]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
bnx2x: add PFC statistics
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION \
69 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
70 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
71 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
72 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT (5*HZ)
79
80 static char version[] __devinitdata =
81 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 "BCM57710/57711/57711E/"
87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 "(0 Disable; 1 Enable (default))");
99
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 " (default is as a number of CPUs)");
104
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109 #define INT_MODE_INTx 1
110 #define INT_MODE_MSI 2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 "(1 INT#x; 2 MSI)");
115
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120 static int poll;
121 module_param(poll, int, 0);
122 MODULE_PARM_DESC(poll, " Use polling (for debug)");
123
124 static int mrrs = -1;
125 module_param(mrrs, int, 0);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128 static int debug;
129 module_param(debug, int, 0);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132
133
134 struct workqueue_struct *bnx2x_wq;
135
136 enum bnx2x_board_type {
137 BCM57710 = 0,
138 BCM57711,
139 BCM57711E,
140 BCM57712,
141 BCM57712_MF,
142 BCM57800,
143 BCM57800_MF,
144 BCM57810,
145 BCM57810_MF,
146 BCM57840,
147 BCM57840_MF
148 };
149
150 /* indexed by board_type, above */
151 static struct {
152 char *name;
153 } board_info[] __devinitdata = {
154 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165 "Ethernet Multi Function"}
166 };
167
168 #ifndef PCI_DEVICE_ID_NX2_57710
169 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711
172 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711E
175 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712
178 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712_MF
181 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800
184 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800_MF
187 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810
190 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810_MF
193 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840
196 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_MF
199 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
200 #endif
201 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213 { 0 }
214 };
215
216 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217
218 /****************************************************************************
219 * General service functions
220 ****************************************************************************/
221
222 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223 u32 addr, dma_addr_t mapping)
224 {
225 REG_WR(bp, addr, U64_LO(mapping));
226 REG_WR(bp, addr + 4, U64_HI(mapping));
227 }
228
229 static inline void storm_memset_spq_addr(struct bnx2x *bp,
230 dma_addr_t mapping, u16 abs_fid)
231 {
232 u32 addr = XSEM_REG_FAST_MEMORY +
233 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234
235 __storm_memset_dma_mapping(bp, addr, mapping);
236 }
237
238 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239 u16 pf_id)
240 {
241 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242 pf_id);
243 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244 pf_id);
245 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246 pf_id);
247 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248 pf_id);
249 }
250
251 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252 u8 enable)
253 {
254 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255 enable);
256 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257 enable);
258 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259 enable);
260 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261 enable);
262 }
263
264 static inline void storm_memset_eq_data(struct bnx2x *bp,
265 struct event_ring_data *eq_data,
266 u16 pfid)
267 {
268 size_t size = sizeof(struct event_ring_data);
269
270 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271
272 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273 }
274
275 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276 u16 pfid)
277 {
278 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279 REG_WR16(bp, addr, eq_prod);
280 }
281
282 /* used only at init
283 * locking is done by mcp
284 */
285 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286 {
287 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290 PCICFG_VENDOR_ID_OFFSET);
291 }
292
293 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294 {
295 u32 val;
296
297 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300 PCICFG_VENDOR_ID_OFFSET);
301
302 return val;
303 }
304
305 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
306 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
307 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
308 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
309 #define DMAE_DP_DST_NONE "dst_addr [none]"
310
311 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312 int msglvl)
313 {
314 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315
316 switch (dmae->opcode & DMAE_COMMAND_DST) {
317 case DMAE_CMD_DST_PCI:
318 if (src_type == DMAE_CMD_SRC_PCI)
319 DP(msglvl, "DMAE: opcode 0x%08x\n"
320 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321 "comp_addr [%x:%08x], comp_val 0x%08x\n",
322 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324 dmae->comp_addr_hi, dmae->comp_addr_lo,
325 dmae->comp_val);
326 else
327 DP(msglvl, "DMAE: opcode 0x%08x\n"
328 "src [%08x], len [%d*4], dst [%x:%08x]\n"
329 "comp_addr [%x:%08x], comp_val 0x%08x\n",
330 dmae->opcode, dmae->src_addr_lo >> 2,
331 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332 dmae->comp_addr_hi, dmae->comp_addr_lo,
333 dmae->comp_val);
334 break;
335 case DMAE_CMD_DST_GRC:
336 if (src_type == DMAE_CMD_SRC_PCI)
337 DP(msglvl, "DMAE: opcode 0x%08x\n"
338 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339 "comp_addr [%x:%08x], comp_val 0x%08x\n",
340 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341 dmae->len, dmae->dst_addr_lo >> 2,
342 dmae->comp_addr_hi, dmae->comp_addr_lo,
343 dmae->comp_val);
344 else
345 DP(msglvl, "DMAE: opcode 0x%08x\n"
346 "src [%08x], len [%d*4], dst [%08x]\n"
347 "comp_addr [%x:%08x], comp_val 0x%08x\n",
348 dmae->opcode, dmae->src_addr_lo >> 2,
349 dmae->len, dmae->dst_addr_lo >> 2,
350 dmae->comp_addr_hi, dmae->comp_addr_lo,
351 dmae->comp_val);
352 break;
353 default:
354 if (src_type == DMAE_CMD_SRC_PCI)
355 DP(msglvl, "DMAE: opcode 0x%08x\n"
356 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
357 "comp_addr [%x:%08x] comp_val 0x%08x\n",
358 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360 dmae->comp_val);
361 else
362 DP(msglvl, "DMAE: opcode 0x%08x\n"
363 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
364 "comp_addr [%x:%08x] comp_val 0x%08x\n",
365 dmae->opcode, dmae->src_addr_lo >> 2,
366 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367 dmae->comp_val);
368 break;
369 }
370
371 }
372
373 /* copy command into DMAE command memory and set DMAE command go */
374 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375 {
376 u32 cmd_offset;
377 int i;
378
379 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382
383 DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384 idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385 }
386 REG_WR(bp, dmae_reg_go_c[idx], 1);
387 }
388
389 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390 {
391 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392 DMAE_CMD_C_ENABLE);
393 }
394
395 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396 {
397 return opcode & ~DMAE_CMD_SRC_RESET;
398 }
399
400 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401 bool with_comp, u8 comp_type)
402 {
403 u32 opcode = 0;
404
405 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406 (dst_type << DMAE_COMMAND_DST_SHIFT));
407
408 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409
410 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414
415 #ifdef __BIG_ENDIAN
416 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417 #else
418 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419 #endif
420 if (with_comp)
421 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422 return opcode;
423 }
424
425 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426 struct dmae_command *dmae,
427 u8 src_type, u8 dst_type)
428 {
429 memset(dmae, 0, sizeof(struct dmae_command));
430
431 /* set the opcode */
432 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433 true, DMAE_COMP_PCI);
434
435 /* fill in the completion parameters */
436 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438 dmae->comp_val = DMAE_COMP_VAL;
439 }
440
441 /* issue a dmae command over the init-channel and wailt for completion */
442 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443 struct dmae_command *dmae)
444 {
445 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447 int rc = 0;
448
449 DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452
453 /*
454 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455 * as long as this code is called both from syscall context and
456 * from ndo_set_rx_mode() flow that may be called from BH.
457 */
458 spin_lock_bh(&bp->dmae_lock);
459
460 /* reset completion */
461 *wb_comp = 0;
462
463 /* post the command on the channel used for initializations */
464 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465
466 /* wait for completion */
467 udelay(5);
468 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469 DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470
471 if (!cnt) {
472 BNX2X_ERR("DMAE timeout!\n");
473 rc = DMAE_TIMEOUT;
474 goto unlock;
475 }
476 cnt--;
477 udelay(50);
478 }
479 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480 BNX2X_ERR("DMAE PCI error!\n");
481 rc = DMAE_PCI_ERROR;
482 }
483
484 DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
487
488 unlock:
489 spin_unlock_bh(&bp->dmae_lock);
490 return rc;
491 }
492
493 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494 u32 len32)
495 {
496 struct dmae_command dmae;
497
498 if (!bp->dmae_ready) {
499 u32 *data = bnx2x_sp(bp, wb_data[0]);
500
501 DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x len32 %d)"
502 " using indirect\n", dst_addr, len32);
503 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
504 return;
505 }
506
507 /* set opcode and fixed command fields */
508 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
509
510 /* fill in addresses and len */
511 dmae.src_addr_lo = U64_LO(dma_addr);
512 dmae.src_addr_hi = U64_HI(dma_addr);
513 dmae.dst_addr_lo = dst_addr >> 2;
514 dmae.dst_addr_hi = 0;
515 dmae.len = len32;
516
517 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
518
519 /* issue the command and wait for completion */
520 bnx2x_issue_dmae_with_comp(bp, &dmae);
521 }
522
523 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
524 {
525 struct dmae_command dmae;
526
527 if (!bp->dmae_ready) {
528 u32 *data = bnx2x_sp(bp, wb_data[0]);
529 int i;
530
531 DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x len32 %d)"
532 " using indirect\n", src_addr, len32);
533 for (i = 0; i < len32; i++)
534 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
535 return;
536 }
537
538 /* set opcode and fixed command fields */
539 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
540
541 /* fill in addresses and len */
542 dmae.src_addr_lo = src_addr >> 2;
543 dmae.src_addr_hi = 0;
544 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
545 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
546 dmae.len = len32;
547
548 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
549
550 /* issue the command and wait for completion */
551 bnx2x_issue_dmae_with_comp(bp, &dmae);
552 }
553
554 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
555 u32 addr, u32 len)
556 {
557 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
558 int offset = 0;
559
560 while (len > dmae_wr_max) {
561 bnx2x_write_dmae(bp, phys_addr + offset,
562 addr + offset, dmae_wr_max);
563 offset += dmae_wr_max * 4;
564 len -= dmae_wr_max;
565 }
566
567 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
568 }
569
570 /* used only for slowpath so not inlined */
571 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
572 {
573 u32 wb_write[2];
574
575 wb_write[0] = val_hi;
576 wb_write[1] = val_lo;
577 REG_WR_DMAE(bp, reg, wb_write, 2);
578 }
579
580 #ifdef USE_WB_RD
581 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
582 {
583 u32 wb_data[2];
584
585 REG_RD_DMAE(bp, reg, wb_data, 2);
586
587 return HILO_U64(wb_data[0], wb_data[1]);
588 }
589 #endif
590
591 static int bnx2x_mc_assert(struct bnx2x *bp)
592 {
593 char last_idx;
594 int i, rc = 0;
595 u32 row0, row1, row2, row3;
596
597 /* XSTORM */
598 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
599 XSTORM_ASSERT_LIST_INDEX_OFFSET);
600 if (last_idx)
601 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
602
603 /* print the asserts */
604 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
605
606 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
607 XSTORM_ASSERT_LIST_OFFSET(i));
608 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
609 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
610 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
611 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
612 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
613 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
614
615 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
616 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
617 " 0x%08x 0x%08x 0x%08x\n",
618 i, row3, row2, row1, row0);
619 rc++;
620 } else {
621 break;
622 }
623 }
624
625 /* TSTORM */
626 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
627 TSTORM_ASSERT_LIST_INDEX_OFFSET);
628 if (last_idx)
629 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
630
631 /* print the asserts */
632 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
633
634 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635 TSTORM_ASSERT_LIST_OFFSET(i));
636 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
637 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
638 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
639 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
640 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
641 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
642
643 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
644 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
645 " 0x%08x 0x%08x 0x%08x\n",
646 i, row3, row2, row1, row0);
647 rc++;
648 } else {
649 break;
650 }
651 }
652
653 /* CSTORM */
654 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
655 CSTORM_ASSERT_LIST_INDEX_OFFSET);
656 if (last_idx)
657 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
658
659 /* print the asserts */
660 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
661
662 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
663 CSTORM_ASSERT_LIST_OFFSET(i));
664 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
665 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
666 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
667 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
668 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
669 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
670
671 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
672 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
673 " 0x%08x 0x%08x 0x%08x\n",
674 i, row3, row2, row1, row0);
675 rc++;
676 } else {
677 break;
678 }
679 }
680
681 /* USTORM */
682 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
683 USTORM_ASSERT_LIST_INDEX_OFFSET);
684 if (last_idx)
685 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686
687 /* print the asserts */
688 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689
690 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
691 USTORM_ASSERT_LIST_OFFSET(i));
692 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
693 USTORM_ASSERT_LIST_OFFSET(i) + 4);
694 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
695 USTORM_ASSERT_LIST_OFFSET(i) + 8);
696 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
697 USTORM_ASSERT_LIST_OFFSET(i) + 12);
698
699 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
701 " 0x%08x 0x%08x 0x%08x\n",
702 i, row3, row2, row1, row0);
703 rc++;
704 } else {
705 break;
706 }
707 }
708
709 return rc;
710 }
711
712 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
713 {
714 u32 addr, val;
715 u32 mark, offset;
716 __be32 data[9];
717 int word;
718 u32 trace_shmem_base;
719 if (BP_NOMCP(bp)) {
720 BNX2X_ERR("NO MCP - can not dump\n");
721 return;
722 }
723 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
724 (bp->common.bc_ver & 0xff0000) >> 16,
725 (bp->common.bc_ver & 0xff00) >> 8,
726 (bp->common.bc_ver & 0xff));
727
728 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
729 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
730 printk("%s" "MCP PC at 0x%x\n", lvl, val);
731
732 if (BP_PATH(bp) == 0)
733 trace_shmem_base = bp->common.shmem_base;
734 else
735 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
736 addr = trace_shmem_base - 0x0800 + 4;
737 mark = REG_RD(bp, addr);
738 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
739 + ((mark + 0x3) & ~0x3) - 0x08000000;
740 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
741
742 printk("%s", lvl);
743 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
744 for (word = 0; word < 8; word++)
745 data[word] = htonl(REG_RD(bp, offset + 4*word));
746 data[8] = 0x0;
747 pr_cont("%s", (char *)data);
748 }
749 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
750 for (word = 0; word < 8; word++)
751 data[word] = htonl(REG_RD(bp, offset + 4*word));
752 data[8] = 0x0;
753 pr_cont("%s", (char *)data);
754 }
755 printk("%s" "end of fw dump\n", lvl);
756 }
757
758 static inline void bnx2x_fw_dump(struct bnx2x *bp)
759 {
760 bnx2x_fw_dump_lvl(bp, KERN_ERR);
761 }
762
763 void bnx2x_panic_dump(struct bnx2x *bp)
764 {
765 int i;
766 u16 j;
767 struct hc_sp_status_block_data sp_sb_data;
768 int func = BP_FUNC(bp);
769 #ifdef BNX2X_STOP_ON_ERROR
770 u16 start = 0, end = 0;
771 u8 cos;
772 #endif
773
774 bp->stats_state = STATS_STATE_DISABLED;
775 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
776
777 BNX2X_ERR("begin crash dump -----------------\n");
778
779 /* Indices */
780 /* Common */
781 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
782 " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
783 bp->def_idx, bp->def_att_idx, bp->attn_state,
784 bp->spq_prod_idx, bp->stats_counter);
785 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
786 bp->def_status_blk->atten_status_block.attn_bits,
787 bp->def_status_blk->atten_status_block.attn_bits_ack,
788 bp->def_status_blk->atten_status_block.status_block_id,
789 bp->def_status_blk->atten_status_block.attn_bits_index);
790 BNX2X_ERR(" def (");
791 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
792 pr_cont("0x%x%s",
793 bp->def_status_blk->sp_sb.index_values[i],
794 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
795
796 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
797 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
798 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
799 i*sizeof(u32));
800
801 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
802 sp_sb_data.igu_sb_id,
803 sp_sb_data.igu_seg_id,
804 sp_sb_data.p_func.pf_id,
805 sp_sb_data.p_func.vnic_id,
806 sp_sb_data.p_func.vf_id,
807 sp_sb_data.p_func.vf_valid,
808 sp_sb_data.state);
809
810
811 for_each_eth_queue(bp, i) {
812 struct bnx2x_fastpath *fp = &bp->fp[i];
813 int loop;
814 struct hc_status_block_data_e2 sb_data_e2;
815 struct hc_status_block_data_e1x sb_data_e1x;
816 struct hc_status_block_sm *hc_sm_p =
817 CHIP_IS_E1x(bp) ?
818 sb_data_e1x.common.state_machine :
819 sb_data_e2.common.state_machine;
820 struct hc_index_data *hc_index_p =
821 CHIP_IS_E1x(bp) ?
822 sb_data_e1x.index_data :
823 sb_data_e2.index_data;
824 u8 data_size, cos;
825 u32 *sb_data_p;
826 struct bnx2x_fp_txdata txdata;
827
828 /* Rx */
829 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
830 " rx_comp_prod(0x%x)"
831 " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
832 i, fp->rx_bd_prod, fp->rx_bd_cons,
833 fp->rx_comp_prod,
834 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
835 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
836 " fp_hc_idx(0x%x)\n",
837 fp->rx_sge_prod, fp->last_max_sge,
838 le16_to_cpu(fp->fp_hc_idx));
839
840 /* Tx */
841 for_each_cos_in_tx_queue(fp, cos)
842 {
843 txdata = fp->txdata[cos];
844 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
845 " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
846 " *tx_cons_sb(0x%x)\n",
847 i, txdata.tx_pkt_prod,
848 txdata.tx_pkt_cons, txdata.tx_bd_prod,
849 txdata.tx_bd_cons,
850 le16_to_cpu(*txdata.tx_cons_sb));
851 }
852
853 loop = CHIP_IS_E1x(bp) ?
854 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
855
856 /* host sb data */
857
858 #ifdef BCM_CNIC
859 if (IS_FCOE_FP(fp))
860 continue;
861 #endif
862 BNX2X_ERR(" run indexes (");
863 for (j = 0; j < HC_SB_MAX_SM; j++)
864 pr_cont("0x%x%s",
865 fp->sb_running_index[j],
866 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
867
868 BNX2X_ERR(" indexes (");
869 for (j = 0; j < loop; j++)
870 pr_cont("0x%x%s",
871 fp->sb_index_values[j],
872 (j == loop - 1) ? ")" : " ");
873 /* fw sb data */
874 data_size = CHIP_IS_E1x(bp) ?
875 sizeof(struct hc_status_block_data_e1x) :
876 sizeof(struct hc_status_block_data_e2);
877 data_size /= sizeof(u32);
878 sb_data_p = CHIP_IS_E1x(bp) ?
879 (u32 *)&sb_data_e1x :
880 (u32 *)&sb_data_e2;
881 /* copy sb data in here */
882 for (j = 0; j < data_size; j++)
883 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
884 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
885 j * sizeof(u32));
886
887 if (!CHIP_IS_E1x(bp)) {
888 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
889 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
890 "state(0x%x)\n",
891 sb_data_e2.common.p_func.pf_id,
892 sb_data_e2.common.p_func.vf_id,
893 sb_data_e2.common.p_func.vf_valid,
894 sb_data_e2.common.p_func.vnic_id,
895 sb_data_e2.common.same_igu_sb_1b,
896 sb_data_e2.common.state);
897 } else {
898 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
899 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
900 "state(0x%x)\n",
901 sb_data_e1x.common.p_func.pf_id,
902 sb_data_e1x.common.p_func.vf_id,
903 sb_data_e1x.common.p_func.vf_valid,
904 sb_data_e1x.common.p_func.vnic_id,
905 sb_data_e1x.common.same_igu_sb_1b,
906 sb_data_e1x.common.state);
907 }
908
909 /* SB_SMs data */
910 for (j = 0; j < HC_SB_MAX_SM; j++) {
911 pr_cont("SM[%d] __flags (0x%x) "
912 "igu_sb_id (0x%x) igu_seg_id(0x%x) "
913 "time_to_expire (0x%x) "
914 "timer_value(0x%x)\n", j,
915 hc_sm_p[j].__flags,
916 hc_sm_p[j].igu_sb_id,
917 hc_sm_p[j].igu_seg_id,
918 hc_sm_p[j].time_to_expire,
919 hc_sm_p[j].timer_value);
920 }
921
922 /* Indecies data */
923 for (j = 0; j < loop; j++) {
924 pr_cont("INDEX[%d] flags (0x%x) "
925 "timeout (0x%x)\n", j,
926 hc_index_p[j].flags,
927 hc_index_p[j].timeout);
928 }
929 }
930
931 #ifdef BNX2X_STOP_ON_ERROR
932 /* Rings */
933 /* Rx */
934 for_each_rx_queue(bp, i) {
935 struct bnx2x_fastpath *fp = &bp->fp[i];
936
937 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
938 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
939 for (j = start; j != end; j = RX_BD(j + 1)) {
940 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
941 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
942
943 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
944 i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
945 }
946
947 start = RX_SGE(fp->rx_sge_prod);
948 end = RX_SGE(fp->last_max_sge);
949 for (j = start; j != end; j = RX_SGE(j + 1)) {
950 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
951 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
952
953 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
954 i, j, rx_sge[1], rx_sge[0], sw_page->page);
955 }
956
957 start = RCQ_BD(fp->rx_comp_cons - 10);
958 end = RCQ_BD(fp->rx_comp_cons + 503);
959 for (j = start; j != end; j = RCQ_BD(j + 1)) {
960 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
961
962 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
963 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
964 }
965 }
966
967 /* Tx */
968 for_each_tx_queue(bp, i) {
969 struct bnx2x_fastpath *fp = &bp->fp[i];
970 for_each_cos_in_tx_queue(fp, cos) {
971 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
972
973 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
974 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
975 for (j = start; j != end; j = TX_BD(j + 1)) {
976 struct sw_tx_bd *sw_bd =
977 &txdata->tx_buf_ring[j];
978
979 BNX2X_ERR("fp%d: txdata %d, "
980 "packet[%x]=[%p,%x]\n",
981 i, cos, j, sw_bd->skb,
982 sw_bd->first_bd);
983 }
984
985 start = TX_BD(txdata->tx_bd_cons - 10);
986 end = TX_BD(txdata->tx_bd_cons + 254);
987 for (j = start; j != end; j = TX_BD(j + 1)) {
988 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
989
990 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
991 "[%x:%x:%x:%x]\n",
992 i, cos, j, tx_bd[0], tx_bd[1],
993 tx_bd[2], tx_bd[3]);
994 }
995 }
996 }
997 #endif
998 bnx2x_fw_dump(bp);
999 bnx2x_mc_assert(bp);
1000 BNX2X_ERR("end crash dump -----------------\n");
1001 }
1002
1003 /*
1004 * FLR Support for E2
1005 *
1006 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1007 * initialization.
1008 */
1009 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
1010 #define FLR_WAIT_INTERAVAL 50 /* usec */
1011 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1012
1013 struct pbf_pN_buf_regs {
1014 int pN;
1015 u32 init_crd;
1016 u32 crd;
1017 u32 crd_freed;
1018 };
1019
1020 struct pbf_pN_cmd_regs {
1021 int pN;
1022 u32 lines_occup;
1023 u32 lines_freed;
1024 };
1025
1026 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1027 struct pbf_pN_buf_regs *regs,
1028 u32 poll_count)
1029 {
1030 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1031 u32 cur_cnt = poll_count;
1032
1033 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1034 crd = crd_start = REG_RD(bp, regs->crd);
1035 init_crd = REG_RD(bp, regs->init_crd);
1036
1037 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1038 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1039 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1040
1041 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1042 (init_crd - crd_start))) {
1043 if (cur_cnt--) {
1044 udelay(FLR_WAIT_INTERAVAL);
1045 crd = REG_RD(bp, regs->crd);
1046 crd_freed = REG_RD(bp, regs->crd_freed);
1047 } else {
1048 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1049 regs->pN);
1050 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1051 regs->pN, crd);
1052 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1053 regs->pN, crd_freed);
1054 break;
1055 }
1056 }
1057 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1058 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1059 }
1060
1061 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1062 struct pbf_pN_cmd_regs *regs,
1063 u32 poll_count)
1064 {
1065 u32 occup, to_free, freed, freed_start;
1066 u32 cur_cnt = poll_count;
1067
1068 occup = to_free = REG_RD(bp, regs->lines_occup);
1069 freed = freed_start = REG_RD(bp, regs->lines_freed);
1070
1071 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1072 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1073
1074 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1075 if (cur_cnt--) {
1076 udelay(FLR_WAIT_INTERAVAL);
1077 occup = REG_RD(bp, regs->lines_occup);
1078 freed = REG_RD(bp, regs->lines_freed);
1079 } else {
1080 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1081 regs->pN);
1082 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1083 regs->pN, occup);
1084 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1085 regs->pN, freed);
1086 break;
1087 }
1088 }
1089 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1090 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1091 }
1092
1093 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1094 u32 expected, u32 poll_count)
1095 {
1096 u32 cur_cnt = poll_count;
1097 u32 val;
1098
1099 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1100 udelay(FLR_WAIT_INTERAVAL);
1101
1102 return val;
1103 }
1104
1105 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1106 char *msg, u32 poll_cnt)
1107 {
1108 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1109 if (val != 0) {
1110 BNX2X_ERR("%s usage count=%d\n", msg, val);
1111 return 1;
1112 }
1113 return 0;
1114 }
1115
1116 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1117 {
1118 /* adjust polling timeout */
1119 if (CHIP_REV_IS_EMUL(bp))
1120 return FLR_POLL_CNT * 2000;
1121
1122 if (CHIP_REV_IS_FPGA(bp))
1123 return FLR_POLL_CNT * 120;
1124
1125 return FLR_POLL_CNT;
1126 }
1127
1128 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1129 {
1130 struct pbf_pN_cmd_regs cmd_regs[] = {
1131 {0, (CHIP_IS_E3B0(bp)) ?
1132 PBF_REG_TQ_OCCUPANCY_Q0 :
1133 PBF_REG_P0_TQ_OCCUPANCY,
1134 (CHIP_IS_E3B0(bp)) ?
1135 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1136 PBF_REG_P0_TQ_LINES_FREED_CNT},
1137 {1, (CHIP_IS_E3B0(bp)) ?
1138 PBF_REG_TQ_OCCUPANCY_Q1 :
1139 PBF_REG_P1_TQ_OCCUPANCY,
1140 (CHIP_IS_E3B0(bp)) ?
1141 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1142 PBF_REG_P1_TQ_LINES_FREED_CNT},
1143 {4, (CHIP_IS_E3B0(bp)) ?
1144 PBF_REG_TQ_OCCUPANCY_LB_Q :
1145 PBF_REG_P4_TQ_OCCUPANCY,
1146 (CHIP_IS_E3B0(bp)) ?
1147 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1148 PBF_REG_P4_TQ_LINES_FREED_CNT}
1149 };
1150
1151 struct pbf_pN_buf_regs buf_regs[] = {
1152 {0, (CHIP_IS_E3B0(bp)) ?
1153 PBF_REG_INIT_CRD_Q0 :
1154 PBF_REG_P0_INIT_CRD ,
1155 (CHIP_IS_E3B0(bp)) ?
1156 PBF_REG_CREDIT_Q0 :
1157 PBF_REG_P0_CREDIT,
1158 (CHIP_IS_E3B0(bp)) ?
1159 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1160 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1161 {1, (CHIP_IS_E3B0(bp)) ?
1162 PBF_REG_INIT_CRD_Q1 :
1163 PBF_REG_P1_INIT_CRD,
1164 (CHIP_IS_E3B0(bp)) ?
1165 PBF_REG_CREDIT_Q1 :
1166 PBF_REG_P1_CREDIT,
1167 (CHIP_IS_E3B0(bp)) ?
1168 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1169 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1170 {4, (CHIP_IS_E3B0(bp)) ?
1171 PBF_REG_INIT_CRD_LB_Q :
1172 PBF_REG_P4_INIT_CRD,
1173 (CHIP_IS_E3B0(bp)) ?
1174 PBF_REG_CREDIT_LB_Q :
1175 PBF_REG_P4_CREDIT,
1176 (CHIP_IS_E3B0(bp)) ?
1177 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1178 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1179 };
1180
1181 int i;
1182
1183 /* Verify the command queues are flushed P0, P1, P4 */
1184 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1185 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1186
1187
1188 /* Verify the transmission buffers are flushed P0, P1, P4 */
1189 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1190 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1191 }
1192
1193 #define OP_GEN_PARAM(param) \
1194 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1195
1196 #define OP_GEN_TYPE(type) \
1197 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1198
1199 #define OP_GEN_AGG_VECT(index) \
1200 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1201
1202
1203 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1204 u32 poll_cnt)
1205 {
1206 struct sdm_op_gen op_gen = {0};
1207
1208 u32 comp_addr = BAR_CSTRORM_INTMEM +
1209 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1210 int ret = 0;
1211
1212 if (REG_RD(bp, comp_addr)) {
1213 BNX2X_ERR("Cleanup complete is not 0\n");
1214 return 1;
1215 }
1216
1217 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1218 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1219 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1220 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1221
1222 DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1223 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1224
1225 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1226 BNX2X_ERR("FW final cleanup did not succeed\n");
1227 ret = 1;
1228 }
1229 /* Zero completion for nxt FLR */
1230 REG_WR(bp, comp_addr, 0);
1231
1232 return ret;
1233 }
1234
1235 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1236 {
1237 int pos;
1238 u16 status;
1239
1240 pos = pci_pcie_cap(dev);
1241 if (!pos)
1242 return false;
1243
1244 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1245 return status & PCI_EXP_DEVSTA_TRPND;
1246 }
1247
1248 /* PF FLR specific routines
1249 */
1250 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1251 {
1252
1253 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1254 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1255 CFC_REG_NUM_LCIDS_INSIDE_PF,
1256 "CFC PF usage counter timed out",
1257 poll_cnt))
1258 return 1;
1259
1260
1261 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1262 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1263 DORQ_REG_PF_USAGE_CNT,
1264 "DQ PF usage counter timed out",
1265 poll_cnt))
1266 return 1;
1267
1268 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1269 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1271 "QM PF usage counter timed out",
1272 poll_cnt))
1273 return 1;
1274
1275 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1276 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1278 "Timers VNIC usage counter timed out",
1279 poll_cnt))
1280 return 1;
1281 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1282 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1283 "Timers NUM_SCANS usage counter timed out",
1284 poll_cnt))
1285 return 1;
1286
1287 /* Wait DMAE PF usage counter to zero */
1288 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1289 dmae_reg_go_c[INIT_DMAE_C(bp)],
1290 "DMAE dommand register timed out",
1291 poll_cnt))
1292 return 1;
1293
1294 return 0;
1295 }
1296
1297 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1298 {
1299 u32 val;
1300
1301 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1302 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1303
1304 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1305 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1306
1307 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1308 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1309
1310 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1311 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1312
1313 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1314 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1315
1316 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1317 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1318
1319 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1320 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1321
1322 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1323 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1324 val);
1325 }
1326
1327 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1328 {
1329 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1330
1331 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1332
1333 /* Re-enable PF target read access */
1334 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1335
1336 /* Poll HW usage counters */
1337 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1338 return -EBUSY;
1339
1340 /* Zero the igu 'trailing edge' and 'leading edge' */
1341
1342 /* Send the FW cleanup command */
1343 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1344 return -EBUSY;
1345
1346 /* ATC cleanup */
1347
1348 /* Verify TX hw is flushed */
1349 bnx2x_tx_hw_flushed(bp, poll_cnt);
1350
1351 /* Wait 100ms (not adjusted according to platform) */
1352 msleep(100);
1353
1354 /* Verify no pending pci transactions */
1355 if (bnx2x_is_pcie_pending(bp->pdev))
1356 BNX2X_ERR("PCIE Transactions still pending\n");
1357
1358 /* Debug */
1359 bnx2x_hw_enable_status(bp);
1360
1361 /*
1362 * Master enable - Due to WB DMAE writes performed before this
1363 * register is re-initialized as part of the regular function init
1364 */
1365 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1366
1367 return 0;
1368 }
1369
1370 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1371 {
1372 int port = BP_PORT(bp);
1373 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1374 u32 val = REG_RD(bp, addr);
1375 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1376 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1377
1378 if (msix) {
1379 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1380 HC_CONFIG_0_REG_INT_LINE_EN_0);
1381 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1382 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1383 } else if (msi) {
1384 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1385 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1386 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1387 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1388 } else {
1389 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1390 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1391 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1392 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1393
1394 if (!CHIP_IS_E1(bp)) {
1395 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1396 val, port, addr);
1397
1398 REG_WR(bp, addr, val);
1399
1400 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1401 }
1402 }
1403
1404 if (CHIP_IS_E1(bp))
1405 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1406
1407 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
1408 val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1409
1410 REG_WR(bp, addr, val);
1411 /*
1412 * Ensure that HC_CONFIG is written before leading/trailing edge config
1413 */
1414 mmiowb();
1415 barrier();
1416
1417 if (!CHIP_IS_E1(bp)) {
1418 /* init leading/trailing edge */
1419 if (IS_MF(bp)) {
1420 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1421 if (bp->port.pmf)
1422 /* enable nig and gpio3 attention */
1423 val |= 0x1100;
1424 } else
1425 val = 0xffff;
1426
1427 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1428 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1429 }
1430
1431 /* Make sure that interrupts are indeed enabled from here on */
1432 mmiowb();
1433 }
1434
1435 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1436 {
1437 u32 val;
1438 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1439 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1440
1441 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1442
1443 if (msix) {
1444 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1445 IGU_PF_CONF_SINGLE_ISR_EN);
1446 val |= (IGU_PF_CONF_FUNC_EN |
1447 IGU_PF_CONF_MSI_MSIX_EN |
1448 IGU_PF_CONF_ATTN_BIT_EN);
1449 } else if (msi) {
1450 val &= ~IGU_PF_CONF_INT_LINE_EN;
1451 val |= (IGU_PF_CONF_FUNC_EN |
1452 IGU_PF_CONF_MSI_MSIX_EN |
1453 IGU_PF_CONF_ATTN_BIT_EN |
1454 IGU_PF_CONF_SINGLE_ISR_EN);
1455 } else {
1456 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1457 val |= (IGU_PF_CONF_FUNC_EN |
1458 IGU_PF_CONF_INT_LINE_EN |
1459 IGU_PF_CONF_ATTN_BIT_EN |
1460 IGU_PF_CONF_SINGLE_ISR_EN);
1461 }
1462
1463 DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
1464 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1465
1466 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1467
1468 barrier();
1469
1470 /* init leading/trailing edge */
1471 if (IS_MF(bp)) {
1472 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1473 if (bp->port.pmf)
1474 /* enable nig and gpio3 attention */
1475 val |= 0x1100;
1476 } else
1477 val = 0xffff;
1478
1479 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1480 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1481
1482 /* Make sure that interrupts are indeed enabled from here on */
1483 mmiowb();
1484 }
1485
1486 void bnx2x_int_enable(struct bnx2x *bp)
1487 {
1488 if (bp->common.int_block == INT_BLOCK_HC)
1489 bnx2x_hc_int_enable(bp);
1490 else
1491 bnx2x_igu_int_enable(bp);
1492 }
1493
1494 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1495 {
1496 int port = BP_PORT(bp);
1497 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1498 u32 val = REG_RD(bp, addr);
1499
1500 /*
1501 * in E1 we must use only PCI configuration space to disable
1502 * MSI/MSIX capablility
1503 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1504 */
1505 if (CHIP_IS_E1(bp)) {
1506 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1507 * Use mask register to prevent from HC sending interrupts
1508 * after we exit the function
1509 */
1510 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1511
1512 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1514 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1515 } else
1516 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1517 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1518 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1519 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1520
1521 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1522 val, port, addr);
1523
1524 /* flush all outstanding writes */
1525 mmiowb();
1526
1527 REG_WR(bp, addr, val);
1528 if (REG_RD(bp, addr) != val)
1529 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1530 }
1531
1532 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1533 {
1534 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1535
1536 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1537 IGU_PF_CONF_INT_LINE_EN |
1538 IGU_PF_CONF_ATTN_BIT_EN);
1539
1540 DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1541
1542 /* flush all outstanding writes */
1543 mmiowb();
1544
1545 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1546 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1547 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1548 }
1549
1550 void bnx2x_int_disable(struct bnx2x *bp)
1551 {
1552 if (bp->common.int_block == INT_BLOCK_HC)
1553 bnx2x_hc_int_disable(bp);
1554 else
1555 bnx2x_igu_int_disable(bp);
1556 }
1557
1558 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1559 {
1560 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1561 int i, offset;
1562
1563 if (disable_hw)
1564 /* prevent the HW from sending interrupts */
1565 bnx2x_int_disable(bp);
1566
1567 /* make sure all ISRs are done */
1568 if (msix) {
1569 synchronize_irq(bp->msix_table[0].vector);
1570 offset = 1;
1571 #ifdef BCM_CNIC
1572 offset++;
1573 #endif
1574 for_each_eth_queue(bp, i)
1575 synchronize_irq(bp->msix_table[offset++].vector);
1576 } else
1577 synchronize_irq(bp->pdev->irq);
1578
1579 /* make sure sp_task is not running */
1580 cancel_delayed_work(&bp->sp_task);
1581 cancel_delayed_work(&bp->period_task);
1582 flush_workqueue(bnx2x_wq);
1583 }
1584
1585 /* fast path */
1586
1587 /*
1588 * General service functions
1589 */
1590
1591 /* Return true if succeeded to acquire the lock */
1592 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1593 {
1594 u32 lock_status;
1595 u32 resource_bit = (1 << resource);
1596 int func = BP_FUNC(bp);
1597 u32 hw_lock_control_reg;
1598
1599 DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1600
1601 /* Validating that the resource is within range */
1602 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1603 DP(NETIF_MSG_HW,
1604 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1605 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1606 return false;
1607 }
1608
1609 if (func <= 5)
1610 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1611 else
1612 hw_lock_control_reg =
1613 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1614
1615 /* Try to acquire the lock */
1616 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1617 lock_status = REG_RD(bp, hw_lock_control_reg);
1618 if (lock_status & resource_bit)
1619 return true;
1620
1621 DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1622 return false;
1623 }
1624
1625 /**
1626 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1627 *
1628 * @bp: driver handle
1629 *
1630 * Returns the recovery leader resource id according to the engine this function
1631 * belongs to. Currently only only 2 engines is supported.
1632 */
1633 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1634 {
1635 if (BP_PATH(bp))
1636 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1637 else
1638 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1639 }
1640
1641 /**
1642 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1643 *
1644 * @bp: driver handle
1645 *
1646 * Tries to aquire a leader lock for cuurent engine.
1647 */
1648 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1649 {
1650 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1651 }
1652
1653 #ifdef BCM_CNIC
1654 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1655 #endif
1656
1657 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1658 {
1659 struct bnx2x *bp = fp->bp;
1660 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1661 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1662 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1663 struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1664
1665 DP(BNX2X_MSG_SP,
1666 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1667 fp->index, cid, command, bp->state,
1668 rr_cqe->ramrod_cqe.ramrod_type);
1669
1670 switch (command) {
1671 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1672 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1673 drv_cmd = BNX2X_Q_CMD_UPDATE;
1674 break;
1675
1676 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1677 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1678 drv_cmd = BNX2X_Q_CMD_SETUP;
1679 break;
1680
1681 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1682 DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1683 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1684 break;
1685
1686 case (RAMROD_CMD_ID_ETH_HALT):
1687 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1688 drv_cmd = BNX2X_Q_CMD_HALT;
1689 break;
1690
1691 case (RAMROD_CMD_ID_ETH_TERMINATE):
1692 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1693 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1694 break;
1695
1696 case (RAMROD_CMD_ID_ETH_EMPTY):
1697 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1698 drv_cmd = BNX2X_Q_CMD_EMPTY;
1699 break;
1700
1701 default:
1702 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1703 command, fp->index);
1704 return;
1705 }
1706
1707 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1708 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1709 /* q_obj->complete_cmd() failure means that this was
1710 * an unexpected completion.
1711 *
1712 * In this case we don't want to increase the bp->spq_left
1713 * because apparently we haven't sent this command the first
1714 * place.
1715 */
1716 #ifdef BNX2X_STOP_ON_ERROR
1717 bnx2x_panic();
1718 #else
1719 return;
1720 #endif
1721
1722 smp_mb__before_atomic_inc();
1723 atomic_inc(&bp->cq_spq_left);
1724 /* push the change in bp->spq_left and towards the memory */
1725 smp_mb__after_atomic_inc();
1726
1727 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1728
1729 return;
1730 }
1731
1732 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1733 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1734 {
1735 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1736
1737 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1738 start);
1739 }
1740
1741 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1742 {
1743 struct bnx2x *bp = netdev_priv(dev_instance);
1744 u16 status = bnx2x_ack_int(bp);
1745 u16 mask;
1746 int i;
1747 u8 cos;
1748
1749 /* Return here if interrupt is shared and it's not for us */
1750 if (unlikely(status == 0)) {
1751 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1752 return IRQ_NONE;
1753 }
1754 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1755
1756 #ifdef BNX2X_STOP_ON_ERROR
1757 if (unlikely(bp->panic))
1758 return IRQ_HANDLED;
1759 #endif
1760
1761 for_each_eth_queue(bp, i) {
1762 struct bnx2x_fastpath *fp = &bp->fp[i];
1763
1764 mask = 0x2 << (fp->index + CNIC_PRESENT);
1765 if (status & mask) {
1766 /* Handle Rx or Tx according to SB id */
1767 prefetch(fp->rx_cons_sb);
1768 for_each_cos_in_tx_queue(fp, cos)
1769 prefetch(fp->txdata[cos].tx_cons_sb);
1770 prefetch(&fp->sb_running_index[SM_RX_ID]);
1771 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1772 status &= ~mask;
1773 }
1774 }
1775
1776 #ifdef BCM_CNIC
1777 mask = 0x2;
1778 if (status & (mask | 0x1)) {
1779 struct cnic_ops *c_ops = NULL;
1780
1781 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1782 rcu_read_lock();
1783 c_ops = rcu_dereference(bp->cnic_ops);
1784 if (c_ops)
1785 c_ops->cnic_handler(bp->cnic_data, NULL);
1786 rcu_read_unlock();
1787 }
1788
1789 status &= ~mask;
1790 }
1791 #endif
1792
1793 if (unlikely(status & 0x1)) {
1794 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1795
1796 status &= ~0x1;
1797 if (!status)
1798 return IRQ_HANDLED;
1799 }
1800
1801 if (unlikely(status))
1802 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1803 status);
1804
1805 return IRQ_HANDLED;
1806 }
1807
1808 /* Link */
1809
1810 /*
1811 * General service functions
1812 */
1813
1814 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1815 {
1816 u32 lock_status;
1817 u32 resource_bit = (1 << resource);
1818 int func = BP_FUNC(bp);
1819 u32 hw_lock_control_reg;
1820 int cnt;
1821
1822 /* Validating that the resource is within range */
1823 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1824 DP(NETIF_MSG_HW,
1825 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1826 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1827 return -EINVAL;
1828 }
1829
1830 if (func <= 5) {
1831 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1832 } else {
1833 hw_lock_control_reg =
1834 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1835 }
1836
1837 /* Validating that the resource is not already taken */
1838 lock_status = REG_RD(bp, hw_lock_control_reg);
1839 if (lock_status & resource_bit) {
1840 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1841 lock_status, resource_bit);
1842 return -EEXIST;
1843 }
1844
1845 /* Try for 5 second every 5ms */
1846 for (cnt = 0; cnt < 1000; cnt++) {
1847 /* Try to acquire the lock */
1848 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1849 lock_status = REG_RD(bp, hw_lock_control_reg);
1850 if (lock_status & resource_bit)
1851 return 0;
1852
1853 msleep(5);
1854 }
1855 DP(NETIF_MSG_HW, "Timeout\n");
1856 return -EAGAIN;
1857 }
1858
1859 int bnx2x_release_leader_lock(struct bnx2x *bp)
1860 {
1861 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1862 }
1863
1864 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1865 {
1866 u32 lock_status;
1867 u32 resource_bit = (1 << resource);
1868 int func = BP_FUNC(bp);
1869 u32 hw_lock_control_reg;
1870
1871 DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1872
1873 /* Validating that the resource is within range */
1874 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1875 DP(NETIF_MSG_HW,
1876 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1877 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1878 return -EINVAL;
1879 }
1880
1881 if (func <= 5) {
1882 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1883 } else {
1884 hw_lock_control_reg =
1885 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1886 }
1887
1888 /* Validating that the resource is currently taken */
1889 lock_status = REG_RD(bp, hw_lock_control_reg);
1890 if (!(lock_status & resource_bit)) {
1891 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1892 lock_status, resource_bit);
1893 return -EFAULT;
1894 }
1895
1896 REG_WR(bp, hw_lock_control_reg, resource_bit);
1897 return 0;
1898 }
1899
1900
1901 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1902 {
1903 /* The GPIO should be swapped if swap register is set and active */
1904 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1905 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1906 int gpio_shift = gpio_num +
1907 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1908 u32 gpio_mask = (1 << gpio_shift);
1909 u32 gpio_reg;
1910 int value;
1911
1912 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1913 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1914 return -EINVAL;
1915 }
1916
1917 /* read GPIO value */
1918 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1919
1920 /* get the requested pin value */
1921 if ((gpio_reg & gpio_mask) == gpio_mask)
1922 value = 1;
1923 else
1924 value = 0;
1925
1926 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1927
1928 return value;
1929 }
1930
1931 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1932 {
1933 /* The GPIO should be swapped if swap register is set and active */
1934 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1935 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1936 int gpio_shift = gpio_num +
1937 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1938 u32 gpio_mask = (1 << gpio_shift);
1939 u32 gpio_reg;
1940
1941 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1942 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1943 return -EINVAL;
1944 }
1945
1946 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1947 /* read GPIO and mask except the float bits */
1948 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1949
1950 switch (mode) {
1951 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1952 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1953 gpio_num, gpio_shift);
1954 /* clear FLOAT and set CLR */
1955 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1956 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1957 break;
1958
1959 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1960 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1961 gpio_num, gpio_shift);
1962 /* clear FLOAT and set SET */
1963 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1965 break;
1966
1967 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1969 gpio_num, gpio_shift);
1970 /* set FLOAT */
1971 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1972 break;
1973
1974 default:
1975 break;
1976 }
1977
1978 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1979 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1980
1981 return 0;
1982 }
1983
1984 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1985 {
1986 u32 gpio_reg = 0;
1987 int rc = 0;
1988
1989 /* Any port swapping should be handled by caller. */
1990
1991 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1992 /* read GPIO and mask except the float bits */
1993 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1994 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1995 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1996 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1997
1998 switch (mode) {
1999 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2000 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2001 /* set CLR */
2002 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2003 break;
2004
2005 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2006 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2007 /* set SET */
2008 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2009 break;
2010
2011 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2012 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2013 /* set FLOAT */
2014 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2015 break;
2016
2017 default:
2018 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2019 rc = -EINVAL;
2020 break;
2021 }
2022
2023 if (rc == 0)
2024 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2025
2026 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2027
2028 return rc;
2029 }
2030
2031 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2032 {
2033 /* The GPIO should be swapped if swap register is set and active */
2034 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036 int gpio_shift = gpio_num +
2037 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038 u32 gpio_mask = (1 << gpio_shift);
2039 u32 gpio_reg;
2040
2041 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043 return -EINVAL;
2044 }
2045
2046 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047 /* read GPIO int */
2048 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2049
2050 switch (mode) {
2051 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2052 DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2053 "output low\n", gpio_num, gpio_shift);
2054 /* clear SET and set CLR */
2055 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2056 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2057 break;
2058
2059 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2060 DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2061 "output high\n", gpio_num, gpio_shift);
2062 /* clear CLR and set SET */
2063 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2064 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2065 break;
2066
2067 default:
2068 break;
2069 }
2070
2071 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2072 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2073
2074 return 0;
2075 }
2076
2077 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2078 {
2079 u32 spio_mask = (1 << spio_num);
2080 u32 spio_reg;
2081
2082 if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2083 (spio_num > MISC_REGISTERS_SPIO_7)) {
2084 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2085 return -EINVAL;
2086 }
2087
2088 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2089 /* read SPIO and mask except the float bits */
2090 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2091
2092 switch (mode) {
2093 case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2094 DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2095 /* clear FLOAT and set CLR */
2096 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2097 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2098 break;
2099
2100 case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2101 DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2102 /* clear FLOAT and set SET */
2103 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2104 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2105 break;
2106
2107 case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2108 DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2109 /* set FLOAT */
2110 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2111 break;
2112
2113 default:
2114 break;
2115 }
2116
2117 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2118 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2119
2120 return 0;
2121 }
2122
2123 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2124 {
2125 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2126 switch (bp->link_vars.ieee_fc &
2127 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2128 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2129 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2130 ADVERTISED_Pause);
2131 break;
2132
2133 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2134 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2135 ADVERTISED_Pause);
2136 break;
2137
2138 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2139 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2140 break;
2141
2142 default:
2143 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2144 ADVERTISED_Pause);
2145 break;
2146 }
2147 }
2148
2149 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2150 {
2151 if (!BP_NOMCP(bp)) {
2152 u8 rc;
2153 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2154 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2155 /*
2156 * Initialize link parameters structure variables
2157 * It is recommended to turn off RX FC for jumbo frames
2158 * for better performance
2159 */
2160 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2161 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2162 else
2163 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2164
2165 bnx2x_acquire_phy_lock(bp);
2166
2167 if (load_mode == LOAD_DIAG) {
2168 struct link_params *lp = &bp->link_params;
2169 lp->loopback_mode = LOOPBACK_XGXS;
2170 /* do PHY loopback at 10G speed, if possible */
2171 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2172 if (lp->speed_cap_mask[cfx_idx] &
2173 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2174 lp->req_line_speed[cfx_idx] =
2175 SPEED_10000;
2176 else
2177 lp->req_line_speed[cfx_idx] =
2178 SPEED_1000;
2179 }
2180 }
2181
2182 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2183
2184 bnx2x_release_phy_lock(bp);
2185
2186 bnx2x_calc_fc_adv(bp);
2187
2188 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2189 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2190 bnx2x_link_report(bp);
2191 } else
2192 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2193 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2194 return rc;
2195 }
2196 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2197 return -EINVAL;
2198 }
2199
2200 void bnx2x_link_set(struct bnx2x *bp)
2201 {
2202 if (!BP_NOMCP(bp)) {
2203 bnx2x_acquire_phy_lock(bp);
2204 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2205 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2206 bnx2x_release_phy_lock(bp);
2207
2208 bnx2x_calc_fc_adv(bp);
2209 } else
2210 BNX2X_ERR("Bootcode is missing - can not set link\n");
2211 }
2212
2213 static void bnx2x__link_reset(struct bnx2x *bp)
2214 {
2215 if (!BP_NOMCP(bp)) {
2216 bnx2x_acquire_phy_lock(bp);
2217 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2218 bnx2x_release_phy_lock(bp);
2219 } else
2220 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2221 }
2222
2223 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2224 {
2225 u8 rc = 0;
2226
2227 if (!BP_NOMCP(bp)) {
2228 bnx2x_acquire_phy_lock(bp);
2229 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2230 is_serdes);
2231 bnx2x_release_phy_lock(bp);
2232 } else
2233 BNX2X_ERR("Bootcode is missing - can not test link\n");
2234
2235 return rc;
2236 }
2237
2238 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2239 {
2240 u32 r_param = bp->link_vars.line_speed / 8;
2241 u32 fair_periodic_timeout_usec;
2242 u32 t_fair;
2243
2244 memset(&(bp->cmng.rs_vars), 0,
2245 sizeof(struct rate_shaping_vars_per_port));
2246 memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2247
2248 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2249 bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2250
2251 /* this is the threshold below which no timer arming will occur
2252 1.25 coefficient is for the threshold to be a little bigger
2253 than the real time, to compensate for timer in-accuracy */
2254 bp->cmng.rs_vars.rs_threshold =
2255 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2256
2257 /* resolution of fairness timer */
2258 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2259 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2260 t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2261
2262 /* this is the threshold below which we won't arm the timer anymore */
2263 bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2264
2265 /* we multiply by 1e3/8 to get bytes/msec.
2266 We don't want the credits to pass a credit
2267 of the t_fair*FAIR_MEM (algorithm resolution) */
2268 bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2269 /* since each tick is 4 usec */
2270 bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2271 }
2272
2273 /* Calculates the sum of vn_min_rates.
2274 It's needed for further normalizing of the min_rates.
2275 Returns:
2276 sum of vn_min_rates.
2277 or
2278 0 - if all the min_rates are 0.
2279 In the later case fainess algorithm should be deactivated.
2280 If not all min_rates are zero then those that are zeroes will be set to 1.
2281 */
2282 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2283 {
2284 int all_zero = 1;
2285 int vn;
2286
2287 bp->vn_weight_sum = 0;
2288 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2289 u32 vn_cfg = bp->mf_config[vn];
2290 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2291 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2292
2293 /* Skip hidden vns */
2294 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2295 continue;
2296
2297 /* If min rate is zero - set it to 1 */
2298 if (!vn_min_rate)
2299 vn_min_rate = DEF_MIN_RATE;
2300 else
2301 all_zero = 0;
2302
2303 bp->vn_weight_sum += vn_min_rate;
2304 }
2305
2306 /* if ETS or all min rates are zeros - disable fairness */
2307 if (BNX2X_IS_ETS_ENABLED(bp)) {
2308 bp->cmng.flags.cmng_enables &=
2309 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2310 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2311 } else if (all_zero) {
2312 bp->cmng.flags.cmng_enables &=
2313 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2314 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2315 " fairness will be disabled\n");
2316 } else
2317 bp->cmng.flags.cmng_enables |=
2318 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2319 }
2320
2321 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2322 {
2323 struct rate_shaping_vars_per_vn m_rs_vn;
2324 struct fairness_vars_per_vn m_fair_vn;
2325 u32 vn_cfg = bp->mf_config[vn];
2326 int func = func_by_vn(bp, vn);
2327 u16 vn_min_rate, vn_max_rate;
2328 int i;
2329
2330 /* If function is hidden - set min and max to zeroes */
2331 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2332 vn_min_rate = 0;
2333 vn_max_rate = 0;
2334
2335 } else {
2336 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2337
2338 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2339 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2340 /* If fairness is enabled (not all min rates are zeroes) and
2341 if current min rate is zero - set it to 1.
2342 This is a requirement of the algorithm. */
2343 if (bp->vn_weight_sum && (vn_min_rate == 0))
2344 vn_min_rate = DEF_MIN_RATE;
2345
2346 if (IS_MF_SI(bp))
2347 /* maxCfg in percents of linkspeed */
2348 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2349 else
2350 /* maxCfg is absolute in 100Mb units */
2351 vn_max_rate = maxCfg * 100;
2352 }
2353
2354 DP(NETIF_MSG_IFUP,
2355 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2356 func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2357
2358 memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2359 memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2360
2361 /* global vn counter - maximal Mbps for this vn */
2362 m_rs_vn.vn_counter.rate = vn_max_rate;
2363
2364 /* quota - number of bytes transmitted in this period */
2365 m_rs_vn.vn_counter.quota =
2366 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2367
2368 if (bp->vn_weight_sum) {
2369 /* credit for each period of the fairness algorithm:
2370 number of bytes in T_FAIR (the vn share the port rate).
2371 vn_weight_sum should not be larger than 10000, thus
2372 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2373 than zero */
2374 m_fair_vn.vn_credit_delta =
2375 max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2376 (8 * bp->vn_weight_sum))),
2377 (bp->cmng.fair_vars.fair_threshold +
2378 MIN_ABOVE_THRESH));
2379 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2380 m_fair_vn.vn_credit_delta);
2381 }
2382
2383 /* Store it to internal memory */
2384 for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2385 REG_WR(bp, BAR_XSTRORM_INTMEM +
2386 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2387 ((u32 *)(&m_rs_vn))[i]);
2388
2389 for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2390 REG_WR(bp, BAR_XSTRORM_INTMEM +
2391 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2392 ((u32 *)(&m_fair_vn))[i]);
2393 }
2394
2395 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2396 {
2397 if (CHIP_REV_IS_SLOW(bp))
2398 return CMNG_FNS_NONE;
2399 if (IS_MF(bp))
2400 return CMNG_FNS_MINMAX;
2401
2402 return CMNG_FNS_NONE;
2403 }
2404
2405 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2406 {
2407 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2408
2409 if (BP_NOMCP(bp))
2410 return; /* what should be the default bvalue in this case */
2411
2412 /* For 2 port configuration the absolute function number formula
2413 * is:
2414 * abs_func = 2 * vn + BP_PORT + BP_PATH
2415 *
2416 * and there are 4 functions per port
2417 *
2418 * For 4 port configuration it is
2419 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2420 *
2421 * and there are 2 functions per port
2422 */
2423 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2424 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2425
2426 if (func >= E1H_FUNC_MAX)
2427 break;
2428
2429 bp->mf_config[vn] =
2430 MF_CFG_RD(bp, func_mf_config[func].config);
2431 }
2432 }
2433
2434 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2435 {
2436
2437 if (cmng_type == CMNG_FNS_MINMAX) {
2438 int vn;
2439
2440 /* clear cmng_enables */
2441 bp->cmng.flags.cmng_enables = 0;
2442
2443 /* read mf conf from shmem */
2444 if (read_cfg)
2445 bnx2x_read_mf_cfg(bp);
2446
2447 /* Init rate shaping and fairness contexts */
2448 bnx2x_init_port_minmax(bp);
2449
2450 /* vn_weight_sum and enable fairness if not 0 */
2451 bnx2x_calc_vn_weight_sum(bp);
2452
2453 /* calculate and set min-max rate for each vn */
2454 if (bp->port.pmf)
2455 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2456 bnx2x_init_vn_minmax(bp, vn);
2457
2458 /* always enable rate shaping and fairness */
2459 bp->cmng.flags.cmng_enables |=
2460 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2461 if (!bp->vn_weight_sum)
2462 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2463 " fairness will be disabled\n");
2464 return;
2465 }
2466
2467 /* rate shaping and fairness are disabled */
2468 DP(NETIF_MSG_IFUP,
2469 "rate shaping and fairness are disabled\n");
2470 }
2471
2472 /* This function is called upon link interrupt */
2473 static void bnx2x_link_attn(struct bnx2x *bp)
2474 {
2475 /* Make sure that we are synced with the current statistics */
2476 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2477
2478 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2479
2480 if (bp->link_vars.link_up) {
2481
2482 /* dropless flow control */
2483 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2484 int port = BP_PORT(bp);
2485 u32 pause_enabled = 0;
2486
2487 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2488 pause_enabled = 1;
2489
2490 REG_WR(bp, BAR_USTRORM_INTMEM +
2491 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2492 pause_enabled);
2493 }
2494
2495 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2496 struct host_port_stats *pstats;
2497
2498 pstats = bnx2x_sp(bp, port_stats);
2499 /* reset old mac stats */
2500 memset(&(pstats->mac_stx[0]), 0,
2501 sizeof(struct mac_stx));
2502 }
2503 if (bp->state == BNX2X_STATE_OPEN)
2504 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2505 }
2506
2507 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2508 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2509
2510 if (cmng_fns != CMNG_FNS_NONE) {
2511 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2512 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2513 } else
2514 /* rate shaping and fairness are disabled */
2515 DP(NETIF_MSG_IFUP,
2516 "single function mode without fairness\n");
2517 }
2518
2519 __bnx2x_link_report(bp);
2520
2521 if (IS_MF(bp))
2522 bnx2x_link_sync_notify(bp);
2523 }
2524
2525 void bnx2x__link_status_update(struct bnx2x *bp)
2526 {
2527 if (bp->state != BNX2X_STATE_OPEN)
2528 return;
2529
2530 /* read updated dcb configuration */
2531 bnx2x_dcbx_pmf_update(bp);
2532
2533 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2534
2535 if (bp->link_vars.link_up)
2536 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2537 else
2538 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2539
2540 /* indicate link status */
2541 bnx2x_link_report(bp);
2542 }
2543
2544 static void bnx2x_pmf_update(struct bnx2x *bp)
2545 {
2546 int port = BP_PORT(bp);
2547 u32 val;
2548
2549 bp->port.pmf = 1;
2550 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2551
2552 /*
2553 * We need the mb() to ensure the ordering between the writing to
2554 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2555 */
2556 smp_mb();
2557
2558 /* queue a periodic task */
2559 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2560
2561 bnx2x_dcbx_pmf_update(bp);
2562
2563 /* enable nig attention */
2564 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2565 if (bp->common.int_block == INT_BLOCK_HC) {
2566 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2567 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2568 } else if (!CHIP_IS_E1x(bp)) {
2569 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2570 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2571 }
2572
2573 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2574 }
2575
2576 /* end of Link */
2577
2578 /* slow path */
2579
2580 /*
2581 * General service functions
2582 */
2583
2584 /* send the MCP a request, block until there is a reply */
2585 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2586 {
2587 int mb_idx = BP_FW_MB_IDX(bp);
2588 u32 seq;
2589 u32 rc = 0;
2590 u32 cnt = 1;
2591 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2592
2593 mutex_lock(&bp->fw_mb_mutex);
2594 seq = ++bp->fw_seq;
2595 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2596 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2597
2598 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2599 (command | seq), param);
2600
2601 do {
2602 /* let the FW do it's magic ... */
2603 msleep(delay);
2604
2605 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2606
2607 /* Give the FW up to 5 second (500*10ms) */
2608 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2609
2610 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2611 cnt*delay, rc, seq);
2612
2613 /* is this a reply to our command? */
2614 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2615 rc &= FW_MSG_CODE_MASK;
2616 else {
2617 /* FW BUG! */
2618 BNX2X_ERR("FW failed to respond!\n");
2619 bnx2x_fw_dump(bp);
2620 rc = 0;
2621 }
2622 mutex_unlock(&bp->fw_mb_mutex);
2623
2624 return rc;
2625 }
2626
2627 static u8 stat_counter_valid(struct bnx2x *bp, struct bnx2x_fastpath *fp)
2628 {
2629 #ifdef BCM_CNIC
2630 /* Statistics are not supported for CNIC Clients at the moment */
2631 if (IS_FCOE_FP(fp))
2632 return false;
2633 #endif
2634 return true;
2635 }
2636
2637 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2638 {
2639 if (CHIP_IS_E1x(bp)) {
2640 struct tstorm_eth_function_common_config tcfg = {0};
2641
2642 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2643 }
2644
2645 /* Enable the function in the FW */
2646 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2647 storm_memset_func_en(bp, p->func_id, 1);
2648
2649 /* spq */
2650 if (p->func_flgs & FUNC_FLG_SPQ) {
2651 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2652 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2653 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2654 }
2655 }
2656
2657 /**
2658 * bnx2x_get_tx_only_flags - Return common flags
2659 *
2660 * @bp device handle
2661 * @fp queue handle
2662 * @zero_stats TRUE if statistics zeroing is needed
2663 *
2664 * Return the flags that are common for the Tx-only and not normal connections.
2665 */
2666 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2667 struct bnx2x_fastpath *fp,
2668 bool zero_stats)
2669 {
2670 unsigned long flags = 0;
2671
2672 /* PF driver will always initialize the Queue to an ACTIVE state */
2673 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2674
2675 /* tx only connections collect statistics (on the same index as the
2676 * parent connection). The statistics are zeroed when the parent
2677 * connection is initialized.
2678 */
2679 if (stat_counter_valid(bp, fp)) {
2680 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2681 if (zero_stats)
2682 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2683 }
2684
2685 return flags;
2686 }
2687
2688 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2689 struct bnx2x_fastpath *fp,
2690 bool leading)
2691 {
2692 unsigned long flags = 0;
2693
2694 /* calculate other queue flags */
2695 if (IS_MF_SD(bp))
2696 __set_bit(BNX2X_Q_FLG_OV, &flags);
2697
2698 if (IS_FCOE_FP(fp))
2699 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2700
2701 if (!fp->disable_tpa) {
2702 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2703 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2704 }
2705
2706 if (leading) {
2707 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2708 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2709 }
2710
2711 /* Always set HW VLAN stripping */
2712 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2713
2714
2715 return flags | bnx2x_get_common_flags(bp, fp, true);
2716 }
2717
2718 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2719 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2720 u8 cos)
2721 {
2722 gen_init->stat_id = bnx2x_stats_id(fp);
2723 gen_init->spcl_id = fp->cl_id;
2724
2725 /* Always use mini-jumbo MTU for FCoE L2 ring */
2726 if (IS_FCOE_FP(fp))
2727 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2728 else
2729 gen_init->mtu = bp->dev->mtu;
2730
2731 gen_init->cos = cos;
2732 }
2733
2734 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2735 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2736 struct bnx2x_rxq_setup_params *rxq_init)
2737 {
2738 u8 max_sge = 0;
2739 u16 sge_sz = 0;
2740 u16 tpa_agg_size = 0;
2741
2742 if (!fp->disable_tpa) {
2743 pause->sge_th_lo = SGE_TH_LO(bp);
2744 pause->sge_th_hi = SGE_TH_HI(bp);
2745
2746 /* validate SGE ring has enough to cross high threshold */
2747 WARN_ON(bp->dropless_fc &&
2748 pause->sge_th_hi + FW_PREFETCH_CNT >
2749 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2750
2751 tpa_agg_size = min_t(u32,
2752 (min_t(u32, 8, MAX_SKB_FRAGS) *
2753 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2754 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2755 SGE_PAGE_SHIFT;
2756 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2757 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2758 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2759 0xffff);
2760 }
2761
2762 /* pause - not for e1 */
2763 if (!CHIP_IS_E1(bp)) {
2764 pause->bd_th_lo = BD_TH_LO(bp);
2765 pause->bd_th_hi = BD_TH_HI(bp);
2766
2767 pause->rcq_th_lo = RCQ_TH_LO(bp);
2768 pause->rcq_th_hi = RCQ_TH_HI(bp);
2769 /*
2770 * validate that rings have enough entries to cross
2771 * high thresholds
2772 */
2773 WARN_ON(bp->dropless_fc &&
2774 pause->bd_th_hi + FW_PREFETCH_CNT >
2775 bp->rx_ring_size);
2776 WARN_ON(bp->dropless_fc &&
2777 pause->rcq_th_hi + FW_PREFETCH_CNT >
2778 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2779
2780 pause->pri_map = 1;
2781 }
2782
2783 /* rxq setup */
2784 rxq_init->dscr_map = fp->rx_desc_mapping;
2785 rxq_init->sge_map = fp->rx_sge_mapping;
2786 rxq_init->rcq_map = fp->rx_comp_mapping;
2787 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2788
2789 /* This should be a maximum number of data bytes that may be
2790 * placed on the BD (not including paddings).
2791 */
2792 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2793 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2794
2795 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2796 rxq_init->tpa_agg_sz = tpa_agg_size;
2797 rxq_init->sge_buf_sz = sge_sz;
2798 rxq_init->max_sges_pkt = max_sge;
2799 rxq_init->rss_engine_id = BP_FUNC(bp);
2800
2801 /* Maximum number or simultaneous TPA aggregation for this Queue.
2802 *
2803 * For PF Clients it should be the maximum avaliable number.
2804 * VF driver(s) may want to define it to a smaller value.
2805 */
2806 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2807
2808 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2809 rxq_init->fw_sb_id = fp->fw_sb_id;
2810
2811 if (IS_FCOE_FP(fp))
2812 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2813 else
2814 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2815 }
2816
2817 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2818 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2819 u8 cos)
2820 {
2821 txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2822 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2823 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2824 txq_init->fw_sb_id = fp->fw_sb_id;
2825
2826 /*
2827 * set the tss leading client id for TX classfication ==
2828 * leading RSS client id
2829 */
2830 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2831
2832 if (IS_FCOE_FP(fp)) {
2833 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2834 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2835 }
2836 }
2837
2838 static void bnx2x_pf_init(struct bnx2x *bp)
2839 {
2840 struct bnx2x_func_init_params func_init = {0};
2841 struct event_ring_data eq_data = { {0} };
2842 u16 flags;
2843
2844 if (!CHIP_IS_E1x(bp)) {
2845 /* reset IGU PF statistics: MSIX + ATTN */
2846 /* PF */
2847 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2848 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2849 (CHIP_MODE_IS_4_PORT(bp) ?
2850 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2851 /* ATTN */
2852 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2853 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2854 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2855 (CHIP_MODE_IS_4_PORT(bp) ?
2856 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2857 }
2858
2859 /* function setup flags */
2860 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2861
2862 /* This flag is relevant for E1x only.
2863 * E2 doesn't have a TPA configuration in a function level.
2864 */
2865 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2866
2867 func_init.func_flgs = flags;
2868 func_init.pf_id = BP_FUNC(bp);
2869 func_init.func_id = BP_FUNC(bp);
2870 func_init.spq_map = bp->spq_mapping;
2871 func_init.spq_prod = bp->spq_prod_idx;
2872
2873 bnx2x_func_init(bp, &func_init);
2874
2875 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2876
2877 /*
2878 * Congestion management values depend on the link rate
2879 * There is no active link so initial link rate is set to 10 Gbps.
2880 * When the link comes up The congestion management values are
2881 * re-calculated according to the actual link rate.
2882 */
2883 bp->link_vars.line_speed = SPEED_10000;
2884 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2885
2886 /* Only the PMF sets the HW */
2887 if (bp->port.pmf)
2888 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2889
2890 /* init Event Queue */
2891 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2892 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2893 eq_data.producer = bp->eq_prod;
2894 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2895 eq_data.sb_id = DEF_SB_ID;
2896 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2897 }
2898
2899
2900 static void bnx2x_e1h_disable(struct bnx2x *bp)
2901 {
2902 int port = BP_PORT(bp);
2903
2904 bnx2x_tx_disable(bp);
2905
2906 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2907 }
2908
2909 static void bnx2x_e1h_enable(struct bnx2x *bp)
2910 {
2911 int port = BP_PORT(bp);
2912
2913 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2914
2915 /* Tx queue should be only reenabled */
2916 netif_tx_wake_all_queues(bp->dev);
2917
2918 /*
2919 * Should not call netif_carrier_on since it will be called if the link
2920 * is up when checking for link state
2921 */
2922 }
2923
2924 /* called due to MCP event (on pmf):
2925 * reread new bandwidth configuration
2926 * configure FW
2927 * notify others function about the change
2928 */
2929 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
2930 {
2931 if (bp->link_vars.link_up) {
2932 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
2933 bnx2x_link_sync_notify(bp);
2934 }
2935 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2936 }
2937
2938 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
2939 {
2940 bnx2x_config_mf_bw(bp);
2941 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
2942 }
2943
2944 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
2945 {
2946 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
2947
2948 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
2949
2950 /*
2951 * This is the only place besides the function initialization
2952 * where the bp->flags can change so it is done without any
2953 * locks
2954 */
2955 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2956 DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
2957 bp->flags |= MF_FUNC_DIS;
2958
2959 bnx2x_e1h_disable(bp);
2960 } else {
2961 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2962 bp->flags &= ~MF_FUNC_DIS;
2963
2964 bnx2x_e1h_enable(bp);
2965 }
2966 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
2967 }
2968 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
2969 bnx2x_config_mf_bw(bp);
2970 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
2971 }
2972
2973 /* Report results to MCP */
2974 if (dcc_event)
2975 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
2976 else
2977 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
2978 }
2979
2980 /* must be called under the spq lock */
2981 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
2982 {
2983 struct eth_spe *next_spe = bp->spq_prod_bd;
2984
2985 if (bp->spq_prod_bd == bp->spq_last_bd) {
2986 bp->spq_prod_bd = bp->spq;
2987 bp->spq_prod_idx = 0;
2988 DP(NETIF_MSG_TIMER, "end of spq\n");
2989 } else {
2990 bp->spq_prod_bd++;
2991 bp->spq_prod_idx++;
2992 }
2993 return next_spe;
2994 }
2995
2996 /* must be called under the spq lock */
2997 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
2998 {
2999 int func = BP_FUNC(bp);
3000
3001 /*
3002 * Make sure that BD data is updated before writing the producer:
3003 * BD data is written to the memory, the producer is read from the
3004 * memory, thus we need a full memory barrier to ensure the ordering.
3005 */
3006 mb();
3007
3008 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3009 bp->spq_prod_idx);
3010 mmiowb();
3011 }
3012
3013 /**
3014 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3015 *
3016 * @cmd: command to check
3017 * @cmd_type: command type
3018 */
3019 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3020 {
3021 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3022 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3023 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3024 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3025 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3026 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3027 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3028 return true;
3029 else
3030 return false;
3031
3032 }
3033
3034
3035 /**
3036 * bnx2x_sp_post - place a single command on an SP ring
3037 *
3038 * @bp: driver handle
3039 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3040 * @cid: SW CID the command is related to
3041 * @data_hi: command private data address (high 32 bits)
3042 * @data_lo: command private data address (low 32 bits)
3043 * @cmd_type: command type (e.g. NONE, ETH)
3044 *
3045 * SP data is handled as if it's always an address pair, thus data fields are
3046 * not swapped to little endian in upper functions. Instead this function swaps
3047 * data as if it's two u32 fields.
3048 */
3049 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3050 u32 data_hi, u32 data_lo, int cmd_type)
3051 {
3052 struct eth_spe *spe;
3053 u16 type;
3054 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3055
3056 #ifdef BNX2X_STOP_ON_ERROR
3057 if (unlikely(bp->panic))
3058 return -EIO;
3059 #endif
3060
3061 spin_lock_bh(&bp->spq_lock);
3062
3063 if (common) {
3064 if (!atomic_read(&bp->eq_spq_left)) {
3065 BNX2X_ERR("BUG! EQ ring full!\n");
3066 spin_unlock_bh(&bp->spq_lock);
3067 bnx2x_panic();
3068 return -EBUSY;
3069 }
3070 } else if (!atomic_read(&bp->cq_spq_left)) {
3071 BNX2X_ERR("BUG! SPQ ring full!\n");
3072 spin_unlock_bh(&bp->spq_lock);
3073 bnx2x_panic();
3074 return -EBUSY;
3075 }
3076
3077 spe = bnx2x_sp_get_next(bp);
3078
3079 /* CID needs port number to be encoded int it */
3080 spe->hdr.conn_and_cmd_data =
3081 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3082 HW_CID(bp, cid));
3083
3084 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3085
3086 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3087 SPE_HDR_FUNCTION_ID);
3088
3089 spe->hdr.type = cpu_to_le16(type);
3090
3091 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3092 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3093
3094 /*
3095 * It's ok if the actual decrement is issued towards the memory
3096 * somewhere between the spin_lock and spin_unlock. Thus no
3097 * more explict memory barrier is needed.
3098 */
3099 if (common)
3100 atomic_dec(&bp->eq_spq_left);
3101 else
3102 atomic_dec(&bp->cq_spq_left);
3103
3104
3105 DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3106 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
3107 "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3108 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3109 (u32)(U64_LO(bp->spq_mapping) +
3110 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3111 HW_CID(bp, cid), data_hi, data_lo, type,
3112 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3113
3114 bnx2x_sp_prod_update(bp);
3115 spin_unlock_bh(&bp->spq_lock);
3116 return 0;
3117 }
3118
3119 /* acquire split MCP access lock register */
3120 static int bnx2x_acquire_alr(struct bnx2x *bp)
3121 {
3122 u32 j, val;
3123 int rc = 0;
3124
3125 might_sleep();
3126 for (j = 0; j < 1000; j++) {
3127 val = (1UL << 31);
3128 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3129 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3130 if (val & (1L << 31))
3131 break;
3132
3133 msleep(5);
3134 }
3135 if (!(val & (1L << 31))) {
3136 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3137 rc = -EBUSY;
3138 }
3139
3140 return rc;
3141 }
3142
3143 /* release split MCP access lock register */
3144 static void bnx2x_release_alr(struct bnx2x *bp)
3145 {
3146 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3147 }
3148
3149 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3150 #define BNX2X_DEF_SB_IDX 0x0002
3151
3152 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3153 {
3154 struct host_sp_status_block *def_sb = bp->def_status_blk;
3155 u16 rc = 0;
3156
3157 barrier(); /* status block is written to by the chip */
3158 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3159 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3160 rc |= BNX2X_DEF_SB_ATT_IDX;
3161 }
3162
3163 if (bp->def_idx != def_sb->sp_sb.running_index) {
3164 bp->def_idx = def_sb->sp_sb.running_index;
3165 rc |= BNX2X_DEF_SB_IDX;
3166 }
3167
3168 /* Do not reorder: indecies reading should complete before handling */
3169 barrier();
3170 return rc;
3171 }
3172
3173 /*
3174 * slow path service functions
3175 */
3176
3177 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3178 {
3179 int port = BP_PORT(bp);
3180 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3181 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3182 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3183 NIG_REG_MASK_INTERRUPT_PORT0;
3184 u32 aeu_mask;
3185 u32 nig_mask = 0;
3186 u32 reg_addr;
3187
3188 if (bp->attn_state & asserted)
3189 BNX2X_ERR("IGU ERROR\n");
3190
3191 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3192 aeu_mask = REG_RD(bp, aeu_addr);
3193
3194 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3195 aeu_mask, asserted);
3196 aeu_mask &= ~(asserted & 0x3ff);
3197 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3198
3199 REG_WR(bp, aeu_addr, aeu_mask);
3200 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3201
3202 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3203 bp->attn_state |= asserted;
3204 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3205
3206 if (asserted & ATTN_HARD_WIRED_MASK) {
3207 if (asserted & ATTN_NIG_FOR_FUNC) {
3208
3209 bnx2x_acquire_phy_lock(bp);
3210
3211 /* save nig interrupt mask */
3212 nig_mask = REG_RD(bp, nig_int_mask_addr);
3213
3214 /* If nig_mask is not set, no need to call the update
3215 * function.
3216 */
3217 if (nig_mask) {
3218 REG_WR(bp, nig_int_mask_addr, 0);
3219
3220 bnx2x_link_attn(bp);
3221 }
3222
3223 /* handle unicore attn? */
3224 }
3225 if (asserted & ATTN_SW_TIMER_4_FUNC)
3226 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3227
3228 if (asserted & GPIO_2_FUNC)
3229 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3230
3231 if (asserted & GPIO_3_FUNC)
3232 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3233
3234 if (asserted & GPIO_4_FUNC)
3235 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3236
3237 if (port == 0) {
3238 if (asserted & ATTN_GENERAL_ATTN_1) {
3239 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3240 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3241 }
3242 if (asserted & ATTN_GENERAL_ATTN_2) {
3243 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3244 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3245 }
3246 if (asserted & ATTN_GENERAL_ATTN_3) {
3247 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3248 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3249 }
3250 } else {
3251 if (asserted & ATTN_GENERAL_ATTN_4) {
3252 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3253 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3254 }
3255 if (asserted & ATTN_GENERAL_ATTN_5) {
3256 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3257 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3258 }
3259 if (asserted & ATTN_GENERAL_ATTN_6) {
3260 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3261 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3262 }
3263 }
3264
3265 } /* if hardwired */
3266
3267 if (bp->common.int_block == INT_BLOCK_HC)
3268 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3269 COMMAND_REG_ATTN_BITS_SET);
3270 else
3271 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3272
3273 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3274 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3275 REG_WR(bp, reg_addr, asserted);
3276
3277 /* now set back the mask */
3278 if (asserted & ATTN_NIG_FOR_FUNC) {
3279 REG_WR(bp, nig_int_mask_addr, nig_mask);
3280 bnx2x_release_phy_lock(bp);
3281 }
3282 }
3283
3284 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3285 {
3286 int port = BP_PORT(bp);
3287 u32 ext_phy_config;
3288 /* mark the failure */
3289 ext_phy_config =
3290 SHMEM_RD(bp,
3291 dev_info.port_hw_config[port].external_phy_config);
3292
3293 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3294 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3295 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3296 ext_phy_config);
3297
3298 /* log the failure */
3299 netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3300 " the driver to shutdown the card to prevent permanent"
3301 " damage. Please contact OEM Support for assistance\n");
3302
3303 /*
3304 * Scheudle device reset (unload)
3305 * This is due to some boards consuming sufficient power when driver is
3306 * up to overheat if fan fails.
3307 */
3308 smp_mb__before_clear_bit();
3309 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3310 smp_mb__after_clear_bit();
3311 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3312
3313 }
3314
3315 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3316 {
3317 int port = BP_PORT(bp);
3318 int reg_offset;
3319 u32 val;
3320
3321 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3322 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3323
3324 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3325
3326 val = REG_RD(bp, reg_offset);
3327 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3328 REG_WR(bp, reg_offset, val);
3329
3330 BNX2X_ERR("SPIO5 hw attention\n");
3331
3332 /* Fan failure attention */
3333 bnx2x_hw_reset_phy(&bp->link_params);
3334 bnx2x_fan_failure(bp);
3335 }
3336
3337 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3338 bnx2x_acquire_phy_lock(bp);
3339 bnx2x_handle_module_detect_int(&bp->link_params);
3340 bnx2x_release_phy_lock(bp);
3341 }
3342
3343 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3344
3345 val = REG_RD(bp, reg_offset);
3346 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3347 REG_WR(bp, reg_offset, val);
3348
3349 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3350 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3351 bnx2x_panic();
3352 }
3353 }
3354
3355 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3356 {
3357 u32 val;
3358
3359 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3360
3361 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3362 BNX2X_ERR("DB hw attention 0x%x\n", val);
3363 /* DORQ discard attention */
3364 if (val & 0x2)
3365 BNX2X_ERR("FATAL error from DORQ\n");
3366 }
3367
3368 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3369
3370 int port = BP_PORT(bp);
3371 int reg_offset;
3372
3373 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3374 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3375
3376 val = REG_RD(bp, reg_offset);
3377 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3378 REG_WR(bp, reg_offset, val);
3379
3380 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3381 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3382 bnx2x_panic();
3383 }
3384 }
3385
3386 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3387 {
3388 u32 val;
3389
3390 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3391
3392 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3393 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3394 /* CFC error attention */
3395 if (val & 0x2)
3396 BNX2X_ERR("FATAL error from CFC\n");
3397 }
3398
3399 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3400 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3401 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3402 /* RQ_USDMDP_FIFO_OVERFLOW */
3403 if (val & 0x18000)
3404 BNX2X_ERR("FATAL error from PXP\n");
3405
3406 if (!CHIP_IS_E1x(bp)) {
3407 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3408 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3409 }
3410 }
3411
3412 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3413
3414 int port = BP_PORT(bp);
3415 int reg_offset;
3416
3417 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3418 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3419
3420 val = REG_RD(bp, reg_offset);
3421 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3422 REG_WR(bp, reg_offset, val);
3423
3424 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3425 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3426 bnx2x_panic();
3427 }
3428 }
3429
3430 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3431 {
3432 u32 val;
3433
3434 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3435
3436 if (attn & BNX2X_PMF_LINK_ASSERT) {
3437 int func = BP_FUNC(bp);
3438
3439 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3440 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3441 func_mf_config[BP_ABS_FUNC(bp)].config);
3442 val = SHMEM_RD(bp,
3443 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3444 if (val & DRV_STATUS_DCC_EVENT_MASK)
3445 bnx2x_dcc_event(bp,
3446 (val & DRV_STATUS_DCC_EVENT_MASK));
3447
3448 if (val & DRV_STATUS_SET_MF_BW)
3449 bnx2x_set_mf_bw(bp);
3450
3451 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3452 bnx2x_pmf_update(bp);
3453
3454 if (bp->port.pmf &&
3455 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3456 bp->dcbx_enabled > 0)
3457 /* start dcbx state machine */
3458 bnx2x_dcbx_set_params(bp,
3459 BNX2X_DCBX_STATE_NEG_RECEIVED);
3460 if (bp->link_vars.periodic_flags &
3461 PERIODIC_FLAGS_LINK_EVENT) {
3462 /* sync with link */
3463 bnx2x_acquire_phy_lock(bp);
3464 bp->link_vars.periodic_flags &=
3465 ~PERIODIC_FLAGS_LINK_EVENT;
3466 bnx2x_release_phy_lock(bp);
3467 if (IS_MF(bp))
3468 bnx2x_link_sync_notify(bp);
3469 bnx2x_link_report(bp);
3470 }
3471 /* Always call it here: bnx2x_link_report() will
3472 * prevent the link indication duplication.
3473 */
3474 bnx2x__link_status_update(bp);
3475 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3476
3477 BNX2X_ERR("MC assert!\n");
3478 bnx2x_mc_assert(bp);
3479 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3480 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3481 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3482 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3483 bnx2x_panic();
3484
3485 } else if (attn & BNX2X_MCP_ASSERT) {
3486
3487 BNX2X_ERR("MCP assert!\n");
3488 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3489 bnx2x_fw_dump(bp);
3490
3491 } else
3492 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3493 }
3494
3495 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3496 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3497 if (attn & BNX2X_GRC_TIMEOUT) {
3498 val = CHIP_IS_E1(bp) ? 0 :
3499 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3500 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3501 }
3502 if (attn & BNX2X_GRC_RSV) {
3503 val = CHIP_IS_E1(bp) ? 0 :
3504 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3505 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3506 }
3507 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3508 }
3509 }
3510
3511 /*
3512 * Bits map:
3513 * 0-7 - Engine0 load counter.
3514 * 8-15 - Engine1 load counter.
3515 * 16 - Engine0 RESET_IN_PROGRESS bit.
3516 * 17 - Engine1 RESET_IN_PROGRESS bit.
3517 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3518 * on the engine
3519 * 19 - Engine1 ONE_IS_LOADED.
3520 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3521 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3522 * just the one belonging to its engine).
3523 *
3524 */
3525 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3526
3527 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3528 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3529 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3530 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3531 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3532 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3533 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3534
3535 /*
3536 * Set the GLOBAL_RESET bit.
3537 *
3538 * Should be run under rtnl lock
3539 */
3540 void bnx2x_set_reset_global(struct bnx2x *bp)
3541 {
3542 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3543
3544 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3545 barrier();
3546 mmiowb();
3547 }
3548
3549 /*
3550 * Clear the GLOBAL_RESET bit.
3551 *
3552 * Should be run under rtnl lock
3553 */
3554 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3555 {
3556 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3557
3558 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3559 barrier();
3560 mmiowb();
3561 }
3562
3563 /*
3564 * Checks the GLOBAL_RESET bit.
3565 *
3566 * should be run under rtnl lock
3567 */
3568 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3569 {
3570 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3571
3572 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3573 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3574 }
3575
3576 /*
3577 * Clear RESET_IN_PROGRESS bit for the current engine.
3578 *
3579 * Should be run under rtnl lock
3580 */
3581 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3582 {
3583 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3584 u32 bit = BP_PATH(bp) ?
3585 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3586
3587 /* Clear the bit */
3588 val &= ~bit;
3589 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3590 barrier();
3591 mmiowb();
3592 }
3593
3594 /*
3595 * Set RESET_IN_PROGRESS for the current engine.
3596 *
3597 * should be run under rtnl lock
3598 */
3599 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3600 {
3601 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3602 u32 bit = BP_PATH(bp) ?
3603 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3604
3605 /* Set the bit */
3606 val |= bit;
3607 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3608 barrier();
3609 mmiowb();
3610 }
3611
3612 /*
3613 * Checks the RESET_IN_PROGRESS bit for the given engine.
3614 * should be run under rtnl lock
3615 */
3616 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3617 {
3618 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3619 u32 bit = engine ?
3620 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3621
3622 /* return false if bit is set */
3623 return (val & bit) ? false : true;
3624 }
3625
3626 /*
3627 * Increment the load counter for the current engine.
3628 *
3629 * should be run under rtnl lock
3630 */
3631 void bnx2x_inc_load_cnt(struct bnx2x *bp)
3632 {
3633 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3634 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3635 BNX2X_PATH0_LOAD_CNT_MASK;
3636 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3637 BNX2X_PATH0_LOAD_CNT_SHIFT;
3638
3639 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3640
3641 /* get the current counter value */
3642 val1 = (val & mask) >> shift;
3643
3644 /* increment... */
3645 val1++;
3646
3647 /* clear the old value */
3648 val &= ~mask;
3649
3650 /* set the new one */
3651 val |= ((val1 << shift) & mask);
3652
3653 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3654 barrier();
3655 mmiowb();
3656 }
3657
3658 /**
3659 * bnx2x_dec_load_cnt - decrement the load counter
3660 *
3661 * @bp: driver handle
3662 *
3663 * Should be run under rtnl lock.
3664 * Decrements the load counter for the current engine. Returns
3665 * the new counter value.
3666 */
3667 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3668 {
3669 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3670 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3671 BNX2X_PATH0_LOAD_CNT_MASK;
3672 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3673 BNX2X_PATH0_LOAD_CNT_SHIFT;
3674
3675 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3676
3677 /* get the current counter value */
3678 val1 = (val & mask) >> shift;
3679
3680 /* decrement... */
3681 val1--;
3682
3683 /* clear the old value */
3684 val &= ~mask;
3685
3686 /* set the new one */
3687 val |= ((val1 << shift) & mask);
3688
3689 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3690 barrier();
3691 mmiowb();
3692
3693 return val1;
3694 }
3695
3696 /*
3697 * Read the load counter for the current engine.
3698 *
3699 * should be run under rtnl lock
3700 */
3701 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3702 {
3703 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3704 BNX2X_PATH0_LOAD_CNT_MASK);
3705 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3706 BNX2X_PATH0_LOAD_CNT_SHIFT);
3707 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3708
3709 DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3710
3711 val = (val & mask) >> shift;
3712
3713 DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3714
3715 return val;
3716 }
3717
3718 /*
3719 * Reset the load counter for the current engine.
3720 *
3721 * should be run under rtnl lock
3722 */
3723 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3724 {
3725 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3726 u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3727 BNX2X_PATH0_LOAD_CNT_MASK);
3728
3729 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3730 }
3731
3732 static inline void _print_next_block(int idx, const char *blk)
3733 {
3734 pr_cont("%s%s", idx ? ", " : "", blk);
3735 }
3736
3737 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3738 bool print)
3739 {
3740 int i = 0;
3741 u32 cur_bit = 0;
3742 for (i = 0; sig; i++) {
3743 cur_bit = ((u32)0x1 << i);
3744 if (sig & cur_bit) {
3745 switch (cur_bit) {
3746 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3747 if (print)
3748 _print_next_block(par_num++, "BRB");
3749 break;
3750 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3751 if (print)
3752 _print_next_block(par_num++, "PARSER");
3753 break;
3754 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3755 if (print)
3756 _print_next_block(par_num++, "TSDM");
3757 break;
3758 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3759 if (print)
3760 _print_next_block(par_num++,
3761 "SEARCHER");
3762 break;
3763 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3764 if (print)
3765 _print_next_block(par_num++, "TCM");
3766 break;
3767 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3768 if (print)
3769 _print_next_block(par_num++, "TSEMI");
3770 break;
3771 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3772 if (print)
3773 _print_next_block(par_num++, "XPB");
3774 break;
3775 }
3776
3777 /* Clear the bit */
3778 sig &= ~cur_bit;
3779 }
3780 }
3781
3782 return par_num;
3783 }
3784
3785 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3786 bool *global, bool print)
3787 {
3788 int i = 0;
3789 u32 cur_bit = 0;
3790 for (i = 0; sig; i++) {
3791 cur_bit = ((u32)0x1 << i);
3792 if (sig & cur_bit) {
3793 switch (cur_bit) {
3794 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3795 if (print)
3796 _print_next_block(par_num++, "PBF");
3797 break;
3798 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3799 if (print)
3800 _print_next_block(par_num++, "QM");
3801 break;
3802 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3803 if (print)
3804 _print_next_block(par_num++, "TM");
3805 break;
3806 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3807 if (print)
3808 _print_next_block(par_num++, "XSDM");
3809 break;
3810 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3811 if (print)
3812 _print_next_block(par_num++, "XCM");
3813 break;
3814 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3815 if (print)
3816 _print_next_block(par_num++, "XSEMI");
3817 break;
3818 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3819 if (print)
3820 _print_next_block(par_num++,
3821 "DOORBELLQ");
3822 break;
3823 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3824 if (print)
3825 _print_next_block(par_num++, "NIG");
3826 break;
3827 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3828 if (print)
3829 _print_next_block(par_num++,
3830 "VAUX PCI CORE");
3831 *global = true;
3832 break;
3833 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3834 if (print)
3835 _print_next_block(par_num++, "DEBUG");
3836 break;
3837 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3838 if (print)
3839 _print_next_block(par_num++, "USDM");
3840 break;
3841 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3842 if (print)
3843 _print_next_block(par_num++, "UCM");
3844 break;
3845 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3846 if (print)
3847 _print_next_block(par_num++, "USEMI");
3848 break;
3849 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3850 if (print)
3851 _print_next_block(par_num++, "UPB");
3852 break;
3853 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3854 if (print)
3855 _print_next_block(par_num++, "CSDM");
3856 break;
3857 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3858 if (print)
3859 _print_next_block(par_num++, "CCM");
3860 break;
3861 }
3862
3863 /* Clear the bit */
3864 sig &= ~cur_bit;
3865 }
3866 }
3867
3868 return par_num;
3869 }
3870
3871 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
3872 bool print)
3873 {
3874 int i = 0;
3875 u32 cur_bit = 0;
3876 for (i = 0; sig; i++) {
3877 cur_bit = ((u32)0x1 << i);
3878 if (sig & cur_bit) {
3879 switch (cur_bit) {
3880 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3881 if (print)
3882 _print_next_block(par_num++, "CSEMI");
3883 break;
3884 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3885 if (print)
3886 _print_next_block(par_num++, "PXP");
3887 break;
3888 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3889 if (print)
3890 _print_next_block(par_num++,
3891 "PXPPCICLOCKCLIENT");
3892 break;
3893 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3894 if (print)
3895 _print_next_block(par_num++, "CFC");
3896 break;
3897 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3898 if (print)
3899 _print_next_block(par_num++, "CDU");
3900 break;
3901 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3902 if (print)
3903 _print_next_block(par_num++, "DMAE");
3904 break;
3905 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3906 if (print)
3907 _print_next_block(par_num++, "IGU");
3908 break;
3909 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3910 if (print)
3911 _print_next_block(par_num++, "MISC");
3912 break;
3913 }
3914
3915 /* Clear the bit */
3916 sig &= ~cur_bit;
3917 }
3918 }
3919
3920 return par_num;
3921 }
3922
3923 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
3924 bool *global, bool print)
3925 {
3926 int i = 0;
3927 u32 cur_bit = 0;
3928 for (i = 0; sig; i++) {
3929 cur_bit = ((u32)0x1 << i);
3930 if (sig & cur_bit) {
3931 switch (cur_bit) {
3932 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3933 if (print)
3934 _print_next_block(par_num++, "MCP ROM");
3935 *global = true;
3936 break;
3937 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3938 if (print)
3939 _print_next_block(par_num++,
3940 "MCP UMP RX");
3941 *global = true;
3942 break;
3943 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3944 if (print)
3945 _print_next_block(par_num++,
3946 "MCP UMP TX");
3947 *global = true;
3948 break;
3949 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3950 if (print)
3951 _print_next_block(par_num++,
3952 "MCP SCPAD");
3953 *global = true;
3954 break;
3955 }
3956
3957 /* Clear the bit */
3958 sig &= ~cur_bit;
3959 }
3960 }
3961
3962 return par_num;
3963 }
3964
3965 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
3966 bool print)
3967 {
3968 int i = 0;
3969 u32 cur_bit = 0;
3970 for (i = 0; sig; i++) {
3971 cur_bit = ((u32)0x1 << i);
3972 if (sig & cur_bit) {
3973 switch (cur_bit) {
3974 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3975 if (print)
3976 _print_next_block(par_num++, "PGLUE_B");
3977 break;
3978 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3979 if (print)
3980 _print_next_block(par_num++, "ATC");
3981 break;
3982 }
3983
3984 /* Clear the bit */
3985 sig &= ~cur_bit;
3986 }
3987 }
3988
3989 return par_num;
3990 }
3991
3992 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
3993 u32 *sig)
3994 {
3995 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3996 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3997 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3998 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3999 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4000 int par_num = 0;
4001 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4002 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4003 "[4]:0x%08x\n",
4004 sig[0] & HW_PRTY_ASSERT_SET_0,
4005 sig[1] & HW_PRTY_ASSERT_SET_1,
4006 sig[2] & HW_PRTY_ASSERT_SET_2,
4007 sig[3] & HW_PRTY_ASSERT_SET_3,
4008 sig[4] & HW_PRTY_ASSERT_SET_4);
4009 if (print)
4010 netdev_err(bp->dev,
4011 "Parity errors detected in blocks: ");
4012 par_num = bnx2x_check_blocks_with_parity0(
4013 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4014 par_num = bnx2x_check_blocks_with_parity1(
4015 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4016 par_num = bnx2x_check_blocks_with_parity2(
4017 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4018 par_num = bnx2x_check_blocks_with_parity3(
4019 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4020 par_num = bnx2x_check_blocks_with_parity4(
4021 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4022
4023 if (print)
4024 pr_cont("\n");
4025
4026 return true;
4027 } else
4028 return false;
4029 }
4030
4031 /**
4032 * bnx2x_chk_parity_attn - checks for parity attentions.
4033 *
4034 * @bp: driver handle
4035 * @global: true if there was a global attention
4036 * @print: show parity attention in syslog
4037 */
4038 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4039 {
4040 struct attn_route attn = { {0} };
4041 int port = BP_PORT(bp);
4042
4043 attn.sig[0] = REG_RD(bp,
4044 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4045 port*4);
4046 attn.sig[1] = REG_RD(bp,
4047 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4048 port*4);
4049 attn.sig[2] = REG_RD(bp,
4050 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4051 port*4);
4052 attn.sig[3] = REG_RD(bp,
4053 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4054 port*4);
4055
4056 if (!CHIP_IS_E1x(bp))
4057 attn.sig[4] = REG_RD(bp,
4058 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4059 port*4);
4060
4061 return bnx2x_parity_attn(bp, global, print, attn.sig);
4062 }
4063
4064
4065 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4066 {
4067 u32 val;
4068 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4069
4070 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4071 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4072 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4073 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4074 "ADDRESS_ERROR\n");
4075 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4076 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4077 "INCORRECT_RCV_BEHAVIOR\n");
4078 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4079 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4080 "WAS_ERROR_ATTN\n");
4081 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4082 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4083 "VF_LENGTH_VIOLATION_ATTN\n");
4084 if (val &
4085 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4086 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4087 "VF_GRC_SPACE_VIOLATION_ATTN\n");
4088 if (val &
4089 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4090 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4091 "VF_MSIX_BAR_VIOLATION_ATTN\n");
4092 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4093 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4094 "TCPL_ERROR_ATTN\n");
4095 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4096 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4097 "TCPL_IN_TWO_RCBS_ATTN\n");
4098 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4099 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4100 "CSSNOOP_FIFO_OVERFLOW\n");
4101 }
4102 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4103 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4104 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4105 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4106 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4107 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4108 BNX2X_ERR("ATC_ATC_INT_STS_REG"
4109 "_ATC_TCPL_TO_NOT_PEND\n");
4110 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4111 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4112 "ATC_GPA_MULTIPLE_HITS\n");
4113 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4114 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4115 "ATC_RCPL_TO_EMPTY_CNT\n");
4116 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4117 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4118 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4119 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4120 "ATC_IREQ_LESS_THAN_STU\n");
4121 }
4122
4123 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4124 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4125 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4126 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4127 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4128 }
4129
4130 }
4131
4132 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4133 {
4134 struct attn_route attn, *group_mask;
4135 int port = BP_PORT(bp);
4136 int index;
4137 u32 reg_addr;
4138 u32 val;
4139 u32 aeu_mask;
4140 bool global = false;
4141
4142 /* need to take HW lock because MCP or other port might also
4143 try to handle this event */
4144 bnx2x_acquire_alr(bp);
4145
4146 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4147 #ifndef BNX2X_STOP_ON_ERROR
4148 bp->recovery_state = BNX2X_RECOVERY_INIT;
4149 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4150 /* Disable HW interrupts */
4151 bnx2x_int_disable(bp);
4152 /* In case of parity errors don't handle attentions so that
4153 * other function would "see" parity errors.
4154 */
4155 #else
4156 bnx2x_panic();
4157 #endif
4158 bnx2x_release_alr(bp);
4159 return;
4160 }
4161
4162 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4163 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4164 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4165 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4166 if (!CHIP_IS_E1x(bp))
4167 attn.sig[4] =
4168 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4169 else
4170 attn.sig[4] = 0;
4171
4172 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4173 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4174
4175 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4176 if (deasserted & (1 << index)) {
4177 group_mask = &bp->attn_group[index];
4178
4179 DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4180 "%08x %08x %08x\n",
4181 index,
4182 group_mask->sig[0], group_mask->sig[1],
4183 group_mask->sig[2], group_mask->sig[3],
4184 group_mask->sig[4]);
4185
4186 bnx2x_attn_int_deasserted4(bp,
4187 attn.sig[4] & group_mask->sig[4]);
4188 bnx2x_attn_int_deasserted3(bp,
4189 attn.sig[3] & group_mask->sig[3]);
4190 bnx2x_attn_int_deasserted1(bp,
4191 attn.sig[1] & group_mask->sig[1]);
4192 bnx2x_attn_int_deasserted2(bp,
4193 attn.sig[2] & group_mask->sig[2]);
4194 bnx2x_attn_int_deasserted0(bp,
4195 attn.sig[0] & group_mask->sig[0]);
4196 }
4197 }
4198
4199 bnx2x_release_alr(bp);
4200
4201 if (bp->common.int_block == INT_BLOCK_HC)
4202 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4203 COMMAND_REG_ATTN_BITS_CLR);
4204 else
4205 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4206
4207 val = ~deasserted;
4208 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4209 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4210 REG_WR(bp, reg_addr, val);
4211
4212 if (~bp->attn_state & deasserted)
4213 BNX2X_ERR("IGU ERROR\n");
4214
4215 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4216 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4217
4218 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4219 aeu_mask = REG_RD(bp, reg_addr);
4220
4221 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4222 aeu_mask, deasserted);
4223 aeu_mask |= (deasserted & 0x3ff);
4224 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4225
4226 REG_WR(bp, reg_addr, aeu_mask);
4227 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4228
4229 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4230 bp->attn_state &= ~deasserted;
4231 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4232 }
4233
4234 static void bnx2x_attn_int(struct bnx2x *bp)
4235 {
4236 /* read local copy of bits */
4237 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4238 attn_bits);
4239 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4240 attn_bits_ack);
4241 u32 attn_state = bp->attn_state;
4242
4243 /* look for changed bits */
4244 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4245 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4246
4247 DP(NETIF_MSG_HW,
4248 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4249 attn_bits, attn_ack, asserted, deasserted);
4250
4251 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4252 BNX2X_ERR("BAD attention state\n");
4253
4254 /* handle bits that were raised */
4255 if (asserted)
4256 bnx2x_attn_int_asserted(bp, asserted);
4257
4258 if (deasserted)
4259 bnx2x_attn_int_deasserted(bp, deasserted);
4260 }
4261
4262 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4263 u16 index, u8 op, u8 update)
4264 {
4265 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4266
4267 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4268 igu_addr);
4269 }
4270
4271 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4272 {
4273 /* No memory barriers */
4274 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4275 mmiowb(); /* keep prod updates ordered */
4276 }
4277
4278 #ifdef BCM_CNIC
4279 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4280 union event_ring_elem *elem)
4281 {
4282 u8 err = elem->message.error;
4283
4284 if (!bp->cnic_eth_dev.starting_cid ||
4285 (cid < bp->cnic_eth_dev.starting_cid &&
4286 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4287 return 1;
4288
4289 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4290
4291 if (unlikely(err)) {
4292
4293 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4294 cid);
4295 bnx2x_panic_dump(bp);
4296 }
4297 bnx2x_cnic_cfc_comp(bp, cid, err);
4298 return 0;
4299 }
4300 #endif
4301
4302 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4303 {
4304 struct bnx2x_mcast_ramrod_params rparam;
4305 int rc;
4306
4307 memset(&rparam, 0, sizeof(rparam));
4308
4309 rparam.mcast_obj = &bp->mcast_obj;
4310
4311 netif_addr_lock_bh(bp->dev);
4312
4313 /* Clear pending state for the last command */
4314 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4315
4316 /* If there are pending mcast commands - send them */
4317 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4318 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4319 if (rc < 0)
4320 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4321 rc);
4322 }
4323
4324 netif_addr_unlock_bh(bp->dev);
4325 }
4326
4327 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4328 union event_ring_elem *elem)
4329 {
4330 unsigned long ramrod_flags = 0;
4331 int rc = 0;
4332 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4333 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4334
4335 /* Always push next commands out, don't wait here */
4336 __set_bit(RAMROD_CONT, &ramrod_flags);
4337
4338 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4339 case BNX2X_FILTER_MAC_PENDING:
4340 #ifdef BCM_CNIC
4341 if (cid == BNX2X_ISCSI_ETH_CID)
4342 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4343 else
4344 #endif
4345 vlan_mac_obj = &bp->fp[cid].mac_obj;
4346
4347 break;
4348 case BNX2X_FILTER_MCAST_PENDING:
4349 /* This is only relevant for 57710 where multicast MACs are
4350 * configured as unicast MACs using the same ramrod.
4351 */
4352 bnx2x_handle_mcast_eqe(bp);
4353 return;
4354 default:
4355 BNX2X_ERR("Unsupported classification command: %d\n",
4356 elem->message.data.eth_event.echo);
4357 return;
4358 }
4359
4360 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4361
4362 if (rc < 0)
4363 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4364 else if (rc > 0)
4365 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4366
4367 }
4368
4369 #ifdef BCM_CNIC
4370 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4371 #endif
4372
4373 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4374 {
4375 netif_addr_lock_bh(bp->dev);
4376
4377 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4378
4379 /* Send rx_mode command again if was requested */
4380 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4381 bnx2x_set_storm_rx_mode(bp);
4382 #ifdef BCM_CNIC
4383 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4384 &bp->sp_state))
4385 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4386 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4387 &bp->sp_state))
4388 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4389 #endif
4390
4391 netif_addr_unlock_bh(bp->dev);
4392 }
4393
4394 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4395 struct bnx2x *bp, u32 cid)
4396 {
4397 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4398 #ifdef BCM_CNIC
4399 if (cid == BNX2X_FCOE_ETH_CID)
4400 return &bnx2x_fcoe(bp, q_obj);
4401 else
4402 #endif
4403 return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4404 }
4405
4406 static void bnx2x_eq_int(struct bnx2x *bp)
4407 {
4408 u16 hw_cons, sw_cons, sw_prod;
4409 union event_ring_elem *elem;
4410 u32 cid;
4411 u8 opcode;
4412 int spqe_cnt = 0;
4413 struct bnx2x_queue_sp_obj *q_obj;
4414 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4415 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4416
4417 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4418
4419 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4420 * when we get the the next-page we nned to adjust so the loop
4421 * condition below will be met. The next element is the size of a
4422 * regular element and hence incrementing by 1
4423 */
4424 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4425 hw_cons++;
4426
4427 /* This function may never run in parallel with itself for a
4428 * specific bp, thus there is no need in "paired" read memory
4429 * barrier here.
4430 */
4431 sw_cons = bp->eq_cons;
4432 sw_prod = bp->eq_prod;
4433
4434 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4435 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4436
4437 for (; sw_cons != hw_cons;
4438 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4439
4440
4441 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4442
4443 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4444 opcode = elem->message.opcode;
4445
4446
4447 /* handle eq element */
4448 switch (opcode) {
4449 case EVENT_RING_OPCODE_STAT_QUERY:
4450 DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4451 bp->stats_comp++);
4452 /* nothing to do with stats comp */
4453 goto next_spqe;
4454
4455 case EVENT_RING_OPCODE_CFC_DEL:
4456 /* handle according to cid range */
4457 /*
4458 * we may want to verify here that the bp state is
4459 * HALTING
4460 */
4461 DP(BNX2X_MSG_SP,
4462 "got delete ramrod for MULTI[%d]\n", cid);
4463 #ifdef BCM_CNIC
4464 if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4465 goto next_spqe;
4466 #endif
4467 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4468
4469 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4470 break;
4471
4472
4473
4474 goto next_spqe;
4475
4476 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4477 DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4478 if (f_obj->complete_cmd(bp, f_obj,
4479 BNX2X_F_CMD_TX_STOP))
4480 break;
4481 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4482 goto next_spqe;
4483
4484 case EVENT_RING_OPCODE_START_TRAFFIC:
4485 DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4486 if (f_obj->complete_cmd(bp, f_obj,
4487 BNX2X_F_CMD_TX_START))
4488 break;
4489 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4490 goto next_spqe;
4491 case EVENT_RING_OPCODE_FUNCTION_START:
4492 DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4493 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4494 break;
4495
4496 goto next_spqe;
4497
4498 case EVENT_RING_OPCODE_FUNCTION_STOP:
4499 DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4500 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4501 break;
4502
4503 goto next_spqe;
4504 }
4505
4506 switch (opcode | bp->state) {
4507 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4508 BNX2X_STATE_OPEN):
4509 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4510 BNX2X_STATE_OPENING_WAIT4_PORT):
4511 cid = elem->message.data.eth_event.echo &
4512 BNX2X_SWCID_MASK;
4513 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4514 cid);
4515 rss_raw->clear_pending(rss_raw);
4516 break;
4517
4518 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4519 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4520 case (EVENT_RING_OPCODE_SET_MAC |
4521 BNX2X_STATE_CLOSING_WAIT4_HALT):
4522 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4523 BNX2X_STATE_OPEN):
4524 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4525 BNX2X_STATE_DIAG):
4526 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4527 BNX2X_STATE_CLOSING_WAIT4_HALT):
4528 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4529 bnx2x_handle_classification_eqe(bp, elem);
4530 break;
4531
4532 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4533 BNX2X_STATE_OPEN):
4534 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4535 BNX2X_STATE_DIAG):
4536 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4537 BNX2X_STATE_CLOSING_WAIT4_HALT):
4538 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4539 bnx2x_handle_mcast_eqe(bp);
4540 break;
4541
4542 case (EVENT_RING_OPCODE_FILTERS_RULES |
4543 BNX2X_STATE_OPEN):
4544 case (EVENT_RING_OPCODE_FILTERS_RULES |
4545 BNX2X_STATE_DIAG):
4546 case (EVENT_RING_OPCODE_FILTERS_RULES |
4547 BNX2X_STATE_CLOSING_WAIT4_HALT):
4548 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4549 bnx2x_handle_rx_mode_eqe(bp);
4550 break;
4551 default:
4552 /* unknown event log error and continue */
4553 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4554 elem->message.opcode, bp->state);
4555 }
4556 next_spqe:
4557 spqe_cnt++;
4558 } /* for */
4559
4560 smp_mb__before_atomic_inc();
4561 atomic_add(spqe_cnt, &bp->eq_spq_left);
4562
4563 bp->eq_cons = sw_cons;
4564 bp->eq_prod = sw_prod;
4565 /* Make sure that above mem writes were issued towards the memory */
4566 smp_wmb();
4567
4568 /* update producer */
4569 bnx2x_update_eq_prod(bp, bp->eq_prod);
4570 }
4571
4572 static void bnx2x_sp_task(struct work_struct *work)
4573 {
4574 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4575 u16 status;
4576
4577 status = bnx2x_update_dsb_idx(bp);
4578 /* if (status == 0) */
4579 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4580
4581 DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4582
4583 /* HW attentions */
4584 if (status & BNX2X_DEF_SB_ATT_IDX) {
4585 bnx2x_attn_int(bp);
4586 status &= ~BNX2X_DEF_SB_ATT_IDX;
4587 }
4588
4589 /* SP events: STAT_QUERY and others */
4590 if (status & BNX2X_DEF_SB_IDX) {
4591 #ifdef BCM_CNIC
4592 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4593
4594 if ((!NO_FCOE(bp)) &&
4595 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4596 /*
4597 * Prevent local bottom-halves from running as
4598 * we are going to change the local NAPI list.
4599 */
4600 local_bh_disable();
4601 napi_schedule(&bnx2x_fcoe(bp, napi));
4602 local_bh_enable();
4603 }
4604 #endif
4605 /* Handle EQ completions */
4606 bnx2x_eq_int(bp);
4607
4608 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4609 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4610
4611 status &= ~BNX2X_DEF_SB_IDX;
4612 }
4613
4614 if (unlikely(status))
4615 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4616 status);
4617
4618 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4619 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4620 }
4621
4622 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4623 {
4624 struct net_device *dev = dev_instance;
4625 struct bnx2x *bp = netdev_priv(dev);
4626
4627 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4628 IGU_INT_DISABLE, 0);
4629
4630 #ifdef BNX2X_STOP_ON_ERROR
4631 if (unlikely(bp->panic))
4632 return IRQ_HANDLED;
4633 #endif
4634
4635 #ifdef BCM_CNIC
4636 {
4637 struct cnic_ops *c_ops;
4638
4639 rcu_read_lock();
4640 c_ops = rcu_dereference(bp->cnic_ops);
4641 if (c_ops)
4642 c_ops->cnic_handler(bp->cnic_data, NULL);
4643 rcu_read_unlock();
4644 }
4645 #endif
4646 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4647
4648 return IRQ_HANDLED;
4649 }
4650
4651 /* end of slow path */
4652
4653
4654 void bnx2x_drv_pulse(struct bnx2x *bp)
4655 {
4656 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4657 bp->fw_drv_pulse_wr_seq);
4658 }
4659
4660
4661 static void bnx2x_timer(unsigned long data)
4662 {
4663 u8 cos;
4664 struct bnx2x *bp = (struct bnx2x *) data;
4665
4666 if (!netif_running(bp->dev))
4667 return;
4668
4669 if (poll) {
4670 struct bnx2x_fastpath *fp = &bp->fp[0];
4671
4672 for_each_cos_in_tx_queue(fp, cos)
4673 bnx2x_tx_int(bp, &fp->txdata[cos]);
4674 bnx2x_rx_int(fp, 1000);
4675 }
4676
4677 if (!BP_NOMCP(bp)) {
4678 int mb_idx = BP_FW_MB_IDX(bp);
4679 u32 drv_pulse;
4680 u32 mcp_pulse;
4681
4682 ++bp->fw_drv_pulse_wr_seq;
4683 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4684 /* TBD - add SYSTEM_TIME */
4685 drv_pulse = bp->fw_drv_pulse_wr_seq;
4686 bnx2x_drv_pulse(bp);
4687
4688 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4689 MCP_PULSE_SEQ_MASK);
4690 /* The delta between driver pulse and mcp response
4691 * should be 1 (before mcp response) or 0 (after mcp response)
4692 */
4693 if ((drv_pulse != mcp_pulse) &&
4694 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4695 /* someone lost a heartbeat... */
4696 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4697 drv_pulse, mcp_pulse);
4698 }
4699 }
4700
4701 if (bp->state == BNX2X_STATE_OPEN)
4702 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4703
4704 mod_timer(&bp->timer, jiffies + bp->current_interval);
4705 }
4706
4707 /* end of Statistics */
4708
4709 /* nic init */
4710
4711 /*
4712 * nic init service functions
4713 */
4714
4715 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4716 {
4717 u32 i;
4718 if (!(len%4) && !(addr%4))
4719 for (i = 0; i < len; i += 4)
4720 REG_WR(bp, addr + i, fill);
4721 else
4722 for (i = 0; i < len; i++)
4723 REG_WR8(bp, addr + i, fill);
4724
4725 }
4726
4727 /* helper: writes FP SP data to FW - data_size in dwords */
4728 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4729 int fw_sb_id,
4730 u32 *sb_data_p,
4731 u32 data_size)
4732 {
4733 int index;
4734 for (index = 0; index < data_size; index++)
4735 REG_WR(bp, BAR_CSTRORM_INTMEM +
4736 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4737 sizeof(u32)*index,
4738 *(sb_data_p + index));
4739 }
4740
4741 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4742 {
4743 u32 *sb_data_p;
4744 u32 data_size = 0;
4745 struct hc_status_block_data_e2 sb_data_e2;
4746 struct hc_status_block_data_e1x sb_data_e1x;
4747
4748 /* disable the function first */
4749 if (!CHIP_IS_E1x(bp)) {
4750 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4751 sb_data_e2.common.state = SB_DISABLED;
4752 sb_data_e2.common.p_func.vf_valid = false;
4753 sb_data_p = (u32 *)&sb_data_e2;
4754 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4755 } else {
4756 memset(&sb_data_e1x, 0,
4757 sizeof(struct hc_status_block_data_e1x));
4758 sb_data_e1x.common.state = SB_DISABLED;
4759 sb_data_e1x.common.p_func.vf_valid = false;
4760 sb_data_p = (u32 *)&sb_data_e1x;
4761 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4762 }
4763 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4764
4765 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4766 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4767 CSTORM_STATUS_BLOCK_SIZE);
4768 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4769 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4770 CSTORM_SYNC_BLOCK_SIZE);
4771 }
4772
4773 /* helper: writes SP SB data to FW */
4774 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4775 struct hc_sp_status_block_data *sp_sb_data)
4776 {
4777 int func = BP_FUNC(bp);
4778 int i;
4779 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4780 REG_WR(bp, BAR_CSTRORM_INTMEM +
4781 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4782 i*sizeof(u32),
4783 *((u32 *)sp_sb_data + i));
4784 }
4785
4786 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4787 {
4788 int func = BP_FUNC(bp);
4789 struct hc_sp_status_block_data sp_sb_data;
4790 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4791
4792 sp_sb_data.state = SB_DISABLED;
4793 sp_sb_data.p_func.vf_valid = false;
4794
4795 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4796
4797 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4798 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4799 CSTORM_SP_STATUS_BLOCK_SIZE);
4800 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4801 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4802 CSTORM_SP_SYNC_BLOCK_SIZE);
4803
4804 }
4805
4806
4807 static inline
4808 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4809 int igu_sb_id, int igu_seg_id)
4810 {
4811 hc_sm->igu_sb_id = igu_sb_id;
4812 hc_sm->igu_seg_id = igu_seg_id;
4813 hc_sm->timer_value = 0xFF;
4814 hc_sm->time_to_expire = 0xFFFFFFFF;
4815 }
4816
4817
4818 /* allocates state machine ids. */
4819 static inline
4820 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4821 {
4822 /* zero out state machine indices */
4823 /* rx indices */
4824 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4825
4826 /* tx indices */
4827 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4828 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4829 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4830 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4831
4832 /* map indices */
4833 /* rx indices */
4834 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4835 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4836
4837 /* tx indices */
4838 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4839 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4840 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4841 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4842 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4843 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4844 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4845 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4846 }
4847
4848 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4849 u8 vf_valid, int fw_sb_id, int igu_sb_id)
4850 {
4851 int igu_seg_id;
4852
4853 struct hc_status_block_data_e2 sb_data_e2;
4854 struct hc_status_block_data_e1x sb_data_e1x;
4855 struct hc_status_block_sm *hc_sm_p;
4856 int data_size;
4857 u32 *sb_data_p;
4858
4859 if (CHIP_INT_MODE_IS_BC(bp))
4860 igu_seg_id = HC_SEG_ACCESS_NORM;
4861 else
4862 igu_seg_id = IGU_SEG_ACCESS_NORM;
4863
4864 bnx2x_zero_fp_sb(bp, fw_sb_id);
4865
4866 if (!CHIP_IS_E1x(bp)) {
4867 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4868 sb_data_e2.common.state = SB_ENABLED;
4869 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
4870 sb_data_e2.common.p_func.vf_id = vfid;
4871 sb_data_e2.common.p_func.vf_valid = vf_valid;
4872 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
4873 sb_data_e2.common.same_igu_sb_1b = true;
4874 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
4875 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
4876 hc_sm_p = sb_data_e2.common.state_machine;
4877 sb_data_p = (u32 *)&sb_data_e2;
4878 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4879 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4880 } else {
4881 memset(&sb_data_e1x, 0,
4882 sizeof(struct hc_status_block_data_e1x));
4883 sb_data_e1x.common.state = SB_ENABLED;
4884 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
4885 sb_data_e1x.common.p_func.vf_id = 0xff;
4886 sb_data_e1x.common.p_func.vf_valid = false;
4887 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
4888 sb_data_e1x.common.same_igu_sb_1b = true;
4889 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
4890 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
4891 hc_sm_p = sb_data_e1x.common.state_machine;
4892 sb_data_p = (u32 *)&sb_data_e1x;
4893 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4894 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4895 }
4896
4897 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
4898 igu_sb_id, igu_seg_id);
4899 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
4900 igu_sb_id, igu_seg_id);
4901
4902 DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
4903
4904 /* write indecies to HW */
4905 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4906 }
4907
4908 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
4909 u16 tx_usec, u16 rx_usec)
4910 {
4911 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
4912 false, rx_usec);
4913 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4914 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
4915 tx_usec);
4916 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4917 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
4918 tx_usec);
4919 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4920 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
4921 tx_usec);
4922 }
4923
4924 static void bnx2x_init_def_sb(struct bnx2x *bp)
4925 {
4926 struct host_sp_status_block *def_sb = bp->def_status_blk;
4927 dma_addr_t mapping = bp->def_status_blk_mapping;
4928 int igu_sp_sb_index;
4929 int igu_seg_id;
4930 int port = BP_PORT(bp);
4931 int func = BP_FUNC(bp);
4932 int reg_offset, reg_offset_en5;
4933 u64 section;
4934 int index;
4935 struct hc_sp_status_block_data sp_sb_data;
4936 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4937
4938 if (CHIP_INT_MODE_IS_BC(bp)) {
4939 igu_sp_sb_index = DEF_SB_IGU_ID;
4940 igu_seg_id = HC_SEG_ACCESS_DEF;
4941 } else {
4942 igu_sp_sb_index = bp->igu_dsb_id;
4943 igu_seg_id = IGU_SEG_ACCESS_DEF;
4944 }
4945
4946 /* ATTN */
4947 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4948 atten_status_block);
4949 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
4950
4951 bp->attn_state = 0;
4952
4953 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4954 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4955 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
4956 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
4957 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4958 int sindex;
4959 /* take care of sig[0]..sig[4] */
4960 for (sindex = 0; sindex < 4; sindex++)
4961 bp->attn_group[index].sig[sindex] =
4962 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
4963
4964 if (!CHIP_IS_E1x(bp))
4965 /*
4966 * enable5 is separate from the rest of the registers,
4967 * and therefore the address skip is 4
4968 * and not 16 between the different groups
4969 */
4970 bp->attn_group[index].sig[4] = REG_RD(bp,
4971 reg_offset_en5 + 0x4*index);
4972 else
4973 bp->attn_group[index].sig[4] = 0;
4974 }
4975
4976 if (bp->common.int_block == INT_BLOCK_HC) {
4977 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
4978 HC_REG_ATTN_MSG0_ADDR_L);
4979
4980 REG_WR(bp, reg_offset, U64_LO(section));
4981 REG_WR(bp, reg_offset + 4, U64_HI(section));
4982 } else if (!CHIP_IS_E1x(bp)) {
4983 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
4984 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
4985 }
4986
4987 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4988 sp_sb);
4989
4990 bnx2x_zero_sp_sb(bp);
4991
4992 sp_sb_data.state = SB_ENABLED;
4993 sp_sb_data.host_sb_addr.lo = U64_LO(section);
4994 sp_sb_data.host_sb_addr.hi = U64_HI(section);
4995 sp_sb_data.igu_sb_id = igu_sp_sb_index;
4996 sp_sb_data.igu_seg_id = igu_seg_id;
4997 sp_sb_data.p_func.pf_id = func;
4998 sp_sb_data.p_func.vnic_id = BP_VN(bp);
4999 sp_sb_data.p_func.vf_id = 0xff;
5000
5001 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5002
5003 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5004 }
5005
5006 void bnx2x_update_coalesce(struct bnx2x *bp)
5007 {
5008 int i;
5009
5010 for_each_eth_queue(bp, i)
5011 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5012 bp->tx_ticks, bp->rx_ticks);
5013 }
5014
5015 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5016 {
5017 spin_lock_init(&bp->spq_lock);
5018 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5019
5020 bp->spq_prod_idx = 0;
5021 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5022 bp->spq_prod_bd = bp->spq;
5023 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5024 }
5025
5026 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5027 {
5028 int i;
5029 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5030 union event_ring_elem *elem =
5031 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5032
5033 elem->next_page.addr.hi =
5034 cpu_to_le32(U64_HI(bp->eq_mapping +
5035 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5036 elem->next_page.addr.lo =
5037 cpu_to_le32(U64_LO(bp->eq_mapping +
5038 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5039 }
5040 bp->eq_cons = 0;
5041 bp->eq_prod = NUM_EQ_DESC;
5042 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5043 /* we want a warning message before it gets rought... */
5044 atomic_set(&bp->eq_spq_left,
5045 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5046 }
5047
5048
5049 /* called with netif_addr_lock_bh() */
5050 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5051 unsigned long rx_mode_flags,
5052 unsigned long rx_accept_flags,
5053 unsigned long tx_accept_flags,
5054 unsigned long ramrod_flags)
5055 {
5056 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5057 int rc;
5058
5059 memset(&ramrod_param, 0, sizeof(ramrod_param));
5060
5061 /* Prepare ramrod parameters */
5062 ramrod_param.cid = 0;
5063 ramrod_param.cl_id = cl_id;
5064 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5065 ramrod_param.func_id = BP_FUNC(bp);
5066
5067 ramrod_param.pstate = &bp->sp_state;
5068 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5069
5070 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5071 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5072
5073 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5074
5075 ramrod_param.ramrod_flags = ramrod_flags;
5076 ramrod_param.rx_mode_flags = rx_mode_flags;
5077
5078 ramrod_param.rx_accept_flags = rx_accept_flags;
5079 ramrod_param.tx_accept_flags = tx_accept_flags;
5080
5081 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5082 if (rc < 0) {
5083 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5084 return;
5085 }
5086 }
5087
5088 /* called with netif_addr_lock_bh() */
5089 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5090 {
5091 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5092 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5093
5094 #ifdef BCM_CNIC
5095 if (!NO_FCOE(bp))
5096
5097 /* Configure rx_mode of FCoE Queue */
5098 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5099 #endif
5100
5101 switch (bp->rx_mode) {
5102 case BNX2X_RX_MODE_NONE:
5103 /*
5104 * 'drop all' supersedes any accept flags that may have been
5105 * passed to the function.
5106 */
5107 break;
5108 case BNX2X_RX_MODE_NORMAL:
5109 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5110 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5111 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5112
5113 /* internal switching mode */
5114 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5115 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5116 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5117
5118 break;
5119 case BNX2X_RX_MODE_ALLMULTI:
5120 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5121 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5122 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5123
5124 /* internal switching mode */
5125 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5126 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5127 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5128
5129 break;
5130 case BNX2X_RX_MODE_PROMISC:
5131 /* According to deffinition of SI mode, iface in promisc mode
5132 * should receive matched and unmatched (in resolution of port)
5133 * unicast packets.
5134 */
5135 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5136 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5137 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5138 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5139
5140 /* internal switching mode */
5141 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5142 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5143
5144 if (IS_MF_SI(bp))
5145 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5146 else
5147 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5148
5149 break;
5150 default:
5151 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5152 return;
5153 }
5154
5155 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5156 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5157 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5158 }
5159
5160 __set_bit(RAMROD_RX, &ramrod_flags);
5161 __set_bit(RAMROD_TX, &ramrod_flags);
5162
5163 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5164 tx_accept_flags, ramrod_flags);
5165 }
5166
5167 static void bnx2x_init_internal_common(struct bnx2x *bp)
5168 {
5169 int i;
5170
5171 if (IS_MF_SI(bp))
5172 /*
5173 * In switch independent mode, the TSTORM needs to accept
5174 * packets that failed classification, since approximate match
5175 * mac addresses aren't written to NIG LLH
5176 */
5177 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5178 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5179 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5180 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5181 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5182
5183 /* Zero this manually as its initialization is
5184 currently missing in the initTool */
5185 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5186 REG_WR(bp, BAR_USTRORM_INTMEM +
5187 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5188 if (!CHIP_IS_E1x(bp)) {
5189 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5190 CHIP_INT_MODE_IS_BC(bp) ?
5191 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5192 }
5193 }
5194
5195 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5196 {
5197 switch (load_code) {
5198 case FW_MSG_CODE_DRV_LOAD_COMMON:
5199 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5200 bnx2x_init_internal_common(bp);
5201 /* no break */
5202
5203 case FW_MSG_CODE_DRV_LOAD_PORT:
5204 /* nothing to do */
5205 /* no break */
5206
5207 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5208 /* internal memory per function is
5209 initialized inside bnx2x_pf_init */
5210 break;
5211
5212 default:
5213 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5214 break;
5215 }
5216 }
5217
5218 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5219 {
5220 return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5221 }
5222
5223 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5224 {
5225 return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5226 }
5227
5228 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5229 {
5230 if (CHIP_IS_E1x(fp->bp))
5231 return BP_L_ID(fp->bp) + fp->index;
5232 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5233 return bnx2x_fp_igu_sb_id(fp);
5234 }
5235
5236 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5237 {
5238 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5239 u8 cos;
5240 unsigned long q_type = 0;
5241 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5242 fp->rx_queue = fp_idx;
5243 fp->cid = fp_idx;
5244 fp->cl_id = bnx2x_fp_cl_id(fp);
5245 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5246 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5247 /* qZone id equals to FW (per path) client id */
5248 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5249
5250 /* init shortcut */
5251 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5252 /* Setup SB indicies */
5253 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5254
5255 /* Configure Queue State object */
5256 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5257 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5258
5259 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5260
5261 /* init tx data */
5262 for_each_cos_in_tx_queue(fp, cos) {
5263 bnx2x_init_txdata(bp, &fp->txdata[cos],
5264 CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5265 FP_COS_TO_TXQ(fp, cos),
5266 BNX2X_TX_SB_INDEX_BASE + cos);
5267 cids[cos] = fp->txdata[cos].cid;
5268 }
5269
5270 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5271 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5272 bnx2x_sp_mapping(bp, q_rdata), q_type);
5273
5274 /**
5275 * Configure classification DBs: Always enable Tx switching
5276 */
5277 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5278
5279 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
5280 "cl_id %d fw_sb %d igu_sb %d\n",
5281 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5282 fp->igu_sb_id);
5283 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5284 fp->fw_sb_id, fp->igu_sb_id);
5285
5286 bnx2x_update_fpsb_idx(fp);
5287 }
5288
5289 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5290 {
5291 int i;
5292
5293 for_each_eth_queue(bp, i)
5294 bnx2x_init_eth_fp(bp, i);
5295 #ifdef BCM_CNIC
5296 if (!NO_FCOE(bp))
5297 bnx2x_init_fcoe_fp(bp);
5298
5299 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5300 BNX2X_VF_ID_INVALID, false,
5301 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5302
5303 #endif
5304
5305 /* Initialize MOD_ABS interrupts */
5306 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5307 bp->common.shmem_base, bp->common.shmem2_base,
5308 BP_PORT(bp));
5309 /* ensure status block indices were read */
5310 rmb();
5311
5312 bnx2x_init_def_sb(bp);
5313 bnx2x_update_dsb_idx(bp);
5314 bnx2x_init_rx_rings(bp);
5315 bnx2x_init_tx_rings(bp);
5316 bnx2x_init_sp_ring(bp);
5317 bnx2x_init_eq_ring(bp);
5318 bnx2x_init_internal(bp, load_code);
5319 bnx2x_pf_init(bp);
5320 bnx2x_stats_init(bp);
5321
5322 /* flush all before enabling interrupts */
5323 mb();
5324 mmiowb();
5325
5326 bnx2x_int_enable(bp);
5327
5328 /* Check for SPIO5 */
5329 bnx2x_attn_int_deasserted0(bp,
5330 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5331 AEU_INPUTS_ATTN_BITS_SPIO5);
5332 }
5333
5334 /* end of nic init */
5335
5336 /*
5337 * gzip service functions
5338 */
5339
5340 static int bnx2x_gunzip_init(struct bnx2x *bp)
5341 {
5342 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5343 &bp->gunzip_mapping, GFP_KERNEL);
5344 if (bp->gunzip_buf == NULL)
5345 goto gunzip_nomem1;
5346
5347 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5348 if (bp->strm == NULL)
5349 goto gunzip_nomem2;
5350
5351 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5352 if (bp->strm->workspace == NULL)
5353 goto gunzip_nomem3;
5354
5355 return 0;
5356
5357 gunzip_nomem3:
5358 kfree(bp->strm);
5359 bp->strm = NULL;
5360
5361 gunzip_nomem2:
5362 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5363 bp->gunzip_mapping);
5364 bp->gunzip_buf = NULL;
5365
5366 gunzip_nomem1:
5367 netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5368 " un-compression\n");
5369 return -ENOMEM;
5370 }
5371
5372 static void bnx2x_gunzip_end(struct bnx2x *bp)
5373 {
5374 if (bp->strm) {
5375 vfree(bp->strm->workspace);
5376 kfree(bp->strm);
5377 bp->strm = NULL;
5378 }
5379
5380 if (bp->gunzip_buf) {
5381 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5382 bp->gunzip_mapping);
5383 bp->gunzip_buf = NULL;
5384 }
5385 }
5386
5387 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5388 {
5389 int n, rc;
5390
5391 /* check gzip header */
5392 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5393 BNX2X_ERR("Bad gzip header\n");
5394 return -EINVAL;
5395 }
5396
5397 n = 10;
5398
5399 #define FNAME 0x8
5400
5401 if (zbuf[3] & FNAME)
5402 while ((zbuf[n++] != 0) && (n < len));
5403
5404 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5405 bp->strm->avail_in = len - n;
5406 bp->strm->next_out = bp->gunzip_buf;
5407 bp->strm->avail_out = FW_BUF_SIZE;
5408
5409 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5410 if (rc != Z_OK)
5411 return rc;
5412
5413 rc = zlib_inflate(bp->strm, Z_FINISH);
5414 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5415 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5416 bp->strm->msg);
5417
5418 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5419 if (bp->gunzip_outlen & 0x3)
5420 netdev_err(bp->dev, "Firmware decompression error:"
5421 " gunzip_outlen (%d) not aligned\n",
5422 bp->gunzip_outlen);
5423 bp->gunzip_outlen >>= 2;
5424
5425 zlib_inflateEnd(bp->strm);
5426
5427 if (rc == Z_STREAM_END)
5428 return 0;
5429
5430 return rc;
5431 }
5432
5433 /* nic load/unload */
5434
5435 /*
5436 * General service functions
5437 */
5438
5439 /* send a NIG loopback debug packet */
5440 static void bnx2x_lb_pckt(struct bnx2x *bp)
5441 {
5442 u32 wb_write[3];
5443
5444 /* Ethernet source and destination addresses */
5445 wb_write[0] = 0x55555555;
5446 wb_write[1] = 0x55555555;
5447 wb_write[2] = 0x20; /* SOP */
5448 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5449
5450 /* NON-IP protocol */
5451 wb_write[0] = 0x09000000;
5452 wb_write[1] = 0x55555555;
5453 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5454 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5455 }
5456
5457 /* some of the internal memories
5458 * are not directly readable from the driver
5459 * to test them we send debug packets
5460 */
5461 static int bnx2x_int_mem_test(struct bnx2x *bp)
5462 {
5463 int factor;
5464 int count, i;
5465 u32 val = 0;
5466
5467 if (CHIP_REV_IS_FPGA(bp))
5468 factor = 120;
5469 else if (CHIP_REV_IS_EMUL(bp))
5470 factor = 200;
5471 else
5472 factor = 1;
5473
5474 /* Disable inputs of parser neighbor blocks */
5475 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5476 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5477 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5478 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5479
5480 /* Write 0 to parser credits for CFC search request */
5481 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5482
5483 /* send Ethernet packet */
5484 bnx2x_lb_pckt(bp);
5485
5486 /* TODO do i reset NIG statistic? */
5487 /* Wait until NIG register shows 1 packet of size 0x10 */
5488 count = 1000 * factor;
5489 while (count) {
5490
5491 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5492 val = *bnx2x_sp(bp, wb_data[0]);
5493 if (val == 0x10)
5494 break;
5495
5496 msleep(10);
5497 count--;
5498 }
5499 if (val != 0x10) {
5500 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5501 return -1;
5502 }
5503
5504 /* Wait until PRS register shows 1 packet */
5505 count = 1000 * factor;
5506 while (count) {
5507 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5508 if (val == 1)
5509 break;
5510
5511 msleep(10);
5512 count--;
5513 }
5514 if (val != 0x1) {
5515 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5516 return -2;
5517 }
5518
5519 /* Reset and init BRB, PRS */
5520 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5521 msleep(50);
5522 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5523 msleep(50);
5524 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5525 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5526
5527 DP(NETIF_MSG_HW, "part2\n");
5528
5529 /* Disable inputs of parser neighbor blocks */
5530 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5531 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5532 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5533 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5534
5535 /* Write 0 to parser credits for CFC search request */
5536 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5537
5538 /* send 10 Ethernet packets */
5539 for (i = 0; i < 10; i++)
5540 bnx2x_lb_pckt(bp);
5541
5542 /* Wait until NIG register shows 10 + 1
5543 packets of size 11*0x10 = 0xb0 */
5544 count = 1000 * factor;
5545 while (count) {
5546
5547 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5548 val = *bnx2x_sp(bp, wb_data[0]);
5549 if (val == 0xb0)
5550 break;
5551
5552 msleep(10);
5553 count--;
5554 }
5555 if (val != 0xb0) {
5556 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5557 return -3;
5558 }
5559
5560 /* Wait until PRS register shows 2 packets */
5561 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5562 if (val != 2)
5563 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5564
5565 /* Write 1 to parser credits for CFC search request */
5566 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5567
5568 /* Wait until PRS register shows 3 packets */
5569 msleep(10 * factor);
5570 /* Wait until NIG register shows 1 packet of size 0x10 */
5571 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5572 if (val != 3)
5573 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5574
5575 /* clear NIG EOP FIFO */
5576 for (i = 0; i < 11; i++)
5577 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5578 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5579 if (val != 1) {
5580 BNX2X_ERR("clear of NIG failed\n");
5581 return -4;
5582 }
5583
5584 /* Reset and init BRB, PRS, NIG */
5585 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5586 msleep(50);
5587 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5588 msleep(50);
5589 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5590 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5591 #ifndef BCM_CNIC
5592 /* set NIC mode */
5593 REG_WR(bp, PRS_REG_NIC_MODE, 1);
5594 #endif
5595
5596 /* Enable inputs of parser neighbor blocks */
5597 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5598 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5599 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5600 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5601
5602 DP(NETIF_MSG_HW, "done\n");
5603
5604 return 0; /* OK */
5605 }
5606
5607 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5608 {
5609 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5610 if (!CHIP_IS_E1x(bp))
5611 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5612 else
5613 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5614 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5615 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5616 /*
5617 * mask read length error interrupts in brb for parser
5618 * (parsing unit and 'checksum and crc' unit)
5619 * these errors are legal (PU reads fixed length and CAC can cause
5620 * read length error on truncated packets)
5621 */
5622 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5623 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5624 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5625 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5626 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5627 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5628 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5629 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5630 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5631 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5632 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5633 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5634 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5635 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5636 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5637 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5638 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5639 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5640 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5641
5642 if (CHIP_REV_IS_FPGA(bp))
5643 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5644 else if (!CHIP_IS_E1x(bp))
5645 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5646 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5647 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5648 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5649 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5650 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5651 else
5652 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5653 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5654 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5655 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5656 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5657
5658 if (!CHIP_IS_E1x(bp))
5659 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5660 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5661
5662 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5663 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5664 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5665 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
5666 }
5667
5668 static void bnx2x_reset_common(struct bnx2x *bp)
5669 {
5670 u32 val = 0x1400;
5671
5672 /* reset_common */
5673 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5674 0xd3ffff7f);
5675
5676 if (CHIP_IS_E3(bp)) {
5677 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5678 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5679 }
5680
5681 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5682 }
5683
5684 static void bnx2x_setup_dmae(struct bnx2x *bp)
5685 {
5686 bp->dmae_ready = 0;
5687 spin_lock_init(&bp->dmae_lock);
5688 }
5689
5690 static void bnx2x_init_pxp(struct bnx2x *bp)
5691 {
5692 u16 devctl;
5693 int r_order, w_order;
5694
5695 pci_read_config_word(bp->pdev,
5696 pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5697 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5698 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5699 if (bp->mrrs == -1)
5700 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5701 else {
5702 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5703 r_order = bp->mrrs;
5704 }
5705
5706 bnx2x_init_pxp_arb(bp, r_order, w_order);
5707 }
5708
5709 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5710 {
5711 int is_required;
5712 u32 val;
5713 int port;
5714
5715 if (BP_NOMCP(bp))
5716 return;
5717
5718 is_required = 0;
5719 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5720 SHARED_HW_CFG_FAN_FAILURE_MASK;
5721
5722 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5723 is_required = 1;
5724
5725 /*
5726 * The fan failure mechanism is usually related to the PHY type since
5727 * the power consumption of the board is affected by the PHY. Currently,
5728 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5729 */
5730 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5731 for (port = PORT_0; port < PORT_MAX; port++) {
5732 is_required |=
5733 bnx2x_fan_failure_det_req(
5734 bp,
5735 bp->common.shmem_base,
5736 bp->common.shmem2_base,
5737 port);
5738 }
5739
5740 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5741
5742 if (is_required == 0)
5743 return;
5744
5745 /* Fan failure is indicated by SPIO 5 */
5746 bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5747 MISC_REGISTERS_SPIO_INPUT_HI_Z);
5748
5749 /* set to active low mode */
5750 val = REG_RD(bp, MISC_REG_SPIO_INT);
5751 val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5752 MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5753 REG_WR(bp, MISC_REG_SPIO_INT, val);
5754
5755 /* enable interrupt to signal the IGU */
5756 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5757 val |= (1 << MISC_REGISTERS_SPIO_5);
5758 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5759 }
5760
5761 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5762 {
5763 u32 offset = 0;
5764
5765 if (CHIP_IS_E1(bp))
5766 return;
5767 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5768 return;
5769
5770 switch (BP_ABS_FUNC(bp)) {
5771 case 0:
5772 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5773 break;
5774 case 1:
5775 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5776 break;
5777 case 2:
5778 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5779 break;
5780 case 3:
5781 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5782 break;
5783 case 4:
5784 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5785 break;
5786 case 5:
5787 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5788 break;
5789 case 6:
5790 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5791 break;
5792 case 7:
5793 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5794 break;
5795 default:
5796 return;
5797 }
5798
5799 REG_WR(bp, offset, pretend_func_num);
5800 REG_RD(bp, offset);
5801 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5802 }
5803
5804 void bnx2x_pf_disable(struct bnx2x *bp)
5805 {
5806 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5807 val &= ~IGU_PF_CONF_FUNC_EN;
5808
5809 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5810 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5811 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5812 }
5813
5814 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5815 {
5816 u32 shmem_base[2], shmem2_base[2];
5817 shmem_base[0] = bp->common.shmem_base;
5818 shmem2_base[0] = bp->common.shmem2_base;
5819 if (!CHIP_IS_E1x(bp)) {
5820 shmem_base[1] =
5821 SHMEM2_RD(bp, other_shmem_base_addr);
5822 shmem2_base[1] =
5823 SHMEM2_RD(bp, other_shmem2_base_addr);
5824 }
5825 bnx2x_acquire_phy_lock(bp);
5826 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5827 bp->common.chip_id);
5828 bnx2x_release_phy_lock(bp);
5829 }
5830
5831 /**
5832 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5833 *
5834 * @bp: driver handle
5835 */
5836 static int bnx2x_init_hw_common(struct bnx2x *bp)
5837 {
5838 u32 val;
5839
5840 DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
5841
5842 /*
5843 * take the UNDI lock to protect undi_unload flow from accessing
5844 * registers while we're resetting the chip
5845 */
5846 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5847
5848 bnx2x_reset_common(bp);
5849 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
5850
5851 val = 0xfffc;
5852 if (CHIP_IS_E3(bp)) {
5853 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5854 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5855 }
5856 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
5857
5858 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5859
5860 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
5861
5862 if (!CHIP_IS_E1x(bp)) {
5863 u8 abs_func_id;
5864
5865 /**
5866 * 4-port mode or 2-port mode we need to turn of master-enable
5867 * for everyone, after that, turn it back on for self.
5868 * so, we disregard multi-function or not, and always disable
5869 * for all functions on the given path, this means 0,2,4,6 for
5870 * path 0 and 1,3,5,7 for path 1
5871 */
5872 for (abs_func_id = BP_PATH(bp);
5873 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
5874 if (abs_func_id == BP_ABS_FUNC(bp)) {
5875 REG_WR(bp,
5876 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
5877 1);
5878 continue;
5879 }
5880
5881 bnx2x_pretend_func(bp, abs_func_id);
5882 /* clear pf enable */
5883 bnx2x_pf_disable(bp);
5884 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5885 }
5886 }
5887
5888 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
5889 if (CHIP_IS_E1(bp)) {
5890 /* enable HW interrupt from PXP on USDM overflow
5891 bit 16 on INT_MASK_0 */
5892 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5893 }
5894
5895 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
5896 bnx2x_init_pxp(bp);
5897
5898 #ifdef __BIG_ENDIAN
5899 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
5900 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
5901 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
5902 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
5903 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
5904 /* make sure this value is 0 */
5905 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
5906
5907 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
5908 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
5909 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
5910 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
5911 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
5912 #endif
5913
5914 bnx2x_ilt_init_page_size(bp, INITOP_SET);
5915
5916 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
5917 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
5918
5919 /* let the HW do it's magic ... */
5920 msleep(100);
5921 /* finish PXP init */
5922 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
5923 if (val != 1) {
5924 BNX2X_ERR("PXP2 CFG failed\n");
5925 return -EBUSY;
5926 }
5927 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
5928 if (val != 1) {
5929 BNX2X_ERR("PXP2 RD_INIT failed\n");
5930 return -EBUSY;
5931 }
5932
5933 /* Timers bug workaround E2 only. We need to set the entire ILT to
5934 * have entries with value "0" and valid bit on.
5935 * This needs to be done by the first PF that is loaded in a path
5936 * (i.e. common phase)
5937 */
5938 if (!CHIP_IS_E1x(bp)) {
5939 /* In E2 there is a bug in the timers block that can cause function 6 / 7
5940 * (i.e. vnic3) to start even if it is marked as "scan-off".
5941 * This occurs when a different function (func2,3) is being marked
5942 * as "scan-off". Real-life scenario for example: if a driver is being
5943 * load-unloaded while func6,7 are down. This will cause the timer to access
5944 * the ilt, translate to a logical address and send a request to read/write.
5945 * Since the ilt for the function that is down is not valid, this will cause
5946 * a translation error which is unrecoverable.
5947 * The Workaround is intended to make sure that when this happens nothing fatal
5948 * will occur. The workaround:
5949 * 1. First PF driver which loads on a path will:
5950 * a. After taking the chip out of reset, by using pretend,
5951 * it will write "0" to the following registers of
5952 * the other vnics.
5953 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5954 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
5955 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
5956 * And for itself it will write '1' to
5957 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
5958 * dmae-operations (writing to pram for example.)
5959 * note: can be done for only function 6,7 but cleaner this
5960 * way.
5961 * b. Write zero+valid to the entire ILT.
5962 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
5963 * VNIC3 (of that port). The range allocated will be the
5964 * entire ILT. This is needed to prevent ILT range error.
5965 * 2. Any PF driver load flow:
5966 * a. ILT update with the physical addresses of the allocated
5967 * logical pages.
5968 * b. Wait 20msec. - note that this timeout is needed to make
5969 * sure there are no requests in one of the PXP internal
5970 * queues with "old" ILT addresses.
5971 * c. PF enable in the PGLC.
5972 * d. Clear the was_error of the PF in the PGLC. (could have
5973 * occured while driver was down)
5974 * e. PF enable in the CFC (WEAK + STRONG)
5975 * f. Timers scan enable
5976 * 3. PF driver unload flow:
5977 * a. Clear the Timers scan_en.
5978 * b. Polling for scan_on=0 for that PF.
5979 * c. Clear the PF enable bit in the PXP.
5980 * d. Clear the PF enable in the CFC (WEAK + STRONG)
5981 * e. Write zero+valid to all ILT entries (The valid bit must
5982 * stay set)
5983 * f. If this is VNIC 3 of a port then also init
5984 * first_timers_ilt_entry to zero and last_timers_ilt_entry
5985 * to the last enrty in the ILT.
5986 *
5987 * Notes:
5988 * Currently the PF error in the PGLC is non recoverable.
5989 * In the future the there will be a recovery routine for this error.
5990 * Currently attention is masked.
5991 * Having an MCP lock on the load/unload process does not guarantee that
5992 * there is no Timer disable during Func6/7 enable. This is because the
5993 * Timers scan is currently being cleared by the MCP on FLR.
5994 * Step 2.d can be done only for PF6/7 and the driver can also check if
5995 * there is error before clearing it. But the flow above is simpler and
5996 * more general.
5997 * All ILT entries are written by zero+valid and not just PF6/7
5998 * ILT entries since in the future the ILT entries allocation for
5999 * PF-s might be dynamic.
6000 */
6001 struct ilt_client_info ilt_cli;
6002 struct bnx2x_ilt ilt;
6003 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6004 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6005
6006 /* initialize dummy TM client */
6007 ilt_cli.start = 0;
6008 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6009 ilt_cli.client_num = ILT_CLIENT_TM;
6010
6011 /* Step 1: set zeroes to all ilt page entries with valid bit on
6012 * Step 2: set the timers first/last ilt entry to point
6013 * to the entire range to prevent ILT range error for 3rd/4th
6014 * vnic (this code assumes existance of the vnic)
6015 *
6016 * both steps performed by call to bnx2x_ilt_client_init_op()
6017 * with dummy TM client
6018 *
6019 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6020 * and his brother are split registers
6021 */
6022 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6023 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6024 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6025
6026 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6027 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6028 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6029 }
6030
6031
6032 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6033 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6034
6035 if (!CHIP_IS_E1x(bp)) {
6036 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6037 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6038 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6039
6040 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6041
6042 /* let the HW do it's magic ... */
6043 do {
6044 msleep(200);
6045 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6046 } while (factor-- && (val != 1));
6047
6048 if (val != 1) {
6049 BNX2X_ERR("ATC_INIT failed\n");
6050 return -EBUSY;
6051 }
6052 }
6053
6054 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6055
6056 /* clean the DMAE memory */
6057 bp->dmae_ready = 1;
6058 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6059
6060 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6061
6062 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6063
6064 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6065
6066 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6067
6068 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6069 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6070 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6071 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6072
6073 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6074
6075
6076 /* QM queues pointers table */
6077 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6078
6079 /* soft reset pulse */
6080 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6081 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6082
6083 #ifdef BCM_CNIC
6084 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6085 #endif
6086
6087 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6088 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6089 if (!CHIP_REV_IS_SLOW(bp))
6090 /* enable hw interrupt from doorbell Q */
6091 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6092
6093 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6094
6095 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6096 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6097
6098 if (!CHIP_IS_E1(bp))
6099 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6100
6101 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6102 /* Bit-map indicating which L2 hdrs may appear
6103 * after the basic Ethernet header
6104 */
6105 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6106 bp->path_has_ovlan ? 7 : 6);
6107
6108 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6109 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6110 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6111 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6112
6113 if (!CHIP_IS_E1x(bp)) {
6114 /* reset VFC memories */
6115 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6116 VFC_MEMORIES_RST_REG_CAM_RST |
6117 VFC_MEMORIES_RST_REG_RAM_RST);
6118 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6119 VFC_MEMORIES_RST_REG_CAM_RST |
6120 VFC_MEMORIES_RST_REG_RAM_RST);
6121
6122 msleep(20);
6123 }
6124
6125 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6126 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6127 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6128 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6129
6130 /* sync semi rtc */
6131 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6132 0x80000000);
6133 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6134 0x80000000);
6135
6136 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6137 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6138 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6139
6140 if (!CHIP_IS_E1x(bp))
6141 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6142 bp->path_has_ovlan ? 7 : 6);
6143
6144 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6145
6146 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6147
6148 #ifdef BCM_CNIC
6149 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6150 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6151 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6152 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6153 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6154 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6155 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6156 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6157 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6158 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6159 #endif
6160 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6161
6162 if (sizeof(union cdu_context) != 1024)
6163 /* we currently assume that a context is 1024 bytes */
6164 dev_alert(&bp->pdev->dev, "please adjust the size "
6165 "of cdu_context(%ld)\n",
6166 (long)sizeof(union cdu_context));
6167
6168 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6169 val = (4 << 24) + (0 << 12) + 1024;
6170 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6171
6172 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6173 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6174 /* enable context validation interrupt from CFC */
6175 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6176
6177 /* set the thresholds to prevent CFC/CDU race */
6178 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6179
6180 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6181
6182 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6183 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6184
6185 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6186 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6187
6188 /* Reset PCIE errors for debug */
6189 REG_WR(bp, 0x2814, 0xffffffff);
6190 REG_WR(bp, 0x3820, 0xffffffff);
6191
6192 if (!CHIP_IS_E1x(bp)) {
6193 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6194 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6195 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6196 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6197 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6198 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6199 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6200 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6201 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6202 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6203 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6204 }
6205
6206 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6207 if (!CHIP_IS_E1(bp)) {
6208 /* in E3 this done in per-port section */
6209 if (!CHIP_IS_E3(bp))
6210 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6211 }
6212 if (CHIP_IS_E1H(bp))
6213 /* not applicable for E2 (and above ...) */
6214 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6215
6216 if (CHIP_REV_IS_SLOW(bp))
6217 msleep(200);
6218
6219 /* finish CFC init */
6220 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6221 if (val != 1) {
6222 BNX2X_ERR("CFC LL_INIT failed\n");
6223 return -EBUSY;
6224 }
6225 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6226 if (val != 1) {
6227 BNX2X_ERR("CFC AC_INIT failed\n");
6228 return -EBUSY;
6229 }
6230 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6231 if (val != 1) {
6232 BNX2X_ERR("CFC CAM_INIT failed\n");
6233 return -EBUSY;
6234 }
6235 REG_WR(bp, CFC_REG_DEBUG0, 0);
6236
6237 if (CHIP_IS_E1(bp)) {
6238 /* read NIG statistic
6239 to see if this is our first up since powerup */
6240 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6241 val = *bnx2x_sp(bp, wb_data[0]);
6242
6243 /* do internal memory self test */
6244 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6245 BNX2X_ERR("internal mem self test failed\n");
6246 return -EBUSY;
6247 }
6248 }
6249
6250 bnx2x_setup_fan_failure_detection(bp);
6251
6252 /* clear PXP2 attentions */
6253 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6254
6255 bnx2x_enable_blocks_attention(bp);
6256 bnx2x_enable_blocks_parity(bp);
6257
6258 if (!BP_NOMCP(bp)) {
6259 if (CHIP_IS_E1x(bp))
6260 bnx2x__common_init_phy(bp);
6261 } else
6262 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6263
6264 return 0;
6265 }
6266
6267 /**
6268 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6269 *
6270 * @bp: driver handle
6271 */
6272 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6273 {
6274 int rc = bnx2x_init_hw_common(bp);
6275
6276 if (rc)
6277 return rc;
6278
6279 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6280 if (!BP_NOMCP(bp))
6281 bnx2x__common_init_phy(bp);
6282
6283 return 0;
6284 }
6285
6286 static int bnx2x_init_hw_port(struct bnx2x *bp)
6287 {
6288 int port = BP_PORT(bp);
6289 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6290 u32 low, high;
6291 u32 val;
6292
6293 bnx2x__link_reset(bp);
6294
6295 DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
6296
6297 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6298
6299 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6300 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6301 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6302
6303 /* Timers bug workaround: disables the pf_master bit in pglue at
6304 * common phase, we need to enable it here before any dmae access are
6305 * attempted. Therefore we manually added the enable-master to the
6306 * port phase (it also happens in the function phase)
6307 */
6308 if (!CHIP_IS_E1x(bp))
6309 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6310
6311 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6312 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6313 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6314 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6315
6316 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6317 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6318 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6319 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6320
6321 /* QM cid (connection) count */
6322 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6323
6324 #ifdef BCM_CNIC
6325 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6326 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6327 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6328 #endif
6329
6330 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6331
6332 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6333 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6334
6335 if (IS_MF(bp))
6336 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6337 else if (bp->dev->mtu > 4096) {
6338 if (bp->flags & ONE_PORT_FLAG)
6339 low = 160;
6340 else {
6341 val = bp->dev->mtu;
6342 /* (24*1024 + val*4)/256 */
6343 low = 96 + (val/64) +
6344 ((val % 64) ? 1 : 0);
6345 }
6346 } else
6347 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6348 high = low + 56; /* 14*1024/256 */
6349 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6350 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6351 }
6352
6353 if (CHIP_MODE_IS_4_PORT(bp))
6354 REG_WR(bp, (BP_PORT(bp) ?
6355 BRB1_REG_MAC_GUARANTIED_1 :
6356 BRB1_REG_MAC_GUARANTIED_0), 40);
6357
6358
6359 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6360 if (CHIP_IS_E3B0(bp))
6361 /* Ovlan exists only if we are in multi-function +
6362 * switch-dependent mode, in switch-independent there
6363 * is no ovlan headers
6364 */
6365 REG_WR(bp, BP_PORT(bp) ?
6366 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6367 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6368 (bp->path_has_ovlan ? 7 : 6));
6369
6370 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6371 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6372 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6373 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6374
6375 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6376 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6377 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6378 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6379
6380 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6381 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6382
6383 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6384
6385 if (CHIP_IS_E1x(bp)) {
6386 /* configure PBF to work without PAUSE mtu 9000 */
6387 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6388
6389 /* update threshold */
6390 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6391 /* update init credit */
6392 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6393
6394 /* probe changes */
6395 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6396 udelay(50);
6397 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6398 }
6399
6400 #ifdef BCM_CNIC
6401 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6402 #endif
6403 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6404 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6405
6406 if (CHIP_IS_E1(bp)) {
6407 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6408 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6409 }
6410 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6411
6412 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6413
6414 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6415 /* init aeu_mask_attn_func_0/1:
6416 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6417 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6418 * bits 4-7 are used for "per vn group attention" */
6419 val = IS_MF(bp) ? 0xF7 : 0x7;
6420 /* Enable DCBX attention for all but E1 */
6421 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6422 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6423
6424 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6425
6426 if (!CHIP_IS_E1x(bp)) {
6427 /* Bit-map indicating which L2 hdrs may appear after the
6428 * basic Ethernet header
6429 */
6430 REG_WR(bp, BP_PORT(bp) ?
6431 NIG_REG_P1_HDRS_AFTER_BASIC :
6432 NIG_REG_P0_HDRS_AFTER_BASIC,
6433 IS_MF_SD(bp) ? 7 : 6);
6434
6435 if (CHIP_IS_E3(bp))
6436 REG_WR(bp, BP_PORT(bp) ?
6437 NIG_REG_LLH1_MF_MODE :
6438 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6439 }
6440 if (!CHIP_IS_E3(bp))
6441 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6442
6443 if (!CHIP_IS_E1(bp)) {
6444 /* 0x2 disable mf_ov, 0x1 enable */
6445 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6446 (IS_MF_SD(bp) ? 0x1 : 0x2));
6447
6448 if (!CHIP_IS_E1x(bp)) {
6449 val = 0;
6450 switch (bp->mf_mode) {
6451 case MULTI_FUNCTION_SD:
6452 val = 1;
6453 break;
6454 case MULTI_FUNCTION_SI:
6455 val = 2;
6456 break;
6457 }
6458
6459 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6460 NIG_REG_LLH0_CLS_TYPE), val);
6461 }
6462 {
6463 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6464 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6465 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6466 }
6467 }
6468
6469
6470 /* If SPIO5 is set to generate interrupts, enable it for this port */
6471 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6472 if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6473 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6474 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6475 val = REG_RD(bp, reg_addr);
6476 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6477 REG_WR(bp, reg_addr, val);
6478 }
6479
6480 return 0;
6481 }
6482
6483 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6484 {
6485 int reg;
6486
6487 if (CHIP_IS_E1(bp))
6488 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6489 else
6490 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6491
6492 bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6493 }
6494
6495 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6496 {
6497 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6498 }
6499
6500 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6501 {
6502 u32 i, base = FUNC_ILT_BASE(func);
6503 for (i = base; i < base + ILT_PER_FUNC; i++)
6504 bnx2x_ilt_wr(bp, i, 0);
6505 }
6506
6507 static int bnx2x_init_hw_func(struct bnx2x *bp)
6508 {
6509 int port = BP_PORT(bp);
6510 int func = BP_FUNC(bp);
6511 int init_phase = PHASE_PF0 + func;
6512 struct bnx2x_ilt *ilt = BP_ILT(bp);
6513 u16 cdu_ilt_start;
6514 u32 addr, val;
6515 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6516 int i, main_mem_width;
6517
6518 DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
6519
6520 /* FLR cleanup - hmmm */
6521 if (!CHIP_IS_E1x(bp))
6522 bnx2x_pf_flr_clnup(bp);
6523
6524 /* set MSI reconfigure capability */
6525 if (bp->common.int_block == INT_BLOCK_HC) {
6526 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6527 val = REG_RD(bp, addr);
6528 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6529 REG_WR(bp, addr, val);
6530 }
6531
6532 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6533 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6534
6535 ilt = BP_ILT(bp);
6536 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6537
6538 for (i = 0; i < L2_ILT_LINES(bp); i++) {
6539 ilt->lines[cdu_ilt_start + i].page =
6540 bp->context.vcxt + (ILT_PAGE_CIDS * i);
6541 ilt->lines[cdu_ilt_start + i].page_mapping =
6542 bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6543 /* cdu ilt pages are allocated manually so there's no need to
6544 set the size */
6545 }
6546 bnx2x_ilt_init_op(bp, INITOP_SET);
6547
6548 #ifdef BCM_CNIC
6549 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6550
6551 /* T1 hash bits value determines the T1 number of entries */
6552 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6553 #endif
6554
6555 #ifndef BCM_CNIC
6556 /* set NIC mode */
6557 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6558 #endif /* BCM_CNIC */
6559
6560 if (!CHIP_IS_E1x(bp)) {
6561 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6562
6563 /* Turn on a single ISR mode in IGU if driver is going to use
6564 * INT#x or MSI
6565 */
6566 if (!(bp->flags & USING_MSIX_FLAG))
6567 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6568 /*
6569 * Timers workaround bug: function init part.
6570 * Need to wait 20msec after initializing ILT,
6571 * needed to make sure there are no requests in
6572 * one of the PXP internal queues with "old" ILT addresses
6573 */
6574 msleep(20);
6575 /*
6576 * Master enable - Due to WB DMAE writes performed before this
6577 * register is re-initialized as part of the regular function
6578 * init
6579 */
6580 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6581 /* Enable the function in IGU */
6582 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6583 }
6584
6585 bp->dmae_ready = 1;
6586
6587 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6588
6589 if (!CHIP_IS_E1x(bp))
6590 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6591
6592 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6593 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6594 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6595 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6596 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6597 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6598 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6599 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6600 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6601 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6602 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6603 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6604 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6605
6606 if (!CHIP_IS_E1x(bp))
6607 REG_WR(bp, QM_REG_PF_EN, 1);
6608
6609 if (!CHIP_IS_E1x(bp)) {
6610 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6611 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6612 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6613 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6614 }
6615 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6616
6617 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6618 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6619 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6620 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6621 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6622 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6623 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6624 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6625 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6626 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6627 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6628 if (!CHIP_IS_E1x(bp))
6629 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6630
6631 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6632
6633 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6634
6635 if (!CHIP_IS_E1x(bp))
6636 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6637
6638 if (IS_MF(bp)) {
6639 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6640 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6641 }
6642
6643 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6644
6645 /* HC init per function */
6646 if (bp->common.int_block == INT_BLOCK_HC) {
6647 if (CHIP_IS_E1H(bp)) {
6648 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6649
6650 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6651 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6652 }
6653 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6654
6655 } else {
6656 int num_segs, sb_idx, prod_offset;
6657
6658 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6659
6660 if (!CHIP_IS_E1x(bp)) {
6661 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6662 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6663 }
6664
6665 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6666
6667 if (!CHIP_IS_E1x(bp)) {
6668 int dsb_idx = 0;
6669 /**
6670 * Producer memory:
6671 * E2 mode: address 0-135 match to the mapping memory;
6672 * 136 - PF0 default prod; 137 - PF1 default prod;
6673 * 138 - PF2 default prod; 139 - PF3 default prod;
6674 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6675 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6676 * 144-147 reserved.
6677 *
6678 * E1.5 mode - In backward compatible mode;
6679 * for non default SB; each even line in the memory
6680 * holds the U producer and each odd line hold
6681 * the C producer. The first 128 producers are for
6682 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6683 * producers are for the DSB for each PF.
6684 * Each PF has five segments: (the order inside each
6685 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6686 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6687 * 144-147 attn prods;
6688 */
6689 /* non-default-status-blocks */
6690 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6691 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6692 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6693 prod_offset = (bp->igu_base_sb + sb_idx) *
6694 num_segs;
6695
6696 for (i = 0; i < num_segs; i++) {
6697 addr = IGU_REG_PROD_CONS_MEMORY +
6698 (prod_offset + i) * 4;
6699 REG_WR(bp, addr, 0);
6700 }
6701 /* send consumer update with value 0 */
6702 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6703 USTORM_ID, 0, IGU_INT_NOP, 1);
6704 bnx2x_igu_clear_sb(bp,
6705 bp->igu_base_sb + sb_idx);
6706 }
6707
6708 /* default-status-blocks */
6709 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6710 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6711
6712 if (CHIP_MODE_IS_4_PORT(bp))
6713 dsb_idx = BP_FUNC(bp);
6714 else
6715 dsb_idx = BP_VN(bp);
6716
6717 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6718 IGU_BC_BASE_DSB_PROD + dsb_idx :
6719 IGU_NORM_BASE_DSB_PROD + dsb_idx);
6720
6721 /*
6722 * igu prods come in chunks of E1HVN_MAX (4) -
6723 * does not matters what is the current chip mode
6724 */
6725 for (i = 0; i < (num_segs * E1HVN_MAX);
6726 i += E1HVN_MAX) {
6727 addr = IGU_REG_PROD_CONS_MEMORY +
6728 (prod_offset + i)*4;
6729 REG_WR(bp, addr, 0);
6730 }
6731 /* send consumer update with 0 */
6732 if (CHIP_INT_MODE_IS_BC(bp)) {
6733 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6734 USTORM_ID, 0, IGU_INT_NOP, 1);
6735 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6736 CSTORM_ID, 0, IGU_INT_NOP, 1);
6737 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6738 XSTORM_ID, 0, IGU_INT_NOP, 1);
6739 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6740 TSTORM_ID, 0, IGU_INT_NOP, 1);
6741 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6742 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6743 } else {
6744 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6745 USTORM_ID, 0, IGU_INT_NOP, 1);
6746 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6747 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6748 }
6749 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6750
6751 /* !!! these should become driver const once
6752 rf-tool supports split-68 const */
6753 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6754 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6755 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6756 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6757 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6758 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6759 }
6760 }
6761
6762 /* Reset PCIE errors for debug */
6763 REG_WR(bp, 0x2114, 0xffffffff);
6764 REG_WR(bp, 0x2120, 0xffffffff);
6765
6766 if (CHIP_IS_E1x(bp)) {
6767 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6768 main_mem_base = HC_REG_MAIN_MEMORY +
6769 BP_PORT(bp) * (main_mem_size * 4);
6770 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6771 main_mem_width = 8;
6772
6773 val = REG_RD(bp, main_mem_prty_clr);
6774 if (val)
6775 DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6776 "block during "
6777 "function init (0x%x)!\n", val);
6778
6779 /* Clear "false" parity errors in MSI-X table */
6780 for (i = main_mem_base;
6781 i < main_mem_base + main_mem_size * 4;
6782 i += main_mem_width) {
6783 bnx2x_read_dmae(bp, i, main_mem_width / 4);
6784 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6785 i, main_mem_width / 4);
6786 }
6787 /* Clear HC parity attention */
6788 REG_RD(bp, main_mem_prty_clr);
6789 }
6790
6791 #ifdef BNX2X_STOP_ON_ERROR
6792 /* Enable STORMs SP logging */
6793 REG_WR8(bp, BAR_USTRORM_INTMEM +
6794 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6795 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6796 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6797 REG_WR8(bp, BAR_CSTRORM_INTMEM +
6798 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6799 REG_WR8(bp, BAR_XSTRORM_INTMEM +
6800 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6801 #endif
6802
6803 bnx2x_phy_probe(&bp->link_params);
6804
6805 return 0;
6806 }
6807
6808
6809 void bnx2x_free_mem(struct bnx2x *bp)
6810 {
6811 /* fastpath */
6812 bnx2x_free_fp_mem(bp);
6813 /* end of fastpath */
6814
6815 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6816 sizeof(struct host_sp_status_block));
6817
6818 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6819 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6820
6821 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6822 sizeof(struct bnx2x_slowpath));
6823
6824 BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6825 bp->context.size);
6826
6827 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6828
6829 BNX2X_FREE(bp->ilt->lines);
6830
6831 #ifdef BCM_CNIC
6832 if (!CHIP_IS_E1x(bp))
6833 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6834 sizeof(struct host_hc_status_block_e2));
6835 else
6836 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6837 sizeof(struct host_hc_status_block_e1x));
6838
6839 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
6840 #endif
6841
6842 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
6843
6844 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
6845 BCM_PAGE_SIZE * NUM_EQ_PAGES);
6846 }
6847
6848 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
6849 {
6850 int num_groups;
6851
6852 /* number of eth_queues */
6853 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp);
6854
6855 /* Total number of FW statistics requests =
6856 * 1 for port stats + 1 for PF stats + num_eth_queues */
6857 bp->fw_stats_num = 2 + num_queue_stats;
6858
6859
6860 /* Request is built from stats_query_header and an array of
6861 * stats_query_cmd_group each of which contains
6862 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
6863 * configured in the stats_query_header.
6864 */
6865 num_groups = (2 + num_queue_stats) / STATS_QUERY_CMD_COUNT +
6866 (((2 + num_queue_stats) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
6867
6868 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
6869 num_groups * sizeof(struct stats_query_cmd_group);
6870
6871 /* Data for statistics requests + stats_conter
6872 *
6873 * stats_counter holds per-STORM counters that are incremented
6874 * when STORM has finished with the current request.
6875 */
6876 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
6877 sizeof(struct per_pf_stats) +
6878 sizeof(struct per_queue_stats) * num_queue_stats +
6879 sizeof(struct stats_counter);
6880
6881 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
6882 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6883
6884 /* Set shortcuts */
6885 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
6886 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
6887
6888 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
6889 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
6890
6891 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
6892 bp->fw_stats_req_sz;
6893 return 0;
6894
6895 alloc_mem_err:
6896 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6897 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6898 return -ENOMEM;
6899 }
6900
6901
6902 int bnx2x_alloc_mem(struct bnx2x *bp)
6903 {
6904 #ifdef BCM_CNIC
6905 if (!CHIP_IS_E1x(bp))
6906 /* size = the status block + ramrod buffers */
6907 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
6908 sizeof(struct host_hc_status_block_e2));
6909 else
6910 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
6911 sizeof(struct host_hc_status_block_e1x));
6912
6913 /* allocate searcher T2 table */
6914 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
6915 #endif
6916
6917
6918 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
6919 sizeof(struct host_sp_status_block));
6920
6921 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
6922 sizeof(struct bnx2x_slowpath));
6923
6924 /* Allocated memory for FW statistics */
6925 if (bnx2x_alloc_fw_stats_mem(bp))
6926 goto alloc_mem_err;
6927
6928 bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
6929
6930 BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
6931 bp->context.size);
6932
6933 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
6934
6935 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
6936 goto alloc_mem_err;
6937
6938 /* Slow path ring */
6939 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
6940
6941 /* EQ */
6942 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
6943 BCM_PAGE_SIZE * NUM_EQ_PAGES);
6944
6945
6946 /* fastpath */
6947 /* need to be done at the end, since it's self adjusting to amount
6948 * of memory available for RSS queues
6949 */
6950 if (bnx2x_alloc_fp_mem(bp))
6951 goto alloc_mem_err;
6952 return 0;
6953
6954 alloc_mem_err:
6955 bnx2x_free_mem(bp);
6956 return -ENOMEM;
6957 }
6958
6959 /*
6960 * Init service functions
6961 */
6962
6963 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
6964 struct bnx2x_vlan_mac_obj *obj, bool set,
6965 int mac_type, unsigned long *ramrod_flags)
6966 {
6967 int rc;
6968 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
6969
6970 memset(&ramrod_param, 0, sizeof(ramrod_param));
6971
6972 /* Fill general parameters */
6973 ramrod_param.vlan_mac_obj = obj;
6974 ramrod_param.ramrod_flags = *ramrod_flags;
6975
6976 /* Fill a user request section if needed */
6977 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
6978 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
6979
6980 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6981
6982 /* Set the command: ADD or DEL */
6983 if (set)
6984 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
6985 else
6986 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
6987 }
6988
6989 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
6990 if (rc < 0)
6991 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
6992 return rc;
6993 }
6994
6995 int bnx2x_del_all_macs(struct bnx2x *bp,
6996 struct bnx2x_vlan_mac_obj *mac_obj,
6997 int mac_type, bool wait_for_comp)
6998 {
6999 int rc;
7000 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7001
7002 /* Wait for completion of requested */
7003 if (wait_for_comp)
7004 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7005
7006 /* Set the mac type of addresses we want to clear */
7007 __set_bit(mac_type, &vlan_mac_flags);
7008
7009 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7010 if (rc < 0)
7011 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7012
7013 return rc;
7014 }
7015
7016 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7017 {
7018 unsigned long ramrod_flags = 0;
7019
7020 #ifdef BCM_CNIC
7021 if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7022 DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7023 return 0;
7024 }
7025 #endif
7026
7027 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7028
7029 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7030 /* Eth MAC is set on RSS leading client (fp[0]) */
7031 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7032 BNX2X_ETH_MAC, &ramrod_flags);
7033 }
7034
7035 int bnx2x_setup_leading(struct bnx2x *bp)
7036 {
7037 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7038 }
7039
7040 /**
7041 * bnx2x_set_int_mode - configure interrupt mode
7042 *
7043 * @bp: driver handle
7044 *
7045 * In case of MSI-X it will also try to enable MSI-X.
7046 */
7047 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7048 {
7049 switch (int_mode) {
7050 case INT_MODE_MSI:
7051 bnx2x_enable_msi(bp);
7052 /* falling through... */
7053 case INT_MODE_INTx:
7054 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7055 DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7056 break;
7057 default:
7058 /* Set number of queues according to bp->multi_mode value */
7059 bnx2x_set_num_queues(bp);
7060
7061 DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7062 bp->num_queues);
7063
7064 /* if we can't use MSI-X we only need one fp,
7065 * so try to enable MSI-X with the requested number of fp's
7066 * and fallback to MSI or legacy INTx with one fp
7067 */
7068 if (bnx2x_enable_msix(bp)) {
7069 /* failed to enable MSI-X */
7070 if (bp->multi_mode)
7071 DP(NETIF_MSG_IFUP,
7072 "Multi requested but failed to "
7073 "enable MSI-X (%d), "
7074 "set number of queues to %d\n",
7075 bp->num_queues,
7076 1 + NON_ETH_CONTEXT_USE);
7077 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7078
7079 /* Try to enable MSI */
7080 if (!(bp->flags & DISABLE_MSI_FLAG))
7081 bnx2x_enable_msi(bp);
7082 }
7083 break;
7084 }
7085 }
7086
7087 /* must be called prioir to any HW initializations */
7088 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7089 {
7090 return L2_ILT_LINES(bp);
7091 }
7092
7093 void bnx2x_ilt_set_info(struct bnx2x *bp)
7094 {
7095 struct ilt_client_info *ilt_client;
7096 struct bnx2x_ilt *ilt = BP_ILT(bp);
7097 u16 line = 0;
7098
7099 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7100 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7101
7102 /* CDU */
7103 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7104 ilt_client->client_num = ILT_CLIENT_CDU;
7105 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7106 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7107 ilt_client->start = line;
7108 line += bnx2x_cid_ilt_lines(bp);
7109 #ifdef BCM_CNIC
7110 line += CNIC_ILT_LINES;
7111 #endif
7112 ilt_client->end = line - 1;
7113
7114 DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7115 "flags 0x%x, hw psz %d\n",
7116 ilt_client->start,
7117 ilt_client->end,
7118 ilt_client->page_size,
7119 ilt_client->flags,
7120 ilog2(ilt_client->page_size >> 12));
7121
7122 /* QM */
7123 if (QM_INIT(bp->qm_cid_count)) {
7124 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7125 ilt_client->client_num = ILT_CLIENT_QM;
7126 ilt_client->page_size = QM_ILT_PAGE_SZ;
7127 ilt_client->flags = 0;
7128 ilt_client->start = line;
7129
7130 /* 4 bytes for each cid */
7131 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7132 QM_ILT_PAGE_SZ);
7133
7134 ilt_client->end = line - 1;
7135
7136 DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7137 "flags 0x%x, hw psz %d\n",
7138 ilt_client->start,
7139 ilt_client->end,
7140 ilt_client->page_size,
7141 ilt_client->flags,
7142 ilog2(ilt_client->page_size >> 12));
7143
7144 }
7145 /* SRC */
7146 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7147 #ifdef BCM_CNIC
7148 ilt_client->client_num = ILT_CLIENT_SRC;
7149 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7150 ilt_client->flags = 0;
7151 ilt_client->start = line;
7152 line += SRC_ILT_LINES;
7153 ilt_client->end = line - 1;
7154
7155 DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7156 "flags 0x%x, hw psz %d\n",
7157 ilt_client->start,
7158 ilt_client->end,
7159 ilt_client->page_size,
7160 ilt_client->flags,
7161 ilog2(ilt_client->page_size >> 12));
7162
7163 #else
7164 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7165 #endif
7166
7167 /* TM */
7168 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7169 #ifdef BCM_CNIC
7170 ilt_client->client_num = ILT_CLIENT_TM;
7171 ilt_client->page_size = TM_ILT_PAGE_SZ;
7172 ilt_client->flags = 0;
7173 ilt_client->start = line;
7174 line += TM_ILT_LINES;
7175 ilt_client->end = line - 1;
7176
7177 DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7178 "flags 0x%x, hw psz %d\n",
7179 ilt_client->start,
7180 ilt_client->end,
7181 ilt_client->page_size,
7182 ilt_client->flags,
7183 ilog2(ilt_client->page_size >> 12));
7184
7185 #else
7186 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7187 #endif
7188 BUG_ON(line > ILT_MAX_LINES);
7189 }
7190
7191 /**
7192 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7193 *
7194 * @bp: driver handle
7195 * @fp: pointer to fastpath
7196 * @init_params: pointer to parameters structure
7197 *
7198 * parameters configured:
7199 * - HC configuration
7200 * - Queue's CDU context
7201 */
7202 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7203 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7204 {
7205
7206 u8 cos;
7207 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7208 if (!IS_FCOE_FP(fp)) {
7209 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7210 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7211
7212 /* If HC is supporterd, enable host coalescing in the transition
7213 * to INIT state.
7214 */
7215 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7216 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7217
7218 /* HC rate */
7219 init_params->rx.hc_rate = bp->rx_ticks ?
7220 (1000000 / bp->rx_ticks) : 0;
7221 init_params->tx.hc_rate = bp->tx_ticks ?
7222 (1000000 / bp->tx_ticks) : 0;
7223
7224 /* FW SB ID */
7225 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7226 fp->fw_sb_id;
7227
7228 /*
7229 * CQ index among the SB indices: FCoE clients uses the default
7230 * SB, therefore it's different.
7231 */
7232 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7233 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7234 }
7235
7236 /* set maximum number of COSs supported by this queue */
7237 init_params->max_cos = fp->max_cos;
7238
7239 DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7240 fp->index, init_params->max_cos);
7241
7242 /* set the context pointers queue object */
7243 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7244 init_params->cxts[cos] =
7245 &bp->context.vcxt[fp->txdata[cos].cid].eth;
7246 }
7247
7248 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7249 struct bnx2x_queue_state_params *q_params,
7250 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7251 int tx_index, bool leading)
7252 {
7253 memset(tx_only_params, 0, sizeof(*tx_only_params));
7254
7255 /* Set the command */
7256 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7257
7258 /* Set tx-only QUEUE flags: don't zero statistics */
7259 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7260
7261 /* choose the index of the cid to send the slow path on */
7262 tx_only_params->cid_index = tx_index;
7263
7264 /* Set general TX_ONLY_SETUP parameters */
7265 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7266
7267 /* Set Tx TX_ONLY_SETUP parameters */
7268 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7269
7270 DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7271 "cos %d, primary cid %d, cid %d, "
7272 "client id %d, sp-client id %d, flags %lx\n",
7273 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7274 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7275 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7276
7277 /* send the ramrod */
7278 return bnx2x_queue_state_change(bp, q_params);
7279 }
7280
7281
7282 /**
7283 * bnx2x_setup_queue - setup queue
7284 *
7285 * @bp: driver handle
7286 * @fp: pointer to fastpath
7287 * @leading: is leading
7288 *
7289 * This function performs 2 steps in a Queue state machine
7290 * actually: 1) RESET->INIT 2) INIT->SETUP
7291 */
7292
7293 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7294 bool leading)
7295 {
7296 struct bnx2x_queue_state_params q_params = {0};
7297 struct bnx2x_queue_setup_params *setup_params =
7298 &q_params.params.setup;
7299 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7300 &q_params.params.tx_only;
7301 int rc;
7302 u8 tx_index;
7303
7304 DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7305
7306 /* reset IGU state skip FCoE L2 queue */
7307 if (!IS_FCOE_FP(fp))
7308 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7309 IGU_INT_ENABLE, 0);
7310
7311 q_params.q_obj = &fp->q_obj;
7312 /* We want to wait for completion in this context */
7313 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7314
7315 /* Prepare the INIT parameters */
7316 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7317
7318 /* Set the command */
7319 q_params.cmd = BNX2X_Q_CMD_INIT;
7320
7321 /* Change the state to INIT */
7322 rc = bnx2x_queue_state_change(bp, &q_params);
7323 if (rc) {
7324 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7325 return rc;
7326 }
7327
7328 DP(BNX2X_MSG_SP, "init complete\n");
7329
7330
7331 /* Now move the Queue to the SETUP state... */
7332 memset(setup_params, 0, sizeof(*setup_params));
7333
7334 /* Set QUEUE flags */
7335 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7336
7337 /* Set general SETUP parameters */
7338 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7339 FIRST_TX_COS_INDEX);
7340
7341 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7342 &setup_params->rxq_params);
7343
7344 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7345 FIRST_TX_COS_INDEX);
7346
7347 /* Set the command */
7348 q_params.cmd = BNX2X_Q_CMD_SETUP;
7349
7350 /* Change the state to SETUP */
7351 rc = bnx2x_queue_state_change(bp, &q_params);
7352 if (rc) {
7353 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7354 return rc;
7355 }
7356
7357 /* loop through the relevant tx-only indices */
7358 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7359 tx_index < fp->max_cos;
7360 tx_index++) {
7361
7362 /* prepare and send tx-only ramrod*/
7363 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7364 tx_only_params, tx_index, leading);
7365 if (rc) {
7366 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7367 fp->index, tx_index);
7368 return rc;
7369 }
7370 }
7371
7372 return rc;
7373 }
7374
7375 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7376 {
7377 struct bnx2x_fastpath *fp = &bp->fp[index];
7378 struct bnx2x_fp_txdata *txdata;
7379 struct bnx2x_queue_state_params q_params = {0};
7380 int rc, tx_index;
7381
7382 DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7383
7384 q_params.q_obj = &fp->q_obj;
7385 /* We want to wait for completion in this context */
7386 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7387
7388
7389 /* close tx-only connections */
7390 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7391 tx_index < fp->max_cos;
7392 tx_index++){
7393
7394 /* ascertain this is a normal queue*/
7395 txdata = &fp->txdata[tx_index];
7396
7397 DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7398 txdata->txq_index);
7399
7400 /* send halt terminate on tx-only connection */
7401 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7402 memset(&q_params.params.terminate, 0,
7403 sizeof(q_params.params.terminate));
7404 q_params.params.terminate.cid_index = tx_index;
7405
7406 rc = bnx2x_queue_state_change(bp, &q_params);
7407 if (rc)
7408 return rc;
7409
7410 /* send halt terminate on tx-only connection */
7411 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7412 memset(&q_params.params.cfc_del, 0,
7413 sizeof(q_params.params.cfc_del));
7414 q_params.params.cfc_del.cid_index = tx_index;
7415 rc = bnx2x_queue_state_change(bp, &q_params);
7416 if (rc)
7417 return rc;
7418 }
7419 /* Stop the primary connection: */
7420 /* ...halt the connection */
7421 q_params.cmd = BNX2X_Q_CMD_HALT;
7422 rc = bnx2x_queue_state_change(bp, &q_params);
7423 if (rc)
7424 return rc;
7425
7426 /* ...terminate the connection */
7427 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7428 memset(&q_params.params.terminate, 0,
7429 sizeof(q_params.params.terminate));
7430 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7431 rc = bnx2x_queue_state_change(bp, &q_params);
7432 if (rc)
7433 return rc;
7434 /* ...delete cfc entry */
7435 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7436 memset(&q_params.params.cfc_del, 0,
7437 sizeof(q_params.params.cfc_del));
7438 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7439 return bnx2x_queue_state_change(bp, &q_params);
7440 }
7441
7442
7443 static void bnx2x_reset_func(struct bnx2x *bp)
7444 {
7445 int port = BP_PORT(bp);
7446 int func = BP_FUNC(bp);
7447 int i;
7448
7449 /* Disable the function in the FW */
7450 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7451 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7452 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7453 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7454
7455 /* FP SBs */
7456 for_each_eth_queue(bp, i) {
7457 struct bnx2x_fastpath *fp = &bp->fp[i];
7458 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7459 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7460 SB_DISABLED);
7461 }
7462
7463 #ifdef BCM_CNIC
7464 /* CNIC SB */
7465 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7466 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7467 SB_DISABLED);
7468 #endif
7469 /* SP SB */
7470 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7471 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7472 SB_DISABLED);
7473
7474 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7475 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7476 0);
7477
7478 /* Configure IGU */
7479 if (bp->common.int_block == INT_BLOCK_HC) {
7480 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7481 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7482 } else {
7483 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7484 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7485 }
7486
7487 #ifdef BCM_CNIC
7488 /* Disable Timer scan */
7489 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7490 /*
7491 * Wait for at least 10ms and up to 2 second for the timers scan to
7492 * complete
7493 */
7494 for (i = 0; i < 200; i++) {
7495 msleep(10);
7496 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7497 break;
7498 }
7499 #endif
7500 /* Clear ILT */
7501 bnx2x_clear_func_ilt(bp, func);
7502
7503 /* Timers workaround bug for E2: if this is vnic-3,
7504 * we need to set the entire ilt range for this timers.
7505 */
7506 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7507 struct ilt_client_info ilt_cli;
7508 /* use dummy TM client */
7509 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7510 ilt_cli.start = 0;
7511 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7512 ilt_cli.client_num = ILT_CLIENT_TM;
7513
7514 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7515 }
7516
7517 /* this assumes that reset_port() called before reset_func()*/
7518 if (!CHIP_IS_E1x(bp))
7519 bnx2x_pf_disable(bp);
7520
7521 bp->dmae_ready = 0;
7522 }
7523
7524 static void bnx2x_reset_port(struct bnx2x *bp)
7525 {
7526 int port = BP_PORT(bp);
7527 u32 val;
7528
7529 /* Reset physical Link */
7530 bnx2x__link_reset(bp);
7531
7532 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7533
7534 /* Do not rcv packets to BRB */
7535 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7536 /* Do not direct rcv packets that are not for MCP to the BRB */
7537 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7538 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7539
7540 /* Configure AEU */
7541 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7542
7543 msleep(100);
7544 /* Check for BRB port occupancy */
7545 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7546 if (val)
7547 DP(NETIF_MSG_IFDOWN,
7548 "BRB1 is not empty %d blocks are occupied\n", val);
7549
7550 /* TODO: Close Doorbell port? */
7551 }
7552
7553 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7554 {
7555 struct bnx2x_func_state_params func_params = {0};
7556
7557 /* Prepare parameters for function state transitions */
7558 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7559
7560 func_params.f_obj = &bp->func_obj;
7561 func_params.cmd = BNX2X_F_CMD_HW_RESET;
7562
7563 func_params.params.hw_init.load_phase = load_code;
7564
7565 return bnx2x_func_state_change(bp, &func_params);
7566 }
7567
7568 static inline int bnx2x_func_stop(struct bnx2x *bp)
7569 {
7570 struct bnx2x_func_state_params func_params = {0};
7571 int rc;
7572
7573 /* Prepare parameters for function state transitions */
7574 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7575 func_params.f_obj = &bp->func_obj;
7576 func_params.cmd = BNX2X_F_CMD_STOP;
7577
7578 /*
7579 * Try to stop the function the 'good way'. If fails (in case
7580 * of a parity error during bnx2x_chip_cleanup()) and we are
7581 * not in a debug mode, perform a state transaction in order to
7582 * enable further HW_RESET transaction.
7583 */
7584 rc = bnx2x_func_state_change(bp, &func_params);
7585 if (rc) {
7586 #ifdef BNX2X_STOP_ON_ERROR
7587 return rc;
7588 #else
7589 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7590 "transaction\n");
7591 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7592 return bnx2x_func_state_change(bp, &func_params);
7593 #endif
7594 }
7595
7596 return 0;
7597 }
7598
7599 /**
7600 * bnx2x_send_unload_req - request unload mode from the MCP.
7601 *
7602 * @bp: driver handle
7603 * @unload_mode: requested function's unload mode
7604 *
7605 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7606 */
7607 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7608 {
7609 u32 reset_code = 0;
7610 int port = BP_PORT(bp);
7611
7612 /* Select the UNLOAD request mode */
7613 if (unload_mode == UNLOAD_NORMAL)
7614 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7615
7616 else if (bp->flags & NO_WOL_FLAG)
7617 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7618
7619 else if (bp->wol) {
7620 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7621 u8 *mac_addr = bp->dev->dev_addr;
7622 u32 val;
7623 u16 pmc;
7624
7625 /* The mac address is written to entries 1-4 to
7626 * preserve entry 0 which is used by the PMF
7627 */
7628 u8 entry = (BP_VN(bp) + 1)*8;
7629
7630 val = (mac_addr[0] << 8) | mac_addr[1];
7631 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7632
7633 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7634 (mac_addr[4] << 8) | mac_addr[5];
7635 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7636
7637 /* Enable the PME and clear the status */
7638 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7639 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7640 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7641
7642 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7643
7644 } else
7645 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7646
7647 /* Send the request to the MCP */
7648 if (!BP_NOMCP(bp))
7649 reset_code = bnx2x_fw_command(bp, reset_code, 0);
7650 else {
7651 int path = BP_PATH(bp);
7652
7653 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
7654 "%d, %d, %d\n",
7655 path, load_count[path][0], load_count[path][1],
7656 load_count[path][2]);
7657 load_count[path][0]--;
7658 load_count[path][1 + port]--;
7659 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
7660 "%d, %d, %d\n",
7661 path, load_count[path][0], load_count[path][1],
7662 load_count[path][2]);
7663 if (load_count[path][0] == 0)
7664 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7665 else if (load_count[path][1 + port] == 0)
7666 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7667 else
7668 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7669 }
7670
7671 return reset_code;
7672 }
7673
7674 /**
7675 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7676 *
7677 * @bp: driver handle
7678 */
7679 void bnx2x_send_unload_done(struct bnx2x *bp)
7680 {
7681 /* Report UNLOAD_DONE to MCP */
7682 if (!BP_NOMCP(bp))
7683 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7684 }
7685
7686 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7687 {
7688 int tout = 50;
7689 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7690
7691 if (!bp->port.pmf)
7692 return 0;
7693
7694 /*
7695 * (assumption: No Attention from MCP at this stage)
7696 * PMF probably in the middle of TXdisable/enable transaction
7697 * 1. Sync IRS for default SB
7698 * 2. Sync SP queue - this guarantes us that attention handling started
7699 * 3. Wait, that TXdisable/enable transaction completes
7700 *
7701 * 1+2 guranty that if DCBx attention was scheduled it already changed
7702 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7703 * received complettion for the transaction the state is TX_STOPPED.
7704 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7705 * transaction.
7706 */
7707
7708 /* make sure default SB ISR is done */
7709 if (msix)
7710 synchronize_irq(bp->msix_table[0].vector);
7711 else
7712 synchronize_irq(bp->pdev->irq);
7713
7714 flush_workqueue(bnx2x_wq);
7715
7716 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7717 BNX2X_F_STATE_STARTED && tout--)
7718 msleep(20);
7719
7720 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7721 BNX2X_F_STATE_STARTED) {
7722 #ifdef BNX2X_STOP_ON_ERROR
7723 return -EBUSY;
7724 #else
7725 /*
7726 * Failed to complete the transaction in a "good way"
7727 * Force both transactions with CLR bit
7728 */
7729 struct bnx2x_func_state_params func_params = {0};
7730
7731 DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7732 "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7733
7734 func_params.f_obj = &bp->func_obj;
7735 __set_bit(RAMROD_DRV_CLR_ONLY,
7736 &func_params.ramrod_flags);
7737
7738 /* STARTED-->TX_ST0PPED */
7739 func_params.cmd = BNX2X_F_CMD_TX_STOP;
7740 bnx2x_func_state_change(bp, &func_params);
7741
7742 /* TX_ST0PPED-->STARTED */
7743 func_params.cmd = BNX2X_F_CMD_TX_START;
7744 return bnx2x_func_state_change(bp, &func_params);
7745 #endif
7746 }
7747
7748 return 0;
7749 }
7750
7751 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7752 {
7753 int port = BP_PORT(bp);
7754 int i, rc = 0;
7755 u8 cos;
7756 struct bnx2x_mcast_ramrod_params rparam = {0};
7757 u32 reset_code;
7758
7759 /* Wait until tx fastpath tasks complete */
7760 for_each_tx_queue(bp, i) {
7761 struct bnx2x_fastpath *fp = &bp->fp[i];
7762
7763 for_each_cos_in_tx_queue(fp, cos)
7764 rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7765 #ifdef BNX2X_STOP_ON_ERROR
7766 if (rc)
7767 return;
7768 #endif
7769 }
7770
7771 /* Give HW time to discard old tx messages */
7772 usleep_range(1000, 1000);
7773
7774 /* Clean all ETH MACs */
7775 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7776 if (rc < 0)
7777 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7778
7779 /* Clean up UC list */
7780 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7781 true);
7782 if (rc < 0)
7783 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7784 "%d\n", rc);
7785
7786 /* Disable LLH */
7787 if (!CHIP_IS_E1(bp))
7788 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7789
7790 /* Set "drop all" (stop Rx).
7791 * We need to take a netif_addr_lock() here in order to prevent
7792 * a race between the completion code and this code.
7793 */
7794 netif_addr_lock_bh(bp->dev);
7795 /* Schedule the rx_mode command */
7796 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7797 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7798 else
7799 bnx2x_set_storm_rx_mode(bp);
7800
7801 /* Cleanup multicast configuration */
7802 rparam.mcast_obj = &bp->mcast_obj;
7803 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7804 if (rc < 0)
7805 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7806
7807 netif_addr_unlock_bh(bp->dev);
7808
7809
7810
7811 /*
7812 * Send the UNLOAD_REQUEST to the MCP. This will return if
7813 * this function should perform FUNC, PORT or COMMON HW
7814 * reset.
7815 */
7816 reset_code = bnx2x_send_unload_req(bp, unload_mode);
7817
7818 /*
7819 * (assumption: No Attention from MCP at this stage)
7820 * PMF probably in the middle of TXdisable/enable transaction
7821 */
7822 rc = bnx2x_func_wait_started(bp);
7823 if (rc) {
7824 BNX2X_ERR("bnx2x_func_wait_started failed\n");
7825 #ifdef BNX2X_STOP_ON_ERROR
7826 return;
7827 #endif
7828 }
7829
7830 /* Close multi and leading connections
7831 * Completions for ramrods are collected in a synchronous way
7832 */
7833 for_each_queue(bp, i)
7834 if (bnx2x_stop_queue(bp, i))
7835 #ifdef BNX2X_STOP_ON_ERROR
7836 return;
7837 #else
7838 goto unload_error;
7839 #endif
7840 /* If SP settings didn't get completed so far - something
7841 * very wrong has happen.
7842 */
7843 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
7844 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
7845
7846 #ifndef BNX2X_STOP_ON_ERROR
7847 unload_error:
7848 #endif
7849 rc = bnx2x_func_stop(bp);
7850 if (rc) {
7851 BNX2X_ERR("Function stop failed!\n");
7852 #ifdef BNX2X_STOP_ON_ERROR
7853 return;
7854 #endif
7855 }
7856
7857 /* Disable HW interrupts, NAPI */
7858 bnx2x_netif_stop(bp, 1);
7859
7860 /* Release IRQs */
7861 bnx2x_free_irq(bp);
7862
7863 /* Reset the chip */
7864 rc = bnx2x_reset_hw(bp, reset_code);
7865 if (rc)
7866 BNX2X_ERR("HW_RESET failed\n");
7867
7868
7869 /* Report UNLOAD_DONE to MCP */
7870 bnx2x_send_unload_done(bp);
7871 }
7872
7873 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
7874 {
7875 u32 val;
7876
7877 DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
7878
7879 if (CHIP_IS_E1(bp)) {
7880 int port = BP_PORT(bp);
7881 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7882 MISC_REG_AEU_MASK_ATTN_FUNC_0;
7883
7884 val = REG_RD(bp, addr);
7885 val &= ~(0x300);
7886 REG_WR(bp, addr, val);
7887 } else {
7888 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
7889 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
7890 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
7891 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
7892 }
7893 }
7894
7895 /* Close gates #2, #3 and #4: */
7896 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
7897 {
7898 u32 val;
7899
7900 /* Gates #2 and #4a are closed/opened for "not E1" only */
7901 if (!CHIP_IS_E1(bp)) {
7902 /* #4 */
7903 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
7904 /* #2 */
7905 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
7906 }
7907
7908 /* #3 */
7909 if (CHIP_IS_E1x(bp)) {
7910 /* Prevent interrupts from HC on both ports */
7911 val = REG_RD(bp, HC_REG_CONFIG_1);
7912 REG_WR(bp, HC_REG_CONFIG_1,
7913 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
7914 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
7915
7916 val = REG_RD(bp, HC_REG_CONFIG_0);
7917 REG_WR(bp, HC_REG_CONFIG_0,
7918 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
7919 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
7920 } else {
7921 /* Prevent incomming interrupts in IGU */
7922 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
7923
7924 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
7925 (!close) ?
7926 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
7927 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
7928 }
7929
7930 DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
7931 close ? "closing" : "opening");
7932 mmiowb();
7933 }
7934
7935 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
7936
7937 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
7938 {
7939 /* Do some magic... */
7940 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7941 *magic_val = val & SHARED_MF_CLP_MAGIC;
7942 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
7943 }
7944
7945 /**
7946 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
7947 *
7948 * @bp: driver handle
7949 * @magic_val: old value of the `magic' bit.
7950 */
7951 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
7952 {
7953 /* Restore the `magic' bit value... */
7954 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7955 MF_CFG_WR(bp, shared_mf_config.clp_mb,
7956 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
7957 }
7958
7959 /**
7960 * bnx2x_reset_mcp_prep - prepare for MCP reset.
7961 *
7962 * @bp: driver handle
7963 * @magic_val: old value of 'magic' bit.
7964 *
7965 * Takes care of CLP configurations.
7966 */
7967 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
7968 {
7969 u32 shmem;
7970 u32 validity_offset;
7971
7972 DP(NETIF_MSG_HW, "Starting\n");
7973
7974 /* Set `magic' bit in order to save MF config */
7975 if (!CHIP_IS_E1(bp))
7976 bnx2x_clp_reset_prep(bp, magic_val);
7977
7978 /* Get shmem offset */
7979 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7980 validity_offset = offsetof(struct shmem_region, validity_map[0]);
7981
7982 /* Clear validity map flags */
7983 if (shmem > 0)
7984 REG_WR(bp, shmem + validity_offset, 0);
7985 }
7986
7987 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
7988 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
7989
7990 /**
7991 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
7992 *
7993 * @bp: driver handle
7994 */
7995 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
7996 {
7997 /* special handling for emulation and FPGA,
7998 wait 10 times longer */
7999 if (CHIP_REV_IS_SLOW(bp))
8000 msleep(MCP_ONE_TIMEOUT*10);
8001 else
8002 msleep(MCP_ONE_TIMEOUT);
8003 }
8004
8005 /*
8006 * initializes bp->common.shmem_base and waits for validity signature to appear
8007 */
8008 static int bnx2x_init_shmem(struct bnx2x *bp)
8009 {
8010 int cnt = 0;
8011 u32 val = 0;
8012
8013 do {
8014 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8015 if (bp->common.shmem_base) {
8016 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8017 if (val & SHR_MEM_VALIDITY_MB)
8018 return 0;
8019 }
8020
8021 bnx2x_mcp_wait_one(bp);
8022
8023 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8024
8025 BNX2X_ERR("BAD MCP validity signature\n");
8026
8027 return -ENODEV;
8028 }
8029
8030 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8031 {
8032 int rc = bnx2x_init_shmem(bp);
8033
8034 /* Restore the `magic' bit value */
8035 if (!CHIP_IS_E1(bp))
8036 bnx2x_clp_reset_done(bp, magic_val);
8037
8038 return rc;
8039 }
8040
8041 static void bnx2x_pxp_prep(struct bnx2x *bp)
8042 {
8043 if (!CHIP_IS_E1(bp)) {
8044 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8045 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8046 mmiowb();
8047 }
8048 }
8049
8050 /*
8051 * Reset the whole chip except for:
8052 * - PCIE core
8053 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8054 * one reset bit)
8055 * - IGU
8056 * - MISC (including AEU)
8057 * - GRC
8058 * - RBCN, RBCP
8059 */
8060 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8061 {
8062 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8063 u32 global_bits2, stay_reset2;
8064
8065 /*
8066 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8067 * (per chip) blocks.
8068 */
8069 global_bits2 =
8070 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8071 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8072
8073 /* Don't reset the following blocks */
8074 not_reset_mask1 =
8075 MISC_REGISTERS_RESET_REG_1_RST_HC |
8076 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8077 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8078
8079 not_reset_mask2 =
8080 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8081 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8082 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8083 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8084 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8085 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8086 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8087 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8088 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8089 MISC_REGISTERS_RESET_REG_2_PGLC;
8090
8091 /*
8092 * Keep the following blocks in reset:
8093 * - all xxMACs are handled by the bnx2x_link code.
8094 */
8095 stay_reset2 =
8096 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8097 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8098 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8099 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8100 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8101 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8102 MISC_REGISTERS_RESET_REG_2_XMAC |
8103 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8104
8105 /* Full reset masks according to the chip */
8106 reset_mask1 = 0xffffffff;
8107
8108 if (CHIP_IS_E1(bp))
8109 reset_mask2 = 0xffff;
8110 else if (CHIP_IS_E1H(bp))
8111 reset_mask2 = 0x1ffff;
8112 else if (CHIP_IS_E2(bp))
8113 reset_mask2 = 0xfffff;
8114 else /* CHIP_IS_E3 */
8115 reset_mask2 = 0x3ffffff;
8116
8117 /* Don't reset global blocks unless we need to */
8118 if (!global)
8119 reset_mask2 &= ~global_bits2;
8120
8121 /*
8122 * In case of attention in the QM, we need to reset PXP
8123 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8124 * because otherwise QM reset would release 'close the gates' shortly
8125 * before resetting the PXP, then the PSWRQ would send a write
8126 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8127 * read the payload data from PSWWR, but PSWWR would not
8128 * respond. The write queue in PGLUE would stuck, dmae commands
8129 * would not return. Therefore it's important to reset the second
8130 * reset register (containing the
8131 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8132 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8133 * bit).
8134 */
8135 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8136 reset_mask2 & (~not_reset_mask2));
8137
8138 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8139 reset_mask1 & (~not_reset_mask1));
8140
8141 barrier();
8142 mmiowb();
8143
8144 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8145 reset_mask2 & (~stay_reset2));
8146
8147 barrier();
8148 mmiowb();
8149
8150 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8151 mmiowb();
8152 }
8153
8154 /**
8155 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8156 * It should get cleared in no more than 1s.
8157 *
8158 * @bp: driver handle
8159 *
8160 * It should get cleared in no more than 1s. Returns 0 if
8161 * pending writes bit gets cleared.
8162 */
8163 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8164 {
8165 u32 cnt = 1000;
8166 u32 pend_bits = 0;
8167
8168 do {
8169 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8170
8171 if (pend_bits == 0)
8172 break;
8173
8174 usleep_range(1000, 1000);
8175 } while (cnt-- > 0);
8176
8177 if (cnt <= 0) {
8178 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8179 pend_bits);
8180 return -EBUSY;
8181 }
8182
8183 return 0;
8184 }
8185
8186 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8187 {
8188 int cnt = 1000;
8189 u32 val = 0;
8190 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8191
8192
8193 /* Empty the Tetris buffer, wait for 1s */
8194 do {
8195 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8196 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8197 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8198 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8199 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8200 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8201 ((port_is_idle_0 & 0x1) == 0x1) &&
8202 ((port_is_idle_1 & 0x1) == 0x1) &&
8203 (pgl_exp_rom2 == 0xffffffff))
8204 break;
8205 usleep_range(1000, 1000);
8206 } while (cnt-- > 0);
8207
8208 if (cnt <= 0) {
8209 DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8210 " are still"
8211 " outstanding read requests after 1s!\n");
8212 DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8213 " port_is_idle_0=0x%08x,"
8214 " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8215 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8216 pgl_exp_rom2);
8217 return -EAGAIN;
8218 }
8219
8220 barrier();
8221
8222 /* Close gates #2, #3 and #4 */
8223 bnx2x_set_234_gates(bp, true);
8224
8225 /* Poll for IGU VQs for 57712 and newer chips */
8226 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8227 return -EAGAIN;
8228
8229
8230 /* TBD: Indicate that "process kill" is in progress to MCP */
8231
8232 /* Clear "unprepared" bit */
8233 REG_WR(bp, MISC_REG_UNPREPARED, 0);
8234 barrier();
8235
8236 /* Make sure all is written to the chip before the reset */
8237 mmiowb();
8238
8239 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8240 * PSWHST, GRC and PSWRD Tetris buffer.
8241 */
8242 usleep_range(1000, 1000);
8243
8244 /* Prepare to chip reset: */
8245 /* MCP */
8246 if (global)
8247 bnx2x_reset_mcp_prep(bp, &val);
8248
8249 /* PXP */
8250 bnx2x_pxp_prep(bp);
8251 barrier();
8252
8253 /* reset the chip */
8254 bnx2x_process_kill_chip_reset(bp, global);
8255 barrier();
8256
8257 /* Recover after reset: */
8258 /* MCP */
8259 if (global && bnx2x_reset_mcp_comp(bp, val))
8260 return -EAGAIN;
8261
8262 /* TBD: Add resetting the NO_MCP mode DB here */
8263
8264 /* PXP */
8265 bnx2x_pxp_prep(bp);
8266
8267 /* Open the gates #2, #3 and #4 */
8268 bnx2x_set_234_gates(bp, false);
8269
8270 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8271 * reset state, re-enable attentions. */
8272
8273 return 0;
8274 }
8275
8276 int bnx2x_leader_reset(struct bnx2x *bp)
8277 {
8278 int rc = 0;
8279 bool global = bnx2x_reset_is_global(bp);
8280
8281 /* Try to recover after the failure */
8282 if (bnx2x_process_kill(bp, global)) {
8283 netdev_err(bp->dev, "Something bad had happen on engine %d! "
8284 "Aii!\n", BP_PATH(bp));
8285 rc = -EAGAIN;
8286 goto exit_leader_reset;
8287 }
8288
8289 /*
8290 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8291 * state.
8292 */
8293 bnx2x_set_reset_done(bp);
8294 if (global)
8295 bnx2x_clear_reset_global(bp);
8296
8297 exit_leader_reset:
8298 bp->is_leader = 0;
8299 bnx2x_release_leader_lock(bp);
8300 smp_mb();
8301 return rc;
8302 }
8303
8304 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8305 {
8306 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8307
8308 /* Disconnect this device */
8309 netif_device_detach(bp->dev);
8310
8311 /*
8312 * Block ifup for all function on this engine until "process kill"
8313 * or power cycle.
8314 */
8315 bnx2x_set_reset_in_progress(bp);
8316
8317 /* Shut down the power */
8318 bnx2x_set_power_state(bp, PCI_D3hot);
8319
8320 bp->recovery_state = BNX2X_RECOVERY_FAILED;
8321
8322 smp_mb();
8323 }
8324
8325 /*
8326 * Assumption: runs under rtnl lock. This together with the fact
8327 * that it's called only from bnx2x_sp_rtnl() ensure that it
8328 * will never be called when netif_running(bp->dev) is false.
8329 */
8330 static void bnx2x_parity_recover(struct bnx2x *bp)
8331 {
8332 bool global = false;
8333
8334 DP(NETIF_MSG_HW, "Handling parity\n");
8335 while (1) {
8336 switch (bp->recovery_state) {
8337 case BNX2X_RECOVERY_INIT:
8338 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8339 bnx2x_chk_parity_attn(bp, &global, false);
8340
8341 /* Try to get a LEADER_LOCK HW lock */
8342 if (bnx2x_trylock_leader_lock(bp)) {
8343 bnx2x_set_reset_in_progress(bp);
8344 /*
8345 * Check if there is a global attention and if
8346 * there was a global attention, set the global
8347 * reset bit.
8348 */
8349
8350 if (global)
8351 bnx2x_set_reset_global(bp);
8352
8353 bp->is_leader = 1;
8354 }
8355
8356 /* Stop the driver */
8357 /* If interface has been removed - break */
8358 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8359 return;
8360
8361 bp->recovery_state = BNX2X_RECOVERY_WAIT;
8362
8363 /*
8364 * Reset MCP command sequence number and MCP mail box
8365 * sequence as we are going to reset the MCP.
8366 */
8367 if (global) {
8368 bp->fw_seq = 0;
8369 bp->fw_drv_pulse_wr_seq = 0;
8370 }
8371
8372 /* Ensure "is_leader", MCP command sequence and
8373 * "recovery_state" update values are seen on other
8374 * CPUs.
8375 */
8376 smp_mb();
8377 break;
8378
8379 case BNX2X_RECOVERY_WAIT:
8380 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8381 if (bp->is_leader) {
8382 int other_engine = BP_PATH(bp) ? 0 : 1;
8383 u32 other_load_counter =
8384 bnx2x_get_load_cnt(bp, other_engine);
8385 u32 load_counter =
8386 bnx2x_get_load_cnt(bp, BP_PATH(bp));
8387 global = bnx2x_reset_is_global(bp);
8388
8389 /*
8390 * In case of a parity in a global block, let
8391 * the first leader that performs a
8392 * leader_reset() reset the global blocks in
8393 * order to clear global attentions. Otherwise
8394 * the the gates will remain closed for that
8395 * engine.
8396 */
8397 if (load_counter ||
8398 (global && other_load_counter)) {
8399 /* Wait until all other functions get
8400 * down.
8401 */
8402 schedule_delayed_work(&bp->sp_rtnl_task,
8403 HZ/10);
8404 return;
8405 } else {
8406 /* If all other functions got down -
8407 * try to bring the chip back to
8408 * normal. In any case it's an exit
8409 * point for a leader.
8410 */
8411 if (bnx2x_leader_reset(bp)) {
8412 bnx2x_recovery_failed(bp);
8413 return;
8414 }
8415
8416 /* If we are here, means that the
8417 * leader has succeeded and doesn't
8418 * want to be a leader any more. Try
8419 * to continue as a none-leader.
8420 */
8421 break;
8422 }
8423 } else { /* non-leader */
8424 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8425 /* Try to get a LEADER_LOCK HW lock as
8426 * long as a former leader may have
8427 * been unloaded by the user or
8428 * released a leadership by another
8429 * reason.
8430 */
8431 if (bnx2x_trylock_leader_lock(bp)) {
8432 /* I'm a leader now! Restart a
8433 * switch case.
8434 */
8435 bp->is_leader = 1;
8436 break;
8437 }
8438
8439 schedule_delayed_work(&bp->sp_rtnl_task,
8440 HZ/10);
8441 return;
8442
8443 } else {
8444 /*
8445 * If there was a global attention, wait
8446 * for it to be cleared.
8447 */
8448 if (bnx2x_reset_is_global(bp)) {
8449 schedule_delayed_work(
8450 &bp->sp_rtnl_task,
8451 HZ/10);
8452 return;
8453 }
8454
8455 if (bnx2x_nic_load(bp, LOAD_NORMAL))
8456 bnx2x_recovery_failed(bp);
8457 else {
8458 bp->recovery_state =
8459 BNX2X_RECOVERY_DONE;
8460 smp_mb();
8461 }
8462
8463 return;
8464 }
8465 }
8466 default:
8467 return;
8468 }
8469 }
8470 }
8471
8472 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8473 * scheduled on a general queue in order to prevent a dead lock.
8474 */
8475 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8476 {
8477 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8478
8479 rtnl_lock();
8480
8481 if (!netif_running(bp->dev))
8482 goto sp_rtnl_exit;
8483
8484 /* if stop on error is defined no recovery flows should be executed */
8485 #ifdef BNX2X_STOP_ON_ERROR
8486 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8487 "so reset not done to allow debug dump,\n"
8488 "you will need to reboot when done\n");
8489 goto sp_rtnl_not_reset;
8490 #endif
8491
8492 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8493 /*
8494 * Clear all pending SP commands as we are going to reset the
8495 * function anyway.
8496 */
8497 bp->sp_rtnl_state = 0;
8498 smp_mb();
8499
8500 bnx2x_parity_recover(bp);
8501
8502 goto sp_rtnl_exit;
8503 }
8504
8505 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8506 /*
8507 * Clear all pending SP commands as we are going to reset the
8508 * function anyway.
8509 */
8510 bp->sp_rtnl_state = 0;
8511 smp_mb();
8512
8513 bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8514 bnx2x_nic_load(bp, LOAD_NORMAL);
8515
8516 goto sp_rtnl_exit;
8517 }
8518 #ifdef BNX2X_STOP_ON_ERROR
8519 sp_rtnl_not_reset:
8520 #endif
8521 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8522 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8523
8524 /*
8525 * in case of fan failure we need to reset id if the "stop on error"
8526 * debug flag is set, since we trying to prevent permanent overheating
8527 * damage
8528 */
8529 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8530 DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8531 netif_device_detach(bp->dev);
8532 bnx2x_close(bp->dev);
8533 }
8534
8535 sp_rtnl_exit:
8536 rtnl_unlock();
8537 }
8538
8539 /* end of nic load/unload */
8540
8541 static void bnx2x_period_task(struct work_struct *work)
8542 {
8543 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8544
8545 if (!netif_running(bp->dev))
8546 goto period_task_exit;
8547
8548 if (CHIP_REV_IS_SLOW(bp)) {
8549 BNX2X_ERR("period task called on emulation, ignoring\n");
8550 goto period_task_exit;
8551 }
8552
8553 bnx2x_acquire_phy_lock(bp);
8554 /*
8555 * The barrier is needed to ensure the ordering between the writing to
8556 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8557 * the reading here.
8558 */
8559 smp_mb();
8560 if (bp->port.pmf) {
8561 bnx2x_period_func(&bp->link_params, &bp->link_vars);
8562
8563 /* Re-queue task in 1 sec */
8564 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8565 }
8566
8567 bnx2x_release_phy_lock(bp);
8568 period_task_exit:
8569 return;
8570 }
8571
8572 /*
8573 * Init service functions
8574 */
8575
8576 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8577 {
8578 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8579 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8580 return base + (BP_ABS_FUNC(bp)) * stride;
8581 }
8582
8583 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8584 {
8585 u32 reg = bnx2x_get_pretend_reg(bp);
8586
8587 /* Flush all outstanding writes */
8588 mmiowb();
8589
8590 /* Pretend to be function 0 */
8591 REG_WR(bp, reg, 0);
8592 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
8593
8594 /* From now we are in the "like-E1" mode */
8595 bnx2x_int_disable(bp);
8596
8597 /* Flush all outstanding writes */
8598 mmiowb();
8599
8600 /* Restore the original function */
8601 REG_WR(bp, reg, BP_ABS_FUNC(bp));
8602 REG_RD(bp, reg);
8603 }
8604
8605 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8606 {
8607 if (CHIP_IS_E1(bp))
8608 bnx2x_int_disable(bp);
8609 else
8610 bnx2x_undi_int_disable_e1h(bp);
8611 }
8612
8613 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8614 {
8615 u32 val;
8616
8617 /* Check if there is any driver already loaded */
8618 val = REG_RD(bp, MISC_REG_UNPREPARED);
8619 if (val == 0x1) {
8620
8621 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8622 /*
8623 * Check if it is the UNDI driver
8624 * UNDI driver initializes CID offset for normal bell to 0x7
8625 */
8626 val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8627 if (val == 0x7) {
8628 u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8629 /* save our pf_num */
8630 int orig_pf_num = bp->pf_num;
8631 int port;
8632 u32 swap_en, swap_val, value;
8633
8634 /* clear the UNDI indication */
8635 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8636
8637 BNX2X_DEV_INFO("UNDI is active! reset device\n");
8638
8639 /* try unload UNDI on port 0 */
8640 bp->pf_num = 0;
8641 bp->fw_seq =
8642 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8643 DRV_MSG_SEQ_NUMBER_MASK);
8644 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8645
8646 /* if UNDI is loaded on the other port */
8647 if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8648
8649 /* send "DONE" for previous unload */
8650 bnx2x_fw_command(bp,
8651 DRV_MSG_CODE_UNLOAD_DONE, 0);
8652
8653 /* unload UNDI on port 1 */
8654 bp->pf_num = 1;
8655 bp->fw_seq =
8656 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8657 DRV_MSG_SEQ_NUMBER_MASK);
8658 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8659
8660 bnx2x_fw_command(bp, reset_code, 0);
8661 }
8662
8663 bnx2x_undi_int_disable(bp);
8664 port = BP_PORT(bp);
8665
8666 /* close input traffic and wait for it */
8667 /* Do not rcv packets to BRB */
8668 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8669 NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8670 /* Do not direct rcv packets that are not for MCP to
8671 * the BRB */
8672 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8673 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8674 /* clear AEU */
8675 REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8676 MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8677 msleep(10);
8678
8679 /* save NIG port swap info */
8680 swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8681 swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8682 /* reset device */
8683 REG_WR(bp,
8684 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8685 0xd3ffffff);
8686
8687 value = 0x1400;
8688 if (CHIP_IS_E3(bp)) {
8689 value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8690 value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8691 }
8692
8693 REG_WR(bp,
8694 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8695 value);
8696
8697 /* take the NIG out of reset and restore swap values */
8698 REG_WR(bp,
8699 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8700 MISC_REGISTERS_RESET_REG_1_RST_NIG);
8701 REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8702 REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8703
8704 /* send unload done to the MCP */
8705 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8706
8707 /* restore our func and fw_seq */
8708 bp->pf_num = orig_pf_num;
8709 bp->fw_seq =
8710 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8711 DRV_MSG_SEQ_NUMBER_MASK);
8712 }
8713
8714 /* now it's safe to release the lock */
8715 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8716 }
8717 }
8718
8719 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8720 {
8721 u32 val, val2, val3, val4, id;
8722 u16 pmc;
8723
8724 /* Get the chip revision id and number. */
8725 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8726 val = REG_RD(bp, MISC_REG_CHIP_NUM);
8727 id = ((val & 0xffff) << 16);
8728 val = REG_RD(bp, MISC_REG_CHIP_REV);
8729 id |= ((val & 0xf) << 12);
8730 val = REG_RD(bp, MISC_REG_CHIP_METAL);
8731 id |= ((val & 0xff) << 4);
8732 val = REG_RD(bp, MISC_REG_BOND_ID);
8733 id |= (val & 0xf);
8734 bp->common.chip_id = id;
8735
8736 /* Set doorbell size */
8737 bp->db_size = (1 << BNX2X_DB_SHIFT);
8738
8739 if (!CHIP_IS_E1x(bp)) {
8740 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8741 if ((val & 1) == 0)
8742 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8743 else
8744 val = (val >> 1) & 1;
8745 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8746 "2_PORT_MODE");
8747 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8748 CHIP_2_PORT_MODE;
8749
8750 if (CHIP_MODE_IS_4_PORT(bp))
8751 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
8752 else
8753 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
8754 } else {
8755 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8756 bp->pfid = bp->pf_num; /* 0..7 */
8757 }
8758
8759 bp->link_params.chip_id = bp->common.chip_id;
8760 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8761
8762 val = (REG_RD(bp, 0x2874) & 0x55);
8763 if ((bp->common.chip_id & 0x1) ||
8764 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8765 bp->flags |= ONE_PORT_FLAG;
8766 BNX2X_DEV_INFO("single port device\n");
8767 }
8768
8769 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8770 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8771 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8772 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8773 bp->common.flash_size, bp->common.flash_size);
8774
8775 bnx2x_init_shmem(bp);
8776
8777
8778
8779 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8780 MISC_REG_GENERIC_CR_1 :
8781 MISC_REG_GENERIC_CR_0));
8782
8783 bp->link_params.shmem_base = bp->common.shmem_base;
8784 bp->link_params.shmem2_base = bp->common.shmem2_base;
8785 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
8786 bp->common.shmem_base, bp->common.shmem2_base);
8787
8788 if (!bp->common.shmem_base) {
8789 BNX2X_DEV_INFO("MCP not active\n");
8790 bp->flags |= NO_MCP_FLAG;
8791 return;
8792 }
8793
8794 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8795 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8796
8797 bp->link_params.hw_led_mode = ((bp->common.hw_config &
8798 SHARED_HW_CFG_LED_MODE_MASK) >>
8799 SHARED_HW_CFG_LED_MODE_SHIFT);
8800
8801 bp->link_params.feature_config_flags = 0;
8802 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8803 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8804 bp->link_params.feature_config_flags |=
8805 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8806 else
8807 bp->link_params.feature_config_flags &=
8808 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8809
8810 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8811 bp->common.bc_ver = val;
8812 BNX2X_DEV_INFO("bc_ver %X\n", val);
8813 if (val < BNX2X_BC_VER) {
8814 /* for now only warn
8815 * later we might need to enforce this */
8816 BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8817 "please upgrade BC\n", BNX2X_BC_VER, val);
8818 }
8819 bp->link_params.feature_config_flags |=
8820 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8821 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
8822
8823 bp->link_params.feature_config_flags |=
8824 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8825 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8826
8827 bp->link_params.feature_config_flags |=
8828 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8829 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8830 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
8831 BC_SUPPORTS_PFC_STATS : 0;
8832
8833 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
8834 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
8835
8836 BNX2X_DEV_INFO("%sWoL capable\n",
8837 (bp->flags & NO_WOL_FLAG) ? "not " : "");
8838
8839 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
8840 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
8841 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
8842 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
8843
8844 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
8845 val, val2, val3, val4);
8846 }
8847
8848 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8849 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8850
8851 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
8852 {
8853 int pfid = BP_FUNC(bp);
8854 int igu_sb_id;
8855 u32 val;
8856 u8 fid, igu_sb_cnt = 0;
8857
8858 bp->igu_base_sb = 0xff;
8859 if (CHIP_INT_MODE_IS_BC(bp)) {
8860 int vn = BP_VN(bp);
8861 igu_sb_cnt = bp->igu_sb_cnt;
8862 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
8863 FP_SB_MAX_E1x;
8864
8865 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
8866 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
8867
8868 return;
8869 }
8870
8871 /* IGU in normal mode - read CAM */
8872 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
8873 igu_sb_id++) {
8874 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8875 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
8876 continue;
8877 fid = IGU_FID(val);
8878 if ((fid & IGU_FID_ENCODE_IS_PF)) {
8879 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
8880 continue;
8881 if (IGU_VEC(val) == 0)
8882 /* default status block */
8883 bp->igu_dsb_id = igu_sb_id;
8884 else {
8885 if (bp->igu_base_sb == 0xff)
8886 bp->igu_base_sb = igu_sb_id;
8887 igu_sb_cnt++;
8888 }
8889 }
8890 }
8891
8892 #ifdef CONFIG_PCI_MSI
8893 /*
8894 * It's expected that number of CAM entries for this functions is equal
8895 * to the number evaluated based on the MSI-X table size. We want a
8896 * harsh warning if these values are different!
8897 */
8898 WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
8899 #endif
8900
8901 if (igu_sb_cnt == 0)
8902 BNX2X_ERR("CAM configuration error\n");
8903 }
8904
8905 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
8906 u32 switch_cfg)
8907 {
8908 int cfg_size = 0, idx, port = BP_PORT(bp);
8909
8910 /* Aggregation of supported attributes of all external phys */
8911 bp->port.supported[0] = 0;
8912 bp->port.supported[1] = 0;
8913 switch (bp->link_params.num_phys) {
8914 case 1:
8915 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
8916 cfg_size = 1;
8917 break;
8918 case 2:
8919 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
8920 cfg_size = 1;
8921 break;
8922 case 3:
8923 if (bp->link_params.multi_phy_config &
8924 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8925 bp->port.supported[1] =
8926 bp->link_params.phy[EXT_PHY1].supported;
8927 bp->port.supported[0] =
8928 bp->link_params.phy[EXT_PHY2].supported;
8929 } else {
8930 bp->port.supported[0] =
8931 bp->link_params.phy[EXT_PHY1].supported;
8932 bp->port.supported[1] =
8933 bp->link_params.phy[EXT_PHY2].supported;
8934 }
8935 cfg_size = 2;
8936 break;
8937 }
8938
8939 if (!(bp->port.supported[0] || bp->port.supported[1])) {
8940 BNX2X_ERR("NVRAM config error. BAD phy config."
8941 "PHY1 config 0x%x, PHY2 config 0x%x\n",
8942 SHMEM_RD(bp,
8943 dev_info.port_hw_config[port].external_phy_config),
8944 SHMEM_RD(bp,
8945 dev_info.port_hw_config[port].external_phy_config2));
8946 return;
8947 }
8948
8949 if (CHIP_IS_E3(bp))
8950 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
8951 else {
8952 switch (switch_cfg) {
8953 case SWITCH_CFG_1G:
8954 bp->port.phy_addr = REG_RD(
8955 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
8956 break;
8957 case SWITCH_CFG_10G:
8958 bp->port.phy_addr = REG_RD(
8959 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
8960 break;
8961 default:
8962 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
8963 bp->port.link_config[0]);
8964 return;
8965 }
8966 }
8967 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
8968 /* mask what we support according to speed_cap_mask per configuration */
8969 for (idx = 0; idx < cfg_size; idx++) {
8970 if (!(bp->link_params.speed_cap_mask[idx] &
8971 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
8972 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
8973
8974 if (!(bp->link_params.speed_cap_mask[idx] &
8975 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
8976 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
8977
8978 if (!(bp->link_params.speed_cap_mask[idx] &
8979 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
8980 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
8981
8982 if (!(bp->link_params.speed_cap_mask[idx] &
8983 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
8984 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
8985
8986 if (!(bp->link_params.speed_cap_mask[idx] &
8987 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
8988 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
8989 SUPPORTED_1000baseT_Full);
8990
8991 if (!(bp->link_params.speed_cap_mask[idx] &
8992 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
8993 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
8994
8995 if (!(bp->link_params.speed_cap_mask[idx] &
8996 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
8997 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
8998
8999 }
9000
9001 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9002 bp->port.supported[1]);
9003 }
9004
9005 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9006 {
9007 u32 link_config, idx, cfg_size = 0;
9008 bp->port.advertising[0] = 0;
9009 bp->port.advertising[1] = 0;
9010 switch (bp->link_params.num_phys) {
9011 case 1:
9012 case 2:
9013 cfg_size = 1;
9014 break;
9015 case 3:
9016 cfg_size = 2;
9017 break;
9018 }
9019 for (idx = 0; idx < cfg_size; idx++) {
9020 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9021 link_config = bp->port.link_config[idx];
9022 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9023 case PORT_FEATURE_LINK_SPEED_AUTO:
9024 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9025 bp->link_params.req_line_speed[idx] =
9026 SPEED_AUTO_NEG;
9027 bp->port.advertising[idx] |=
9028 bp->port.supported[idx];
9029 } else {
9030 /* force 10G, no AN */
9031 bp->link_params.req_line_speed[idx] =
9032 SPEED_10000;
9033 bp->port.advertising[idx] |=
9034 (ADVERTISED_10000baseT_Full |
9035 ADVERTISED_FIBRE);
9036 continue;
9037 }
9038 break;
9039
9040 case PORT_FEATURE_LINK_SPEED_10M_FULL:
9041 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9042 bp->link_params.req_line_speed[idx] =
9043 SPEED_10;
9044 bp->port.advertising[idx] |=
9045 (ADVERTISED_10baseT_Full |
9046 ADVERTISED_TP);
9047 } else {
9048 BNX2X_ERR("NVRAM config error. "
9049 "Invalid link_config 0x%x"
9050 " speed_cap_mask 0x%x\n",
9051 link_config,
9052 bp->link_params.speed_cap_mask[idx]);
9053 return;
9054 }
9055 break;
9056
9057 case PORT_FEATURE_LINK_SPEED_10M_HALF:
9058 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9059 bp->link_params.req_line_speed[idx] =
9060 SPEED_10;
9061 bp->link_params.req_duplex[idx] =
9062 DUPLEX_HALF;
9063 bp->port.advertising[idx] |=
9064 (ADVERTISED_10baseT_Half |
9065 ADVERTISED_TP);
9066 } else {
9067 BNX2X_ERR("NVRAM config error. "
9068 "Invalid link_config 0x%x"
9069 " speed_cap_mask 0x%x\n",
9070 link_config,
9071 bp->link_params.speed_cap_mask[idx]);
9072 return;
9073 }
9074 break;
9075
9076 case PORT_FEATURE_LINK_SPEED_100M_FULL:
9077 if (bp->port.supported[idx] &
9078 SUPPORTED_100baseT_Full) {
9079 bp->link_params.req_line_speed[idx] =
9080 SPEED_100;
9081 bp->port.advertising[idx] |=
9082 (ADVERTISED_100baseT_Full |
9083 ADVERTISED_TP);
9084 } else {
9085 BNX2X_ERR("NVRAM config error. "
9086 "Invalid link_config 0x%x"
9087 " speed_cap_mask 0x%x\n",
9088 link_config,
9089 bp->link_params.speed_cap_mask[idx]);
9090 return;
9091 }
9092 break;
9093
9094 case PORT_FEATURE_LINK_SPEED_100M_HALF:
9095 if (bp->port.supported[idx] &
9096 SUPPORTED_100baseT_Half) {
9097 bp->link_params.req_line_speed[idx] =
9098 SPEED_100;
9099 bp->link_params.req_duplex[idx] =
9100 DUPLEX_HALF;
9101 bp->port.advertising[idx] |=
9102 (ADVERTISED_100baseT_Half |
9103 ADVERTISED_TP);
9104 } else {
9105 BNX2X_ERR("NVRAM config error. "
9106 "Invalid link_config 0x%x"
9107 " speed_cap_mask 0x%x\n",
9108 link_config,
9109 bp->link_params.speed_cap_mask[idx]);
9110 return;
9111 }
9112 break;
9113
9114 case PORT_FEATURE_LINK_SPEED_1G:
9115 if (bp->port.supported[idx] &
9116 SUPPORTED_1000baseT_Full) {
9117 bp->link_params.req_line_speed[idx] =
9118 SPEED_1000;
9119 bp->port.advertising[idx] |=
9120 (ADVERTISED_1000baseT_Full |
9121 ADVERTISED_TP);
9122 } else {
9123 BNX2X_ERR("NVRAM config error. "
9124 "Invalid link_config 0x%x"
9125 " speed_cap_mask 0x%x\n",
9126 link_config,
9127 bp->link_params.speed_cap_mask[idx]);
9128 return;
9129 }
9130 break;
9131
9132 case PORT_FEATURE_LINK_SPEED_2_5G:
9133 if (bp->port.supported[idx] &
9134 SUPPORTED_2500baseX_Full) {
9135 bp->link_params.req_line_speed[idx] =
9136 SPEED_2500;
9137 bp->port.advertising[idx] |=
9138 (ADVERTISED_2500baseX_Full |
9139 ADVERTISED_TP);
9140 } else {
9141 BNX2X_ERR("NVRAM config error. "
9142 "Invalid link_config 0x%x"
9143 " speed_cap_mask 0x%x\n",
9144 link_config,
9145 bp->link_params.speed_cap_mask[idx]);
9146 return;
9147 }
9148 break;
9149
9150 case PORT_FEATURE_LINK_SPEED_10G_CX4:
9151 if (bp->port.supported[idx] &
9152 SUPPORTED_10000baseT_Full) {
9153 bp->link_params.req_line_speed[idx] =
9154 SPEED_10000;
9155 bp->port.advertising[idx] |=
9156 (ADVERTISED_10000baseT_Full |
9157 ADVERTISED_FIBRE);
9158 } else {
9159 BNX2X_ERR("NVRAM config error. "
9160 "Invalid link_config 0x%x"
9161 " speed_cap_mask 0x%x\n",
9162 link_config,
9163 bp->link_params.speed_cap_mask[idx]);
9164 return;
9165 }
9166 break;
9167 case PORT_FEATURE_LINK_SPEED_20G:
9168 bp->link_params.req_line_speed[idx] = SPEED_20000;
9169
9170 break;
9171 default:
9172 BNX2X_ERR("NVRAM config error. "
9173 "BAD link speed link_config 0x%x\n",
9174 link_config);
9175 bp->link_params.req_line_speed[idx] =
9176 SPEED_AUTO_NEG;
9177 bp->port.advertising[idx] =
9178 bp->port.supported[idx];
9179 break;
9180 }
9181
9182 bp->link_params.req_flow_ctrl[idx] = (link_config &
9183 PORT_FEATURE_FLOW_CONTROL_MASK);
9184 if ((bp->link_params.req_flow_ctrl[idx] ==
9185 BNX2X_FLOW_CTRL_AUTO) &&
9186 !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9187 bp->link_params.req_flow_ctrl[idx] =
9188 BNX2X_FLOW_CTRL_NONE;
9189 }
9190
9191 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
9192 " 0x%x advertising 0x%x\n",
9193 bp->link_params.req_line_speed[idx],
9194 bp->link_params.req_duplex[idx],
9195 bp->link_params.req_flow_ctrl[idx],
9196 bp->port.advertising[idx]);
9197 }
9198 }
9199
9200 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9201 {
9202 mac_hi = cpu_to_be16(mac_hi);
9203 mac_lo = cpu_to_be32(mac_lo);
9204 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9205 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9206 }
9207
9208 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9209 {
9210 int port = BP_PORT(bp);
9211 u32 config;
9212 u32 ext_phy_type, ext_phy_config;
9213
9214 bp->link_params.bp = bp;
9215 bp->link_params.port = port;
9216
9217 bp->link_params.lane_config =
9218 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9219
9220 bp->link_params.speed_cap_mask[0] =
9221 SHMEM_RD(bp,
9222 dev_info.port_hw_config[port].speed_capability_mask);
9223 bp->link_params.speed_cap_mask[1] =
9224 SHMEM_RD(bp,
9225 dev_info.port_hw_config[port].speed_capability_mask2);
9226 bp->port.link_config[0] =
9227 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9228
9229 bp->port.link_config[1] =
9230 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9231
9232 bp->link_params.multi_phy_config =
9233 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9234 /* If the device is capable of WoL, set the default state according
9235 * to the HW
9236 */
9237 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9238 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9239 (config & PORT_FEATURE_WOL_ENABLED));
9240
9241 BNX2X_DEV_INFO("lane_config 0x%08x "
9242 "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9243 bp->link_params.lane_config,
9244 bp->link_params.speed_cap_mask[0],
9245 bp->port.link_config[0]);
9246
9247 bp->link_params.switch_cfg = (bp->port.link_config[0] &
9248 PORT_FEATURE_CONNECTED_SWITCH_MASK);
9249 bnx2x_phy_probe(&bp->link_params);
9250 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9251
9252 bnx2x_link_settings_requested(bp);
9253
9254 /*
9255 * If connected directly, work with the internal PHY, otherwise, work
9256 * with the external PHY
9257 */
9258 ext_phy_config =
9259 SHMEM_RD(bp,
9260 dev_info.port_hw_config[port].external_phy_config);
9261 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9262 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9263 bp->mdio.prtad = bp->port.phy_addr;
9264
9265 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9266 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9267 bp->mdio.prtad =
9268 XGXS_EXT_PHY_ADDR(ext_phy_config);
9269
9270 /*
9271 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9272 * In MF mode, it is set to cover self test cases
9273 */
9274 if (IS_MF(bp))
9275 bp->port.need_hw_lock = 1;
9276 else
9277 bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9278 bp->common.shmem_base,
9279 bp->common.shmem2_base);
9280 }
9281
9282 #ifdef BCM_CNIC
9283 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9284 {
9285 int port = BP_PORT(bp);
9286
9287 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9288 drv_lic_key[port].max_iscsi_conn);
9289
9290 /* Get the number of maximum allowed iSCSI connections */
9291 bp->cnic_eth_dev.max_iscsi_conn =
9292 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9293 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9294
9295 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9296 bp->cnic_eth_dev.max_iscsi_conn);
9297
9298 /*
9299 * If maximum allowed number of connections is zero -
9300 * disable the feature.
9301 */
9302 if (!bp->cnic_eth_dev.max_iscsi_conn)
9303 bp->flags |= NO_ISCSI_FLAG;
9304 }
9305
9306 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9307 {
9308 int port = BP_PORT(bp);
9309 int func = BP_ABS_FUNC(bp);
9310
9311 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9312 drv_lic_key[port].max_fcoe_conn);
9313
9314 /* Get the number of maximum allowed FCoE connections */
9315 bp->cnic_eth_dev.max_fcoe_conn =
9316 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9317 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9318
9319 /* Read the WWN: */
9320 if (!IS_MF(bp)) {
9321 /* Port info */
9322 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9323 SHMEM_RD(bp,
9324 dev_info.port_hw_config[port].
9325 fcoe_wwn_port_name_upper);
9326 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9327 SHMEM_RD(bp,
9328 dev_info.port_hw_config[port].
9329 fcoe_wwn_port_name_lower);
9330
9331 /* Node info */
9332 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9333 SHMEM_RD(bp,
9334 dev_info.port_hw_config[port].
9335 fcoe_wwn_node_name_upper);
9336 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9337 SHMEM_RD(bp,
9338 dev_info.port_hw_config[port].
9339 fcoe_wwn_node_name_lower);
9340 } else if (!IS_MF_SD(bp)) {
9341 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9342
9343 /*
9344 * Read the WWN info only if the FCoE feature is enabled for
9345 * this function.
9346 */
9347 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9348 /* Port info */
9349 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9350 MF_CFG_RD(bp, func_ext_config[func].
9351 fcoe_wwn_port_name_upper);
9352 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9353 MF_CFG_RD(bp, func_ext_config[func].
9354 fcoe_wwn_port_name_lower);
9355
9356 /* Node info */
9357 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9358 MF_CFG_RD(bp, func_ext_config[func].
9359 fcoe_wwn_node_name_upper);
9360 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9361 MF_CFG_RD(bp, func_ext_config[func].
9362 fcoe_wwn_node_name_lower);
9363 }
9364 }
9365
9366 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9367
9368 /*
9369 * If maximum allowed number of connections is zero -
9370 * disable the feature.
9371 */
9372 if (!bp->cnic_eth_dev.max_fcoe_conn)
9373 bp->flags |= NO_FCOE_FLAG;
9374 }
9375
9376 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9377 {
9378 /*
9379 * iSCSI may be dynamically disabled but reading
9380 * info here we will decrease memory usage by driver
9381 * if the feature is disabled for good
9382 */
9383 bnx2x_get_iscsi_info(bp);
9384 bnx2x_get_fcoe_info(bp);
9385 }
9386 #endif
9387
9388 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9389 {
9390 u32 val, val2;
9391 int func = BP_ABS_FUNC(bp);
9392 int port = BP_PORT(bp);
9393 #ifdef BCM_CNIC
9394 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9395 u8 *fip_mac = bp->fip_mac;
9396 #endif
9397
9398 /* Zero primary MAC configuration */
9399 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9400
9401 if (BP_NOMCP(bp)) {
9402 BNX2X_ERROR("warning: random MAC workaround active\n");
9403 random_ether_addr(bp->dev->dev_addr);
9404 } else if (IS_MF(bp)) {
9405 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9406 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9407 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9408 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9409 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9410
9411 #ifdef BCM_CNIC
9412 /*
9413 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9414 * FCoE MAC then the appropriate feature should be disabled.
9415 */
9416 if (IS_MF_SI(bp)) {
9417 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9418 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9419 val2 = MF_CFG_RD(bp, func_ext_config[func].
9420 iscsi_mac_addr_upper);
9421 val = MF_CFG_RD(bp, func_ext_config[func].
9422 iscsi_mac_addr_lower);
9423 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9424 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9425 iscsi_mac);
9426 } else
9427 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9428
9429 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9430 val2 = MF_CFG_RD(bp, func_ext_config[func].
9431 fcoe_mac_addr_upper);
9432 val = MF_CFG_RD(bp, func_ext_config[func].
9433 fcoe_mac_addr_lower);
9434 bnx2x_set_mac_buf(fip_mac, val, val2);
9435 BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9436 fip_mac);
9437
9438 } else
9439 bp->flags |= NO_FCOE_FLAG;
9440 } else { /* SD mode */
9441 if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9442 /* use primary mac as iscsi mac */
9443 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9444 /* Zero primary MAC configuration */
9445 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9446
9447 BNX2X_DEV_INFO("SD ISCSI MODE\n");
9448 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9449 iscsi_mac);
9450 }
9451 }
9452 #endif
9453 } else {
9454 /* in SF read MACs from port configuration */
9455 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9456 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9457 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9458
9459 #ifdef BCM_CNIC
9460 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9461 iscsi_mac_upper);
9462 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9463 iscsi_mac_lower);
9464 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9465
9466 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9467 fcoe_fip_mac_upper);
9468 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9469 fcoe_fip_mac_lower);
9470 bnx2x_set_mac_buf(fip_mac, val, val2);
9471 #endif
9472 }
9473
9474 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9475 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9476
9477 #ifdef BCM_CNIC
9478 /* Set the FCoE MAC in MF_SD mode */
9479 if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9480 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9481
9482 /* Disable iSCSI if MAC configuration is
9483 * invalid.
9484 */
9485 if (!is_valid_ether_addr(iscsi_mac)) {
9486 bp->flags |= NO_ISCSI_FLAG;
9487 memset(iscsi_mac, 0, ETH_ALEN);
9488 }
9489
9490 /* Disable FCoE if MAC configuration is
9491 * invalid.
9492 */
9493 if (!is_valid_ether_addr(fip_mac)) {
9494 bp->flags |= NO_FCOE_FLAG;
9495 memset(bp->fip_mac, 0, ETH_ALEN);
9496 }
9497 #endif
9498
9499 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9500 dev_err(&bp->pdev->dev,
9501 "bad Ethernet MAC address configuration: "
9502 "%pM, change it manually before bringing up "
9503 "the appropriate network interface\n",
9504 bp->dev->dev_addr);
9505 }
9506
9507 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9508 {
9509 int /*abs*/func = BP_ABS_FUNC(bp);
9510 int vn;
9511 u32 val = 0;
9512 int rc = 0;
9513
9514 bnx2x_get_common_hwinfo(bp);
9515
9516 /*
9517 * initialize IGU parameters
9518 */
9519 if (CHIP_IS_E1x(bp)) {
9520 bp->common.int_block = INT_BLOCK_HC;
9521
9522 bp->igu_dsb_id = DEF_SB_IGU_ID;
9523 bp->igu_base_sb = 0;
9524 } else {
9525 bp->common.int_block = INT_BLOCK_IGU;
9526
9527 /* do not allow device reset during IGU info preocessing */
9528 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9529
9530 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9531
9532 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9533 int tout = 5000;
9534
9535 BNX2X_DEV_INFO("FORCING Normal Mode\n");
9536
9537 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9538 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9539 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9540
9541 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9542 tout--;
9543 usleep_range(1000, 1000);
9544 }
9545
9546 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9547 dev_err(&bp->pdev->dev,
9548 "FORCING Normal Mode failed!!!\n");
9549 return -EPERM;
9550 }
9551 }
9552
9553 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9554 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9555 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9556 } else
9557 BNX2X_DEV_INFO("IGU Normal Mode\n");
9558
9559 bnx2x_get_igu_cam_info(bp);
9560
9561 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9562 }
9563
9564 /*
9565 * set base FW non-default (fast path) status block id, this value is
9566 * used to initialize the fw_sb_id saved on the fp/queue structure to
9567 * determine the id used by the FW.
9568 */
9569 if (CHIP_IS_E1x(bp))
9570 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9571 else /*
9572 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9573 * the same queue are indicated on the same IGU SB). So we prefer
9574 * FW and IGU SBs to be the same value.
9575 */
9576 bp->base_fw_ndsb = bp->igu_base_sb;
9577
9578 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
9579 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9580 bp->igu_sb_cnt, bp->base_fw_ndsb);
9581
9582 /*
9583 * Initialize MF configuration
9584 */
9585
9586 bp->mf_ov = 0;
9587 bp->mf_mode = 0;
9588 vn = BP_VN(bp);
9589
9590 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9591 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9592 bp->common.shmem2_base, SHMEM2_RD(bp, size),
9593 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9594
9595 if (SHMEM2_HAS(bp, mf_cfg_addr))
9596 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9597 else
9598 bp->common.mf_cfg_base = bp->common.shmem_base +
9599 offsetof(struct shmem_region, func_mb) +
9600 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9601 /*
9602 * get mf configuration:
9603 * 1. existence of MF configuration
9604 * 2. MAC address must be legal (check only upper bytes)
9605 * for Switch-Independent mode;
9606 * OVLAN must be legal for Switch-Dependent mode
9607 * 3. SF_MODE configures specific MF mode
9608 */
9609 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9610 /* get mf configuration */
9611 val = SHMEM_RD(bp,
9612 dev_info.shared_feature_config.config);
9613 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9614
9615 switch (val) {
9616 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9617 val = MF_CFG_RD(bp, func_mf_config[func].
9618 mac_upper);
9619 /* check for legal mac (upper bytes)*/
9620 if (val != 0xffff) {
9621 bp->mf_mode = MULTI_FUNCTION_SI;
9622 bp->mf_config[vn] = MF_CFG_RD(bp,
9623 func_mf_config[func].config);
9624 } else
9625 BNX2X_DEV_INFO("illegal MAC address "
9626 "for SI\n");
9627 break;
9628 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9629 /* get OV configuration */
9630 val = MF_CFG_RD(bp,
9631 func_mf_config[FUNC_0].e1hov_tag);
9632 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9633
9634 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9635 bp->mf_mode = MULTI_FUNCTION_SD;
9636 bp->mf_config[vn] = MF_CFG_RD(bp,
9637 func_mf_config[func].config);
9638 } else
9639 BNX2X_DEV_INFO("illegal OV for SD\n");
9640 break;
9641 default:
9642 /* Unknown configuration: reset mf_config */
9643 bp->mf_config[vn] = 0;
9644 BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9645 }
9646 }
9647
9648 BNX2X_DEV_INFO("%s function mode\n",
9649 IS_MF(bp) ? "multi" : "single");
9650
9651 switch (bp->mf_mode) {
9652 case MULTI_FUNCTION_SD:
9653 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9654 FUNC_MF_CFG_E1HOV_TAG_MASK;
9655 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9656 bp->mf_ov = val;
9657 bp->path_has_ovlan = true;
9658
9659 BNX2X_DEV_INFO("MF OV for func %d is %d "
9660 "(0x%04x)\n", func, bp->mf_ov,
9661 bp->mf_ov);
9662 } else {
9663 dev_err(&bp->pdev->dev,
9664 "No valid MF OV for func %d, "
9665 "aborting\n", func);
9666 return -EPERM;
9667 }
9668 break;
9669 case MULTI_FUNCTION_SI:
9670 BNX2X_DEV_INFO("func %d is in MF "
9671 "switch-independent mode\n", func);
9672 break;
9673 default:
9674 if (vn) {
9675 dev_err(&bp->pdev->dev,
9676 "VN %d is in a single function mode, "
9677 "aborting\n", vn);
9678 return -EPERM;
9679 }
9680 break;
9681 }
9682
9683 /* check if other port on the path needs ovlan:
9684 * Since MF configuration is shared between ports
9685 * Possible mixed modes are only
9686 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9687 */
9688 if (CHIP_MODE_IS_4_PORT(bp) &&
9689 !bp->path_has_ovlan &&
9690 !IS_MF(bp) &&
9691 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9692 u8 other_port = !BP_PORT(bp);
9693 u8 other_func = BP_PATH(bp) + 2*other_port;
9694 val = MF_CFG_RD(bp,
9695 func_mf_config[other_func].e1hov_tag);
9696 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9697 bp->path_has_ovlan = true;
9698 }
9699 }
9700
9701 /* adjust igu_sb_cnt to MF for E1x */
9702 if (CHIP_IS_E1x(bp) && IS_MF(bp))
9703 bp->igu_sb_cnt /= E1HVN_MAX;
9704
9705 /* port info */
9706 bnx2x_get_port_hwinfo(bp);
9707
9708 /* Get MAC addresses */
9709 bnx2x_get_mac_hwinfo(bp);
9710
9711 #ifdef BCM_CNIC
9712 bnx2x_get_cnic_info(bp);
9713 #endif
9714
9715 /* Get current FW pulse sequence */
9716 if (!BP_NOMCP(bp)) {
9717 int mb_idx = BP_FW_MB_IDX(bp);
9718
9719 bp->fw_drv_pulse_wr_seq =
9720 (SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9721 DRV_PULSE_SEQ_MASK);
9722 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9723 }
9724
9725 return rc;
9726 }
9727
9728 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9729 {
9730 int cnt, i, block_end, rodi;
9731 char vpd_data[BNX2X_VPD_LEN+1];
9732 char str_id_reg[VENDOR_ID_LEN+1];
9733 char str_id_cap[VENDOR_ID_LEN+1];
9734 u8 len;
9735
9736 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_data);
9737 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9738
9739 if (cnt < BNX2X_VPD_LEN)
9740 goto out_not_found;
9741
9742 i = pci_vpd_find_tag(vpd_data, 0, BNX2X_VPD_LEN,
9743 PCI_VPD_LRDT_RO_DATA);
9744 if (i < 0)
9745 goto out_not_found;
9746
9747
9748 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9749 pci_vpd_lrdt_size(&vpd_data[i]);
9750
9751 i += PCI_VPD_LRDT_TAG_SIZE;
9752
9753 if (block_end > BNX2X_VPD_LEN)
9754 goto out_not_found;
9755
9756 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9757 PCI_VPD_RO_KEYWORD_MFR_ID);
9758 if (rodi < 0)
9759 goto out_not_found;
9760
9761 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9762
9763 if (len != VENDOR_ID_LEN)
9764 goto out_not_found;
9765
9766 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9767
9768 /* vendor specific info */
9769 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9770 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9771 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9772 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9773
9774 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9775 PCI_VPD_RO_KEYWORD_VENDOR0);
9776 if (rodi >= 0) {
9777 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9778
9779 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9780
9781 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9782 memcpy(bp->fw_ver, &vpd_data[rodi], len);
9783 bp->fw_ver[len] = ' ';
9784 }
9785 }
9786 return;
9787 }
9788 out_not_found:
9789 return;
9790 }
9791
9792 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
9793 {
9794 u32 flags = 0;
9795
9796 if (CHIP_REV_IS_FPGA(bp))
9797 SET_FLAGS(flags, MODE_FPGA);
9798 else if (CHIP_REV_IS_EMUL(bp))
9799 SET_FLAGS(flags, MODE_EMUL);
9800 else
9801 SET_FLAGS(flags, MODE_ASIC);
9802
9803 if (CHIP_MODE_IS_4_PORT(bp))
9804 SET_FLAGS(flags, MODE_PORT4);
9805 else
9806 SET_FLAGS(flags, MODE_PORT2);
9807
9808 if (CHIP_IS_E2(bp))
9809 SET_FLAGS(flags, MODE_E2);
9810 else if (CHIP_IS_E3(bp)) {
9811 SET_FLAGS(flags, MODE_E3);
9812 if (CHIP_REV(bp) == CHIP_REV_Ax)
9813 SET_FLAGS(flags, MODE_E3_A0);
9814 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
9815 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
9816 }
9817
9818 if (IS_MF(bp)) {
9819 SET_FLAGS(flags, MODE_MF);
9820 switch (bp->mf_mode) {
9821 case MULTI_FUNCTION_SD:
9822 SET_FLAGS(flags, MODE_MF_SD);
9823 break;
9824 case MULTI_FUNCTION_SI:
9825 SET_FLAGS(flags, MODE_MF_SI);
9826 break;
9827 }
9828 } else
9829 SET_FLAGS(flags, MODE_SF);
9830
9831 #if defined(__LITTLE_ENDIAN)
9832 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
9833 #else /*(__BIG_ENDIAN)*/
9834 SET_FLAGS(flags, MODE_BIG_ENDIAN);
9835 #endif
9836 INIT_MODE_FLAGS(bp) = flags;
9837 }
9838
9839 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
9840 {
9841 int func;
9842 int timer_interval;
9843 int rc;
9844
9845 mutex_init(&bp->port.phy_mutex);
9846 mutex_init(&bp->fw_mb_mutex);
9847 spin_lock_init(&bp->stats_lock);
9848 #ifdef BCM_CNIC
9849 mutex_init(&bp->cnic_mutex);
9850 #endif
9851
9852 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
9853 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
9854 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
9855 rc = bnx2x_get_hwinfo(bp);
9856 if (rc)
9857 return rc;
9858
9859 bnx2x_set_modes_bitmap(bp);
9860
9861 rc = bnx2x_alloc_mem_bp(bp);
9862 if (rc)
9863 return rc;
9864
9865 bnx2x_read_fwinfo(bp);
9866
9867 func = BP_FUNC(bp);
9868
9869 /* need to reset chip if undi was active */
9870 if (!BP_NOMCP(bp))
9871 bnx2x_undi_unload(bp);
9872
9873 /* init fw_seq after undi_unload! */
9874 if (!BP_NOMCP(bp)) {
9875 bp->fw_seq =
9876 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
9877 DRV_MSG_SEQ_NUMBER_MASK);
9878 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
9879 }
9880
9881 if (CHIP_REV_IS_FPGA(bp))
9882 dev_err(&bp->pdev->dev, "FPGA detected\n");
9883
9884 if (BP_NOMCP(bp) && (func == 0))
9885 dev_err(&bp->pdev->dev, "MCP disabled, "
9886 "must load devices in order!\n");
9887
9888 bp->multi_mode = multi_mode;
9889
9890 bp->disable_tpa = disable_tpa;
9891
9892 #ifdef BCM_CNIC
9893 bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
9894 #endif
9895
9896 /* Set TPA flags */
9897 if (bp->disable_tpa) {
9898 bp->flags &= ~TPA_ENABLE_FLAG;
9899 bp->dev->features &= ~NETIF_F_LRO;
9900 } else {
9901 bp->flags |= TPA_ENABLE_FLAG;
9902 bp->dev->features |= NETIF_F_LRO;
9903 }
9904
9905 if (CHIP_IS_E1(bp))
9906 bp->dropless_fc = 0;
9907 else
9908 bp->dropless_fc = dropless_fc;
9909
9910 bp->mrrs = mrrs;
9911
9912 bp->tx_ring_size = MAX_TX_AVAIL;
9913
9914 /* make sure that the numbers are in the right granularity */
9915 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
9916 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
9917
9918 timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
9919 bp->current_interval = (poll ? poll : timer_interval);
9920
9921 init_timer(&bp->timer);
9922 bp->timer.expires = jiffies + bp->current_interval;
9923 bp->timer.data = (unsigned long) bp;
9924 bp->timer.function = bnx2x_timer;
9925
9926 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
9927 bnx2x_dcbx_init_params(bp);
9928
9929 #ifdef BCM_CNIC
9930 if (CHIP_IS_E1x(bp))
9931 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
9932 else
9933 bp->cnic_base_cl_id = FP_SB_MAX_E2;
9934 #endif
9935
9936 /* multiple tx priority */
9937 if (CHIP_IS_E1x(bp))
9938 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
9939 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
9940 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
9941 if (CHIP_IS_E3B0(bp))
9942 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
9943
9944 return rc;
9945 }
9946
9947
9948 /****************************************************************************
9949 * General service functions
9950 ****************************************************************************/
9951
9952 /*
9953 * net_device service functions
9954 */
9955
9956 /* called with rtnl_lock */
9957 static int bnx2x_open(struct net_device *dev)
9958 {
9959 struct bnx2x *bp = netdev_priv(dev);
9960 bool global = false;
9961 int other_engine = BP_PATH(bp) ? 0 : 1;
9962 u32 other_load_counter, load_counter;
9963
9964 netif_carrier_off(dev);
9965
9966 bnx2x_set_power_state(bp, PCI_D0);
9967
9968 other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
9969 load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
9970
9971 /*
9972 * If parity had happen during the unload, then attentions
9973 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
9974 * want the first function loaded on the current engine to
9975 * complete the recovery.
9976 */
9977 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
9978 bnx2x_chk_parity_attn(bp, &global, true))
9979 do {
9980 /*
9981 * If there are attentions and they are in a global
9982 * blocks, set the GLOBAL_RESET bit regardless whether
9983 * it will be this function that will complete the
9984 * recovery or not.
9985 */
9986 if (global)
9987 bnx2x_set_reset_global(bp);
9988
9989 /*
9990 * Only the first function on the current engine should
9991 * try to recover in open. In case of attentions in
9992 * global blocks only the first in the chip should try
9993 * to recover.
9994 */
9995 if ((!load_counter &&
9996 (!global || !other_load_counter)) &&
9997 bnx2x_trylock_leader_lock(bp) &&
9998 !bnx2x_leader_reset(bp)) {
9999 netdev_info(bp->dev, "Recovered in open\n");
10000 break;
10001 }
10002
10003 /* recovery has failed... */
10004 bnx2x_set_power_state(bp, PCI_D3hot);
10005 bp->recovery_state = BNX2X_RECOVERY_FAILED;
10006
10007 netdev_err(bp->dev, "Recovery flow hasn't been properly"
10008 " completed yet. Try again later. If u still see this"
10009 " message after a few retries then power cycle is"
10010 " required.\n");
10011
10012 return -EAGAIN;
10013 } while (0);
10014
10015 bp->recovery_state = BNX2X_RECOVERY_DONE;
10016 return bnx2x_nic_load(bp, LOAD_OPEN);
10017 }
10018
10019 /* called with rtnl_lock */
10020 int bnx2x_close(struct net_device *dev)
10021 {
10022 struct bnx2x *bp = netdev_priv(dev);
10023
10024 /* Unload the driver, release IRQs */
10025 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10026
10027 /* Power off */
10028 bnx2x_set_power_state(bp, PCI_D3hot);
10029
10030 return 0;
10031 }
10032
10033 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10034 struct bnx2x_mcast_ramrod_params *p)
10035 {
10036 int mc_count = netdev_mc_count(bp->dev);
10037 struct bnx2x_mcast_list_elem *mc_mac =
10038 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10039 struct netdev_hw_addr *ha;
10040
10041 if (!mc_mac)
10042 return -ENOMEM;
10043
10044 INIT_LIST_HEAD(&p->mcast_list);
10045
10046 netdev_for_each_mc_addr(ha, bp->dev) {
10047 mc_mac->mac = bnx2x_mc_addr(ha);
10048 list_add_tail(&mc_mac->link, &p->mcast_list);
10049 mc_mac++;
10050 }
10051
10052 p->mcast_list_len = mc_count;
10053
10054 return 0;
10055 }
10056
10057 static inline void bnx2x_free_mcast_macs_list(
10058 struct bnx2x_mcast_ramrod_params *p)
10059 {
10060 struct bnx2x_mcast_list_elem *mc_mac =
10061 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10062 link);
10063
10064 WARN_ON(!mc_mac);
10065 kfree(mc_mac);
10066 }
10067
10068 /**
10069 * bnx2x_set_uc_list - configure a new unicast MACs list.
10070 *
10071 * @bp: driver handle
10072 *
10073 * We will use zero (0) as a MAC type for these MACs.
10074 */
10075 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10076 {
10077 int rc;
10078 struct net_device *dev = bp->dev;
10079 struct netdev_hw_addr *ha;
10080 struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10081 unsigned long ramrod_flags = 0;
10082
10083 /* First schedule a cleanup up of old configuration */
10084 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10085 if (rc < 0) {
10086 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10087 return rc;
10088 }
10089
10090 netdev_for_each_uc_addr(ha, dev) {
10091 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10092 BNX2X_UC_LIST_MAC, &ramrod_flags);
10093 if (rc < 0) {
10094 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10095 rc);
10096 return rc;
10097 }
10098 }
10099
10100 /* Execute the pending commands */
10101 __set_bit(RAMROD_CONT, &ramrod_flags);
10102 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10103 BNX2X_UC_LIST_MAC, &ramrod_flags);
10104 }
10105
10106 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10107 {
10108 struct net_device *dev = bp->dev;
10109 struct bnx2x_mcast_ramrod_params rparam = {0};
10110 int rc = 0;
10111
10112 rparam.mcast_obj = &bp->mcast_obj;
10113
10114 /* first, clear all configured multicast MACs */
10115 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10116 if (rc < 0) {
10117 BNX2X_ERR("Failed to clear multicast "
10118 "configuration: %d\n", rc);
10119 return rc;
10120 }
10121
10122 /* then, configure a new MACs list */
10123 if (netdev_mc_count(dev)) {
10124 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10125 if (rc) {
10126 BNX2X_ERR("Failed to create multicast MACs "
10127 "list: %d\n", rc);
10128 return rc;
10129 }
10130
10131 /* Now add the new MACs */
10132 rc = bnx2x_config_mcast(bp, &rparam,
10133 BNX2X_MCAST_CMD_ADD);
10134 if (rc < 0)
10135 BNX2X_ERR("Failed to set a new multicast "
10136 "configuration: %d\n", rc);
10137
10138 bnx2x_free_mcast_macs_list(&rparam);
10139 }
10140
10141 return rc;
10142 }
10143
10144
10145 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10146 void bnx2x_set_rx_mode(struct net_device *dev)
10147 {
10148 struct bnx2x *bp = netdev_priv(dev);
10149 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10150
10151 if (bp->state != BNX2X_STATE_OPEN) {
10152 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10153 return;
10154 }
10155
10156 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10157
10158 if (dev->flags & IFF_PROMISC)
10159 rx_mode = BNX2X_RX_MODE_PROMISC;
10160 else if ((dev->flags & IFF_ALLMULTI) ||
10161 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10162 CHIP_IS_E1(bp)))
10163 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10164 else {
10165 /* some multicasts */
10166 if (bnx2x_set_mc_list(bp) < 0)
10167 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10168
10169 if (bnx2x_set_uc_list(bp) < 0)
10170 rx_mode = BNX2X_RX_MODE_PROMISC;
10171 }
10172
10173 bp->rx_mode = rx_mode;
10174 #ifdef BCM_CNIC
10175 /* handle ISCSI SD mode */
10176 if (IS_MF_ISCSI_SD(bp))
10177 bp->rx_mode = BNX2X_RX_MODE_NONE;
10178 #endif
10179
10180 /* Schedule the rx_mode command */
10181 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10182 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10183 return;
10184 }
10185
10186 bnx2x_set_storm_rx_mode(bp);
10187 }
10188
10189 /* called with rtnl_lock */
10190 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10191 int devad, u16 addr)
10192 {
10193 struct bnx2x *bp = netdev_priv(netdev);
10194 u16 value;
10195 int rc;
10196
10197 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10198 prtad, devad, addr);
10199
10200 /* The HW expects different devad if CL22 is used */
10201 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10202
10203 bnx2x_acquire_phy_lock(bp);
10204 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10205 bnx2x_release_phy_lock(bp);
10206 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10207
10208 if (!rc)
10209 rc = value;
10210 return rc;
10211 }
10212
10213 /* called with rtnl_lock */
10214 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10215 u16 addr, u16 value)
10216 {
10217 struct bnx2x *bp = netdev_priv(netdev);
10218 int rc;
10219
10220 DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10221 " value 0x%x\n", prtad, devad, addr, value);
10222
10223 /* The HW expects different devad if CL22 is used */
10224 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10225
10226 bnx2x_acquire_phy_lock(bp);
10227 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10228 bnx2x_release_phy_lock(bp);
10229 return rc;
10230 }
10231
10232 /* called with rtnl_lock */
10233 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10234 {
10235 struct bnx2x *bp = netdev_priv(dev);
10236 struct mii_ioctl_data *mdio = if_mii(ifr);
10237
10238 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10239 mdio->phy_id, mdio->reg_num, mdio->val_in);
10240
10241 if (!netif_running(dev))
10242 return -EAGAIN;
10243
10244 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10245 }
10246
10247 #ifdef CONFIG_NET_POLL_CONTROLLER
10248 static void poll_bnx2x(struct net_device *dev)
10249 {
10250 struct bnx2x *bp = netdev_priv(dev);
10251
10252 disable_irq(bp->pdev->irq);
10253 bnx2x_interrupt(bp->pdev->irq, dev);
10254 enable_irq(bp->pdev->irq);
10255 }
10256 #endif
10257
10258 static int bnx2x_validate_addr(struct net_device *dev)
10259 {
10260 struct bnx2x *bp = netdev_priv(dev);
10261
10262 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10263 return -EADDRNOTAVAIL;
10264 return 0;
10265 }
10266
10267 static const struct net_device_ops bnx2x_netdev_ops = {
10268 .ndo_open = bnx2x_open,
10269 .ndo_stop = bnx2x_close,
10270 .ndo_start_xmit = bnx2x_start_xmit,
10271 .ndo_select_queue = bnx2x_select_queue,
10272 .ndo_set_rx_mode = bnx2x_set_rx_mode,
10273 .ndo_set_mac_address = bnx2x_change_mac_addr,
10274 .ndo_validate_addr = bnx2x_validate_addr,
10275 .ndo_do_ioctl = bnx2x_ioctl,
10276 .ndo_change_mtu = bnx2x_change_mtu,
10277 .ndo_fix_features = bnx2x_fix_features,
10278 .ndo_set_features = bnx2x_set_features,
10279 .ndo_tx_timeout = bnx2x_tx_timeout,
10280 #ifdef CONFIG_NET_POLL_CONTROLLER
10281 .ndo_poll_controller = poll_bnx2x,
10282 #endif
10283 .ndo_setup_tc = bnx2x_setup_tc,
10284
10285 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10286 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
10287 #endif
10288 };
10289
10290 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10291 {
10292 struct device *dev = &bp->pdev->dev;
10293
10294 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10295 bp->flags |= USING_DAC_FLAG;
10296 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10297 dev_err(dev, "dma_set_coherent_mask failed, "
10298 "aborting\n");
10299 return -EIO;
10300 }
10301 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10302 dev_err(dev, "System does not support DMA, aborting\n");
10303 return -EIO;
10304 }
10305
10306 return 0;
10307 }
10308
10309 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10310 struct net_device *dev,
10311 unsigned long board_type)
10312 {
10313 struct bnx2x *bp;
10314 int rc;
10315
10316 SET_NETDEV_DEV(dev, &pdev->dev);
10317 bp = netdev_priv(dev);
10318
10319 bp->dev = dev;
10320 bp->pdev = pdev;
10321 bp->flags = 0;
10322 bp->pf_num = PCI_FUNC(pdev->devfn);
10323
10324 rc = pci_enable_device(pdev);
10325 if (rc) {
10326 dev_err(&bp->pdev->dev,
10327 "Cannot enable PCI device, aborting\n");
10328 goto err_out;
10329 }
10330
10331 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10332 dev_err(&bp->pdev->dev,
10333 "Cannot find PCI device base address, aborting\n");
10334 rc = -ENODEV;
10335 goto err_out_disable;
10336 }
10337
10338 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10339 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10340 " base address, aborting\n");
10341 rc = -ENODEV;
10342 goto err_out_disable;
10343 }
10344
10345 if (atomic_read(&pdev->enable_cnt) == 1) {
10346 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10347 if (rc) {
10348 dev_err(&bp->pdev->dev,
10349 "Cannot obtain PCI resources, aborting\n");
10350 goto err_out_disable;
10351 }
10352
10353 pci_set_master(pdev);
10354 pci_save_state(pdev);
10355 }
10356
10357 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10358 if (bp->pm_cap == 0) {
10359 dev_err(&bp->pdev->dev,
10360 "Cannot find power management capability, aborting\n");
10361 rc = -EIO;
10362 goto err_out_release;
10363 }
10364
10365 if (!pci_is_pcie(pdev)) {
10366 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10367 rc = -EIO;
10368 goto err_out_release;
10369 }
10370
10371 rc = bnx2x_set_coherency_mask(bp);
10372 if (rc)
10373 goto err_out_release;
10374
10375 dev->mem_start = pci_resource_start(pdev, 0);
10376 dev->base_addr = dev->mem_start;
10377 dev->mem_end = pci_resource_end(pdev, 0);
10378
10379 dev->irq = pdev->irq;
10380
10381 bp->regview = pci_ioremap_bar(pdev, 0);
10382 if (!bp->regview) {
10383 dev_err(&bp->pdev->dev,
10384 "Cannot map register space, aborting\n");
10385 rc = -ENOMEM;
10386 goto err_out_release;
10387 }
10388
10389 bnx2x_set_power_state(bp, PCI_D0);
10390
10391 /* clean indirect addresses */
10392 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10393 PCICFG_VENDOR_ID_OFFSET);
10394 /*
10395 * Clean the following indirect addresses for all functions since it
10396 * is not used by the driver.
10397 */
10398 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10399 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10400 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10401 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10402
10403 if (CHIP_IS_E1x(bp)) {
10404 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10405 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10406 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10407 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10408 }
10409
10410 /*
10411 * Enable internal target-read (in case we are probed after PF FLR).
10412 * Must be done prior to any BAR read access. Only for 57712 and up
10413 */
10414 if (board_type != BCM57710 &&
10415 board_type != BCM57711 &&
10416 board_type != BCM57711E)
10417 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10418
10419 /* Reset the load counter */
10420 bnx2x_clear_load_cnt(bp);
10421
10422 dev->watchdog_timeo = TX_TIMEOUT;
10423
10424 dev->netdev_ops = &bnx2x_netdev_ops;
10425 bnx2x_set_ethtool_ops(dev);
10426
10427 dev->priv_flags |= IFF_UNICAST_FLT;
10428
10429 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10430 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10431 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10432
10433 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10434 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10435
10436 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10437 if (bp->flags & USING_DAC_FLAG)
10438 dev->features |= NETIF_F_HIGHDMA;
10439
10440 /* Add Loopback capability to the device */
10441 dev->hw_features |= NETIF_F_LOOPBACK;
10442
10443 #ifdef BCM_DCBNL
10444 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10445 #endif
10446
10447 /* get_port_hwinfo() will set prtad and mmds properly */
10448 bp->mdio.prtad = MDIO_PRTAD_NONE;
10449 bp->mdio.mmds = 0;
10450 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10451 bp->mdio.dev = dev;
10452 bp->mdio.mdio_read = bnx2x_mdio_read;
10453 bp->mdio.mdio_write = bnx2x_mdio_write;
10454
10455 return 0;
10456
10457 err_out_release:
10458 if (atomic_read(&pdev->enable_cnt) == 1)
10459 pci_release_regions(pdev);
10460
10461 err_out_disable:
10462 pci_disable_device(pdev);
10463 pci_set_drvdata(pdev, NULL);
10464
10465 err_out:
10466 return rc;
10467 }
10468
10469 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10470 int *width, int *speed)
10471 {
10472 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10473
10474 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10475
10476 /* return value of 1=2.5GHz 2=5GHz */
10477 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10478 }
10479
10480 static int bnx2x_check_firmware(struct bnx2x *bp)
10481 {
10482 const struct firmware *firmware = bp->firmware;
10483 struct bnx2x_fw_file_hdr *fw_hdr;
10484 struct bnx2x_fw_file_section *sections;
10485 u32 offset, len, num_ops;
10486 u16 *ops_offsets;
10487 int i;
10488 const u8 *fw_ver;
10489
10490 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10491 return -EINVAL;
10492
10493 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10494 sections = (struct bnx2x_fw_file_section *)fw_hdr;
10495
10496 /* Make sure none of the offsets and sizes make us read beyond
10497 * the end of the firmware data */
10498 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10499 offset = be32_to_cpu(sections[i].offset);
10500 len = be32_to_cpu(sections[i].len);
10501 if (offset + len > firmware->size) {
10502 dev_err(&bp->pdev->dev,
10503 "Section %d length is out of bounds\n", i);
10504 return -EINVAL;
10505 }
10506 }
10507
10508 /* Likewise for the init_ops offsets */
10509 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10510 ops_offsets = (u16 *)(firmware->data + offset);
10511 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10512
10513 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10514 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10515 dev_err(&bp->pdev->dev,
10516 "Section offset %d is out of bounds\n", i);
10517 return -EINVAL;
10518 }
10519 }
10520
10521 /* Check FW version */
10522 offset = be32_to_cpu(fw_hdr->fw_version.offset);
10523 fw_ver = firmware->data + offset;
10524 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10525 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10526 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10527 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10528 dev_err(&bp->pdev->dev,
10529 "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10530 fw_ver[0], fw_ver[1], fw_ver[2],
10531 fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10532 BCM_5710_FW_MINOR_VERSION,
10533 BCM_5710_FW_REVISION_VERSION,
10534 BCM_5710_FW_ENGINEERING_VERSION);
10535 return -EINVAL;
10536 }
10537
10538 return 0;
10539 }
10540
10541 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10542 {
10543 const __be32 *source = (const __be32 *)_source;
10544 u32 *target = (u32 *)_target;
10545 u32 i;
10546
10547 for (i = 0; i < n/4; i++)
10548 target[i] = be32_to_cpu(source[i]);
10549 }
10550
10551 /*
10552 Ops array is stored in the following format:
10553 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10554 */
10555 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10556 {
10557 const __be32 *source = (const __be32 *)_source;
10558 struct raw_op *target = (struct raw_op *)_target;
10559 u32 i, j, tmp;
10560
10561 for (i = 0, j = 0; i < n/8; i++, j += 2) {
10562 tmp = be32_to_cpu(source[j]);
10563 target[i].op = (tmp >> 24) & 0xff;
10564 target[i].offset = tmp & 0xffffff;
10565 target[i].raw_data = be32_to_cpu(source[j + 1]);
10566 }
10567 }
10568
10569 /**
10570 * IRO array is stored in the following format:
10571 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10572 */
10573 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10574 {
10575 const __be32 *source = (const __be32 *)_source;
10576 struct iro *target = (struct iro *)_target;
10577 u32 i, j, tmp;
10578
10579 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10580 target[i].base = be32_to_cpu(source[j]);
10581 j++;
10582 tmp = be32_to_cpu(source[j]);
10583 target[i].m1 = (tmp >> 16) & 0xffff;
10584 target[i].m2 = tmp & 0xffff;
10585 j++;
10586 tmp = be32_to_cpu(source[j]);
10587 target[i].m3 = (tmp >> 16) & 0xffff;
10588 target[i].size = tmp & 0xffff;
10589 j++;
10590 }
10591 }
10592
10593 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10594 {
10595 const __be16 *source = (const __be16 *)_source;
10596 u16 *target = (u16 *)_target;
10597 u32 i;
10598
10599 for (i = 0; i < n/2; i++)
10600 target[i] = be16_to_cpu(source[i]);
10601 }
10602
10603 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
10604 do { \
10605 u32 len = be32_to_cpu(fw_hdr->arr.len); \
10606 bp->arr = kmalloc(len, GFP_KERNEL); \
10607 if (!bp->arr) { \
10608 pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10609 goto lbl; \
10610 } \
10611 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
10612 (u8 *)bp->arr, len); \
10613 } while (0)
10614
10615 int bnx2x_init_firmware(struct bnx2x *bp)
10616 {
10617 struct bnx2x_fw_file_hdr *fw_hdr;
10618 int rc;
10619
10620
10621 if (!bp->firmware) {
10622 const char *fw_file_name;
10623
10624 if (CHIP_IS_E1(bp))
10625 fw_file_name = FW_FILE_NAME_E1;
10626 else if (CHIP_IS_E1H(bp))
10627 fw_file_name = FW_FILE_NAME_E1H;
10628 else if (!CHIP_IS_E1x(bp))
10629 fw_file_name = FW_FILE_NAME_E2;
10630 else {
10631 BNX2X_ERR("Unsupported chip revision\n");
10632 return -EINVAL;
10633 }
10634 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10635
10636 rc = request_firmware(&bp->firmware, fw_file_name,
10637 &bp->pdev->dev);
10638 if (rc) {
10639 BNX2X_ERR("Can't load firmware file %s\n",
10640 fw_file_name);
10641 goto request_firmware_exit;
10642 }
10643
10644 rc = bnx2x_check_firmware(bp);
10645 if (rc) {
10646 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10647 goto request_firmware_exit;
10648 }
10649 }
10650
10651 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10652
10653 /* Initialize the pointers to the init arrays */
10654 /* Blob */
10655 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10656
10657 /* Opcodes */
10658 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10659
10660 /* Offsets */
10661 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10662 be16_to_cpu_n);
10663
10664 /* STORMs firmware */
10665 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10666 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10667 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
10668 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10669 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10670 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10671 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
10672 be32_to_cpu(fw_hdr->usem_pram_data.offset);
10673 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10674 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10675 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
10676 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10677 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10678 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10679 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
10680 be32_to_cpu(fw_hdr->csem_pram_data.offset);
10681 /* IRO */
10682 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10683
10684 return 0;
10685
10686 iro_alloc_err:
10687 kfree(bp->init_ops_offsets);
10688 init_offsets_alloc_err:
10689 kfree(bp->init_ops);
10690 init_ops_alloc_err:
10691 kfree(bp->init_data);
10692 request_firmware_exit:
10693 release_firmware(bp->firmware);
10694
10695 return rc;
10696 }
10697
10698 static void bnx2x_release_firmware(struct bnx2x *bp)
10699 {
10700 kfree(bp->init_ops_offsets);
10701 kfree(bp->init_ops);
10702 kfree(bp->init_data);
10703 release_firmware(bp->firmware);
10704 bp->firmware = NULL;
10705 }
10706
10707
10708 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10709 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10710 .init_hw_cmn = bnx2x_init_hw_common,
10711 .init_hw_port = bnx2x_init_hw_port,
10712 .init_hw_func = bnx2x_init_hw_func,
10713
10714 .reset_hw_cmn = bnx2x_reset_common,
10715 .reset_hw_port = bnx2x_reset_port,
10716 .reset_hw_func = bnx2x_reset_func,
10717
10718 .gunzip_init = bnx2x_gunzip_init,
10719 .gunzip_end = bnx2x_gunzip_end,
10720
10721 .init_fw = bnx2x_init_firmware,
10722 .release_fw = bnx2x_release_firmware,
10723 };
10724
10725 void bnx2x__init_func_obj(struct bnx2x *bp)
10726 {
10727 /* Prepare DMAE related driver resources */
10728 bnx2x_setup_dmae(bp);
10729
10730 bnx2x_init_func_obj(bp, &bp->func_obj,
10731 bnx2x_sp(bp, func_rdata),
10732 bnx2x_sp_mapping(bp, func_rdata),
10733 &bnx2x_func_sp_drv);
10734 }
10735
10736 /* must be called after sriov-enable */
10737 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10738 {
10739 int cid_count = BNX2X_L2_CID_COUNT(bp);
10740
10741 #ifdef BCM_CNIC
10742 cid_count += CNIC_CID_MAX;
10743 #endif
10744 return roundup(cid_count, QM_CID_ROUND);
10745 }
10746
10747 /**
10748 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10749 *
10750 * @dev: pci device
10751 *
10752 */
10753 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10754 {
10755 int pos;
10756 u16 control;
10757
10758 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10759
10760 /*
10761 * If MSI-X is not supported - return number of SBs needed to support
10762 * one fast path queue: one FP queue + SB for CNIC
10763 */
10764 if (!pos)
10765 return 1 + CNIC_PRESENT;
10766
10767 /*
10768 * The value in the PCI configuration space is the index of the last
10769 * entry, namely one less than the actual size of the table, which is
10770 * exactly what we want to return from this function: number of all SBs
10771 * without the default SB.
10772 */
10773 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
10774 return control & PCI_MSIX_FLAGS_QSIZE;
10775 }
10776
10777 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10778 const struct pci_device_id *ent)
10779 {
10780 struct net_device *dev = NULL;
10781 struct bnx2x *bp;
10782 int pcie_width, pcie_speed;
10783 int rc, max_non_def_sbs;
10784 int rx_count, tx_count, rss_count;
10785 /*
10786 * An estimated maximum supported CoS number according to the chip
10787 * version.
10788 * We will try to roughly estimate the maximum number of CoSes this chip
10789 * may support in order to minimize the memory allocated for Tx
10790 * netdev_queue's. This number will be accurately calculated during the
10791 * initialization of bp->max_cos based on the chip versions AND chip
10792 * revision in the bnx2x_init_bp().
10793 */
10794 u8 max_cos_est = 0;
10795
10796 switch (ent->driver_data) {
10797 case BCM57710:
10798 case BCM57711:
10799 case BCM57711E:
10800 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
10801 break;
10802
10803 case BCM57712:
10804 case BCM57712_MF:
10805 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
10806 break;
10807
10808 case BCM57800:
10809 case BCM57800_MF:
10810 case BCM57810:
10811 case BCM57810_MF:
10812 case BCM57840:
10813 case BCM57840_MF:
10814 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
10815 break;
10816
10817 default:
10818 pr_err("Unknown board_type (%ld), aborting\n",
10819 ent->driver_data);
10820 return -ENODEV;
10821 }
10822
10823 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
10824
10825 /* !!! FIXME !!!
10826 * Do not allow the maximum SB count to grow above 16
10827 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
10828 * We will use the FP_SB_MAX_E1x macro for this matter.
10829 */
10830 max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
10831
10832 WARN_ON(!max_non_def_sbs);
10833
10834 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
10835 rss_count = max_non_def_sbs - CNIC_PRESENT;
10836
10837 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
10838 rx_count = rss_count + FCOE_PRESENT;
10839
10840 /*
10841 * Maximum number of netdev Tx queues:
10842 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
10843 */
10844 tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
10845
10846 /* dev zeroed in init_etherdev */
10847 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
10848 if (!dev) {
10849 dev_err(&pdev->dev, "Cannot allocate net device\n");
10850 return -ENOMEM;
10851 }
10852
10853 bp = netdev_priv(dev);
10854
10855 DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
10856 tx_count, rx_count);
10857
10858 bp->igu_sb_cnt = max_non_def_sbs;
10859 bp->msg_enable = debug;
10860 pci_set_drvdata(pdev, dev);
10861
10862 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
10863 if (rc < 0) {
10864 free_netdev(dev);
10865 return rc;
10866 }
10867
10868 DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
10869
10870 rc = bnx2x_init_bp(bp);
10871 if (rc)
10872 goto init_one_exit;
10873
10874 /*
10875 * Map doorbels here as we need the real value of bp->max_cos which
10876 * is initialized in bnx2x_init_bp().
10877 */
10878 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
10879 min_t(u64, BNX2X_DB_SIZE(bp),
10880 pci_resource_len(pdev, 2)));
10881 if (!bp->doorbells) {
10882 dev_err(&bp->pdev->dev,
10883 "Cannot map doorbell space, aborting\n");
10884 rc = -ENOMEM;
10885 goto init_one_exit;
10886 }
10887
10888 /* calc qm_cid_count */
10889 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
10890
10891 #ifdef BCM_CNIC
10892 /* disable FCOE L2 queue for E1x */
10893 if (CHIP_IS_E1x(bp))
10894 bp->flags |= NO_FCOE_FLAG;
10895
10896 #endif
10897
10898 /* Configure interrupt mode: try to enable MSI-X/MSI if
10899 * needed, set bp->num_queues appropriately.
10900 */
10901 bnx2x_set_int_mode(bp);
10902
10903 /* Add all NAPI objects */
10904 bnx2x_add_all_napi(bp);
10905
10906 rc = register_netdev(dev);
10907 if (rc) {
10908 dev_err(&pdev->dev, "Cannot register net device\n");
10909 goto init_one_exit;
10910 }
10911
10912 #ifdef BCM_CNIC
10913 if (!NO_FCOE(bp)) {
10914 /* Add storage MAC address */
10915 rtnl_lock();
10916 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10917 rtnl_unlock();
10918 }
10919 #endif
10920
10921 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
10922
10923 netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
10924 board_info[ent->driver_data].name,
10925 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
10926 pcie_width,
10927 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
10928 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
10929 "5GHz (Gen2)" : "2.5GHz",
10930 dev->base_addr, bp->pdev->irq, dev->dev_addr);
10931
10932 return 0;
10933
10934 init_one_exit:
10935 if (bp->regview)
10936 iounmap(bp->regview);
10937
10938 if (bp->doorbells)
10939 iounmap(bp->doorbells);
10940
10941 free_netdev(dev);
10942
10943 if (atomic_read(&pdev->enable_cnt) == 1)
10944 pci_release_regions(pdev);
10945
10946 pci_disable_device(pdev);
10947 pci_set_drvdata(pdev, NULL);
10948
10949 return rc;
10950 }
10951
10952 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
10953 {
10954 struct net_device *dev = pci_get_drvdata(pdev);
10955 struct bnx2x *bp;
10956
10957 if (!dev) {
10958 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
10959 return;
10960 }
10961 bp = netdev_priv(dev);
10962
10963 #ifdef BCM_CNIC
10964 /* Delete storage MAC address */
10965 if (!NO_FCOE(bp)) {
10966 rtnl_lock();
10967 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10968 rtnl_unlock();
10969 }
10970 #endif
10971
10972 #ifdef BCM_DCBNL
10973 /* Delete app tlvs from dcbnl */
10974 bnx2x_dcbnl_update_applist(bp, true);
10975 #endif
10976
10977 unregister_netdev(dev);
10978
10979 /* Delete all NAPI objects */
10980 bnx2x_del_all_napi(bp);
10981
10982 /* Power on: we can't let PCI layer write to us while we are in D3 */
10983 bnx2x_set_power_state(bp, PCI_D0);
10984
10985 /* Disable MSI/MSI-X */
10986 bnx2x_disable_msi(bp);
10987
10988 /* Power off */
10989 bnx2x_set_power_state(bp, PCI_D3hot);
10990
10991 /* Make sure RESET task is not scheduled before continuing */
10992 cancel_delayed_work_sync(&bp->sp_rtnl_task);
10993
10994 if (bp->regview)
10995 iounmap(bp->regview);
10996
10997 if (bp->doorbells)
10998 iounmap(bp->doorbells);
10999
11000 bnx2x_release_firmware(bp);
11001
11002 bnx2x_free_mem_bp(bp);
11003
11004 free_netdev(dev);
11005
11006 if (atomic_read(&pdev->enable_cnt) == 1)
11007 pci_release_regions(pdev);
11008
11009 pci_disable_device(pdev);
11010 pci_set_drvdata(pdev, NULL);
11011 }
11012
11013 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11014 {
11015 int i;
11016
11017 bp->state = BNX2X_STATE_ERROR;
11018
11019 bp->rx_mode = BNX2X_RX_MODE_NONE;
11020
11021 #ifdef BCM_CNIC
11022 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11023 #endif
11024 /* Stop Tx */
11025 bnx2x_tx_disable(bp);
11026
11027 bnx2x_netif_stop(bp, 0);
11028
11029 del_timer_sync(&bp->timer);
11030
11031 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11032
11033 /* Release IRQs */
11034 bnx2x_free_irq(bp);
11035
11036 /* Free SKBs, SGEs, TPA pool and driver internals */
11037 bnx2x_free_skbs(bp);
11038
11039 for_each_rx_queue(bp, i)
11040 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11041
11042 bnx2x_free_mem(bp);
11043
11044 bp->state = BNX2X_STATE_CLOSED;
11045
11046 netif_carrier_off(bp->dev);
11047
11048 return 0;
11049 }
11050
11051 static void bnx2x_eeh_recover(struct bnx2x *bp)
11052 {
11053 u32 val;
11054
11055 mutex_init(&bp->port.phy_mutex);
11056
11057 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11058 bp->link_params.shmem_base = bp->common.shmem_base;
11059 BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11060
11061 if (!bp->common.shmem_base ||
11062 (bp->common.shmem_base < 0xA0000) ||
11063 (bp->common.shmem_base >= 0xC0000)) {
11064 BNX2X_DEV_INFO("MCP not active\n");
11065 bp->flags |= NO_MCP_FLAG;
11066 return;
11067 }
11068
11069 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11070 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11071 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11072 BNX2X_ERR("BAD MCP validity signature\n");
11073
11074 if (!BP_NOMCP(bp)) {
11075 bp->fw_seq =
11076 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11077 DRV_MSG_SEQ_NUMBER_MASK);
11078 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11079 }
11080 }
11081
11082 /**
11083 * bnx2x_io_error_detected - called when PCI error is detected
11084 * @pdev: Pointer to PCI device
11085 * @state: The current pci connection state
11086 *
11087 * This function is called after a PCI bus error affecting
11088 * this device has been detected.
11089 */
11090 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11091 pci_channel_state_t state)
11092 {
11093 struct net_device *dev = pci_get_drvdata(pdev);
11094 struct bnx2x *bp = netdev_priv(dev);
11095
11096 rtnl_lock();
11097
11098 netif_device_detach(dev);
11099
11100 if (state == pci_channel_io_perm_failure) {
11101 rtnl_unlock();
11102 return PCI_ERS_RESULT_DISCONNECT;
11103 }
11104
11105 if (netif_running(dev))
11106 bnx2x_eeh_nic_unload(bp);
11107
11108 pci_disable_device(pdev);
11109
11110 rtnl_unlock();
11111
11112 /* Request a slot reset */
11113 return PCI_ERS_RESULT_NEED_RESET;
11114 }
11115
11116 /**
11117 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11118 * @pdev: Pointer to PCI device
11119 *
11120 * Restart the card from scratch, as if from a cold-boot.
11121 */
11122 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11123 {
11124 struct net_device *dev = pci_get_drvdata(pdev);
11125 struct bnx2x *bp = netdev_priv(dev);
11126
11127 rtnl_lock();
11128
11129 if (pci_enable_device(pdev)) {
11130 dev_err(&pdev->dev,
11131 "Cannot re-enable PCI device after reset\n");
11132 rtnl_unlock();
11133 return PCI_ERS_RESULT_DISCONNECT;
11134 }
11135
11136 pci_set_master(pdev);
11137 pci_restore_state(pdev);
11138
11139 if (netif_running(dev))
11140 bnx2x_set_power_state(bp, PCI_D0);
11141
11142 rtnl_unlock();
11143
11144 return PCI_ERS_RESULT_RECOVERED;
11145 }
11146
11147 /**
11148 * bnx2x_io_resume - called when traffic can start flowing again
11149 * @pdev: Pointer to PCI device
11150 *
11151 * This callback is called when the error recovery driver tells us that
11152 * its OK to resume normal operation.
11153 */
11154 static void bnx2x_io_resume(struct pci_dev *pdev)
11155 {
11156 struct net_device *dev = pci_get_drvdata(pdev);
11157 struct bnx2x *bp = netdev_priv(dev);
11158
11159 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11160 netdev_err(bp->dev, "Handling parity error recovery. "
11161 "Try again later\n");
11162 return;
11163 }
11164
11165 rtnl_lock();
11166
11167 bnx2x_eeh_recover(bp);
11168
11169 if (netif_running(dev))
11170 bnx2x_nic_load(bp, LOAD_NORMAL);
11171
11172 netif_device_attach(dev);
11173
11174 rtnl_unlock();
11175 }
11176
11177 static struct pci_error_handlers bnx2x_err_handler = {
11178 .error_detected = bnx2x_io_error_detected,
11179 .slot_reset = bnx2x_io_slot_reset,
11180 .resume = bnx2x_io_resume,
11181 };
11182
11183 static struct pci_driver bnx2x_pci_driver = {
11184 .name = DRV_MODULE_NAME,
11185 .id_table = bnx2x_pci_tbl,
11186 .probe = bnx2x_init_one,
11187 .remove = __devexit_p(bnx2x_remove_one),
11188 .suspend = bnx2x_suspend,
11189 .resume = bnx2x_resume,
11190 .err_handler = &bnx2x_err_handler,
11191 };
11192
11193 static int __init bnx2x_init(void)
11194 {
11195 int ret;
11196
11197 pr_info("%s", version);
11198
11199 bnx2x_wq = create_singlethread_workqueue("bnx2x");
11200 if (bnx2x_wq == NULL) {
11201 pr_err("Cannot create workqueue\n");
11202 return -ENOMEM;
11203 }
11204
11205 ret = pci_register_driver(&bnx2x_pci_driver);
11206 if (ret) {
11207 pr_err("Cannot register driver\n");
11208 destroy_workqueue(bnx2x_wq);
11209 }
11210 return ret;
11211 }
11212
11213 static void __exit bnx2x_cleanup(void)
11214 {
11215 pci_unregister_driver(&bnx2x_pci_driver);
11216
11217 destroy_workqueue(bnx2x_wq);
11218 }
11219
11220 void bnx2x_notify_link_changed(struct bnx2x *bp)
11221 {
11222 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11223 }
11224
11225 module_init(bnx2x_init);
11226 module_exit(bnx2x_cleanup);
11227
11228 #ifdef BCM_CNIC
11229 /**
11230 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11231 *
11232 * @bp: driver handle
11233 * @set: set or clear the CAM entry
11234 *
11235 * This function will wait until the ramdord completion returns.
11236 * Return 0 if success, -ENODEV if ramrod doesn't return.
11237 */
11238 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11239 {
11240 unsigned long ramrod_flags = 0;
11241
11242 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11243 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11244 &bp->iscsi_l2_mac_obj, true,
11245 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11246 }
11247
11248 /* count denotes the number of new completions we have seen */
11249 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11250 {
11251 struct eth_spe *spe;
11252
11253 #ifdef BNX2X_STOP_ON_ERROR
11254 if (unlikely(bp->panic))
11255 return;
11256 #endif
11257
11258 spin_lock_bh(&bp->spq_lock);
11259 BUG_ON(bp->cnic_spq_pending < count);
11260 bp->cnic_spq_pending -= count;
11261
11262
11263 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11264 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11265 & SPE_HDR_CONN_TYPE) >>
11266 SPE_HDR_CONN_TYPE_SHIFT;
11267 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11268 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11269
11270 /* Set validation for iSCSI L2 client before sending SETUP
11271 * ramrod
11272 */
11273 if (type == ETH_CONNECTION_TYPE) {
11274 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11275 bnx2x_set_ctx_validation(bp, &bp->context.
11276 vcxt[BNX2X_ISCSI_ETH_CID].eth,
11277 BNX2X_ISCSI_ETH_CID);
11278 }
11279
11280 /*
11281 * There may be not more than 8 L2, not more than 8 L5 SPEs
11282 * and in the air. We also check that number of outstanding
11283 * COMMON ramrods is not more than the EQ and SPQ can
11284 * accommodate.
11285 */
11286 if (type == ETH_CONNECTION_TYPE) {
11287 if (!atomic_read(&bp->cq_spq_left))
11288 break;
11289 else
11290 atomic_dec(&bp->cq_spq_left);
11291 } else if (type == NONE_CONNECTION_TYPE) {
11292 if (!atomic_read(&bp->eq_spq_left))
11293 break;
11294 else
11295 atomic_dec(&bp->eq_spq_left);
11296 } else if ((type == ISCSI_CONNECTION_TYPE) ||
11297 (type == FCOE_CONNECTION_TYPE)) {
11298 if (bp->cnic_spq_pending >=
11299 bp->cnic_eth_dev.max_kwqe_pending)
11300 break;
11301 else
11302 bp->cnic_spq_pending++;
11303 } else {
11304 BNX2X_ERR("Unknown SPE type: %d\n", type);
11305 bnx2x_panic();
11306 break;
11307 }
11308
11309 spe = bnx2x_sp_get_next(bp);
11310 *spe = *bp->cnic_kwq_cons;
11311
11312 DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11313 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11314
11315 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11316 bp->cnic_kwq_cons = bp->cnic_kwq;
11317 else
11318 bp->cnic_kwq_cons++;
11319 }
11320 bnx2x_sp_prod_update(bp);
11321 spin_unlock_bh(&bp->spq_lock);
11322 }
11323
11324 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11325 struct kwqe_16 *kwqes[], u32 count)
11326 {
11327 struct bnx2x *bp = netdev_priv(dev);
11328 int i;
11329
11330 #ifdef BNX2X_STOP_ON_ERROR
11331 if (unlikely(bp->panic))
11332 return -EIO;
11333 #endif
11334
11335 spin_lock_bh(&bp->spq_lock);
11336
11337 for (i = 0; i < count; i++) {
11338 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11339
11340 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11341 break;
11342
11343 *bp->cnic_kwq_prod = *spe;
11344
11345 bp->cnic_kwq_pending++;
11346
11347 DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11348 spe->hdr.conn_and_cmd_data, spe->hdr.type,
11349 spe->data.update_data_addr.hi,
11350 spe->data.update_data_addr.lo,
11351 bp->cnic_kwq_pending);
11352
11353 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11354 bp->cnic_kwq_prod = bp->cnic_kwq;
11355 else
11356 bp->cnic_kwq_prod++;
11357 }
11358
11359 spin_unlock_bh(&bp->spq_lock);
11360
11361 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11362 bnx2x_cnic_sp_post(bp, 0);
11363
11364 return i;
11365 }
11366
11367 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11368 {
11369 struct cnic_ops *c_ops;
11370 int rc = 0;
11371
11372 mutex_lock(&bp->cnic_mutex);
11373 c_ops = rcu_dereference_protected(bp->cnic_ops,
11374 lockdep_is_held(&bp->cnic_mutex));
11375 if (c_ops)
11376 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11377 mutex_unlock(&bp->cnic_mutex);
11378
11379 return rc;
11380 }
11381
11382 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11383 {
11384 struct cnic_ops *c_ops;
11385 int rc = 0;
11386
11387 rcu_read_lock();
11388 c_ops = rcu_dereference(bp->cnic_ops);
11389 if (c_ops)
11390 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11391 rcu_read_unlock();
11392
11393 return rc;
11394 }
11395
11396 /*
11397 * for commands that have no data
11398 */
11399 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11400 {
11401 struct cnic_ctl_info ctl = {0};
11402
11403 ctl.cmd = cmd;
11404
11405 return bnx2x_cnic_ctl_send(bp, &ctl);
11406 }
11407
11408 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11409 {
11410 struct cnic_ctl_info ctl = {0};
11411
11412 /* first we tell CNIC and only then we count this as a completion */
11413 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11414 ctl.data.comp.cid = cid;
11415 ctl.data.comp.error = err;
11416
11417 bnx2x_cnic_ctl_send_bh(bp, &ctl);
11418 bnx2x_cnic_sp_post(bp, 0);
11419 }
11420
11421
11422 /* Called with netif_addr_lock_bh() taken.
11423 * Sets an rx_mode config for an iSCSI ETH client.
11424 * Doesn't block.
11425 * Completion should be checked outside.
11426 */
11427 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11428 {
11429 unsigned long accept_flags = 0, ramrod_flags = 0;
11430 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11431 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11432
11433 if (start) {
11434 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11435 * because it's the only way for UIO Queue to accept
11436 * multicasts (in non-promiscuous mode only one Queue per
11437 * function will receive multicast packets (leading in our
11438 * case).
11439 */
11440 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11441 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11442 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11443 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11444
11445 /* Clear STOP_PENDING bit if START is requested */
11446 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11447
11448 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11449 } else
11450 /* Clear START_PENDING bit if STOP is requested */
11451 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11452
11453 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11454 set_bit(sched_state, &bp->sp_state);
11455 else {
11456 __set_bit(RAMROD_RX, &ramrod_flags);
11457 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11458 ramrod_flags);
11459 }
11460 }
11461
11462
11463 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11464 {
11465 struct bnx2x *bp = netdev_priv(dev);
11466 int rc = 0;
11467
11468 switch (ctl->cmd) {
11469 case DRV_CTL_CTXTBL_WR_CMD: {
11470 u32 index = ctl->data.io.offset;
11471 dma_addr_t addr = ctl->data.io.dma_addr;
11472
11473 bnx2x_ilt_wr(bp, index, addr);
11474 break;
11475 }
11476
11477 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11478 int count = ctl->data.credit.credit_count;
11479
11480 bnx2x_cnic_sp_post(bp, count);
11481 break;
11482 }
11483
11484 /* rtnl_lock is held. */
11485 case DRV_CTL_START_L2_CMD: {
11486 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11487 unsigned long sp_bits = 0;
11488
11489 /* Configure the iSCSI classification object */
11490 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11491 cp->iscsi_l2_client_id,
11492 cp->iscsi_l2_cid, BP_FUNC(bp),
11493 bnx2x_sp(bp, mac_rdata),
11494 bnx2x_sp_mapping(bp, mac_rdata),
11495 BNX2X_FILTER_MAC_PENDING,
11496 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11497 &bp->macs_pool);
11498
11499 /* Set iSCSI MAC address */
11500 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11501 if (rc)
11502 break;
11503
11504 mmiowb();
11505 barrier();
11506
11507 /* Start accepting on iSCSI L2 ring */
11508
11509 netif_addr_lock_bh(dev);
11510 bnx2x_set_iscsi_eth_rx_mode(bp, true);
11511 netif_addr_unlock_bh(dev);
11512
11513 /* bits to wait on */
11514 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11515 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11516
11517 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11518 BNX2X_ERR("rx_mode completion timed out!\n");
11519
11520 break;
11521 }
11522
11523 /* rtnl_lock is held. */
11524 case DRV_CTL_STOP_L2_CMD: {
11525 unsigned long sp_bits = 0;
11526
11527 /* Stop accepting on iSCSI L2 ring */
11528 netif_addr_lock_bh(dev);
11529 bnx2x_set_iscsi_eth_rx_mode(bp, false);
11530 netif_addr_unlock_bh(dev);
11531
11532 /* bits to wait on */
11533 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11534 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11535
11536 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11537 BNX2X_ERR("rx_mode completion timed out!\n");
11538
11539 mmiowb();
11540 barrier();
11541
11542 /* Unset iSCSI L2 MAC */
11543 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11544 BNX2X_ISCSI_ETH_MAC, true);
11545 break;
11546 }
11547 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11548 int count = ctl->data.credit.credit_count;
11549
11550 smp_mb__before_atomic_inc();
11551 atomic_add(count, &bp->cq_spq_left);
11552 smp_mb__after_atomic_inc();
11553 break;
11554 }
11555
11556 default:
11557 BNX2X_ERR("unknown command %x\n", ctl->cmd);
11558 rc = -EINVAL;
11559 }
11560
11561 return rc;
11562 }
11563
11564 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11565 {
11566 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11567
11568 if (bp->flags & USING_MSIX_FLAG) {
11569 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11570 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11571 cp->irq_arr[0].vector = bp->msix_table[1].vector;
11572 } else {
11573 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11574 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11575 }
11576 if (!CHIP_IS_E1x(bp))
11577 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11578 else
11579 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11580
11581 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
11582 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11583 cp->irq_arr[1].status_blk = bp->def_status_blk;
11584 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11585 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11586
11587 cp->num_irq = 2;
11588 }
11589
11590 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11591 void *data)
11592 {
11593 struct bnx2x *bp = netdev_priv(dev);
11594 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11595
11596 if (ops == NULL)
11597 return -EINVAL;
11598
11599 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11600 if (!bp->cnic_kwq)
11601 return -ENOMEM;
11602
11603 bp->cnic_kwq_cons = bp->cnic_kwq;
11604 bp->cnic_kwq_prod = bp->cnic_kwq;
11605 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11606
11607 bp->cnic_spq_pending = 0;
11608 bp->cnic_kwq_pending = 0;
11609
11610 bp->cnic_data = data;
11611
11612 cp->num_irq = 0;
11613 cp->drv_state |= CNIC_DRV_STATE_REGD;
11614 cp->iro_arr = bp->iro_arr;
11615
11616 bnx2x_setup_cnic_irq_info(bp);
11617
11618 rcu_assign_pointer(bp->cnic_ops, ops);
11619
11620 return 0;
11621 }
11622
11623 static int bnx2x_unregister_cnic(struct net_device *dev)
11624 {
11625 struct bnx2x *bp = netdev_priv(dev);
11626 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11627
11628 mutex_lock(&bp->cnic_mutex);
11629 cp->drv_state = 0;
11630 RCU_INIT_POINTER(bp->cnic_ops, NULL);
11631 mutex_unlock(&bp->cnic_mutex);
11632 synchronize_rcu();
11633 kfree(bp->cnic_kwq);
11634 bp->cnic_kwq = NULL;
11635
11636 return 0;
11637 }
11638
11639 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11640 {
11641 struct bnx2x *bp = netdev_priv(dev);
11642 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11643
11644 /* If both iSCSI and FCoE are disabled - return NULL in
11645 * order to indicate CNIC that it should not try to work
11646 * with this device.
11647 */
11648 if (NO_ISCSI(bp) && NO_FCOE(bp))
11649 return NULL;
11650
11651 cp->drv_owner = THIS_MODULE;
11652 cp->chip_id = CHIP_ID(bp);
11653 cp->pdev = bp->pdev;
11654 cp->io_base = bp->regview;
11655 cp->io_base2 = bp->doorbells;
11656 cp->max_kwqe_pending = 8;
11657 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11658 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11659 bnx2x_cid_ilt_lines(bp);
11660 cp->ctx_tbl_len = CNIC_ILT_LINES;
11661 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11662 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11663 cp->drv_ctl = bnx2x_drv_ctl;
11664 cp->drv_register_cnic = bnx2x_register_cnic;
11665 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11666 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11667 cp->iscsi_l2_client_id =
11668 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11669 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11670
11671 if (NO_ISCSI_OOO(bp))
11672 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11673
11674 if (NO_ISCSI(bp))
11675 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11676
11677 if (NO_FCOE(bp))
11678 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11679
11680 DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11681 "starting cid %d\n",
11682 cp->ctx_blk_size,
11683 cp->ctx_tbl_offset,
11684 cp->ctx_tbl_len,
11685 cp->starting_cid);
11686 return cp;
11687 }
11688 EXPORT_SYMBOL(bnx2x_cnic_probe);
11689
11690 #endif /* BCM_CNIC */
11691