdev_priv(dev);
794 phydev = dev->phydev;
795 status_changed = 0;
796
797 if (priv->old_link != phydev->link) {
798 status_changed = 1;
799 priv->old_link = phydev->link;
800 }
801
802 /* reflect duplex change in mac configuration */
803 if (phydev->link && phydev->duplex != priv->old_duplex) {
804 bcm_enet_set_duplex(priv,
805 (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806 status_changed = 1;
807 priv->old_duplex = phydev->duplex;
808 }
809
810 /* enable flow control if remote advertise it (trust phylib to
811 * check that duplex is full */
812 if (phydev->link && phydev->pause != priv->old_pause) {
813 int rx_pause_en, tx_pause_en;
814
815 if (phydev->pause) {
816 /* pause was advertised by lpa and us */
817 rx_pause_en = 1;
818 tx_pause_en = 1;
819 } else if (!priv->pause_auto) {
820 /* pause setting overrided by user */
821 rx_pause_en = priv->pause_rx;
822 tx_pause_en = priv->pause_tx;
823 } else {
824 rx_pause_en = 0;
825 tx_pause_en = 0;
826 }
827
828 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829 status_changed = 1;
830 priv->old_pause = phydev->pause;
831 }
832
833 if (status_changed) {
834 pr_info("%s: link %s", dev->name, phydev->link ?
835 "UP" : "DOWN");
836 if (phydev->link)
837 pr_cont(" - %d/%s - flow control %s", phydev->speed,
838 DUPLEX_FULL == phydev->duplex ? "full" : "half",
839 phydev->pause == 1 ? "rx&tx" : "off");
840
841 pr_cont("\n");
842 }
843 }
844
845 /*
846 * link changed callback (if phylib is not used)
847 */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850 struct bcm_enet_priv *priv;
851
852 priv = netdev_priv(dev);
853 bcm_enet_set_duplex(priv, priv->force_duplex_full);
854 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855 netif_carrier_on(dev);
856
857 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858 dev->name,
859 priv->force_speed_100 ? 100 : 10,
860 priv->force_duplex_full ? "full" : "half",
861 priv->pause_rx ? "rx" : "off",
862 priv->pause_tx ? "tx" : "off");
863 }
864
865 /*
866 * open callback, allocate dma rings & buffers and start rx operation
867 */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870 struct bcm_enet_priv *priv;
871 struct sockaddr addr;
872 struct device *kdev;
873 struct phy_device *phydev;
874 int i, ret;
875 unsigned int size;
876 char phy_id[MII_BUS_ID_SIZE + 3];
877 void *p;
878 u32 val;
879
880 priv = netdev_priv(dev);
881 kdev = &priv->pdev->dev;
882
883 if (priv->has_phy) {
884 /* connect to PHY */
885 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886 priv->mii_bus->id, priv->phy_id);
887
888 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889 PHY_INTERFACE_MODE_MII);
890
891 if (IS_ERR(phydev)) {
892 dev_err(kdev, "could not attach to PHY\n");
893 return PTR_ERR(phydev);
894 }
895
896 /* mask with MAC supported features */
897 phydev->supported &= (SUPPORTED_10baseT_Half |
898 SUPPORTED_10baseT_Full |
899 SUPPORTED_100baseT_Half |
900 SUPPORTED_100baseT_Full |
901 SUPPORTED_Autoneg |
902 SUPPORTED_Pause |
903 SUPPORTED_MII);
904 phydev->advertising = phydev->supported;
905
906 if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907 phydev->advertising |= SUPPORTED_Pause;
908 else
909 phydev->advertising &= ~SUPPORTED_Pause;
910
911 phy_attached_info(phydev);
912
913 priv->old_link = 0;
914 priv->old_duplex = -1;
915 priv->old_pause = -1;
916 }
917
918 /* mask all interrupts and request them */
919 enet_writel(priv, 0, ENET_IRMASK_REG);
920 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
921 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
922
923 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
924 if (ret)
925 goto out_phy_disconnect;
926
927 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
928 dev->name, dev);
929 if (ret)
930 goto out_freeirq;
931
932 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
933 0, dev->name, dev);
934 if (ret)
935 goto out_freeirq_rx;
936
937 /* initialize perfect match registers */
938 for (i = 0; i < 4; i++) {
939 enet_writel(priv, 0, ENET_PML_REG(i));
940 enet_writel(priv, 0, ENET_PMH_REG(i));
941 }
942
943 /* write device mac address */
944 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
945 bcm_enet_set_mac_address(dev, &addr);
946
947 /* allocate rx dma ring */
948 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
949 p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
950 if (!p) {
951 ret = -ENOMEM;
952 goto out_freeirq_tx;
953 }
954
955 priv->rx_desc_alloc_size = size;
956 priv->rx_desc_cpu = p;
957
958 /* allocate tx dma ring */
959 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
960 p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
961 if (!p) {
962 ret = -ENOMEM;
963 goto out_free_rx_ring;
964 }
965
966 priv->tx_desc_alloc_size = size;
967 priv->tx_desc_cpu = p;
968
969 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
970 GFP_KERNEL);
971 if (!priv->tx_skb) {
972 ret = -ENOMEM;
973 goto out_free_tx_ring;
974 }
975
976 priv->tx_desc_count = priv->tx_ring_size;
977 priv->tx_dirty_desc = 0;
978 priv->tx_curr_desc = 0;
979 spin_lock_init(&priv->tx_lock);
980
981 /* init & fill rx ring with skbs */
982 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
983 GFP_KERNEL);
984 if (!priv->rx_skb) {
985 ret = -ENOMEM;
986 goto out_free_tx_skb;
987 }
988
989 priv->rx_desc_count = 0;
990 priv->rx_dirty_desc = 0;
991 priv->rx_curr_desc = 0;
992
993 /* initialize flow control buffer allocation */
994 if (priv->dma_has_sram)
995 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
996 ENETDMA_BUFALLOC_REG(priv->rx_chan));
997 else
998 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
999 ENETDMAC_BUFALLOC, priv->rx_chan);
1000
1001 if (bcm_enet_refill_rx(dev)) {
1002 dev_err(kdev, "cannot allocate rx skb queue\n");
1003 ret = -ENOMEM;
1004 goto out;
1005 }
1006
1007 /* write rx & tx ring addresses */
1008 if (priv->dma_has_sram) {
1009 enet_dmas_writel(priv, priv->rx_desc_dma,
1010 ENETDMAS_RSTART_REG, priv->rx_chan);
1011 enet_dmas_writel(priv, priv->tx_desc_dma,
1012 ENETDMAS_RSTART_REG, priv->tx_chan);
1013 } else {
1014 enet_dmac_writel(priv, priv->rx_desc_dma,
1015 ENETDMAC_RSTART, priv->rx_chan);
1016 enet_dmac_writel(priv, priv->tx_desc_dma,
1017 ENETDMAC_RSTART, priv->tx_chan);
1018 }
1019
1020 /* clear remaining state ram for rx & tx channel */
1021 if (priv->dma_has_sram) {
1022 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1023 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1024 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1025 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1026 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1027 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1028 } else {
1029 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1030 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1031 }
1032
1033 /* set max rx/tx length */
1034 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1035 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1036
1037 /* set dma maximum burst len */
1038 enet_dmac_writel(priv, priv->dma_maxburst,
1039 ENETDMAC_MAXBURST, priv->rx_chan);
1040 enet_dmac_writel(priv, priv->dma_maxburst,
1041 ENETDMAC_MAXBURST, priv->tx_chan);
1042
1043 /* set correct transmit fifo watermark */
1044 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1045
1046 /* set flow control low/high threshold to 1/3 / 2/3 */
1047 if (priv->dma_has_sram) {
1048 val = priv->rx_ring_size / 3;
1049 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1050 val = (priv->rx_ring_size * 2) / 3;
1051 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1052 } else {
1053 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1054 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1055 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1056 }
1057
1058 /* all set, enable mac and interrupts, start dma engine and
1059 * kick rx dma channel */
1060 wmb();
1061 val = enet_readl(priv, ENET_CTL_REG);
1062 val |= ENET_CTL_ENABLE_MASK;
1063 enet_writel(priv, val, ENET_CTL_REG);
1064 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1065 enet_dmac_writel(priv, priv->dma_chan_en_mask,
1066 ENETDMAC_CHANCFG, priv->rx_chan);
1067
1068 /* watch "mib counters about to overflow" interrupt */
1069 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1070 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1071
1072 /* watch "packet transferred" interrupt in rx and tx */
1073 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1074 ENETDMAC_IR, priv->rx_chan);
1075 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076 ENETDMAC_IR, priv->tx_chan);
1077
1078 /* make sure we enable napi before rx interrupt */
1079 napi_enable(&priv->napi);
1080
1081 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1082 ENETDMAC_IRMASK, priv->rx_chan);
1083 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084 ENETDMAC_IRMASK, priv->tx_chan);
1085
1086 if (priv->has_phy)
1087 phy_start(phydev);
1088 else
1089 bcm_enet_adjust_link(dev);
1090
1091 netif_start_queue(dev);
1092 return 0;
1093
1094 out:
1095 for (i = 0; i < priv->rx_ring_size; i++) {
1096 struct bcm_enet_desc *desc;
1097
1098 if (!priv->rx_skb[i])
1099 continue;
1100
1101 desc = &priv->rx_desc_cpu[i];
1102 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1103 DMA_FROM_DEVICE);
1104 kfree_skb(priv->rx_skb[i]);
1105 }
1106 kfree(priv->rx_skb);
1107
1108 out_free_tx_skb:
1109 kfree(priv->tx_skb);
1110
1111 out_free_tx_ring:
1112 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1113 priv->tx_desc_cpu, priv->tx_desc_dma);
1114
1115 out_free_rx_ring:
1116 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1117 priv->rx_desc_cpu, priv->rx_desc_dma);
1118
1119 out_freeirq_tx:
1120 free_irq(priv->irq_tx, dev);
1121
1122 out_freeirq_rx:
1123 free_irq(priv->irq_rx, dev);
1124
1125 out_freeirq:
1126 free_irq(dev->irq, dev);
1127
1128 out_phy_disconnect:
1129 phy_disconnect(phydev);
1130
1131 return ret;
1132 }
1133
1134 /*
1135 * disable mac
1136 */
1137 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1138 {
1139 int limit;
1140 u32 val;
1141
1142 val = enet_readl(priv, ENET_CTL_REG);
1143 val |= ENET_CTL_DISABLE_MASK;
1144 enet_writel(priv, val, ENET_CTL_REG);
1145
1146 limit = 1000;
1147 do {
1148 u32 val;
1149
1150 val = enet_readl(priv, ENET_CTL_REG);
1151 if (!(val & ENET_CTL_DISABLE_MASK))
1152 break;
1153 udelay(1);
1154 } while (limit--);
1155 }
1156
1157 /*
1158 * disable dma in given channel
1159 */
1160 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1161 {
1162 int limit;
1163
1164 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1165
1166 limit = 1000;
1167 do {
1168 u32 val;
1169
1170 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1171 if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1172 break;
1173 udelay(1);
1174 } while (limit--);
1175 }
1176
1177 /*
1178 * stop callback
1179 */
1180 static int bcm_enet_stop(struct net_device *dev)
1181 {
1182 struct bcm_enet_priv *priv;
1183 struct device *kdev;
1184 int i;
1185
1186 priv = netdev_priv(dev);
1187 kdev = &priv->pdev->dev;
1188
1189 netif_stop_queue(dev);
1190 napi_disable(&priv->napi);
1191 if (priv->has_phy)
1192 phy_stop(dev->phydev);
1193 del_timer_sync(&priv->rx_timeout);
1194
1195 /* mask all interrupts */
1196 enet_writel(priv, 0, ENET_IRMASK_REG);
1197 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1198 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1199
1200 /* make sure no mib update is scheduled */
1201 cancel_work_sync(&priv->mib_update_task);
1202
1203 /* disable dma & mac */
1204 bcm_enet_disable_dma(priv, priv->tx_chan);
1205 bcm_enet_disable_dma(priv, priv->rx_chan);
1206 bcm_enet_disable_mac(priv);
1207
1208 /* force reclaim of all tx buffers */
1209 bcm_enet_tx_reclaim(dev, 1);
1210
1211 /* free the rx skb ring */
1212 for (i = 0; i < priv->rx_ring_size; i++) {
1213 struct bcm_enet_desc *desc;
1214
1215 if (!priv->rx_skb[i])
1216 continue;
1217
1218 desc = &priv->rx_desc_cpu[i];
1219 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1220 DMA_FROM_DEVICE);
1221 kfree_skb(priv->rx_skb[i]);
1222 }
1223
1224 /* free remaining allocated memory */
1225 kfree(priv->rx_skb);
1226 kfree(priv->tx_skb);
1227 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1228 priv->rx_desc_cpu, priv->rx_desc_dma);
1229 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1230 priv->tx_desc_cpu, priv->tx_desc_dma);
1231 free_irq(priv->irq_tx, dev);
1232 free_irq(priv->irq_rx, dev);
1233 free_irq(dev->irq, dev);
1234
1235 /* release phy */
1236 if (priv->has_phy)
1237 phy_disconnect(dev->phydev);
1238
1239 return 0;
1240 }
1241
1242 /*
1243 * ethtool callbacks
1244 */
1245 struct bcm_enet_stats {
1246 char stat_string[ETH_GSTRING_LEN];
1247 int sizeof_stat;
1248 int stat_offset;
1249 int mib_reg;
1250 };
1251
1252 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
1253 offsetof(struct bcm_enet_priv, m)
1254 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \
1255 offsetof(struct net_device_stats, m)
1256
1257 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1258 { "rx_packets", DEV_STAT(rx_packets), -1 },
1259 { "tx_packets", DEV_STAT(tx_packets), -1 },
1260 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
1261 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
1262 { "rx_errors", DEV_STAT(rx_errors), -1 },
1263 { "tx_errors", DEV_STAT(tx_errors), -1 },
1264 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
1265 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
1266
1267 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1268 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1269 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1270 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1271 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1272 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1273 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1274 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1275 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1276 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1277 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1278 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1279 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1280 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1281 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1282 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1283 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1284 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1285 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1286 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1287 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1288
1289 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1290 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1291 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1292 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1293 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1294 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1295 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1296 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1297 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1298 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1299 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1300 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1301 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1302 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1303 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1304 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1305 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1306 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1307 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1308 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1309 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1310 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1311
1312 };
1313
1314 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats)
1315
1316 static const u32 unused_mib_regs[] = {
1317 ETH_MIB_TX_ALL_OCTETS,
1318 ETH_MIB_TX_ALL_PKTS,
1319 ETH_MIB_RX_ALL_OCTETS,
1320 ETH_MIB_RX_ALL_PKTS,
1321 };
1322
1323
1324 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1325 struct ethtool_drvinfo *drvinfo)
1326 {
1327 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1328 strlcpy(drvinfo->version, bcm_enet_driver_version,
1329 sizeof(drvinfo->version));
1330 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1331 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1332 }
1333
1334 static int bcm_enet_get_sset_count(struct net_device *netdev,
1335 int string_set)
1336 {
1337 switch (string_set) {
1338 case ETH_SS_STATS:
1339 return BCM_ENET_STATS_LEN;
1340 default:
1341 return -EINVAL;
1342 }
1343 }
1344
1345 static void bcm_enet_get_strings(struct net_device *netdev,
1346 u32 stringset, u8 *data)
1347 {
1348 int i;
1349
1350 switch (stringset) {
1351 case ETH_SS_STATS:
1352 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1353 memcpy(data + i * ETH_GSTRING_LEN,
1354 bcm_enet_gstrings_stats[i].stat_string,
1355 ETH_GSTRING_LEN);
1356 }
1357 break;
1358 }
1359 }
1360
1361 static void update_mib_counters(struct bcm_enet_priv *priv)
1362 {
1363 int i;
1364
1365 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1366 const struct bcm_enet_stats *s;
1367 u32 val;
1368 char *p;
1369
1370 s = &bcm_enet_gstrings_stats[i];
1371 if (s->mib_reg == -1)
1372 continue;
1373
1374 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1375 p = (char *)priv + s->stat_offset;
1376
1377 if (s->sizeof_stat == sizeof(u64))
1378 *(u64 *)p += val;
1379 else
1380 *(u32 *)p += val;
1381 }
1382
1383 /* also empty unused mib counters to make sure mib counter
1384 * overflow interrupt is cleared */
1385 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1386 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1387 }
1388
1389 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1390 {
1391 struct bcm_enet_priv *priv;
1392
1393 priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1394 mutex_lock(&priv->mib_update_lock);
1395 update_mib_counters(priv);
1396 mutex_unlock(&priv->mib_update_lock);
1397
1398 /* reenable mib interrupt */
1399 if (netif_running(priv->net_dev))
1400 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1401 }
1402
1403 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1404 struct ethtool_stats *stats,
1405 u64 *data)
1406 {
1407 struct bcm_enet_priv *priv;
1408 int i;
1409
1410 priv = netdev_priv(netdev);
1411
1412 mutex_lock(&priv->mib_update_lock);
1413 update_mib_counters(priv);
1414
1415 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1416 const struct bcm_enet_stats *s;
1417 char *p;
1418
1419 s = &bcm_enet_gstrings_stats[i];
1420 if (s->mib_reg == -1)
1421 p = (char *)&netdev->stats;
1422 else
1423 p = (char *)priv;
1424 p += s->stat_offset;
1425 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1426 *(u64 *)p : *(u32 *)p;
1427 }
1428 mutex_unlock(&priv->mib_update_lock);
1429 }
1430
1431 static int bcm_enet_nway_reset(struct net_device *dev)
1432 {
1433 struct bcm_enet_priv *priv;
1434
1435 priv = netdev_priv(dev);
1436 if (priv->has_phy) {
1437 if (!dev->phydev)
1438 return -ENODEV;
1439 return genphy_restart_aneg(dev->phydev);
1440 }
1441
1442 return -EOPNOTSUPP;
1443 }
1444
1445 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1446 struct ethtool_link_ksettings *cmd)
1447 {
1448 struct bcm_enet_priv *priv;
1449 u32 supported, advertising;
1450
1451 priv = netdev_priv(dev);
1452
1453 if (priv->has_phy) {
1454 if (!dev->phydev)
1455 return -ENODEV;
1456 return phy_ethtool_ksettings_get(dev->phydev, cmd);
1457 } else {
1458 cmd->base.autoneg = 0;
1459 cmd->base.speed = (priv->force_speed_100) ?
1460 SPEED_100 : SPEED_10;
1461 cmd->base.duplex = (priv->force_duplex_full) ?
1462 DUPLEX_FULL : DUPLEX_HALF;
1463 supported = ADVERTISED_10baseT_Half |
1464 ADVERTISED_10baseT_Full |
1465 ADVERTISED_100baseT_Half |
1466 ADVERTISED_100baseT_Full;
1467 advertising = 0;
1468 ethtool_convert_legacy_u32_to_link_mode(
1469 cmd->link_modes.supported, supported);
1470 ethtool_convert_legacy_u32_to_link_mode(
1471 cmd->link_modes.advertising, advertising);
1472 cmd->base.port = PORT_MII;
1473 }
1474 return 0;
1475 }
1476
1477 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1478 const struct ethtool_link_ksettings *cmd)
1479 {
1480 struct bcm_enet_priv *priv;
1481
1482 priv = netdev_priv(dev);
1483 if (priv->has_phy) {
1484 if (!dev->phydev)
1485 return -ENODEV;
1486 return phy_ethtool_ksettings_set(dev->phydev, cmd);
1487 } else {
1488
1489 if (cmd->base.autoneg ||
1490 (cmd->base.speed != SPEED_100 &&
1491 cmd->base.speed != SPEED_10) ||
1492 cmd->base.port != PORT_MII)
1493 return -EINVAL;
1494
1495 priv->force_speed_100 =
1496 (cmd->base.speed == SPEED_100) ? 1 : 0;
1497 priv->force_duplex_full =
1498 (cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1499
1500 if (netif_running(dev))
1501 bcm_enet_adjust_link(dev);
1502 return 0;
1503 }
1504 }
1505
1506 static void bcm_enet_get_ringparam(struct net_device *dev,
1507 struct ethtool_ringparam *ering)
1508 {
1509 struct bcm_enet_priv *priv;
1510
1511 priv = netdev_priv(dev);
1512
1513 /* rx/tx ring is actually only limited by memory */
1514 ering->rx_max_pending = 8192;
1515 ering->tx_max_pending = 8192;
1516 ering->rx_pending = priv->rx_ring_size;
1517 ering->tx_pending = priv->tx_ring_size;
1518 }
1519
1520 static int bcm_enet_set_ringparam(struct net_device *dev,
1521 struct ethtool_ringparam *ering)
1522 {
1523 struct bcm_enet_priv *priv;
1524 int was_running;
1525
1526 priv = netdev_priv(dev);
1527
1528 was_running = 0;
1529 if (netif_running(dev)) {
1530 bcm_enet_stop(dev);
1531 was_running = 1;
1532 }
1533
1534 priv->rx_ring_size = ering->rx_pending;
1535 priv->tx_ring_size = ering->tx_pending;
1536
1537 if (was_running) {
1538 int err;
1539
1540 err = bcm_enet_open(dev);
1541 if (err)
1542 dev_close(dev);
1543 else
1544 bcm_enet_set_multicast_list(dev);
1545 }
1546 return 0;
1547 }
1548
1549 static void bcm_enet_get_pauseparam(struct net_device *dev,
1550 struct ethtool_pauseparam *ecmd)
1551 {
1552 struct bcm_enet_priv *priv;
1553
1554 priv = netdev_priv(dev);
1555 ecmd->autoneg = priv->pause_auto;
1556 ecmd->rx_pause = priv->pause_rx;
1557 ecmd->tx_pause = priv->pause_tx;
1558 }
1559
1560 static int bcm_enet_set_pauseparam(struct net_device *dev,
1561 struct ethtool_pauseparam *ecmd)
1562 {
1563 struct bcm_enet_priv *priv;
1564
1565 priv = netdev_priv(dev);
1566
1567 if (priv->has_phy) {
1568 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1569 /* asymetric pause mode not supported,
1570 * actually possible but integrated PHY has RO
1571 * asym_pause bit */
1572 return -EINVAL;
1573 }
1574 } else {
1575 /* no pause autoneg on direct mii connection */
1576 if (ecmd->autoneg)
1577 return -EINVAL;
1578 }
1579
1580 priv->pause_auto = ecmd->autoneg;
1581 priv->pause_rx = ecmd->rx_pause;
1582 priv->pause_tx = ecmd->tx_pause;
1583
1584 return 0;
1585 }
1586
1587 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1588 .get_strings = bcm_enet_get_strings,
1589 .get_sset_count = bcm_enet_get_sset_count,
1590 .get_ethtool_stats = bcm_enet_get_ethtool_stats,
1591 .nway_reset = bcm_enet_nway_reset,
1592 .get_drvinfo = bcm_enet_get_drvinfo,
1593 .get_link = ethtool_op_get_link,
1594 .get_ringparam = bcm_enet_get_ringparam,
1595 .set_ringparam = bcm_enet_set_ringparam,
1596 .get_pauseparam = bcm_enet_get_pauseparam,
1597 .set_pauseparam = bcm_enet_set_pauseparam,
1598 .get_link_ksettings = bcm_enet_get_link_ksettings,
1599 .set_link_ksettings = bcm_enet_set_link_ksettings,
1600 };
1601
1602 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1603 {
1604 struct bcm_enet_priv *priv;
1605
1606 priv = netdev_priv(dev);
1607 if (priv->has_phy) {
1608 if (!dev->phydev)
1609 return -ENODEV;
1610 return phy_mii_ioctl(dev->phydev, rq, cmd);
1611 } else {
1612 struct mii_if_info mii;
1613
1614 mii.dev = dev;
1615 mii.mdio_read = bcm_enet_mdio_read_mii;
1616 mii.mdio_write = bcm_enet_mdio_write_mii;
1617 mii.phy_id = 0;
1618 mii.phy_id_mask = 0x3f;
1619 mii.reg_num_mask = 0x1f;
1620 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1621 }
1622 }
1623
1624 /*
1625 * calculate actual hardware mtu
1626 */
1627 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1628 {
1629 int actual_mtu;
1630
1631 actual_mtu = mtu;
1632
1633 /* add ethernet header + vlan tag size */
1634 actual_mtu += VLAN_ETH_HLEN;
1635
1636 if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1637 return -EINVAL;
1638
1639 /*
1640 * setup maximum size before we get overflow mark in
1641 * descriptor, note that this will not prevent reception of
1642 * big frames, they will be split into multiple buffers
1643 * anyway
1644 */
1645 priv->hw_mtu = actual_mtu;
1646
1647 /*
1648 * align rx buffer size to dma burst len, account FCS since
1649 * it's appended
1650 */
1651 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1652 priv->dma_maxburst * 4);
1653 return 0;
1654 }
1655
1656 /*
1657 * adjust mtu, can't be called while device is running
1658 */
1659 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1660 {
1661 int ret;
1662
1663 if (netif_running(dev))
1664 return -EBUSY;
1665
1666 ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1667 if (ret)
1668 return ret;
1669 dev->mtu = new_mtu;
1670 return 0;
1671 }
1672
1673 /*
1674 * preinit hardware to allow mii operation while device is down
1675 */
1676 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1677 {
1678 u32 val;
1679 int limit;
1680
1681 /* make sure mac is disabled */
1682 bcm_enet_disable_mac(priv);
1683
1684 /* soft reset mac */
1685 val = ENET_CTL_SRESET_MASK;
1686 enet_writel(priv, val, ENET_CTL_REG);
1687 wmb();
1688
1689 limit = 1000;
1690 do {
1691 val = enet_readl(priv, ENET_CTL_REG);
1692 if (!(val & ENET_CTL_SRESET_MASK))
1693 break;
1694 udelay(1);
1695 } while (limit--);
1696
1697 /* select correct mii interface */
1698 val = enet_readl(priv, ENET_CTL_REG);
1699 if (priv->use_external_mii)
1700 val |= ENET_CTL_EPHYSEL_MASK;
1701 else
1702 val &= ~ENET_CTL_EPHYSEL_MASK;
1703 enet_writel(priv, val, ENET_CTL_REG);
1704
1705 /* turn on mdc clock */
1706 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1707 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1708
1709 /* set mib counters to self-clear when read */
1710 val = enet_readl(priv, ENET_MIBCTL_REG);
1711 val |= ENET_MIBCTL_RDCLEAR_MASK;
1712 enet_writel(priv, val, ENET_MIBCTL_REG);
1713 }
1714
1715 static const struct net_device_ops bcm_enet_ops = {
1716 .ndo_open = bcm_enet_open,
1717 .ndo_stop = bcm_enet_stop,
1718 .ndo_start_xmit = bcm_enet_start_xmit,
1719 .ndo_set_mac_address = bcm_enet_set_mac_address,
1720 .ndo_set_rx_mode = bcm_enet_set_multicast_list,
1721 .ndo_do_ioctl = bcm_enet_ioctl,
1722 .ndo_change_mtu = bcm_enet_change_mtu,
1723 };
1724
1725 /*
1726 * allocate netdevice, request register memory and register device.
1727 */
1728 static int bcm_enet_probe(struct platform_device *pdev)
1729 {
1730 struct bcm_enet_priv *priv;
1731 struct net_device *dev;
1732 struct bcm63xx_enet_platform_data *pd;
1733 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1734 struct mii_bus *bus;
1735 const char *clk_name;
1736 int i, ret;
1737
1738 /* stop if shared driver failed, assume driver->probe will be
1739 * called in the same order we register devices (correct ?) */
1740 if (!bcm_enet_shared_base[0])
1741 return -ENODEV;
1742
1743 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1744 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1745 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1746 if (!res_irq || !res_irq_rx || !res_irq_tx)
1747 return -ENODEV;
1748
1749 ret = 0;
1750 dev = alloc_etherdev(sizeof(*priv));
1751 if (!dev)
1752 return -ENOMEM;
1753 priv = netdev_priv(dev);
1754
1755 priv->enet_is_sw = false;
1756 priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1757
1758 ret = compute_hw_mtu(priv, dev->mtu);
1759 if (ret)
1760 goto out;
1761
1762 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1763 priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1764 if (IS_ERR(priv->base)) {
1765 ret = PTR_ERR(priv->base);
1766 goto out;
1767 }
1768
1769 dev->irq = priv->irq = res_irq->start;
1770 priv->irq_rx = res_irq_rx->start;
1771 priv->irq_tx = res_irq_tx->start;
1772 priv->mac_id = pdev->id;
1773
1774 /* get rx & tx dma channel id for this mac */
1775 if (priv->mac_id == 0) {
1776 priv->rx_chan = 0;
1777 priv->tx_chan = 1;
1778 clk_name = "enet0";
1779 } else {
1780 priv->rx_chan = 2;
1781 priv->tx_chan = 3;
1782 clk_name = "enet1";
1783 }
1784
1785 priv->mac_clk = clk_get(&pdev->dev, clk_name);
1786 if (IS_ERR(priv->mac_clk)) {
1787 ret = PTR_ERR(priv->mac_clk);
1788 goto out;
1789 }
1790 clk_prepare_enable(priv->mac_clk);
1791
1792 /* initialize default and fetch platform data */
1793 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1794 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1795
1796 pd = dev_get_platdata(&pdev->dev);
1797 if (pd) {
1798 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1799 priv->has_phy = pd->has_phy;
1800 priv->phy_id = pd->phy_id;
1801 priv->has_phy_interrupt = pd->has_phy_interrupt;
1802 priv->phy_interrupt = pd->phy_interrupt;
1803 priv->use_external_mii = !pd->use_internal_phy;
1804 priv->pause_auto = pd->pause_auto;
1805 priv->pause_rx = pd->pause_rx;
1806 priv->pause_tx = pd->pause_tx;
1807 priv->force_duplex_full = pd->force_duplex_full;
1808 priv->force_speed_100 = pd->force_speed_100;
1809 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1810 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1811 priv->dma_chan_width = pd->dma_chan_width;
1812 priv->dma_has_sram = pd->dma_has_sram;
1813 priv->dma_desc_shift = pd->dma_desc_shift;
1814 }
1815
1816 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1817 /* using internal PHY, enable clock */
1818 priv->phy_clk = clk_get(&pdev->dev, "ephy");
1819 if (IS_ERR(priv->phy_clk)) {
1820 ret = PTR_ERR(priv->phy_clk);
1821 priv->phy_clk = NULL;
1822 goto out_put_clk_mac;
1823 }
1824 clk_prepare_enable(priv->phy_clk);
1825 }
1826
1827 /* do minimal hardware init to be able to probe mii bus */
1828 bcm_enet_hw_preinit(priv);
1829
1830 /* MII bus registration */
1831 if (priv->has_phy) {
1832
1833 priv->mii_bus = mdiobus_alloc();
1834 if (!priv->mii_bus) {
1835 ret = -ENOMEM;
1836 goto out_uninit_hw;
1837 }
1838
1839 bus = priv->mii_bus;
1840 bus->name = "bcm63xx_enet MII bus";
1841 bus->parent = &pdev->dev;
1842 bus->priv = priv;
1843 bus->read = bcm_enet_mdio_read_phylib;
1844 bus->write = bcm_enet_mdio_write_phylib;
1845 sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1846
1847 /* only probe bus where we think the PHY is, because
1848 * the mdio read operation return 0 instead of 0xffff
1849 * if a slave is not present on hw */
1850 bus->phy_mask = ~(1 << priv->phy_id);
1851
1852 if (priv->has_phy_interrupt)
1853 bus->irq[priv->phy_id] = priv->phy_interrupt;
1854
1855 ret = mdiobus_register(bus);
1856 if (ret) {
1857 dev_err(&pdev->dev, "unable to register mdio bus\n");
1858 goto out_free_mdio;
1859 }
1860 } else {
1861
1862 /* run platform code to initialize PHY device */
1863 if (pd && pd->mii_config &&
1864 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1865 bcm_enet_mdio_write_mii)) {
1866 dev_err(&pdev->dev, "unable to configure mdio bus\n");
1867 goto out_uninit_hw;
1868 }
1869 }
1870
1871 spin_lock_init(&priv->rx_lock);
1872
1873 /* init rx timeout (used for oom) */
1874 init_timer(&priv->rx_timeout);
1875 priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1876 priv->rx_timeout.data = (unsigned long)dev;
1877
1878 /* init the mib update lock&work */
1879 mutex_init(&priv->mib_update_lock);
1880 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1881
1882 /* zero mib counters */
1883 for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1884 enet_writel(priv, 0, ENET_MIB_REG(i));
1885
1886 /* register netdevice */
1887 dev->netdev_ops = &bcm_enet_ops;
1888 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1889
1890 dev->ethtool_ops = &bcm_enet_ethtool_ops;
1891 SET_NETDEV_DEV(dev, &pdev->dev);
1892
1893 ret = register_netdev(dev);
1894 if (ret)
1895 goto out_unregister_mdio;
1896
1897 netif_carrier_off(dev);
1898 platform_set_drvdata(pdev, dev);
1899 priv->pdev = pdev;
1900 priv->net_dev = dev;
1901
1902 return 0;
1903
1904 out_unregister_mdio:
1905 if (priv->mii_bus)
1906 mdiobus_unregister(priv->mii_bus);
1907
1908 out_free_mdio:
1909 if (priv->mii_bus)
1910 mdiobus_free(priv->mii_bus);
1911
1912 out_uninit_hw:
1913 /* turn off mdc clock */
1914 enet_writel(priv, 0, ENET_MIISC_REG);
1915 if (priv->phy_clk) {
1916 clk_disable_unprepare(priv->phy_clk);
1917 clk_put(priv->phy_clk);
1918 }
1919
1920 out_put_clk_mac:
1921 clk_disable_unprepare(priv->mac_clk);
1922 clk_put(priv->mac_clk);
1923 out:
1924 free_netdev(dev);
1925 return ret;
1926 }
1927
1928
1929 /*
1930 * exit func, stops hardware and unregisters netdevice
1931 */
1932 static int bcm_enet_remove(struct platform_device *pdev)
1933 {
1934 struct bcm_enet_priv *priv;
1935 struct net_device *dev;
1936
1937 /* stop netdevice */
1938 dev = platform_get_drvdata(pdev);
1939 priv = netdev_priv(dev);
1940 unregister_netdev(dev);
1941
1942 /* turn off mdc clock */
1943 enet_writel(priv, 0, ENET_MIISC_REG);
1944
1945 if (priv->has_phy) {
1946 mdiobus_unregister(priv->mii_bus);
1947 mdiobus_free(priv->mii_bus);
1948 } else {
1949 struct bcm63xx_enet_platform_data *pd;
1950
1951 pd = dev_get_platdata(&pdev->dev);
1952 if (pd && pd->mii_config)
1953 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1954 bcm_enet_mdio_write_mii);
1955 }
1956
1957 /* disable hw block clocks */
1958 if (priv->phy_clk) {
1959 clk_disable_unprepare(priv->phy_clk);
1960 clk_put(priv->phy_clk);
1961 }
1962 clk_disable_unprepare(priv->mac_clk);
1963 clk_put(priv->mac_clk);
1964
1965 free_netdev(dev);
1966 return 0;
1967 }
1968
1969 struct platform_driver bcm63xx_enet_driver = {
1970 .probe = bcm_enet_probe,
1971 .remove = bcm_enet_remove,
1972 .driver = {
1973 .name = "bcm63xx_enet",
1974 .owner = THIS_MODULE,
1975 },
1976 };
1977
1978 /*
1979 * switch mii access callbacks
1980 */
1981 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1982 int ext, int phy_id, int location)
1983 {
1984 u32 reg;
1985 int ret;
1986
1987 spin_lock_bh(&priv->enetsw_mdio_lock);
1988 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1989
1990 reg = ENETSW_MDIOC_RD_MASK |
1991 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1992 (location << ENETSW_MDIOC_REG_SHIFT);
1993
1994 if (ext)
1995 reg |= ENETSW_MDIOC_EXT_MASK;
1996
1997 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1998 udelay(50);
1999 ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
2000 spin_unlock_bh(&priv->enetsw_mdio_lock);
2001 return ret;
2002 }
2003
2004 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
2005 int ext, int phy_id, int location,
2006 uint16_t data)
2007 {
2008 u32 reg;
2009
2010 spin_lock_bh(&priv->enetsw_mdio_lock);
2011 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2012
2013 reg = ENETSW_MDIOC_WR_MASK |
2014 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2015 (location << ENETSW_MDIOC_REG_SHIFT);
2016
2017 if (ext)
2018 reg |= ENETSW_MDIOC_EXT_MASK;
2019
2020 reg |= data;
2021
2022 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2023 udelay(50);
2024 spin_unlock_bh(&priv->enetsw_mdio_lock);
2025 }
2026
2027 static inline int bcm_enet_port_is_rgmii(int portid)
2028 {
2029 return portid >= ENETSW_RGMII_PORT0;
2030 }
2031
2032 /*
2033 * enet sw PHY polling
2034 */
2035 static void swphy_poll_timer(unsigned long data)
2036 {
2037 struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2038 unsigned int i;
2039
2040 for (i = 0; i < priv->num_ports; i++) {
2041 struct bcm63xx_enetsw_port *port;
2042 int val, j, up, advertise, lpa, speed, duplex, media;
2043 int external_phy = bcm_enet_port_is_rgmii(i);
2044 u8 override;
2045
2046 port = &priv->used_ports[i];
2047 if (!port->used)
2048 continue;
2049
2050 if (port->bypass_link)
2051 continue;
2052
2053 /* dummy read to clear */
2054 for (j = 0; j < 2; j++)
2055 val = bcmenet_sw_mdio_read(priv, external_phy,
2056 port->phy_id, MII_BMSR);
2057
2058 if (val == 0xffff)
2059 continue;
2060
2061 up = (val & BMSR_LSTATUS) ? 1 : 0;
2062 if (!(up ^ priv->sw_port_link[i]))
2063 continue;
2064
2065 priv->sw_port_link[i] = up;
2066
2067 /* link changed */
2068 if (!up) {
2069 dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2070 port->name);
2071 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2072 ENETSW_PORTOV_REG(i));
2073 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2074 ENETSW_PTCTRL_TXDIS_MASK,
2075 ENETSW_PTCTRL_REG(i));
2076 continue;
2077 }
2078
2079 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2080 port->phy_id, MII_ADVERTISE);
2081
2082 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2083 MII_LPA);
2084
2085 /* figure out media and duplex from advertise and LPA values */
2086 media = mii_nway_result(lpa & advertise);
2087 duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2088
2089 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2090 speed = 100;
2091 else
2092 speed = 10;
2093
2094 if (val & BMSR_ESTATEN) {
2095 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2096 port->phy_id, MII_CTRL1000);
2097
2098 lpa = bcmenet_sw_mdio_read(priv, external_phy,
2099 port->phy_id, MII_STAT1000);
2100
2101 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2102 && lpa & (LPA_1000FULL | LPA_1000HALF)) {
2103 speed = 1000;
2104 duplex = (lpa & LPA_1000FULL);
2105 }
2106 }
2107
2108 dev_info(&priv->pdev->dev,
2109 "link UP on %s, %dMbps, %s-duplex\n",
2110 port->name, speed, duplex ? "full" : "half");
2111
2112 override = ENETSW_PORTOV_ENABLE_MASK |
2113 ENETSW_PORTOV_LINKUP_MASK;
2114
2115 if (speed == 1000)
2116 override |= ENETSW_IMPOV_1000_MASK;
2117 else if (speed == 100)
2118 override |= ENETSW_IMPOV_100_MASK;
2119 if (duplex)
2120 override |= ENETSW_IMPOV_FDX_MASK;
2121
2122 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2123 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2124 }
2125
2126 priv->swphy_poll.expires = jiffies + HZ;
2127 add_timer(&priv->swphy_poll);
2128 }
2129
2130 /*
2131 * open callback, allocate dma rings & buffers and start rx operation
2132 */
2133 static int bcm_enetsw_open(struct net_device *dev)
2134 {
2135 struct bcm_enet_priv *priv;
2136 struct device *kdev;
2137 int i, ret;
2138 unsigned int size;
2139 void *p;
2140 u32 val;
2141
2142 priv = netdev_priv(dev);
2143 kdev = &priv->pdev->dev;
2144
2145 /* mask all interrupts and request them */
2146 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2147 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2148
2149 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2150 0, dev->name, dev);
2151 if (ret)
2152 goto out_freeirq;
2153
2154 if (priv->irq_tx != -1) {
2155 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2156 0, dev->name, dev);
2157 if (ret)
2158 goto out_freeirq_rx;
2159 }
2160
2161 /* allocate rx dma ring */
2162 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2163 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2164 if (!p) {
2165 dev_err(kdev, "cannot allocate rx ring %u\n", size);
2166 ret = -ENOMEM;
2167 goto out_freeirq_tx;
2168 }
2169
2170 memset(p, 0, size);
2171 priv->rx_desc_alloc_size = size;
2172 priv->rx_desc_cpu = p;
2173
2174 /* allocate tx dma ring */
2175 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2176 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2177 if (!p) {
2178 dev_err(kdev, "cannot allocate tx ring\n");
2179 ret = -ENOMEM;
2180 goto out_free_rx_ring;
2181 }
2182
2183 memset(p, 0, size);
2184 priv->tx_desc_alloc_size = size;
2185 priv->tx_desc_cpu = p;
2186
2187 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2188 GFP_KERNEL);
2189 if (!priv->tx_skb) {
2190 dev_err(kdev, "cannot allocate rx skb queue\n");
2191 ret = -ENOMEM;
2192 goto out_free_tx_ring;
2193 }
2194
2195 priv->tx_desc_count = priv->tx_ring_size;
2196 priv->tx_dirty_desc = 0;
2197 priv->tx_curr_desc = 0;
2198 spin_lock_init(&priv->tx_lock);
2199
2200 /* init & fill rx ring with skbs */
2201 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2202 GFP_KERNEL);
2203 if (!priv->rx_skb) {
2204 dev_err(kdev, "cannot allocate rx skb queue\n");
2205 ret = -ENOMEM;
2206 goto out_free_tx_skb;
2207 }
2208
2209 priv->rx_desc_count = 0;
2210 priv->rx_dirty_desc = 0;
2211 priv->rx_curr_desc = 0;
2212
2213 /* disable all ports */
2214 for (i = 0; i < priv->num_ports; i++) {
2215 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2216 ENETSW_PORTOV_REG(i));
2217 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2218 ENETSW_PTCTRL_TXDIS_MASK,
2219 ENETSW_PTCTRL_REG(i));
2220
2221 priv->sw_port_link[i] = 0;
2222 }
2223
2224 /* reset mib */
2225 val = enetsw_readb(priv, ENETSW_GMCR_REG);
2226 val |= ENETSW_GMCR_RST_MIB_MASK;
2227 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2228 mdelay(1);
2229 val &= ~ENETSW_GMCR_RST_MIB_MASK;
2230 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2231 mdelay(1);
2232
2233 /* force CPU port state */
2234 val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2235 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2236 enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2237
2238 /* enable switch forward engine */
2239 val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2240 val |= ENETSW_SWMODE_FWD_EN_MASK;
2241 enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2242
2243 /* enable jumbo on all ports */
2244 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2245 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2246
2247 /* initialize flow control buffer allocation */
2248 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2249 ENETDMA_BUFALLOC_REG(priv->rx_chan));
2250
2251 if (bcm_enet_refill_rx(dev)) {
2252 dev_err(kdev, "cannot allocate rx skb queue\n");
2253 ret = -ENOMEM;
2254 goto out;
2255 }
2256
2257 /* write rx & tx ring addresses */
2258 enet_dmas_writel(priv, priv->rx_desc_dma,
2259 ENETDMAS_RSTART_REG, priv->rx_chan);
2260 enet_dmas_writel(priv, priv->tx_desc_dma,
2261 ENETDMAS_RSTART_REG, priv->tx_chan);
2262
2263 /* clear remaining state ram for rx & tx channel */
2264 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2265 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2266 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2267 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2268 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2269 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2270
2271 /* set dma maximum burst len */
2272 enet_dmac_writel(priv, priv->dma_maxburst,
2273 ENETDMAC_MAXBURST, priv->rx_chan);
2274 enet_dmac_writel(priv, priv->dma_maxburst,
2275 ENETDMAC_MAXBURST, priv->tx_chan);
2276
2277 /* set flow control low/high threshold to 1/3 / 2/3 */
2278 val = priv->rx_ring_size / 3;
2279 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2280 val = (priv->rx_ring_size * 2) / 3;
2281 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2282
2283 /* all set, enable mac and interrupts, start dma engine and
2284 * kick rx dma channel
2285 */
2286 wmb();
2287 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2288 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2289 ENETDMAC_CHANCFG, priv->rx_chan);
2290
2291 /* watch "packet transferred" interrupt in rx and tx */
2292 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2293 ENETDMAC_IR, priv->rx_chan);
2294 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2295 ENETDMAC_IR, priv->tx_chan);
2296
2297 /* make sure we enable napi before rx interrupt */
2298 napi_enable(&priv->napi);
2299
2300 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2301 ENETDMAC_IRMASK, priv->rx_chan);
2302 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2303 ENETDMAC_IRMASK, priv->tx_chan);
2304
2305 netif_carrier_on(dev);
2306 netif_start_queue(dev);
2307
2308 /* apply override config for bypass_link ports here. */
2309 for (i = 0; i < priv->num_ports; i++) {
2310 struct bcm63xx_enetsw_port *port;
2311 u8 override;
2312 port = &priv->used_ports[i];
2313 if (!port->used)
2314 continue;
2315
2316 if (!port->bypass_link)
2317 continue;
2318
2319 override = ENETSW_PORTOV_ENABLE_MASK |
2320 ENETSW_PORTOV_LINKUP_MASK;
2321
2322 switch (port->force_speed) {
2323 case 1000:
2324 override |= ENETSW_IMPOV_1000_MASK;
2325 break;
2326 case 100:
2327 override |= ENETSW_IMPOV_100_MASK;
2328 break;
2329 case 10:
2330 break;
2331 default:
2332 pr_warn("invalid forced speed on port %s: assume 10\n",
2333 port->name);
2334 break;
2335 }
2336
2337 if (port->force_duplex_full)
2338 override |= ENETSW_IMPOV_FDX_MASK;
2339
2340
2341 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2342 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2343 }
2344
2345 /* start phy polling timer */
2346 init_timer(&priv->swphy_poll);
2347 priv->swphy_poll.function = swphy_poll_timer;
2348 priv->swphy_poll.data = (unsigned long)priv;
2349 priv->swphy_poll.expires = jiffies;
2350 add_timer(&priv->swphy_poll);
2351 return 0;
2352
2353 out:
2354 for (i = 0; i < priv->rx_ring_size; i++) {
2355 struct bcm_enet_desc *desc;
2356
2357 if (!priv->rx_skb[i])
2358 continue;
2359
2360 desc = &priv->rx_desc_cpu[i];
2361 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2362 DMA_FROM_DEVICE);
2363 kfree_skb(priv->rx_skb[i]);
2364 }
2365 kfree(priv->rx_skb);
2366
2367 out_free_tx_skb:
2368 kfree(priv->tx_skb);
2369
2370 out_free_tx_ring:
2371 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2372 priv->tx_desc_cpu, priv->tx_desc_dma);
2373
2374 out_free_rx_ring:
2375 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2376 priv->rx_desc_cpu, priv->rx_desc_dma);
2377
2378 out_freeirq_tx:
2379 if (priv->irq_tx != -1)
2380 free_irq(priv->irq_tx, dev);
2381
2382 out_freeirq_rx:
2383 free_irq(priv->irq_rx, dev);
2384
2385 out_freeirq:
2386 return ret;
2387 }
2388
2389 /* stop callback */
2390 static int bcm_enetsw_stop(struct net_device *dev)
2391 {
2392 struct bcm_enet_priv *priv;
2393 struct device *kdev;
2394 int i;
2395
2396 priv = netdev_priv(dev);
2397 kdev = &priv->pdev->dev;
2398
2399 del_timer_sync(&priv->swphy_poll);
2400 netif_stop_queue(dev);
2401 napi_disable(&priv->napi);
2402 del_timer_sync(&priv->rx_timeout);
2403
2404 /* mask all interrupts */
2405 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2406 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2407
2408 /* disable dma & mac */
2409 bcm_enet_disable_dma(priv, priv->tx_chan);
2410 bcm_enet_disable_dma(priv, priv->rx_chan);
2411
2412 /* force reclaim of all tx buffers */
2413 bcm_enet_tx_reclaim(dev, 1);
2414
2415 /* free the rx skb ring */
2416 for (i = 0; i < priv->rx_ring_size; i++) {
2417 struct bcm_enet_desc *desc;
2418
2419 if (!priv->rx_skb[i])
2420 continue;
2421
2422 desc = &priv->rx_desc_cpu[i];
2423 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2424 DMA_FROM_DEVICE);
2425 kfree_skb(priv->rx_skb[i]);
2426 }
2427
2428 /* free remaining allocated memory */
2429 kfree(priv->rx_skb);
2430 kfree(priv->tx_skb);
2431 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2432 priv->rx_desc_cpu, priv->rx_desc_dma);
2433 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2434 priv->tx_desc_cpu, priv->tx_desc_dma);
2435 if (priv->irq_tx != -1)
2436 free_irq(priv->irq_tx, dev);
2437 free_irq(priv->irq_rx, dev);
2438
2439 return 0;
2440 }
2441
2442 /* try to sort out phy external status by walking the used_port field
2443 * in the bcm_enet_priv structure. in case the phy address is not
2444 * assigned to any physical port on the switch, assume it is external
2445 * (and yell at the user).
2446 */
2447 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2448 {
2449 int i;
2450
2451 for (i = 0; i < priv->num_ports; ++i) {
2452 if (!priv->used_ports[i].used)
2453 continue;
2454 if (priv->used_ports[i].phy_id == phy_id)
2455 return bcm_enet_port_is_rgmii(i);
2456 }
2457
2458 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2459 phy_id);
2460 return 1;
2461 }
2462
2463 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2464 * external/internal status of the given phy_id first.
2465 */
2466 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2467 int location)
2468 {
2469 struct bcm_enet_priv *priv;
2470
2471 priv = netdev_priv(dev);
2472 return bcmenet_sw_mdio_read(priv,
2473 bcm_enetsw_phy_is_external(priv, phy_id),
2474 phy_id, location);
2475 }
2476
2477 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2478 * external/internal status of the given phy_id first.
2479 */
2480 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2481 int location,
2482 int val)
2483 {
2484 struct bcm_enet_priv *priv;
2485
2486 priv = netdev_priv(dev);
2487 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2488 phy_id, location, val);
2489 }
2490
2491 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2492 {
2493 struct mii_if_info mii;
2494
2495 mii.dev = dev;
2496 mii.mdio_read = bcm_enetsw_mii_mdio_read;
2497 mii.mdio_write = bcm_enetsw_mii_mdio_write;
2498 mii.phy_id = 0;
2499 mii.phy_id_mask = 0x3f;
2500 mii.reg_num_mask = 0x1f;
2501 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2502
2503 }
2504
2505 static const struct net_device_ops bcm_enetsw_ops = {
2506 .ndo_open = bcm_enetsw_open,
2507 .ndo_stop = bcm_enetsw_stop,
2508 .ndo_start_xmit = bcm_enet_start_xmit,
2509 .ndo_change_mtu = bcm_enet_change_mtu,
2510 .ndo_do_ioctl = bcm_enetsw_ioctl,
2511 };
2512
2513
2514 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2515 { "rx_packets", DEV_STAT(rx_packets), -1 },
2516 { "tx_packets", DEV_STAT(tx_packets), -1 },
2517 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
2518 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
2519 { "rx_errors", DEV_STAT(rx_errors), -1 },
2520 { "tx_errors", DEV_STAT(tx_errors), -1 },
2521 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
2522 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
2523
2524 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2525 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2526 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2527 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2528 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2529 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2530 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2531 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2532 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2533 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2534 ETHSW_MIB_RX_1024_1522 },
2535 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2536 ETHSW_MIB_RX_1523_2047 },
2537 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2538 ETHSW_MIB_RX_2048_4095 },
2539 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2540 ETHSW_MIB_RX_4096_8191 },
2541 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2542 ETHSW_MIB_RX_8192_9728 },
2543 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2544 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2545 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2546 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2547 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2548
2549 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2550 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2551 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2552 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2553 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2554 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2555
2556 };
2557
2558 #define BCM_ENETSW_STATS_LEN \
2559 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2560
2561 static void bcm_enetsw_get_strings(struct net_device *netdev,
2562 u32 stringset, u8 *data)
2563 {
2564 int i;
2565
2566 switch (stringset) {
2567 case ETH_SS_STATS:
2568 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2569 memcpy(data + i * ETH_GSTRING_LEN,
2570 bcm_enetsw_gstrings_stats[i].stat_string,
2571 ETH_GSTRING_LEN);
2572 }
2573 break;
2574 }
2575 }
2576
2577 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2578 int string_set)
2579 {
2580 switch (string_set) {
2581 case ETH_SS_STATS:
2582 return BCM_ENETSW_STATS_LEN;
2583 default:
2584 return -EINVAL;
2585 }
2586 }
2587
2588 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2589 struct ethtool_drvinfo *drvinfo)
2590 {
2591 strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2592 strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2593 strncpy(drvinfo->fw_version, "N/A", 32);
2594 strncpy(drvinfo->bus_info, "bcm63xx", 32);
2595 }
2596
2597 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2598 struct ethtool_stats *stats,
2599 u64 *data)
2600 {
2601 struct bcm_enet_priv *priv;
2602 int i;
2603
2604 priv = netdev_priv(netdev);
2605
2606 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2607 const struct bcm_enet_stats *s;
2608 u32 lo, hi;
2609 char *p;
2610 int reg;
2611
2612 s = &bcm_enetsw_gstrings_stats[i];
2613
2614 reg = s->mib_reg;
2615 if (reg == -1)
2616 continue;
2617
2618 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2619 p = (char *)priv + s->stat_offset;
2620
2621 if (s->sizeof_stat == sizeof(u64)) {
2622 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2623 *(u64 *)p = ((u64)hi << 32 | lo);
2624 } else {
2625 *(u32 *)p = lo;
2626 }
2627 }
2628
2629 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2630 const struct bcm_enet_stats *s;
2631 char *p;
2632
2633 s = &bcm_enetsw_gstrings_stats[i];
2634
2635 if (s->mib_reg == -1)
2636 p = (char *)&netdev->stats + s->stat_offset;
2637 else
2638 p = (char *)priv + s->stat_offset;
2639
2640 data[i] = (s->sizeof_stat == sizeof(u64)) ?
2641 *(u64 *)p : *(u32 *)p;
2642 }
2643 }
2644
2645 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2646 struct ethtool_ringparam *ering)
2647 {
2648 struct bcm_enet_priv *priv;
2649
2650 priv = netdev_priv(dev);
2651
2652 /* rx/tx ring is actually only limited by memory */
2653 ering->rx_max_pending = 8192;
2654 ering->tx_max_pending = 8192;
2655 ering->rx_mini_max_pending = 0;
2656 ering->rx_jumbo_max_pending = 0;
2657 ering->rx_pending = priv->rx_ring_size;
2658 ering->tx_pending = priv->tx_ring_size;
2659 }
2660
2661 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2662 struct ethtool_ringparam *ering)
2663 {
2664 struct bcm_enet_priv *priv;
2665 int was_running;
2666
2667 priv = netdev_priv(dev);
2668
2669 was_running = 0;
2670 if (netif_running(dev)) {
2671 bcm_enetsw_stop(dev);
2672 was_running = 1;
2673 }
2674
2675 priv->rx_ring_size = ering->rx_pending;
2676 priv->tx_ring_size = ering->tx_pending;
2677
2678 if (was_running) {
2679 int err;
2680
2681 err = bcm_enetsw_open(dev);
2682 if (err)
2683 dev_close(dev);
2684 }
2685 return 0;
2686 }
2687
2688 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2689 .get_strings = bcm_enetsw_get_strings,
2690 .get_sset_count = bcm_enetsw_get_sset_count,
2691 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats,
2692 .get_drvinfo = bcm_enetsw_get_drvinfo,
2693 .get_ringparam = bcm_enetsw_get_ringparam,
2694 .set_ringparam = bcm_enetsw_set_ringparam,
2695 };
2696
2697 /* allocate netdevice, request register memory and register device. */
2698 static int bcm_enetsw_probe(struct platform_device *pdev)
2699 {
2700 struct bcm_enet_priv *priv;
2701 struct net_device *dev;
2702 struct bcm63xx_enetsw_platform_data *pd;
2703 struct resource *res_mem;
2704 int ret, irq_rx, irq_tx;
2705
2706 /* stop if shared driver failed, assume driver->probe will be
2707 * called in the same order we register devices (correct ?)
2708 */
2709 if (!bcm_enet_shared_base[0])
2710 return -ENODEV;
2711
2712 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2713 irq_rx = platform_get_irq(pdev, 0);
2714 irq_tx = platform_get_irq(pdev, 1);
2715 if (!res_mem || irq_rx < 0)
2716 return -ENODEV;
2717
2718 ret = 0;
2719 dev = alloc_etherdev(sizeof(*priv));
2720 if (!dev)
2721 return -ENOMEM;
2722 priv = netdev_priv(dev);
2723 memset(priv, 0, sizeof(*priv));
2724
2725 /* initialize default and fetch platform data */
2726 priv->enet_is_sw = true;
2727 priv->irq_rx = irq_rx;
2728 priv->irq_tx = irq_tx;
2729 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2730 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2731 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2732
2733 pd = dev_get_platdata(&pdev->dev);
2734 if (pd) {
2735 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2736 memcpy(priv->used_ports, pd->used_ports,
2737 sizeof(pd->used_ports));
2738 priv->num_ports = pd->num_ports;
2739 priv->dma_has_sram = pd->dma_has_sram;
2740 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2741 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2742 priv->dma_chan_width = pd->dma_chan_width;
2743 }
2744
2745 ret = compute_hw_mtu(priv, dev->mtu);
2746 if (ret)
2747 goto out;
2748
2749 if (!request_mem_region(res_mem->start, resource_size(res_mem),
2750 "bcm63xx_enetsw")) {
2751 ret = -EBUSY;
2752 goto out;
2753 }
2754
2755 priv->base = ioremap(res_mem->start, resource_size(res_mem));
2756 if (priv->base == NULL) {
2757 ret = -ENOMEM;
2758 goto out_release_mem;
2759 }
2760
2761 priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2762 if (IS_ERR(priv->mac_clk)) {
2763 ret = PTR_ERR(priv->mac_clk);
2764 goto out_unmap;
2765 }
2766 clk_enable(priv->mac_clk);
2767
2768 priv->rx_chan = 0;
2769 priv->tx_chan = 1;
2770 spin_lock_init(&priv->rx_lock);
2771
2772 /* init rx timeout (used for oom) */
2773 init_timer(&priv->rx_timeout);
2774 priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2775 priv->rx_timeout.data = (unsigned long)dev;
2776
2777 /* register netdevice */
2778 dev->netdev_ops = &bcm_enetsw_ops;
2779 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2780 dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2781 SET_NETDEV_DEV(dev, &pdev->dev);
2782
2783 spin_lock_init(&priv->enetsw_mdio_lock);
2784
2785 ret = register_netdev(dev);
2786 if (ret)
2787 goto out_put_clk;
2788
2789 netif_carrier_off(dev);
2790 platform_set_drvdata(pdev, dev);
2791 priv->pdev = pdev;
2792 priv->net_dev = dev;
2793
2794 return 0;
2795
2796 out_put_clk:
2797 clk_put(priv->mac_clk);
2798
2799 out_unmap:
2800 iounmap(priv->base);
2801
2802 out_release_mem:
2803 release_mem_region(res_mem->start, resource_size(res_mem));
2804 out:
2805 free_netdev(dev);
2806 return ret;
2807 }
2808
2809
2810 /* exit func, stops hardware and unregisters netdevice */
2811 static int bcm_enetsw_remove(struct platform_device *pdev)
2812 {
2813 struct bcm_enet_priv *priv;
2814 struct net_device *dev;
2815 struct resource *res;
2816
2817 /* stop netdevice */
2818 dev = platform_get_drvdata(pdev);
2819 priv = netdev_priv(dev);
2820 unregister_netdev(dev);
2821
2822 /* release device resources */
2823 iounmap(priv->base);
2824 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2825 release_mem_region(res->start, resource_size(res));
2826
2827 free_netdev(dev);
2828 return 0;
2829 }
2830
2831 struct platform_driver bcm63xx_enetsw_driver = {
2832 .probe = bcm_enetsw_probe,
2833 .remove = bcm_enetsw_remove,
2834 .driver = {
2835 .name = "bcm63xx_enetsw",
2836 .owner = THIS_MODULE,
2837 },
2838 };
2839
2840 /* reserve & remap memory space shared between all macs */
2841 static int bcm_enet_shared_probe(struct platform_device *pdev)
2842 {
2843 struct resource *res;
2844 void __iomem *p[3];
2845 unsigned int i;
2846
2847 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2848
2849 for (i = 0; i < 3; i++) {
2850 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2851 p[i] = devm_ioremap_resource(&pdev->dev, res);
2852 if (IS_ERR(p[i]))
2853 return PTR_ERR(p[i]);
2854 }
2855
2856 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2857
2858 return 0;
2859 }
2860
2861 static int bcm_enet_shared_remove(struct platform_device *pdev)
2862 {
2863 return 0;
2864 }
2865
2866 /* this "shared" driver is needed because both macs share a single
2867 * address space
2868 */
2869 struct platform_driver bcm63xx_enet_shared_driver = {
2870 .probe = bcm_enet_shared_probe,
2871 .remove = bcm_enet_shared_remove,
2872 .driver = {
2873 .name = "bcm63xx_enet_shared",
2874 .owner = THIS_MODULE,
2875 },
2876 };
2877
2878 static struct platform_driver * const drivers[] = {
2879 &bcm63xx_enet_shared_driver,
2880 &bcm63xx_enet_driver,
2881 &bcm63xx_enetsw_driver,
2882 };
2883
2884 /* entry point */
2885 static int __init bcm_enet_init(void)
2886 {
2887 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2888 }
2889
2890 static void __exit bcm_enet_exit(void)
2891 {
2892 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2893 }
2894
2895
2896 module_init(bcm_enet_init);
2897 module_exit(bcm_enet_exit);
2898
2899 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2900 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2901 MODULE_LICENSE("GPL");