]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/broadcom/bcm63xx_enet.c
Merge tag 'pci-v5.0-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / broadcom / bcm63xx_enet.c
1 /*
2 * Driver for BCM963xx builtin Ethernet mac
3 *
4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46
47 /*
48 * io helpers to access mac registers
49 */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 return bcm_readl(priv->base + off);
53 }
54
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 u32 val, u32 off)
57 {
58 bcm_writel(val, priv->base + off);
59 }
60
61 /*
62 * io helpers to access switch registers
63 */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 return bcm_readl(priv->base + off);
67 }
68
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 u32 val, u32 off)
71 {
72 bcm_writel(val, priv->base + off);
73 }
74
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 return bcm_readw(priv->base + off);
78 }
79
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 u16 val, u32 off)
82 {
83 bcm_writew(val, priv->base + off);
84 }
85
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 return bcm_readb(priv->base + off);
89 }
90
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 u8 val, u32 off)
93 {
94 bcm_writeb(val, priv->base + off);
95 }
96
97
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 u32 val, u32 off)
106 {
107 bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 return bcm_readl(bcm_enet_shared_base[1] +
113 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 u32 val, u32 off, int chan)
118 {
119 bcm_writel(val, bcm_enet_shared_base[1] +
120 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 u32 val, u32 off, int chan)
130 {
131 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133
134 /*
135 * write given data into mii register and wait for transfer to end
136 * with timeout (average measured transfer time is 25us)
137 */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 int limit;
141
142 /* make sure mii interrupt status is cleared */
143 enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144
145 enet_writel(priv, data, ENET_MIIDATA_REG);
146 wmb();
147
148 /* busy wait on mii interrupt bit, with timeout */
149 limit = 1000;
150 do {
151 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 break;
153 udelay(1);
154 } while (limit-- > 0);
155
156 return (limit < 0) ? 1 : 0;
157 }
158
159 /*
160 * MII internal read callback
161 */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 int regnum)
164 {
165 u32 tmp, val;
166
167 tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 tmp |= ENET_MIIDATA_OP_READ_MASK;
171
172 if (do_mdio_op(priv, tmp))
173 return -1;
174
175 val = enet_readl(priv, ENET_MIIDATA_REG);
176 val &= 0xffff;
177 return val;
178 }
179
180 /*
181 * MII internal write callback
182 */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 int regnum, u16 value)
185 {
186 u32 tmp;
187
188 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193
194 (void)do_mdio_op(priv, tmp);
195 return 0;
196 }
197
198 /*
199 * MII read callback from phylib
200 */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 int regnum)
203 {
204 return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206
207 /*
208 * MII write callback from phylib
209 */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 int regnum, u16 value)
212 {
213 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215
216 /*
217 * MII read callback from mii core
218 */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 int regnum)
221 {
222 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224
225 /*
226 * MII write callback from mii core
227 */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 int regnum, int value)
230 {
231 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233
234 /*
235 * refill rx queue
236 */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 struct bcm_enet_priv *priv;
240
241 priv = netdev_priv(dev);
242
243 while (priv->rx_desc_count < priv->rx_ring_size) {
244 struct bcm_enet_desc *desc;
245 struct sk_buff *skb;
246 dma_addr_t p;
247 int desc_idx;
248 u32 len_stat;
249
250 desc_idx = priv->rx_dirty_desc;
251 desc = &priv->rx_desc_cpu[desc_idx];
252
253 if (!priv->rx_skb[desc_idx]) {
254 skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 if (!skb)
256 break;
257 priv->rx_skb[desc_idx] = skb;
258 p = dma_map_single(&priv->pdev->dev, skb->data,
259 priv->rx_skb_size,
260 DMA_FROM_DEVICE);
261 desc->address = p;
262 }
263
264 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 len_stat |= DMADESC_OWNER_MASK;
266 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 priv->rx_dirty_desc = 0;
269 } else {
270 priv->rx_dirty_desc++;
271 }
272 wmb();
273 desc->len_stat = len_stat;
274
275 priv->rx_desc_count++;
276
277 /* tell dma engine we allocated one buffer */
278 if (priv->dma_has_sram)
279 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 else
281 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 }
283
284 /* If rx ring is still empty, set a timer to try allocating
285 * again at a later time. */
286 if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 priv->rx_timeout.expires = jiffies + HZ;
289 add_timer(&priv->rx_timeout);
290 }
291
292 return 0;
293 }
294
295 /*
296 * timer callback to defer refill rx queue in case we're OOM
297 */
298 static void bcm_enet_refill_rx_timer(struct timer_list *t)
299 {
300 struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout);
301 struct net_device *dev = priv->net_dev;
302
303 spin_lock(&priv->rx_lock);
304 bcm_enet_refill_rx(dev);
305 spin_unlock(&priv->rx_lock);
306 }
307
308 /*
309 * extract packet from rx queue
310 */
311 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
312 {
313 struct bcm_enet_priv *priv;
314 struct device *kdev;
315 int processed;
316
317 priv = netdev_priv(dev);
318 kdev = &priv->pdev->dev;
319 processed = 0;
320
321 /* don't scan ring further than number of refilled
322 * descriptor */
323 if (budget > priv->rx_desc_count)
324 budget = priv->rx_desc_count;
325
326 do {
327 struct bcm_enet_desc *desc;
328 struct sk_buff *skb;
329 int desc_idx;
330 u32 len_stat;
331 unsigned int len;
332
333 desc_idx = priv->rx_curr_desc;
334 desc = &priv->rx_desc_cpu[desc_idx];
335
336 /* make sure we actually read the descriptor status at
337 * each loop */
338 rmb();
339
340 len_stat = desc->len_stat;
341
342 /* break if dma ownership belongs to hw */
343 if (len_stat & DMADESC_OWNER_MASK)
344 break;
345
346 processed++;
347 priv->rx_curr_desc++;
348 if (priv->rx_curr_desc == priv->rx_ring_size)
349 priv->rx_curr_desc = 0;
350 priv->rx_desc_count--;
351
352 /* if the packet does not have start of packet _and_
353 * end of packet flag set, then just recycle it */
354 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
355 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
356 dev->stats.rx_dropped++;
357 continue;
358 }
359
360 /* recycle packet if it's marked as bad */
361 if (!priv->enet_is_sw &&
362 unlikely(len_stat & DMADESC_ERR_MASK)) {
363 dev->stats.rx_errors++;
364
365 if (len_stat & DMADESC_OVSIZE_MASK)
366 dev->stats.rx_length_errors++;
367 if (len_stat & DMADESC_CRC_MASK)
368 dev->stats.rx_crc_errors++;
369 if (len_stat & DMADESC_UNDER_MASK)
370 dev->stats.rx_frame_errors++;
371 if (len_stat & DMADESC_OV_MASK)
372 dev->stats.rx_fifo_errors++;
373 continue;
374 }
375
376 /* valid packet */
377 skb = priv->rx_skb[desc_idx];
378 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
379 /* don't include FCS */
380 len -= 4;
381
382 if (len < copybreak) {
383 struct sk_buff *nskb;
384
385 nskb = napi_alloc_skb(&priv->napi, len);
386 if (!nskb) {
387 /* forget packet, just rearm desc */
388 dev->stats.rx_dropped++;
389 continue;
390 }
391
392 dma_sync_single_for_cpu(kdev, desc->address,
393 len, DMA_FROM_DEVICE);
394 memcpy(nskb->data, skb->data, len);
395 dma_sync_single_for_device(kdev, desc->address,
396 len, DMA_FROM_DEVICE);
397 skb = nskb;
398 } else {
399 dma_unmap_single(&priv->pdev->dev, desc->address,
400 priv->rx_skb_size, DMA_FROM_DEVICE);
401 priv->rx_skb[desc_idx] = NULL;
402 }
403
404 skb_put(skb, len);
405 skb->protocol = eth_type_trans(skb, dev);
406 dev->stats.rx_packets++;
407 dev->stats.rx_bytes += len;
408 netif_receive_skb(skb);
409
410 } while (--budget > 0);
411
412 if (processed || !priv->rx_desc_count) {
413 bcm_enet_refill_rx(dev);
414
415 /* kick rx dma */
416 enet_dmac_writel(priv, priv->dma_chan_en_mask,
417 ENETDMAC_CHANCFG, priv->rx_chan);
418 }
419
420 return processed;
421 }
422
423
424 /*
425 * try to or force reclaim of transmitted buffers
426 */
427 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
428 {
429 struct bcm_enet_priv *priv;
430 int released;
431
432 priv = netdev_priv(dev);
433 released = 0;
434
435 while (priv->tx_desc_count < priv->tx_ring_size) {
436 struct bcm_enet_desc *desc;
437 struct sk_buff *skb;
438
439 /* We run in a bh and fight against start_xmit, which
440 * is called with bh disabled */
441 spin_lock(&priv->tx_lock);
442
443 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
444
445 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
446 spin_unlock(&priv->tx_lock);
447 break;
448 }
449
450 /* ensure other field of the descriptor were not read
451 * before we checked ownership */
452 rmb();
453
454 skb = priv->tx_skb[priv->tx_dirty_desc];
455 priv->tx_skb[priv->tx_dirty_desc] = NULL;
456 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
457 DMA_TO_DEVICE);
458
459 priv->tx_dirty_desc++;
460 if (priv->tx_dirty_desc == priv->tx_ring_size)
461 priv->tx_dirty_desc = 0;
462 priv->tx_desc_count++;
463
464 spin_unlock(&priv->tx_lock);
465
466 if (desc->len_stat & DMADESC_UNDER_MASK)
467 dev->stats.tx_errors++;
468
469 dev_kfree_skb(skb);
470 released++;
471 }
472
473 if (netif_queue_stopped(dev) && released)
474 netif_wake_queue(dev);
475
476 return released;
477 }
478
479 /*
480 * poll func, called by network core
481 */
482 static int bcm_enet_poll(struct napi_struct *napi, int budget)
483 {
484 struct bcm_enet_priv *priv;
485 struct net_device *dev;
486 int rx_work_done;
487
488 priv = container_of(napi, struct bcm_enet_priv, napi);
489 dev = priv->net_dev;
490
491 /* ack interrupts */
492 enet_dmac_writel(priv, priv->dma_chan_int_mask,
493 ENETDMAC_IR, priv->rx_chan);
494 enet_dmac_writel(priv, priv->dma_chan_int_mask,
495 ENETDMAC_IR, priv->tx_chan);
496
497 /* reclaim sent skb */
498 bcm_enet_tx_reclaim(dev, 0);
499
500 spin_lock(&priv->rx_lock);
501 rx_work_done = bcm_enet_receive_queue(dev, budget);
502 spin_unlock(&priv->rx_lock);
503
504 if (rx_work_done >= budget) {
505 /* rx queue is not yet empty/clean */
506 return rx_work_done;
507 }
508
509 /* no more packet in rx/tx queue, remove device from poll
510 * queue */
511 napi_complete_done(napi, rx_work_done);
512
513 /* restore rx/tx interrupt */
514 enet_dmac_writel(priv, priv->dma_chan_int_mask,
515 ENETDMAC_IRMASK, priv->rx_chan);
516 enet_dmac_writel(priv, priv->dma_chan_int_mask,
517 ENETDMAC_IRMASK, priv->tx_chan);
518
519 return rx_work_done;
520 }
521
522 /*
523 * mac interrupt handler
524 */
525 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
526 {
527 struct net_device *dev;
528 struct bcm_enet_priv *priv;
529 u32 stat;
530
531 dev = dev_id;
532 priv = netdev_priv(dev);
533
534 stat = enet_readl(priv, ENET_IR_REG);
535 if (!(stat & ENET_IR_MIB))
536 return IRQ_NONE;
537
538 /* clear & mask interrupt */
539 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
540 enet_writel(priv, 0, ENET_IRMASK_REG);
541
542 /* read mib registers in workqueue */
543 schedule_work(&priv->mib_update_task);
544
545 return IRQ_HANDLED;
546 }
547
548 /*
549 * rx/tx dma interrupt handler
550 */
551 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
552 {
553 struct net_device *dev;
554 struct bcm_enet_priv *priv;
555
556 dev = dev_id;
557 priv = netdev_priv(dev);
558
559 /* mask rx/tx interrupts */
560 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
561 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
562
563 napi_schedule(&priv->napi);
564
565 return IRQ_HANDLED;
566 }
567
568 /*
569 * tx request callback
570 */
571 static netdev_tx_t
572 bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
573 {
574 struct bcm_enet_priv *priv;
575 struct bcm_enet_desc *desc;
576 u32 len_stat;
577 netdev_tx_t ret;
578
579 priv = netdev_priv(dev);
580
581 /* lock against tx reclaim */
582 spin_lock(&priv->tx_lock);
583
584 /* make sure the tx hw queue is not full, should not happen
585 * since we stop queue before it's the case */
586 if (unlikely(!priv->tx_desc_count)) {
587 netif_stop_queue(dev);
588 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
589 "available?\n");
590 ret = NETDEV_TX_BUSY;
591 goto out_unlock;
592 }
593
594 /* pad small packets sent on a switch device */
595 if (priv->enet_is_sw && skb->len < 64) {
596 int needed = 64 - skb->len;
597 char *data;
598
599 if (unlikely(skb_tailroom(skb) < needed)) {
600 struct sk_buff *nskb;
601
602 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
603 if (!nskb) {
604 ret = NETDEV_TX_BUSY;
605 goto out_unlock;
606 }
607 dev_kfree_skb(skb);
608 skb = nskb;
609 }
610 data = skb_put_zero(skb, needed);
611 }
612
613 /* point to the next available desc */
614 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
615 priv->tx_skb[priv->tx_curr_desc] = skb;
616
617 /* fill descriptor */
618 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
619 DMA_TO_DEVICE);
620
621 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
622 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
623 DMADESC_APPEND_CRC |
624 DMADESC_OWNER_MASK;
625
626 priv->tx_curr_desc++;
627 if (priv->tx_curr_desc == priv->tx_ring_size) {
628 priv->tx_curr_desc = 0;
629 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
630 }
631 priv->tx_desc_count--;
632
633 /* dma might be already polling, make sure we update desc
634 * fields in correct order */
635 wmb();
636 desc->len_stat = len_stat;
637 wmb();
638
639 /* kick tx dma */
640 enet_dmac_writel(priv, priv->dma_chan_en_mask,
641 ENETDMAC_CHANCFG, priv->tx_chan);
642
643 /* stop queue if no more desc available */
644 if (!priv->tx_desc_count)
645 netif_stop_queue(dev);
646
647 dev->stats.tx_bytes += skb->len;
648 dev->stats.tx_packets++;
649 ret = NETDEV_TX_OK;
650
651 out_unlock:
652 spin_unlock(&priv->tx_lock);
653 return ret;
654 }
655
656 /*
657 * Change the interface's mac address.
658 */
659 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
660 {
661 struct bcm_enet_priv *priv;
662 struct sockaddr *addr = p;
663 u32 val;
664
665 priv = netdev_priv(dev);
666 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
667
668 /* use perfect match register 0 to store my mac address */
669 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
670 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
671 enet_writel(priv, val, ENET_PML_REG(0));
672
673 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
674 val |= ENET_PMH_DATAVALID_MASK;
675 enet_writel(priv, val, ENET_PMH_REG(0));
676
677 return 0;
678 }
679
680 /*
681 * Change rx mode (promiscuous/allmulti) and update multicast list
682 */
683 static void bcm_enet_set_multicast_list(struct net_device *dev)
684 {
685 struct bcm_enet_priv *priv;
686 struct netdev_hw_addr *ha;
687 u32 val;
688 int i;
689
690 priv = netdev_priv(dev);
691
692 val = enet_readl(priv, ENET_RXCFG_REG);
693
694 if (dev->flags & IFF_PROMISC)
695 val |= ENET_RXCFG_PROMISC_MASK;
696 else
697 val &= ~ENET_RXCFG_PROMISC_MASK;
698
699 /* only 3 perfect match registers left, first one is used for
700 * own mac address */
701 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
702 val |= ENET_RXCFG_ALLMCAST_MASK;
703 else
704 val &= ~ENET_RXCFG_ALLMCAST_MASK;
705
706 /* no need to set perfect match registers if we catch all
707 * multicast */
708 if (val & ENET_RXCFG_ALLMCAST_MASK) {
709 enet_writel(priv, val, ENET_RXCFG_REG);
710 return;
711 }
712
713 i = 0;
714 netdev_for_each_mc_addr(ha, dev) {
715 u8 *dmi_addr;
716 u32 tmp;
717
718 if (i == 3)
719 break;
720 /* update perfect match registers */
721 dmi_addr = ha->addr;
722 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
723 (dmi_addr[4] << 8) | dmi_addr[5];
724 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
725
726 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
727 tmp |= ENET_PMH_DATAVALID_MASK;
728 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
729 }
730
731 for (; i < 3; i++) {
732 enet_writel(priv, 0, ENET_PML_REG(i + 1));
733 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
734 }
735
736 enet_writel(priv, val, ENET_RXCFG_REG);
737 }
738
739 /*
740 * set mac duplex parameters
741 */
742 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
743 {
744 u32 val;
745
746 val = enet_readl(priv, ENET_TXCTL_REG);
747 if (fullduplex)
748 val |= ENET_TXCTL_FD_MASK;
749 else
750 val &= ~ENET_TXCTL_FD_MASK;
751 enet_writel(priv, val, ENET_TXCTL_REG);
752 }
753
754 /*
755 * set mac flow control parameters
756 */
757 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
758 {
759 u32 val;
760
761 /* rx flow control (pause frame handling) */
762 val = enet_readl(priv, ENET_RXCFG_REG);
763 if (rx_en)
764 val |= ENET_RXCFG_ENFLOW_MASK;
765 else
766 val &= ~ENET_RXCFG_ENFLOW_MASK;
767 enet_writel(priv, val, ENET_RXCFG_REG);
768
769 if (!priv->dma_has_sram)
770 return;
771
772 /* tx flow control (pause frame generation) */
773 val = enet_dma_readl(priv, ENETDMA_CFG_REG);
774 if (tx_en)
775 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
776 else
777 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
778 enet_dma_writel(priv, val, ENETDMA_CFG_REG);
779 }
780
781 /*
782 * link changed callback (from phylib)
783 */
784 static void bcm_enet_adjust_phy_link(struct net_device *dev)
785 {
786 struct bcm_enet_priv *priv;
787 struct phy_device *phydev;
788 int status_changed;
789
790 priv = netdev_priv(dev);
791 phydev = dev->phydev;
792 status_changed = 0;
793
794 if (priv->old_link != phydev->link) {
795 status_changed = 1;
796 priv->old_link = phydev->link;
797 }
798
799 /* reflect duplex change in mac configuration */
800 if (phydev->link && phydev->duplex != priv->old_duplex) {
801 bcm_enet_set_duplex(priv,
802 (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
803 status_changed = 1;
804 priv->old_duplex = phydev->duplex;
805 }
806
807 /* enable flow control if remote advertise it (trust phylib to
808 * check that duplex is full */
809 if (phydev->link && phydev->pause != priv->old_pause) {
810 int rx_pause_en, tx_pause_en;
811
812 if (phydev->pause) {
813 /* pause was advertised by lpa and us */
814 rx_pause_en = 1;
815 tx_pause_en = 1;
816 } else if (!priv->pause_auto) {
817 /* pause setting overridden by user */
818 rx_pause_en = priv->pause_rx;
819 tx_pause_en = priv->pause_tx;
820 } else {
821 rx_pause_en = 0;
822 tx_pause_en = 0;
823 }
824
825 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
826 status_changed = 1;
827 priv->old_pause = phydev->pause;
828 }
829
830 if (status_changed) {
831 pr_info("%s: link %s", dev->name, phydev->link ?
832 "UP" : "DOWN");
833 if (phydev->link)
834 pr_cont(" - %d/%s - flow control %s", phydev->speed,
835 DUPLEX_FULL == phydev->duplex ? "full" : "half",
836 phydev->pause == 1 ? "rx&tx" : "off");
837
838 pr_cont("\n");
839 }
840 }
841
842 /*
843 * link changed callback (if phylib is not used)
844 */
845 static void bcm_enet_adjust_link(struct net_device *dev)
846 {
847 struct bcm_enet_priv *priv;
848
849 priv = netdev_priv(dev);
850 bcm_enet_set_duplex(priv, priv->force_duplex_full);
851 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
852 netif_carrier_on(dev);
853
854 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
855 dev->name,
856 priv->force_speed_100 ? 100 : 10,
857 priv->force_duplex_full ? "full" : "half",
858 priv->pause_rx ? "rx" : "off",
859 priv->pause_tx ? "tx" : "off");
860 }
861
862 /*
863 * open callback, allocate dma rings & buffers and start rx operation
864 */
865 static int bcm_enet_open(struct net_device *dev)
866 {
867 struct bcm_enet_priv *priv;
868 struct sockaddr addr;
869 struct device *kdev;
870 struct phy_device *phydev;
871 int i, ret;
872 unsigned int size;
873 char phy_id[MII_BUS_ID_SIZE + 3];
874 void *p;
875 u32 val;
876
877 priv = netdev_priv(dev);
878 kdev = &priv->pdev->dev;
879
880 if (priv->has_phy) {
881 /* connect to PHY */
882 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
883 priv->mii_bus->id, priv->phy_id);
884
885 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
886 PHY_INTERFACE_MODE_MII);
887
888 if (IS_ERR(phydev)) {
889 dev_err(kdev, "could not attach to PHY\n");
890 return PTR_ERR(phydev);
891 }
892
893 /* mask with MAC supported features */
894 phy_support_sym_pause(phydev);
895 phy_set_max_speed(phydev, SPEED_100);
896 phy_set_sym_pause(phydev, priv->pause_rx, priv->pause_rx,
897 priv->pause_auto);
898
899 phy_attached_info(phydev);
900
901 priv->old_link = 0;
902 priv->old_duplex = -1;
903 priv->old_pause = -1;
904 } else {
905 phydev = NULL;
906 }
907
908 /* mask all interrupts and request them */
909 enet_writel(priv, 0, ENET_IRMASK_REG);
910 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
911 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
912
913 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
914 if (ret)
915 goto out_phy_disconnect;
916
917 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
918 dev->name, dev);
919 if (ret)
920 goto out_freeirq;
921
922 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
923 0, dev->name, dev);
924 if (ret)
925 goto out_freeirq_rx;
926
927 /* initialize perfect match registers */
928 for (i = 0; i < 4; i++) {
929 enet_writel(priv, 0, ENET_PML_REG(i));
930 enet_writel(priv, 0, ENET_PMH_REG(i));
931 }
932
933 /* write device mac address */
934 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
935 bcm_enet_set_mac_address(dev, &addr);
936
937 /* allocate rx dma ring */
938 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
939 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
940 if (!p) {
941 ret = -ENOMEM;
942 goto out_freeirq_tx;
943 }
944
945 priv->rx_desc_alloc_size = size;
946 priv->rx_desc_cpu = p;
947
948 /* allocate tx dma ring */
949 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
950 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
951 if (!p) {
952 ret = -ENOMEM;
953 goto out_free_rx_ring;
954 }
955
956 priv->tx_desc_alloc_size = size;
957 priv->tx_desc_cpu = p;
958
959 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
960 GFP_KERNEL);
961 if (!priv->tx_skb) {
962 ret = -ENOMEM;
963 goto out_free_tx_ring;
964 }
965
966 priv->tx_desc_count = priv->tx_ring_size;
967 priv->tx_dirty_desc = 0;
968 priv->tx_curr_desc = 0;
969 spin_lock_init(&priv->tx_lock);
970
971 /* init & fill rx ring with skbs */
972 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
973 GFP_KERNEL);
974 if (!priv->rx_skb) {
975 ret = -ENOMEM;
976 goto out_free_tx_skb;
977 }
978
979 priv->rx_desc_count = 0;
980 priv->rx_dirty_desc = 0;
981 priv->rx_curr_desc = 0;
982
983 /* initialize flow control buffer allocation */
984 if (priv->dma_has_sram)
985 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
986 ENETDMA_BUFALLOC_REG(priv->rx_chan));
987 else
988 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
989 ENETDMAC_BUFALLOC, priv->rx_chan);
990
991 if (bcm_enet_refill_rx(dev)) {
992 dev_err(kdev, "cannot allocate rx skb queue\n");
993 ret = -ENOMEM;
994 goto out;
995 }
996
997 /* write rx & tx ring addresses */
998 if (priv->dma_has_sram) {
999 enet_dmas_writel(priv, priv->rx_desc_dma,
1000 ENETDMAS_RSTART_REG, priv->rx_chan);
1001 enet_dmas_writel(priv, priv->tx_desc_dma,
1002 ENETDMAS_RSTART_REG, priv->tx_chan);
1003 } else {
1004 enet_dmac_writel(priv, priv->rx_desc_dma,
1005 ENETDMAC_RSTART, priv->rx_chan);
1006 enet_dmac_writel(priv, priv->tx_desc_dma,
1007 ENETDMAC_RSTART, priv->tx_chan);
1008 }
1009
1010 /* clear remaining state ram for rx & tx channel */
1011 if (priv->dma_has_sram) {
1012 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1013 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1014 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1015 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1016 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1017 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1018 } else {
1019 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1020 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1021 }
1022
1023 /* set max rx/tx length */
1024 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1025 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1026
1027 /* set dma maximum burst len */
1028 enet_dmac_writel(priv, priv->dma_maxburst,
1029 ENETDMAC_MAXBURST, priv->rx_chan);
1030 enet_dmac_writel(priv, priv->dma_maxburst,
1031 ENETDMAC_MAXBURST, priv->tx_chan);
1032
1033 /* set correct transmit fifo watermark */
1034 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1035
1036 /* set flow control low/high threshold to 1/3 / 2/3 */
1037 if (priv->dma_has_sram) {
1038 val = priv->rx_ring_size / 3;
1039 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1040 val = (priv->rx_ring_size * 2) / 3;
1041 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1042 } else {
1043 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1044 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1045 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1046 }
1047
1048 /* all set, enable mac and interrupts, start dma engine and
1049 * kick rx dma channel */
1050 wmb();
1051 val = enet_readl(priv, ENET_CTL_REG);
1052 val |= ENET_CTL_ENABLE_MASK;
1053 enet_writel(priv, val, ENET_CTL_REG);
1054 if (priv->dma_has_sram)
1055 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1056 enet_dmac_writel(priv, priv->dma_chan_en_mask,
1057 ENETDMAC_CHANCFG, priv->rx_chan);
1058
1059 /* watch "mib counters about to overflow" interrupt */
1060 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1061 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1062
1063 /* watch "packet transferred" interrupt in rx and tx */
1064 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1065 ENETDMAC_IR, priv->rx_chan);
1066 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1067 ENETDMAC_IR, priv->tx_chan);
1068
1069 /* make sure we enable napi before rx interrupt */
1070 napi_enable(&priv->napi);
1071
1072 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1073 ENETDMAC_IRMASK, priv->rx_chan);
1074 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1075 ENETDMAC_IRMASK, priv->tx_chan);
1076
1077 if (phydev)
1078 phy_start(phydev);
1079 else
1080 bcm_enet_adjust_link(dev);
1081
1082 netif_start_queue(dev);
1083 return 0;
1084
1085 out:
1086 for (i = 0; i < priv->rx_ring_size; i++) {
1087 struct bcm_enet_desc *desc;
1088
1089 if (!priv->rx_skb[i])
1090 continue;
1091
1092 desc = &priv->rx_desc_cpu[i];
1093 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1094 DMA_FROM_DEVICE);
1095 kfree_skb(priv->rx_skb[i]);
1096 }
1097 kfree(priv->rx_skb);
1098
1099 out_free_tx_skb:
1100 kfree(priv->tx_skb);
1101
1102 out_free_tx_ring:
1103 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1104 priv->tx_desc_cpu, priv->tx_desc_dma);
1105
1106 out_free_rx_ring:
1107 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1108 priv->rx_desc_cpu, priv->rx_desc_dma);
1109
1110 out_freeirq_tx:
1111 free_irq(priv->irq_tx, dev);
1112
1113 out_freeirq_rx:
1114 free_irq(priv->irq_rx, dev);
1115
1116 out_freeirq:
1117 free_irq(dev->irq, dev);
1118
1119 out_phy_disconnect:
1120 if (phydev)
1121 phy_disconnect(phydev);
1122
1123 return ret;
1124 }
1125
1126 /*
1127 * disable mac
1128 */
1129 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1130 {
1131 int limit;
1132 u32 val;
1133
1134 val = enet_readl(priv, ENET_CTL_REG);
1135 val |= ENET_CTL_DISABLE_MASK;
1136 enet_writel(priv, val, ENET_CTL_REG);
1137
1138 limit = 1000;
1139 do {
1140 u32 val;
1141
1142 val = enet_readl(priv, ENET_CTL_REG);
1143 if (!(val & ENET_CTL_DISABLE_MASK))
1144 break;
1145 udelay(1);
1146 } while (limit--);
1147 }
1148
1149 /*
1150 * disable dma in given channel
1151 */
1152 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1153 {
1154 int limit;
1155
1156 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1157
1158 limit = 1000;
1159 do {
1160 u32 val;
1161
1162 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1163 if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1164 break;
1165 udelay(1);
1166 } while (limit--);
1167 }
1168
1169 /*
1170 * stop callback
1171 */
1172 static int bcm_enet_stop(struct net_device *dev)
1173 {
1174 struct bcm_enet_priv *priv;
1175 struct device *kdev;
1176 int i;
1177
1178 priv = netdev_priv(dev);
1179 kdev = &priv->pdev->dev;
1180
1181 netif_stop_queue(dev);
1182 napi_disable(&priv->napi);
1183 if (priv->has_phy)
1184 phy_stop(dev->phydev);
1185 del_timer_sync(&priv->rx_timeout);
1186
1187 /* mask all interrupts */
1188 enet_writel(priv, 0, ENET_IRMASK_REG);
1189 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1190 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1191
1192 /* make sure no mib update is scheduled */
1193 cancel_work_sync(&priv->mib_update_task);
1194
1195 /* disable dma & mac */
1196 bcm_enet_disable_dma(priv, priv->tx_chan);
1197 bcm_enet_disable_dma(priv, priv->rx_chan);
1198 bcm_enet_disable_mac(priv);
1199
1200 /* force reclaim of all tx buffers */
1201 bcm_enet_tx_reclaim(dev, 1);
1202
1203 /* free the rx skb ring */
1204 for (i = 0; i < priv->rx_ring_size; i++) {
1205 struct bcm_enet_desc *desc;
1206
1207 if (!priv->rx_skb[i])
1208 continue;
1209
1210 desc = &priv->rx_desc_cpu[i];
1211 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1212 DMA_FROM_DEVICE);
1213 kfree_skb(priv->rx_skb[i]);
1214 }
1215
1216 /* free remaining allocated memory */
1217 kfree(priv->rx_skb);
1218 kfree(priv->tx_skb);
1219 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1220 priv->rx_desc_cpu, priv->rx_desc_dma);
1221 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1222 priv->tx_desc_cpu, priv->tx_desc_dma);
1223 free_irq(priv->irq_tx, dev);
1224 free_irq(priv->irq_rx, dev);
1225 free_irq(dev->irq, dev);
1226
1227 /* release phy */
1228 if (priv->has_phy)
1229 phy_disconnect(dev->phydev);
1230
1231 return 0;
1232 }
1233
1234 /*
1235 * ethtool callbacks
1236 */
1237 struct bcm_enet_stats {
1238 char stat_string[ETH_GSTRING_LEN];
1239 int sizeof_stat;
1240 int stat_offset;
1241 int mib_reg;
1242 };
1243
1244 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
1245 offsetof(struct bcm_enet_priv, m)
1246 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \
1247 offsetof(struct net_device_stats, m)
1248
1249 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1250 { "rx_packets", DEV_STAT(rx_packets), -1 },
1251 { "tx_packets", DEV_STAT(tx_packets), -1 },
1252 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
1253 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
1254 { "rx_errors", DEV_STAT(rx_errors), -1 },
1255 { "tx_errors", DEV_STAT(tx_errors), -1 },
1256 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
1257 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
1258
1259 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1260 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1261 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1262 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1263 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1264 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1265 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1266 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1267 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1268 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1269 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1270 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1271 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1272 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1273 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1274 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1275 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1276 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1277 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1278 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1279 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1280
1281 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1282 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1283 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1284 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1285 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1286 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1287 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1288 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1289 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1290 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1291 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1292 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1293 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1294 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1295 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1296 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1297 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1298 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1299 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1300 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1301 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1302 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1303
1304 };
1305
1306 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats)
1307
1308 static const u32 unused_mib_regs[] = {
1309 ETH_MIB_TX_ALL_OCTETS,
1310 ETH_MIB_TX_ALL_PKTS,
1311 ETH_MIB_RX_ALL_OCTETS,
1312 ETH_MIB_RX_ALL_PKTS,
1313 };
1314
1315
1316 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1317 struct ethtool_drvinfo *drvinfo)
1318 {
1319 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1320 strlcpy(drvinfo->version, bcm_enet_driver_version,
1321 sizeof(drvinfo->version));
1322 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1323 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1324 }
1325
1326 static int bcm_enet_get_sset_count(struct net_device *netdev,
1327 int string_set)
1328 {
1329 switch (string_set) {
1330 case ETH_SS_STATS:
1331 return BCM_ENET_STATS_LEN;
1332 default:
1333 return -EINVAL;
1334 }
1335 }
1336
1337 static void bcm_enet_get_strings(struct net_device *netdev,
1338 u32 stringset, u8 *data)
1339 {
1340 int i;
1341
1342 switch (stringset) {
1343 case ETH_SS_STATS:
1344 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1345 memcpy(data + i * ETH_GSTRING_LEN,
1346 bcm_enet_gstrings_stats[i].stat_string,
1347 ETH_GSTRING_LEN);
1348 }
1349 break;
1350 }
1351 }
1352
1353 static void update_mib_counters(struct bcm_enet_priv *priv)
1354 {
1355 int i;
1356
1357 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1358 const struct bcm_enet_stats *s;
1359 u32 val;
1360 char *p;
1361
1362 s = &bcm_enet_gstrings_stats[i];
1363 if (s->mib_reg == -1)
1364 continue;
1365
1366 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1367 p = (char *)priv + s->stat_offset;
1368
1369 if (s->sizeof_stat == sizeof(u64))
1370 *(u64 *)p += val;
1371 else
1372 *(u32 *)p += val;
1373 }
1374
1375 /* also empty unused mib counters to make sure mib counter
1376 * overflow interrupt is cleared */
1377 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1378 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1379 }
1380
1381 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1382 {
1383 struct bcm_enet_priv *priv;
1384
1385 priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1386 mutex_lock(&priv->mib_update_lock);
1387 update_mib_counters(priv);
1388 mutex_unlock(&priv->mib_update_lock);
1389
1390 /* reenable mib interrupt */
1391 if (netif_running(priv->net_dev))
1392 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1393 }
1394
1395 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1396 struct ethtool_stats *stats,
1397 u64 *data)
1398 {
1399 struct bcm_enet_priv *priv;
1400 int i;
1401
1402 priv = netdev_priv(netdev);
1403
1404 mutex_lock(&priv->mib_update_lock);
1405 update_mib_counters(priv);
1406
1407 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1408 const struct bcm_enet_stats *s;
1409 char *p;
1410
1411 s = &bcm_enet_gstrings_stats[i];
1412 if (s->mib_reg == -1)
1413 p = (char *)&netdev->stats;
1414 else
1415 p = (char *)priv;
1416 p += s->stat_offset;
1417 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1418 *(u64 *)p : *(u32 *)p;
1419 }
1420 mutex_unlock(&priv->mib_update_lock);
1421 }
1422
1423 static int bcm_enet_nway_reset(struct net_device *dev)
1424 {
1425 struct bcm_enet_priv *priv;
1426
1427 priv = netdev_priv(dev);
1428 if (priv->has_phy)
1429 return phy_ethtool_nway_reset(dev);
1430
1431 return -EOPNOTSUPP;
1432 }
1433
1434 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1435 struct ethtool_link_ksettings *cmd)
1436 {
1437 struct bcm_enet_priv *priv;
1438 u32 supported, advertising;
1439
1440 priv = netdev_priv(dev);
1441
1442 if (priv->has_phy) {
1443 if (!dev->phydev)
1444 return -ENODEV;
1445
1446 phy_ethtool_ksettings_get(dev->phydev, cmd);
1447
1448 return 0;
1449 } else {
1450 cmd->base.autoneg = 0;
1451 cmd->base.speed = (priv->force_speed_100) ?
1452 SPEED_100 : SPEED_10;
1453 cmd->base.duplex = (priv->force_duplex_full) ?
1454 DUPLEX_FULL : DUPLEX_HALF;
1455 supported = ADVERTISED_10baseT_Half |
1456 ADVERTISED_10baseT_Full |
1457 ADVERTISED_100baseT_Half |
1458 ADVERTISED_100baseT_Full;
1459 advertising = 0;
1460 ethtool_convert_legacy_u32_to_link_mode(
1461 cmd->link_modes.supported, supported);
1462 ethtool_convert_legacy_u32_to_link_mode(
1463 cmd->link_modes.advertising, advertising);
1464 cmd->base.port = PORT_MII;
1465 }
1466 return 0;
1467 }
1468
1469 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1470 const struct ethtool_link_ksettings *cmd)
1471 {
1472 struct bcm_enet_priv *priv;
1473
1474 priv = netdev_priv(dev);
1475 if (priv->has_phy) {
1476 if (!dev->phydev)
1477 return -ENODEV;
1478 return phy_ethtool_ksettings_set(dev->phydev, cmd);
1479 } else {
1480
1481 if (cmd->base.autoneg ||
1482 (cmd->base.speed != SPEED_100 &&
1483 cmd->base.speed != SPEED_10) ||
1484 cmd->base.port != PORT_MII)
1485 return -EINVAL;
1486
1487 priv->force_speed_100 =
1488 (cmd->base.speed == SPEED_100) ? 1 : 0;
1489 priv->force_duplex_full =
1490 (cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1491
1492 if (netif_running(dev))
1493 bcm_enet_adjust_link(dev);
1494 return 0;
1495 }
1496 }
1497
1498 static void bcm_enet_get_ringparam(struct net_device *dev,
1499 struct ethtool_ringparam *ering)
1500 {
1501 struct bcm_enet_priv *priv;
1502
1503 priv = netdev_priv(dev);
1504
1505 /* rx/tx ring is actually only limited by memory */
1506 ering->rx_max_pending = 8192;
1507 ering->tx_max_pending = 8192;
1508 ering->rx_pending = priv->rx_ring_size;
1509 ering->tx_pending = priv->tx_ring_size;
1510 }
1511
1512 static int bcm_enet_set_ringparam(struct net_device *dev,
1513 struct ethtool_ringparam *ering)
1514 {
1515 struct bcm_enet_priv *priv;
1516 int was_running;
1517
1518 priv = netdev_priv(dev);
1519
1520 was_running = 0;
1521 if (netif_running(dev)) {
1522 bcm_enet_stop(dev);
1523 was_running = 1;
1524 }
1525
1526 priv->rx_ring_size = ering->rx_pending;
1527 priv->tx_ring_size = ering->tx_pending;
1528
1529 if (was_running) {
1530 int err;
1531
1532 err = bcm_enet_open(dev);
1533 if (err)
1534 dev_close(dev);
1535 else
1536 bcm_enet_set_multicast_list(dev);
1537 }
1538 return 0;
1539 }
1540
1541 static void bcm_enet_get_pauseparam(struct net_device *dev,
1542 struct ethtool_pauseparam *ecmd)
1543 {
1544 struct bcm_enet_priv *priv;
1545
1546 priv = netdev_priv(dev);
1547 ecmd->autoneg = priv->pause_auto;
1548 ecmd->rx_pause = priv->pause_rx;
1549 ecmd->tx_pause = priv->pause_tx;
1550 }
1551
1552 static int bcm_enet_set_pauseparam(struct net_device *dev,
1553 struct ethtool_pauseparam *ecmd)
1554 {
1555 struct bcm_enet_priv *priv;
1556
1557 priv = netdev_priv(dev);
1558
1559 if (priv->has_phy) {
1560 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1561 /* asymetric pause mode not supported,
1562 * actually possible but integrated PHY has RO
1563 * asym_pause bit */
1564 return -EINVAL;
1565 }
1566 } else {
1567 /* no pause autoneg on direct mii connection */
1568 if (ecmd->autoneg)
1569 return -EINVAL;
1570 }
1571
1572 priv->pause_auto = ecmd->autoneg;
1573 priv->pause_rx = ecmd->rx_pause;
1574 priv->pause_tx = ecmd->tx_pause;
1575
1576 return 0;
1577 }
1578
1579 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1580 .get_strings = bcm_enet_get_strings,
1581 .get_sset_count = bcm_enet_get_sset_count,
1582 .get_ethtool_stats = bcm_enet_get_ethtool_stats,
1583 .nway_reset = bcm_enet_nway_reset,
1584 .get_drvinfo = bcm_enet_get_drvinfo,
1585 .get_link = ethtool_op_get_link,
1586 .get_ringparam = bcm_enet_get_ringparam,
1587 .set_ringparam = bcm_enet_set_ringparam,
1588 .get_pauseparam = bcm_enet_get_pauseparam,
1589 .set_pauseparam = bcm_enet_set_pauseparam,
1590 .get_link_ksettings = bcm_enet_get_link_ksettings,
1591 .set_link_ksettings = bcm_enet_set_link_ksettings,
1592 };
1593
1594 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1595 {
1596 struct bcm_enet_priv *priv;
1597
1598 priv = netdev_priv(dev);
1599 if (priv->has_phy) {
1600 if (!dev->phydev)
1601 return -ENODEV;
1602 return phy_mii_ioctl(dev->phydev, rq, cmd);
1603 } else {
1604 struct mii_if_info mii;
1605
1606 mii.dev = dev;
1607 mii.mdio_read = bcm_enet_mdio_read_mii;
1608 mii.mdio_write = bcm_enet_mdio_write_mii;
1609 mii.phy_id = 0;
1610 mii.phy_id_mask = 0x3f;
1611 mii.reg_num_mask = 0x1f;
1612 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1613 }
1614 }
1615
1616 /*
1617 * adjust mtu, can't be called while device is running
1618 */
1619 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1620 {
1621 struct bcm_enet_priv *priv = netdev_priv(dev);
1622 int actual_mtu = new_mtu;
1623
1624 if (netif_running(dev))
1625 return -EBUSY;
1626
1627 /* add ethernet header + vlan tag size */
1628 actual_mtu += VLAN_ETH_HLEN;
1629
1630 /*
1631 * setup maximum size before we get overflow mark in
1632 * descriptor, note that this will not prevent reception of
1633 * big frames, they will be split into multiple buffers
1634 * anyway
1635 */
1636 priv->hw_mtu = actual_mtu;
1637
1638 /*
1639 * align rx buffer size to dma burst len, account FCS since
1640 * it's appended
1641 */
1642 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1643 priv->dma_maxburst * 4);
1644
1645 dev->mtu = new_mtu;
1646 return 0;
1647 }
1648
1649 /*
1650 * preinit hardware to allow mii operation while device is down
1651 */
1652 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1653 {
1654 u32 val;
1655 int limit;
1656
1657 /* make sure mac is disabled */
1658 bcm_enet_disable_mac(priv);
1659
1660 /* soft reset mac */
1661 val = ENET_CTL_SRESET_MASK;
1662 enet_writel(priv, val, ENET_CTL_REG);
1663 wmb();
1664
1665 limit = 1000;
1666 do {
1667 val = enet_readl(priv, ENET_CTL_REG);
1668 if (!(val & ENET_CTL_SRESET_MASK))
1669 break;
1670 udelay(1);
1671 } while (limit--);
1672
1673 /* select correct mii interface */
1674 val = enet_readl(priv, ENET_CTL_REG);
1675 if (priv->use_external_mii)
1676 val |= ENET_CTL_EPHYSEL_MASK;
1677 else
1678 val &= ~ENET_CTL_EPHYSEL_MASK;
1679 enet_writel(priv, val, ENET_CTL_REG);
1680
1681 /* turn on mdc clock */
1682 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1683 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1684
1685 /* set mib counters to self-clear when read */
1686 val = enet_readl(priv, ENET_MIBCTL_REG);
1687 val |= ENET_MIBCTL_RDCLEAR_MASK;
1688 enet_writel(priv, val, ENET_MIBCTL_REG);
1689 }
1690
1691 static const struct net_device_ops bcm_enet_ops = {
1692 .ndo_open = bcm_enet_open,
1693 .ndo_stop = bcm_enet_stop,
1694 .ndo_start_xmit = bcm_enet_start_xmit,
1695 .ndo_set_mac_address = bcm_enet_set_mac_address,
1696 .ndo_set_rx_mode = bcm_enet_set_multicast_list,
1697 .ndo_do_ioctl = bcm_enet_ioctl,
1698 .ndo_change_mtu = bcm_enet_change_mtu,
1699 };
1700
1701 /*
1702 * allocate netdevice, request register memory and register device.
1703 */
1704 static int bcm_enet_probe(struct platform_device *pdev)
1705 {
1706 struct bcm_enet_priv *priv;
1707 struct net_device *dev;
1708 struct bcm63xx_enet_platform_data *pd;
1709 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1710 struct mii_bus *bus;
1711 int i, ret;
1712
1713 if (!bcm_enet_shared_base[0])
1714 return -EPROBE_DEFER;
1715
1716 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1717 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1718 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1719 if (!res_irq || !res_irq_rx || !res_irq_tx)
1720 return -ENODEV;
1721
1722 ret = 0;
1723 dev = alloc_etherdev(sizeof(*priv));
1724 if (!dev)
1725 return -ENOMEM;
1726 priv = netdev_priv(dev);
1727
1728 priv->enet_is_sw = false;
1729 priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1730
1731 ret = bcm_enet_change_mtu(dev, dev->mtu);
1732 if (ret)
1733 goto out;
1734
1735 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1736 priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1737 if (IS_ERR(priv->base)) {
1738 ret = PTR_ERR(priv->base);
1739 goto out;
1740 }
1741
1742 dev->irq = priv->irq = res_irq->start;
1743 priv->irq_rx = res_irq_rx->start;
1744 priv->irq_tx = res_irq_tx->start;
1745
1746 priv->mac_clk = devm_clk_get(&pdev->dev, "enet");
1747 if (IS_ERR(priv->mac_clk)) {
1748 ret = PTR_ERR(priv->mac_clk);
1749 goto out;
1750 }
1751 ret = clk_prepare_enable(priv->mac_clk);
1752 if (ret)
1753 goto out;
1754
1755 /* initialize default and fetch platform data */
1756 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1757 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1758
1759 pd = dev_get_platdata(&pdev->dev);
1760 if (pd) {
1761 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1762 priv->has_phy = pd->has_phy;
1763 priv->phy_id = pd->phy_id;
1764 priv->has_phy_interrupt = pd->has_phy_interrupt;
1765 priv->phy_interrupt = pd->phy_interrupt;
1766 priv->use_external_mii = !pd->use_internal_phy;
1767 priv->pause_auto = pd->pause_auto;
1768 priv->pause_rx = pd->pause_rx;
1769 priv->pause_tx = pd->pause_tx;
1770 priv->force_duplex_full = pd->force_duplex_full;
1771 priv->force_speed_100 = pd->force_speed_100;
1772 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1773 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1774 priv->dma_chan_width = pd->dma_chan_width;
1775 priv->dma_has_sram = pd->dma_has_sram;
1776 priv->dma_desc_shift = pd->dma_desc_shift;
1777 priv->rx_chan = pd->rx_chan;
1778 priv->tx_chan = pd->tx_chan;
1779 }
1780
1781 if (priv->has_phy && !priv->use_external_mii) {
1782 /* using internal PHY, enable clock */
1783 priv->phy_clk = devm_clk_get(&pdev->dev, "ephy");
1784 if (IS_ERR(priv->phy_clk)) {
1785 ret = PTR_ERR(priv->phy_clk);
1786 priv->phy_clk = NULL;
1787 goto out_disable_clk_mac;
1788 }
1789 ret = clk_prepare_enable(priv->phy_clk);
1790 if (ret)
1791 goto out_disable_clk_mac;
1792 }
1793
1794 /* do minimal hardware init to be able to probe mii bus */
1795 bcm_enet_hw_preinit(priv);
1796
1797 /* MII bus registration */
1798 if (priv->has_phy) {
1799
1800 priv->mii_bus = mdiobus_alloc();
1801 if (!priv->mii_bus) {
1802 ret = -ENOMEM;
1803 goto out_uninit_hw;
1804 }
1805
1806 bus = priv->mii_bus;
1807 bus->name = "bcm63xx_enet MII bus";
1808 bus->parent = &pdev->dev;
1809 bus->priv = priv;
1810 bus->read = bcm_enet_mdio_read_phylib;
1811 bus->write = bcm_enet_mdio_write_phylib;
1812 sprintf(bus->id, "%s-%d", pdev->name, pdev->id);
1813
1814 /* only probe bus where we think the PHY is, because
1815 * the mdio read operation return 0 instead of 0xffff
1816 * if a slave is not present on hw */
1817 bus->phy_mask = ~(1 << priv->phy_id);
1818
1819 if (priv->has_phy_interrupt)
1820 bus->irq[priv->phy_id] = priv->phy_interrupt;
1821
1822 ret = mdiobus_register(bus);
1823 if (ret) {
1824 dev_err(&pdev->dev, "unable to register mdio bus\n");
1825 goto out_free_mdio;
1826 }
1827 } else {
1828
1829 /* run platform code to initialize PHY device */
1830 if (pd && pd->mii_config &&
1831 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1832 bcm_enet_mdio_write_mii)) {
1833 dev_err(&pdev->dev, "unable to configure mdio bus\n");
1834 goto out_uninit_hw;
1835 }
1836 }
1837
1838 spin_lock_init(&priv->rx_lock);
1839
1840 /* init rx timeout (used for oom) */
1841 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
1842
1843 /* init the mib update lock&work */
1844 mutex_init(&priv->mib_update_lock);
1845 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1846
1847 /* zero mib counters */
1848 for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1849 enet_writel(priv, 0, ENET_MIB_REG(i));
1850
1851 /* register netdevice */
1852 dev->netdev_ops = &bcm_enet_ops;
1853 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1854
1855 dev->ethtool_ops = &bcm_enet_ethtool_ops;
1856 /* MTU range: 46 - 2028 */
1857 dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1858 dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1859 SET_NETDEV_DEV(dev, &pdev->dev);
1860
1861 ret = register_netdev(dev);
1862 if (ret)
1863 goto out_unregister_mdio;
1864
1865 netif_carrier_off(dev);
1866 platform_set_drvdata(pdev, dev);
1867 priv->pdev = pdev;
1868 priv->net_dev = dev;
1869
1870 return 0;
1871
1872 out_unregister_mdio:
1873 if (priv->mii_bus)
1874 mdiobus_unregister(priv->mii_bus);
1875
1876 out_free_mdio:
1877 if (priv->mii_bus)
1878 mdiobus_free(priv->mii_bus);
1879
1880 out_uninit_hw:
1881 /* turn off mdc clock */
1882 enet_writel(priv, 0, ENET_MIISC_REG);
1883 clk_disable_unprepare(priv->phy_clk);
1884
1885 out_disable_clk_mac:
1886 clk_disable_unprepare(priv->mac_clk);
1887 out:
1888 free_netdev(dev);
1889 return ret;
1890 }
1891
1892
1893 /*
1894 * exit func, stops hardware and unregisters netdevice
1895 */
1896 static int bcm_enet_remove(struct platform_device *pdev)
1897 {
1898 struct bcm_enet_priv *priv;
1899 struct net_device *dev;
1900
1901 /* stop netdevice */
1902 dev = platform_get_drvdata(pdev);
1903 priv = netdev_priv(dev);
1904 unregister_netdev(dev);
1905
1906 /* turn off mdc clock */
1907 enet_writel(priv, 0, ENET_MIISC_REG);
1908
1909 if (priv->has_phy) {
1910 mdiobus_unregister(priv->mii_bus);
1911 mdiobus_free(priv->mii_bus);
1912 } else {
1913 struct bcm63xx_enet_platform_data *pd;
1914
1915 pd = dev_get_platdata(&pdev->dev);
1916 if (pd && pd->mii_config)
1917 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1918 bcm_enet_mdio_write_mii);
1919 }
1920
1921 /* disable hw block clocks */
1922 clk_disable_unprepare(priv->phy_clk);
1923 clk_disable_unprepare(priv->mac_clk);
1924
1925 free_netdev(dev);
1926 return 0;
1927 }
1928
1929 struct platform_driver bcm63xx_enet_driver = {
1930 .probe = bcm_enet_probe,
1931 .remove = bcm_enet_remove,
1932 .driver = {
1933 .name = "bcm63xx_enet",
1934 .owner = THIS_MODULE,
1935 },
1936 };
1937
1938 /*
1939 * switch mii access callbacks
1940 */
1941 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1942 int ext, int phy_id, int location)
1943 {
1944 u32 reg;
1945 int ret;
1946
1947 spin_lock_bh(&priv->enetsw_mdio_lock);
1948 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1949
1950 reg = ENETSW_MDIOC_RD_MASK |
1951 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1952 (location << ENETSW_MDIOC_REG_SHIFT);
1953
1954 if (ext)
1955 reg |= ENETSW_MDIOC_EXT_MASK;
1956
1957 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1958 udelay(50);
1959 ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1960 spin_unlock_bh(&priv->enetsw_mdio_lock);
1961 return ret;
1962 }
1963
1964 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1965 int ext, int phy_id, int location,
1966 uint16_t data)
1967 {
1968 u32 reg;
1969
1970 spin_lock_bh(&priv->enetsw_mdio_lock);
1971 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1972
1973 reg = ENETSW_MDIOC_WR_MASK |
1974 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1975 (location << ENETSW_MDIOC_REG_SHIFT);
1976
1977 if (ext)
1978 reg |= ENETSW_MDIOC_EXT_MASK;
1979
1980 reg |= data;
1981
1982 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1983 udelay(50);
1984 spin_unlock_bh(&priv->enetsw_mdio_lock);
1985 }
1986
1987 static inline int bcm_enet_port_is_rgmii(int portid)
1988 {
1989 return portid >= ENETSW_RGMII_PORT0;
1990 }
1991
1992 /*
1993 * enet sw PHY polling
1994 */
1995 static void swphy_poll_timer(struct timer_list *t)
1996 {
1997 struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll);
1998 unsigned int i;
1999
2000 for (i = 0; i < priv->num_ports; i++) {
2001 struct bcm63xx_enetsw_port *port;
2002 int val, j, up, advertise, lpa, speed, duplex, media;
2003 int external_phy = bcm_enet_port_is_rgmii(i);
2004 u8 override;
2005
2006 port = &priv->used_ports[i];
2007 if (!port->used)
2008 continue;
2009
2010 if (port->bypass_link)
2011 continue;
2012
2013 /* dummy read to clear */
2014 for (j = 0; j < 2; j++)
2015 val = bcmenet_sw_mdio_read(priv, external_phy,
2016 port->phy_id, MII_BMSR);
2017
2018 if (val == 0xffff)
2019 continue;
2020
2021 up = (val & BMSR_LSTATUS) ? 1 : 0;
2022 if (!(up ^ priv->sw_port_link[i]))
2023 continue;
2024
2025 priv->sw_port_link[i] = up;
2026
2027 /* link changed */
2028 if (!up) {
2029 dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2030 port->name);
2031 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2032 ENETSW_PORTOV_REG(i));
2033 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2034 ENETSW_PTCTRL_TXDIS_MASK,
2035 ENETSW_PTCTRL_REG(i));
2036 continue;
2037 }
2038
2039 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2040 port->phy_id, MII_ADVERTISE);
2041
2042 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2043 MII_LPA);
2044
2045 /* figure out media and duplex from advertise and LPA values */
2046 media = mii_nway_result(lpa & advertise);
2047 duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2048
2049 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2050 speed = 100;
2051 else
2052 speed = 10;
2053
2054 if (val & BMSR_ESTATEN) {
2055 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2056 port->phy_id, MII_CTRL1000);
2057
2058 lpa = bcmenet_sw_mdio_read(priv, external_phy,
2059 port->phy_id, MII_STAT1000);
2060
2061 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2062 && lpa & (LPA_1000FULL | LPA_1000HALF)) {
2063 speed = 1000;
2064 duplex = (lpa & LPA_1000FULL);
2065 }
2066 }
2067
2068 dev_info(&priv->pdev->dev,
2069 "link UP on %s, %dMbps, %s-duplex\n",
2070 port->name, speed, duplex ? "full" : "half");
2071
2072 override = ENETSW_PORTOV_ENABLE_MASK |
2073 ENETSW_PORTOV_LINKUP_MASK;
2074
2075 if (speed == 1000)
2076 override |= ENETSW_IMPOV_1000_MASK;
2077 else if (speed == 100)
2078 override |= ENETSW_IMPOV_100_MASK;
2079 if (duplex)
2080 override |= ENETSW_IMPOV_FDX_MASK;
2081
2082 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2083 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2084 }
2085
2086 priv->swphy_poll.expires = jiffies + HZ;
2087 add_timer(&priv->swphy_poll);
2088 }
2089
2090 /*
2091 * open callback, allocate dma rings & buffers and start rx operation
2092 */
2093 static int bcm_enetsw_open(struct net_device *dev)
2094 {
2095 struct bcm_enet_priv *priv;
2096 struct device *kdev;
2097 int i, ret;
2098 unsigned int size;
2099 void *p;
2100 u32 val;
2101
2102 priv = netdev_priv(dev);
2103 kdev = &priv->pdev->dev;
2104
2105 /* mask all interrupts and request them */
2106 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2107 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2108
2109 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2110 0, dev->name, dev);
2111 if (ret)
2112 goto out_freeirq;
2113
2114 if (priv->irq_tx != -1) {
2115 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2116 0, dev->name, dev);
2117 if (ret)
2118 goto out_freeirq_rx;
2119 }
2120
2121 /* allocate rx dma ring */
2122 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2123 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2124 if (!p) {
2125 dev_err(kdev, "cannot allocate rx ring %u\n", size);
2126 ret = -ENOMEM;
2127 goto out_freeirq_tx;
2128 }
2129
2130 priv->rx_desc_alloc_size = size;
2131 priv->rx_desc_cpu = p;
2132
2133 /* allocate tx dma ring */
2134 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2135 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2136 if (!p) {
2137 dev_err(kdev, "cannot allocate tx ring\n");
2138 ret = -ENOMEM;
2139 goto out_free_rx_ring;
2140 }
2141
2142 priv->tx_desc_alloc_size = size;
2143 priv->tx_desc_cpu = p;
2144
2145 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
2146 GFP_KERNEL);
2147 if (!priv->tx_skb) {
2148 dev_err(kdev, "cannot allocate rx skb queue\n");
2149 ret = -ENOMEM;
2150 goto out_free_tx_ring;
2151 }
2152
2153 priv->tx_desc_count = priv->tx_ring_size;
2154 priv->tx_dirty_desc = 0;
2155 priv->tx_curr_desc = 0;
2156 spin_lock_init(&priv->tx_lock);
2157
2158 /* init & fill rx ring with skbs */
2159 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
2160 GFP_KERNEL);
2161 if (!priv->rx_skb) {
2162 dev_err(kdev, "cannot allocate rx skb queue\n");
2163 ret = -ENOMEM;
2164 goto out_free_tx_skb;
2165 }
2166
2167 priv->rx_desc_count = 0;
2168 priv->rx_dirty_desc = 0;
2169 priv->rx_curr_desc = 0;
2170
2171 /* disable all ports */
2172 for (i = 0; i < priv->num_ports; i++) {
2173 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2174 ENETSW_PORTOV_REG(i));
2175 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2176 ENETSW_PTCTRL_TXDIS_MASK,
2177 ENETSW_PTCTRL_REG(i));
2178
2179 priv->sw_port_link[i] = 0;
2180 }
2181
2182 /* reset mib */
2183 val = enetsw_readb(priv, ENETSW_GMCR_REG);
2184 val |= ENETSW_GMCR_RST_MIB_MASK;
2185 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2186 mdelay(1);
2187 val &= ~ENETSW_GMCR_RST_MIB_MASK;
2188 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2189 mdelay(1);
2190
2191 /* force CPU port state */
2192 val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2193 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2194 enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2195
2196 /* enable switch forward engine */
2197 val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2198 val |= ENETSW_SWMODE_FWD_EN_MASK;
2199 enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2200
2201 /* enable jumbo on all ports */
2202 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2203 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2204
2205 /* initialize flow control buffer allocation */
2206 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2207 ENETDMA_BUFALLOC_REG(priv->rx_chan));
2208
2209 if (bcm_enet_refill_rx(dev)) {
2210 dev_err(kdev, "cannot allocate rx skb queue\n");
2211 ret = -ENOMEM;
2212 goto out;
2213 }
2214
2215 /* write rx & tx ring addresses */
2216 enet_dmas_writel(priv, priv->rx_desc_dma,
2217 ENETDMAS_RSTART_REG, priv->rx_chan);
2218 enet_dmas_writel(priv, priv->tx_desc_dma,
2219 ENETDMAS_RSTART_REG, priv->tx_chan);
2220
2221 /* clear remaining state ram for rx & tx channel */
2222 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2223 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2224 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2225 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2226 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2227 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2228
2229 /* set dma maximum burst len */
2230 enet_dmac_writel(priv, priv->dma_maxburst,
2231 ENETDMAC_MAXBURST, priv->rx_chan);
2232 enet_dmac_writel(priv, priv->dma_maxburst,
2233 ENETDMAC_MAXBURST, priv->tx_chan);
2234
2235 /* set flow control low/high threshold to 1/3 / 2/3 */
2236 val = priv->rx_ring_size / 3;
2237 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2238 val = (priv->rx_ring_size * 2) / 3;
2239 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2240
2241 /* all set, enable mac and interrupts, start dma engine and
2242 * kick rx dma channel
2243 */
2244 wmb();
2245 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2246 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2247 ENETDMAC_CHANCFG, priv->rx_chan);
2248
2249 /* watch "packet transferred" interrupt in rx and tx */
2250 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2251 ENETDMAC_IR, priv->rx_chan);
2252 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2253 ENETDMAC_IR, priv->tx_chan);
2254
2255 /* make sure we enable napi before rx interrupt */
2256 napi_enable(&priv->napi);
2257
2258 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2259 ENETDMAC_IRMASK, priv->rx_chan);
2260 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2261 ENETDMAC_IRMASK, priv->tx_chan);
2262
2263 netif_carrier_on(dev);
2264 netif_start_queue(dev);
2265
2266 /* apply override config for bypass_link ports here. */
2267 for (i = 0; i < priv->num_ports; i++) {
2268 struct bcm63xx_enetsw_port *port;
2269 u8 override;
2270 port = &priv->used_ports[i];
2271 if (!port->used)
2272 continue;
2273
2274 if (!port->bypass_link)
2275 continue;
2276
2277 override = ENETSW_PORTOV_ENABLE_MASK |
2278 ENETSW_PORTOV_LINKUP_MASK;
2279
2280 switch (port->force_speed) {
2281 case 1000:
2282 override |= ENETSW_IMPOV_1000_MASK;
2283 break;
2284 case 100:
2285 override |= ENETSW_IMPOV_100_MASK;
2286 break;
2287 case 10:
2288 break;
2289 default:
2290 pr_warn("invalid forced speed on port %s: assume 10\n",
2291 port->name);
2292 break;
2293 }
2294
2295 if (port->force_duplex_full)
2296 override |= ENETSW_IMPOV_FDX_MASK;
2297
2298
2299 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2300 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2301 }
2302
2303 /* start phy polling timer */
2304 timer_setup(&priv->swphy_poll, swphy_poll_timer, 0);
2305 mod_timer(&priv->swphy_poll, jiffies);
2306 return 0;
2307
2308 out:
2309 for (i = 0; i < priv->rx_ring_size; i++) {
2310 struct bcm_enet_desc *desc;
2311
2312 if (!priv->rx_skb[i])
2313 continue;
2314
2315 desc = &priv->rx_desc_cpu[i];
2316 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2317 DMA_FROM_DEVICE);
2318 kfree_skb(priv->rx_skb[i]);
2319 }
2320 kfree(priv->rx_skb);
2321
2322 out_free_tx_skb:
2323 kfree(priv->tx_skb);
2324
2325 out_free_tx_ring:
2326 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2327 priv->tx_desc_cpu, priv->tx_desc_dma);
2328
2329 out_free_rx_ring:
2330 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2331 priv->rx_desc_cpu, priv->rx_desc_dma);
2332
2333 out_freeirq_tx:
2334 if (priv->irq_tx != -1)
2335 free_irq(priv->irq_tx, dev);
2336
2337 out_freeirq_rx:
2338 free_irq(priv->irq_rx, dev);
2339
2340 out_freeirq:
2341 return ret;
2342 }
2343
2344 /* stop callback */
2345 static int bcm_enetsw_stop(struct net_device *dev)
2346 {
2347 struct bcm_enet_priv *priv;
2348 struct device *kdev;
2349 int i;
2350
2351 priv = netdev_priv(dev);
2352 kdev = &priv->pdev->dev;
2353
2354 del_timer_sync(&priv->swphy_poll);
2355 netif_stop_queue(dev);
2356 napi_disable(&priv->napi);
2357 del_timer_sync(&priv->rx_timeout);
2358
2359 /* mask all interrupts */
2360 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2361 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2362
2363 /* disable dma & mac */
2364 bcm_enet_disable_dma(priv, priv->tx_chan);
2365 bcm_enet_disable_dma(priv, priv->rx_chan);
2366
2367 /* force reclaim of all tx buffers */
2368 bcm_enet_tx_reclaim(dev, 1);
2369
2370 /* free the rx skb ring */
2371 for (i = 0; i < priv->rx_ring_size; i++) {
2372 struct bcm_enet_desc *desc;
2373
2374 if (!priv->rx_skb[i])
2375 continue;
2376
2377 desc = &priv->rx_desc_cpu[i];
2378 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2379 DMA_FROM_DEVICE);
2380 kfree_skb(priv->rx_skb[i]);
2381 }
2382
2383 /* free remaining allocated memory */
2384 kfree(priv->rx_skb);
2385 kfree(priv->tx_skb);
2386 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2387 priv->rx_desc_cpu, priv->rx_desc_dma);
2388 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2389 priv->tx_desc_cpu, priv->tx_desc_dma);
2390 if (priv->irq_tx != -1)
2391 free_irq(priv->irq_tx, dev);
2392 free_irq(priv->irq_rx, dev);
2393
2394 return 0;
2395 }
2396
2397 /* try to sort out phy external status by walking the used_port field
2398 * in the bcm_enet_priv structure. in case the phy address is not
2399 * assigned to any physical port on the switch, assume it is external
2400 * (and yell at the user).
2401 */
2402 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2403 {
2404 int i;
2405
2406 for (i = 0; i < priv->num_ports; ++i) {
2407 if (!priv->used_ports[i].used)
2408 continue;
2409 if (priv->used_ports[i].phy_id == phy_id)
2410 return bcm_enet_port_is_rgmii(i);
2411 }
2412
2413 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2414 phy_id);
2415 return 1;
2416 }
2417
2418 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2419 * external/internal status of the given phy_id first.
2420 */
2421 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2422 int location)
2423 {
2424 struct bcm_enet_priv *priv;
2425
2426 priv = netdev_priv(dev);
2427 return bcmenet_sw_mdio_read(priv,
2428 bcm_enetsw_phy_is_external(priv, phy_id),
2429 phy_id, location);
2430 }
2431
2432 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2433 * external/internal status of the given phy_id first.
2434 */
2435 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2436 int location,
2437 int val)
2438 {
2439 struct bcm_enet_priv *priv;
2440
2441 priv = netdev_priv(dev);
2442 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2443 phy_id, location, val);
2444 }
2445
2446 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2447 {
2448 struct mii_if_info mii;
2449
2450 mii.dev = dev;
2451 mii.mdio_read = bcm_enetsw_mii_mdio_read;
2452 mii.mdio_write = bcm_enetsw_mii_mdio_write;
2453 mii.phy_id = 0;
2454 mii.phy_id_mask = 0x3f;
2455 mii.reg_num_mask = 0x1f;
2456 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2457
2458 }
2459
2460 static const struct net_device_ops bcm_enetsw_ops = {
2461 .ndo_open = bcm_enetsw_open,
2462 .ndo_stop = bcm_enetsw_stop,
2463 .ndo_start_xmit = bcm_enet_start_xmit,
2464 .ndo_change_mtu = bcm_enet_change_mtu,
2465 .ndo_do_ioctl = bcm_enetsw_ioctl,
2466 };
2467
2468
2469 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2470 { "rx_packets", DEV_STAT(rx_packets), -1 },
2471 { "tx_packets", DEV_STAT(tx_packets), -1 },
2472 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
2473 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
2474 { "rx_errors", DEV_STAT(rx_errors), -1 },
2475 { "tx_errors", DEV_STAT(tx_errors), -1 },
2476 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
2477 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
2478
2479 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2480 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2481 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2482 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2483 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2484 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2485 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2486 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2487 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2488 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2489 ETHSW_MIB_RX_1024_1522 },
2490 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2491 ETHSW_MIB_RX_1523_2047 },
2492 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2493 ETHSW_MIB_RX_2048_4095 },
2494 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2495 ETHSW_MIB_RX_4096_8191 },
2496 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2497 ETHSW_MIB_RX_8192_9728 },
2498 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2499 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2500 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2501 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2502 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2503
2504 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2505 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2506 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2507 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2508 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2509 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2510
2511 };
2512
2513 #define BCM_ENETSW_STATS_LEN \
2514 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2515
2516 static void bcm_enetsw_get_strings(struct net_device *netdev,
2517 u32 stringset, u8 *data)
2518 {
2519 int i;
2520
2521 switch (stringset) {
2522 case ETH_SS_STATS:
2523 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2524 memcpy(data + i * ETH_GSTRING_LEN,
2525 bcm_enetsw_gstrings_stats[i].stat_string,
2526 ETH_GSTRING_LEN);
2527 }
2528 break;
2529 }
2530 }
2531
2532 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2533 int string_set)
2534 {
2535 switch (string_set) {
2536 case ETH_SS_STATS:
2537 return BCM_ENETSW_STATS_LEN;
2538 default:
2539 return -EINVAL;
2540 }
2541 }
2542
2543 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2544 struct ethtool_drvinfo *drvinfo)
2545 {
2546 strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2547 strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2548 strncpy(drvinfo->fw_version, "N/A", 32);
2549 strncpy(drvinfo->bus_info, "bcm63xx", 32);
2550 }
2551
2552 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2553 struct ethtool_stats *stats,
2554 u64 *data)
2555 {
2556 struct bcm_enet_priv *priv;
2557 int i;
2558
2559 priv = netdev_priv(netdev);
2560
2561 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2562 const struct bcm_enet_stats *s;
2563 u32 lo, hi;
2564 char *p;
2565 int reg;
2566
2567 s = &bcm_enetsw_gstrings_stats[i];
2568
2569 reg = s->mib_reg;
2570 if (reg == -1)
2571 continue;
2572
2573 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2574 p = (char *)priv + s->stat_offset;
2575
2576 if (s->sizeof_stat == sizeof(u64)) {
2577 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2578 *(u64 *)p = ((u64)hi << 32 | lo);
2579 } else {
2580 *(u32 *)p = lo;
2581 }
2582 }
2583
2584 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2585 const struct bcm_enet_stats *s;
2586 char *p;
2587
2588 s = &bcm_enetsw_gstrings_stats[i];
2589
2590 if (s->mib_reg == -1)
2591 p = (char *)&netdev->stats + s->stat_offset;
2592 else
2593 p = (char *)priv + s->stat_offset;
2594
2595 data[i] = (s->sizeof_stat == sizeof(u64)) ?
2596 *(u64 *)p : *(u32 *)p;
2597 }
2598 }
2599
2600 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2601 struct ethtool_ringparam *ering)
2602 {
2603 struct bcm_enet_priv *priv;
2604
2605 priv = netdev_priv(dev);
2606
2607 /* rx/tx ring is actually only limited by memory */
2608 ering->rx_max_pending = 8192;
2609 ering->tx_max_pending = 8192;
2610 ering->rx_mini_max_pending = 0;
2611 ering->rx_jumbo_max_pending = 0;
2612 ering->rx_pending = priv->rx_ring_size;
2613 ering->tx_pending = priv->tx_ring_size;
2614 }
2615
2616 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2617 struct ethtool_ringparam *ering)
2618 {
2619 struct bcm_enet_priv *priv;
2620 int was_running;
2621
2622 priv = netdev_priv(dev);
2623
2624 was_running = 0;
2625 if (netif_running(dev)) {
2626 bcm_enetsw_stop(dev);
2627 was_running = 1;
2628 }
2629
2630 priv->rx_ring_size = ering->rx_pending;
2631 priv->tx_ring_size = ering->tx_pending;
2632
2633 if (was_running) {
2634 int err;
2635
2636 err = bcm_enetsw_open(dev);
2637 if (err)
2638 dev_close(dev);
2639 }
2640 return 0;
2641 }
2642
2643 static const struct ethtool_ops bcm_enetsw_ethtool_ops = {
2644 .get_strings = bcm_enetsw_get_strings,
2645 .get_sset_count = bcm_enetsw_get_sset_count,
2646 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats,
2647 .get_drvinfo = bcm_enetsw_get_drvinfo,
2648 .get_ringparam = bcm_enetsw_get_ringparam,
2649 .set_ringparam = bcm_enetsw_set_ringparam,
2650 };
2651
2652 /* allocate netdevice, request register memory and register device. */
2653 static int bcm_enetsw_probe(struct platform_device *pdev)
2654 {
2655 struct bcm_enet_priv *priv;
2656 struct net_device *dev;
2657 struct bcm63xx_enetsw_platform_data *pd;
2658 struct resource *res_mem;
2659 int ret, irq_rx, irq_tx;
2660
2661 if (!bcm_enet_shared_base[0])
2662 return -EPROBE_DEFER;
2663
2664 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2665 irq_rx = platform_get_irq(pdev, 0);
2666 irq_tx = platform_get_irq(pdev, 1);
2667 if (!res_mem || irq_rx < 0)
2668 return -ENODEV;
2669
2670 ret = 0;
2671 dev = alloc_etherdev(sizeof(*priv));
2672 if (!dev)
2673 return -ENOMEM;
2674 priv = netdev_priv(dev);
2675 memset(priv, 0, sizeof(*priv));
2676
2677 /* initialize default and fetch platform data */
2678 priv->enet_is_sw = true;
2679 priv->irq_rx = irq_rx;
2680 priv->irq_tx = irq_tx;
2681 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2682 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2683 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2684
2685 pd = dev_get_platdata(&pdev->dev);
2686 if (pd) {
2687 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2688 memcpy(priv->used_ports, pd->used_ports,
2689 sizeof(pd->used_ports));
2690 priv->num_ports = pd->num_ports;
2691 priv->dma_has_sram = pd->dma_has_sram;
2692 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2693 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2694 priv->dma_chan_width = pd->dma_chan_width;
2695 }
2696
2697 ret = bcm_enet_change_mtu(dev, dev->mtu);
2698 if (ret)
2699 goto out;
2700
2701 priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
2702 if (IS_ERR(priv->base)) {
2703 ret = PTR_ERR(priv->base);
2704 goto out;
2705 }
2706
2707 priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw");
2708 if (IS_ERR(priv->mac_clk)) {
2709 ret = PTR_ERR(priv->mac_clk);
2710 goto out;
2711 }
2712 ret = clk_prepare_enable(priv->mac_clk);
2713 if (ret)
2714 goto out;
2715
2716 priv->rx_chan = 0;
2717 priv->tx_chan = 1;
2718 spin_lock_init(&priv->rx_lock);
2719
2720 /* init rx timeout (used for oom) */
2721 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
2722
2723 /* register netdevice */
2724 dev->netdev_ops = &bcm_enetsw_ops;
2725 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2726 dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2727 SET_NETDEV_DEV(dev, &pdev->dev);
2728
2729 spin_lock_init(&priv->enetsw_mdio_lock);
2730
2731 ret = register_netdev(dev);
2732 if (ret)
2733 goto out_disable_clk;
2734
2735 netif_carrier_off(dev);
2736 platform_set_drvdata(pdev, dev);
2737 priv->pdev = pdev;
2738 priv->net_dev = dev;
2739
2740 return 0;
2741
2742 out_disable_clk:
2743 clk_disable_unprepare(priv->mac_clk);
2744 out:
2745 free_netdev(dev);
2746 return ret;
2747 }
2748
2749
2750 /* exit func, stops hardware and unregisters netdevice */
2751 static int bcm_enetsw_remove(struct platform_device *pdev)
2752 {
2753 struct bcm_enet_priv *priv;
2754 struct net_device *dev;
2755
2756 /* stop netdevice */
2757 dev = platform_get_drvdata(pdev);
2758 priv = netdev_priv(dev);
2759 unregister_netdev(dev);
2760
2761 clk_disable_unprepare(priv->mac_clk);
2762
2763 free_netdev(dev);
2764 return 0;
2765 }
2766
2767 struct platform_driver bcm63xx_enetsw_driver = {
2768 .probe = bcm_enetsw_probe,
2769 .remove = bcm_enetsw_remove,
2770 .driver = {
2771 .name = "bcm63xx_enetsw",
2772 .owner = THIS_MODULE,
2773 },
2774 };
2775
2776 /* reserve & remap memory space shared between all macs */
2777 static int bcm_enet_shared_probe(struct platform_device *pdev)
2778 {
2779 struct resource *res;
2780 void __iomem *p[3];
2781 unsigned int i;
2782
2783 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2784
2785 for (i = 0; i < 3; i++) {
2786 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2787 p[i] = devm_ioremap_resource(&pdev->dev, res);
2788 if (IS_ERR(p[i]))
2789 return PTR_ERR(p[i]);
2790 }
2791
2792 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2793
2794 return 0;
2795 }
2796
2797 static int bcm_enet_shared_remove(struct platform_device *pdev)
2798 {
2799 return 0;
2800 }
2801
2802 /* this "shared" driver is needed because both macs share a single
2803 * address space
2804 */
2805 struct platform_driver bcm63xx_enet_shared_driver = {
2806 .probe = bcm_enet_shared_probe,
2807 .remove = bcm_enet_shared_remove,
2808 .driver = {
2809 .name = "bcm63xx_enet_shared",
2810 .owner = THIS_MODULE,
2811 },
2812 };
2813
2814 static struct platform_driver * const drivers[] = {
2815 &bcm63xx_enet_shared_driver,
2816 &bcm63xx_enet_driver,
2817 &bcm63xx_enetsw_driver,
2818 };
2819
2820 /* entry point */
2821 static int __init bcm_enet_init(void)
2822 {
2823 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2824 }
2825
2826 static void __exit bcm_enet_exit(void)
2827 {
2828 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2829 }
2830
2831
2832 module_init(bcm_enet_init);
2833 module_exit(bcm_enet_exit);
2834
2835 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2836 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2837 MODULE_LICENSE("GPL");