]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.c
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40
41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 int i;
44
45 /* Add NAPI objects */
46 for_each_rx_queue_cnic(bp, i) {
47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 bnx2x_poll, NAPI_POLL_WEIGHT);
49 napi_hash_add(&bnx2x_fp(bp, i, napi));
50 }
51 }
52
53 static void bnx2x_add_all_napi(struct bnx2x *bp)
54 {
55 int i;
56
57 /* Add NAPI objects */
58 for_each_eth_queue(bp, i) {
59 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
60 bnx2x_poll, NAPI_POLL_WEIGHT);
61 napi_hash_add(&bnx2x_fp(bp, i, napi));
62 }
63 }
64
65 static int bnx2x_calc_num_queues(struct bnx2x *bp)
66 {
67 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
68
69 /* Reduce memory usage in kdump environment by using only one queue */
70 if (is_kdump_kernel())
71 nq = 1;
72
73 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
74 return nq;
75 }
76
77 /**
78 * bnx2x_move_fp - move content of the fastpath structure.
79 *
80 * @bp: driver handle
81 * @from: source FP index
82 * @to: destination FP index
83 *
84 * Makes sure the contents of the bp->fp[to].napi is kept
85 * intact. This is done by first copying the napi struct from
86 * the target to the source, and then mem copying the entire
87 * source onto the target. Update txdata pointers and related
88 * content.
89 */
90 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
91 {
92 struct bnx2x_fastpath *from_fp = &bp->fp[from];
93 struct bnx2x_fastpath *to_fp = &bp->fp[to];
94 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
95 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
96 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
97 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
98 int old_max_eth_txqs, new_max_eth_txqs;
99 int old_txdata_index = 0, new_txdata_index = 0;
100 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
101
102 /* Copy the NAPI object as it has been already initialized */
103 from_fp->napi = to_fp->napi;
104
105 /* Move bnx2x_fastpath contents */
106 memcpy(to_fp, from_fp, sizeof(*to_fp));
107 to_fp->index = to;
108
109 /* Retain the tpa_info of the original `to' version as we don't want
110 * 2 FPs to contain the same tpa_info pointer.
111 */
112 to_fp->tpa_info = old_tpa_info;
113
114 /* move sp_objs contents as well, as their indices match fp ones */
115 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
116
117 /* move fp_stats contents as well, as their indices match fp ones */
118 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
119
120 /* Update txdata pointers in fp and move txdata content accordingly:
121 * Each fp consumes 'max_cos' txdata structures, so the index should be
122 * decremented by max_cos x delta.
123 */
124
125 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
126 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
127 (bp)->max_cos;
128 if (from == FCOE_IDX(bp)) {
129 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
130 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
131 }
132
133 memcpy(&bp->bnx2x_txq[new_txdata_index],
134 &bp->bnx2x_txq[old_txdata_index],
135 sizeof(struct bnx2x_fp_txdata));
136 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
137 }
138
139 /**
140 * bnx2x_fill_fw_str - Fill buffer with FW version string.
141 *
142 * @bp: driver handle
143 * @buf: character buffer to fill with the fw name
144 * @buf_len: length of the above buffer
145 *
146 */
147 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
148 {
149 if (IS_PF(bp)) {
150 u8 phy_fw_ver[PHY_FW_VER_LEN];
151
152 phy_fw_ver[0] = '\0';
153 bnx2x_get_ext_phy_fw_version(&bp->link_params,
154 phy_fw_ver, PHY_FW_VER_LEN);
155 strlcpy(buf, bp->fw_ver, buf_len);
156 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
157 "bc %d.%d.%d%s%s",
158 (bp->common.bc_ver & 0xff0000) >> 16,
159 (bp->common.bc_ver & 0xff00) >> 8,
160 (bp->common.bc_ver & 0xff),
161 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
162 } else {
163 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
164 }
165 }
166
167 /**
168 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
169 *
170 * @bp: driver handle
171 * @delta: number of eth queues which were not allocated
172 */
173 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
174 {
175 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
176
177 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
178 * backward along the array could cause memory to be overridden
179 */
180 for (cos = 1; cos < bp->max_cos; cos++) {
181 for (i = 0; i < old_eth_num - delta; i++) {
182 struct bnx2x_fastpath *fp = &bp->fp[i];
183 int new_idx = cos * (old_eth_num - delta) + i;
184
185 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
186 sizeof(struct bnx2x_fp_txdata));
187 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
188 }
189 }
190 }
191
192 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
193
194 /* free skb in the packet ring at pos idx
195 * return idx of last bd freed
196 */
197 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
198 u16 idx, unsigned int *pkts_compl,
199 unsigned int *bytes_compl)
200 {
201 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
202 struct eth_tx_start_bd *tx_start_bd;
203 struct eth_tx_bd *tx_data_bd;
204 struct sk_buff *skb = tx_buf->skb;
205 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
206 int nbd;
207 u16 split_bd_len = 0;
208
209 /* prefetch skb end pointer to speedup dev_kfree_skb() */
210 prefetch(&skb->end);
211
212 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
213 txdata->txq_index, idx, tx_buf, skb);
214
215 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
216
217 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
218 #ifdef BNX2X_STOP_ON_ERROR
219 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
220 BNX2X_ERR("BAD nbd!\n");
221 bnx2x_panic();
222 }
223 #endif
224 new_cons = nbd + tx_buf->first_bd;
225
226 /* Get the next bd */
227 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
228
229 /* Skip a parse bd... */
230 --nbd;
231 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
232
233 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
234 /* Skip second parse bd... */
235 --nbd;
236 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
237 }
238
239 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
240 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
241 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
242 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
243 --nbd;
244 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
245 }
246
247 /* unmap first bd */
248 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
249 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
250 DMA_TO_DEVICE);
251
252 /* now free frags */
253 while (nbd > 0) {
254
255 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
256 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
257 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
258 if (--nbd)
259 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
260 }
261
262 /* release skb */
263 WARN_ON(!skb);
264 if (likely(skb)) {
265 (*pkts_compl)++;
266 (*bytes_compl) += skb->len;
267 dev_kfree_skb_any(skb);
268 }
269
270 tx_buf->first_bd = 0;
271 tx_buf->skb = NULL;
272
273 return new_cons;
274 }
275
276 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
277 {
278 struct netdev_queue *txq;
279 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
280 unsigned int pkts_compl = 0, bytes_compl = 0;
281
282 #ifdef BNX2X_STOP_ON_ERROR
283 if (unlikely(bp->panic))
284 return -1;
285 #endif
286
287 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
288 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
289 sw_cons = txdata->tx_pkt_cons;
290
291 while (sw_cons != hw_cons) {
292 u16 pkt_cons;
293
294 pkt_cons = TX_BD(sw_cons);
295
296 DP(NETIF_MSG_TX_DONE,
297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
298 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299
300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 &pkts_compl, &bytes_compl);
302
303 sw_cons++;
304 }
305
306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307
308 txdata->tx_pkt_cons = sw_cons;
309 txdata->tx_bd_cons = bd_cons;
310
311 /* Need to make the tx_bd_cons update visible to start_xmit()
312 * before checking for netif_tx_queue_stopped(). Without the
313 * memory barrier, there is a small possibility that
314 * start_xmit() will miss it and cause the queue to be stopped
315 * forever.
316 * On the other hand we need an rmb() here to ensure the proper
317 * ordering of bit testing in the following
318 * netif_tx_queue_stopped(txq) call.
319 */
320 smp_mb();
321
322 if (unlikely(netif_tx_queue_stopped(txq))) {
323 /* Taking tx_lock() is needed to prevent re-enabling the queue
324 * while it's empty. This could have happen if rx_action() gets
325 * suspended in bnx2x_tx_int() after the condition before
326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 *
328 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 * sends some packets consuming the whole queue again->
330 * stops the queue
331 */
332
333 __netif_tx_lock(txq, smp_processor_id());
334
335 if ((netif_tx_queue_stopped(txq)) &&
336 (bp->state == BNX2X_STATE_OPEN) &&
337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 netif_tx_wake_queue(txq);
339
340 __netif_tx_unlock(txq);
341 }
342 return 0;
343 }
344
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 u16 idx)
347 {
348 u16 last_max = fp->last_max_sge;
349
350 if (SUB_S16(idx, last_max) > 0)
351 fp->last_max_sge = idx;
352 }
353
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 u16 sge_len,
356 struct eth_end_agg_rx_cqe *cqe)
357 {
358 struct bnx2x *bp = fp->bp;
359 u16 last_max, last_elem, first_elem;
360 u16 delta = 0;
361 u16 i;
362
363 if (!sge_len)
364 return;
365
366 /* First mark all used pages */
367 for (i = 0; i < sge_len; i++)
368 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370
371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373
374 /* Here we assume that the last SGE index is the biggest */
375 prefetch((void *)(fp->sge_mask));
376 bnx2x_update_last_max_sge(fp,
377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378
379 last_max = RX_SGE(fp->last_max_sge);
380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382
383 /* If ring is not full */
384 if (last_elem + 1 != first_elem)
385 last_elem++;
386
387 /* Now update the prod */
388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 if (likely(fp->sge_mask[i]))
390 break;
391
392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 delta += BIT_VEC64_ELEM_SZ;
394 }
395
396 if (delta > 0) {
397 fp->rx_sge_prod += delta;
398 /* clear page-end entries */
399 bnx2x_clear_sge_mask_next_elems(fp);
400 }
401
402 DP(NETIF_MSG_RX_STATUS,
403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
404 fp->last_max_sge, fp->rx_sge_prod);
405 }
406
407 /* Get Toeplitz hash value in the skb using the value from the
408 * CQE (calculated by HW).
409 */
410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 const struct eth_fast_path_rx_cqe *cqe,
412 enum pkt_hash_types *rxhash_type)
413 {
414 /* Get Toeplitz hash from CQE */
415 if ((bp->dev->features & NETIF_F_RXHASH) &&
416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 enum eth_rss_hash_type htype;
418
419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 (htype == TCP_IPV6_HASH_TYPE)) ?
422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423
424 return le32_to_cpu(cqe->rss_hash_result);
425 }
426 *rxhash_type = PKT_HASH_TYPE_NONE;
427 return 0;
428 }
429
430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 u16 cons, u16 prod,
432 struct eth_fast_path_rx_cqe *cqe)
433 {
434 struct bnx2x *bp = fp->bp;
435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 dma_addr_t mapping;
439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441
442 /* print error if current state != stop */
443 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445
446 /* Try to map an empty data buffer from the aggregation info */
447 mapping = dma_map_single(&bp->pdev->dev,
448 first_buf->data + NET_SKB_PAD,
449 fp->rx_buf_size, DMA_FROM_DEVICE);
450 /*
451 * ...if it fails - move the skb from the consumer to the producer
452 * and set the current aggregation state as ERROR to drop it
453 * when TPA_STOP arrives.
454 */
455
456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 /* Move the BD from the consumer to the producer */
458 bnx2x_reuse_rx_data(fp, cons, prod);
459 tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 return;
461 }
462
463 /* move empty data from pool to prod */
464 prod_rx_buf->data = first_buf->data;
465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 /* point prod_bd to new data */
467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469
470 /* move partial skb from cons to pool (don't unmap yet) */
471 *first_buf = *cons_rx_buf;
472
473 /* mark bin state as START */
474 tpa_info->parsing_flags =
475 le16_to_cpu(cqe->pars_flags.flags);
476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 tpa_info->tpa_state = BNX2X_TPA_START;
478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 tpa_info->placement_offset = cqe->placement_offset;
480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 if (fp->mode == TPA_MODE_GRO) {
482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 tpa_info->gro_size = gro_size;
485 }
486
487 #ifdef BNX2X_STOP_ON_ERROR
488 fp->tpa_queue_used |= (1 << queue);
489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 fp->tpa_queue_used);
491 #endif
492 }
493
494 /* Timestamp option length allowed for TPA aggregation:
495 *
496 * nop nop kind length echo val
497 */
498 #define TPA_TSTAMP_OPT_LEN 12
499 /**
500 * bnx2x_set_gro_params - compute GRO values
501 *
502 * @skb: packet skb
503 * @parsing_flags: parsing flags from the START CQE
504 * @len_on_bd: total length of the first packet for the
505 * aggregation.
506 * @pkt_len: length of all segments
507 *
508 * Approximate value of the MSS for this aggregation calculated using
509 * the first packet of it.
510 * Compute number of aggregated segments, and gso_type.
511 */
512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
513 u16 len_on_bd, unsigned int pkt_len,
514 u16 num_of_coalesced_segs)
515 {
516 /* TPA aggregation won't have either IP options or TCP options
517 * other than timestamp or IPv6 extension headers.
518 */
519 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
520
521 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
522 PRS_FLAG_OVERETH_IPV6) {
523 hdrs_len += sizeof(struct ipv6hdr);
524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
525 } else {
526 hdrs_len += sizeof(struct iphdr);
527 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
528 }
529
530 /* Check if there was a TCP timestamp, if there is it's will
531 * always be 12 bytes length: nop nop kind length echo val.
532 *
533 * Otherwise FW would close the aggregation.
534 */
535 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
536 hdrs_len += TPA_TSTAMP_OPT_LEN;
537
538 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
539
540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
541 * to skb_shinfo(skb)->gso_segs
542 */
543 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
544 }
545
546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
547 u16 index, gfp_t gfp_mask)
548 {
549 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
550 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
551 struct bnx2x_alloc_pool *pool = &fp->page_pool;
552 dma_addr_t mapping;
553
554 if (!pool->page || (PAGE_SIZE - pool->offset) < SGE_PAGE_SIZE) {
555
556 /* put page reference used by the memory pool, since we
557 * won't be using this page as the mempool anymore.
558 */
559 if (pool->page)
560 put_page(pool->page);
561
562 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
563 if (unlikely(!pool->page)) {
564 BNX2X_ERR("Can't alloc sge\n");
565 return -ENOMEM;
566 }
567
568 pool->offset = 0;
569 }
570
571 mapping = dma_map_page(&bp->pdev->dev, pool->page,
572 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
573 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
574 BNX2X_ERR("Can't map sge\n");
575 return -ENOMEM;
576 }
577
578 get_page(pool->page);
579 sw_buf->page = pool->page;
580 sw_buf->offset = pool->offset;
581
582 dma_unmap_addr_set(sw_buf, mapping, mapping);
583
584 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
585 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
586
587 pool->offset += SGE_PAGE_SIZE;
588
589 return 0;
590 }
591
592 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
593 struct bnx2x_agg_info *tpa_info,
594 u16 pages,
595 struct sk_buff *skb,
596 struct eth_end_agg_rx_cqe *cqe,
597 u16 cqe_idx)
598 {
599 struct sw_rx_page *rx_pg, old_rx_pg;
600 u32 i, frag_len, frag_size;
601 int err, j, frag_id = 0;
602 u16 len_on_bd = tpa_info->len_on_bd;
603 u16 full_page = 0, gro_size = 0;
604
605 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
606
607 if (fp->mode == TPA_MODE_GRO) {
608 gro_size = tpa_info->gro_size;
609 full_page = tpa_info->full_page;
610 }
611
612 /* This is needed in order to enable forwarding support */
613 if (frag_size)
614 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
615 le16_to_cpu(cqe->pkt_len),
616 le16_to_cpu(cqe->num_of_coalesced_segs));
617
618 #ifdef BNX2X_STOP_ON_ERROR
619 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
620 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
621 pages, cqe_idx);
622 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
623 bnx2x_panic();
624 return -EINVAL;
625 }
626 #endif
627
628 /* Run through the SGL and compose the fragmented skb */
629 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
630 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
631
632 /* FW gives the indices of the SGE as if the ring is an array
633 (meaning that "next" element will consume 2 indices) */
634 if (fp->mode == TPA_MODE_GRO)
635 frag_len = min_t(u32, frag_size, (u32)full_page);
636 else /* LRO */
637 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
638
639 rx_pg = &fp->rx_page_ring[sge_idx];
640 old_rx_pg = *rx_pg;
641
642 /* If we fail to allocate a substitute page, we simply stop
643 where we are and drop the whole packet */
644 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
645 if (unlikely(err)) {
646 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
647 return err;
648 }
649
650 dma_unmap_page(&bp->pdev->dev,
651 dma_unmap_addr(&old_rx_pg, mapping),
652 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
653 /* Add one frag and update the appropriate fields in the skb */
654 if (fp->mode == TPA_MODE_LRO)
655 skb_fill_page_desc(skb, j, old_rx_pg.page,
656 old_rx_pg.offset, frag_len);
657 else { /* GRO */
658 int rem;
659 int offset = 0;
660 for (rem = frag_len; rem > 0; rem -= gro_size) {
661 int len = rem > gro_size ? gro_size : rem;
662 skb_fill_page_desc(skb, frag_id++,
663 old_rx_pg.page,
664 old_rx_pg.offset + offset,
665 len);
666 if (offset)
667 get_page(old_rx_pg.page);
668 offset += len;
669 }
670 }
671
672 skb->data_len += frag_len;
673 skb->truesize += SGE_PAGES;
674 skb->len += frag_len;
675
676 frag_size -= frag_len;
677 }
678
679 return 0;
680 }
681
682 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
683 {
684 if (fp->rx_frag_size)
685 skb_free_frag(data);
686 else
687 kfree(data);
688 }
689
690 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
691 {
692 if (fp->rx_frag_size) {
693 /* GFP_KERNEL allocations are used only during initialization */
694 if (unlikely(gfp_mask & __GFP_WAIT))
695 return (void *)__get_free_page(gfp_mask);
696
697 return netdev_alloc_frag(fp->rx_frag_size);
698 }
699
700 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
701 }
702
703 #ifdef CONFIG_INET
704 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
705 {
706 const struct iphdr *iph = ip_hdr(skb);
707 struct tcphdr *th;
708
709 skb_set_transport_header(skb, sizeof(struct iphdr));
710 th = tcp_hdr(skb);
711
712 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
713 iph->saddr, iph->daddr, 0);
714 }
715
716 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
717 {
718 struct ipv6hdr *iph = ipv6_hdr(skb);
719 struct tcphdr *th;
720
721 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
722 th = tcp_hdr(skb);
723
724 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
725 &iph->saddr, &iph->daddr, 0);
726 }
727
728 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
729 void (*gro_func)(struct bnx2x*, struct sk_buff*))
730 {
731 skb_set_network_header(skb, 0);
732 gro_func(bp, skb);
733 tcp_gro_complete(skb);
734 }
735 #endif
736
737 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
738 struct sk_buff *skb)
739 {
740 #ifdef CONFIG_INET
741 if (skb_shinfo(skb)->gso_size) {
742 switch (be16_to_cpu(skb->protocol)) {
743 case ETH_P_IP:
744 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
745 break;
746 case ETH_P_IPV6:
747 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
748 break;
749 default:
750 BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
751 be16_to_cpu(skb->protocol));
752 }
753 }
754 #endif
755 skb_record_rx_queue(skb, fp->rx_queue);
756 napi_gro_receive(&fp->napi, skb);
757 }
758
759 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
760 struct bnx2x_agg_info *tpa_info,
761 u16 pages,
762 struct eth_end_agg_rx_cqe *cqe,
763 u16 cqe_idx)
764 {
765 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
766 u8 pad = tpa_info->placement_offset;
767 u16 len = tpa_info->len_on_bd;
768 struct sk_buff *skb = NULL;
769 u8 *new_data, *data = rx_buf->data;
770 u8 old_tpa_state = tpa_info->tpa_state;
771
772 tpa_info->tpa_state = BNX2X_TPA_STOP;
773
774 /* If we there was an error during the handling of the TPA_START -
775 * drop this aggregation.
776 */
777 if (old_tpa_state == BNX2X_TPA_ERROR)
778 goto drop;
779
780 /* Try to allocate the new data */
781 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
782 /* Unmap skb in the pool anyway, as we are going to change
783 pool entry status to BNX2X_TPA_STOP even if new skb allocation
784 fails. */
785 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
786 fp->rx_buf_size, DMA_FROM_DEVICE);
787 if (likely(new_data))
788 skb = build_skb(data, fp->rx_frag_size);
789
790 if (likely(skb)) {
791 #ifdef BNX2X_STOP_ON_ERROR
792 if (pad + len > fp->rx_buf_size) {
793 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
794 pad, len, fp->rx_buf_size);
795 bnx2x_panic();
796 return;
797 }
798 #endif
799
800 skb_reserve(skb, pad + NET_SKB_PAD);
801 skb_put(skb, len);
802 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
803
804 skb->protocol = eth_type_trans(skb, bp->dev);
805 skb->ip_summed = CHECKSUM_UNNECESSARY;
806
807 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
808 skb, cqe, cqe_idx)) {
809 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
811 bnx2x_gro_receive(bp, fp, skb);
812 } else {
813 DP(NETIF_MSG_RX_STATUS,
814 "Failed to allocate new pages - dropping packet!\n");
815 dev_kfree_skb_any(skb);
816 }
817
818 /* put new data in bin */
819 rx_buf->data = new_data;
820
821 return;
822 }
823 if (new_data)
824 bnx2x_frag_free(fp, new_data);
825 drop:
826 /* drop the packet and keep the buffer in the bin */
827 DP(NETIF_MSG_RX_STATUS,
828 "Failed to allocate or map a new skb - dropping packet!\n");
829 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
830 }
831
832 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
833 u16 index, gfp_t gfp_mask)
834 {
835 u8 *data;
836 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
837 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
838 dma_addr_t mapping;
839
840 data = bnx2x_frag_alloc(fp, gfp_mask);
841 if (unlikely(data == NULL))
842 return -ENOMEM;
843
844 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
845 fp->rx_buf_size,
846 DMA_FROM_DEVICE);
847 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
848 bnx2x_frag_free(fp, data);
849 BNX2X_ERR("Can't map rx data\n");
850 return -ENOMEM;
851 }
852
853 rx_buf->data = data;
854 dma_unmap_addr_set(rx_buf, mapping, mapping);
855
856 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
857 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
858
859 return 0;
860 }
861
862 static
863 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
864 struct bnx2x_fastpath *fp,
865 struct bnx2x_eth_q_stats *qstats)
866 {
867 /* Do nothing if no L4 csum validation was done.
868 * We do not check whether IP csum was validated. For IPv4 we assume
869 * that if the card got as far as validating the L4 csum, it also
870 * validated the IP csum. IPv6 has no IP csum.
871 */
872 if (cqe->fast_path_cqe.status_flags &
873 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
874 return;
875
876 /* If L4 validation was done, check if an error was found. */
877
878 if (cqe->fast_path_cqe.type_error_flags &
879 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
880 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
881 qstats->hw_csum_err++;
882 else
883 skb->ip_summed = CHECKSUM_UNNECESSARY;
884 }
885
886 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
887 {
888 struct bnx2x *bp = fp->bp;
889 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
890 u16 sw_comp_cons, sw_comp_prod;
891 int rx_pkt = 0;
892 union eth_rx_cqe *cqe;
893 struct eth_fast_path_rx_cqe *cqe_fp;
894
895 #ifdef BNX2X_STOP_ON_ERROR
896 if (unlikely(bp->panic))
897 return 0;
898 #endif
899 if (budget <= 0)
900 return rx_pkt;
901
902 bd_cons = fp->rx_bd_cons;
903 bd_prod = fp->rx_bd_prod;
904 bd_prod_fw = bd_prod;
905 sw_comp_cons = fp->rx_comp_cons;
906 sw_comp_prod = fp->rx_comp_prod;
907
908 comp_ring_cons = RCQ_BD(sw_comp_cons);
909 cqe = &fp->rx_comp_ring[comp_ring_cons];
910 cqe_fp = &cqe->fast_path_cqe;
911
912 DP(NETIF_MSG_RX_STATUS,
913 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
914
915 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
916 struct sw_rx_bd *rx_buf = NULL;
917 struct sk_buff *skb;
918 u8 cqe_fp_flags;
919 enum eth_rx_cqe_type cqe_fp_type;
920 u16 len, pad, queue;
921 u8 *data;
922 u32 rxhash;
923 enum pkt_hash_types rxhash_type;
924
925 #ifdef BNX2X_STOP_ON_ERROR
926 if (unlikely(bp->panic))
927 return 0;
928 #endif
929
930 bd_prod = RX_BD(bd_prod);
931 bd_cons = RX_BD(bd_cons);
932
933 /* A rmb() is required to ensure that the CQE is not read
934 * before it is written by the adapter DMA. PCI ordering
935 * rules will make sure the other fields are written before
936 * the marker at the end of struct eth_fast_path_rx_cqe
937 * but without rmb() a weakly ordered processor can process
938 * stale data. Without the barrier TPA state-machine might
939 * enter inconsistent state and kernel stack might be
940 * provided with incorrect packet description - these lead
941 * to various kernel crashed.
942 */
943 rmb();
944
945 cqe_fp_flags = cqe_fp->type_error_flags;
946 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
947
948 DP(NETIF_MSG_RX_STATUS,
949 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
950 CQE_TYPE(cqe_fp_flags),
951 cqe_fp_flags, cqe_fp->status_flags,
952 le32_to_cpu(cqe_fp->rss_hash_result),
953 le16_to_cpu(cqe_fp->vlan_tag),
954 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
955
956 /* is this a slowpath msg? */
957 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
958 bnx2x_sp_event(fp, cqe);
959 goto next_cqe;
960 }
961
962 rx_buf = &fp->rx_buf_ring[bd_cons];
963 data = rx_buf->data;
964
965 if (!CQE_TYPE_FAST(cqe_fp_type)) {
966 struct bnx2x_agg_info *tpa_info;
967 u16 frag_size, pages;
968 #ifdef BNX2X_STOP_ON_ERROR
969 /* sanity check */
970 if (fp->mode == TPA_MODE_DISABLED &&
971 (CQE_TYPE_START(cqe_fp_type) ||
972 CQE_TYPE_STOP(cqe_fp_type)))
973 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
974 CQE_TYPE(cqe_fp_type));
975 #endif
976
977 if (CQE_TYPE_START(cqe_fp_type)) {
978 u16 queue = cqe_fp->queue_index;
979 DP(NETIF_MSG_RX_STATUS,
980 "calling tpa_start on queue %d\n",
981 queue);
982
983 bnx2x_tpa_start(fp, queue,
984 bd_cons, bd_prod,
985 cqe_fp);
986
987 goto next_rx;
988 }
989 queue = cqe->end_agg_cqe.queue_index;
990 tpa_info = &fp->tpa_info[queue];
991 DP(NETIF_MSG_RX_STATUS,
992 "calling tpa_stop on queue %d\n",
993 queue);
994
995 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
996 tpa_info->len_on_bd;
997
998 if (fp->mode == TPA_MODE_GRO)
999 pages = (frag_size + tpa_info->full_page - 1) /
1000 tpa_info->full_page;
1001 else
1002 pages = SGE_PAGE_ALIGN(frag_size) >>
1003 SGE_PAGE_SHIFT;
1004
1005 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1006 &cqe->end_agg_cqe, comp_ring_cons);
1007 #ifdef BNX2X_STOP_ON_ERROR
1008 if (bp->panic)
1009 return 0;
1010 #endif
1011
1012 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1013 goto next_cqe;
1014 }
1015 /* non TPA */
1016 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1017 pad = cqe_fp->placement_offset;
1018 dma_sync_single_for_cpu(&bp->pdev->dev,
1019 dma_unmap_addr(rx_buf, mapping),
1020 pad + RX_COPY_THRESH,
1021 DMA_FROM_DEVICE);
1022 pad += NET_SKB_PAD;
1023 prefetch(data + pad); /* speedup eth_type_trans() */
1024 /* is this an error packet? */
1025 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1026 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1027 "ERROR flags %x rx packet %u\n",
1028 cqe_fp_flags, sw_comp_cons);
1029 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1030 goto reuse_rx;
1031 }
1032
1033 /* Since we don't have a jumbo ring
1034 * copy small packets if mtu > 1500
1035 */
1036 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1037 (len <= RX_COPY_THRESH)) {
1038 skb = napi_alloc_skb(&fp->napi, len);
1039 if (skb == NULL) {
1040 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1041 "ERROR packet dropped because of alloc failure\n");
1042 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1043 goto reuse_rx;
1044 }
1045 memcpy(skb->data, data + pad, len);
1046 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1047 } else {
1048 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1049 GFP_ATOMIC) == 0)) {
1050 dma_unmap_single(&bp->pdev->dev,
1051 dma_unmap_addr(rx_buf, mapping),
1052 fp->rx_buf_size,
1053 DMA_FROM_DEVICE);
1054 skb = build_skb(data, fp->rx_frag_size);
1055 if (unlikely(!skb)) {
1056 bnx2x_frag_free(fp, data);
1057 bnx2x_fp_qstats(bp, fp)->
1058 rx_skb_alloc_failed++;
1059 goto next_rx;
1060 }
1061 skb_reserve(skb, pad);
1062 } else {
1063 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1064 "ERROR packet dropped because of alloc failure\n");
1065 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1066 reuse_rx:
1067 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1068 goto next_rx;
1069 }
1070 }
1071
1072 skb_put(skb, len);
1073 skb->protocol = eth_type_trans(skb, bp->dev);
1074
1075 /* Set Toeplitz hash for a none-LRO skb */
1076 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1077 skb_set_hash(skb, rxhash, rxhash_type);
1078
1079 skb_checksum_none_assert(skb);
1080
1081 if (bp->dev->features & NETIF_F_RXCSUM)
1082 bnx2x_csum_validate(skb, cqe, fp,
1083 bnx2x_fp_qstats(bp, fp));
1084
1085 skb_record_rx_queue(skb, fp->rx_queue);
1086
1087 /* Check if this packet was timestamped */
1088 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1089 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1090 bnx2x_set_rx_ts(bp, skb);
1091
1092 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1093 PARSING_FLAGS_VLAN)
1094 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1095 le16_to_cpu(cqe_fp->vlan_tag));
1096
1097 skb_mark_napi_id(skb, &fp->napi);
1098
1099 if (bnx2x_fp_ll_polling(fp))
1100 netif_receive_skb(skb);
1101 else
1102 napi_gro_receive(&fp->napi, skb);
1103 next_rx:
1104 rx_buf->data = NULL;
1105
1106 bd_cons = NEXT_RX_IDX(bd_cons);
1107 bd_prod = NEXT_RX_IDX(bd_prod);
1108 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1109 rx_pkt++;
1110 next_cqe:
1111 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1112 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1113
1114 /* mark CQE as free */
1115 BNX2X_SEED_CQE(cqe_fp);
1116
1117 if (rx_pkt == budget)
1118 break;
1119
1120 comp_ring_cons = RCQ_BD(sw_comp_cons);
1121 cqe = &fp->rx_comp_ring[comp_ring_cons];
1122 cqe_fp = &cqe->fast_path_cqe;
1123 } /* while */
1124
1125 fp->rx_bd_cons = bd_cons;
1126 fp->rx_bd_prod = bd_prod_fw;
1127 fp->rx_comp_cons = sw_comp_cons;
1128 fp->rx_comp_prod = sw_comp_prod;
1129
1130 /* Update producers */
1131 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1132 fp->rx_sge_prod);
1133
1134 fp->rx_pkt += rx_pkt;
1135 fp->rx_calls++;
1136
1137 return rx_pkt;
1138 }
1139
1140 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1141 {
1142 struct bnx2x_fastpath *fp = fp_cookie;
1143 struct bnx2x *bp = fp->bp;
1144 u8 cos;
1145
1146 DP(NETIF_MSG_INTR,
1147 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1148 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1149
1150 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1151
1152 #ifdef BNX2X_STOP_ON_ERROR
1153 if (unlikely(bp->panic))
1154 return IRQ_HANDLED;
1155 #endif
1156
1157 /* Handle Rx and Tx according to MSI-X vector */
1158 for_each_cos_in_tx_queue(fp, cos)
1159 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1160
1161 prefetch(&fp->sb_running_index[SM_RX_ID]);
1162 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1163
1164 return IRQ_HANDLED;
1165 }
1166
1167 /* HW Lock for shared dual port PHYs */
1168 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1169 {
1170 mutex_lock(&bp->port.phy_mutex);
1171
1172 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1173 }
1174
1175 void bnx2x_release_phy_lock(struct bnx2x *bp)
1176 {
1177 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1178
1179 mutex_unlock(&bp->port.phy_mutex);
1180 }
1181
1182 /* calculates MF speed according to current linespeed and MF configuration */
1183 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1184 {
1185 u16 line_speed = bp->link_vars.line_speed;
1186 if (IS_MF(bp)) {
1187 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1188 bp->mf_config[BP_VN(bp)]);
1189
1190 /* Calculate the current MAX line speed limit for the MF
1191 * devices
1192 */
1193 if (IS_MF_PERCENT_BW(bp))
1194 line_speed = (line_speed * maxCfg) / 100;
1195 else { /* SD mode */
1196 u16 vn_max_rate = maxCfg * 100;
1197
1198 if (vn_max_rate < line_speed)
1199 line_speed = vn_max_rate;
1200 }
1201 }
1202
1203 return line_speed;
1204 }
1205
1206 /**
1207 * bnx2x_fill_report_data - fill link report data to report
1208 *
1209 * @bp: driver handle
1210 * @data: link state to update
1211 *
1212 * It uses a none-atomic bit operations because is called under the mutex.
1213 */
1214 static void bnx2x_fill_report_data(struct bnx2x *bp,
1215 struct bnx2x_link_report_data *data)
1216 {
1217 memset(data, 0, sizeof(*data));
1218
1219 if (IS_PF(bp)) {
1220 /* Fill the report data: effective line speed */
1221 data->line_speed = bnx2x_get_mf_speed(bp);
1222
1223 /* Link is down */
1224 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1225 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1226 &data->link_report_flags);
1227
1228 if (!BNX2X_NUM_ETH_QUEUES(bp))
1229 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1230 &data->link_report_flags);
1231
1232 /* Full DUPLEX */
1233 if (bp->link_vars.duplex == DUPLEX_FULL)
1234 __set_bit(BNX2X_LINK_REPORT_FD,
1235 &data->link_report_flags);
1236
1237 /* Rx Flow Control is ON */
1238 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1239 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1240 &data->link_report_flags);
1241
1242 /* Tx Flow Control is ON */
1243 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1244 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1245 &data->link_report_flags);
1246 } else { /* VF */
1247 *data = bp->vf_link_vars;
1248 }
1249 }
1250
1251 /**
1252 * bnx2x_link_report - report link status to OS.
1253 *
1254 * @bp: driver handle
1255 *
1256 * Calls the __bnx2x_link_report() under the same locking scheme
1257 * as a link/PHY state managing code to ensure a consistent link
1258 * reporting.
1259 */
1260
1261 void bnx2x_link_report(struct bnx2x *bp)
1262 {
1263 bnx2x_acquire_phy_lock(bp);
1264 __bnx2x_link_report(bp);
1265 bnx2x_release_phy_lock(bp);
1266 }
1267
1268 /**
1269 * __bnx2x_link_report - report link status to OS.
1270 *
1271 * @bp: driver handle
1272 *
1273 * None atomic implementation.
1274 * Should be called under the phy_lock.
1275 */
1276 void __bnx2x_link_report(struct bnx2x *bp)
1277 {
1278 struct bnx2x_link_report_data cur_data;
1279
1280 /* reread mf_cfg */
1281 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1282 bnx2x_read_mf_cfg(bp);
1283
1284 /* Read the current link report info */
1285 bnx2x_fill_report_data(bp, &cur_data);
1286
1287 /* Don't report link down or exactly the same link status twice */
1288 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1289 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1290 &bp->last_reported_link.link_report_flags) &&
1291 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1292 &cur_data.link_report_flags)))
1293 return;
1294
1295 bp->link_cnt++;
1296
1297 /* We are going to report a new link parameters now -
1298 * remember the current data for the next time.
1299 */
1300 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1301
1302 /* propagate status to VFs */
1303 if (IS_PF(bp))
1304 bnx2x_iov_link_update(bp);
1305
1306 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1307 &cur_data.link_report_flags)) {
1308 netif_carrier_off(bp->dev);
1309 netdev_err(bp->dev, "NIC Link is Down\n");
1310 return;
1311 } else {
1312 const char *duplex;
1313 const char *flow;
1314
1315 netif_carrier_on(bp->dev);
1316
1317 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1318 &cur_data.link_report_flags))
1319 duplex = "full";
1320 else
1321 duplex = "half";
1322
1323 /* Handle the FC at the end so that only these flags would be
1324 * possibly set. This way we may easily check if there is no FC
1325 * enabled.
1326 */
1327 if (cur_data.link_report_flags) {
1328 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1329 &cur_data.link_report_flags)) {
1330 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1331 &cur_data.link_report_flags))
1332 flow = "ON - receive & transmit";
1333 else
1334 flow = "ON - receive";
1335 } else {
1336 flow = "ON - transmit";
1337 }
1338 } else {
1339 flow = "none";
1340 }
1341 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1342 cur_data.line_speed, duplex, flow);
1343 }
1344 }
1345
1346 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1347 {
1348 int i;
1349
1350 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1351 struct eth_rx_sge *sge;
1352
1353 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1354 sge->addr_hi =
1355 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1356 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1357
1358 sge->addr_lo =
1359 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1360 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1361 }
1362 }
1363
1364 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1365 struct bnx2x_fastpath *fp, int last)
1366 {
1367 int i;
1368
1369 for (i = 0; i < last; i++) {
1370 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1371 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1372 u8 *data = first_buf->data;
1373
1374 if (data == NULL) {
1375 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1376 continue;
1377 }
1378 if (tpa_info->tpa_state == BNX2X_TPA_START)
1379 dma_unmap_single(&bp->pdev->dev,
1380 dma_unmap_addr(first_buf, mapping),
1381 fp->rx_buf_size, DMA_FROM_DEVICE);
1382 bnx2x_frag_free(fp, data);
1383 first_buf->data = NULL;
1384 }
1385 }
1386
1387 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1388 {
1389 int j;
1390
1391 for_each_rx_queue_cnic(bp, j) {
1392 struct bnx2x_fastpath *fp = &bp->fp[j];
1393
1394 fp->rx_bd_cons = 0;
1395
1396 /* Activate BD ring */
1397 /* Warning!
1398 * this will generate an interrupt (to the TSTORM)
1399 * must only be done after chip is initialized
1400 */
1401 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1402 fp->rx_sge_prod);
1403 }
1404 }
1405
1406 void bnx2x_init_rx_rings(struct bnx2x *bp)
1407 {
1408 int func = BP_FUNC(bp);
1409 u16 ring_prod;
1410 int i, j;
1411
1412 /* Allocate TPA resources */
1413 for_each_eth_queue(bp, j) {
1414 struct bnx2x_fastpath *fp = &bp->fp[j];
1415
1416 DP(NETIF_MSG_IFUP,
1417 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1418
1419 if (fp->mode != TPA_MODE_DISABLED) {
1420 /* Fill the per-aggregation pool */
1421 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1422 struct bnx2x_agg_info *tpa_info =
1423 &fp->tpa_info[i];
1424 struct sw_rx_bd *first_buf =
1425 &tpa_info->first_buf;
1426
1427 first_buf->data =
1428 bnx2x_frag_alloc(fp, GFP_KERNEL);
1429 if (!first_buf->data) {
1430 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1431 j);
1432 bnx2x_free_tpa_pool(bp, fp, i);
1433 fp->mode = TPA_MODE_DISABLED;
1434 break;
1435 }
1436 dma_unmap_addr_set(first_buf, mapping, 0);
1437 tpa_info->tpa_state = BNX2X_TPA_STOP;
1438 }
1439
1440 /* "next page" elements initialization */
1441 bnx2x_set_next_page_sgl(fp);
1442
1443 /* set SGEs bit mask */
1444 bnx2x_init_sge_ring_bit_mask(fp);
1445
1446 /* Allocate SGEs and initialize the ring elements */
1447 for (i = 0, ring_prod = 0;
1448 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1449
1450 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1451 GFP_KERNEL) < 0) {
1452 BNX2X_ERR("was only able to allocate %d rx sges\n",
1453 i);
1454 BNX2X_ERR("disabling TPA for queue[%d]\n",
1455 j);
1456 /* Cleanup already allocated elements */
1457 bnx2x_free_rx_sge_range(bp, fp,
1458 ring_prod);
1459 bnx2x_free_tpa_pool(bp, fp,
1460 MAX_AGG_QS(bp));
1461 fp->mode = TPA_MODE_DISABLED;
1462 ring_prod = 0;
1463 break;
1464 }
1465 ring_prod = NEXT_SGE_IDX(ring_prod);
1466 }
1467
1468 fp->rx_sge_prod = ring_prod;
1469 }
1470 }
1471
1472 for_each_eth_queue(bp, j) {
1473 struct bnx2x_fastpath *fp = &bp->fp[j];
1474
1475 fp->rx_bd_cons = 0;
1476
1477 /* Activate BD ring */
1478 /* Warning!
1479 * this will generate an interrupt (to the TSTORM)
1480 * must only be done after chip is initialized
1481 */
1482 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1483 fp->rx_sge_prod);
1484
1485 if (j != 0)
1486 continue;
1487
1488 if (CHIP_IS_E1(bp)) {
1489 REG_WR(bp, BAR_USTRORM_INTMEM +
1490 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1491 U64_LO(fp->rx_comp_mapping));
1492 REG_WR(bp, BAR_USTRORM_INTMEM +
1493 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1494 U64_HI(fp->rx_comp_mapping));
1495 }
1496 }
1497 }
1498
1499 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1500 {
1501 u8 cos;
1502 struct bnx2x *bp = fp->bp;
1503
1504 for_each_cos_in_tx_queue(fp, cos) {
1505 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1506 unsigned pkts_compl = 0, bytes_compl = 0;
1507
1508 u16 sw_prod = txdata->tx_pkt_prod;
1509 u16 sw_cons = txdata->tx_pkt_cons;
1510
1511 while (sw_cons != sw_prod) {
1512 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1513 &pkts_compl, &bytes_compl);
1514 sw_cons++;
1515 }
1516
1517 netdev_tx_reset_queue(
1518 netdev_get_tx_queue(bp->dev,
1519 txdata->txq_index));
1520 }
1521 }
1522
1523 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1524 {
1525 int i;
1526
1527 for_each_tx_queue_cnic(bp, i) {
1528 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1529 }
1530 }
1531
1532 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1533 {
1534 int i;
1535
1536 for_each_eth_queue(bp, i) {
1537 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1538 }
1539 }
1540
1541 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1542 {
1543 struct bnx2x *bp = fp->bp;
1544 int i;
1545
1546 /* ring wasn't allocated */
1547 if (fp->rx_buf_ring == NULL)
1548 return;
1549
1550 for (i = 0; i < NUM_RX_BD; i++) {
1551 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1552 u8 *data = rx_buf->data;
1553
1554 if (data == NULL)
1555 continue;
1556 dma_unmap_single(&bp->pdev->dev,
1557 dma_unmap_addr(rx_buf, mapping),
1558 fp->rx_buf_size, DMA_FROM_DEVICE);
1559
1560 rx_buf->data = NULL;
1561 bnx2x_frag_free(fp, data);
1562 }
1563 }
1564
1565 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1566 {
1567 int j;
1568
1569 for_each_rx_queue_cnic(bp, j) {
1570 bnx2x_free_rx_bds(&bp->fp[j]);
1571 }
1572 }
1573
1574 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1575 {
1576 int j;
1577
1578 for_each_eth_queue(bp, j) {
1579 struct bnx2x_fastpath *fp = &bp->fp[j];
1580
1581 bnx2x_free_rx_bds(fp);
1582
1583 if (fp->mode != TPA_MODE_DISABLED)
1584 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1585 }
1586 }
1587
1588 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1589 {
1590 bnx2x_free_tx_skbs_cnic(bp);
1591 bnx2x_free_rx_skbs_cnic(bp);
1592 }
1593
1594 void bnx2x_free_skbs(struct bnx2x *bp)
1595 {
1596 bnx2x_free_tx_skbs(bp);
1597 bnx2x_free_rx_skbs(bp);
1598 }
1599
1600 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1601 {
1602 /* load old values */
1603 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1604
1605 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1606 /* leave all but MAX value */
1607 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1608
1609 /* set new MAX value */
1610 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1611 & FUNC_MF_CFG_MAX_BW_MASK;
1612
1613 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1614 }
1615 }
1616
1617 /**
1618 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1619 *
1620 * @bp: driver handle
1621 * @nvecs: number of vectors to be released
1622 */
1623 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1624 {
1625 int i, offset = 0;
1626
1627 if (nvecs == offset)
1628 return;
1629
1630 /* VFs don't have a default SB */
1631 if (IS_PF(bp)) {
1632 free_irq(bp->msix_table[offset].vector, bp->dev);
1633 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1634 bp->msix_table[offset].vector);
1635 offset++;
1636 }
1637
1638 if (CNIC_SUPPORT(bp)) {
1639 if (nvecs == offset)
1640 return;
1641 offset++;
1642 }
1643
1644 for_each_eth_queue(bp, i) {
1645 if (nvecs == offset)
1646 return;
1647 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1648 i, bp->msix_table[offset].vector);
1649
1650 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1651 }
1652 }
1653
1654 void bnx2x_free_irq(struct bnx2x *bp)
1655 {
1656 if (bp->flags & USING_MSIX_FLAG &&
1657 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1658 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1659
1660 /* vfs don't have a default status block */
1661 if (IS_PF(bp))
1662 nvecs++;
1663
1664 bnx2x_free_msix_irqs(bp, nvecs);
1665 } else {
1666 free_irq(bp->dev->irq, bp->dev);
1667 }
1668 }
1669
1670 int bnx2x_enable_msix(struct bnx2x *bp)
1671 {
1672 int msix_vec = 0, i, rc;
1673
1674 /* VFs don't have a default status block */
1675 if (IS_PF(bp)) {
1676 bp->msix_table[msix_vec].entry = msix_vec;
1677 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1678 bp->msix_table[0].entry);
1679 msix_vec++;
1680 }
1681
1682 /* Cnic requires an msix vector for itself */
1683 if (CNIC_SUPPORT(bp)) {
1684 bp->msix_table[msix_vec].entry = msix_vec;
1685 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1686 msix_vec, bp->msix_table[msix_vec].entry);
1687 msix_vec++;
1688 }
1689
1690 /* We need separate vectors for ETH queues only (not FCoE) */
1691 for_each_eth_queue(bp, i) {
1692 bp->msix_table[msix_vec].entry = msix_vec;
1693 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1694 msix_vec, msix_vec, i);
1695 msix_vec++;
1696 }
1697
1698 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1699 msix_vec);
1700
1701 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1702 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1703 /*
1704 * reconfigure number of tx/rx queues according to available
1705 * MSI-X vectors
1706 */
1707 if (rc == -ENOSPC) {
1708 /* Get by with single vector */
1709 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1710 if (rc < 0) {
1711 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1712 rc);
1713 goto no_msix;
1714 }
1715
1716 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1717 bp->flags |= USING_SINGLE_MSIX_FLAG;
1718
1719 BNX2X_DEV_INFO("set number of queues to 1\n");
1720 bp->num_ethernet_queues = 1;
1721 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1722 } else if (rc < 0) {
1723 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1724 goto no_msix;
1725 } else if (rc < msix_vec) {
1726 /* how less vectors we will have? */
1727 int diff = msix_vec - rc;
1728
1729 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1730
1731 /*
1732 * decrease number of queues by number of unallocated entries
1733 */
1734 bp->num_ethernet_queues -= diff;
1735 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1736
1737 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1738 bp->num_queues);
1739 }
1740
1741 bp->flags |= USING_MSIX_FLAG;
1742
1743 return 0;
1744
1745 no_msix:
1746 /* fall to INTx if not enough memory */
1747 if (rc == -ENOMEM)
1748 bp->flags |= DISABLE_MSI_FLAG;
1749
1750 return rc;
1751 }
1752
1753 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1754 {
1755 int i, rc, offset = 0;
1756
1757 /* no default status block for vf */
1758 if (IS_PF(bp)) {
1759 rc = request_irq(bp->msix_table[offset++].vector,
1760 bnx2x_msix_sp_int, 0,
1761 bp->dev->name, bp->dev);
1762 if (rc) {
1763 BNX2X_ERR("request sp irq failed\n");
1764 return -EBUSY;
1765 }
1766 }
1767
1768 if (CNIC_SUPPORT(bp))
1769 offset++;
1770
1771 for_each_eth_queue(bp, i) {
1772 struct bnx2x_fastpath *fp = &bp->fp[i];
1773 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1774 bp->dev->name, i);
1775
1776 rc = request_irq(bp->msix_table[offset].vector,
1777 bnx2x_msix_fp_int, 0, fp->name, fp);
1778 if (rc) {
1779 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1780 bp->msix_table[offset].vector, rc);
1781 bnx2x_free_msix_irqs(bp, offset);
1782 return -EBUSY;
1783 }
1784
1785 offset++;
1786 }
1787
1788 i = BNX2X_NUM_ETH_QUEUES(bp);
1789 if (IS_PF(bp)) {
1790 offset = 1 + CNIC_SUPPORT(bp);
1791 netdev_info(bp->dev,
1792 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1793 bp->msix_table[0].vector,
1794 0, bp->msix_table[offset].vector,
1795 i - 1, bp->msix_table[offset + i - 1].vector);
1796 } else {
1797 offset = CNIC_SUPPORT(bp);
1798 netdev_info(bp->dev,
1799 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1800 0, bp->msix_table[offset].vector,
1801 i - 1, bp->msix_table[offset + i - 1].vector);
1802 }
1803 return 0;
1804 }
1805
1806 int bnx2x_enable_msi(struct bnx2x *bp)
1807 {
1808 int rc;
1809
1810 rc = pci_enable_msi(bp->pdev);
1811 if (rc) {
1812 BNX2X_DEV_INFO("MSI is not attainable\n");
1813 return -1;
1814 }
1815 bp->flags |= USING_MSI_FLAG;
1816
1817 return 0;
1818 }
1819
1820 static int bnx2x_req_irq(struct bnx2x *bp)
1821 {
1822 unsigned long flags;
1823 unsigned int irq;
1824
1825 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1826 flags = 0;
1827 else
1828 flags = IRQF_SHARED;
1829
1830 if (bp->flags & USING_MSIX_FLAG)
1831 irq = bp->msix_table[0].vector;
1832 else
1833 irq = bp->pdev->irq;
1834
1835 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1836 }
1837
1838 static int bnx2x_setup_irqs(struct bnx2x *bp)
1839 {
1840 int rc = 0;
1841 if (bp->flags & USING_MSIX_FLAG &&
1842 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1843 rc = bnx2x_req_msix_irqs(bp);
1844 if (rc)
1845 return rc;
1846 } else {
1847 rc = bnx2x_req_irq(bp);
1848 if (rc) {
1849 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1850 return rc;
1851 }
1852 if (bp->flags & USING_MSI_FLAG) {
1853 bp->dev->irq = bp->pdev->irq;
1854 netdev_info(bp->dev, "using MSI IRQ %d\n",
1855 bp->dev->irq);
1856 }
1857 if (bp->flags & USING_MSIX_FLAG) {
1858 bp->dev->irq = bp->msix_table[0].vector;
1859 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1860 bp->dev->irq);
1861 }
1862 }
1863
1864 return 0;
1865 }
1866
1867 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1868 {
1869 int i;
1870
1871 for_each_rx_queue_cnic(bp, i) {
1872 bnx2x_fp_busy_poll_init(&bp->fp[i]);
1873 napi_enable(&bnx2x_fp(bp, i, napi));
1874 }
1875 }
1876
1877 static void bnx2x_napi_enable(struct bnx2x *bp)
1878 {
1879 int i;
1880
1881 for_each_eth_queue(bp, i) {
1882 bnx2x_fp_busy_poll_init(&bp->fp[i]);
1883 napi_enable(&bnx2x_fp(bp, i, napi));
1884 }
1885 }
1886
1887 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1888 {
1889 int i;
1890
1891 for_each_rx_queue_cnic(bp, i) {
1892 napi_disable(&bnx2x_fp(bp, i, napi));
1893 while (!bnx2x_fp_ll_disable(&bp->fp[i]))
1894 usleep_range(1000, 2000);
1895 }
1896 }
1897
1898 static void bnx2x_napi_disable(struct bnx2x *bp)
1899 {
1900 int i;
1901
1902 for_each_eth_queue(bp, i) {
1903 napi_disable(&bnx2x_fp(bp, i, napi));
1904 while (!bnx2x_fp_ll_disable(&bp->fp[i]))
1905 usleep_range(1000, 2000);
1906 }
1907 }
1908
1909 void bnx2x_netif_start(struct bnx2x *bp)
1910 {
1911 if (netif_running(bp->dev)) {
1912 bnx2x_napi_enable(bp);
1913 if (CNIC_LOADED(bp))
1914 bnx2x_napi_enable_cnic(bp);
1915 bnx2x_int_enable(bp);
1916 if (bp->state == BNX2X_STATE_OPEN)
1917 netif_tx_wake_all_queues(bp->dev);
1918 }
1919 }
1920
1921 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1922 {
1923 bnx2x_int_disable_sync(bp, disable_hw);
1924 bnx2x_napi_disable(bp);
1925 if (CNIC_LOADED(bp))
1926 bnx2x_napi_disable_cnic(bp);
1927 }
1928
1929 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1930 void *accel_priv, select_queue_fallback_t fallback)
1931 {
1932 struct bnx2x *bp = netdev_priv(dev);
1933
1934 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1935 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1936 u16 ether_type = ntohs(hdr->h_proto);
1937
1938 /* Skip VLAN tag if present */
1939 if (ether_type == ETH_P_8021Q) {
1940 struct vlan_ethhdr *vhdr =
1941 (struct vlan_ethhdr *)skb->data;
1942
1943 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1944 }
1945
1946 /* If ethertype is FCoE or FIP - use FCoE ring */
1947 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1948 return bnx2x_fcoe_tx(bp, txq_index);
1949 }
1950
1951 /* select a non-FCoE queue */
1952 return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp);
1953 }
1954
1955 void bnx2x_set_num_queues(struct bnx2x *bp)
1956 {
1957 /* RSS queues */
1958 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1959
1960 /* override in STORAGE SD modes */
1961 if (IS_MF_STORAGE_ONLY(bp))
1962 bp->num_ethernet_queues = 1;
1963
1964 /* Add special queues */
1965 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1966 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1967
1968 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1969 }
1970
1971 /**
1972 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1973 *
1974 * @bp: Driver handle
1975 *
1976 * We currently support for at most 16 Tx queues for each CoS thus we will
1977 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1978 * bp->max_cos.
1979 *
1980 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1981 * index after all ETH L2 indices.
1982 *
1983 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1984 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1985 * 16..31,...) with indices that are not coupled with any real Tx queue.
1986 *
1987 * The proper configuration of skb->queue_mapping is handled by
1988 * bnx2x_select_queue() and __skb_tx_hash().
1989 *
1990 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1991 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1992 */
1993 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1994 {
1995 int rc, tx, rx;
1996
1997 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1998 rx = BNX2X_NUM_ETH_QUEUES(bp);
1999
2000 /* account for fcoe queue */
2001 if (include_cnic && !NO_FCOE(bp)) {
2002 rx++;
2003 tx++;
2004 }
2005
2006 rc = netif_set_real_num_tx_queues(bp->dev, tx);
2007 if (rc) {
2008 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
2009 return rc;
2010 }
2011 rc = netif_set_real_num_rx_queues(bp->dev, rx);
2012 if (rc) {
2013 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2014 return rc;
2015 }
2016
2017 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2018 tx, rx);
2019
2020 return rc;
2021 }
2022
2023 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2024 {
2025 int i;
2026
2027 for_each_queue(bp, i) {
2028 struct bnx2x_fastpath *fp = &bp->fp[i];
2029 u32 mtu;
2030
2031 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2032 if (IS_FCOE_IDX(i))
2033 /*
2034 * Although there are no IP frames expected to arrive to
2035 * this ring we still want to add an
2036 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2037 * overrun attack.
2038 */
2039 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2040 else
2041 mtu = bp->dev->mtu;
2042 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2043 IP_HEADER_ALIGNMENT_PADDING +
2044 ETH_OVREHEAD +
2045 mtu +
2046 BNX2X_FW_RX_ALIGN_END;
2047 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2048 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2049 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2050 else
2051 fp->rx_frag_size = 0;
2052 }
2053 }
2054
2055 static int bnx2x_init_rss(struct bnx2x *bp)
2056 {
2057 int i;
2058 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2059
2060 /* Prepare the initial contents for the indirection table if RSS is
2061 * enabled
2062 */
2063 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2064 bp->rss_conf_obj.ind_table[i] =
2065 bp->fp->cl_id +
2066 ethtool_rxfh_indir_default(i, num_eth_queues);
2067
2068 /*
2069 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2070 * per-port, so if explicit configuration is needed , do it only
2071 * for a PMF.
2072 *
2073 * For 57712 and newer on the other hand it's a per-function
2074 * configuration.
2075 */
2076 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2077 }
2078
2079 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2080 bool config_hash, bool enable)
2081 {
2082 struct bnx2x_config_rss_params params = {NULL};
2083
2084 /* Although RSS is meaningless when there is a single HW queue we
2085 * still need it enabled in order to have HW Rx hash generated.
2086 *
2087 * if (!is_eth_multi(bp))
2088 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2089 */
2090
2091 params.rss_obj = rss_obj;
2092
2093 __set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2094
2095 if (enable) {
2096 __set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2097
2098 /* RSS configuration */
2099 __set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2100 __set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2101 __set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2102 __set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2103 if (rss_obj->udp_rss_v4)
2104 __set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2105 if (rss_obj->udp_rss_v6)
2106 __set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2107
2108 if (!CHIP_IS_E1x(bp)) {
2109 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2110 __set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2111 __set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2112
2113 /* valid only for TUNN_MODE_GRE tunnel mode */
2114 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2115 }
2116 } else {
2117 __set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2118 }
2119
2120 /* Hash bits */
2121 params.rss_result_mask = MULTI_MASK;
2122
2123 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2124
2125 if (config_hash) {
2126 /* RSS keys */
2127 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2128 __set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2129 }
2130
2131 if (IS_PF(bp))
2132 return bnx2x_config_rss(bp, &params);
2133 else
2134 return bnx2x_vfpf_config_rss(bp, &params);
2135 }
2136
2137 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2138 {
2139 struct bnx2x_func_state_params func_params = {NULL};
2140
2141 /* Prepare parameters for function state transitions */
2142 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2143
2144 func_params.f_obj = &bp->func_obj;
2145 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2146
2147 func_params.params.hw_init.load_phase = load_code;
2148
2149 return bnx2x_func_state_change(bp, &func_params);
2150 }
2151
2152 /*
2153 * Cleans the object that have internal lists without sending
2154 * ramrods. Should be run when interrupts are disabled.
2155 */
2156 void bnx2x_squeeze_objects(struct bnx2x *bp)
2157 {
2158 int rc;
2159 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2160 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2161 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2162
2163 /***************** Cleanup MACs' object first *************************/
2164
2165 /* Wait for completion of requested */
2166 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2167 /* Perform a dry cleanup */
2168 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2169
2170 /* Clean ETH primary MAC */
2171 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2172 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2173 &ramrod_flags);
2174 if (rc != 0)
2175 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2176
2177 /* Cleanup UC list */
2178 vlan_mac_flags = 0;
2179 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2180 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2181 &ramrod_flags);
2182 if (rc != 0)
2183 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2184
2185 /***************** Now clean mcast object *****************************/
2186 rparam.mcast_obj = &bp->mcast_obj;
2187 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2188
2189 /* Add a DEL command... - Since we're doing a driver cleanup only,
2190 * we take a lock surrounding both the initial send and the CONTs,
2191 * as we don't want a true completion to disrupt us in the middle.
2192 */
2193 netif_addr_lock_bh(bp->dev);
2194 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2195 if (rc < 0)
2196 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2197 rc);
2198
2199 /* ...and wait until all pending commands are cleared */
2200 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2201 while (rc != 0) {
2202 if (rc < 0) {
2203 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2204 rc);
2205 netif_addr_unlock_bh(bp->dev);
2206 return;
2207 }
2208
2209 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2210 }
2211 netif_addr_unlock_bh(bp->dev);
2212 }
2213
2214 #ifndef BNX2X_STOP_ON_ERROR
2215 #define LOAD_ERROR_EXIT(bp, label) \
2216 do { \
2217 (bp)->state = BNX2X_STATE_ERROR; \
2218 goto label; \
2219 } while (0)
2220
2221 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2222 do { \
2223 bp->cnic_loaded = false; \
2224 goto label; \
2225 } while (0)
2226 #else /*BNX2X_STOP_ON_ERROR*/
2227 #define LOAD_ERROR_EXIT(bp, label) \
2228 do { \
2229 (bp)->state = BNX2X_STATE_ERROR; \
2230 (bp)->panic = 1; \
2231 return -EBUSY; \
2232 } while (0)
2233 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2234 do { \
2235 bp->cnic_loaded = false; \
2236 (bp)->panic = 1; \
2237 return -EBUSY; \
2238 } while (0)
2239 #endif /*BNX2X_STOP_ON_ERROR*/
2240
2241 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2242 {
2243 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2244 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2245 return;
2246 }
2247
2248 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2249 {
2250 int num_groups, vf_headroom = 0;
2251 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2252
2253 /* number of queues for statistics is number of eth queues + FCoE */
2254 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2255
2256 /* Total number of FW statistics requests =
2257 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2258 * and fcoe l2 queue) stats + num of queues (which includes another 1
2259 * for fcoe l2 queue if applicable)
2260 */
2261 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2262
2263 /* vf stats appear in the request list, but their data is allocated by
2264 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2265 * it is used to determine where to place the vf stats queries in the
2266 * request struct
2267 */
2268 if (IS_SRIOV(bp))
2269 vf_headroom = bnx2x_vf_headroom(bp);
2270
2271 /* Request is built from stats_query_header and an array of
2272 * stats_query_cmd_group each of which contains
2273 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2274 * configured in the stats_query_header.
2275 */
2276 num_groups =
2277 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2278 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2279 1 : 0));
2280
2281 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2282 bp->fw_stats_num, vf_headroom, num_groups);
2283 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2284 num_groups * sizeof(struct stats_query_cmd_group);
2285
2286 /* Data for statistics requests + stats_counter
2287 * stats_counter holds per-STORM counters that are incremented
2288 * when STORM has finished with the current request.
2289 * memory for FCoE offloaded statistics are counted anyway,
2290 * even if they will not be sent.
2291 * VF stats are not accounted for here as the data of VF stats is stored
2292 * in memory allocated by the VF, not here.
2293 */
2294 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2295 sizeof(struct per_pf_stats) +
2296 sizeof(struct fcoe_statistics_params) +
2297 sizeof(struct per_queue_stats) * num_queue_stats +
2298 sizeof(struct stats_counter);
2299
2300 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2301 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2302 if (!bp->fw_stats)
2303 goto alloc_mem_err;
2304
2305 /* Set shortcuts */
2306 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2307 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2308 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2309 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2310 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2311 bp->fw_stats_req_sz;
2312
2313 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2314 U64_HI(bp->fw_stats_req_mapping),
2315 U64_LO(bp->fw_stats_req_mapping));
2316 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2317 U64_HI(bp->fw_stats_data_mapping),
2318 U64_LO(bp->fw_stats_data_mapping));
2319 return 0;
2320
2321 alloc_mem_err:
2322 bnx2x_free_fw_stats_mem(bp);
2323 BNX2X_ERR("Can't allocate FW stats memory\n");
2324 return -ENOMEM;
2325 }
2326
2327 /* send load request to mcp and analyze response */
2328 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2329 {
2330 u32 param;
2331
2332 /* init fw_seq */
2333 bp->fw_seq =
2334 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2335 DRV_MSG_SEQ_NUMBER_MASK);
2336 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2337
2338 /* Get current FW pulse sequence */
2339 bp->fw_drv_pulse_wr_seq =
2340 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2341 DRV_PULSE_SEQ_MASK);
2342 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2343
2344 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2345
2346 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2347 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2348
2349 /* load request */
2350 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2351
2352 /* if mcp fails to respond we must abort */
2353 if (!(*load_code)) {
2354 BNX2X_ERR("MCP response failure, aborting\n");
2355 return -EBUSY;
2356 }
2357
2358 /* If mcp refused (e.g. other port is in diagnostic mode) we
2359 * must abort
2360 */
2361 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2362 BNX2X_ERR("MCP refused load request, aborting\n");
2363 return -EBUSY;
2364 }
2365 return 0;
2366 }
2367
2368 /* check whether another PF has already loaded FW to chip. In
2369 * virtualized environments a pf from another VM may have already
2370 * initialized the device including loading FW
2371 */
2372 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2373 {
2374 /* is another pf loaded on this engine? */
2375 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2376 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2377 /* build my FW version dword */
2378 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2379 (BCM_5710_FW_MINOR_VERSION << 8) +
2380 (BCM_5710_FW_REVISION_VERSION << 16) +
2381 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2382
2383 /* read loaded FW from chip */
2384 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2385
2386 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2387 loaded_fw, my_fw);
2388
2389 /* abort nic load if version mismatch */
2390 if (my_fw != loaded_fw) {
2391 if (print_err)
2392 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2393 loaded_fw, my_fw);
2394 else
2395 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2396 loaded_fw, my_fw);
2397 return -EBUSY;
2398 }
2399 }
2400 return 0;
2401 }
2402
2403 /* returns the "mcp load_code" according to global load_count array */
2404 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2405 {
2406 int path = BP_PATH(bp);
2407
2408 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2409 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2410 bnx2x_load_count[path][2]);
2411 bnx2x_load_count[path][0]++;
2412 bnx2x_load_count[path][1 + port]++;
2413 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2414 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2415 bnx2x_load_count[path][2]);
2416 if (bnx2x_load_count[path][0] == 1)
2417 return FW_MSG_CODE_DRV_LOAD_COMMON;
2418 else if (bnx2x_load_count[path][1 + port] == 1)
2419 return FW_MSG_CODE_DRV_LOAD_PORT;
2420 else
2421 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2422 }
2423
2424 /* mark PMF if applicable */
2425 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2426 {
2427 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2428 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2429 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2430 bp->port.pmf = 1;
2431 /* We need the barrier to ensure the ordering between the
2432 * writing to bp->port.pmf here and reading it from the
2433 * bnx2x_periodic_task().
2434 */
2435 smp_mb();
2436 } else {
2437 bp->port.pmf = 0;
2438 }
2439
2440 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2441 }
2442
2443 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2444 {
2445 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2446 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2447 (bp->common.shmem2_base)) {
2448 if (SHMEM2_HAS(bp, dcc_support))
2449 SHMEM2_WR(bp, dcc_support,
2450 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2451 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2452 if (SHMEM2_HAS(bp, afex_driver_support))
2453 SHMEM2_WR(bp, afex_driver_support,
2454 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2455 }
2456
2457 /* Set AFEX default VLAN tag to an invalid value */
2458 bp->afex_def_vlan_tag = -1;
2459 }
2460
2461 /**
2462 * bnx2x_bz_fp - zero content of the fastpath structure.
2463 *
2464 * @bp: driver handle
2465 * @index: fastpath index to be zeroed
2466 *
2467 * Makes sure the contents of the bp->fp[index].napi is kept
2468 * intact.
2469 */
2470 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2471 {
2472 struct bnx2x_fastpath *fp = &bp->fp[index];
2473 int cos;
2474 struct napi_struct orig_napi = fp->napi;
2475 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2476
2477 /* bzero bnx2x_fastpath contents */
2478 if (fp->tpa_info)
2479 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2480 sizeof(struct bnx2x_agg_info));
2481 memset(fp, 0, sizeof(*fp));
2482
2483 /* Restore the NAPI object as it has been already initialized */
2484 fp->napi = orig_napi;
2485 fp->tpa_info = orig_tpa_info;
2486 fp->bp = bp;
2487 fp->index = index;
2488 if (IS_ETH_FP(fp))
2489 fp->max_cos = bp->max_cos;
2490 else
2491 /* Special queues support only one CoS */
2492 fp->max_cos = 1;
2493
2494 /* Init txdata pointers */
2495 if (IS_FCOE_FP(fp))
2496 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2497 if (IS_ETH_FP(fp))
2498 for_each_cos_in_tx_queue(fp, cos)
2499 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2500 BNX2X_NUM_ETH_QUEUES(bp) + index];
2501
2502 /* set the tpa flag for each queue. The tpa flag determines the queue
2503 * minimal size so it must be set prior to queue memory allocation
2504 */
2505 if (bp->dev->features & NETIF_F_LRO)
2506 fp->mode = TPA_MODE_LRO;
2507 else if (bp->dev->features & NETIF_F_GRO &&
2508 bnx2x_mtu_allows_gro(bp->dev->mtu))
2509 fp->mode = TPA_MODE_GRO;
2510 else
2511 fp->mode = TPA_MODE_DISABLED;
2512
2513 /* We don't want TPA if it's disabled in bp
2514 * or if this is an FCoE L2 ring.
2515 */
2516 if (bp->disable_tpa || IS_FCOE_FP(fp))
2517 fp->mode = TPA_MODE_DISABLED;
2518 }
2519
2520 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2521 {
2522 u32 cur;
2523
2524 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2525 return;
2526
2527 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2528 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2529 cur, state);
2530
2531 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2532 }
2533
2534 int bnx2x_load_cnic(struct bnx2x *bp)
2535 {
2536 int i, rc, port = BP_PORT(bp);
2537
2538 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2539
2540 mutex_init(&bp->cnic_mutex);
2541
2542 if (IS_PF(bp)) {
2543 rc = bnx2x_alloc_mem_cnic(bp);
2544 if (rc) {
2545 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2546 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2547 }
2548 }
2549
2550 rc = bnx2x_alloc_fp_mem_cnic(bp);
2551 if (rc) {
2552 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2553 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2554 }
2555
2556 /* Update the number of queues with the cnic queues */
2557 rc = bnx2x_set_real_num_queues(bp, 1);
2558 if (rc) {
2559 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2560 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2561 }
2562
2563 /* Add all CNIC NAPI objects */
2564 bnx2x_add_all_napi_cnic(bp);
2565 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2566 bnx2x_napi_enable_cnic(bp);
2567
2568 rc = bnx2x_init_hw_func_cnic(bp);
2569 if (rc)
2570 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2571
2572 bnx2x_nic_init_cnic(bp);
2573
2574 if (IS_PF(bp)) {
2575 /* Enable Timer scan */
2576 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2577
2578 /* setup cnic queues */
2579 for_each_cnic_queue(bp, i) {
2580 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2581 if (rc) {
2582 BNX2X_ERR("Queue setup failed\n");
2583 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2584 }
2585 }
2586 }
2587
2588 /* Initialize Rx filter. */
2589 bnx2x_set_rx_mode_inner(bp);
2590
2591 /* re-read iscsi info */
2592 bnx2x_get_iscsi_info(bp);
2593 bnx2x_setup_cnic_irq_info(bp);
2594 bnx2x_setup_cnic_info(bp);
2595 bp->cnic_loaded = true;
2596 if (bp->state == BNX2X_STATE_OPEN)
2597 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2598
2599 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2600
2601 return 0;
2602
2603 #ifndef BNX2X_STOP_ON_ERROR
2604 load_error_cnic2:
2605 /* Disable Timer scan */
2606 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2607
2608 load_error_cnic1:
2609 bnx2x_napi_disable_cnic(bp);
2610 /* Update the number of queues without the cnic queues */
2611 if (bnx2x_set_real_num_queues(bp, 0))
2612 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2613 load_error_cnic0:
2614 BNX2X_ERR("CNIC-related load failed\n");
2615 bnx2x_free_fp_mem_cnic(bp);
2616 bnx2x_free_mem_cnic(bp);
2617 return rc;
2618 #endif /* ! BNX2X_STOP_ON_ERROR */
2619 }
2620
2621 /* must be called with rtnl_lock */
2622 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2623 {
2624 int port = BP_PORT(bp);
2625 int i, rc = 0, load_code = 0;
2626
2627 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2628 DP(NETIF_MSG_IFUP,
2629 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2630
2631 #ifdef BNX2X_STOP_ON_ERROR
2632 if (unlikely(bp->panic)) {
2633 BNX2X_ERR("Can't load NIC when there is panic\n");
2634 return -EPERM;
2635 }
2636 #endif
2637
2638 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2639
2640 /* zero the structure w/o any lock, before SP handler is initialized */
2641 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2642 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2643 &bp->last_reported_link.link_report_flags);
2644
2645 if (IS_PF(bp))
2646 /* must be called before memory allocation and HW init */
2647 bnx2x_ilt_set_info(bp);
2648
2649 /*
2650 * Zero fastpath structures preserving invariants like napi, which are
2651 * allocated only once, fp index, max_cos, bp pointer.
2652 * Also set fp->mode and txdata_ptr.
2653 */
2654 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2655 for_each_queue(bp, i)
2656 bnx2x_bz_fp(bp, i);
2657 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2658 bp->num_cnic_queues) *
2659 sizeof(struct bnx2x_fp_txdata));
2660
2661 bp->fcoe_init = false;
2662
2663 /* Set the receive queues buffer size */
2664 bnx2x_set_rx_buf_size(bp);
2665
2666 if (IS_PF(bp)) {
2667 rc = bnx2x_alloc_mem(bp);
2668 if (rc) {
2669 BNX2X_ERR("Unable to allocate bp memory\n");
2670 return rc;
2671 }
2672 }
2673
2674 /* need to be done after alloc mem, since it's self adjusting to amount
2675 * of memory available for RSS queues
2676 */
2677 rc = bnx2x_alloc_fp_mem(bp);
2678 if (rc) {
2679 BNX2X_ERR("Unable to allocate memory for fps\n");
2680 LOAD_ERROR_EXIT(bp, load_error0);
2681 }
2682
2683 /* Allocated memory for FW statistics */
2684 if (bnx2x_alloc_fw_stats_mem(bp))
2685 LOAD_ERROR_EXIT(bp, load_error0);
2686
2687 /* request pf to initialize status blocks */
2688 if (IS_VF(bp)) {
2689 rc = bnx2x_vfpf_init(bp);
2690 if (rc)
2691 LOAD_ERROR_EXIT(bp, load_error0);
2692 }
2693
2694 /* As long as bnx2x_alloc_mem() may possibly update
2695 * bp->num_queues, bnx2x_set_real_num_queues() should always
2696 * come after it. At this stage cnic queues are not counted.
2697 */
2698 rc = bnx2x_set_real_num_queues(bp, 0);
2699 if (rc) {
2700 BNX2X_ERR("Unable to set real_num_queues\n");
2701 LOAD_ERROR_EXIT(bp, load_error0);
2702 }
2703
2704 /* configure multi cos mappings in kernel.
2705 * this configuration may be overridden by a multi class queue
2706 * discipline or by a dcbx negotiation result.
2707 */
2708 bnx2x_setup_tc(bp->dev, bp->max_cos);
2709
2710 /* Add all NAPI objects */
2711 bnx2x_add_all_napi(bp);
2712 DP(NETIF_MSG_IFUP, "napi added\n");
2713 bnx2x_napi_enable(bp);
2714
2715 if (IS_PF(bp)) {
2716 /* set pf load just before approaching the MCP */
2717 bnx2x_set_pf_load(bp);
2718
2719 /* if mcp exists send load request and analyze response */
2720 if (!BP_NOMCP(bp)) {
2721 /* attempt to load pf */
2722 rc = bnx2x_nic_load_request(bp, &load_code);
2723 if (rc)
2724 LOAD_ERROR_EXIT(bp, load_error1);
2725
2726 /* what did mcp say? */
2727 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2728 if (rc) {
2729 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2730 LOAD_ERROR_EXIT(bp, load_error2);
2731 }
2732 } else {
2733 load_code = bnx2x_nic_load_no_mcp(bp, port);
2734 }
2735
2736 /* mark pmf if applicable */
2737 bnx2x_nic_load_pmf(bp, load_code);
2738
2739 /* Init Function state controlling object */
2740 bnx2x__init_func_obj(bp);
2741
2742 /* Initialize HW */
2743 rc = bnx2x_init_hw(bp, load_code);
2744 if (rc) {
2745 BNX2X_ERR("HW init failed, aborting\n");
2746 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2747 LOAD_ERROR_EXIT(bp, load_error2);
2748 }
2749 }
2750
2751 bnx2x_pre_irq_nic_init(bp);
2752
2753 /* Connect to IRQs */
2754 rc = bnx2x_setup_irqs(bp);
2755 if (rc) {
2756 BNX2X_ERR("setup irqs failed\n");
2757 if (IS_PF(bp))
2758 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2759 LOAD_ERROR_EXIT(bp, load_error2);
2760 }
2761
2762 /* Init per-function objects */
2763 if (IS_PF(bp)) {
2764 /* Setup NIC internals and enable interrupts */
2765 bnx2x_post_irq_nic_init(bp, load_code);
2766
2767 bnx2x_init_bp_objs(bp);
2768 bnx2x_iov_nic_init(bp);
2769
2770 /* Set AFEX default VLAN tag to an invalid value */
2771 bp->afex_def_vlan_tag = -1;
2772 bnx2x_nic_load_afex_dcc(bp, load_code);
2773 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2774 rc = bnx2x_func_start(bp);
2775 if (rc) {
2776 BNX2X_ERR("Function start failed!\n");
2777 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2778
2779 LOAD_ERROR_EXIT(bp, load_error3);
2780 }
2781
2782 /* Send LOAD_DONE command to MCP */
2783 if (!BP_NOMCP(bp)) {
2784 load_code = bnx2x_fw_command(bp,
2785 DRV_MSG_CODE_LOAD_DONE, 0);
2786 if (!load_code) {
2787 BNX2X_ERR("MCP response failure, aborting\n");
2788 rc = -EBUSY;
2789 LOAD_ERROR_EXIT(bp, load_error3);
2790 }
2791 }
2792
2793 /* initialize FW coalescing state machines in RAM */
2794 bnx2x_update_coalesce(bp);
2795 }
2796
2797 /* setup the leading queue */
2798 rc = bnx2x_setup_leading(bp);
2799 if (rc) {
2800 BNX2X_ERR("Setup leading failed!\n");
2801 LOAD_ERROR_EXIT(bp, load_error3);
2802 }
2803
2804 /* set up the rest of the queues */
2805 for_each_nondefault_eth_queue(bp, i) {
2806 if (IS_PF(bp))
2807 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2808 else /* VF */
2809 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2810 if (rc) {
2811 BNX2X_ERR("Queue %d setup failed\n", i);
2812 LOAD_ERROR_EXIT(bp, load_error3);
2813 }
2814 }
2815
2816 /* setup rss */
2817 rc = bnx2x_init_rss(bp);
2818 if (rc) {
2819 BNX2X_ERR("PF RSS init failed\n");
2820 LOAD_ERROR_EXIT(bp, load_error3);
2821 }
2822
2823 /* Now when Clients are configured we are ready to work */
2824 bp->state = BNX2X_STATE_OPEN;
2825
2826 /* Configure a ucast MAC */
2827 if (IS_PF(bp))
2828 rc = bnx2x_set_eth_mac(bp, true);
2829 else /* vf */
2830 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2831 true);
2832 if (rc) {
2833 BNX2X_ERR("Setting Ethernet MAC failed\n");
2834 LOAD_ERROR_EXIT(bp, load_error3);
2835 }
2836
2837 if (IS_PF(bp) && bp->pending_max) {
2838 bnx2x_update_max_mf_config(bp, bp->pending_max);
2839 bp->pending_max = 0;
2840 }
2841
2842 if (bp->port.pmf) {
2843 rc = bnx2x_initial_phy_init(bp, load_mode);
2844 if (rc)
2845 LOAD_ERROR_EXIT(bp, load_error3);
2846 }
2847 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2848
2849 /* Start fast path */
2850
2851 /* Re-configure vlan filters */
2852 rc = bnx2x_vlan_reconfigure_vid(bp);
2853 if (rc)
2854 LOAD_ERROR_EXIT(bp, load_error3);
2855
2856 /* Initialize Rx filter. */
2857 bnx2x_set_rx_mode_inner(bp);
2858
2859 if (bp->flags & PTP_SUPPORTED) {
2860 bnx2x_init_ptp(bp);
2861 bnx2x_configure_ptp_filters(bp);
2862 }
2863 /* Start Tx */
2864 switch (load_mode) {
2865 case LOAD_NORMAL:
2866 /* Tx queue should be only re-enabled */
2867 netif_tx_wake_all_queues(bp->dev);
2868 break;
2869
2870 case LOAD_OPEN:
2871 netif_tx_start_all_queues(bp->dev);
2872 smp_mb__after_atomic();
2873 break;
2874
2875 case LOAD_DIAG:
2876 case LOAD_LOOPBACK_EXT:
2877 bp->state = BNX2X_STATE_DIAG;
2878 break;
2879
2880 default:
2881 break;
2882 }
2883
2884 if (bp->port.pmf)
2885 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2886 else
2887 bnx2x__link_status_update(bp);
2888
2889 /* start the timer */
2890 mod_timer(&bp->timer, jiffies + bp->current_interval);
2891
2892 if (CNIC_ENABLED(bp))
2893 bnx2x_load_cnic(bp);
2894
2895 if (IS_PF(bp))
2896 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2897
2898 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2899 /* mark driver is loaded in shmem2 */
2900 u32 val;
2901 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2902 val &= ~DRV_FLAGS_MTU_MASK;
2903 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2904 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2905 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2906 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2907 }
2908
2909 /* Wait for all pending SP commands to complete */
2910 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2911 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2912 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2913 return -EBUSY;
2914 }
2915
2916 /* Update driver data for On-Chip MFW dump. */
2917 if (IS_PF(bp))
2918 bnx2x_update_mfw_dump(bp);
2919
2920 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2921 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2922 bnx2x_dcbx_init(bp, false);
2923
2924 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2925 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2926
2927 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2928
2929 return 0;
2930
2931 #ifndef BNX2X_STOP_ON_ERROR
2932 load_error3:
2933 if (IS_PF(bp)) {
2934 bnx2x_int_disable_sync(bp, 1);
2935
2936 /* Clean queueable objects */
2937 bnx2x_squeeze_objects(bp);
2938 }
2939
2940 /* Free SKBs, SGEs, TPA pool and driver internals */
2941 bnx2x_free_skbs(bp);
2942 for_each_rx_queue(bp, i)
2943 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2944
2945 /* Release IRQs */
2946 bnx2x_free_irq(bp);
2947 load_error2:
2948 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2949 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2950 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2951 }
2952
2953 bp->port.pmf = 0;
2954 load_error1:
2955 bnx2x_napi_disable(bp);
2956 bnx2x_del_all_napi(bp);
2957
2958 /* clear pf_load status, as it was already set */
2959 if (IS_PF(bp))
2960 bnx2x_clear_pf_load(bp);
2961 load_error0:
2962 bnx2x_free_fw_stats_mem(bp);
2963 bnx2x_free_fp_mem(bp);
2964 bnx2x_free_mem(bp);
2965
2966 return rc;
2967 #endif /* ! BNX2X_STOP_ON_ERROR */
2968 }
2969
2970 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2971 {
2972 u8 rc = 0, cos, i;
2973
2974 /* Wait until tx fastpath tasks complete */
2975 for_each_tx_queue(bp, i) {
2976 struct bnx2x_fastpath *fp = &bp->fp[i];
2977
2978 for_each_cos_in_tx_queue(fp, cos)
2979 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2980 if (rc)
2981 return rc;
2982 }
2983 return 0;
2984 }
2985
2986 /* must be called with rtnl_lock */
2987 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2988 {
2989 int i;
2990 bool global = false;
2991
2992 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2993
2994 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2995 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2996
2997 /* mark driver is unloaded in shmem2 */
2998 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2999 u32 val;
3000 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
3001 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
3002 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
3003 }
3004
3005 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
3006 (bp->state == BNX2X_STATE_CLOSED ||
3007 bp->state == BNX2X_STATE_ERROR)) {
3008 /* We can get here if the driver has been unloaded
3009 * during parity error recovery and is either waiting for a
3010 * leader to complete or for other functions to unload and
3011 * then ifdown has been issued. In this case we want to
3012 * unload and let other functions to complete a recovery
3013 * process.
3014 */
3015 bp->recovery_state = BNX2X_RECOVERY_DONE;
3016 bp->is_leader = 0;
3017 bnx2x_release_leader_lock(bp);
3018 smp_mb();
3019
3020 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3021 BNX2X_ERR("Can't unload in closed or error state\n");
3022 return -EINVAL;
3023 }
3024
3025 /* Nothing to do during unload if previous bnx2x_nic_load()
3026 * have not completed successfully - all resources are released.
3027 *
3028 * we can get here only after unsuccessful ndo_* callback, during which
3029 * dev->IFF_UP flag is still on.
3030 */
3031 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3032 return 0;
3033
3034 /* It's important to set the bp->state to the value different from
3035 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3036 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3037 */
3038 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3039 smp_mb();
3040
3041 /* indicate to VFs that the PF is going down */
3042 bnx2x_iov_channel_down(bp);
3043
3044 if (CNIC_LOADED(bp))
3045 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3046
3047 /* Stop Tx */
3048 bnx2x_tx_disable(bp);
3049 netdev_reset_tc(bp->dev);
3050
3051 bp->rx_mode = BNX2X_RX_MODE_NONE;
3052
3053 del_timer_sync(&bp->timer);
3054
3055 if (IS_PF(bp)) {
3056 /* Set ALWAYS_ALIVE bit in shmem */
3057 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3058 bnx2x_drv_pulse(bp);
3059 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3060 bnx2x_save_statistics(bp);
3061 }
3062
3063 /* wait till consumers catch up with producers in all queues */
3064 bnx2x_drain_tx_queues(bp);
3065
3066 /* if VF indicate to PF this function is going down (PF will delete sp
3067 * elements and clear initializations
3068 */
3069 if (IS_VF(bp))
3070 bnx2x_vfpf_close_vf(bp);
3071 else if (unload_mode != UNLOAD_RECOVERY)
3072 /* if this is a normal/close unload need to clean up chip*/
3073 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3074 else {
3075 /* Send the UNLOAD_REQUEST to the MCP */
3076 bnx2x_send_unload_req(bp, unload_mode);
3077
3078 /* Prevent transactions to host from the functions on the
3079 * engine that doesn't reset global blocks in case of global
3080 * attention once global blocks are reset and gates are opened
3081 * (the engine which leader will perform the recovery
3082 * last).
3083 */
3084 if (!CHIP_IS_E1x(bp))
3085 bnx2x_pf_disable(bp);
3086
3087 /* Disable HW interrupts, NAPI */
3088 bnx2x_netif_stop(bp, 1);
3089 /* Delete all NAPI objects */
3090 bnx2x_del_all_napi(bp);
3091 if (CNIC_LOADED(bp))
3092 bnx2x_del_all_napi_cnic(bp);
3093 /* Release IRQs */
3094 bnx2x_free_irq(bp);
3095
3096 /* Report UNLOAD_DONE to MCP */
3097 bnx2x_send_unload_done(bp, false);
3098 }
3099
3100 /*
3101 * At this stage no more interrupts will arrive so we may safely clean
3102 * the queueable objects here in case they failed to get cleaned so far.
3103 */
3104 if (IS_PF(bp))
3105 bnx2x_squeeze_objects(bp);
3106
3107 /* There should be no more pending SP commands at this stage */
3108 bp->sp_state = 0;
3109
3110 bp->port.pmf = 0;
3111
3112 /* clear pending work in rtnl task */
3113 bp->sp_rtnl_state = 0;
3114 smp_mb();
3115
3116 /* Free SKBs, SGEs, TPA pool and driver internals */
3117 bnx2x_free_skbs(bp);
3118 if (CNIC_LOADED(bp))
3119 bnx2x_free_skbs_cnic(bp);
3120 for_each_rx_queue(bp, i)
3121 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3122
3123 bnx2x_free_fp_mem(bp);
3124 if (CNIC_LOADED(bp))
3125 bnx2x_free_fp_mem_cnic(bp);
3126
3127 if (IS_PF(bp)) {
3128 if (CNIC_LOADED(bp))
3129 bnx2x_free_mem_cnic(bp);
3130 }
3131 bnx2x_free_mem(bp);
3132
3133 bp->state = BNX2X_STATE_CLOSED;
3134 bp->cnic_loaded = false;
3135
3136 /* Clear driver version indication in shmem */
3137 if (IS_PF(bp))
3138 bnx2x_update_mng_version(bp);
3139
3140 /* Check if there are pending parity attentions. If there are - set
3141 * RECOVERY_IN_PROGRESS.
3142 */
3143 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3144 bnx2x_set_reset_in_progress(bp);
3145
3146 /* Set RESET_IS_GLOBAL if needed */
3147 if (global)
3148 bnx2x_set_reset_global(bp);
3149 }
3150
3151 /* The last driver must disable a "close the gate" if there is no
3152 * parity attention or "process kill" pending.
3153 */
3154 if (IS_PF(bp) &&
3155 !bnx2x_clear_pf_load(bp) &&
3156 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3157 bnx2x_disable_close_the_gate(bp);
3158
3159 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3160
3161 return 0;
3162 }
3163
3164 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3165 {
3166 u16 pmcsr;
3167
3168 /* If there is no power capability, silently succeed */
3169 if (!bp->pdev->pm_cap) {
3170 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3171 return 0;
3172 }
3173
3174 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3175
3176 switch (state) {
3177 case PCI_D0:
3178 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3179 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3180 PCI_PM_CTRL_PME_STATUS));
3181
3182 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3183 /* delay required during transition out of D3hot */
3184 msleep(20);
3185 break;
3186
3187 case PCI_D3hot:
3188 /* If there are other clients above don't
3189 shut down the power */
3190 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3191 return 0;
3192 /* Don't shut down the power for emulation and FPGA */
3193 if (CHIP_REV_IS_SLOW(bp))
3194 return 0;
3195
3196 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3197 pmcsr |= 3;
3198
3199 if (bp->wol)
3200 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3201
3202 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3203 pmcsr);
3204
3205 /* No more memory access after this point until
3206 * device is brought back to D0.
3207 */
3208 break;
3209
3210 default:
3211 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3212 return -EINVAL;
3213 }
3214 return 0;
3215 }
3216
3217 /*
3218 * net_device service functions
3219 */
3220 static int bnx2x_poll(struct napi_struct *napi, int budget)
3221 {
3222 int work_done = 0;
3223 u8 cos;
3224 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3225 napi);
3226 struct bnx2x *bp = fp->bp;
3227
3228 while (1) {
3229 #ifdef BNX2X_STOP_ON_ERROR
3230 if (unlikely(bp->panic)) {
3231 napi_complete(napi);
3232 return 0;
3233 }
3234 #endif
3235 if (!bnx2x_fp_lock_napi(fp))
3236 return budget;
3237
3238 for_each_cos_in_tx_queue(fp, cos)
3239 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3240 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3241
3242 if (bnx2x_has_rx_work(fp)) {
3243 work_done += bnx2x_rx_int(fp, budget - work_done);
3244
3245 /* must not complete if we consumed full budget */
3246 if (work_done >= budget) {
3247 bnx2x_fp_unlock_napi(fp);
3248 break;
3249 }
3250 }
3251
3252 bnx2x_fp_unlock_napi(fp);
3253
3254 /* Fall out from the NAPI loop if needed */
3255 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3256
3257 /* No need to update SB for FCoE L2 ring as long as
3258 * it's connected to the default SB and the SB
3259 * has been updated when NAPI was scheduled.
3260 */
3261 if (IS_FCOE_FP(fp)) {
3262 napi_complete(napi);
3263 break;
3264 }
3265 bnx2x_update_fpsb_idx(fp);
3266 /* bnx2x_has_rx_work() reads the status block,
3267 * thus we need to ensure that status block indices
3268 * have been actually read (bnx2x_update_fpsb_idx)
3269 * prior to this check (bnx2x_has_rx_work) so that
3270 * we won't write the "newer" value of the status block
3271 * to IGU (if there was a DMA right after
3272 * bnx2x_has_rx_work and if there is no rmb, the memory
3273 * reading (bnx2x_update_fpsb_idx) may be postponed
3274 * to right before bnx2x_ack_sb). In this case there
3275 * will never be another interrupt until there is
3276 * another update of the status block, while there
3277 * is still unhandled work.
3278 */
3279 rmb();
3280
3281 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3282 napi_complete(napi);
3283 /* Re-enable interrupts */
3284 DP(NETIF_MSG_RX_STATUS,
3285 "Update index to %d\n", fp->fp_hc_idx);
3286 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3287 le16_to_cpu(fp->fp_hc_idx),
3288 IGU_INT_ENABLE, 1);
3289 break;
3290 }
3291 }
3292 }
3293
3294 return work_done;
3295 }
3296
3297 #ifdef CONFIG_NET_RX_BUSY_POLL
3298 /* must be called with local_bh_disable()d */
3299 int bnx2x_low_latency_recv(struct napi_struct *napi)
3300 {
3301 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3302 napi);
3303 struct bnx2x *bp = fp->bp;
3304 int found = 0;
3305
3306 if ((bp->state == BNX2X_STATE_CLOSED) ||
3307 (bp->state == BNX2X_STATE_ERROR) ||
3308 (bp->dev->features & (NETIF_F_LRO | NETIF_F_GRO)))
3309 return LL_FLUSH_FAILED;
3310
3311 if (!bnx2x_fp_lock_poll(fp))
3312 return LL_FLUSH_BUSY;
3313
3314 if (bnx2x_has_rx_work(fp))
3315 found = bnx2x_rx_int(fp, 4);
3316
3317 bnx2x_fp_unlock_poll(fp);
3318
3319 return found;
3320 }
3321 #endif
3322
3323 /* we split the first BD into headers and data BDs
3324 * to ease the pain of our fellow microcode engineers
3325 * we use one mapping for both BDs
3326 */
3327 static u16 bnx2x_tx_split(struct bnx2x *bp,
3328 struct bnx2x_fp_txdata *txdata,
3329 struct sw_tx_bd *tx_buf,
3330 struct eth_tx_start_bd **tx_bd, u16 hlen,
3331 u16 bd_prod)
3332 {
3333 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3334 struct eth_tx_bd *d_tx_bd;
3335 dma_addr_t mapping;
3336 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3337
3338 /* first fix first BD */
3339 h_tx_bd->nbytes = cpu_to_le16(hlen);
3340
3341 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3342 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3343
3344 /* now get a new data BD
3345 * (after the pbd) and fill it */
3346 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3347 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3348
3349 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3350 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3351
3352 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3353 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3354 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3355
3356 /* this marks the BD as one that has no individual mapping */
3357 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3358
3359 DP(NETIF_MSG_TX_QUEUED,
3360 "TSO split data size is %d (%x:%x)\n",
3361 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3362
3363 /* update tx_bd */
3364 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3365
3366 return bd_prod;
3367 }
3368
3369 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3370 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3371 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3372 {
3373 __sum16 tsum = (__force __sum16) csum;
3374
3375 if (fix > 0)
3376 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3377 csum_partial(t_header - fix, fix, 0)));
3378
3379 else if (fix < 0)
3380 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3381 csum_partial(t_header, -fix, 0)));
3382
3383 return bswab16(tsum);
3384 }
3385
3386 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3387 {
3388 u32 rc;
3389 __u8 prot = 0;
3390 __be16 protocol;
3391
3392 if (skb->ip_summed != CHECKSUM_PARTIAL)
3393 return XMIT_PLAIN;
3394
3395 protocol = vlan_get_protocol(skb);
3396 if (protocol == htons(ETH_P_IPV6)) {
3397 rc = XMIT_CSUM_V6;
3398 prot = ipv6_hdr(skb)->nexthdr;
3399 } else {
3400 rc = XMIT_CSUM_V4;
3401 prot = ip_hdr(skb)->protocol;
3402 }
3403
3404 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3405 if (inner_ip_hdr(skb)->version == 6) {
3406 rc |= XMIT_CSUM_ENC_V6;
3407 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3408 rc |= XMIT_CSUM_TCP;
3409 } else {
3410 rc |= XMIT_CSUM_ENC_V4;
3411 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3412 rc |= XMIT_CSUM_TCP;
3413 }
3414 }
3415 if (prot == IPPROTO_TCP)
3416 rc |= XMIT_CSUM_TCP;
3417
3418 if (skb_is_gso(skb)) {
3419 if (skb_is_gso_v6(skb)) {
3420 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3421 if (rc & XMIT_CSUM_ENC)
3422 rc |= XMIT_GSO_ENC_V6;
3423 } else {
3424 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3425 if (rc & XMIT_CSUM_ENC)
3426 rc |= XMIT_GSO_ENC_V4;
3427 }
3428 }
3429
3430 return rc;
3431 }
3432
3433 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
3434 /* check if packet requires linearization (packet is too fragmented)
3435 no need to check fragmentation if page size > 8K (there will be no
3436 violation to FW restrictions) */
3437 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3438 u32 xmit_type)
3439 {
3440 int to_copy = 0;
3441 int hlen = 0;
3442 int first_bd_sz = 0;
3443
3444 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3445 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) {
3446
3447 if (xmit_type & XMIT_GSO) {
3448 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3449 /* Check if LSO packet needs to be copied:
3450 3 = 1 (for headers BD) + 2 (for PBD and last BD) */
3451 int wnd_size = MAX_FETCH_BD - 3;
3452 /* Number of windows to check */
3453 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3454 int wnd_idx = 0;
3455 int frag_idx = 0;
3456 u32 wnd_sum = 0;
3457
3458 /* Headers length */
3459 if (xmit_type & XMIT_GSO_ENC)
3460 hlen = (int)(skb_inner_transport_header(skb) -
3461 skb->data) +
3462 inner_tcp_hdrlen(skb);
3463 else
3464 hlen = (int)(skb_transport_header(skb) -
3465 skb->data) + tcp_hdrlen(skb);
3466
3467 /* Amount of data (w/o headers) on linear part of SKB*/
3468 first_bd_sz = skb_headlen(skb) - hlen;
3469
3470 wnd_sum = first_bd_sz;
3471
3472 /* Calculate the first sum - it's special */
3473 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3474 wnd_sum +=
3475 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3476
3477 /* If there was data on linear skb data - check it */
3478 if (first_bd_sz > 0) {
3479 if (unlikely(wnd_sum < lso_mss)) {
3480 to_copy = 1;
3481 goto exit_lbl;
3482 }
3483
3484 wnd_sum -= first_bd_sz;
3485 }
3486
3487 /* Others are easier: run through the frag list and
3488 check all windows */
3489 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3490 wnd_sum +=
3491 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3492
3493 if (unlikely(wnd_sum < lso_mss)) {
3494 to_copy = 1;
3495 break;
3496 }
3497 wnd_sum -=
3498 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3499 }
3500 } else {
3501 /* in non-LSO too fragmented packet should always
3502 be linearized */
3503 to_copy = 1;
3504 }
3505 }
3506
3507 exit_lbl:
3508 if (unlikely(to_copy))
3509 DP(NETIF_MSG_TX_QUEUED,
3510 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3511 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3512 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3513
3514 return to_copy;
3515 }
3516 #endif
3517
3518 /**
3519 * bnx2x_set_pbd_gso - update PBD in GSO case.
3520 *
3521 * @skb: packet skb
3522 * @pbd: parse BD
3523 * @xmit_type: xmit flags
3524 */
3525 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3526 struct eth_tx_parse_bd_e1x *pbd,
3527 u32 xmit_type)
3528 {
3529 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3530 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3531 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3532
3533 if (xmit_type & XMIT_GSO_V4) {
3534 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3535 pbd->tcp_pseudo_csum =
3536 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3537 ip_hdr(skb)->daddr,
3538 0, IPPROTO_TCP, 0));
3539 } else {
3540 pbd->tcp_pseudo_csum =
3541 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3542 &ipv6_hdr(skb)->daddr,
3543 0, IPPROTO_TCP, 0));
3544 }
3545
3546 pbd->global_data |=
3547 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3548 }
3549
3550 /**
3551 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3552 *
3553 * @bp: driver handle
3554 * @skb: packet skb
3555 * @parsing_data: data to be updated
3556 * @xmit_type: xmit flags
3557 *
3558 * 57712/578xx related, when skb has encapsulation
3559 */
3560 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3561 u32 *parsing_data, u32 xmit_type)
3562 {
3563 *parsing_data |=
3564 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3565 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3566 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3567
3568 if (xmit_type & XMIT_CSUM_TCP) {
3569 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3570 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3571 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3572
3573 return skb_inner_transport_header(skb) +
3574 inner_tcp_hdrlen(skb) - skb->data;
3575 }
3576
3577 /* We support checksum offload for TCP and UDP only.
3578 * No need to pass the UDP header length - it's a constant.
3579 */
3580 return skb_inner_transport_header(skb) +
3581 sizeof(struct udphdr) - skb->data;
3582 }
3583
3584 /**
3585 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3586 *
3587 * @bp: driver handle
3588 * @skb: packet skb
3589 * @parsing_data: data to be updated
3590 * @xmit_type: xmit flags
3591 *
3592 * 57712/578xx related
3593 */
3594 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3595 u32 *parsing_data, u32 xmit_type)
3596 {
3597 *parsing_data |=
3598 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3599 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3600 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3601
3602 if (xmit_type & XMIT_CSUM_TCP) {
3603 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3604 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3605 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3606
3607 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3608 }
3609 /* We support checksum offload for TCP and UDP only.
3610 * No need to pass the UDP header length - it's a constant.
3611 */
3612 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3613 }
3614
3615 /* set FW indication according to inner or outer protocols if tunneled */
3616 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3617 struct eth_tx_start_bd *tx_start_bd,
3618 u32 xmit_type)
3619 {
3620 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3621
3622 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3623 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3624
3625 if (!(xmit_type & XMIT_CSUM_TCP))
3626 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3627 }
3628
3629 /**
3630 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3631 *
3632 * @bp: driver handle
3633 * @skb: packet skb
3634 * @pbd: parse BD to be updated
3635 * @xmit_type: xmit flags
3636 */
3637 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3638 struct eth_tx_parse_bd_e1x *pbd,
3639 u32 xmit_type)
3640 {
3641 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3642
3643 /* for now NS flag is not used in Linux */
3644 pbd->global_data =
3645 cpu_to_le16(hlen |
3646 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3647 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3648
3649 pbd->ip_hlen_w = (skb_transport_header(skb) -
3650 skb_network_header(skb)) >> 1;
3651
3652 hlen += pbd->ip_hlen_w;
3653
3654 /* We support checksum offload for TCP and UDP only */
3655 if (xmit_type & XMIT_CSUM_TCP)
3656 hlen += tcp_hdrlen(skb) / 2;
3657 else
3658 hlen += sizeof(struct udphdr) / 2;
3659
3660 pbd->total_hlen_w = cpu_to_le16(hlen);
3661 hlen = hlen*2;
3662
3663 if (xmit_type & XMIT_CSUM_TCP) {
3664 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3665
3666 } else {
3667 s8 fix = SKB_CS_OFF(skb); /* signed! */
3668
3669 DP(NETIF_MSG_TX_QUEUED,
3670 "hlen %d fix %d csum before fix %x\n",
3671 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3672
3673 /* HW bug: fixup the CSUM */
3674 pbd->tcp_pseudo_csum =
3675 bnx2x_csum_fix(skb_transport_header(skb),
3676 SKB_CS(skb), fix);
3677
3678 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3679 pbd->tcp_pseudo_csum);
3680 }
3681
3682 return hlen;
3683 }
3684
3685 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3686 struct eth_tx_parse_bd_e2 *pbd_e2,
3687 struct eth_tx_parse_2nd_bd *pbd2,
3688 u16 *global_data,
3689 u32 xmit_type)
3690 {
3691 u16 hlen_w = 0;
3692 u8 outerip_off, outerip_len = 0;
3693
3694 /* from outer IP to transport */
3695 hlen_w = (skb_inner_transport_header(skb) -
3696 skb_network_header(skb)) >> 1;
3697
3698 /* transport len */
3699 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3700
3701 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3702
3703 /* outer IP header info */
3704 if (xmit_type & XMIT_CSUM_V4) {
3705 struct iphdr *iph = ip_hdr(skb);
3706 u32 csum = (__force u32)(~iph->check) -
3707 (__force u32)iph->tot_len -
3708 (__force u32)iph->frag_off;
3709
3710 outerip_len = iph->ihl << 1;
3711
3712 pbd2->fw_ip_csum_wo_len_flags_frag =
3713 bswab16(csum_fold((__force __wsum)csum));
3714 } else {
3715 pbd2->fw_ip_hdr_to_payload_w =
3716 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3717 pbd_e2->data.tunnel_data.flags |=
3718 ETH_TUNNEL_DATA_IPV6_OUTER;
3719 }
3720
3721 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3722
3723 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3724
3725 /* inner IP header info */
3726 if (xmit_type & XMIT_CSUM_ENC_V4) {
3727 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3728
3729 pbd_e2->data.tunnel_data.pseudo_csum =
3730 bswab16(~csum_tcpudp_magic(
3731 inner_ip_hdr(skb)->saddr,
3732 inner_ip_hdr(skb)->daddr,
3733 0, IPPROTO_TCP, 0));
3734 } else {
3735 pbd_e2->data.tunnel_data.pseudo_csum =
3736 bswab16(~csum_ipv6_magic(
3737 &inner_ipv6_hdr(skb)->saddr,
3738 &inner_ipv6_hdr(skb)->daddr,
3739 0, IPPROTO_TCP, 0));
3740 }
3741
3742 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3743
3744 *global_data |=
3745 outerip_off |
3746 (outerip_len <<
3747 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3748 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3749 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3750
3751 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3752 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3753 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3754 }
3755 }
3756
3757 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3758 u32 xmit_type)
3759 {
3760 struct ipv6hdr *ipv6;
3761
3762 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3763 return;
3764
3765 if (xmit_type & XMIT_GSO_ENC_V6)
3766 ipv6 = inner_ipv6_hdr(skb);
3767 else /* XMIT_GSO_V6 */
3768 ipv6 = ipv6_hdr(skb);
3769
3770 if (ipv6->nexthdr == NEXTHDR_IPV6)
3771 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3772 }
3773
3774 /* called with netif_tx_lock
3775 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3776 * netif_wake_queue()
3777 */
3778 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3779 {
3780 struct bnx2x *bp = netdev_priv(dev);
3781
3782 struct netdev_queue *txq;
3783 struct bnx2x_fp_txdata *txdata;
3784 struct sw_tx_bd *tx_buf;
3785 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3786 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3787 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3788 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3789 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3790 u32 pbd_e2_parsing_data = 0;
3791 u16 pkt_prod, bd_prod;
3792 int nbd, txq_index;
3793 dma_addr_t mapping;
3794 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3795 int i;
3796 u8 hlen = 0;
3797 __le16 pkt_size = 0;
3798 struct ethhdr *eth;
3799 u8 mac_type = UNICAST_ADDRESS;
3800
3801 #ifdef BNX2X_STOP_ON_ERROR
3802 if (unlikely(bp->panic))
3803 return NETDEV_TX_BUSY;
3804 #endif
3805
3806 txq_index = skb_get_queue_mapping(skb);
3807 txq = netdev_get_tx_queue(dev, txq_index);
3808
3809 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3810
3811 txdata = &bp->bnx2x_txq[txq_index];
3812
3813 /* enable this debug print to view the transmission queue being used
3814 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3815 txq_index, fp_index, txdata_index); */
3816
3817 /* enable this debug print to view the transmission details
3818 DP(NETIF_MSG_TX_QUEUED,
3819 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3820 txdata->cid, fp_index, txdata_index, txdata, fp); */
3821
3822 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3823 skb_shinfo(skb)->nr_frags +
3824 BDS_PER_TX_PKT +
3825 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3826 /* Handle special storage cases separately */
3827 if (txdata->tx_ring_size == 0) {
3828 struct bnx2x_eth_q_stats *q_stats =
3829 bnx2x_fp_qstats(bp, txdata->parent_fp);
3830 q_stats->driver_filtered_tx_pkt++;
3831 dev_kfree_skb(skb);
3832 return NETDEV_TX_OK;
3833 }
3834 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3835 netif_tx_stop_queue(txq);
3836 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3837
3838 return NETDEV_TX_BUSY;
3839 }
3840
3841 DP(NETIF_MSG_TX_QUEUED,
3842 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3843 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3844 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3845 skb->len);
3846
3847 eth = (struct ethhdr *)skb->data;
3848
3849 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3850 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3851 if (is_broadcast_ether_addr(eth->h_dest))
3852 mac_type = BROADCAST_ADDRESS;
3853 else
3854 mac_type = MULTICAST_ADDRESS;
3855 }
3856
3857 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3858 /* First, check if we need to linearize the skb (due to FW
3859 restrictions). No need to check fragmentation if page size > 8K
3860 (there will be no violation to FW restrictions) */
3861 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3862 /* Statistics of linearization */
3863 bp->lin_cnt++;
3864 if (skb_linearize(skb) != 0) {
3865 DP(NETIF_MSG_TX_QUEUED,
3866 "SKB linearization failed - silently dropping this SKB\n");
3867 dev_kfree_skb_any(skb);
3868 return NETDEV_TX_OK;
3869 }
3870 }
3871 #endif
3872 /* Map skb linear data for DMA */
3873 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3874 skb_headlen(skb), DMA_TO_DEVICE);
3875 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3876 DP(NETIF_MSG_TX_QUEUED,
3877 "SKB mapping failed - silently dropping this SKB\n");
3878 dev_kfree_skb_any(skb);
3879 return NETDEV_TX_OK;
3880 }
3881 /*
3882 Please read carefully. First we use one BD which we mark as start,
3883 then we have a parsing info BD (used for TSO or xsum),
3884 and only then we have the rest of the TSO BDs.
3885 (don't forget to mark the last one as last,
3886 and to unmap only AFTER you write to the BD ...)
3887 And above all, all pdb sizes are in words - NOT DWORDS!
3888 */
3889
3890 /* get current pkt produced now - advance it just before sending packet
3891 * since mapping of pages may fail and cause packet to be dropped
3892 */
3893 pkt_prod = txdata->tx_pkt_prod;
3894 bd_prod = TX_BD(txdata->tx_bd_prod);
3895
3896 /* get a tx_buf and first BD
3897 * tx_start_bd may be changed during SPLIT,
3898 * but first_bd will always stay first
3899 */
3900 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3901 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3902 first_bd = tx_start_bd;
3903
3904 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3905
3906 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3907 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3908 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3909 } else if (bp->ptp_tx_skb) {
3910 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3911 } else {
3912 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3913 /* schedule check for Tx timestamp */
3914 bp->ptp_tx_skb = skb_get(skb);
3915 bp->ptp_tx_start = jiffies;
3916 schedule_work(&bp->ptp_task);
3917 }
3918 }
3919
3920 /* header nbd: indirectly zero other flags! */
3921 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3922
3923 /* remember the first BD of the packet */
3924 tx_buf->first_bd = txdata->tx_bd_prod;
3925 tx_buf->skb = skb;
3926 tx_buf->flags = 0;
3927
3928 DP(NETIF_MSG_TX_QUEUED,
3929 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3930 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3931
3932 if (skb_vlan_tag_present(skb)) {
3933 tx_start_bd->vlan_or_ethertype =
3934 cpu_to_le16(skb_vlan_tag_get(skb));
3935 tx_start_bd->bd_flags.as_bitfield |=
3936 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3937 } else {
3938 /* when transmitting in a vf, start bd must hold the ethertype
3939 * for fw to enforce it
3940 */
3941 #ifndef BNX2X_STOP_ON_ERROR
3942 if (IS_VF(bp))
3943 #endif
3944 tx_start_bd->vlan_or_ethertype =
3945 cpu_to_le16(ntohs(eth->h_proto));
3946 #ifndef BNX2X_STOP_ON_ERROR
3947 else
3948 /* used by FW for packet accounting */
3949 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3950 #endif
3951 }
3952
3953 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3954
3955 /* turn on parsing and get a BD */
3956 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3957
3958 if (xmit_type & XMIT_CSUM)
3959 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3960
3961 if (!CHIP_IS_E1x(bp)) {
3962 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3963 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3964
3965 if (xmit_type & XMIT_CSUM_ENC) {
3966 u16 global_data = 0;
3967
3968 /* Set PBD in enc checksum offload case */
3969 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3970 &pbd_e2_parsing_data,
3971 xmit_type);
3972
3973 /* turn on 2nd parsing and get a BD */
3974 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3975
3976 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3977
3978 memset(pbd2, 0, sizeof(*pbd2));
3979
3980 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3981 (skb_inner_network_header(skb) -
3982 skb->data) >> 1;
3983
3984 if (xmit_type & XMIT_GSO_ENC)
3985 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3986 &global_data,
3987 xmit_type);
3988
3989 pbd2->global_data = cpu_to_le16(global_data);
3990
3991 /* add addition parse BD indication to start BD */
3992 SET_FLAG(tx_start_bd->general_data,
3993 ETH_TX_START_BD_PARSE_NBDS, 1);
3994 /* set encapsulation flag in start BD */
3995 SET_FLAG(tx_start_bd->general_data,
3996 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3997
3998 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3999
4000 nbd++;
4001 } else if (xmit_type & XMIT_CSUM) {
4002 /* Set PBD in checksum offload case w/o encapsulation */
4003 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
4004 &pbd_e2_parsing_data,
4005 xmit_type);
4006 }
4007
4008 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
4009 /* Add the macs to the parsing BD if this is a vf or if
4010 * Tx Switching is enabled.
4011 */
4012 if (IS_VF(bp)) {
4013 /* override GRE parameters in BD */
4014 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4015 &pbd_e2->data.mac_addr.src_mid,
4016 &pbd_e2->data.mac_addr.src_lo,
4017 eth->h_source);
4018
4019 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
4020 &pbd_e2->data.mac_addr.dst_mid,
4021 &pbd_e2->data.mac_addr.dst_lo,
4022 eth->h_dest);
4023 } else {
4024 if (bp->flags & TX_SWITCHING)
4025 bnx2x_set_fw_mac_addr(
4026 &pbd_e2->data.mac_addr.dst_hi,
4027 &pbd_e2->data.mac_addr.dst_mid,
4028 &pbd_e2->data.mac_addr.dst_lo,
4029 eth->h_dest);
4030 #ifdef BNX2X_STOP_ON_ERROR
4031 /* Enforce security is always set in Stop on Error -
4032 * source mac should be present in the parsing BD
4033 */
4034 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4035 &pbd_e2->data.mac_addr.src_mid,
4036 &pbd_e2->data.mac_addr.src_lo,
4037 eth->h_source);
4038 #endif
4039 }
4040
4041 SET_FLAG(pbd_e2_parsing_data,
4042 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4043 } else {
4044 u16 global_data = 0;
4045 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4046 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4047 /* Set PBD in checksum offload case */
4048 if (xmit_type & XMIT_CSUM)
4049 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4050
4051 SET_FLAG(global_data,
4052 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4053 pbd_e1x->global_data |= cpu_to_le16(global_data);
4054 }
4055
4056 /* Setup the data pointer of the first BD of the packet */
4057 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4058 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4059 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4060 pkt_size = tx_start_bd->nbytes;
4061
4062 DP(NETIF_MSG_TX_QUEUED,
4063 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4064 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4065 le16_to_cpu(tx_start_bd->nbytes),
4066 tx_start_bd->bd_flags.as_bitfield,
4067 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4068
4069 if (xmit_type & XMIT_GSO) {
4070
4071 DP(NETIF_MSG_TX_QUEUED,
4072 "TSO packet len %d hlen %d total len %d tso size %d\n",
4073 skb->len, hlen, skb_headlen(skb),
4074 skb_shinfo(skb)->gso_size);
4075
4076 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4077
4078 if (unlikely(skb_headlen(skb) > hlen)) {
4079 nbd++;
4080 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4081 &tx_start_bd, hlen,
4082 bd_prod);
4083 }
4084 if (!CHIP_IS_E1x(bp))
4085 pbd_e2_parsing_data |=
4086 (skb_shinfo(skb)->gso_size <<
4087 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4088 ETH_TX_PARSE_BD_E2_LSO_MSS;
4089 else
4090 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4091 }
4092
4093 /* Set the PBD's parsing_data field if not zero
4094 * (for the chips newer than 57711).
4095 */
4096 if (pbd_e2_parsing_data)
4097 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4098
4099 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4100
4101 /* Handle fragmented skb */
4102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4103 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4104
4105 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4106 skb_frag_size(frag), DMA_TO_DEVICE);
4107 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4108 unsigned int pkts_compl = 0, bytes_compl = 0;
4109
4110 DP(NETIF_MSG_TX_QUEUED,
4111 "Unable to map page - dropping packet...\n");
4112
4113 /* we need unmap all buffers already mapped
4114 * for this SKB;
4115 * first_bd->nbd need to be properly updated
4116 * before call to bnx2x_free_tx_pkt
4117 */
4118 first_bd->nbd = cpu_to_le16(nbd);
4119 bnx2x_free_tx_pkt(bp, txdata,
4120 TX_BD(txdata->tx_pkt_prod),
4121 &pkts_compl, &bytes_compl);
4122 return NETDEV_TX_OK;
4123 }
4124
4125 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4126 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4127 if (total_pkt_bd == NULL)
4128 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4129
4130 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4131 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4132 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4133 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4134 nbd++;
4135
4136 DP(NETIF_MSG_TX_QUEUED,
4137 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4138 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4139 le16_to_cpu(tx_data_bd->nbytes));
4140 }
4141
4142 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4143
4144 /* update with actual num BDs */
4145 first_bd->nbd = cpu_to_le16(nbd);
4146
4147 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4148
4149 /* now send a tx doorbell, counting the next BD
4150 * if the packet contains or ends with it
4151 */
4152 if (TX_BD_POFF(bd_prod) < nbd)
4153 nbd++;
4154
4155 /* total_pkt_bytes should be set on the first data BD if
4156 * it's not an LSO packet and there is more than one
4157 * data BD. In this case pkt_size is limited by an MTU value.
4158 * However we prefer to set it for an LSO packet (while we don't
4159 * have to) in order to save some CPU cycles in a none-LSO
4160 * case, when we much more care about them.
4161 */
4162 if (total_pkt_bd != NULL)
4163 total_pkt_bd->total_pkt_bytes = pkt_size;
4164
4165 if (pbd_e1x)
4166 DP(NETIF_MSG_TX_QUEUED,
4167 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4168 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4169 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4170 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4171 le16_to_cpu(pbd_e1x->total_hlen_w));
4172 if (pbd_e2)
4173 DP(NETIF_MSG_TX_QUEUED,
4174 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4175 pbd_e2,
4176 pbd_e2->data.mac_addr.dst_hi,
4177 pbd_e2->data.mac_addr.dst_mid,
4178 pbd_e2->data.mac_addr.dst_lo,
4179 pbd_e2->data.mac_addr.src_hi,
4180 pbd_e2->data.mac_addr.src_mid,
4181 pbd_e2->data.mac_addr.src_lo,
4182 pbd_e2->parsing_data);
4183 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4184
4185 netdev_tx_sent_queue(txq, skb->len);
4186
4187 skb_tx_timestamp(skb);
4188
4189 txdata->tx_pkt_prod++;
4190 /*
4191 * Make sure that the BD data is updated before updating the producer
4192 * since FW might read the BD right after the producer is updated.
4193 * This is only applicable for weak-ordered memory model archs such
4194 * as IA-64. The following barrier is also mandatory since FW will
4195 * assumes packets must have BDs.
4196 */
4197 wmb();
4198
4199 txdata->tx_db.data.prod += nbd;
4200 barrier();
4201
4202 DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
4203
4204 mmiowb();
4205
4206 txdata->tx_bd_prod += nbd;
4207
4208 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4209 netif_tx_stop_queue(txq);
4210
4211 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4212 * ordering of set_bit() in netif_tx_stop_queue() and read of
4213 * fp->bd_tx_cons */
4214 smp_mb();
4215
4216 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4217 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4218 netif_tx_wake_queue(txq);
4219 }
4220 txdata->tx_pkt++;
4221
4222 return NETDEV_TX_OK;
4223 }
4224
4225 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4226 {
4227 int mfw_vn = BP_FW_MB_IDX(bp);
4228 u32 tmp;
4229
4230 /* If the shmem shouldn't affect configuration, reflect */
4231 if (!IS_MF_BD(bp)) {
4232 int i;
4233
4234 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4235 c2s_map[i] = i;
4236 *c2s_default = 0;
4237
4238 return;
4239 }
4240
4241 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4242 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4243 c2s_map[0] = tmp & 0xff;
4244 c2s_map[1] = (tmp >> 8) & 0xff;
4245 c2s_map[2] = (tmp >> 16) & 0xff;
4246 c2s_map[3] = (tmp >> 24) & 0xff;
4247
4248 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4249 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4250 c2s_map[4] = tmp & 0xff;
4251 c2s_map[5] = (tmp >> 8) & 0xff;
4252 c2s_map[6] = (tmp >> 16) & 0xff;
4253 c2s_map[7] = (tmp >> 24) & 0xff;
4254
4255 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4256 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4257 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4258 }
4259
4260 /**
4261 * bnx2x_setup_tc - routine to configure net_device for multi tc
4262 *
4263 * @netdev: net device to configure
4264 * @tc: number of traffic classes to enable
4265 *
4266 * callback connected to the ndo_setup_tc function pointer
4267 */
4268 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4269 {
4270 struct bnx2x *bp = netdev_priv(dev);
4271 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4272 int cos, prio, count, offset;
4273
4274 /* setup tc must be called under rtnl lock */
4275 ASSERT_RTNL();
4276
4277 /* no traffic classes requested. Aborting */
4278 if (!num_tc) {
4279 netdev_reset_tc(dev);
4280 return 0;
4281 }
4282
4283 /* requested to support too many traffic classes */
4284 if (num_tc > bp->max_cos) {
4285 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4286 num_tc, bp->max_cos);
4287 return -EINVAL;
4288 }
4289
4290 /* declare amount of supported traffic classes */
4291 if (netdev_set_num_tc(dev, num_tc)) {
4292 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4293 return -EINVAL;
4294 }
4295
4296 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4297
4298 /* configure priority to traffic class mapping */
4299 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4300 int outer_prio = c2s_map[prio];
4301
4302 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4303 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4304 "mapping priority %d to tc %d\n",
4305 outer_prio, bp->prio_to_cos[outer_prio]);
4306 }
4307
4308 /* Use this configuration to differentiate tc0 from other COSes
4309 This can be used for ets or pfc, and save the effort of setting
4310 up a multio class queue disc or negotiating DCBX with a switch
4311 netdev_set_prio_tc_map(dev, 0, 0);
4312 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4313 for (prio = 1; prio < 16; prio++) {
4314 netdev_set_prio_tc_map(dev, prio, 1);
4315 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4316 } */
4317
4318 /* configure traffic class to transmission queue mapping */
4319 for (cos = 0; cos < bp->max_cos; cos++) {
4320 count = BNX2X_NUM_ETH_QUEUES(bp);
4321 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4322 netdev_set_tc_queue(dev, cos, count, offset);
4323 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4324 "mapping tc %d to offset %d count %d\n",
4325 cos, offset, count);
4326 }
4327
4328 return 0;
4329 }
4330
4331 /* called with rtnl_lock */
4332 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4333 {
4334 struct sockaddr *addr = p;
4335 struct bnx2x *bp = netdev_priv(dev);
4336 int rc = 0;
4337
4338 if (!is_valid_ether_addr(addr->sa_data)) {
4339 BNX2X_ERR("Requested MAC address is not valid\n");
4340 return -EINVAL;
4341 }
4342
4343 if (IS_MF_STORAGE_ONLY(bp)) {
4344 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4345 return -EINVAL;
4346 }
4347
4348 if (netif_running(dev)) {
4349 rc = bnx2x_set_eth_mac(bp, false);
4350 if (rc)
4351 return rc;
4352 }
4353
4354 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4355
4356 if (netif_running(dev))
4357 rc = bnx2x_set_eth_mac(bp, true);
4358
4359 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4360 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4361
4362 return rc;
4363 }
4364
4365 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4366 {
4367 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4368 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4369 u8 cos;
4370
4371 /* Common */
4372
4373 if (IS_FCOE_IDX(fp_index)) {
4374 memset(sb, 0, sizeof(union host_hc_status_block));
4375 fp->status_blk_mapping = 0;
4376 } else {
4377 /* status blocks */
4378 if (!CHIP_IS_E1x(bp))
4379 BNX2X_PCI_FREE(sb->e2_sb,
4380 bnx2x_fp(bp, fp_index,
4381 status_blk_mapping),
4382 sizeof(struct host_hc_status_block_e2));
4383 else
4384 BNX2X_PCI_FREE(sb->e1x_sb,
4385 bnx2x_fp(bp, fp_index,
4386 status_blk_mapping),
4387 sizeof(struct host_hc_status_block_e1x));
4388 }
4389
4390 /* Rx */
4391 if (!skip_rx_queue(bp, fp_index)) {
4392 bnx2x_free_rx_bds(fp);
4393
4394 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4395 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4396 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4397 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4398 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4399
4400 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4401 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4402 sizeof(struct eth_fast_path_rx_cqe) *
4403 NUM_RCQ_BD);
4404
4405 /* SGE ring */
4406 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4407 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4408 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4409 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4410 }
4411
4412 /* Tx */
4413 if (!skip_tx_queue(bp, fp_index)) {
4414 /* fastpath tx rings: tx_buf tx_desc */
4415 for_each_cos_in_tx_queue(fp, cos) {
4416 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4417
4418 DP(NETIF_MSG_IFDOWN,
4419 "freeing tx memory of fp %d cos %d cid %d\n",
4420 fp_index, cos, txdata->cid);
4421
4422 BNX2X_FREE(txdata->tx_buf_ring);
4423 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4424 txdata->tx_desc_mapping,
4425 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4426 }
4427 }
4428 /* end of fastpath */
4429 }
4430
4431 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4432 {
4433 int i;
4434 for_each_cnic_queue(bp, i)
4435 bnx2x_free_fp_mem_at(bp, i);
4436 }
4437
4438 void bnx2x_free_fp_mem(struct bnx2x *bp)
4439 {
4440 int i;
4441 for_each_eth_queue(bp, i)
4442 bnx2x_free_fp_mem_at(bp, i);
4443 }
4444
4445 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4446 {
4447 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4448 if (!CHIP_IS_E1x(bp)) {
4449 bnx2x_fp(bp, index, sb_index_values) =
4450 (__le16 *)status_blk.e2_sb->sb.index_values;
4451 bnx2x_fp(bp, index, sb_running_index) =
4452 (__le16 *)status_blk.e2_sb->sb.running_index;
4453 } else {
4454 bnx2x_fp(bp, index, sb_index_values) =
4455 (__le16 *)status_blk.e1x_sb->sb.index_values;
4456 bnx2x_fp(bp, index, sb_running_index) =
4457 (__le16 *)status_blk.e1x_sb->sb.running_index;
4458 }
4459 }
4460
4461 /* Returns the number of actually allocated BDs */
4462 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4463 int rx_ring_size)
4464 {
4465 struct bnx2x *bp = fp->bp;
4466 u16 ring_prod, cqe_ring_prod;
4467 int i, failure_cnt = 0;
4468
4469 fp->rx_comp_cons = 0;
4470 cqe_ring_prod = ring_prod = 0;
4471
4472 /* This routine is called only during fo init so
4473 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4474 */
4475 for (i = 0; i < rx_ring_size; i++) {
4476 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4477 failure_cnt++;
4478 continue;
4479 }
4480 ring_prod = NEXT_RX_IDX(ring_prod);
4481 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4482 WARN_ON(ring_prod <= (i - failure_cnt));
4483 }
4484
4485 if (failure_cnt)
4486 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4487 i - failure_cnt, fp->index);
4488
4489 fp->rx_bd_prod = ring_prod;
4490 /* Limit the CQE producer by the CQE ring size */
4491 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4492 cqe_ring_prod);
4493 fp->rx_pkt = fp->rx_calls = 0;
4494
4495 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4496
4497 return i - failure_cnt;
4498 }
4499
4500 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4501 {
4502 int i;
4503
4504 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4505 struct eth_rx_cqe_next_page *nextpg;
4506
4507 nextpg = (struct eth_rx_cqe_next_page *)
4508 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4509 nextpg->addr_hi =
4510 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4511 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4512 nextpg->addr_lo =
4513 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4514 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4515 }
4516 }
4517
4518 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4519 {
4520 union host_hc_status_block *sb;
4521 struct bnx2x_fastpath *fp = &bp->fp[index];
4522 int ring_size = 0;
4523 u8 cos;
4524 int rx_ring_size = 0;
4525
4526 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4527 rx_ring_size = MIN_RX_SIZE_NONTPA;
4528 bp->rx_ring_size = rx_ring_size;
4529 } else if (!bp->rx_ring_size) {
4530 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4531
4532 if (CHIP_IS_E3(bp)) {
4533 u32 cfg = SHMEM_RD(bp,
4534 dev_info.port_hw_config[BP_PORT(bp)].
4535 default_cfg);
4536
4537 /* Decrease ring size for 1G functions */
4538 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4539 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4540 rx_ring_size /= 10;
4541 }
4542
4543 /* allocate at least number of buffers required by FW */
4544 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4545 MIN_RX_SIZE_TPA, rx_ring_size);
4546
4547 bp->rx_ring_size = rx_ring_size;
4548 } else /* if rx_ring_size specified - use it */
4549 rx_ring_size = bp->rx_ring_size;
4550
4551 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4552
4553 /* Common */
4554 sb = &bnx2x_fp(bp, index, status_blk);
4555
4556 if (!IS_FCOE_IDX(index)) {
4557 /* status blocks */
4558 if (!CHIP_IS_E1x(bp)) {
4559 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4560 sizeof(struct host_hc_status_block_e2));
4561 if (!sb->e2_sb)
4562 goto alloc_mem_err;
4563 } else {
4564 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4565 sizeof(struct host_hc_status_block_e1x));
4566 if (!sb->e1x_sb)
4567 goto alloc_mem_err;
4568 }
4569 }
4570
4571 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4572 * set shortcuts for it.
4573 */
4574 if (!IS_FCOE_IDX(index))
4575 set_sb_shortcuts(bp, index);
4576
4577 /* Tx */
4578 if (!skip_tx_queue(bp, index)) {
4579 /* fastpath tx rings: tx_buf tx_desc */
4580 for_each_cos_in_tx_queue(fp, cos) {
4581 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4582
4583 DP(NETIF_MSG_IFUP,
4584 "allocating tx memory of fp %d cos %d\n",
4585 index, cos);
4586
4587 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4588 sizeof(struct sw_tx_bd),
4589 GFP_KERNEL);
4590 if (!txdata->tx_buf_ring)
4591 goto alloc_mem_err;
4592 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4593 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4594 if (!txdata->tx_desc_ring)
4595 goto alloc_mem_err;
4596 }
4597 }
4598
4599 /* Rx */
4600 if (!skip_rx_queue(bp, index)) {
4601 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4602 bnx2x_fp(bp, index, rx_buf_ring) =
4603 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4604 if (!bnx2x_fp(bp, index, rx_buf_ring))
4605 goto alloc_mem_err;
4606 bnx2x_fp(bp, index, rx_desc_ring) =
4607 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4608 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4609 if (!bnx2x_fp(bp, index, rx_desc_ring))
4610 goto alloc_mem_err;
4611
4612 /* Seed all CQEs by 1s */
4613 bnx2x_fp(bp, index, rx_comp_ring) =
4614 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4615 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4616 if (!bnx2x_fp(bp, index, rx_comp_ring))
4617 goto alloc_mem_err;
4618
4619 /* SGE ring */
4620 bnx2x_fp(bp, index, rx_page_ring) =
4621 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4622 GFP_KERNEL);
4623 if (!bnx2x_fp(bp, index, rx_page_ring))
4624 goto alloc_mem_err;
4625 bnx2x_fp(bp, index, rx_sge_ring) =
4626 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4627 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4628 if (!bnx2x_fp(bp, index, rx_sge_ring))
4629 goto alloc_mem_err;
4630 /* RX BD ring */
4631 bnx2x_set_next_page_rx_bd(fp);
4632
4633 /* CQ ring */
4634 bnx2x_set_next_page_rx_cq(fp);
4635
4636 /* BDs */
4637 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4638 if (ring_size < rx_ring_size)
4639 goto alloc_mem_err;
4640 }
4641
4642 return 0;
4643
4644 /* handles low memory cases */
4645 alloc_mem_err:
4646 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4647 index, ring_size);
4648 /* FW will drop all packets if queue is not big enough,
4649 * In these cases we disable the queue
4650 * Min size is different for OOO, TPA and non-TPA queues
4651 */
4652 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4653 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4654 /* release memory allocated for this queue */
4655 bnx2x_free_fp_mem_at(bp, index);
4656 return -ENOMEM;
4657 }
4658 return 0;
4659 }
4660
4661 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4662 {
4663 if (!NO_FCOE(bp))
4664 /* FCoE */
4665 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4666 /* we will fail load process instead of mark
4667 * NO_FCOE_FLAG
4668 */
4669 return -ENOMEM;
4670
4671 return 0;
4672 }
4673
4674 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4675 {
4676 int i;
4677
4678 /* 1. Allocate FP for leading - fatal if error
4679 * 2. Allocate RSS - fix number of queues if error
4680 */
4681
4682 /* leading */
4683 if (bnx2x_alloc_fp_mem_at(bp, 0))
4684 return -ENOMEM;
4685
4686 /* RSS */
4687 for_each_nondefault_eth_queue(bp, i)
4688 if (bnx2x_alloc_fp_mem_at(bp, i))
4689 break;
4690
4691 /* handle memory failures */
4692 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4693 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4694
4695 WARN_ON(delta < 0);
4696 bnx2x_shrink_eth_fp(bp, delta);
4697 if (CNIC_SUPPORT(bp))
4698 /* move non eth FPs next to last eth FP
4699 * must be done in that order
4700 * FCOE_IDX < FWD_IDX < OOO_IDX
4701 */
4702
4703 /* move FCoE fp even NO_FCOE_FLAG is on */
4704 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4705 bp->num_ethernet_queues -= delta;
4706 bp->num_queues = bp->num_ethernet_queues +
4707 bp->num_cnic_queues;
4708 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4709 bp->num_queues + delta, bp->num_queues);
4710 }
4711
4712 return 0;
4713 }
4714
4715 void bnx2x_free_mem_bp(struct bnx2x *bp)
4716 {
4717 int i;
4718
4719 for (i = 0; i < bp->fp_array_size; i++)
4720 kfree(bp->fp[i].tpa_info);
4721 kfree(bp->fp);
4722 kfree(bp->sp_objs);
4723 kfree(bp->fp_stats);
4724 kfree(bp->bnx2x_txq);
4725 kfree(bp->msix_table);
4726 kfree(bp->ilt);
4727 }
4728
4729 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4730 {
4731 struct bnx2x_fastpath *fp;
4732 struct msix_entry *tbl;
4733 struct bnx2x_ilt *ilt;
4734 int msix_table_size = 0;
4735 int fp_array_size, txq_array_size;
4736 int i;
4737
4738 /*
4739 * The biggest MSI-X table we might need is as a maximum number of fast
4740 * path IGU SBs plus default SB (for PF only).
4741 */
4742 msix_table_size = bp->igu_sb_cnt;
4743 if (IS_PF(bp))
4744 msix_table_size++;
4745 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4746
4747 /* fp array: RSS plus CNIC related L2 queues */
4748 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4749 bp->fp_array_size = fp_array_size;
4750 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4751
4752 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4753 if (!fp)
4754 goto alloc_err;
4755 for (i = 0; i < bp->fp_array_size; i++) {
4756 fp[i].tpa_info =
4757 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4758 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4759 if (!(fp[i].tpa_info))
4760 goto alloc_err;
4761 }
4762
4763 bp->fp = fp;
4764
4765 /* allocate sp objs */
4766 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4767 GFP_KERNEL);
4768 if (!bp->sp_objs)
4769 goto alloc_err;
4770
4771 /* allocate fp_stats */
4772 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4773 GFP_KERNEL);
4774 if (!bp->fp_stats)
4775 goto alloc_err;
4776
4777 /* Allocate memory for the transmission queues array */
4778 txq_array_size =
4779 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4780 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4781
4782 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4783 GFP_KERNEL);
4784 if (!bp->bnx2x_txq)
4785 goto alloc_err;
4786
4787 /* msix table */
4788 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4789 if (!tbl)
4790 goto alloc_err;
4791 bp->msix_table = tbl;
4792
4793 /* ilt */
4794 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4795 if (!ilt)
4796 goto alloc_err;
4797 bp->ilt = ilt;
4798
4799 return 0;
4800 alloc_err:
4801 bnx2x_free_mem_bp(bp);
4802 return -ENOMEM;
4803 }
4804
4805 int bnx2x_reload_if_running(struct net_device *dev)
4806 {
4807 struct bnx2x *bp = netdev_priv(dev);
4808
4809 if (unlikely(!netif_running(dev)))
4810 return 0;
4811
4812 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4813 return bnx2x_nic_load(bp, LOAD_NORMAL);
4814 }
4815
4816 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4817 {
4818 u32 sel_phy_idx = 0;
4819 if (bp->link_params.num_phys <= 1)
4820 return INT_PHY;
4821
4822 if (bp->link_vars.link_up) {
4823 sel_phy_idx = EXT_PHY1;
4824 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4825 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4826 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4827 sel_phy_idx = EXT_PHY2;
4828 } else {
4829
4830 switch (bnx2x_phy_selection(&bp->link_params)) {
4831 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4832 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4833 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4834 sel_phy_idx = EXT_PHY1;
4835 break;
4836 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4837 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4838 sel_phy_idx = EXT_PHY2;
4839 break;
4840 }
4841 }
4842
4843 return sel_phy_idx;
4844 }
4845 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4846 {
4847 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4848 /*
4849 * The selected activated PHY is always after swapping (in case PHY
4850 * swapping is enabled). So when swapping is enabled, we need to reverse
4851 * the configuration
4852 */
4853
4854 if (bp->link_params.multi_phy_config &
4855 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4856 if (sel_phy_idx == EXT_PHY1)
4857 sel_phy_idx = EXT_PHY2;
4858 else if (sel_phy_idx == EXT_PHY2)
4859 sel_phy_idx = EXT_PHY1;
4860 }
4861 return LINK_CONFIG_IDX(sel_phy_idx);
4862 }
4863
4864 #ifdef NETDEV_FCOE_WWNN
4865 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4866 {
4867 struct bnx2x *bp = netdev_priv(dev);
4868 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4869
4870 switch (type) {
4871 case NETDEV_FCOE_WWNN:
4872 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4873 cp->fcoe_wwn_node_name_lo);
4874 break;
4875 case NETDEV_FCOE_WWPN:
4876 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4877 cp->fcoe_wwn_port_name_lo);
4878 break;
4879 default:
4880 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4881 return -EINVAL;
4882 }
4883
4884 return 0;
4885 }
4886 #endif
4887
4888 /* called with rtnl_lock */
4889 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4890 {
4891 struct bnx2x *bp = netdev_priv(dev);
4892
4893 if (pci_num_vf(bp->pdev)) {
4894 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4895 return -EPERM;
4896 }
4897
4898 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4899 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4900 return -EAGAIN;
4901 }
4902
4903 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) ||
4904 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) {
4905 BNX2X_ERR("Can't support requested MTU size\n");
4906 return -EINVAL;
4907 }
4908
4909 /* This does not race with packet allocation
4910 * because the actual alloc size is
4911 * only updated as part of load
4912 */
4913 dev->mtu = new_mtu;
4914
4915 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4916 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4917
4918 return bnx2x_reload_if_running(dev);
4919 }
4920
4921 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4922 netdev_features_t features)
4923 {
4924 struct bnx2x *bp = netdev_priv(dev);
4925
4926 if (pci_num_vf(bp->pdev)) {
4927 netdev_features_t changed = dev->features ^ features;
4928
4929 /* Revert the requested changes in features if they
4930 * would require internal reload of PF in bnx2x_set_features().
4931 */
4932 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4933 features &= ~NETIF_F_RXCSUM;
4934 features |= dev->features & NETIF_F_RXCSUM;
4935 }
4936
4937 if (changed & NETIF_F_LOOPBACK) {
4938 features &= ~NETIF_F_LOOPBACK;
4939 features |= dev->features & NETIF_F_LOOPBACK;
4940 }
4941 }
4942
4943 /* TPA requires Rx CSUM offloading */
4944 if (!(features & NETIF_F_RXCSUM)) {
4945 features &= ~NETIF_F_LRO;
4946 features &= ~NETIF_F_GRO;
4947 }
4948
4949 return features;
4950 }
4951
4952 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4953 {
4954 struct bnx2x *bp = netdev_priv(dev);
4955 netdev_features_t changes = features ^ dev->features;
4956 bool bnx2x_reload = false;
4957 int rc;
4958
4959 /* VFs or non SRIOV PFs should be able to change loopback feature */
4960 if (!pci_num_vf(bp->pdev)) {
4961 if (features & NETIF_F_LOOPBACK) {
4962 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4963 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4964 bnx2x_reload = true;
4965 }
4966 } else {
4967 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4968 bp->link_params.loopback_mode = LOOPBACK_NONE;
4969 bnx2x_reload = true;
4970 }
4971 }
4972 }
4973
4974 /* if GRO is changed while LRO is enabled, don't force a reload */
4975 if ((changes & NETIF_F_GRO) && (features & NETIF_F_LRO))
4976 changes &= ~NETIF_F_GRO;
4977
4978 /* if GRO is changed while HW TPA is off, don't force a reload */
4979 if ((changes & NETIF_F_GRO) && bp->disable_tpa)
4980 changes &= ~NETIF_F_GRO;
4981
4982 if (changes)
4983 bnx2x_reload = true;
4984
4985 if (bnx2x_reload) {
4986 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4987 dev->features = features;
4988 rc = bnx2x_reload_if_running(dev);
4989 return rc ? rc : 1;
4990 }
4991 /* else: bnx2x_nic_load() will be called at end of recovery */
4992 }
4993
4994 return 0;
4995 }
4996
4997 void bnx2x_tx_timeout(struct net_device *dev)
4998 {
4999 struct bnx2x *bp = netdev_priv(dev);
5000
5001 #ifdef BNX2X_STOP_ON_ERROR
5002 if (!bp->panic)
5003 bnx2x_panic();
5004 #endif
5005
5006 /* This allows the netif to be shutdown gracefully before resetting */
5007 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
5008 }
5009
5010 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
5011 {
5012 struct net_device *dev = pci_get_drvdata(pdev);
5013 struct bnx2x *bp;
5014
5015 if (!dev) {
5016 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5017 return -ENODEV;
5018 }
5019 bp = netdev_priv(dev);
5020
5021 rtnl_lock();
5022
5023 pci_save_state(pdev);
5024
5025 if (!netif_running(dev)) {
5026 rtnl_unlock();
5027 return 0;
5028 }
5029
5030 netif_device_detach(dev);
5031
5032 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5033
5034 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5035
5036 rtnl_unlock();
5037
5038 return 0;
5039 }
5040
5041 int bnx2x_resume(struct pci_dev *pdev)
5042 {
5043 struct net_device *dev = pci_get_drvdata(pdev);
5044 struct bnx2x *bp;
5045 int rc;
5046
5047 if (!dev) {
5048 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5049 return -ENODEV;
5050 }
5051 bp = netdev_priv(dev);
5052
5053 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5054 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5055 return -EAGAIN;
5056 }
5057
5058 rtnl_lock();
5059
5060 pci_restore_state(pdev);
5061
5062 if (!netif_running(dev)) {
5063 rtnl_unlock();
5064 return 0;
5065 }
5066
5067 bnx2x_set_power_state(bp, PCI_D0);
5068 netif_device_attach(dev);
5069
5070 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5071
5072 rtnl_unlock();
5073
5074 return rc;
5075 }
5076
5077 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5078 u32 cid)
5079 {
5080 if (!cxt) {
5081 BNX2X_ERR("bad context pointer %p\n", cxt);
5082 return;
5083 }
5084
5085 /* ustorm cxt validation */
5086 cxt->ustorm_ag_context.cdu_usage =
5087 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5088 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5089 /* xcontext validation */
5090 cxt->xstorm_ag_context.cdu_reserved =
5091 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5092 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5093 }
5094
5095 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5096 u8 fw_sb_id, u8 sb_index,
5097 u8 ticks)
5098 {
5099 u32 addr = BAR_CSTRORM_INTMEM +
5100 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5101 REG_WR8(bp, addr, ticks);
5102 DP(NETIF_MSG_IFUP,
5103 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5104 port, fw_sb_id, sb_index, ticks);
5105 }
5106
5107 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5108 u16 fw_sb_id, u8 sb_index,
5109 u8 disable)
5110 {
5111 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5112 u32 addr = BAR_CSTRORM_INTMEM +
5113 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5114 u8 flags = REG_RD8(bp, addr);
5115 /* clear and set */
5116 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5117 flags |= enable_flag;
5118 REG_WR8(bp, addr, flags);
5119 DP(NETIF_MSG_IFUP,
5120 "port %x fw_sb_id %d sb_index %d disable %d\n",
5121 port, fw_sb_id, sb_index, disable);
5122 }
5123
5124 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5125 u8 sb_index, u8 disable, u16 usec)
5126 {
5127 int port = BP_PORT(bp);
5128 u8 ticks = usec / BNX2X_BTR;
5129
5130 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5131
5132 disable = disable ? 1 : (usec ? 0 : 1);
5133 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5134 }
5135
5136 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5137 u32 verbose)
5138 {
5139 smp_mb__before_atomic();
5140 set_bit(flag, &bp->sp_rtnl_state);
5141 smp_mb__after_atomic();
5142 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5143 flag);
5144 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5145 }
5146 EXPORT_SYMBOL(bnx2x_schedule_sp_rtnl);