1 /* bnx2x_cmn.c: QLogic Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
26 #include <linux/crash_dump.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x
*bp
);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x
*bp
);
38 static int bnx2x_alloc_fp_mem(struct bnx2x
*bp
);
39 static int bnx2x_poll(struct napi_struct
*napi
, int budget
);
41 static void bnx2x_add_all_napi_cnic(struct bnx2x
*bp
)
45 /* Add NAPI objects */
46 for_each_rx_queue_cnic(bp
, i
) {
47 netif_napi_add(bp
->dev
, &bnx2x_fp(bp
, i
, napi
),
48 bnx2x_poll
, NAPI_POLL_WEIGHT
);
52 static void bnx2x_add_all_napi(struct bnx2x
*bp
)
56 /* Add NAPI objects */
57 for_each_eth_queue(bp
, i
) {
58 netif_napi_add(bp
->dev
, &bnx2x_fp(bp
, i
, napi
),
59 bnx2x_poll
, NAPI_POLL_WEIGHT
);
63 static int bnx2x_calc_num_queues(struct bnx2x
*bp
)
65 int nq
= bnx2x_num_queues
? : netif_get_num_default_rss_queues();
67 /* Reduce memory usage in kdump environment by using only one queue */
68 if (is_kdump_kernel())
71 nq
= clamp(nq
, 1, BNX2X_MAX_QUEUES(bp
));
76 * bnx2x_move_fp - move content of the fastpath structure.
79 * @from: source FP index
80 * @to: destination FP index
82 * Makes sure the contents of the bp->fp[to].napi is kept
83 * intact. This is done by first copying the napi struct from
84 * the target to the source, and then mem copying the entire
85 * source onto the target. Update txdata pointers and related
88 static inline void bnx2x_move_fp(struct bnx2x
*bp
, int from
, int to
)
90 struct bnx2x_fastpath
*from_fp
= &bp
->fp
[from
];
91 struct bnx2x_fastpath
*to_fp
= &bp
->fp
[to
];
92 struct bnx2x_sp_objs
*from_sp_objs
= &bp
->sp_objs
[from
];
93 struct bnx2x_sp_objs
*to_sp_objs
= &bp
->sp_objs
[to
];
94 struct bnx2x_fp_stats
*from_fp_stats
= &bp
->fp_stats
[from
];
95 struct bnx2x_fp_stats
*to_fp_stats
= &bp
->fp_stats
[to
];
96 int old_max_eth_txqs
, new_max_eth_txqs
;
97 int old_txdata_index
= 0, new_txdata_index
= 0;
98 struct bnx2x_agg_info
*old_tpa_info
= to_fp
->tpa_info
;
100 /* Copy the NAPI object as it has been already initialized */
101 from_fp
->napi
= to_fp
->napi
;
103 /* Move bnx2x_fastpath contents */
104 memcpy(to_fp
, from_fp
, sizeof(*to_fp
));
107 /* Retain the tpa_info of the original `to' version as we don't want
108 * 2 FPs to contain the same tpa_info pointer.
110 to_fp
->tpa_info
= old_tpa_info
;
112 /* move sp_objs contents as well, as their indices match fp ones */
113 memcpy(to_sp_objs
, from_sp_objs
, sizeof(*to_sp_objs
));
115 /* move fp_stats contents as well, as their indices match fp ones */
116 memcpy(to_fp_stats
, from_fp_stats
, sizeof(*to_fp_stats
));
118 /* Update txdata pointers in fp and move txdata content accordingly:
119 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 * decremented by max_cos x delta.
123 old_max_eth_txqs
= BNX2X_NUM_ETH_QUEUES(bp
) * (bp
)->max_cos
;
124 new_max_eth_txqs
= (BNX2X_NUM_ETH_QUEUES(bp
) - from
+ to
) *
126 if (from
== FCOE_IDX(bp
)) {
127 old_txdata_index
= old_max_eth_txqs
+ FCOE_TXQ_IDX_OFFSET
;
128 new_txdata_index
= new_max_eth_txqs
+ FCOE_TXQ_IDX_OFFSET
;
131 memcpy(&bp
->bnx2x_txq
[new_txdata_index
],
132 &bp
->bnx2x_txq
[old_txdata_index
],
133 sizeof(struct bnx2x_fp_txdata
));
134 to_fp
->txdata_ptr
[0] = &bp
->bnx2x_txq
[new_txdata_index
];
138 * bnx2x_fill_fw_str - Fill buffer with FW version string.
141 * @buf: character buffer to fill with the fw name
142 * @buf_len: length of the above buffer
145 void bnx2x_fill_fw_str(struct bnx2x
*bp
, char *buf
, size_t buf_len
)
148 u8 phy_fw_ver
[PHY_FW_VER_LEN
];
150 phy_fw_ver
[0] = '\0';
151 bnx2x_get_ext_phy_fw_version(&bp
->link_params
,
152 phy_fw_ver
, PHY_FW_VER_LEN
);
153 strlcpy(buf
, bp
->fw_ver
, buf_len
);
154 snprintf(buf
+ strlen(bp
->fw_ver
), 32 - strlen(bp
->fw_ver
),
156 (bp
->common
.bc_ver
& 0xff0000) >> 16,
157 (bp
->common
.bc_ver
& 0xff00) >> 8,
158 (bp
->common
.bc_ver
& 0xff),
159 ((phy_fw_ver
[0] != '\0') ? " phy " : ""), phy_fw_ver
);
161 bnx2x_vf_fill_fw_str(bp
, buf
, buf_len
);
166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
169 * @delta: number of eth queues which were not allocated
171 static void bnx2x_shrink_eth_fp(struct bnx2x
*bp
, int delta
)
173 int i
, cos
, old_eth_num
= BNX2X_NUM_ETH_QUEUES(bp
);
175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 * backward along the array could cause memory to be overridden
178 for (cos
= 1; cos
< bp
->max_cos
; cos
++) {
179 for (i
= 0; i
< old_eth_num
- delta
; i
++) {
180 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
181 int new_idx
= cos
* (old_eth_num
- delta
) + i
;
183 memcpy(&bp
->bnx2x_txq
[new_idx
], fp
->txdata_ptr
[cos
],
184 sizeof(struct bnx2x_fp_txdata
));
185 fp
->txdata_ptr
[cos
] = &bp
->bnx2x_txq
[new_idx
];
190 int bnx2x_load_count
[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
192 /* free skb in the packet ring at pos idx
193 * return idx of last bd freed
195 static u16
bnx2x_free_tx_pkt(struct bnx2x
*bp
, struct bnx2x_fp_txdata
*txdata
,
196 u16 idx
, unsigned int *pkts_compl
,
197 unsigned int *bytes_compl
)
199 struct sw_tx_bd
*tx_buf
= &txdata
->tx_buf_ring
[idx
];
200 struct eth_tx_start_bd
*tx_start_bd
;
201 struct eth_tx_bd
*tx_data_bd
;
202 struct sk_buff
*skb
= tx_buf
->skb
;
203 u16 bd_idx
= TX_BD(tx_buf
->first_bd
), new_cons
;
205 u16 split_bd_len
= 0;
207 /* prefetch skb end pointer to speedup dev_kfree_skb() */
210 DP(NETIF_MSG_TX_DONE
, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
211 txdata
->txq_index
, idx
, tx_buf
, skb
);
213 tx_start_bd
= &txdata
->tx_desc_ring
[bd_idx
].start_bd
;
215 nbd
= le16_to_cpu(tx_start_bd
->nbd
) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 if ((nbd
- 1) > (MAX_SKB_FRAGS
+ 2)) {
218 BNX2X_ERR("BAD nbd!\n");
222 new_cons
= nbd
+ tx_buf
->first_bd
;
224 /* Get the next bd */
225 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
227 /* Skip a parse bd... */
229 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
231 if (tx_buf
->flags
& BNX2X_HAS_SECOND_PBD
) {
232 /* Skip second parse bd... */
234 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 if (tx_buf
->flags
& BNX2X_TSO_SPLIT_BD
) {
239 tx_data_bd
= &txdata
->tx_desc_ring
[bd_idx
].reg_bd
;
240 split_bd_len
= BD_UNMAP_LEN(tx_data_bd
);
242 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
246 dma_unmap_single(&bp
->pdev
->dev
, BD_UNMAP_ADDR(tx_start_bd
),
247 BD_UNMAP_LEN(tx_start_bd
) + split_bd_len
,
253 tx_data_bd
= &txdata
->tx_desc_ring
[bd_idx
].reg_bd
;
254 dma_unmap_page(&bp
->pdev
->dev
, BD_UNMAP_ADDR(tx_data_bd
),
255 BD_UNMAP_LEN(tx_data_bd
), DMA_TO_DEVICE
);
257 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
264 (*bytes_compl
) += skb
->len
;
265 dev_kfree_skb_any(skb
);
268 tx_buf
->first_bd
= 0;
274 int bnx2x_tx_int(struct bnx2x
*bp
, struct bnx2x_fp_txdata
*txdata
)
276 struct netdev_queue
*txq
;
277 u16 hw_cons
, sw_cons
, bd_cons
= txdata
->tx_bd_cons
;
278 unsigned int pkts_compl
= 0, bytes_compl
= 0;
280 #ifdef BNX2X_STOP_ON_ERROR
281 if (unlikely(bp
->panic
))
285 txq
= netdev_get_tx_queue(bp
->dev
, txdata
->txq_index
);
286 hw_cons
= le16_to_cpu(*txdata
->tx_cons_sb
);
287 sw_cons
= txdata
->tx_pkt_cons
;
289 /* Ensure subsequent loads occur after hw_cons */
292 while (sw_cons
!= hw_cons
) {
295 pkt_cons
= TX_BD(sw_cons
);
297 DP(NETIF_MSG_TX_DONE
,
298 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
299 txdata
->txq_index
, hw_cons
, sw_cons
, pkt_cons
);
301 bd_cons
= bnx2x_free_tx_pkt(bp
, txdata
, pkt_cons
,
302 &pkts_compl
, &bytes_compl
);
307 netdev_tx_completed_queue(txq
, pkts_compl
, bytes_compl
);
309 txdata
->tx_pkt_cons
= sw_cons
;
310 txdata
->tx_bd_cons
= bd_cons
;
312 /* Need to make the tx_bd_cons update visible to start_xmit()
313 * before checking for netif_tx_queue_stopped(). Without the
314 * memory barrier, there is a small possibility that
315 * start_xmit() will miss it and cause the queue to be stopped
317 * On the other hand we need an rmb() here to ensure the proper
318 * ordering of bit testing in the following
319 * netif_tx_queue_stopped(txq) call.
323 if (unlikely(netif_tx_queue_stopped(txq
))) {
324 /* Taking tx_lock() is needed to prevent re-enabling the queue
325 * while it's empty. This could have happen if rx_action() gets
326 * suspended in bnx2x_tx_int() after the condition before
327 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
329 * stops the queue->sees fresh tx_bd_cons->releases the queue->
330 * sends some packets consuming the whole queue again->
334 __netif_tx_lock(txq
, smp_processor_id());
336 if ((netif_tx_queue_stopped(txq
)) &&
337 (bp
->state
== BNX2X_STATE_OPEN
) &&
338 (bnx2x_tx_avail(bp
, txdata
) >= MAX_DESC_PER_TX_PKT
))
339 netif_tx_wake_queue(txq
);
341 __netif_tx_unlock(txq
);
346 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath
*fp
,
349 u16 last_max
= fp
->last_max_sge
;
351 if (SUB_S16(idx
, last_max
) > 0)
352 fp
->last_max_sge
= idx
;
355 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath
*fp
,
357 struct eth_end_agg_rx_cqe
*cqe
)
359 struct bnx2x
*bp
= fp
->bp
;
360 u16 last_max
, last_elem
, first_elem
;
367 /* First mark all used pages */
368 for (i
= 0; i
< sge_len
; i
++)
369 BIT_VEC64_CLEAR_BIT(fp
->sge_mask
,
370 RX_SGE(le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[i
])));
372 DP(NETIF_MSG_RX_STATUS
, "fp_cqe->sgl[%d] = %d\n",
373 sge_len
- 1, le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[sge_len
- 1]));
375 /* Here we assume that the last SGE index is the biggest */
376 prefetch((void *)(fp
->sge_mask
));
377 bnx2x_update_last_max_sge(fp
,
378 le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[sge_len
- 1]));
380 last_max
= RX_SGE(fp
->last_max_sge
);
381 last_elem
= last_max
>> BIT_VEC64_ELEM_SHIFT
;
382 first_elem
= RX_SGE(fp
->rx_sge_prod
) >> BIT_VEC64_ELEM_SHIFT
;
384 /* If ring is not full */
385 if (last_elem
+ 1 != first_elem
)
388 /* Now update the prod */
389 for (i
= first_elem
; i
!= last_elem
; i
= NEXT_SGE_MASK_ELEM(i
)) {
390 if (likely(fp
->sge_mask
[i
]))
393 fp
->sge_mask
[i
] = BIT_VEC64_ELEM_ONE_MASK
;
394 delta
+= BIT_VEC64_ELEM_SZ
;
398 fp
->rx_sge_prod
+= delta
;
399 /* clear page-end entries */
400 bnx2x_clear_sge_mask_next_elems(fp
);
403 DP(NETIF_MSG_RX_STATUS
,
404 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
405 fp
->last_max_sge
, fp
->rx_sge_prod
);
408 /* Get Toeplitz hash value in the skb using the value from the
409 * CQE (calculated by HW).
411 static u32
bnx2x_get_rxhash(const struct bnx2x
*bp
,
412 const struct eth_fast_path_rx_cqe
*cqe
,
413 enum pkt_hash_types
*rxhash_type
)
415 /* Get Toeplitz hash from CQE */
416 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
417 (cqe
->status_flags
& ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG
)) {
418 enum eth_rss_hash_type htype
;
420 htype
= cqe
->status_flags
& ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE
;
421 *rxhash_type
= ((htype
== TCP_IPV4_HASH_TYPE
) ||
422 (htype
== TCP_IPV6_HASH_TYPE
)) ?
423 PKT_HASH_TYPE_L4
: PKT_HASH_TYPE_L3
;
425 return le32_to_cpu(cqe
->rss_hash_result
);
427 *rxhash_type
= PKT_HASH_TYPE_NONE
;
431 static void bnx2x_tpa_start(struct bnx2x_fastpath
*fp
, u16 queue
,
433 struct eth_fast_path_rx_cqe
*cqe
)
435 struct bnx2x
*bp
= fp
->bp
;
436 struct sw_rx_bd
*cons_rx_buf
= &fp
->rx_buf_ring
[cons
];
437 struct sw_rx_bd
*prod_rx_buf
= &fp
->rx_buf_ring
[prod
];
438 struct eth_rx_bd
*prod_bd
= &fp
->rx_desc_ring
[prod
];
440 struct bnx2x_agg_info
*tpa_info
= &fp
->tpa_info
[queue
];
441 struct sw_rx_bd
*first_buf
= &tpa_info
->first_buf
;
443 /* print error if current state != stop */
444 if (tpa_info
->tpa_state
!= BNX2X_TPA_STOP
)
445 BNX2X_ERR("start of bin not in stop [%d]\n", queue
);
447 /* Try to map an empty data buffer from the aggregation info */
448 mapping
= dma_map_single(&bp
->pdev
->dev
,
449 first_buf
->data
+ NET_SKB_PAD
,
450 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
452 * ...if it fails - move the skb from the consumer to the producer
453 * and set the current aggregation state as ERROR to drop it
454 * when TPA_STOP arrives.
457 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
458 /* Move the BD from the consumer to the producer */
459 bnx2x_reuse_rx_data(fp
, cons
, prod
);
460 tpa_info
->tpa_state
= BNX2X_TPA_ERROR
;
464 /* move empty data from pool to prod */
465 prod_rx_buf
->data
= first_buf
->data
;
466 dma_unmap_addr_set(prod_rx_buf
, mapping
, mapping
);
467 /* point prod_bd to new data */
468 prod_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
469 prod_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
471 /* move partial skb from cons to pool (don't unmap yet) */
472 *first_buf
= *cons_rx_buf
;
474 /* mark bin state as START */
475 tpa_info
->parsing_flags
=
476 le16_to_cpu(cqe
->pars_flags
.flags
);
477 tpa_info
->vlan_tag
= le16_to_cpu(cqe
->vlan_tag
);
478 tpa_info
->tpa_state
= BNX2X_TPA_START
;
479 tpa_info
->len_on_bd
= le16_to_cpu(cqe
->len_on_bd
);
480 tpa_info
->placement_offset
= cqe
->placement_offset
;
481 tpa_info
->rxhash
= bnx2x_get_rxhash(bp
, cqe
, &tpa_info
->rxhash_type
);
482 if (fp
->mode
== TPA_MODE_GRO
) {
483 u16 gro_size
= le16_to_cpu(cqe
->pkt_len_or_gro_seg_len
);
484 tpa_info
->full_page
= SGE_PAGES
/ gro_size
* gro_size
;
485 tpa_info
->gro_size
= gro_size
;
488 #ifdef BNX2X_STOP_ON_ERROR
489 fp
->tpa_queue_used
|= (1 << queue
);
490 DP(NETIF_MSG_RX_STATUS
, "fp->tpa_queue_used = 0x%llx\n",
495 /* Timestamp option length allowed for TPA aggregation:
497 * nop nop kind length echo val
499 #define TPA_TSTAMP_OPT_LEN 12
501 * bnx2x_set_gro_params - compute GRO values
504 * @parsing_flags: parsing flags from the START CQE
505 * @len_on_bd: total length of the first packet for the
507 * @pkt_len: length of all segments
509 * Approximate value of the MSS for this aggregation calculated using
510 * the first packet of it.
511 * Compute number of aggregated segments, and gso_type.
513 static void bnx2x_set_gro_params(struct sk_buff
*skb
, u16 parsing_flags
,
514 u16 len_on_bd
, unsigned int pkt_len
,
515 u16 num_of_coalesced_segs
)
517 /* TPA aggregation won't have either IP options or TCP options
518 * other than timestamp or IPv6 extension headers.
520 u16 hdrs_len
= ETH_HLEN
+ sizeof(struct tcphdr
);
522 if (GET_FLAG(parsing_flags
, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL
) ==
523 PRS_FLAG_OVERETH_IPV6
) {
524 hdrs_len
+= sizeof(struct ipv6hdr
);
525 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV6
;
527 hdrs_len
+= sizeof(struct iphdr
);
528 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
531 /* Check if there was a TCP timestamp, if there is it's will
532 * always be 12 bytes length: nop nop kind length echo val.
534 * Otherwise FW would close the aggregation.
536 if (parsing_flags
& PARSING_FLAGS_TIME_STAMP_EXIST_FLAG
)
537 hdrs_len
+= TPA_TSTAMP_OPT_LEN
;
539 skb_shinfo(skb
)->gso_size
= len_on_bd
- hdrs_len
;
541 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 * to skb_shinfo(skb)->gso_segs
544 NAPI_GRO_CB(skb
)->count
= num_of_coalesced_segs
;
547 static int bnx2x_alloc_rx_sge(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
548 u16 index
, gfp_t gfp_mask
)
550 struct sw_rx_page
*sw_buf
= &fp
->rx_page_ring
[index
];
551 struct eth_rx_sge
*sge
= &fp
->rx_sge_ring
[index
];
552 struct bnx2x_alloc_pool
*pool
= &fp
->page_pool
;
556 pool
->page
= alloc_pages(gfp_mask
, PAGES_PER_SGE_SHIFT
);
557 if (unlikely(!pool
->page
))
563 mapping
= dma_map_page(&bp
->pdev
->dev
, pool
->page
,
564 pool
->offset
, SGE_PAGE_SIZE
, DMA_FROM_DEVICE
);
565 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
566 BNX2X_ERR("Can't map sge\n");
570 sw_buf
->page
= pool
->page
;
571 sw_buf
->offset
= pool
->offset
;
573 dma_unmap_addr_set(sw_buf
, mapping
, mapping
);
575 sge
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
576 sge
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
578 pool
->offset
+= SGE_PAGE_SIZE
;
579 if (PAGE_SIZE
- pool
->offset
>= SGE_PAGE_SIZE
)
580 get_page(pool
->page
);
586 static int bnx2x_fill_frag_skb(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
587 struct bnx2x_agg_info
*tpa_info
,
590 struct eth_end_agg_rx_cqe
*cqe
,
593 struct sw_rx_page
*rx_pg
, old_rx_pg
;
594 u32 i
, frag_len
, frag_size
;
595 int err
, j
, frag_id
= 0;
596 u16 len_on_bd
= tpa_info
->len_on_bd
;
597 u16 full_page
= 0, gro_size
= 0;
599 frag_size
= le16_to_cpu(cqe
->pkt_len
) - len_on_bd
;
601 if (fp
->mode
== TPA_MODE_GRO
) {
602 gro_size
= tpa_info
->gro_size
;
603 full_page
= tpa_info
->full_page
;
606 /* This is needed in order to enable forwarding support */
608 bnx2x_set_gro_params(skb
, tpa_info
->parsing_flags
, len_on_bd
,
609 le16_to_cpu(cqe
->pkt_len
),
610 le16_to_cpu(cqe
->num_of_coalesced_segs
));
612 #ifdef BNX2X_STOP_ON_ERROR
613 if (pages
> min_t(u32
, 8, MAX_SKB_FRAGS
) * SGE_PAGES
) {
614 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
616 BNX2X_ERR("cqe->pkt_len = %d\n", cqe
->pkt_len
);
622 /* Run through the SGL and compose the fragmented skb */
623 for (i
= 0, j
= 0; i
< pages
; i
+= PAGES_PER_SGE
, j
++) {
624 u16 sge_idx
= RX_SGE(le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[j
]));
626 /* FW gives the indices of the SGE as if the ring is an array
627 (meaning that "next" element will consume 2 indices) */
628 if (fp
->mode
== TPA_MODE_GRO
)
629 frag_len
= min_t(u32
, frag_size
, (u32
)full_page
);
631 frag_len
= min_t(u32
, frag_size
, (u32
)SGE_PAGES
);
633 rx_pg
= &fp
->rx_page_ring
[sge_idx
];
636 /* If we fail to allocate a substitute page, we simply stop
637 where we are and drop the whole packet */
638 err
= bnx2x_alloc_rx_sge(bp
, fp
, sge_idx
, GFP_ATOMIC
);
640 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
644 dma_unmap_page(&bp
->pdev
->dev
,
645 dma_unmap_addr(&old_rx_pg
, mapping
),
646 SGE_PAGE_SIZE
, DMA_FROM_DEVICE
);
647 /* Add one frag and update the appropriate fields in the skb */
648 if (fp
->mode
== TPA_MODE_LRO
)
649 skb_fill_page_desc(skb
, j
, old_rx_pg
.page
,
650 old_rx_pg
.offset
, frag_len
);
654 for (rem
= frag_len
; rem
> 0; rem
-= gro_size
) {
655 int len
= rem
> gro_size
? gro_size
: rem
;
656 skb_fill_page_desc(skb
, frag_id
++,
658 old_rx_pg
.offset
+ offset
,
661 get_page(old_rx_pg
.page
);
666 skb
->data_len
+= frag_len
;
667 skb
->truesize
+= SGE_PAGES
;
668 skb
->len
+= frag_len
;
670 frag_size
-= frag_len
;
676 static void bnx2x_frag_free(const struct bnx2x_fastpath
*fp
, void *data
)
678 if (fp
->rx_frag_size
)
684 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath
*fp
, gfp_t gfp_mask
)
686 if (fp
->rx_frag_size
) {
687 /* GFP_KERNEL allocations are used only during initialization */
688 if (unlikely(gfpflags_allow_blocking(gfp_mask
)))
689 return (void *)__get_free_page(gfp_mask
);
691 return netdev_alloc_frag(fp
->rx_frag_size
);
694 return kmalloc(fp
->rx_buf_size
+ NET_SKB_PAD
, gfp_mask
);
698 static void bnx2x_gro_ip_csum(struct bnx2x
*bp
, struct sk_buff
*skb
)
700 const struct iphdr
*iph
= ip_hdr(skb
);
703 skb_set_transport_header(skb
, sizeof(struct iphdr
));
706 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
707 iph
->saddr
, iph
->daddr
, 0);
710 static void bnx2x_gro_ipv6_csum(struct bnx2x
*bp
, struct sk_buff
*skb
)
712 struct ipv6hdr
*iph
= ipv6_hdr(skb
);
715 skb_set_transport_header(skb
, sizeof(struct ipv6hdr
));
718 th
->check
= ~tcp_v6_check(skb
->len
- skb_transport_offset(skb
),
719 &iph
->saddr
, &iph
->daddr
, 0);
722 static void bnx2x_gro_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
723 void (*gro_func
)(struct bnx2x
*, struct sk_buff
*))
725 skb_reset_network_header(skb
);
727 tcp_gro_complete(skb
);
731 static void bnx2x_gro_receive(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
735 if (skb_shinfo(skb
)->gso_size
) {
736 switch (be16_to_cpu(skb
->protocol
)) {
738 bnx2x_gro_csum(bp
, skb
, bnx2x_gro_ip_csum
);
741 bnx2x_gro_csum(bp
, skb
, bnx2x_gro_ipv6_csum
);
744 WARN_ONCE(1, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
745 be16_to_cpu(skb
->protocol
));
749 skb_record_rx_queue(skb
, fp
->rx_queue
);
750 napi_gro_receive(&fp
->napi
, skb
);
753 static void bnx2x_tpa_stop(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
754 struct bnx2x_agg_info
*tpa_info
,
756 struct eth_end_agg_rx_cqe
*cqe
,
759 struct sw_rx_bd
*rx_buf
= &tpa_info
->first_buf
;
760 u8 pad
= tpa_info
->placement_offset
;
761 u16 len
= tpa_info
->len_on_bd
;
762 struct sk_buff
*skb
= NULL
;
763 u8
*new_data
, *data
= rx_buf
->data
;
764 u8 old_tpa_state
= tpa_info
->tpa_state
;
766 tpa_info
->tpa_state
= BNX2X_TPA_STOP
;
768 /* If we there was an error during the handling of the TPA_START -
769 * drop this aggregation.
771 if (old_tpa_state
== BNX2X_TPA_ERROR
)
774 /* Try to allocate the new data */
775 new_data
= bnx2x_frag_alloc(fp
, GFP_ATOMIC
);
776 /* Unmap skb in the pool anyway, as we are going to change
777 pool entry status to BNX2X_TPA_STOP even if new skb allocation
779 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(rx_buf
, mapping
),
780 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
781 if (likely(new_data
))
782 skb
= build_skb(data
, fp
->rx_frag_size
);
785 #ifdef BNX2X_STOP_ON_ERROR
786 if (pad
+ len
> fp
->rx_buf_size
) {
787 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
788 pad
, len
, fp
->rx_buf_size
);
794 skb_reserve(skb
, pad
+ NET_SKB_PAD
);
796 skb_set_hash(skb
, tpa_info
->rxhash
, tpa_info
->rxhash_type
);
798 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
799 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
801 if (!bnx2x_fill_frag_skb(bp
, fp
, tpa_info
, pages
,
802 skb
, cqe
, cqe_idx
)) {
803 if (tpa_info
->parsing_flags
& PARSING_FLAGS_VLAN
)
804 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tpa_info
->vlan_tag
);
805 bnx2x_gro_receive(bp
, fp
, skb
);
807 DP(NETIF_MSG_RX_STATUS
,
808 "Failed to allocate new pages - dropping packet!\n");
809 dev_kfree_skb_any(skb
);
812 /* put new data in bin */
813 rx_buf
->data
= new_data
;
818 bnx2x_frag_free(fp
, new_data
);
820 /* drop the packet and keep the buffer in the bin */
821 DP(NETIF_MSG_RX_STATUS
,
822 "Failed to allocate or map a new skb - dropping packet!\n");
823 bnx2x_fp_stats(bp
, fp
)->eth_q_stats
.rx_skb_alloc_failed
++;
826 static int bnx2x_alloc_rx_data(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
827 u16 index
, gfp_t gfp_mask
)
830 struct sw_rx_bd
*rx_buf
= &fp
->rx_buf_ring
[index
];
831 struct eth_rx_bd
*rx_bd
= &fp
->rx_desc_ring
[index
];
834 data
= bnx2x_frag_alloc(fp
, gfp_mask
);
835 if (unlikely(data
== NULL
))
838 mapping
= dma_map_single(&bp
->pdev
->dev
, data
+ NET_SKB_PAD
,
841 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
842 bnx2x_frag_free(fp
, data
);
843 BNX2X_ERR("Can't map rx data\n");
848 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
850 rx_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
851 rx_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
857 void bnx2x_csum_validate(struct sk_buff
*skb
, union eth_rx_cqe
*cqe
,
858 struct bnx2x_fastpath
*fp
,
859 struct bnx2x_eth_q_stats
*qstats
)
861 /* Do nothing if no L4 csum validation was done.
862 * We do not check whether IP csum was validated. For IPv4 we assume
863 * that if the card got as far as validating the L4 csum, it also
864 * validated the IP csum. IPv6 has no IP csum.
866 if (cqe
->fast_path_cqe
.status_flags
&
867 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG
)
870 /* If L4 validation was done, check if an error was found. */
872 if (cqe
->fast_path_cqe
.type_error_flags
&
873 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG
|
874 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG
))
875 qstats
->hw_csum_err
++;
877 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
880 static int bnx2x_rx_int(struct bnx2x_fastpath
*fp
, int budget
)
882 struct bnx2x
*bp
= fp
->bp
;
883 u16 bd_cons
, bd_prod
, bd_prod_fw
, comp_ring_cons
;
884 u16 sw_comp_cons
, sw_comp_prod
;
886 union eth_rx_cqe
*cqe
;
887 struct eth_fast_path_rx_cqe
*cqe_fp
;
889 #ifdef BNX2X_STOP_ON_ERROR
890 if (unlikely(bp
->panic
))
896 bd_cons
= fp
->rx_bd_cons
;
897 bd_prod
= fp
->rx_bd_prod
;
898 bd_prod_fw
= bd_prod
;
899 sw_comp_cons
= fp
->rx_comp_cons
;
900 sw_comp_prod
= fp
->rx_comp_prod
;
902 comp_ring_cons
= RCQ_BD(sw_comp_cons
);
903 cqe
= &fp
->rx_comp_ring
[comp_ring_cons
];
904 cqe_fp
= &cqe
->fast_path_cqe
;
906 DP(NETIF_MSG_RX_STATUS
,
907 "queue[%d]: sw_comp_cons %u\n", fp
->index
, sw_comp_cons
);
909 while (BNX2X_IS_CQE_COMPLETED(cqe_fp
)) {
910 struct sw_rx_bd
*rx_buf
= NULL
;
913 enum eth_rx_cqe_type cqe_fp_type
;
917 enum pkt_hash_types rxhash_type
;
919 #ifdef BNX2X_STOP_ON_ERROR
920 if (unlikely(bp
->panic
))
924 bd_prod
= RX_BD(bd_prod
);
925 bd_cons
= RX_BD(bd_cons
);
927 /* A rmb() is required to ensure that the CQE is not read
928 * before it is written by the adapter DMA. PCI ordering
929 * rules will make sure the other fields are written before
930 * the marker at the end of struct eth_fast_path_rx_cqe
931 * but without rmb() a weakly ordered processor can process
932 * stale data. Without the barrier TPA state-machine might
933 * enter inconsistent state and kernel stack might be
934 * provided with incorrect packet description - these lead
935 * to various kernel crashed.
939 cqe_fp_flags
= cqe_fp
->type_error_flags
;
940 cqe_fp_type
= cqe_fp_flags
& ETH_FAST_PATH_RX_CQE_TYPE
;
942 DP(NETIF_MSG_RX_STATUS
,
943 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
944 CQE_TYPE(cqe_fp_flags
),
945 cqe_fp_flags
, cqe_fp
->status_flags
,
946 le32_to_cpu(cqe_fp
->rss_hash_result
),
947 le16_to_cpu(cqe_fp
->vlan_tag
),
948 le16_to_cpu(cqe_fp
->pkt_len_or_gro_seg_len
));
950 /* is this a slowpath msg? */
951 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type
))) {
952 bnx2x_sp_event(fp
, cqe
);
956 rx_buf
= &fp
->rx_buf_ring
[bd_cons
];
959 if (!CQE_TYPE_FAST(cqe_fp_type
)) {
960 struct bnx2x_agg_info
*tpa_info
;
961 u16 frag_size
, pages
;
962 #ifdef BNX2X_STOP_ON_ERROR
964 if (fp
->mode
== TPA_MODE_DISABLED
&&
965 (CQE_TYPE_START(cqe_fp_type
) ||
966 CQE_TYPE_STOP(cqe_fp_type
)))
967 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
968 CQE_TYPE(cqe_fp_type
));
971 if (CQE_TYPE_START(cqe_fp_type
)) {
972 u16 queue
= cqe_fp
->queue_index
;
973 DP(NETIF_MSG_RX_STATUS
,
974 "calling tpa_start on queue %d\n",
977 bnx2x_tpa_start(fp
, queue
,
983 queue
= cqe
->end_agg_cqe
.queue_index
;
984 tpa_info
= &fp
->tpa_info
[queue
];
985 DP(NETIF_MSG_RX_STATUS
,
986 "calling tpa_stop on queue %d\n",
989 frag_size
= le16_to_cpu(cqe
->end_agg_cqe
.pkt_len
) -
992 if (fp
->mode
== TPA_MODE_GRO
)
993 pages
= (frag_size
+ tpa_info
->full_page
- 1) /
996 pages
= SGE_PAGE_ALIGN(frag_size
) >>
999 bnx2x_tpa_stop(bp
, fp
, tpa_info
, pages
,
1000 &cqe
->end_agg_cqe
, comp_ring_cons
);
1001 #ifdef BNX2X_STOP_ON_ERROR
1006 bnx2x_update_sge_prod(fp
, pages
, &cqe
->end_agg_cqe
);
1010 len
= le16_to_cpu(cqe_fp
->pkt_len_or_gro_seg_len
);
1011 pad
= cqe_fp
->placement_offset
;
1012 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
1013 dma_unmap_addr(rx_buf
, mapping
),
1014 pad
+ RX_COPY_THRESH
,
1017 prefetch(data
+ pad
); /* speedup eth_type_trans() */
1018 /* is this an error packet? */
1019 if (unlikely(cqe_fp_flags
& ETH_RX_ERROR_FALGS
)) {
1020 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1021 "ERROR flags %x rx packet %u\n",
1022 cqe_fp_flags
, sw_comp_cons
);
1023 bnx2x_fp_qstats(bp
, fp
)->rx_err_discard_pkt
++;
1027 /* Since we don't have a jumbo ring
1028 * copy small packets if mtu > 1500
1030 if ((bp
->dev
->mtu
> ETH_MAX_PACKET_SIZE
) &&
1031 (len
<= RX_COPY_THRESH
)) {
1032 skb
= napi_alloc_skb(&fp
->napi
, len
);
1034 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1035 "ERROR packet dropped because of alloc failure\n");
1036 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
1039 memcpy(skb
->data
, data
+ pad
, len
);
1040 bnx2x_reuse_rx_data(fp
, bd_cons
, bd_prod
);
1042 if (likely(bnx2x_alloc_rx_data(bp
, fp
, bd_prod
,
1043 GFP_ATOMIC
) == 0)) {
1044 dma_unmap_single(&bp
->pdev
->dev
,
1045 dma_unmap_addr(rx_buf
, mapping
),
1048 skb
= build_skb(data
, fp
->rx_frag_size
);
1049 if (unlikely(!skb
)) {
1050 bnx2x_frag_free(fp
, data
);
1051 bnx2x_fp_qstats(bp
, fp
)->
1052 rx_skb_alloc_failed
++;
1055 skb_reserve(skb
, pad
);
1057 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1058 "ERROR packet dropped because of alloc failure\n");
1059 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
1061 bnx2x_reuse_rx_data(fp
, bd_cons
, bd_prod
);
1067 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
1069 /* Set Toeplitz hash for a none-LRO skb */
1070 rxhash
= bnx2x_get_rxhash(bp
, cqe_fp
, &rxhash_type
);
1071 skb_set_hash(skb
, rxhash
, rxhash_type
);
1073 skb_checksum_none_assert(skb
);
1075 if (bp
->dev
->features
& NETIF_F_RXCSUM
)
1076 bnx2x_csum_validate(skb
, cqe
, fp
,
1077 bnx2x_fp_qstats(bp
, fp
));
1079 skb_record_rx_queue(skb
, fp
->rx_queue
);
1081 /* Check if this packet was timestamped */
1082 if (unlikely(cqe
->fast_path_cqe
.type_error_flags
&
1083 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT
)))
1084 bnx2x_set_rx_ts(bp
, skb
);
1086 if (le16_to_cpu(cqe_fp
->pars_flags
.flags
) &
1088 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
),
1089 le16_to_cpu(cqe_fp
->vlan_tag
));
1091 napi_gro_receive(&fp
->napi
, skb
);
1093 rx_buf
->data
= NULL
;
1095 bd_cons
= NEXT_RX_IDX(bd_cons
);
1096 bd_prod
= NEXT_RX_IDX(bd_prod
);
1097 bd_prod_fw
= NEXT_RX_IDX(bd_prod_fw
);
1100 sw_comp_prod
= NEXT_RCQ_IDX(sw_comp_prod
);
1101 sw_comp_cons
= NEXT_RCQ_IDX(sw_comp_cons
);
1103 /* mark CQE as free */
1104 BNX2X_SEED_CQE(cqe_fp
);
1106 if (rx_pkt
== budget
)
1109 comp_ring_cons
= RCQ_BD(sw_comp_cons
);
1110 cqe
= &fp
->rx_comp_ring
[comp_ring_cons
];
1111 cqe_fp
= &cqe
->fast_path_cqe
;
1114 fp
->rx_bd_cons
= bd_cons
;
1115 fp
->rx_bd_prod
= bd_prod_fw
;
1116 fp
->rx_comp_cons
= sw_comp_cons
;
1117 fp
->rx_comp_prod
= sw_comp_prod
;
1119 /* Update producers */
1120 bnx2x_update_rx_prod(bp
, fp
, bd_prod_fw
, sw_comp_prod
,
1126 static irqreturn_t
bnx2x_msix_fp_int(int irq
, void *fp_cookie
)
1128 struct bnx2x_fastpath
*fp
= fp_cookie
;
1129 struct bnx2x
*bp
= fp
->bp
;
1133 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1134 fp
->index
, fp
->fw_sb_id
, fp
->igu_sb_id
);
1136 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
, 0, IGU_INT_DISABLE
, 0);
1138 #ifdef BNX2X_STOP_ON_ERROR
1139 if (unlikely(bp
->panic
))
1143 /* Handle Rx and Tx according to MSI-X vector */
1144 for_each_cos_in_tx_queue(fp
, cos
)
1145 prefetch(fp
->txdata_ptr
[cos
]->tx_cons_sb
);
1147 prefetch(&fp
->sb_running_index
[SM_RX_ID
]);
1148 napi_schedule_irqoff(&bnx2x_fp(bp
, fp
->index
, napi
));
1153 /* HW Lock for shared dual port PHYs */
1154 void bnx2x_acquire_phy_lock(struct bnx2x
*bp
)
1156 mutex_lock(&bp
->port
.phy_mutex
);
1158 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_MDIO
);
1161 void bnx2x_release_phy_lock(struct bnx2x
*bp
)
1163 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_MDIO
);
1165 mutex_unlock(&bp
->port
.phy_mutex
);
1168 /* calculates MF speed according to current linespeed and MF configuration */
1169 u16
bnx2x_get_mf_speed(struct bnx2x
*bp
)
1171 u16 line_speed
= bp
->link_vars
.line_speed
;
1173 u16 maxCfg
= bnx2x_extract_max_cfg(bp
,
1174 bp
->mf_config
[BP_VN(bp
)]);
1176 /* Calculate the current MAX line speed limit for the MF
1179 if (IS_MF_PERCENT_BW(bp
))
1180 line_speed
= (line_speed
* maxCfg
) / 100;
1181 else { /* SD mode */
1182 u16 vn_max_rate
= maxCfg
* 100;
1184 if (vn_max_rate
< line_speed
)
1185 line_speed
= vn_max_rate
;
1193 * bnx2x_fill_report_data - fill link report data to report
1195 * @bp: driver handle
1196 * @data: link state to update
1198 * It uses a none-atomic bit operations because is called under the mutex.
1200 static void bnx2x_fill_report_data(struct bnx2x
*bp
,
1201 struct bnx2x_link_report_data
*data
)
1203 memset(data
, 0, sizeof(*data
));
1206 /* Fill the report data: effective line speed */
1207 data
->line_speed
= bnx2x_get_mf_speed(bp
);
1210 if (!bp
->link_vars
.link_up
|| (bp
->flags
& MF_FUNC_DIS
))
1211 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1212 &data
->link_report_flags
);
1214 if (!BNX2X_NUM_ETH_QUEUES(bp
))
1215 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1216 &data
->link_report_flags
);
1219 if (bp
->link_vars
.duplex
== DUPLEX_FULL
)
1220 __set_bit(BNX2X_LINK_REPORT_FD
,
1221 &data
->link_report_flags
);
1223 /* Rx Flow Control is ON */
1224 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_RX
)
1225 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1226 &data
->link_report_flags
);
1228 /* Tx Flow Control is ON */
1229 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_TX
)
1230 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1231 &data
->link_report_flags
);
1233 *data
= bp
->vf_link_vars
;
1238 * bnx2x_link_report - report link status to OS.
1240 * @bp: driver handle
1242 * Calls the __bnx2x_link_report() under the same locking scheme
1243 * as a link/PHY state managing code to ensure a consistent link
1247 void bnx2x_link_report(struct bnx2x
*bp
)
1249 bnx2x_acquire_phy_lock(bp
);
1250 __bnx2x_link_report(bp
);
1251 bnx2x_release_phy_lock(bp
);
1255 * __bnx2x_link_report - report link status to OS.
1257 * @bp: driver handle
1259 * None atomic implementation.
1260 * Should be called under the phy_lock.
1262 void __bnx2x_link_report(struct bnx2x
*bp
)
1264 struct bnx2x_link_report_data cur_data
;
1266 if (bp
->force_link_down
) {
1267 bp
->link_vars
.link_up
= 0;
1272 if (IS_PF(bp
) && !CHIP_IS_E1(bp
))
1273 bnx2x_read_mf_cfg(bp
);
1275 /* Read the current link report info */
1276 bnx2x_fill_report_data(bp
, &cur_data
);
1278 /* Don't report link down or exactly the same link status twice */
1279 if (!memcmp(&cur_data
, &bp
->last_reported_link
, sizeof(cur_data
)) ||
1280 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1281 &bp
->last_reported_link
.link_report_flags
) &&
1282 test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1283 &cur_data
.link_report_flags
)))
1288 /* We are going to report a new link parameters now -
1289 * remember the current data for the next time.
1291 memcpy(&bp
->last_reported_link
, &cur_data
, sizeof(cur_data
));
1293 /* propagate status to VFs */
1295 bnx2x_iov_link_update(bp
);
1297 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1298 &cur_data
.link_report_flags
)) {
1299 netif_carrier_off(bp
->dev
);
1300 netdev_err(bp
->dev
, "NIC Link is Down\n");
1306 netif_carrier_on(bp
->dev
);
1308 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD
,
1309 &cur_data
.link_report_flags
))
1314 /* Handle the FC at the end so that only these flags would be
1315 * possibly set. This way we may easily check if there is no FC
1318 if (cur_data
.link_report_flags
) {
1319 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1320 &cur_data
.link_report_flags
)) {
1321 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1322 &cur_data
.link_report_flags
))
1323 flow
= "ON - receive & transmit";
1325 flow
= "ON - receive";
1327 flow
= "ON - transmit";
1332 netdev_info(bp
->dev
, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1333 cur_data
.line_speed
, duplex
, flow
);
1337 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath
*fp
)
1341 for (i
= 1; i
<= NUM_RX_SGE_PAGES
; i
++) {
1342 struct eth_rx_sge
*sge
;
1344 sge
= &fp
->rx_sge_ring
[RX_SGE_CNT
* i
- 2];
1346 cpu_to_le32(U64_HI(fp
->rx_sge_mapping
+
1347 BCM_PAGE_SIZE
*(i
% NUM_RX_SGE_PAGES
)));
1350 cpu_to_le32(U64_LO(fp
->rx_sge_mapping
+
1351 BCM_PAGE_SIZE
*(i
% NUM_RX_SGE_PAGES
)));
1355 static void bnx2x_free_tpa_pool(struct bnx2x
*bp
,
1356 struct bnx2x_fastpath
*fp
, int last
)
1360 for (i
= 0; i
< last
; i
++) {
1361 struct bnx2x_agg_info
*tpa_info
= &fp
->tpa_info
[i
];
1362 struct sw_rx_bd
*first_buf
= &tpa_info
->first_buf
;
1363 u8
*data
= first_buf
->data
;
1366 DP(NETIF_MSG_IFDOWN
, "tpa bin %d empty on free\n", i
);
1369 if (tpa_info
->tpa_state
== BNX2X_TPA_START
)
1370 dma_unmap_single(&bp
->pdev
->dev
,
1371 dma_unmap_addr(first_buf
, mapping
),
1372 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
1373 bnx2x_frag_free(fp
, data
);
1374 first_buf
->data
= NULL
;
1378 void bnx2x_init_rx_rings_cnic(struct bnx2x
*bp
)
1382 for_each_rx_queue_cnic(bp
, j
) {
1383 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1387 /* Activate BD ring */
1389 * this will generate an interrupt (to the TSTORM)
1390 * must only be done after chip is initialized
1392 bnx2x_update_rx_prod(bp
, fp
, fp
->rx_bd_prod
, fp
->rx_comp_prod
,
1397 void bnx2x_init_rx_rings(struct bnx2x
*bp
)
1399 int func
= BP_FUNC(bp
);
1403 /* Allocate TPA resources */
1404 for_each_eth_queue(bp
, j
) {
1405 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1408 "mtu %d rx_buf_size %d\n", bp
->dev
->mtu
, fp
->rx_buf_size
);
1410 if (fp
->mode
!= TPA_MODE_DISABLED
) {
1411 /* Fill the per-aggregation pool */
1412 for (i
= 0; i
< MAX_AGG_QS(bp
); i
++) {
1413 struct bnx2x_agg_info
*tpa_info
=
1415 struct sw_rx_bd
*first_buf
=
1416 &tpa_info
->first_buf
;
1419 bnx2x_frag_alloc(fp
, GFP_KERNEL
);
1420 if (!first_buf
->data
) {
1421 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1423 bnx2x_free_tpa_pool(bp
, fp
, i
);
1424 fp
->mode
= TPA_MODE_DISABLED
;
1427 dma_unmap_addr_set(first_buf
, mapping
, 0);
1428 tpa_info
->tpa_state
= BNX2X_TPA_STOP
;
1431 /* "next page" elements initialization */
1432 bnx2x_set_next_page_sgl(fp
);
1434 /* set SGEs bit mask */
1435 bnx2x_init_sge_ring_bit_mask(fp
);
1437 /* Allocate SGEs and initialize the ring elements */
1438 for (i
= 0, ring_prod
= 0;
1439 i
< MAX_RX_SGE_CNT
*NUM_RX_SGE_PAGES
; i
++) {
1441 if (bnx2x_alloc_rx_sge(bp
, fp
, ring_prod
,
1443 BNX2X_ERR("was only able to allocate %d rx sges\n",
1445 BNX2X_ERR("disabling TPA for queue[%d]\n",
1447 /* Cleanup already allocated elements */
1448 bnx2x_free_rx_sge_range(bp
, fp
,
1450 bnx2x_free_tpa_pool(bp
, fp
,
1452 fp
->mode
= TPA_MODE_DISABLED
;
1456 ring_prod
= NEXT_SGE_IDX(ring_prod
);
1459 fp
->rx_sge_prod
= ring_prod
;
1463 for_each_eth_queue(bp
, j
) {
1464 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1468 /* Activate BD ring */
1470 * this will generate an interrupt (to the TSTORM)
1471 * must only be done after chip is initialized
1473 bnx2x_update_rx_prod(bp
, fp
, fp
->rx_bd_prod
, fp
->rx_comp_prod
,
1479 if (CHIP_IS_E1(bp
)) {
1480 REG_WR(bp
, BAR_USTRORM_INTMEM
+
1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func
),
1482 U64_LO(fp
->rx_comp_mapping
));
1483 REG_WR(bp
, BAR_USTRORM_INTMEM
+
1484 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func
) + 4,
1485 U64_HI(fp
->rx_comp_mapping
));
1490 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath
*fp
)
1493 struct bnx2x
*bp
= fp
->bp
;
1495 for_each_cos_in_tx_queue(fp
, cos
) {
1496 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
1497 unsigned pkts_compl
= 0, bytes_compl
= 0;
1499 u16 sw_prod
= txdata
->tx_pkt_prod
;
1500 u16 sw_cons
= txdata
->tx_pkt_cons
;
1502 while (sw_cons
!= sw_prod
) {
1503 bnx2x_free_tx_pkt(bp
, txdata
, TX_BD(sw_cons
),
1504 &pkts_compl
, &bytes_compl
);
1508 netdev_tx_reset_queue(
1509 netdev_get_tx_queue(bp
->dev
,
1510 txdata
->txq_index
));
1514 static void bnx2x_free_tx_skbs_cnic(struct bnx2x
*bp
)
1518 for_each_tx_queue_cnic(bp
, i
) {
1519 bnx2x_free_tx_skbs_queue(&bp
->fp
[i
]);
1523 static void bnx2x_free_tx_skbs(struct bnx2x
*bp
)
1527 for_each_eth_queue(bp
, i
) {
1528 bnx2x_free_tx_skbs_queue(&bp
->fp
[i
]);
1532 static void bnx2x_free_rx_bds(struct bnx2x_fastpath
*fp
)
1534 struct bnx2x
*bp
= fp
->bp
;
1537 /* ring wasn't allocated */
1538 if (fp
->rx_buf_ring
== NULL
)
1541 for (i
= 0; i
< NUM_RX_BD
; i
++) {
1542 struct sw_rx_bd
*rx_buf
= &fp
->rx_buf_ring
[i
];
1543 u8
*data
= rx_buf
->data
;
1547 dma_unmap_single(&bp
->pdev
->dev
,
1548 dma_unmap_addr(rx_buf
, mapping
),
1549 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
1551 rx_buf
->data
= NULL
;
1552 bnx2x_frag_free(fp
, data
);
1556 static void bnx2x_free_rx_skbs_cnic(struct bnx2x
*bp
)
1560 for_each_rx_queue_cnic(bp
, j
) {
1561 bnx2x_free_rx_bds(&bp
->fp
[j
]);
1565 static void bnx2x_free_rx_skbs(struct bnx2x
*bp
)
1569 for_each_eth_queue(bp
, j
) {
1570 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1572 bnx2x_free_rx_bds(fp
);
1574 if (fp
->mode
!= TPA_MODE_DISABLED
)
1575 bnx2x_free_tpa_pool(bp
, fp
, MAX_AGG_QS(bp
));
1579 static void bnx2x_free_skbs_cnic(struct bnx2x
*bp
)
1581 bnx2x_free_tx_skbs_cnic(bp
);
1582 bnx2x_free_rx_skbs_cnic(bp
);
1585 void bnx2x_free_skbs(struct bnx2x
*bp
)
1587 bnx2x_free_tx_skbs(bp
);
1588 bnx2x_free_rx_skbs(bp
);
1591 void bnx2x_update_max_mf_config(struct bnx2x
*bp
, u32 value
)
1593 /* load old values */
1594 u32 mf_cfg
= bp
->mf_config
[BP_VN(bp
)];
1596 if (value
!= bnx2x_extract_max_cfg(bp
, mf_cfg
)) {
1597 /* leave all but MAX value */
1598 mf_cfg
&= ~FUNC_MF_CFG_MAX_BW_MASK
;
1600 /* set new MAX value */
1601 mf_cfg
|= (value
<< FUNC_MF_CFG_MAX_BW_SHIFT
)
1602 & FUNC_MF_CFG_MAX_BW_MASK
;
1604 bnx2x_fw_command(bp
, DRV_MSG_CODE_SET_MF_BW
, mf_cfg
);
1609 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1611 * @bp: driver handle
1612 * @nvecs: number of vectors to be released
1614 static void bnx2x_free_msix_irqs(struct bnx2x
*bp
, int nvecs
)
1618 if (nvecs
== offset
)
1621 /* VFs don't have a default SB */
1623 free_irq(bp
->msix_table
[offset
].vector
, bp
->dev
);
1624 DP(NETIF_MSG_IFDOWN
, "released sp irq (%d)\n",
1625 bp
->msix_table
[offset
].vector
);
1629 if (CNIC_SUPPORT(bp
)) {
1630 if (nvecs
== offset
)
1635 for_each_eth_queue(bp
, i
) {
1636 if (nvecs
== offset
)
1638 DP(NETIF_MSG_IFDOWN
, "about to release fp #%d->%d irq\n",
1639 i
, bp
->msix_table
[offset
].vector
);
1641 free_irq(bp
->msix_table
[offset
++].vector
, &bp
->fp
[i
]);
1645 void bnx2x_free_irq(struct bnx2x
*bp
)
1647 if (bp
->flags
& USING_MSIX_FLAG
&&
1648 !(bp
->flags
& USING_SINGLE_MSIX_FLAG
)) {
1649 int nvecs
= BNX2X_NUM_ETH_QUEUES(bp
) + CNIC_SUPPORT(bp
);
1651 /* vfs don't have a default status block */
1655 bnx2x_free_msix_irqs(bp
, nvecs
);
1657 free_irq(bp
->dev
->irq
, bp
->dev
);
1661 int bnx2x_enable_msix(struct bnx2x
*bp
)
1663 int msix_vec
= 0, i
, rc
;
1665 /* VFs don't have a default status block */
1667 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1668 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1669 bp
->msix_table
[0].entry
);
1673 /* Cnic requires an msix vector for itself */
1674 if (CNIC_SUPPORT(bp
)) {
1675 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1676 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1677 msix_vec
, bp
->msix_table
[msix_vec
].entry
);
1681 /* We need separate vectors for ETH queues only (not FCoE) */
1682 for_each_eth_queue(bp
, i
) {
1683 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1684 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1685 msix_vec
, msix_vec
, i
);
1689 DP(BNX2X_MSG_SP
, "about to request enable msix with %d vectors\n",
1692 rc
= pci_enable_msix_range(bp
->pdev
, &bp
->msix_table
[0],
1693 BNX2X_MIN_MSIX_VEC_CNT(bp
), msix_vec
);
1695 * reconfigure number of tx/rx queues according to available
1698 if (rc
== -ENOSPC
) {
1699 /* Get by with single vector */
1700 rc
= pci_enable_msix_range(bp
->pdev
, &bp
->msix_table
[0], 1, 1);
1702 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1707 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1708 bp
->flags
|= USING_SINGLE_MSIX_FLAG
;
1710 BNX2X_DEV_INFO("set number of queues to 1\n");
1711 bp
->num_ethernet_queues
= 1;
1712 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1713 } else if (rc
< 0) {
1714 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc
);
1716 } else if (rc
< msix_vec
) {
1717 /* how less vectors we will have? */
1718 int diff
= msix_vec
- rc
;
1720 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc
);
1723 * decrease number of queues by number of unallocated entries
1725 bp
->num_ethernet_queues
-= diff
;
1726 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1728 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1732 bp
->flags
|= USING_MSIX_FLAG
;
1737 /* fall to INTx if not enough memory */
1739 bp
->flags
|= DISABLE_MSI_FLAG
;
1744 static int bnx2x_req_msix_irqs(struct bnx2x
*bp
)
1746 int i
, rc
, offset
= 0;
1748 /* no default status block for vf */
1750 rc
= request_irq(bp
->msix_table
[offset
++].vector
,
1751 bnx2x_msix_sp_int
, 0,
1752 bp
->dev
->name
, bp
->dev
);
1754 BNX2X_ERR("request sp irq failed\n");
1759 if (CNIC_SUPPORT(bp
))
1762 for_each_eth_queue(bp
, i
) {
1763 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1764 snprintf(fp
->name
, sizeof(fp
->name
), "%s-fp-%d",
1767 rc
= request_irq(bp
->msix_table
[offset
].vector
,
1768 bnx2x_msix_fp_int
, 0, fp
->name
, fp
);
1770 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i
,
1771 bp
->msix_table
[offset
].vector
, rc
);
1772 bnx2x_free_msix_irqs(bp
, offset
);
1779 i
= BNX2X_NUM_ETH_QUEUES(bp
);
1781 offset
= 1 + CNIC_SUPPORT(bp
);
1782 netdev_info(bp
->dev
,
1783 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1784 bp
->msix_table
[0].vector
,
1785 0, bp
->msix_table
[offset
].vector
,
1786 i
- 1, bp
->msix_table
[offset
+ i
- 1].vector
);
1788 offset
= CNIC_SUPPORT(bp
);
1789 netdev_info(bp
->dev
,
1790 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1791 0, bp
->msix_table
[offset
].vector
,
1792 i
- 1, bp
->msix_table
[offset
+ i
- 1].vector
);
1797 int bnx2x_enable_msi(struct bnx2x
*bp
)
1801 rc
= pci_enable_msi(bp
->pdev
);
1803 BNX2X_DEV_INFO("MSI is not attainable\n");
1806 bp
->flags
|= USING_MSI_FLAG
;
1811 static int bnx2x_req_irq(struct bnx2x
*bp
)
1813 unsigned long flags
;
1816 if (bp
->flags
& (USING_MSI_FLAG
| USING_MSIX_FLAG
))
1819 flags
= IRQF_SHARED
;
1821 if (bp
->flags
& USING_MSIX_FLAG
)
1822 irq
= bp
->msix_table
[0].vector
;
1824 irq
= bp
->pdev
->irq
;
1826 return request_irq(irq
, bnx2x_interrupt
, flags
, bp
->dev
->name
, bp
->dev
);
1829 static int bnx2x_setup_irqs(struct bnx2x
*bp
)
1832 if (bp
->flags
& USING_MSIX_FLAG
&&
1833 !(bp
->flags
& USING_SINGLE_MSIX_FLAG
)) {
1834 rc
= bnx2x_req_msix_irqs(bp
);
1838 rc
= bnx2x_req_irq(bp
);
1840 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc
);
1843 if (bp
->flags
& USING_MSI_FLAG
) {
1844 bp
->dev
->irq
= bp
->pdev
->irq
;
1845 netdev_info(bp
->dev
, "using MSI IRQ %d\n",
1848 if (bp
->flags
& USING_MSIX_FLAG
) {
1849 bp
->dev
->irq
= bp
->msix_table
[0].vector
;
1850 netdev_info(bp
->dev
, "using MSIX IRQ %d\n",
1858 static void bnx2x_napi_enable_cnic(struct bnx2x
*bp
)
1862 for_each_rx_queue_cnic(bp
, i
) {
1863 napi_enable(&bnx2x_fp(bp
, i
, napi
));
1867 static void bnx2x_napi_enable(struct bnx2x
*bp
)
1871 for_each_eth_queue(bp
, i
) {
1872 napi_enable(&bnx2x_fp(bp
, i
, napi
));
1876 static void bnx2x_napi_disable_cnic(struct bnx2x
*bp
)
1880 for_each_rx_queue_cnic(bp
, i
) {
1881 napi_disable(&bnx2x_fp(bp
, i
, napi
));
1885 static void bnx2x_napi_disable(struct bnx2x
*bp
)
1889 for_each_eth_queue(bp
, i
) {
1890 napi_disable(&bnx2x_fp(bp
, i
, napi
));
1894 void bnx2x_netif_start(struct bnx2x
*bp
)
1896 if (netif_running(bp
->dev
)) {
1897 bnx2x_napi_enable(bp
);
1898 if (CNIC_LOADED(bp
))
1899 bnx2x_napi_enable_cnic(bp
);
1900 bnx2x_int_enable(bp
);
1901 if (bp
->state
== BNX2X_STATE_OPEN
)
1902 netif_tx_wake_all_queues(bp
->dev
);
1906 void bnx2x_netif_stop(struct bnx2x
*bp
, int disable_hw
)
1908 bnx2x_int_disable_sync(bp
, disable_hw
);
1909 bnx2x_napi_disable(bp
);
1910 if (CNIC_LOADED(bp
))
1911 bnx2x_napi_disable_cnic(bp
);
1914 u16
bnx2x_select_queue(struct net_device
*dev
, struct sk_buff
*skb
,
1915 void *accel_priv
, select_queue_fallback_t fallback
)
1917 struct bnx2x
*bp
= netdev_priv(dev
);
1919 if (CNIC_LOADED(bp
) && !NO_FCOE(bp
)) {
1920 struct ethhdr
*hdr
= (struct ethhdr
*)skb
->data
;
1921 u16 ether_type
= ntohs(hdr
->h_proto
);
1923 /* Skip VLAN tag if present */
1924 if (ether_type
== ETH_P_8021Q
) {
1925 struct vlan_ethhdr
*vhdr
=
1926 (struct vlan_ethhdr
*)skb
->data
;
1928 ether_type
= ntohs(vhdr
->h_vlan_encapsulated_proto
);
1931 /* If ethertype is FCoE or FIP - use FCoE ring */
1932 if ((ether_type
== ETH_P_FCOE
) || (ether_type
== ETH_P_FIP
))
1933 return bnx2x_fcoe_tx(bp
, txq_index
);
1936 /* select a non-FCoE queue */
1937 return fallback(dev
, skb
) % (BNX2X_NUM_ETH_QUEUES(bp
));
1940 void bnx2x_set_num_queues(struct bnx2x
*bp
)
1943 bp
->num_ethernet_queues
= bnx2x_calc_num_queues(bp
);
1945 /* override in STORAGE SD modes */
1946 if (IS_MF_STORAGE_ONLY(bp
))
1947 bp
->num_ethernet_queues
= 1;
1949 /* Add special queues */
1950 bp
->num_cnic_queues
= CNIC_SUPPORT(bp
); /* For FCOE */
1951 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1953 BNX2X_DEV_INFO("set number of queues to %d\n", bp
->num_queues
);
1957 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1959 * @bp: Driver handle
1961 * We currently support for at most 16 Tx queues for each CoS thus we will
1962 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1965 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1966 * index after all ETH L2 indices.
1968 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1969 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1970 * 16..31,...) with indices that are not coupled with any real Tx queue.
1972 * The proper configuration of skb->queue_mapping is handled by
1973 * bnx2x_select_queue() and __skb_tx_hash().
1975 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1976 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1978 static int bnx2x_set_real_num_queues(struct bnx2x
*bp
, int include_cnic
)
1982 tx
= BNX2X_NUM_ETH_QUEUES(bp
) * bp
->max_cos
;
1983 rx
= BNX2X_NUM_ETH_QUEUES(bp
);
1985 /* account for fcoe queue */
1986 if (include_cnic
&& !NO_FCOE(bp
)) {
1991 rc
= netif_set_real_num_tx_queues(bp
->dev
, tx
);
1993 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc
);
1996 rc
= netif_set_real_num_rx_queues(bp
->dev
, rx
);
1998 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc
);
2002 DP(NETIF_MSG_IFUP
, "Setting real num queues to (tx, rx) (%d, %d)\n",
2008 static void bnx2x_set_rx_buf_size(struct bnx2x
*bp
)
2012 for_each_queue(bp
, i
) {
2013 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2016 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2019 * Although there are no IP frames expected to arrive to
2020 * this ring we still want to add an
2021 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2024 mtu
= BNX2X_FCOE_MINI_JUMBO_MTU
;
2027 fp
->rx_buf_size
= BNX2X_FW_RX_ALIGN_START
+
2028 IP_HEADER_ALIGNMENT_PADDING
+
2031 BNX2X_FW_RX_ALIGN_END
;
2032 fp
->rx_buf_size
= SKB_DATA_ALIGN(fp
->rx_buf_size
);
2033 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2034 if (fp
->rx_buf_size
+ NET_SKB_PAD
<= PAGE_SIZE
)
2035 fp
->rx_frag_size
= fp
->rx_buf_size
+ NET_SKB_PAD
;
2037 fp
->rx_frag_size
= 0;
2041 static int bnx2x_init_rss(struct bnx2x
*bp
)
2044 u8 num_eth_queues
= BNX2X_NUM_ETH_QUEUES(bp
);
2046 /* Prepare the initial contents for the indirection table if RSS is
2049 for (i
= 0; i
< sizeof(bp
->rss_conf_obj
.ind_table
); i
++)
2050 bp
->rss_conf_obj
.ind_table
[i
] =
2052 ethtool_rxfh_indir_default(i
, num_eth_queues
);
2055 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2056 * per-port, so if explicit configuration is needed , do it only
2059 * For 57712 and newer on the other hand it's a per-function
2062 return bnx2x_config_rss_eth(bp
, bp
->port
.pmf
|| !CHIP_IS_E1x(bp
));
2065 int bnx2x_rss(struct bnx2x
*bp
, struct bnx2x_rss_config_obj
*rss_obj
,
2066 bool config_hash
, bool enable
)
2068 struct bnx2x_config_rss_params params
= {NULL
};
2070 /* Although RSS is meaningless when there is a single HW queue we
2071 * still need it enabled in order to have HW Rx hash generated.
2073 * if (!is_eth_multi(bp))
2074 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2077 params
.rss_obj
= rss_obj
;
2079 __set_bit(RAMROD_COMP_WAIT
, ¶ms
.ramrod_flags
);
2082 __set_bit(BNX2X_RSS_MODE_REGULAR
, ¶ms
.rss_flags
);
2084 /* RSS configuration */
2085 __set_bit(BNX2X_RSS_IPV4
, ¶ms
.rss_flags
);
2086 __set_bit(BNX2X_RSS_IPV4_TCP
, ¶ms
.rss_flags
);
2087 __set_bit(BNX2X_RSS_IPV6
, ¶ms
.rss_flags
);
2088 __set_bit(BNX2X_RSS_IPV6_TCP
, ¶ms
.rss_flags
);
2089 if (rss_obj
->udp_rss_v4
)
2090 __set_bit(BNX2X_RSS_IPV4_UDP
, ¶ms
.rss_flags
);
2091 if (rss_obj
->udp_rss_v6
)
2092 __set_bit(BNX2X_RSS_IPV6_UDP
, ¶ms
.rss_flags
);
2094 if (!CHIP_IS_E1x(bp
)) {
2095 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2096 __set_bit(BNX2X_RSS_IPV4_VXLAN
, ¶ms
.rss_flags
);
2097 __set_bit(BNX2X_RSS_IPV6_VXLAN
, ¶ms
.rss_flags
);
2099 /* valid only for TUNN_MODE_GRE tunnel mode */
2100 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS
, ¶ms
.rss_flags
);
2103 __set_bit(BNX2X_RSS_MODE_DISABLED
, ¶ms
.rss_flags
);
2107 params
.rss_result_mask
= MULTI_MASK
;
2109 memcpy(params
.ind_table
, rss_obj
->ind_table
, sizeof(params
.ind_table
));
2113 netdev_rss_key_fill(params
.rss_key
, T_ETH_RSS_KEY
* 4);
2114 __set_bit(BNX2X_RSS_SET_SRCH
, ¶ms
.rss_flags
);
2118 return bnx2x_config_rss(bp
, ¶ms
);
2120 return bnx2x_vfpf_config_rss(bp
, ¶ms
);
2123 static int bnx2x_init_hw(struct bnx2x
*bp
, u32 load_code
)
2125 struct bnx2x_func_state_params func_params
= {NULL
};
2127 /* Prepare parameters for function state transitions */
2128 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
2130 func_params
.f_obj
= &bp
->func_obj
;
2131 func_params
.cmd
= BNX2X_F_CMD_HW_INIT
;
2133 func_params
.params
.hw_init
.load_phase
= load_code
;
2135 return bnx2x_func_state_change(bp
, &func_params
);
2139 * Cleans the object that have internal lists without sending
2140 * ramrods. Should be run when interrupts are disabled.
2142 void bnx2x_squeeze_objects(struct bnx2x
*bp
)
2145 unsigned long ramrod_flags
= 0, vlan_mac_flags
= 0;
2146 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
2147 struct bnx2x_vlan_mac_obj
*mac_obj
= &bp
->sp_objs
->mac_obj
;
2149 /***************** Cleanup MACs' object first *************************/
2151 /* Wait for completion of requested */
2152 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2153 /* Perform a dry cleanup */
2154 __set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod_flags
);
2156 /* Clean ETH primary MAC */
2157 __set_bit(BNX2X_ETH_MAC
, &vlan_mac_flags
);
2158 rc
= mac_obj
->delete_all(bp
, &bp
->sp_objs
->mac_obj
, &vlan_mac_flags
,
2161 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc
);
2163 /* Cleanup UC list */
2165 __set_bit(BNX2X_UC_LIST_MAC
, &vlan_mac_flags
);
2166 rc
= mac_obj
->delete_all(bp
, mac_obj
, &vlan_mac_flags
,
2169 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc
);
2171 /***************** Now clean mcast object *****************************/
2172 rparam
.mcast_obj
= &bp
->mcast_obj
;
2173 __set_bit(RAMROD_DRV_CLR_ONLY
, &rparam
.ramrod_flags
);
2175 /* Add a DEL command... - Since we're doing a driver cleanup only,
2176 * we take a lock surrounding both the initial send and the CONTs,
2177 * as we don't want a true completion to disrupt us in the middle.
2179 netif_addr_lock_bh(bp
->dev
);
2180 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
2182 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2185 /* ...and wait until all pending commands are cleared */
2186 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
2189 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2191 netif_addr_unlock_bh(bp
->dev
);
2195 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
2197 netif_addr_unlock_bh(bp
->dev
);
2200 #ifndef BNX2X_STOP_ON_ERROR
2201 #define LOAD_ERROR_EXIT(bp, label) \
2203 (bp)->state = BNX2X_STATE_ERROR; \
2207 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2209 bp->cnic_loaded = false; \
2212 #else /*BNX2X_STOP_ON_ERROR*/
2213 #define LOAD_ERROR_EXIT(bp, label) \
2215 (bp)->state = BNX2X_STATE_ERROR; \
2219 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2221 bp->cnic_loaded = false; \
2225 #endif /*BNX2X_STOP_ON_ERROR*/
2227 static void bnx2x_free_fw_stats_mem(struct bnx2x
*bp
)
2229 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
2230 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
2234 static int bnx2x_alloc_fw_stats_mem(struct bnx2x
*bp
)
2236 int num_groups
, vf_headroom
= 0;
2237 int is_fcoe_stats
= NO_FCOE(bp
) ? 0 : 1;
2239 /* number of queues for statistics is number of eth queues + FCoE */
2240 u8 num_queue_stats
= BNX2X_NUM_ETH_QUEUES(bp
) + is_fcoe_stats
;
2242 /* Total number of FW statistics requests =
2243 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2244 * and fcoe l2 queue) stats + num of queues (which includes another 1
2245 * for fcoe l2 queue if applicable)
2247 bp
->fw_stats_num
= 2 + is_fcoe_stats
+ num_queue_stats
;
2249 /* vf stats appear in the request list, but their data is allocated by
2250 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2251 * it is used to determine where to place the vf stats queries in the
2255 vf_headroom
= bnx2x_vf_headroom(bp
);
2257 /* Request is built from stats_query_header and an array of
2258 * stats_query_cmd_group each of which contains
2259 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2260 * configured in the stats_query_header.
2263 (((bp
->fw_stats_num
+ vf_headroom
) / STATS_QUERY_CMD_COUNT
) +
2264 (((bp
->fw_stats_num
+ vf_headroom
) % STATS_QUERY_CMD_COUNT
) ?
2267 DP(BNX2X_MSG_SP
, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2268 bp
->fw_stats_num
, vf_headroom
, num_groups
);
2269 bp
->fw_stats_req_sz
= sizeof(struct stats_query_header
) +
2270 num_groups
* sizeof(struct stats_query_cmd_group
);
2272 /* Data for statistics requests + stats_counter
2273 * stats_counter holds per-STORM counters that are incremented
2274 * when STORM has finished with the current request.
2275 * memory for FCoE offloaded statistics are counted anyway,
2276 * even if they will not be sent.
2277 * VF stats are not accounted for here as the data of VF stats is stored
2278 * in memory allocated by the VF, not here.
2280 bp
->fw_stats_data_sz
= sizeof(struct per_port_stats
) +
2281 sizeof(struct per_pf_stats
) +
2282 sizeof(struct fcoe_statistics_params
) +
2283 sizeof(struct per_queue_stats
) * num_queue_stats
+
2284 sizeof(struct stats_counter
);
2286 bp
->fw_stats
= BNX2X_PCI_ALLOC(&bp
->fw_stats_mapping
,
2287 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
2292 bp
->fw_stats_req
= (struct bnx2x_fw_stats_req
*)bp
->fw_stats
;
2293 bp
->fw_stats_req_mapping
= bp
->fw_stats_mapping
;
2294 bp
->fw_stats_data
= (struct bnx2x_fw_stats_data
*)
2295 ((u8
*)bp
->fw_stats
+ bp
->fw_stats_req_sz
);
2296 bp
->fw_stats_data_mapping
= bp
->fw_stats_mapping
+
2297 bp
->fw_stats_req_sz
;
2299 DP(BNX2X_MSG_SP
, "statistics request base address set to %x %x\n",
2300 U64_HI(bp
->fw_stats_req_mapping
),
2301 U64_LO(bp
->fw_stats_req_mapping
));
2302 DP(BNX2X_MSG_SP
, "statistics data base address set to %x %x\n",
2303 U64_HI(bp
->fw_stats_data_mapping
),
2304 U64_LO(bp
->fw_stats_data_mapping
));
2308 bnx2x_free_fw_stats_mem(bp
);
2309 BNX2X_ERR("Can't allocate FW stats memory\n");
2313 /* send load request to mcp and analyze response */
2314 static int bnx2x_nic_load_request(struct bnx2x
*bp
, u32
*load_code
)
2320 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
2321 DRV_MSG_SEQ_NUMBER_MASK
);
2322 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
2324 /* Get current FW pulse sequence */
2325 bp
->fw_drv_pulse_wr_seq
=
2326 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_pulse_mb
) &
2327 DRV_PULSE_SEQ_MASK
);
2328 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp
->fw_drv_pulse_wr_seq
);
2330 param
= DRV_MSG_CODE_LOAD_REQ_WITH_LFA
;
2332 if (IS_MF_SD(bp
) && bnx2x_port_after_undi(bp
))
2333 param
|= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA
;
2336 (*load_code
) = bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_REQ
, param
);
2338 /* if mcp fails to respond we must abort */
2339 if (!(*load_code
)) {
2340 BNX2X_ERR("MCP response failure, aborting\n");
2344 /* If mcp refused (e.g. other port is in diagnostic mode) we
2347 if ((*load_code
) == FW_MSG_CODE_DRV_LOAD_REFUSED
) {
2348 BNX2X_ERR("MCP refused load request, aborting\n");
2354 /* check whether another PF has already loaded FW to chip. In
2355 * virtualized environments a pf from another VM may have already
2356 * initialized the device including loading FW
2358 int bnx2x_compare_fw_ver(struct bnx2x
*bp
, u32 load_code
, bool print_err
)
2360 /* is another pf loaded on this engine? */
2361 if (load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
&&
2362 load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON
) {
2363 /* build my FW version dword */
2364 u32 my_fw
= (BCM_5710_FW_MAJOR_VERSION
) +
2365 (BCM_5710_FW_MINOR_VERSION
<< 8) +
2366 (BCM_5710_FW_REVISION_VERSION
<< 16) +
2367 (BCM_5710_FW_ENGINEERING_VERSION
<< 24);
2369 /* read loaded FW from chip */
2370 u32 loaded_fw
= REG_RD(bp
, XSEM_REG_PRAM
);
2372 DP(BNX2X_MSG_SP
, "loaded fw %x, my fw %x\n",
2375 /* abort nic load if version mismatch */
2376 if (my_fw
!= loaded_fw
) {
2378 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2381 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2389 /* returns the "mcp load_code" according to global load_count array */
2390 static int bnx2x_nic_load_no_mcp(struct bnx2x
*bp
, int port
)
2392 int path
= BP_PATH(bp
);
2394 DP(NETIF_MSG_IFUP
, "NO MCP - load counts[%d] %d, %d, %d\n",
2395 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
2396 bnx2x_load_count
[path
][2]);
2397 bnx2x_load_count
[path
][0]++;
2398 bnx2x_load_count
[path
][1 + port
]++;
2399 DP(NETIF_MSG_IFUP
, "NO MCP - new load counts[%d] %d, %d, %d\n",
2400 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
2401 bnx2x_load_count
[path
][2]);
2402 if (bnx2x_load_count
[path
][0] == 1)
2403 return FW_MSG_CODE_DRV_LOAD_COMMON
;
2404 else if (bnx2x_load_count
[path
][1 + port
] == 1)
2405 return FW_MSG_CODE_DRV_LOAD_PORT
;
2407 return FW_MSG_CODE_DRV_LOAD_FUNCTION
;
2410 /* mark PMF if applicable */
2411 static void bnx2x_nic_load_pmf(struct bnx2x
*bp
, u32 load_code
)
2413 if ((load_code
== FW_MSG_CODE_DRV_LOAD_COMMON
) ||
2414 (load_code
== FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
) ||
2415 (load_code
== FW_MSG_CODE_DRV_LOAD_PORT
)) {
2417 /* We need the barrier to ensure the ordering between the
2418 * writing to bp->port.pmf here and reading it from the
2419 * bnx2x_periodic_task().
2426 DP(NETIF_MSG_LINK
, "pmf %d\n", bp
->port
.pmf
);
2429 static void bnx2x_nic_load_afex_dcc(struct bnx2x
*bp
, int load_code
)
2431 if (((load_code
== FW_MSG_CODE_DRV_LOAD_COMMON
) ||
2432 (load_code
== FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
)) &&
2433 (bp
->common
.shmem2_base
)) {
2434 if (SHMEM2_HAS(bp
, dcc_support
))
2435 SHMEM2_WR(bp
, dcc_support
,
2436 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV
|
2437 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV
));
2438 if (SHMEM2_HAS(bp
, afex_driver_support
))
2439 SHMEM2_WR(bp
, afex_driver_support
,
2440 SHMEM_AFEX_SUPPORTED_VERSION_ONE
);
2443 /* Set AFEX default VLAN tag to an invalid value */
2444 bp
->afex_def_vlan_tag
= -1;
2448 * bnx2x_bz_fp - zero content of the fastpath structure.
2450 * @bp: driver handle
2451 * @index: fastpath index to be zeroed
2453 * Makes sure the contents of the bp->fp[index].napi is kept
2456 static void bnx2x_bz_fp(struct bnx2x
*bp
, int index
)
2458 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
2460 struct napi_struct orig_napi
= fp
->napi
;
2461 struct bnx2x_agg_info
*orig_tpa_info
= fp
->tpa_info
;
2463 /* bzero bnx2x_fastpath contents */
2465 memset(fp
->tpa_info
, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2
*
2466 sizeof(struct bnx2x_agg_info
));
2467 memset(fp
, 0, sizeof(*fp
));
2469 /* Restore the NAPI object as it has been already initialized */
2470 fp
->napi
= orig_napi
;
2471 fp
->tpa_info
= orig_tpa_info
;
2475 fp
->max_cos
= bp
->max_cos
;
2477 /* Special queues support only one CoS */
2480 /* Init txdata pointers */
2482 fp
->txdata_ptr
[0] = &bp
->bnx2x_txq
[FCOE_TXQ_IDX(bp
)];
2484 for_each_cos_in_tx_queue(fp
, cos
)
2485 fp
->txdata_ptr
[cos
] = &bp
->bnx2x_txq
[cos
*
2486 BNX2X_NUM_ETH_QUEUES(bp
) + index
];
2488 /* set the tpa flag for each queue. The tpa flag determines the queue
2489 * minimal size so it must be set prior to queue memory allocation
2491 if (bp
->dev
->features
& NETIF_F_LRO
)
2492 fp
->mode
= TPA_MODE_LRO
;
2493 else if (bp
->dev
->features
& NETIF_F_GRO
&&
2494 bnx2x_mtu_allows_gro(bp
->dev
->mtu
))
2495 fp
->mode
= TPA_MODE_GRO
;
2497 fp
->mode
= TPA_MODE_DISABLED
;
2499 /* We don't want TPA if it's disabled in bp
2500 * or if this is an FCoE L2 ring.
2502 if (bp
->disable_tpa
|| IS_FCOE_FP(fp
))
2503 fp
->mode
= TPA_MODE_DISABLED
;
2506 void bnx2x_set_os_driver_state(struct bnx2x
*bp
, u32 state
)
2510 if (!IS_MF_BD(bp
) || !SHMEM2_HAS(bp
, os_driver_state
) || IS_VF(bp
))
2513 cur
= SHMEM2_RD(bp
, os_driver_state
[BP_FW_MB_IDX(bp
)]);
2514 DP(NETIF_MSG_IFUP
, "Driver state %08x-->%08x\n",
2517 SHMEM2_WR(bp
, os_driver_state
[BP_FW_MB_IDX(bp
)], state
);
2520 int bnx2x_load_cnic(struct bnx2x
*bp
)
2522 int i
, rc
, port
= BP_PORT(bp
);
2524 DP(NETIF_MSG_IFUP
, "Starting CNIC-related load\n");
2526 mutex_init(&bp
->cnic_mutex
);
2529 rc
= bnx2x_alloc_mem_cnic(bp
);
2531 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2532 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2536 rc
= bnx2x_alloc_fp_mem_cnic(bp
);
2538 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2539 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2542 /* Update the number of queues with the cnic queues */
2543 rc
= bnx2x_set_real_num_queues(bp
, 1);
2545 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2546 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2549 /* Add all CNIC NAPI objects */
2550 bnx2x_add_all_napi_cnic(bp
);
2551 DP(NETIF_MSG_IFUP
, "cnic napi added\n");
2552 bnx2x_napi_enable_cnic(bp
);
2554 rc
= bnx2x_init_hw_func_cnic(bp
);
2556 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic1
);
2558 bnx2x_nic_init_cnic(bp
);
2561 /* Enable Timer scan */
2562 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 1);
2564 /* setup cnic queues */
2565 for_each_cnic_queue(bp
, i
) {
2566 rc
= bnx2x_setup_queue(bp
, &bp
->fp
[i
], 0);
2568 BNX2X_ERR("Queue setup failed\n");
2569 LOAD_ERROR_EXIT(bp
, load_error_cnic2
);
2574 /* Initialize Rx filter. */
2575 bnx2x_set_rx_mode_inner(bp
);
2577 /* re-read iscsi info */
2578 bnx2x_get_iscsi_info(bp
);
2579 bnx2x_setup_cnic_irq_info(bp
);
2580 bnx2x_setup_cnic_info(bp
);
2581 bp
->cnic_loaded
= true;
2582 if (bp
->state
== BNX2X_STATE_OPEN
)
2583 bnx2x_cnic_notify(bp
, CNIC_CTL_START_CMD
);
2585 DP(NETIF_MSG_IFUP
, "Ending successfully CNIC-related load\n");
2589 #ifndef BNX2X_STOP_ON_ERROR
2591 /* Disable Timer scan */
2592 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 0);
2595 bnx2x_napi_disable_cnic(bp
);
2596 /* Update the number of queues without the cnic queues */
2597 if (bnx2x_set_real_num_queues(bp
, 0))
2598 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2600 BNX2X_ERR("CNIC-related load failed\n");
2601 bnx2x_free_fp_mem_cnic(bp
);
2602 bnx2x_free_mem_cnic(bp
);
2604 #endif /* ! BNX2X_STOP_ON_ERROR */
2607 /* must be called with rtnl_lock */
2608 int bnx2x_nic_load(struct bnx2x
*bp
, int load_mode
)
2610 int port
= BP_PORT(bp
);
2611 int i
, rc
= 0, load_code
= 0;
2613 DP(NETIF_MSG_IFUP
, "Starting NIC load\n");
2615 "CNIC is %s\n", CNIC_ENABLED(bp
) ? "enabled" : "disabled");
2617 #ifdef BNX2X_STOP_ON_ERROR
2618 if (unlikely(bp
->panic
)) {
2619 BNX2X_ERR("Can't load NIC when there is panic\n");
2624 bp
->state
= BNX2X_STATE_OPENING_WAIT4_LOAD
;
2626 /* zero the structure w/o any lock, before SP handler is initialized */
2627 memset(&bp
->last_reported_link
, 0, sizeof(bp
->last_reported_link
));
2628 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
2629 &bp
->last_reported_link
.link_report_flags
);
2632 /* must be called before memory allocation and HW init */
2633 bnx2x_ilt_set_info(bp
);
2636 * Zero fastpath structures preserving invariants like napi, which are
2637 * allocated only once, fp index, max_cos, bp pointer.
2638 * Also set fp->mode and txdata_ptr.
2640 DP(NETIF_MSG_IFUP
, "num queues: %d", bp
->num_queues
);
2641 for_each_queue(bp
, i
)
2643 memset(bp
->bnx2x_txq
, 0, (BNX2X_MAX_RSS_COUNT(bp
) * BNX2X_MULTI_TX_COS
+
2644 bp
->num_cnic_queues
) *
2645 sizeof(struct bnx2x_fp_txdata
));
2647 bp
->fcoe_init
= false;
2649 /* Set the receive queues buffer size */
2650 bnx2x_set_rx_buf_size(bp
);
2653 rc
= bnx2x_alloc_mem(bp
);
2655 BNX2X_ERR("Unable to allocate bp memory\n");
2660 /* need to be done after alloc mem, since it's self adjusting to amount
2661 * of memory available for RSS queues
2663 rc
= bnx2x_alloc_fp_mem(bp
);
2665 BNX2X_ERR("Unable to allocate memory for fps\n");
2666 LOAD_ERROR_EXIT(bp
, load_error0
);
2669 /* Allocated memory for FW statistics */
2670 if (bnx2x_alloc_fw_stats_mem(bp
))
2671 LOAD_ERROR_EXIT(bp
, load_error0
);
2673 /* request pf to initialize status blocks */
2675 rc
= bnx2x_vfpf_init(bp
);
2677 LOAD_ERROR_EXIT(bp
, load_error0
);
2680 /* As long as bnx2x_alloc_mem() may possibly update
2681 * bp->num_queues, bnx2x_set_real_num_queues() should always
2682 * come after it. At this stage cnic queues are not counted.
2684 rc
= bnx2x_set_real_num_queues(bp
, 0);
2686 BNX2X_ERR("Unable to set real_num_queues\n");
2687 LOAD_ERROR_EXIT(bp
, load_error0
);
2690 /* configure multi cos mappings in kernel.
2691 * this configuration may be overridden by a multi class queue
2692 * discipline or by a dcbx negotiation result.
2694 bnx2x_setup_tc(bp
->dev
, bp
->max_cos
);
2696 /* Add all NAPI objects */
2697 bnx2x_add_all_napi(bp
);
2698 DP(NETIF_MSG_IFUP
, "napi added\n");
2699 bnx2x_napi_enable(bp
);
2702 /* set pf load just before approaching the MCP */
2703 bnx2x_set_pf_load(bp
);
2705 /* if mcp exists send load request and analyze response */
2706 if (!BP_NOMCP(bp
)) {
2707 /* attempt to load pf */
2708 rc
= bnx2x_nic_load_request(bp
, &load_code
);
2710 LOAD_ERROR_EXIT(bp
, load_error1
);
2712 /* what did mcp say? */
2713 rc
= bnx2x_compare_fw_ver(bp
, load_code
, true);
2715 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2716 LOAD_ERROR_EXIT(bp
, load_error2
);
2719 load_code
= bnx2x_nic_load_no_mcp(bp
, port
);
2722 /* mark pmf if applicable */
2723 bnx2x_nic_load_pmf(bp
, load_code
);
2725 /* Init Function state controlling object */
2726 bnx2x__init_func_obj(bp
);
2729 rc
= bnx2x_init_hw(bp
, load_code
);
2731 BNX2X_ERR("HW init failed, aborting\n");
2732 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2733 LOAD_ERROR_EXIT(bp
, load_error2
);
2737 bnx2x_pre_irq_nic_init(bp
);
2739 /* Connect to IRQs */
2740 rc
= bnx2x_setup_irqs(bp
);
2742 BNX2X_ERR("setup irqs failed\n");
2744 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2745 LOAD_ERROR_EXIT(bp
, load_error2
);
2748 /* Init per-function objects */
2750 /* Setup NIC internals and enable interrupts */
2751 bnx2x_post_irq_nic_init(bp
, load_code
);
2753 bnx2x_init_bp_objs(bp
);
2754 bnx2x_iov_nic_init(bp
);
2756 /* Set AFEX default VLAN tag to an invalid value */
2757 bp
->afex_def_vlan_tag
= -1;
2758 bnx2x_nic_load_afex_dcc(bp
, load_code
);
2759 bp
->state
= BNX2X_STATE_OPENING_WAIT4_PORT
;
2760 rc
= bnx2x_func_start(bp
);
2762 BNX2X_ERR("Function start failed!\n");
2763 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2765 LOAD_ERROR_EXIT(bp
, load_error3
);
2768 /* Send LOAD_DONE command to MCP */
2769 if (!BP_NOMCP(bp
)) {
2770 load_code
= bnx2x_fw_command(bp
,
2771 DRV_MSG_CODE_LOAD_DONE
, 0);
2773 BNX2X_ERR("MCP response failure, aborting\n");
2775 LOAD_ERROR_EXIT(bp
, load_error3
);
2779 /* initialize FW coalescing state machines in RAM */
2780 bnx2x_update_coalesce(bp
);
2783 /* setup the leading queue */
2784 rc
= bnx2x_setup_leading(bp
);
2786 BNX2X_ERR("Setup leading failed!\n");
2787 LOAD_ERROR_EXIT(bp
, load_error3
);
2790 /* set up the rest of the queues */
2791 for_each_nondefault_eth_queue(bp
, i
) {
2793 rc
= bnx2x_setup_queue(bp
, &bp
->fp
[i
], false);
2795 rc
= bnx2x_vfpf_setup_q(bp
, &bp
->fp
[i
], false);
2797 BNX2X_ERR("Queue %d setup failed\n", i
);
2798 LOAD_ERROR_EXIT(bp
, load_error3
);
2803 rc
= bnx2x_init_rss(bp
);
2805 BNX2X_ERR("PF RSS init failed\n");
2806 LOAD_ERROR_EXIT(bp
, load_error3
);
2809 /* Now when Clients are configured we are ready to work */
2810 bp
->state
= BNX2X_STATE_OPEN
;
2812 /* Configure a ucast MAC */
2814 rc
= bnx2x_set_eth_mac(bp
, true);
2816 rc
= bnx2x_vfpf_config_mac(bp
, bp
->dev
->dev_addr
, bp
->fp
->index
,
2819 BNX2X_ERR("Setting Ethernet MAC failed\n");
2820 LOAD_ERROR_EXIT(bp
, load_error3
);
2823 if (IS_PF(bp
) && bp
->pending_max
) {
2824 bnx2x_update_max_mf_config(bp
, bp
->pending_max
);
2825 bp
->pending_max
= 0;
2828 bp
->force_link_down
= false;
2830 rc
= bnx2x_initial_phy_init(bp
, load_mode
);
2832 LOAD_ERROR_EXIT(bp
, load_error3
);
2834 bp
->link_params
.feature_config_flags
&= ~FEATURE_CONFIG_BOOT_FROM_SAN
;
2836 /* Start fast path */
2838 /* Re-configure vlan filters */
2839 rc
= bnx2x_vlan_reconfigure_vid(bp
);
2841 LOAD_ERROR_EXIT(bp
, load_error3
);
2843 /* Initialize Rx filter. */
2844 bnx2x_set_rx_mode_inner(bp
);
2846 if (bp
->flags
& PTP_SUPPORTED
) {
2848 bnx2x_configure_ptp_filters(bp
);
2851 switch (load_mode
) {
2853 /* Tx queue should be only re-enabled */
2854 netif_tx_wake_all_queues(bp
->dev
);
2858 netif_tx_start_all_queues(bp
->dev
);
2859 smp_mb__after_atomic();
2863 case LOAD_LOOPBACK_EXT
:
2864 bp
->state
= BNX2X_STATE_DIAG
;
2872 bnx2x_update_drv_flags(bp
, 1 << DRV_FLAGS_PORT_MASK
, 0);
2874 bnx2x__link_status_update(bp
);
2876 /* start the timer */
2877 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
2879 if (CNIC_ENABLED(bp
))
2880 bnx2x_load_cnic(bp
);
2883 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_GET_DRV_VERSION
, 0);
2885 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
2886 /* mark driver is loaded in shmem2 */
2888 val
= SHMEM2_RD(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
2889 val
&= ~DRV_FLAGS_MTU_MASK
;
2890 val
|= (bp
->dev
->mtu
<< DRV_FLAGS_MTU_SHIFT
);
2891 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
2892 val
| DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED
|
2893 DRV_FLAGS_CAPABILITIES_LOADED_L2
);
2896 /* Wait for all pending SP commands to complete */
2897 if (IS_PF(bp
) && !bnx2x_wait_sp_comp(bp
, ~0x0UL
)) {
2898 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2899 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
2903 /* Update driver data for On-Chip MFW dump. */
2905 bnx2x_update_mfw_dump(bp
);
2907 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2908 if (bp
->port
.pmf
&& (bp
->state
!= BNX2X_STATE_DIAG
))
2909 bnx2x_dcbx_init(bp
, false);
2911 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
))
2912 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_ACTIVE
);
2914 DP(NETIF_MSG_IFUP
, "Ending successfully NIC load\n");
2918 #ifndef BNX2X_STOP_ON_ERROR
2921 bnx2x_int_disable_sync(bp
, 1);
2923 /* Clean queueable objects */
2924 bnx2x_squeeze_objects(bp
);
2927 /* Free SKBs, SGEs, TPA pool and driver internals */
2928 bnx2x_free_skbs(bp
);
2929 for_each_rx_queue(bp
, i
)
2930 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
2935 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
2936 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
, 0);
2937 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
2942 bnx2x_napi_disable(bp
);
2943 bnx2x_del_all_napi(bp
);
2945 /* clear pf_load status, as it was already set */
2947 bnx2x_clear_pf_load(bp
);
2949 bnx2x_free_fw_stats_mem(bp
);
2950 bnx2x_free_fp_mem(bp
);
2954 #endif /* ! BNX2X_STOP_ON_ERROR */
2957 int bnx2x_drain_tx_queues(struct bnx2x
*bp
)
2961 /* Wait until tx fastpath tasks complete */
2962 for_each_tx_queue(bp
, i
) {
2963 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2965 for_each_cos_in_tx_queue(fp
, cos
)
2966 rc
= bnx2x_clean_tx_queue(bp
, fp
->txdata_ptr
[cos
]);
2973 /* must be called with rtnl_lock */
2974 int bnx2x_nic_unload(struct bnx2x
*bp
, int unload_mode
, bool keep_link
)
2977 bool global
= false;
2979 DP(NETIF_MSG_IFUP
, "Starting NIC unload\n");
2981 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
))
2982 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_DISABLED
);
2984 /* mark driver is unloaded in shmem2 */
2985 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
2987 val
= SHMEM2_RD(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
2988 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
2989 val
& ~DRV_FLAGS_CAPABILITIES_LOADED_L2
);
2992 if (IS_PF(bp
) && bp
->recovery_state
!= BNX2X_RECOVERY_DONE
&&
2993 (bp
->state
== BNX2X_STATE_CLOSED
||
2994 bp
->state
== BNX2X_STATE_ERROR
)) {
2995 /* We can get here if the driver has been unloaded
2996 * during parity error recovery and is either waiting for a
2997 * leader to complete or for other functions to unload and
2998 * then ifdown has been issued. In this case we want to
2999 * unload and let other functions to complete a recovery
3002 bp
->recovery_state
= BNX2X_RECOVERY_DONE
;
3004 bnx2x_release_leader_lock(bp
);
3007 DP(NETIF_MSG_IFDOWN
, "Releasing a leadership...\n");
3008 BNX2X_ERR("Can't unload in closed or error state\n");
3012 /* Nothing to do during unload if previous bnx2x_nic_load()
3013 * have not completed successfully - all resources are released.
3015 * we can get here only after unsuccessful ndo_* callback, during which
3016 * dev->IFF_UP flag is still on.
3018 if (bp
->state
== BNX2X_STATE_CLOSED
|| bp
->state
== BNX2X_STATE_ERROR
)
3021 /* It's important to set the bp->state to the value different from
3022 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3023 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3025 bp
->state
= BNX2X_STATE_CLOSING_WAIT4_HALT
;
3028 /* indicate to VFs that the PF is going down */
3029 bnx2x_iov_channel_down(bp
);
3031 if (CNIC_LOADED(bp
))
3032 bnx2x_cnic_notify(bp
, CNIC_CTL_STOP_CMD
);
3035 bnx2x_tx_disable(bp
);
3036 netdev_reset_tc(bp
->dev
);
3038 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
3040 del_timer_sync(&bp
->timer
);
3042 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
3043 /* Set ALWAYS_ALIVE bit in shmem */
3044 bp
->fw_drv_pulse_wr_seq
|= DRV_PULSE_ALWAYS_ALIVE
;
3045 bnx2x_drv_pulse(bp
);
3046 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
3047 bnx2x_save_statistics(bp
);
3050 /* wait till consumers catch up with producers in all queues.
3051 * If we're recovering, FW can't write to host so no reason
3052 * to wait for the queues to complete all Tx.
3054 if (unload_mode
!= UNLOAD_RECOVERY
)
3055 bnx2x_drain_tx_queues(bp
);
3057 /* if VF indicate to PF this function is going down (PF will delete sp
3058 * elements and clear initializations
3061 bnx2x_clear_vlan_info(bp
);
3062 bnx2x_vfpf_close_vf(bp
);
3063 } else if (unload_mode
!= UNLOAD_RECOVERY
) {
3064 /* if this is a normal/close unload need to clean up chip*/
3065 bnx2x_chip_cleanup(bp
, unload_mode
, keep_link
);
3067 /* Send the UNLOAD_REQUEST to the MCP */
3068 bnx2x_send_unload_req(bp
, unload_mode
);
3070 /* Prevent transactions to host from the functions on the
3071 * engine that doesn't reset global blocks in case of global
3072 * attention once global blocks are reset and gates are opened
3073 * (the engine which leader will perform the recovery
3076 if (!CHIP_IS_E1x(bp
))
3077 bnx2x_pf_disable(bp
);
3079 /* Disable HW interrupts, NAPI */
3080 bnx2x_netif_stop(bp
, 1);
3081 /* Delete all NAPI objects */
3082 bnx2x_del_all_napi(bp
);
3083 if (CNIC_LOADED(bp
))
3084 bnx2x_del_all_napi_cnic(bp
);
3088 /* Report UNLOAD_DONE to MCP */
3089 bnx2x_send_unload_done(bp
, false);
3093 * At this stage no more interrupts will arrive so we may safely clean
3094 * the queueable objects here in case they failed to get cleaned so far.
3097 bnx2x_squeeze_objects(bp
);
3099 /* There should be no more pending SP commands at this stage */
3104 /* clear pending work in rtnl task */
3105 bp
->sp_rtnl_state
= 0;
3108 /* Free SKBs, SGEs, TPA pool and driver internals */
3109 bnx2x_free_skbs(bp
);
3110 if (CNIC_LOADED(bp
))
3111 bnx2x_free_skbs_cnic(bp
);
3112 for_each_rx_queue(bp
, i
)
3113 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
3115 bnx2x_free_fp_mem(bp
);
3116 if (CNIC_LOADED(bp
))
3117 bnx2x_free_fp_mem_cnic(bp
);
3120 if (CNIC_LOADED(bp
))
3121 bnx2x_free_mem_cnic(bp
);
3125 bp
->state
= BNX2X_STATE_CLOSED
;
3126 bp
->cnic_loaded
= false;
3128 /* Clear driver version indication in shmem */
3129 if (IS_PF(bp
) && !BP_NOMCP(bp
))
3130 bnx2x_update_mng_version(bp
);
3132 /* Check if there are pending parity attentions. If there are - set
3133 * RECOVERY_IN_PROGRESS.
3135 if (IS_PF(bp
) && bnx2x_chk_parity_attn(bp
, &global
, false)) {
3136 bnx2x_set_reset_in_progress(bp
);
3138 /* Set RESET_IS_GLOBAL if needed */
3140 bnx2x_set_reset_global(bp
);
3143 /* The last driver must disable a "close the gate" if there is no
3144 * parity attention or "process kill" pending.
3147 !bnx2x_clear_pf_load(bp
) &&
3148 bnx2x_reset_is_done(bp
, BP_PATH(bp
)))
3149 bnx2x_disable_close_the_gate(bp
);
3151 DP(NETIF_MSG_IFUP
, "Ending NIC unload\n");
3156 int bnx2x_set_power_state(struct bnx2x
*bp
, pci_power_t state
)
3160 /* If there is no power capability, silently succeed */
3161 if (!bp
->pdev
->pm_cap
) {
3162 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3166 pci_read_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3170 pci_write_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
,
3171 ((pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3172 PCI_PM_CTRL_PME_STATUS
));
3174 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3175 /* delay required during transition out of D3hot */
3180 /* If there are other clients above don't
3181 shut down the power */
3182 if (atomic_read(&bp
->pdev
->enable_cnt
) != 1)
3184 /* Don't shut down the power for emulation and FPGA */
3185 if (CHIP_REV_IS_SLOW(bp
))
3188 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3192 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3194 pci_write_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
,
3197 /* No more memory access after this point until
3198 * device is brought back to D0.
3203 dev_err(&bp
->pdev
->dev
, "Can't support state = %d\n", state
);
3210 * net_device service functions
3212 static int bnx2x_poll(struct napi_struct
*napi
, int budget
)
3214 struct bnx2x_fastpath
*fp
= container_of(napi
, struct bnx2x_fastpath
,
3216 struct bnx2x
*bp
= fp
->bp
;
3220 #ifdef BNX2X_STOP_ON_ERROR
3221 if (unlikely(bp
->panic
)) {
3222 napi_complete(napi
);
3226 for_each_cos_in_tx_queue(fp
, cos
)
3227 if (bnx2x_tx_queue_has_work(fp
->txdata_ptr
[cos
]))
3228 bnx2x_tx_int(bp
, fp
->txdata_ptr
[cos
]);
3230 rx_work_done
= (bnx2x_has_rx_work(fp
)) ? bnx2x_rx_int(fp
, budget
) : 0;
3232 if (rx_work_done
< budget
) {
3233 /* No need to update SB for FCoE L2 ring as long as
3234 * it's connected to the default SB and the SB
3235 * has been updated when NAPI was scheduled.
3237 if (IS_FCOE_FP(fp
)) {
3238 napi_complete_done(napi
, rx_work_done
);
3240 bnx2x_update_fpsb_idx(fp
);
3241 /* bnx2x_has_rx_work() reads the status block,
3242 * thus we need to ensure that status block indices
3243 * have been actually read (bnx2x_update_fpsb_idx)
3244 * prior to this check (bnx2x_has_rx_work) so that
3245 * we won't write the "newer" value of the status block
3246 * to IGU (if there was a DMA right after
3247 * bnx2x_has_rx_work and if there is no rmb, the memory
3248 * reading (bnx2x_update_fpsb_idx) may be postponed
3249 * to right before bnx2x_ack_sb). In this case there
3250 * will never be another interrupt until there is
3251 * another update of the status block, while there
3252 * is still unhandled work.
3256 if (!(bnx2x_has_rx_work(fp
) || bnx2x_has_tx_work(fp
))) {
3257 if (napi_complete_done(napi
, rx_work_done
)) {
3258 /* Re-enable interrupts */
3259 DP(NETIF_MSG_RX_STATUS
,
3260 "Update index to %d\n", fp
->fp_hc_idx
);
3261 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
,
3262 le16_to_cpu(fp
->fp_hc_idx
),
3266 rx_work_done
= budget
;
3271 return rx_work_done
;
3274 /* we split the first BD into headers and data BDs
3275 * to ease the pain of our fellow microcode engineers
3276 * we use one mapping for both BDs
3278 static u16
bnx2x_tx_split(struct bnx2x
*bp
,
3279 struct bnx2x_fp_txdata
*txdata
,
3280 struct sw_tx_bd
*tx_buf
,
3281 struct eth_tx_start_bd
**tx_bd
, u16 hlen
,
3284 struct eth_tx_start_bd
*h_tx_bd
= *tx_bd
;
3285 struct eth_tx_bd
*d_tx_bd
;
3287 int old_len
= le16_to_cpu(h_tx_bd
->nbytes
);
3289 /* first fix first BD */
3290 h_tx_bd
->nbytes
= cpu_to_le16(hlen
);
3292 DP(NETIF_MSG_TX_QUEUED
, "TSO split header size is %d (%x:%x)\n",
3293 h_tx_bd
->nbytes
, h_tx_bd
->addr_hi
, h_tx_bd
->addr_lo
);
3295 /* now get a new data BD
3296 * (after the pbd) and fill it */
3297 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3298 d_tx_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
3300 mapping
= HILO_U64(le32_to_cpu(h_tx_bd
->addr_hi
),
3301 le32_to_cpu(h_tx_bd
->addr_lo
)) + hlen
;
3303 d_tx_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
3304 d_tx_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
3305 d_tx_bd
->nbytes
= cpu_to_le16(old_len
- hlen
);
3307 /* this marks the BD as one that has no individual mapping */
3308 tx_buf
->flags
|= BNX2X_TSO_SPLIT_BD
;
3310 DP(NETIF_MSG_TX_QUEUED
,
3311 "TSO split data size is %d (%x:%x)\n",
3312 d_tx_bd
->nbytes
, d_tx_bd
->addr_hi
, d_tx_bd
->addr_lo
);
3315 *tx_bd
= (struct eth_tx_start_bd
*)d_tx_bd
;
3320 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3321 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3322 static __le16
bnx2x_csum_fix(unsigned char *t_header
, u16 csum
, s8 fix
)
3324 __sum16 tsum
= (__force __sum16
) csum
;
3327 tsum
= ~csum_fold(csum_sub((__force __wsum
) csum
,
3328 csum_partial(t_header
- fix
, fix
, 0)));
3331 tsum
= ~csum_fold(csum_add((__force __wsum
) csum
,
3332 csum_partial(t_header
, -fix
, 0)));
3334 return bswab16(tsum
);
3337 static u32
bnx2x_xmit_type(struct bnx2x
*bp
, struct sk_buff
*skb
)
3343 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3346 protocol
= vlan_get_protocol(skb
);
3347 if (protocol
== htons(ETH_P_IPV6
)) {
3349 prot
= ipv6_hdr(skb
)->nexthdr
;
3352 prot
= ip_hdr(skb
)->protocol
;
3355 if (!CHIP_IS_E1x(bp
) && skb
->encapsulation
) {
3356 if (inner_ip_hdr(skb
)->version
== 6) {
3357 rc
|= XMIT_CSUM_ENC_V6
;
3358 if (inner_ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3359 rc
|= XMIT_CSUM_TCP
;
3361 rc
|= XMIT_CSUM_ENC_V4
;
3362 if (inner_ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3363 rc
|= XMIT_CSUM_TCP
;
3366 if (prot
== IPPROTO_TCP
)
3367 rc
|= XMIT_CSUM_TCP
;
3369 if (skb_is_gso(skb
)) {
3370 if (skb_is_gso_v6(skb
)) {
3371 rc
|= (XMIT_GSO_V6
| XMIT_CSUM_TCP
);
3372 if (rc
& XMIT_CSUM_ENC
)
3373 rc
|= XMIT_GSO_ENC_V6
;
3375 rc
|= (XMIT_GSO_V4
| XMIT_CSUM_TCP
);
3376 if (rc
& XMIT_CSUM_ENC
)
3377 rc
|= XMIT_GSO_ENC_V4
;
3384 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3385 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3387 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3388 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3390 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3391 /* check if packet requires linearization (packet is too fragmented)
3392 no need to check fragmentation if page size > 8K (there will be no
3393 violation to FW restrictions) */
3394 static int bnx2x_pkt_req_lin(struct bnx2x
*bp
, struct sk_buff
*skb
,
3397 int first_bd_sz
= 0, num_tso_win_sub
= BNX2X_NUM_TSO_WIN_SUB_BDS
;
3398 int to_copy
= 0, hlen
= 0;
3400 if (xmit_type
& XMIT_GSO_ENC
)
3401 num_tso_win_sub
= BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS
;
3403 if (skb_shinfo(skb
)->nr_frags
>= (MAX_FETCH_BD
- num_tso_win_sub
)) {
3404 if (xmit_type
& XMIT_GSO
) {
3405 unsigned short lso_mss
= skb_shinfo(skb
)->gso_size
;
3406 int wnd_size
= MAX_FETCH_BD
- num_tso_win_sub
;
3407 /* Number of windows to check */
3408 int num_wnds
= skb_shinfo(skb
)->nr_frags
- wnd_size
;
3413 /* Headers length */
3414 if (xmit_type
& XMIT_GSO_ENC
)
3415 hlen
= (int)(skb_inner_transport_header(skb
) -
3417 inner_tcp_hdrlen(skb
);
3419 hlen
= (int)(skb_transport_header(skb
) -
3420 skb
->data
) + tcp_hdrlen(skb
);
3422 /* Amount of data (w/o headers) on linear part of SKB*/
3423 first_bd_sz
= skb_headlen(skb
) - hlen
;
3425 wnd_sum
= first_bd_sz
;
3427 /* Calculate the first sum - it's special */
3428 for (frag_idx
= 0; frag_idx
< wnd_size
- 1; frag_idx
++)
3430 skb_frag_size(&skb_shinfo(skb
)->frags
[frag_idx
]);
3432 /* If there was data on linear skb data - check it */
3433 if (first_bd_sz
> 0) {
3434 if (unlikely(wnd_sum
< lso_mss
)) {
3439 wnd_sum
-= first_bd_sz
;
3442 /* Others are easier: run through the frag list and
3443 check all windows */
3444 for (wnd_idx
= 0; wnd_idx
<= num_wnds
; wnd_idx
++) {
3446 skb_frag_size(&skb_shinfo(skb
)->frags
[wnd_idx
+ wnd_size
- 1]);
3448 if (unlikely(wnd_sum
< lso_mss
)) {
3453 skb_frag_size(&skb_shinfo(skb
)->frags
[wnd_idx
]);
3456 /* in non-LSO too fragmented packet should always
3463 if (unlikely(to_copy
))
3464 DP(NETIF_MSG_TX_QUEUED
,
3465 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3466 (xmit_type
& XMIT_GSO
) ? "LSO" : "non-LSO",
3467 skb_shinfo(skb
)->nr_frags
, hlen
, first_bd_sz
);
3474 * bnx2x_set_pbd_gso - update PBD in GSO case.
3478 * @xmit_type: xmit flags
3480 static void bnx2x_set_pbd_gso(struct sk_buff
*skb
,
3481 struct eth_tx_parse_bd_e1x
*pbd
,
3484 pbd
->lso_mss
= cpu_to_le16(skb_shinfo(skb
)->gso_size
);
3485 pbd
->tcp_send_seq
= bswab32(tcp_hdr(skb
)->seq
);
3486 pbd
->tcp_flags
= pbd_tcp_flags(tcp_hdr(skb
));
3488 if (xmit_type
& XMIT_GSO_V4
) {
3489 pbd
->ip_id
= bswab16(ip_hdr(skb
)->id
);
3490 pbd
->tcp_pseudo_csum
=
3491 bswab16(~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3493 0, IPPROTO_TCP
, 0));
3495 pbd
->tcp_pseudo_csum
=
3496 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3497 &ipv6_hdr(skb
)->daddr
,
3498 0, IPPROTO_TCP
, 0));
3502 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN
);
3506 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3508 * @bp: driver handle
3510 * @parsing_data: data to be updated
3511 * @xmit_type: xmit flags
3513 * 57712/578xx related, when skb has encapsulation
3515 static u8
bnx2x_set_pbd_csum_enc(struct bnx2x
*bp
, struct sk_buff
*skb
,
3516 u32
*parsing_data
, u32 xmit_type
)
3519 ((((u8
*)skb_inner_transport_header(skb
) - skb
->data
) >> 1) <<
3520 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT
) &
3521 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W
;
3523 if (xmit_type
& XMIT_CSUM_TCP
) {
3524 *parsing_data
|= ((inner_tcp_hdrlen(skb
) / 4) <<
3525 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT
) &
3526 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW
;
3528 return skb_inner_transport_header(skb
) +
3529 inner_tcp_hdrlen(skb
) - skb
->data
;
3532 /* We support checksum offload for TCP and UDP only.
3533 * No need to pass the UDP header length - it's a constant.
3535 return skb_inner_transport_header(skb
) +
3536 sizeof(struct udphdr
) - skb
->data
;
3540 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3542 * @bp: driver handle
3544 * @parsing_data: data to be updated
3545 * @xmit_type: xmit flags
3547 * 57712/578xx related
3549 static u8
bnx2x_set_pbd_csum_e2(struct bnx2x
*bp
, struct sk_buff
*skb
,
3550 u32
*parsing_data
, u32 xmit_type
)
3553 ((((u8
*)skb_transport_header(skb
) - skb
->data
) >> 1) <<
3554 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT
) &
3555 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W
;
3557 if (xmit_type
& XMIT_CSUM_TCP
) {
3558 *parsing_data
|= ((tcp_hdrlen(skb
) / 4) <<
3559 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT
) &
3560 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW
;
3562 return skb_transport_header(skb
) + tcp_hdrlen(skb
) - skb
->data
;
3564 /* We support checksum offload for TCP and UDP only.
3565 * No need to pass the UDP header length - it's a constant.
3567 return skb_transport_header(skb
) + sizeof(struct udphdr
) - skb
->data
;
3570 /* set FW indication according to inner or outer protocols if tunneled */
3571 static void bnx2x_set_sbd_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
3572 struct eth_tx_start_bd
*tx_start_bd
,
3575 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_L4_CSUM
;
3577 if (xmit_type
& (XMIT_CSUM_ENC_V6
| XMIT_CSUM_V6
))
3578 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_IPV6
;
3580 if (!(xmit_type
& XMIT_CSUM_TCP
))
3581 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_IS_UDP
;
3585 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3587 * @bp: driver handle
3589 * @pbd: parse BD to be updated
3590 * @xmit_type: xmit flags
3592 static u8
bnx2x_set_pbd_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
3593 struct eth_tx_parse_bd_e1x
*pbd
,
3596 u8 hlen
= (skb_network_header(skb
) - skb
->data
) >> 1;
3598 /* for now NS flag is not used in Linux */
3601 ((skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) <<
3602 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT
));
3604 pbd
->ip_hlen_w
= (skb_transport_header(skb
) -
3605 skb_network_header(skb
)) >> 1;
3607 hlen
+= pbd
->ip_hlen_w
;
3609 /* We support checksum offload for TCP and UDP only */
3610 if (xmit_type
& XMIT_CSUM_TCP
)
3611 hlen
+= tcp_hdrlen(skb
) / 2;
3613 hlen
+= sizeof(struct udphdr
) / 2;
3615 pbd
->total_hlen_w
= cpu_to_le16(hlen
);
3618 if (xmit_type
& XMIT_CSUM_TCP
) {
3619 pbd
->tcp_pseudo_csum
= bswab16(tcp_hdr(skb
)->check
);
3622 s8 fix
= SKB_CS_OFF(skb
); /* signed! */
3624 DP(NETIF_MSG_TX_QUEUED
,
3625 "hlen %d fix %d csum before fix %x\n",
3626 le16_to_cpu(pbd
->total_hlen_w
), fix
, SKB_CS(skb
));
3628 /* HW bug: fixup the CSUM */
3629 pbd
->tcp_pseudo_csum
=
3630 bnx2x_csum_fix(skb_transport_header(skb
),
3633 DP(NETIF_MSG_TX_QUEUED
, "csum after fix %x\n",
3634 pbd
->tcp_pseudo_csum
);
3640 static void bnx2x_update_pbds_gso_enc(struct sk_buff
*skb
,
3641 struct eth_tx_parse_bd_e2
*pbd_e2
,
3642 struct eth_tx_parse_2nd_bd
*pbd2
,
3647 u8 outerip_off
, outerip_len
= 0;
3649 /* from outer IP to transport */
3650 hlen_w
= (skb_inner_transport_header(skb
) -
3651 skb_network_header(skb
)) >> 1;
3654 hlen_w
+= inner_tcp_hdrlen(skb
) >> 1;
3656 pbd2
->fw_ip_hdr_to_payload_w
= hlen_w
;
3658 /* outer IP header info */
3659 if (xmit_type
& XMIT_CSUM_V4
) {
3660 struct iphdr
*iph
= ip_hdr(skb
);
3661 u32 csum
= (__force u32
)(~iph
->check
) -
3662 (__force u32
)iph
->tot_len
-
3663 (__force u32
)iph
->frag_off
;
3665 outerip_len
= iph
->ihl
<< 1;
3667 pbd2
->fw_ip_csum_wo_len_flags_frag
=
3668 bswab16(csum_fold((__force __wsum
)csum
));
3670 pbd2
->fw_ip_hdr_to_payload_w
=
3671 hlen_w
- ((sizeof(struct ipv6hdr
)) >> 1);
3672 pbd_e2
->data
.tunnel_data
.flags
|=
3673 ETH_TUNNEL_DATA_IPV6_OUTER
;
3676 pbd2
->tcp_send_seq
= bswab32(inner_tcp_hdr(skb
)->seq
);
3678 pbd2
->tcp_flags
= pbd_tcp_flags(inner_tcp_hdr(skb
));
3680 /* inner IP header info */
3681 if (xmit_type
& XMIT_CSUM_ENC_V4
) {
3682 pbd2
->hw_ip_id
= bswab16(inner_ip_hdr(skb
)->id
);
3684 pbd_e2
->data
.tunnel_data
.pseudo_csum
=
3685 bswab16(~csum_tcpudp_magic(
3686 inner_ip_hdr(skb
)->saddr
,
3687 inner_ip_hdr(skb
)->daddr
,
3688 0, IPPROTO_TCP
, 0));
3690 pbd_e2
->data
.tunnel_data
.pseudo_csum
=
3691 bswab16(~csum_ipv6_magic(
3692 &inner_ipv6_hdr(skb
)->saddr
,
3693 &inner_ipv6_hdr(skb
)->daddr
,
3694 0, IPPROTO_TCP
, 0));
3697 outerip_off
= (skb_network_header(skb
) - skb
->data
) >> 1;
3702 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT
) |
3703 ((skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) <<
3704 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT
);
3706 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
3707 SET_FLAG(*global_data
, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST
, 1);
3708 pbd2
->tunnel_udp_hdr_start_w
= skb_transport_offset(skb
) >> 1;
3712 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff
*skb
, u32
*parsing_data
,
3715 struct ipv6hdr
*ipv6
;
3717 if (!(xmit_type
& (XMIT_GSO_ENC_V6
| XMIT_GSO_V6
)))
3720 if (xmit_type
& XMIT_GSO_ENC_V6
)
3721 ipv6
= inner_ipv6_hdr(skb
);
3722 else /* XMIT_GSO_V6 */
3723 ipv6
= ipv6_hdr(skb
);
3725 if (ipv6
->nexthdr
== NEXTHDR_IPV6
)
3726 *parsing_data
|= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR
;
3729 /* called with netif_tx_lock
3730 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3731 * netif_wake_queue()
3733 netdev_tx_t
bnx2x_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3735 struct bnx2x
*bp
= netdev_priv(dev
);
3737 struct netdev_queue
*txq
;
3738 struct bnx2x_fp_txdata
*txdata
;
3739 struct sw_tx_bd
*tx_buf
;
3740 struct eth_tx_start_bd
*tx_start_bd
, *first_bd
;
3741 struct eth_tx_bd
*tx_data_bd
, *total_pkt_bd
= NULL
;
3742 struct eth_tx_parse_bd_e1x
*pbd_e1x
= NULL
;
3743 struct eth_tx_parse_bd_e2
*pbd_e2
= NULL
;
3744 struct eth_tx_parse_2nd_bd
*pbd2
= NULL
;
3745 u32 pbd_e2_parsing_data
= 0;
3746 u16 pkt_prod
, bd_prod
;
3749 u32 xmit_type
= bnx2x_xmit_type(bp
, skb
);
3752 __le16 pkt_size
= 0;
3754 u8 mac_type
= UNICAST_ADDRESS
;
3756 #ifdef BNX2X_STOP_ON_ERROR
3757 if (unlikely(bp
->panic
))
3758 return NETDEV_TX_BUSY
;
3761 txq_index
= skb_get_queue_mapping(skb
);
3762 txq
= netdev_get_tx_queue(dev
, txq_index
);
3764 BUG_ON(txq_index
>= MAX_ETH_TXQ_IDX(bp
) + (CNIC_LOADED(bp
) ? 1 : 0));
3766 txdata
= &bp
->bnx2x_txq
[txq_index
];
3768 /* enable this debug print to view the transmission queue being used
3769 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3770 txq_index, fp_index, txdata_index); */
3772 /* enable this debug print to view the transmission details
3773 DP(NETIF_MSG_TX_QUEUED,
3774 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3775 txdata->cid, fp_index, txdata_index, txdata, fp); */
3777 if (unlikely(bnx2x_tx_avail(bp
, txdata
) <
3778 skb_shinfo(skb
)->nr_frags
+
3780 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT
))) {
3781 /* Handle special storage cases separately */
3782 if (txdata
->tx_ring_size
== 0) {
3783 struct bnx2x_eth_q_stats
*q_stats
=
3784 bnx2x_fp_qstats(bp
, txdata
->parent_fp
);
3785 q_stats
->driver_filtered_tx_pkt
++;
3787 return NETDEV_TX_OK
;
3789 bnx2x_fp_qstats(bp
, txdata
->parent_fp
)->driver_xoff
++;
3790 netif_tx_stop_queue(txq
);
3791 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3793 return NETDEV_TX_BUSY
;
3796 DP(NETIF_MSG_TX_QUEUED
,
3797 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3798 txq_index
, skb
->ip_summed
, skb
->protocol
, ipv6_hdr(skb
)->nexthdr
,
3799 ip_hdr(skb
)->protocol
, skb_shinfo(skb
)->gso_type
, xmit_type
,
3802 eth
= (struct ethhdr
*)skb
->data
;
3804 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3805 if (unlikely(is_multicast_ether_addr(eth
->h_dest
))) {
3806 if (is_broadcast_ether_addr(eth
->h_dest
))
3807 mac_type
= BROADCAST_ADDRESS
;
3809 mac_type
= MULTICAST_ADDRESS
;
3812 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3813 /* First, check if we need to linearize the skb (due to FW
3814 restrictions). No need to check fragmentation if page size > 8K
3815 (there will be no violation to FW restrictions) */
3816 if (bnx2x_pkt_req_lin(bp
, skb
, xmit_type
)) {
3817 /* Statistics of linearization */
3819 if (skb_linearize(skb
) != 0) {
3820 DP(NETIF_MSG_TX_QUEUED
,
3821 "SKB linearization failed - silently dropping this SKB\n");
3822 dev_kfree_skb_any(skb
);
3823 return NETDEV_TX_OK
;
3827 /* Map skb linear data for DMA */
3828 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
,
3829 skb_headlen(skb
), DMA_TO_DEVICE
);
3830 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
3831 DP(NETIF_MSG_TX_QUEUED
,
3832 "SKB mapping failed - silently dropping this SKB\n");
3833 dev_kfree_skb_any(skb
);
3834 return NETDEV_TX_OK
;
3837 Please read carefully. First we use one BD which we mark as start,
3838 then we have a parsing info BD (used for TSO or xsum),
3839 and only then we have the rest of the TSO BDs.
3840 (don't forget to mark the last one as last,
3841 and to unmap only AFTER you write to the BD ...)
3842 And above all, all pdb sizes are in words - NOT DWORDS!
3845 /* get current pkt produced now - advance it just before sending packet
3846 * since mapping of pages may fail and cause packet to be dropped
3848 pkt_prod
= txdata
->tx_pkt_prod
;
3849 bd_prod
= TX_BD(txdata
->tx_bd_prod
);
3851 /* get a tx_buf and first BD
3852 * tx_start_bd may be changed during SPLIT,
3853 * but first_bd will always stay first
3855 tx_buf
= &txdata
->tx_buf_ring
[TX_BD(pkt_prod
)];
3856 tx_start_bd
= &txdata
->tx_desc_ring
[bd_prod
].start_bd
;
3857 first_bd
= tx_start_bd
;
3859 tx_start_bd
->bd_flags
.as_bitfield
= ETH_TX_BD_FLAGS_START_BD
;
3861 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
)) {
3862 if (!(bp
->flags
& TX_TIMESTAMPING_EN
)) {
3863 bp
->eth_stats
.ptp_skip_tx_ts
++;
3864 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3865 } else if (bp
->ptp_tx_skb
) {
3866 bp
->eth_stats
.ptp_skip_tx_ts
++;
3867 netdev_err_once(bp
->dev
,
3868 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3870 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
3871 /* schedule check for Tx timestamp */
3872 bp
->ptp_tx_skb
= skb_get(skb
);
3873 bp
->ptp_tx_start
= jiffies
;
3874 schedule_work(&bp
->ptp_task
);
3878 /* header nbd: indirectly zero other flags! */
3879 tx_start_bd
->general_data
= 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT
;
3881 /* remember the first BD of the packet */
3882 tx_buf
->first_bd
= txdata
->tx_bd_prod
;
3886 DP(NETIF_MSG_TX_QUEUED
,
3887 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3888 pkt_prod
, tx_buf
, txdata
->tx_pkt_prod
, bd_prod
, tx_start_bd
);
3890 if (skb_vlan_tag_present(skb
)) {
3891 tx_start_bd
->vlan_or_ethertype
=
3892 cpu_to_le16(skb_vlan_tag_get(skb
));
3893 tx_start_bd
->bd_flags
.as_bitfield
|=
3894 (X_ETH_OUTBAND_VLAN
<< ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT
);
3896 /* when transmitting in a vf, start bd must hold the ethertype
3897 * for fw to enforce it
3900 #ifndef BNX2X_STOP_ON_ERROR
3903 /* Still need to consider inband vlan for enforced */
3904 if (__vlan_get_tag(skb
, &vlan_tci
)) {
3905 tx_start_bd
->vlan_or_ethertype
=
3906 cpu_to_le16(ntohs(eth
->h_proto
));
3908 tx_start_bd
->bd_flags
.as_bitfield
|=
3909 (X_ETH_INBAND_VLAN
<<
3910 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT
);
3911 tx_start_bd
->vlan_or_ethertype
=
3912 cpu_to_le16(vlan_tci
);
3914 #ifndef BNX2X_STOP_ON_ERROR
3916 /* used by FW for packet accounting */
3917 tx_start_bd
->vlan_or_ethertype
= cpu_to_le16(pkt_prod
);
3922 nbd
= 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3924 /* turn on parsing and get a BD */
3925 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3927 if (xmit_type
& XMIT_CSUM
)
3928 bnx2x_set_sbd_csum(bp
, skb
, tx_start_bd
, xmit_type
);
3930 if (!CHIP_IS_E1x(bp
)) {
3931 pbd_e2
= &txdata
->tx_desc_ring
[bd_prod
].parse_bd_e2
;
3932 memset(pbd_e2
, 0, sizeof(struct eth_tx_parse_bd_e2
));
3934 if (xmit_type
& XMIT_CSUM_ENC
) {
3935 u16 global_data
= 0;
3937 /* Set PBD in enc checksum offload case */
3938 hlen
= bnx2x_set_pbd_csum_enc(bp
, skb
,
3939 &pbd_e2_parsing_data
,
3942 /* turn on 2nd parsing and get a BD */
3943 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3945 pbd2
= &txdata
->tx_desc_ring
[bd_prod
].parse_2nd_bd
;
3947 memset(pbd2
, 0, sizeof(*pbd2
));
3949 pbd_e2
->data
.tunnel_data
.ip_hdr_start_inner_w
=
3950 (skb_inner_network_header(skb
) -
3953 if (xmit_type
& XMIT_GSO_ENC
)
3954 bnx2x_update_pbds_gso_enc(skb
, pbd_e2
, pbd2
,
3958 pbd2
->global_data
= cpu_to_le16(global_data
);
3960 /* add addition parse BD indication to start BD */
3961 SET_FLAG(tx_start_bd
->general_data
,
3962 ETH_TX_START_BD_PARSE_NBDS
, 1);
3963 /* set encapsulation flag in start BD */
3964 SET_FLAG(tx_start_bd
->general_data
,
3965 ETH_TX_START_BD_TUNNEL_EXIST
, 1);
3967 tx_buf
->flags
|= BNX2X_HAS_SECOND_PBD
;
3970 } else if (xmit_type
& XMIT_CSUM
) {
3971 /* Set PBD in checksum offload case w/o encapsulation */
3972 hlen
= bnx2x_set_pbd_csum_e2(bp
, skb
,
3973 &pbd_e2_parsing_data
,
3977 bnx2x_set_ipv6_ext_e2(skb
, &pbd_e2_parsing_data
, xmit_type
);
3978 /* Add the macs to the parsing BD if this is a vf or if
3979 * Tx Switching is enabled.
3982 /* override GRE parameters in BD */
3983 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.src_hi
,
3984 &pbd_e2
->data
.mac_addr
.src_mid
,
3985 &pbd_e2
->data
.mac_addr
.src_lo
,
3988 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.dst_hi
,
3989 &pbd_e2
->data
.mac_addr
.dst_mid
,
3990 &pbd_e2
->data
.mac_addr
.dst_lo
,
3993 if (bp
->flags
& TX_SWITCHING
)
3994 bnx2x_set_fw_mac_addr(
3995 &pbd_e2
->data
.mac_addr
.dst_hi
,
3996 &pbd_e2
->data
.mac_addr
.dst_mid
,
3997 &pbd_e2
->data
.mac_addr
.dst_lo
,
3999 #ifdef BNX2X_STOP_ON_ERROR
4000 /* Enforce security is always set in Stop on Error -
4001 * source mac should be present in the parsing BD
4003 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.src_hi
,
4004 &pbd_e2
->data
.mac_addr
.src_mid
,
4005 &pbd_e2
->data
.mac_addr
.src_lo
,
4010 SET_FLAG(pbd_e2_parsing_data
,
4011 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE
, mac_type
);
4013 u16 global_data
= 0;
4014 pbd_e1x
= &txdata
->tx_desc_ring
[bd_prod
].parse_bd_e1x
;
4015 memset(pbd_e1x
, 0, sizeof(struct eth_tx_parse_bd_e1x
));
4016 /* Set PBD in checksum offload case */
4017 if (xmit_type
& XMIT_CSUM
)
4018 hlen
= bnx2x_set_pbd_csum(bp
, skb
, pbd_e1x
, xmit_type
);
4020 SET_FLAG(global_data
,
4021 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE
, mac_type
);
4022 pbd_e1x
->global_data
|= cpu_to_le16(global_data
);
4025 /* Setup the data pointer of the first BD of the packet */
4026 tx_start_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
4027 tx_start_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
4028 tx_start_bd
->nbytes
= cpu_to_le16(skb_headlen(skb
));
4029 pkt_size
= tx_start_bd
->nbytes
;
4031 DP(NETIF_MSG_TX_QUEUED
,
4032 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4033 tx_start_bd
, tx_start_bd
->addr_hi
, tx_start_bd
->addr_lo
,
4034 le16_to_cpu(tx_start_bd
->nbytes
),
4035 tx_start_bd
->bd_flags
.as_bitfield
,
4036 le16_to_cpu(tx_start_bd
->vlan_or_ethertype
));
4038 if (xmit_type
& XMIT_GSO
) {
4040 DP(NETIF_MSG_TX_QUEUED
,
4041 "TSO packet len %d hlen %d total len %d tso size %d\n",
4042 skb
->len
, hlen
, skb_headlen(skb
),
4043 skb_shinfo(skb
)->gso_size
);
4045 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_SW_LSO
;
4047 if (unlikely(skb_headlen(skb
) > hlen
)) {
4049 bd_prod
= bnx2x_tx_split(bp
, txdata
, tx_buf
,
4053 if (!CHIP_IS_E1x(bp
))
4054 pbd_e2_parsing_data
|=
4055 (skb_shinfo(skb
)->gso_size
<<
4056 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT
) &
4057 ETH_TX_PARSE_BD_E2_LSO_MSS
;
4059 bnx2x_set_pbd_gso(skb
, pbd_e1x
, xmit_type
);
4062 /* Set the PBD's parsing_data field if not zero
4063 * (for the chips newer than 57711).
4065 if (pbd_e2_parsing_data
)
4066 pbd_e2
->parsing_data
= cpu_to_le32(pbd_e2_parsing_data
);
4068 tx_data_bd
= (struct eth_tx_bd
*)tx_start_bd
;
4070 /* Handle fragmented skb */
4071 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
4072 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4074 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0,
4075 skb_frag_size(frag
), DMA_TO_DEVICE
);
4076 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
4077 unsigned int pkts_compl
= 0, bytes_compl
= 0;
4079 DP(NETIF_MSG_TX_QUEUED
,
4080 "Unable to map page - dropping packet...\n");
4082 /* we need unmap all buffers already mapped
4084 * first_bd->nbd need to be properly updated
4085 * before call to bnx2x_free_tx_pkt
4087 first_bd
->nbd
= cpu_to_le16(nbd
);
4088 bnx2x_free_tx_pkt(bp
, txdata
,
4089 TX_BD(txdata
->tx_pkt_prod
),
4090 &pkts_compl
, &bytes_compl
);
4091 return NETDEV_TX_OK
;
4094 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
4095 tx_data_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
4096 if (total_pkt_bd
== NULL
)
4097 total_pkt_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
4099 tx_data_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
4100 tx_data_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
4101 tx_data_bd
->nbytes
= cpu_to_le16(skb_frag_size(frag
));
4102 le16_add_cpu(&pkt_size
, skb_frag_size(frag
));
4105 DP(NETIF_MSG_TX_QUEUED
,
4106 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4107 i
, tx_data_bd
, tx_data_bd
->addr_hi
, tx_data_bd
->addr_lo
,
4108 le16_to_cpu(tx_data_bd
->nbytes
));
4111 DP(NETIF_MSG_TX_QUEUED
, "last bd @%p\n", tx_data_bd
);
4113 /* update with actual num BDs */
4114 first_bd
->nbd
= cpu_to_le16(nbd
);
4116 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
4118 /* now send a tx doorbell, counting the next BD
4119 * if the packet contains or ends with it
4121 if (TX_BD_POFF(bd_prod
) < nbd
)
4124 /* total_pkt_bytes should be set on the first data BD if
4125 * it's not an LSO packet and there is more than one
4126 * data BD. In this case pkt_size is limited by an MTU value.
4127 * However we prefer to set it for an LSO packet (while we don't
4128 * have to) in order to save some CPU cycles in a none-LSO
4129 * case, when we much more care about them.
4131 if (total_pkt_bd
!= NULL
)
4132 total_pkt_bd
->total_pkt_bytes
= pkt_size
;
4135 DP(NETIF_MSG_TX_QUEUED
,
4136 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4137 pbd_e1x
, pbd_e1x
->global_data
, pbd_e1x
->ip_hlen_w
,
4138 pbd_e1x
->ip_id
, pbd_e1x
->lso_mss
, pbd_e1x
->tcp_flags
,
4139 pbd_e1x
->tcp_pseudo_csum
, pbd_e1x
->tcp_send_seq
,
4140 le16_to_cpu(pbd_e1x
->total_hlen_w
));
4142 DP(NETIF_MSG_TX_QUEUED
,
4143 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4145 pbd_e2
->data
.mac_addr
.dst_hi
,
4146 pbd_e2
->data
.mac_addr
.dst_mid
,
4147 pbd_e2
->data
.mac_addr
.dst_lo
,
4148 pbd_e2
->data
.mac_addr
.src_hi
,
4149 pbd_e2
->data
.mac_addr
.src_mid
,
4150 pbd_e2
->data
.mac_addr
.src_lo
,
4151 pbd_e2
->parsing_data
);
4152 DP(NETIF_MSG_TX_QUEUED
, "doorbell: nbd %d bd %u\n", nbd
, bd_prod
);
4154 netdev_tx_sent_queue(txq
, skb
->len
);
4156 skb_tx_timestamp(skb
);
4158 txdata
->tx_pkt_prod
++;
4160 * Make sure that the BD data is updated before updating the producer
4161 * since FW might read the BD right after the producer is updated.
4162 * This is only applicable for weak-ordered memory model archs such
4163 * as IA-64. The following barrier is also mandatory since FW will
4164 * assumes packets must have BDs.
4168 txdata
->tx_db
.data
.prod
+= nbd
;
4171 DOORBELL(bp
, txdata
->cid
, txdata
->tx_db
.raw
);
4175 txdata
->tx_bd_prod
+= nbd
;
4177 if (unlikely(bnx2x_tx_avail(bp
, txdata
) < MAX_DESC_PER_TX_PKT
)) {
4178 netif_tx_stop_queue(txq
);
4180 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4181 * ordering of set_bit() in netif_tx_stop_queue() and read of
4185 bnx2x_fp_qstats(bp
, txdata
->parent_fp
)->driver_xoff
++;
4186 if (bnx2x_tx_avail(bp
, txdata
) >= MAX_DESC_PER_TX_PKT
)
4187 netif_tx_wake_queue(txq
);
4191 return NETDEV_TX_OK
;
4194 void bnx2x_get_c2s_mapping(struct bnx2x
*bp
, u8
*c2s_map
, u8
*c2s_default
)
4196 int mfw_vn
= BP_FW_MB_IDX(bp
);
4199 /* If the shmem shouldn't affect configuration, reflect */
4200 if (!IS_MF_BD(bp
)) {
4203 for (i
= 0; i
< BNX2X_MAX_PRIORITY
; i
++)
4210 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_lower
[mfw_vn
]);
4211 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4212 c2s_map
[0] = tmp
& 0xff;
4213 c2s_map
[1] = (tmp
>> 8) & 0xff;
4214 c2s_map
[2] = (tmp
>> 16) & 0xff;
4215 c2s_map
[3] = (tmp
>> 24) & 0xff;
4217 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_upper
[mfw_vn
]);
4218 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4219 c2s_map
[4] = tmp
& 0xff;
4220 c2s_map
[5] = (tmp
>> 8) & 0xff;
4221 c2s_map
[6] = (tmp
>> 16) & 0xff;
4222 c2s_map
[7] = (tmp
>> 24) & 0xff;
4224 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_default
[mfw_vn
]);
4225 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4226 *c2s_default
= (tmp
>> (8 * mfw_vn
)) & 0xff;
4230 * bnx2x_setup_tc - routine to configure net_device for multi tc
4232 * @netdev: net device to configure
4233 * @tc: number of traffic classes to enable
4235 * callback connected to the ndo_setup_tc function pointer
4237 int bnx2x_setup_tc(struct net_device
*dev
, u8 num_tc
)
4239 struct bnx2x
*bp
= netdev_priv(dev
);
4240 u8 c2s_map
[BNX2X_MAX_PRIORITY
], c2s_def
;
4241 int cos
, prio
, count
, offset
;
4243 /* setup tc must be called under rtnl lock */
4246 /* no traffic classes requested. Aborting */
4248 netdev_reset_tc(dev
);
4252 /* requested to support too many traffic classes */
4253 if (num_tc
> bp
->max_cos
) {
4254 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4255 num_tc
, bp
->max_cos
);
4259 /* declare amount of supported traffic classes */
4260 if (netdev_set_num_tc(dev
, num_tc
)) {
4261 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc
);
4265 bnx2x_get_c2s_mapping(bp
, c2s_map
, &c2s_def
);
4267 /* configure priority to traffic class mapping */
4268 for (prio
= 0; prio
< BNX2X_MAX_PRIORITY
; prio
++) {
4269 int outer_prio
= c2s_map
[prio
];
4271 netdev_set_prio_tc_map(dev
, prio
, bp
->prio_to_cos
[outer_prio
]);
4272 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
4273 "mapping priority %d to tc %d\n",
4274 outer_prio
, bp
->prio_to_cos
[outer_prio
]);
4277 /* Use this configuration to differentiate tc0 from other COSes
4278 This can be used for ets or pfc, and save the effort of setting
4279 up a multio class queue disc or negotiating DCBX with a switch
4280 netdev_set_prio_tc_map(dev, 0, 0);
4281 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4282 for (prio = 1; prio < 16; prio++) {
4283 netdev_set_prio_tc_map(dev, prio, 1);
4284 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4287 /* configure traffic class to transmission queue mapping */
4288 for (cos
= 0; cos
< bp
->max_cos
; cos
++) {
4289 count
= BNX2X_NUM_ETH_QUEUES(bp
);
4290 offset
= cos
* BNX2X_NUM_NON_CNIC_QUEUES(bp
);
4291 netdev_set_tc_queue(dev
, cos
, count
, offset
);
4292 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
4293 "mapping tc %d to offset %d count %d\n",
4294 cos
, offset
, count
);
4300 int __bnx2x_setup_tc(struct net_device
*dev
, enum tc_setup_type type
,
4303 struct tc_mqprio_qopt
*mqprio
= type_data
;
4305 if (type
!= TC_SETUP_QDISC_MQPRIO
)
4308 mqprio
->hw
= TC_MQPRIO_HW_OFFLOAD_TCS
;
4310 return bnx2x_setup_tc(dev
, mqprio
->num_tc
);
4313 /* called with rtnl_lock */
4314 int bnx2x_change_mac_addr(struct net_device
*dev
, void *p
)
4316 struct sockaddr
*addr
= p
;
4317 struct bnx2x
*bp
= netdev_priv(dev
);
4320 if (!is_valid_ether_addr(addr
->sa_data
)) {
4321 BNX2X_ERR("Requested MAC address is not valid\n");
4325 if (IS_MF_STORAGE_ONLY(bp
)) {
4326 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4330 if (netif_running(dev
)) {
4331 rc
= bnx2x_set_eth_mac(bp
, false);
4336 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
4338 if (netif_running(dev
))
4339 rc
= bnx2x_set_eth_mac(bp
, true);
4341 if (IS_PF(bp
) && SHMEM2_HAS(bp
, curr_cfg
))
4342 SHMEM2_WR(bp
, curr_cfg
, CURR_CFG_MET_OS
);
4347 static void bnx2x_free_fp_mem_at(struct bnx2x
*bp
, int fp_index
)
4349 union host_hc_status_block
*sb
= &bnx2x_fp(bp
, fp_index
, status_blk
);
4350 struct bnx2x_fastpath
*fp
= &bp
->fp
[fp_index
];
4355 if (IS_FCOE_IDX(fp_index
)) {
4356 memset(sb
, 0, sizeof(union host_hc_status_block
));
4357 fp
->status_blk_mapping
= 0;
4360 if (!CHIP_IS_E1x(bp
))
4361 BNX2X_PCI_FREE(sb
->e2_sb
,
4362 bnx2x_fp(bp
, fp_index
,
4363 status_blk_mapping
),
4364 sizeof(struct host_hc_status_block_e2
));
4366 BNX2X_PCI_FREE(sb
->e1x_sb
,
4367 bnx2x_fp(bp
, fp_index
,
4368 status_blk_mapping
),
4369 sizeof(struct host_hc_status_block_e1x
));
4373 if (!skip_rx_queue(bp
, fp_index
)) {
4374 bnx2x_free_rx_bds(fp
);
4376 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4377 BNX2X_FREE(bnx2x_fp(bp
, fp_index
, rx_buf_ring
));
4378 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_desc_ring
),
4379 bnx2x_fp(bp
, fp_index
, rx_desc_mapping
),
4380 sizeof(struct eth_rx_bd
) * NUM_RX_BD
);
4382 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_comp_ring
),
4383 bnx2x_fp(bp
, fp_index
, rx_comp_mapping
),
4384 sizeof(struct eth_fast_path_rx_cqe
) *
4388 BNX2X_FREE(bnx2x_fp(bp
, fp_index
, rx_page_ring
));
4389 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_sge_ring
),
4390 bnx2x_fp(bp
, fp_index
, rx_sge_mapping
),
4391 BCM_PAGE_SIZE
* NUM_RX_SGE_PAGES
);
4395 if (!skip_tx_queue(bp
, fp_index
)) {
4396 /* fastpath tx rings: tx_buf tx_desc */
4397 for_each_cos_in_tx_queue(fp
, cos
) {
4398 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
4400 DP(NETIF_MSG_IFDOWN
,
4401 "freeing tx memory of fp %d cos %d cid %d\n",
4402 fp_index
, cos
, txdata
->cid
);
4404 BNX2X_FREE(txdata
->tx_buf_ring
);
4405 BNX2X_PCI_FREE(txdata
->tx_desc_ring
,
4406 txdata
->tx_desc_mapping
,
4407 sizeof(union eth_tx_bd_types
) * NUM_TX_BD
);
4410 /* end of fastpath */
4413 static void bnx2x_free_fp_mem_cnic(struct bnx2x
*bp
)
4416 for_each_cnic_queue(bp
, i
)
4417 bnx2x_free_fp_mem_at(bp
, i
);
4420 void bnx2x_free_fp_mem(struct bnx2x
*bp
)
4423 for_each_eth_queue(bp
, i
)
4424 bnx2x_free_fp_mem_at(bp
, i
);
4427 static void set_sb_shortcuts(struct bnx2x
*bp
, int index
)
4429 union host_hc_status_block status_blk
= bnx2x_fp(bp
, index
, status_blk
);
4430 if (!CHIP_IS_E1x(bp
)) {
4431 bnx2x_fp(bp
, index
, sb_index_values
) =
4432 (__le16
*)status_blk
.e2_sb
->sb
.index_values
;
4433 bnx2x_fp(bp
, index
, sb_running_index
) =
4434 (__le16
*)status_blk
.e2_sb
->sb
.running_index
;
4436 bnx2x_fp(bp
, index
, sb_index_values
) =
4437 (__le16
*)status_blk
.e1x_sb
->sb
.index_values
;
4438 bnx2x_fp(bp
, index
, sb_running_index
) =
4439 (__le16
*)status_blk
.e1x_sb
->sb
.running_index
;
4443 /* Returns the number of actually allocated BDs */
4444 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath
*fp
,
4447 struct bnx2x
*bp
= fp
->bp
;
4448 u16 ring_prod
, cqe_ring_prod
;
4449 int i
, failure_cnt
= 0;
4451 fp
->rx_comp_cons
= 0;
4452 cqe_ring_prod
= ring_prod
= 0;
4454 /* This routine is called only during fo init so
4455 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4457 for (i
= 0; i
< rx_ring_size
; i
++) {
4458 if (bnx2x_alloc_rx_data(bp
, fp
, ring_prod
, GFP_KERNEL
) < 0) {
4462 ring_prod
= NEXT_RX_IDX(ring_prod
);
4463 cqe_ring_prod
= NEXT_RCQ_IDX(cqe_ring_prod
);
4464 WARN_ON(ring_prod
<= (i
- failure_cnt
));
4468 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4469 i
- failure_cnt
, fp
->index
);
4471 fp
->rx_bd_prod
= ring_prod
;
4472 /* Limit the CQE producer by the CQE ring size */
4473 fp
->rx_comp_prod
= min_t(u16
, NUM_RCQ_RINGS
*RCQ_DESC_CNT
,
4476 bnx2x_fp_stats(bp
, fp
)->eth_q_stats
.rx_skb_alloc_failed
+= failure_cnt
;
4478 return i
- failure_cnt
;
4481 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath
*fp
)
4485 for (i
= 1; i
<= NUM_RCQ_RINGS
; i
++) {
4486 struct eth_rx_cqe_next_page
*nextpg
;
4488 nextpg
= (struct eth_rx_cqe_next_page
*)
4489 &fp
->rx_comp_ring
[RCQ_DESC_CNT
* i
- 1];
4491 cpu_to_le32(U64_HI(fp
->rx_comp_mapping
+
4492 BCM_PAGE_SIZE
*(i
% NUM_RCQ_RINGS
)));
4494 cpu_to_le32(U64_LO(fp
->rx_comp_mapping
+
4495 BCM_PAGE_SIZE
*(i
% NUM_RCQ_RINGS
)));
4499 static int bnx2x_alloc_fp_mem_at(struct bnx2x
*bp
, int index
)
4501 union host_hc_status_block
*sb
;
4502 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
4505 int rx_ring_size
= 0;
4507 if (!bp
->rx_ring_size
&& IS_MF_STORAGE_ONLY(bp
)) {
4508 rx_ring_size
= MIN_RX_SIZE_NONTPA
;
4509 bp
->rx_ring_size
= rx_ring_size
;
4510 } else if (!bp
->rx_ring_size
) {
4511 rx_ring_size
= MAX_RX_AVAIL
/BNX2X_NUM_RX_QUEUES(bp
);
4513 if (CHIP_IS_E3(bp
)) {
4514 u32 cfg
= SHMEM_RD(bp
,
4515 dev_info
.port_hw_config
[BP_PORT(bp
)].
4518 /* Decrease ring size for 1G functions */
4519 if ((cfg
& PORT_HW_CFG_NET_SERDES_IF_MASK
) ==
4520 PORT_HW_CFG_NET_SERDES_IF_SGMII
)
4524 /* allocate at least number of buffers required by FW */
4525 rx_ring_size
= max_t(int, bp
->disable_tpa
? MIN_RX_SIZE_NONTPA
:
4526 MIN_RX_SIZE_TPA
, rx_ring_size
);
4528 bp
->rx_ring_size
= rx_ring_size
;
4529 } else /* if rx_ring_size specified - use it */
4530 rx_ring_size
= bp
->rx_ring_size
;
4532 DP(BNX2X_MSG_SP
, "calculated rx_ring_size %d\n", rx_ring_size
);
4535 sb
= &bnx2x_fp(bp
, index
, status_blk
);
4537 if (!IS_FCOE_IDX(index
)) {
4539 if (!CHIP_IS_E1x(bp
)) {
4540 sb
->e2_sb
= BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, status_blk_mapping
),
4541 sizeof(struct host_hc_status_block_e2
));
4545 sb
->e1x_sb
= BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, status_blk_mapping
),
4546 sizeof(struct host_hc_status_block_e1x
));
4552 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4553 * set shortcuts for it.
4555 if (!IS_FCOE_IDX(index
))
4556 set_sb_shortcuts(bp
, index
);
4559 if (!skip_tx_queue(bp
, index
)) {
4560 /* fastpath tx rings: tx_buf tx_desc */
4561 for_each_cos_in_tx_queue(fp
, cos
) {
4562 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
4565 "allocating tx memory of fp %d cos %d\n",
4568 txdata
->tx_buf_ring
= kcalloc(NUM_TX_BD
,
4569 sizeof(struct sw_tx_bd
),
4571 if (!txdata
->tx_buf_ring
)
4573 txdata
->tx_desc_ring
= BNX2X_PCI_ALLOC(&txdata
->tx_desc_mapping
,
4574 sizeof(union eth_tx_bd_types
) * NUM_TX_BD
);
4575 if (!txdata
->tx_desc_ring
)
4581 if (!skip_rx_queue(bp
, index
)) {
4582 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4583 bnx2x_fp(bp
, index
, rx_buf_ring
) =
4584 kcalloc(NUM_RX_BD
, sizeof(struct sw_rx_bd
), GFP_KERNEL
);
4585 if (!bnx2x_fp(bp
, index
, rx_buf_ring
))
4587 bnx2x_fp(bp
, index
, rx_desc_ring
) =
4588 BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, rx_desc_mapping
),
4589 sizeof(struct eth_rx_bd
) * NUM_RX_BD
);
4590 if (!bnx2x_fp(bp
, index
, rx_desc_ring
))
4593 /* Seed all CQEs by 1s */
4594 bnx2x_fp(bp
, index
, rx_comp_ring
) =
4595 BNX2X_PCI_FALLOC(&bnx2x_fp(bp
, index
, rx_comp_mapping
),
4596 sizeof(struct eth_fast_path_rx_cqe
) * NUM_RCQ_BD
);
4597 if (!bnx2x_fp(bp
, index
, rx_comp_ring
))
4601 bnx2x_fp(bp
, index
, rx_page_ring
) =
4602 kcalloc(NUM_RX_SGE
, sizeof(struct sw_rx_page
),
4604 if (!bnx2x_fp(bp
, index
, rx_page_ring
))
4606 bnx2x_fp(bp
, index
, rx_sge_ring
) =
4607 BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, rx_sge_mapping
),
4608 BCM_PAGE_SIZE
* NUM_RX_SGE_PAGES
);
4609 if (!bnx2x_fp(bp
, index
, rx_sge_ring
))
4612 bnx2x_set_next_page_rx_bd(fp
);
4615 bnx2x_set_next_page_rx_cq(fp
);
4618 ring_size
= bnx2x_alloc_rx_bds(fp
, rx_ring_size
);
4619 if (ring_size
< rx_ring_size
)
4625 /* handles low memory cases */
4627 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4629 /* FW will drop all packets if queue is not big enough,
4630 * In these cases we disable the queue
4631 * Min size is different for OOO, TPA and non-TPA queues
4633 if (ring_size
< (fp
->mode
== TPA_MODE_DISABLED
?
4634 MIN_RX_SIZE_NONTPA
: MIN_RX_SIZE_TPA
)) {
4635 /* release memory allocated for this queue */
4636 bnx2x_free_fp_mem_at(bp
, index
);
4642 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x
*bp
)
4646 if (bnx2x_alloc_fp_mem_at(bp
, FCOE_IDX(bp
)))
4647 /* we will fail load process instead of mark
4655 static int bnx2x_alloc_fp_mem(struct bnx2x
*bp
)
4659 /* 1. Allocate FP for leading - fatal if error
4660 * 2. Allocate RSS - fix number of queues if error
4664 if (bnx2x_alloc_fp_mem_at(bp
, 0))
4668 for_each_nondefault_eth_queue(bp
, i
)
4669 if (bnx2x_alloc_fp_mem_at(bp
, i
))
4672 /* handle memory failures */
4673 if (i
!= BNX2X_NUM_ETH_QUEUES(bp
)) {
4674 int delta
= BNX2X_NUM_ETH_QUEUES(bp
) - i
;
4677 bnx2x_shrink_eth_fp(bp
, delta
);
4678 if (CNIC_SUPPORT(bp
))
4679 /* move non eth FPs next to last eth FP
4680 * must be done in that order
4681 * FCOE_IDX < FWD_IDX < OOO_IDX
4684 /* move FCoE fp even NO_FCOE_FLAG is on */
4685 bnx2x_move_fp(bp
, FCOE_IDX(bp
), FCOE_IDX(bp
) - delta
);
4686 bp
->num_ethernet_queues
-= delta
;
4687 bp
->num_queues
= bp
->num_ethernet_queues
+
4688 bp
->num_cnic_queues
;
4689 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4690 bp
->num_queues
+ delta
, bp
->num_queues
);
4696 void bnx2x_free_mem_bp(struct bnx2x
*bp
)
4700 for (i
= 0; i
< bp
->fp_array_size
; i
++)
4701 kfree(bp
->fp
[i
].tpa_info
);
4704 kfree(bp
->fp_stats
);
4705 kfree(bp
->bnx2x_txq
);
4706 kfree(bp
->msix_table
);
4710 int bnx2x_alloc_mem_bp(struct bnx2x
*bp
)
4712 struct bnx2x_fastpath
*fp
;
4713 struct msix_entry
*tbl
;
4714 struct bnx2x_ilt
*ilt
;
4715 int msix_table_size
= 0;
4716 int fp_array_size
, txq_array_size
;
4720 * The biggest MSI-X table we might need is as a maximum number of fast
4721 * path IGU SBs plus default SB (for PF only).
4723 msix_table_size
= bp
->igu_sb_cnt
;
4726 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size
);
4728 /* fp array: RSS plus CNIC related L2 queues */
4729 fp_array_size
= BNX2X_MAX_RSS_COUNT(bp
) + CNIC_SUPPORT(bp
);
4730 bp
->fp_array_size
= fp_array_size
;
4731 BNX2X_DEV_INFO("fp_array_size %d\n", bp
->fp_array_size
);
4733 fp
= kcalloc(bp
->fp_array_size
, sizeof(*fp
), GFP_KERNEL
);
4736 for (i
= 0; i
< bp
->fp_array_size
; i
++) {
4738 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2
,
4739 sizeof(struct bnx2x_agg_info
), GFP_KERNEL
);
4740 if (!(fp
[i
].tpa_info
))
4746 /* allocate sp objs */
4747 bp
->sp_objs
= kcalloc(bp
->fp_array_size
, sizeof(struct bnx2x_sp_objs
),
4752 /* allocate fp_stats */
4753 bp
->fp_stats
= kcalloc(bp
->fp_array_size
, sizeof(struct bnx2x_fp_stats
),
4758 /* Allocate memory for the transmission queues array */
4760 BNX2X_MAX_RSS_COUNT(bp
) * BNX2X_MULTI_TX_COS
+ CNIC_SUPPORT(bp
);
4761 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size
);
4763 bp
->bnx2x_txq
= kcalloc(txq_array_size
, sizeof(struct bnx2x_fp_txdata
),
4769 tbl
= kcalloc(msix_table_size
, sizeof(*tbl
), GFP_KERNEL
);
4772 bp
->msix_table
= tbl
;
4775 ilt
= kzalloc(sizeof(*ilt
), GFP_KERNEL
);
4782 bnx2x_free_mem_bp(bp
);
4786 int bnx2x_reload_if_running(struct net_device
*dev
)
4788 struct bnx2x
*bp
= netdev_priv(dev
);
4790 if (unlikely(!netif_running(dev
)))
4793 bnx2x_nic_unload(bp
, UNLOAD_NORMAL
, true);
4794 return bnx2x_nic_load(bp
, LOAD_NORMAL
);
4797 int bnx2x_get_cur_phy_idx(struct bnx2x
*bp
)
4799 u32 sel_phy_idx
= 0;
4800 if (bp
->link_params
.num_phys
<= 1)
4803 if (bp
->link_vars
.link_up
) {
4804 sel_phy_idx
= EXT_PHY1
;
4805 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4806 if ((bp
->link_vars
.link_status
& LINK_STATUS_SERDES_LINK
) &&
4807 (bp
->link_params
.phy
[EXT_PHY2
].supported
& SUPPORTED_FIBRE
))
4808 sel_phy_idx
= EXT_PHY2
;
4811 switch (bnx2x_phy_selection(&bp
->link_params
)) {
4812 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT
:
4813 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY
:
4814 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY
:
4815 sel_phy_idx
= EXT_PHY1
;
4817 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY
:
4818 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY
:
4819 sel_phy_idx
= EXT_PHY2
;
4826 int bnx2x_get_link_cfg_idx(struct bnx2x
*bp
)
4828 u32 sel_phy_idx
= bnx2x_get_cur_phy_idx(bp
);
4830 * The selected activated PHY is always after swapping (in case PHY
4831 * swapping is enabled). So when swapping is enabled, we need to reverse
4835 if (bp
->link_params
.multi_phy_config
&
4836 PORT_HW_CFG_PHY_SWAPPED_ENABLED
) {
4837 if (sel_phy_idx
== EXT_PHY1
)
4838 sel_phy_idx
= EXT_PHY2
;
4839 else if (sel_phy_idx
== EXT_PHY2
)
4840 sel_phy_idx
= EXT_PHY1
;
4842 return LINK_CONFIG_IDX(sel_phy_idx
);
4845 #ifdef NETDEV_FCOE_WWNN
4846 int bnx2x_fcoe_get_wwn(struct net_device
*dev
, u64
*wwn
, int type
)
4848 struct bnx2x
*bp
= netdev_priv(dev
);
4849 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
4852 case NETDEV_FCOE_WWNN
:
4853 *wwn
= HILO_U64(cp
->fcoe_wwn_node_name_hi
,
4854 cp
->fcoe_wwn_node_name_lo
);
4856 case NETDEV_FCOE_WWPN
:
4857 *wwn
= HILO_U64(cp
->fcoe_wwn_port_name_hi
,
4858 cp
->fcoe_wwn_port_name_lo
);
4861 BNX2X_ERR("Wrong WWN type requested - %d\n", type
);
4869 /* called with rtnl_lock */
4870 int bnx2x_change_mtu(struct net_device
*dev
, int new_mtu
)
4872 struct bnx2x
*bp
= netdev_priv(dev
);
4874 if (pci_num_vf(bp
->pdev
)) {
4875 DP(BNX2X_MSG_IOV
, "VFs are enabled, can not change MTU\n");
4879 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
4880 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4884 /* This does not race with packet allocation
4885 * because the actual alloc size is
4886 * only updated as part of load
4890 if (IS_PF(bp
) && SHMEM2_HAS(bp
, curr_cfg
))
4891 SHMEM2_WR(bp
, curr_cfg
, CURR_CFG_MET_OS
);
4893 return bnx2x_reload_if_running(dev
);
4896 netdev_features_t
bnx2x_fix_features(struct net_device
*dev
,
4897 netdev_features_t features
)
4899 struct bnx2x
*bp
= netdev_priv(dev
);
4901 if (pci_num_vf(bp
->pdev
)) {
4902 netdev_features_t changed
= dev
->features
^ features
;
4904 /* Revert the requested changes in features if they
4905 * would require internal reload of PF in bnx2x_set_features().
4907 if (!(features
& NETIF_F_RXCSUM
) && !bp
->disable_tpa
) {
4908 features
&= ~NETIF_F_RXCSUM
;
4909 features
|= dev
->features
& NETIF_F_RXCSUM
;
4912 if (changed
& NETIF_F_LOOPBACK
) {
4913 features
&= ~NETIF_F_LOOPBACK
;
4914 features
|= dev
->features
& NETIF_F_LOOPBACK
;
4918 /* TPA requires Rx CSUM offloading */
4919 if (!(features
& NETIF_F_RXCSUM
)) {
4920 features
&= ~NETIF_F_LRO
;
4921 features
&= ~NETIF_F_GRO
;
4927 int bnx2x_set_features(struct net_device
*dev
, netdev_features_t features
)
4929 struct bnx2x
*bp
= netdev_priv(dev
);
4930 netdev_features_t changes
= features
^ dev
->features
;
4931 bool bnx2x_reload
= false;
4934 /* VFs or non SRIOV PFs should be able to change loopback feature */
4935 if (!pci_num_vf(bp
->pdev
)) {
4936 if (features
& NETIF_F_LOOPBACK
) {
4937 if (bp
->link_params
.loopback_mode
!= LOOPBACK_BMAC
) {
4938 bp
->link_params
.loopback_mode
= LOOPBACK_BMAC
;
4939 bnx2x_reload
= true;
4942 if (bp
->link_params
.loopback_mode
!= LOOPBACK_NONE
) {
4943 bp
->link_params
.loopback_mode
= LOOPBACK_NONE
;
4944 bnx2x_reload
= true;
4949 /* if GRO is changed while LRO is enabled, don't force a reload */
4950 if ((changes
& NETIF_F_GRO
) && (features
& NETIF_F_LRO
))
4951 changes
&= ~NETIF_F_GRO
;
4953 /* if GRO is changed while HW TPA is off, don't force a reload */
4954 if ((changes
& NETIF_F_GRO
) && bp
->disable_tpa
)
4955 changes
&= ~NETIF_F_GRO
;
4958 bnx2x_reload
= true;
4961 if (bp
->recovery_state
== BNX2X_RECOVERY_DONE
) {
4962 dev
->features
= features
;
4963 rc
= bnx2x_reload_if_running(dev
);
4966 /* else: bnx2x_nic_load() will be called at end of recovery */
4972 void bnx2x_tx_timeout(struct net_device
*dev
)
4974 struct bnx2x
*bp
= netdev_priv(dev
);
4976 #ifdef BNX2X_STOP_ON_ERROR
4981 /* This allows the netif to be shutdown gracefully before resetting */
4982 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_TX_TIMEOUT
, 0);
4985 int bnx2x_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4987 struct net_device
*dev
= pci_get_drvdata(pdev
);
4991 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
4994 bp
= netdev_priv(dev
);
4998 pci_save_state(pdev
);
5000 if (!netif_running(dev
)) {
5005 netif_device_detach(dev
);
5007 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
5009 bnx2x_set_power_state(bp
, pci_choose_state(pdev
, state
));
5016 int bnx2x_resume(struct pci_dev
*pdev
)
5018 struct net_device
*dev
= pci_get_drvdata(pdev
);
5023 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
5026 bp
= netdev_priv(dev
);
5028 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
5029 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5035 pci_restore_state(pdev
);
5037 if (!netif_running(dev
)) {
5042 bnx2x_set_power_state(bp
, PCI_D0
);
5043 netif_device_attach(dev
);
5045 rc
= bnx2x_nic_load(bp
, LOAD_OPEN
);
5052 void bnx2x_set_ctx_validation(struct bnx2x
*bp
, struct eth_context
*cxt
,
5056 BNX2X_ERR("bad context pointer %p\n", cxt
);
5060 /* ustorm cxt validation */
5061 cxt
->ustorm_ag_context
.cdu_usage
=
5062 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp
, cid
),
5063 CDU_REGION_NUMBER_UCM_AG
, ETH_CONNECTION_TYPE
);
5064 /* xcontext validation */
5065 cxt
->xstorm_ag_context
.cdu_reserved
=
5066 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp
, cid
),
5067 CDU_REGION_NUMBER_XCM_AG
, ETH_CONNECTION_TYPE
);
5070 static void storm_memset_hc_timeout(struct bnx2x
*bp
, u8 port
,
5071 u8 fw_sb_id
, u8 sb_index
,
5074 u32 addr
= BAR_CSTRORM_INTMEM
+
5075 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id
, sb_index
);
5076 REG_WR8(bp
, addr
, ticks
);
5078 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5079 port
, fw_sb_id
, sb_index
, ticks
);
5082 static void storm_memset_hc_disable(struct bnx2x
*bp
, u8 port
,
5083 u16 fw_sb_id
, u8 sb_index
,
5086 u32 enable_flag
= disable
? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT
);
5087 u32 addr
= BAR_CSTRORM_INTMEM
+
5088 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id
, sb_index
);
5089 u8 flags
= REG_RD8(bp
, addr
);
5091 flags
&= ~HC_INDEX_DATA_HC_ENABLED
;
5092 flags
|= enable_flag
;
5093 REG_WR8(bp
, addr
, flags
);
5095 "port %x fw_sb_id %d sb_index %d disable %d\n",
5096 port
, fw_sb_id
, sb_index
, disable
);
5099 void bnx2x_update_coalesce_sb_index(struct bnx2x
*bp
, u8 fw_sb_id
,
5100 u8 sb_index
, u8 disable
, u16 usec
)
5102 int port
= BP_PORT(bp
);
5103 u8 ticks
= usec
/ BNX2X_BTR
;
5105 storm_memset_hc_timeout(bp
, port
, fw_sb_id
, sb_index
, ticks
);
5107 disable
= disable
? 1 : (usec
? 0 : 1);
5108 storm_memset_hc_disable(bp
, port
, fw_sb_id
, sb_index
, disable
);
5111 void bnx2x_schedule_sp_rtnl(struct bnx2x
*bp
, enum sp_rtnl_flag flag
,
5114 smp_mb__before_atomic();
5115 set_bit(flag
, &bp
->sp_rtnl_state
);
5116 smp_mb__after_atomic();
5117 DP((BNX2X_MSG_SP
| verbose
), "Scheduling sp_rtnl task [Flag: %d]\n",
5119 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);