]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
arch: Mass conversion of smp_mb__*()
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_vfpf.h"
64 #include "bnx2x_dcb.h"
65 #include "bnx2x_sp.h"
66
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION \
71 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
72 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
73 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
74 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT (5*HZ)
81
82 static char version[] =
83 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 "BCM57710/57711/57711E/"
89 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99 MODULE_PARM_DESC(num_queues,
100 " Set number of queues (default is as a number of CPUs)");
101
102 static int disable_tpa;
103 module_param(disable_tpa, int, S_IRUGO);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106 static int int_mode;
107 module_param(int_mode, int, S_IRUGO);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109 "(1 INT#x; 2 MSI)");
110
111 static int dropless_fc;
112 module_param(dropless_fc, int, S_IRUGO);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115 static int mrrs = -1;
116 module_param(mrrs, int, S_IRUGO);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119 static int debug;
120 module_param(debug, int, S_IRUGO);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123 static struct workqueue_struct *bnx2x_wq;
124 struct workqueue_struct *bnx2x_iov_wq;
125
126 struct bnx2x_mac_vals {
127 u32 xmac_addr;
128 u32 xmac_val;
129 u32 emac_addr;
130 u32 emac_val;
131 u32 umac_addr;
132 u32 umac_val;
133 u32 bmac_addr;
134 u32 bmac_val[2];
135 };
136
137 enum bnx2x_board_type {
138 BCM57710 = 0,
139 BCM57711,
140 BCM57711E,
141 BCM57712,
142 BCM57712_MF,
143 BCM57712_VF,
144 BCM57800,
145 BCM57800_MF,
146 BCM57800_VF,
147 BCM57810,
148 BCM57810_MF,
149 BCM57810_VF,
150 BCM57840_4_10,
151 BCM57840_2_20,
152 BCM57840_MF,
153 BCM57840_VF,
154 BCM57811,
155 BCM57811_MF,
156 BCM57840_O,
157 BCM57840_MFO,
158 BCM57811_VF
159 };
160
161 /* indexed by board_type, above */
162 static struct {
163 char *name;
164 } board_info[] = {
165 [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
166 [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
167 [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
168 [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
169 [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
170 [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
171 [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
172 [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
173 [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
174 [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
175 [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
176 [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
177 [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
178 [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
179 [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180 [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181 [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
182 [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
183 [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
184 [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185 [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 };
187
188 #ifndef PCI_DEVICE_ID_NX2_57710
189 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711
192 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711E
195 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712
198 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_MF
201 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_VF
204 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800
207 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_MF
210 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_VF
213 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810
216 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810_MF
219 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_O
222 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810_VF
225 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
228 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
231 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
234 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MF
237 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_VF
240 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811
243 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_MF
246 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_VF
249 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
250 #endif
251
252 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274 { 0 }
275 };
276
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278
279 /* Global resources for unloading a previously loaded device */
280 #define BNX2X_PREV_WAIT_NEEDED 1
281 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
282 static LIST_HEAD(bnx2x_prev_list);
283
284 /* Forward declaration */
285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
288
289 /****************************************************************************
290 * General service functions
291 ****************************************************************************/
292
293 static void __storm_memset_dma_mapping(struct bnx2x *bp,
294 u32 addr, dma_addr_t mapping)
295 {
296 REG_WR(bp, addr, U64_LO(mapping));
297 REG_WR(bp, addr + 4, U64_HI(mapping));
298 }
299
300 static void storm_memset_spq_addr(struct bnx2x *bp,
301 dma_addr_t mapping, u16 abs_fid)
302 {
303 u32 addr = XSEM_REG_FAST_MEMORY +
304 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
305
306 __storm_memset_dma_mapping(bp, addr, mapping);
307 }
308
309 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
310 u16 pf_id)
311 {
312 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
313 pf_id);
314 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
315 pf_id);
316 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
317 pf_id);
318 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
319 pf_id);
320 }
321
322 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
323 u8 enable)
324 {
325 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
326 enable);
327 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
328 enable);
329 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
330 enable);
331 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
332 enable);
333 }
334
335 static void storm_memset_eq_data(struct bnx2x *bp,
336 struct event_ring_data *eq_data,
337 u16 pfid)
338 {
339 size_t size = sizeof(struct event_ring_data);
340
341 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
342
343 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
344 }
345
346 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
347 u16 pfid)
348 {
349 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
350 REG_WR16(bp, addr, eq_prod);
351 }
352
353 /* used only at init
354 * locking is done by mcp
355 */
356 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
357 {
358 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
359 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
360 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
361 PCICFG_VENDOR_ID_OFFSET);
362 }
363
364 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
365 {
366 u32 val;
367
368 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
369 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
370 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
371 PCICFG_VENDOR_ID_OFFSET);
372
373 return val;
374 }
375
376 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
377 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
378 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
379 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
380 #define DMAE_DP_DST_NONE "dst_addr [none]"
381
382 static void bnx2x_dp_dmae(struct bnx2x *bp,
383 struct dmae_command *dmae, int msglvl)
384 {
385 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
386 int i;
387
388 switch (dmae->opcode & DMAE_COMMAND_DST) {
389 case DMAE_CMD_DST_PCI:
390 if (src_type == DMAE_CMD_SRC_PCI)
391 DP(msglvl, "DMAE: opcode 0x%08x\n"
392 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
393 "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
395 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 dmae->comp_addr_hi, dmae->comp_addr_lo,
397 dmae->comp_val);
398 else
399 DP(msglvl, "DMAE: opcode 0x%08x\n"
400 "src [%08x], len [%d*4], dst [%x:%08x]\n"
401 "comp_addr [%x:%08x], comp_val 0x%08x\n",
402 dmae->opcode, dmae->src_addr_lo >> 2,
403 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404 dmae->comp_addr_hi, dmae->comp_addr_lo,
405 dmae->comp_val);
406 break;
407 case DMAE_CMD_DST_GRC:
408 if (src_type == DMAE_CMD_SRC_PCI)
409 DP(msglvl, "DMAE: opcode 0x%08x\n"
410 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
411 "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
413 dmae->len, dmae->dst_addr_lo >> 2,
414 dmae->comp_addr_hi, dmae->comp_addr_lo,
415 dmae->comp_val);
416 else
417 DP(msglvl, "DMAE: opcode 0x%08x\n"
418 "src [%08x], len [%d*4], dst [%08x]\n"
419 "comp_addr [%x:%08x], comp_val 0x%08x\n",
420 dmae->opcode, dmae->src_addr_lo >> 2,
421 dmae->len, dmae->dst_addr_lo >> 2,
422 dmae->comp_addr_hi, dmae->comp_addr_lo,
423 dmae->comp_val);
424 break;
425 default:
426 if (src_type == DMAE_CMD_SRC_PCI)
427 DP(msglvl, "DMAE: opcode 0x%08x\n"
428 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
429 "comp_addr [%x:%08x] comp_val 0x%08x\n",
430 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
431 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
432 dmae->comp_val);
433 else
434 DP(msglvl, "DMAE: opcode 0x%08x\n"
435 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
436 "comp_addr [%x:%08x] comp_val 0x%08x\n",
437 dmae->opcode, dmae->src_addr_lo >> 2,
438 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 dmae->comp_val);
440 break;
441 }
442
443 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
444 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
445 i, *(((u32 *)dmae) + i));
446 }
447
448 /* copy command into DMAE command memory and set DMAE command go */
449 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
450 {
451 u32 cmd_offset;
452 int i;
453
454 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
455 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
456 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
457 }
458 REG_WR(bp, dmae_reg_go_c[idx], 1);
459 }
460
461 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
462 {
463 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
464 DMAE_CMD_C_ENABLE);
465 }
466
467 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
468 {
469 return opcode & ~DMAE_CMD_SRC_RESET;
470 }
471
472 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
473 bool with_comp, u8 comp_type)
474 {
475 u32 opcode = 0;
476
477 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
478 (dst_type << DMAE_COMMAND_DST_SHIFT));
479
480 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
481
482 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
483 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
484 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
485 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
486
487 #ifdef __BIG_ENDIAN
488 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
489 #else
490 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
491 #endif
492 if (with_comp)
493 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
494 return opcode;
495 }
496
497 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
498 struct dmae_command *dmae,
499 u8 src_type, u8 dst_type)
500 {
501 memset(dmae, 0, sizeof(struct dmae_command));
502
503 /* set the opcode */
504 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
505 true, DMAE_COMP_PCI);
506
507 /* fill in the completion parameters */
508 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
509 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
510 dmae->comp_val = DMAE_COMP_VAL;
511 }
512
513 /* issue a dmae command over the init-channel and wait for completion */
514 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
515 u32 *comp)
516 {
517 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
518 int rc = 0;
519
520 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
521
522 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
523 * as long as this code is called both from syscall context and
524 * from ndo_set_rx_mode() flow that may be called from BH.
525 */
526 spin_lock_bh(&bp->dmae_lock);
527
528 /* reset completion */
529 *comp = 0;
530
531 /* post the command on the channel used for initializations */
532 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
533
534 /* wait for completion */
535 udelay(5);
536 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
537
538 if (!cnt ||
539 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
540 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
541 BNX2X_ERR("DMAE timeout!\n");
542 rc = DMAE_TIMEOUT;
543 goto unlock;
544 }
545 cnt--;
546 udelay(50);
547 }
548 if (*comp & DMAE_PCI_ERR_FLAG) {
549 BNX2X_ERR("DMAE PCI error!\n");
550 rc = DMAE_PCI_ERROR;
551 }
552
553 unlock:
554 spin_unlock_bh(&bp->dmae_lock);
555 return rc;
556 }
557
558 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
559 u32 len32)
560 {
561 int rc;
562 struct dmae_command dmae;
563
564 if (!bp->dmae_ready) {
565 u32 *data = bnx2x_sp(bp, wb_data[0]);
566
567 if (CHIP_IS_E1(bp))
568 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
569 else
570 bnx2x_init_str_wr(bp, dst_addr, data, len32);
571 return;
572 }
573
574 /* set opcode and fixed command fields */
575 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
576
577 /* fill in addresses and len */
578 dmae.src_addr_lo = U64_LO(dma_addr);
579 dmae.src_addr_hi = U64_HI(dma_addr);
580 dmae.dst_addr_lo = dst_addr >> 2;
581 dmae.dst_addr_hi = 0;
582 dmae.len = len32;
583
584 /* issue the command and wait for completion */
585 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
586 if (rc) {
587 BNX2X_ERR("DMAE returned failure %d\n", rc);
588 #ifdef BNX2X_STOP_ON_ERROR
589 bnx2x_panic();
590 #endif
591 }
592 }
593
594 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
595 {
596 int rc;
597 struct dmae_command dmae;
598
599 if (!bp->dmae_ready) {
600 u32 *data = bnx2x_sp(bp, wb_data[0]);
601 int i;
602
603 if (CHIP_IS_E1(bp))
604 for (i = 0; i < len32; i++)
605 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
606 else
607 for (i = 0; i < len32; i++)
608 data[i] = REG_RD(bp, src_addr + i*4);
609
610 return;
611 }
612
613 /* set opcode and fixed command fields */
614 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
615
616 /* fill in addresses and len */
617 dmae.src_addr_lo = src_addr >> 2;
618 dmae.src_addr_hi = 0;
619 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
620 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
621 dmae.len = len32;
622
623 /* issue the command and wait for completion */
624 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
625 if (rc) {
626 BNX2X_ERR("DMAE returned failure %d\n", rc);
627 #ifdef BNX2X_STOP_ON_ERROR
628 bnx2x_panic();
629 #endif
630 }
631 }
632
633 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
634 u32 addr, u32 len)
635 {
636 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
637 int offset = 0;
638
639 while (len > dmae_wr_max) {
640 bnx2x_write_dmae(bp, phys_addr + offset,
641 addr + offset, dmae_wr_max);
642 offset += dmae_wr_max * 4;
643 len -= dmae_wr_max;
644 }
645
646 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
647 }
648
649 static int bnx2x_mc_assert(struct bnx2x *bp)
650 {
651 char last_idx;
652 int i, rc = 0;
653 u32 row0, row1, row2, row3;
654
655 /* XSTORM */
656 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
657 XSTORM_ASSERT_LIST_INDEX_OFFSET);
658 if (last_idx)
659 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
660
661 /* print the asserts */
662 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
663
664 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
665 XSTORM_ASSERT_LIST_OFFSET(i));
666 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
667 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
668 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
669 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
670 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
671 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
672
673 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
674 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
675 i, row3, row2, row1, row0);
676 rc++;
677 } else {
678 break;
679 }
680 }
681
682 /* TSTORM */
683 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
684 TSTORM_ASSERT_LIST_INDEX_OFFSET);
685 if (last_idx)
686 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
687
688 /* print the asserts */
689 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
690
691 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
692 TSTORM_ASSERT_LIST_OFFSET(i));
693 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
694 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
695 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
696 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
697 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
698 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
699
700 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
701 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
702 i, row3, row2, row1, row0);
703 rc++;
704 } else {
705 break;
706 }
707 }
708
709 /* CSTORM */
710 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
711 CSTORM_ASSERT_LIST_INDEX_OFFSET);
712 if (last_idx)
713 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
714
715 /* print the asserts */
716 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
717
718 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
719 CSTORM_ASSERT_LIST_OFFSET(i));
720 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
721 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
722 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
723 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
724 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
725 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
726
727 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
728 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
729 i, row3, row2, row1, row0);
730 rc++;
731 } else {
732 break;
733 }
734 }
735
736 /* USTORM */
737 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
738 USTORM_ASSERT_LIST_INDEX_OFFSET);
739 if (last_idx)
740 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
741
742 /* print the asserts */
743 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
744
745 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
746 USTORM_ASSERT_LIST_OFFSET(i));
747 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
748 USTORM_ASSERT_LIST_OFFSET(i) + 4);
749 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
750 USTORM_ASSERT_LIST_OFFSET(i) + 8);
751 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
752 USTORM_ASSERT_LIST_OFFSET(i) + 12);
753
754 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
755 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
756 i, row3, row2, row1, row0);
757 rc++;
758 } else {
759 break;
760 }
761 }
762
763 return rc;
764 }
765
766 #define MCPR_TRACE_BUFFER_SIZE (0x800)
767 #define SCRATCH_BUFFER_SIZE(bp) \
768 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
769
770 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
771 {
772 u32 addr, val;
773 u32 mark, offset;
774 __be32 data[9];
775 int word;
776 u32 trace_shmem_base;
777 if (BP_NOMCP(bp)) {
778 BNX2X_ERR("NO MCP - can not dump\n");
779 return;
780 }
781 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
782 (bp->common.bc_ver & 0xff0000) >> 16,
783 (bp->common.bc_ver & 0xff00) >> 8,
784 (bp->common.bc_ver & 0xff));
785
786 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
787 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
788 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
789
790 if (BP_PATH(bp) == 0)
791 trace_shmem_base = bp->common.shmem_base;
792 else
793 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
794
795 /* sanity */
796 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
797 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
798 SCRATCH_BUFFER_SIZE(bp)) {
799 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
800 trace_shmem_base);
801 return;
802 }
803
804 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
805
806 /* validate TRCB signature */
807 mark = REG_RD(bp, addr);
808 if (mark != MFW_TRACE_SIGNATURE) {
809 BNX2X_ERR("Trace buffer signature is missing.");
810 return ;
811 }
812
813 /* read cyclic buffer pointer */
814 addr += 4;
815 mark = REG_RD(bp, addr);
816 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
817 if (mark >= trace_shmem_base || mark < addr + 4) {
818 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
819 return;
820 }
821 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
822
823 printk("%s", lvl);
824
825 /* dump buffer after the mark */
826 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
827 for (word = 0; word < 8; word++)
828 data[word] = htonl(REG_RD(bp, offset + 4*word));
829 data[8] = 0x0;
830 pr_cont("%s", (char *)data);
831 }
832
833 /* dump buffer before the mark */
834 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
835 for (word = 0; word < 8; word++)
836 data[word] = htonl(REG_RD(bp, offset + 4*word));
837 data[8] = 0x0;
838 pr_cont("%s", (char *)data);
839 }
840 printk("%s" "end of fw dump\n", lvl);
841 }
842
843 static void bnx2x_fw_dump(struct bnx2x *bp)
844 {
845 bnx2x_fw_dump_lvl(bp, KERN_ERR);
846 }
847
848 static void bnx2x_hc_int_disable(struct bnx2x *bp)
849 {
850 int port = BP_PORT(bp);
851 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
852 u32 val = REG_RD(bp, addr);
853
854 /* in E1 we must use only PCI configuration space to disable
855 * MSI/MSIX capability
856 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
857 */
858 if (CHIP_IS_E1(bp)) {
859 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
860 * Use mask register to prevent from HC sending interrupts
861 * after we exit the function
862 */
863 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
864
865 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866 HC_CONFIG_0_REG_INT_LINE_EN_0 |
867 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
868 } else
869 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
870 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
871 HC_CONFIG_0_REG_INT_LINE_EN_0 |
872 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
873
874 DP(NETIF_MSG_IFDOWN,
875 "write %x to HC %d (addr 0x%x)\n",
876 val, port, addr);
877
878 /* flush all outstanding writes */
879 mmiowb();
880
881 REG_WR(bp, addr, val);
882 if (REG_RD(bp, addr) != val)
883 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
884 }
885
886 static void bnx2x_igu_int_disable(struct bnx2x *bp)
887 {
888 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
889
890 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
891 IGU_PF_CONF_INT_LINE_EN |
892 IGU_PF_CONF_ATTN_BIT_EN);
893
894 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
895
896 /* flush all outstanding writes */
897 mmiowb();
898
899 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
902 }
903
904 static void bnx2x_int_disable(struct bnx2x *bp)
905 {
906 if (bp->common.int_block == INT_BLOCK_HC)
907 bnx2x_hc_int_disable(bp);
908 else
909 bnx2x_igu_int_disable(bp);
910 }
911
912 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
913 {
914 int i;
915 u16 j;
916 struct hc_sp_status_block_data sp_sb_data;
917 int func = BP_FUNC(bp);
918 #ifdef BNX2X_STOP_ON_ERROR
919 u16 start = 0, end = 0;
920 u8 cos;
921 #endif
922 if (IS_PF(bp) && disable_int)
923 bnx2x_int_disable(bp);
924
925 bp->stats_state = STATS_STATE_DISABLED;
926 bp->eth_stats.unrecoverable_error++;
927 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
928
929 BNX2X_ERR("begin crash dump -----------------\n");
930
931 /* Indices */
932 /* Common */
933 if (IS_PF(bp)) {
934 struct host_sp_status_block *def_sb = bp->def_status_blk;
935 int data_size, cstorm_offset;
936
937 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938 bp->def_idx, bp->def_att_idx, bp->attn_state,
939 bp->spq_prod_idx, bp->stats_counter);
940 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
941 def_sb->atten_status_block.attn_bits,
942 def_sb->atten_status_block.attn_bits_ack,
943 def_sb->atten_status_block.status_block_id,
944 def_sb->atten_status_block.attn_bits_index);
945 BNX2X_ERR(" def (");
946 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
947 pr_cont("0x%x%s",
948 def_sb->sp_sb.index_values[i],
949 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
950
951 data_size = sizeof(struct hc_sp_status_block_data) /
952 sizeof(u32);
953 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954 for (i = 0; i < data_size; i++)
955 *((u32 *)&sp_sb_data + i) =
956 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
957 i * sizeof(u32));
958
959 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
960 sp_sb_data.igu_sb_id,
961 sp_sb_data.igu_seg_id,
962 sp_sb_data.p_func.pf_id,
963 sp_sb_data.p_func.vnic_id,
964 sp_sb_data.p_func.vf_id,
965 sp_sb_data.p_func.vf_valid,
966 sp_sb_data.state);
967 }
968
969 for_each_eth_queue(bp, i) {
970 struct bnx2x_fastpath *fp = &bp->fp[i];
971 int loop;
972 struct hc_status_block_data_e2 sb_data_e2;
973 struct hc_status_block_data_e1x sb_data_e1x;
974 struct hc_status_block_sm *hc_sm_p =
975 CHIP_IS_E1x(bp) ?
976 sb_data_e1x.common.state_machine :
977 sb_data_e2.common.state_machine;
978 struct hc_index_data *hc_index_p =
979 CHIP_IS_E1x(bp) ?
980 sb_data_e1x.index_data :
981 sb_data_e2.index_data;
982 u8 data_size, cos;
983 u32 *sb_data_p;
984 struct bnx2x_fp_txdata txdata;
985
986 /* Rx */
987 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
988 i, fp->rx_bd_prod, fp->rx_bd_cons,
989 fp->rx_comp_prod,
990 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
992 fp->rx_sge_prod, fp->last_max_sge,
993 le16_to_cpu(fp->fp_hc_idx));
994
995 /* Tx */
996 for_each_cos_in_tx_queue(fp, cos)
997 {
998 txdata = *fp->txdata_ptr[cos];
999 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1000 i, txdata.tx_pkt_prod,
1001 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1002 txdata.tx_bd_cons,
1003 le16_to_cpu(*txdata.tx_cons_sb));
1004 }
1005
1006 loop = CHIP_IS_E1x(bp) ?
1007 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1008
1009 /* host sb data */
1010
1011 if (IS_FCOE_FP(fp))
1012 continue;
1013
1014 BNX2X_ERR(" run indexes (");
1015 for (j = 0; j < HC_SB_MAX_SM; j++)
1016 pr_cont("0x%x%s",
1017 fp->sb_running_index[j],
1018 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1019
1020 BNX2X_ERR(" indexes (");
1021 for (j = 0; j < loop; j++)
1022 pr_cont("0x%x%s",
1023 fp->sb_index_values[j],
1024 (j == loop - 1) ? ")" : " ");
1025
1026 /* VF cannot access FW refelection for status block */
1027 if (IS_VF(bp))
1028 continue;
1029
1030 /* fw sb data */
1031 data_size = CHIP_IS_E1x(bp) ?
1032 sizeof(struct hc_status_block_data_e1x) :
1033 sizeof(struct hc_status_block_data_e2);
1034 data_size /= sizeof(u32);
1035 sb_data_p = CHIP_IS_E1x(bp) ?
1036 (u32 *)&sb_data_e1x :
1037 (u32 *)&sb_data_e2;
1038 /* copy sb data in here */
1039 for (j = 0; j < data_size; j++)
1040 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1041 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1042 j * sizeof(u32));
1043
1044 if (!CHIP_IS_E1x(bp)) {
1045 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1046 sb_data_e2.common.p_func.pf_id,
1047 sb_data_e2.common.p_func.vf_id,
1048 sb_data_e2.common.p_func.vf_valid,
1049 sb_data_e2.common.p_func.vnic_id,
1050 sb_data_e2.common.same_igu_sb_1b,
1051 sb_data_e2.common.state);
1052 } else {
1053 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1054 sb_data_e1x.common.p_func.pf_id,
1055 sb_data_e1x.common.p_func.vf_id,
1056 sb_data_e1x.common.p_func.vf_valid,
1057 sb_data_e1x.common.p_func.vnic_id,
1058 sb_data_e1x.common.same_igu_sb_1b,
1059 sb_data_e1x.common.state);
1060 }
1061
1062 /* SB_SMs data */
1063 for (j = 0; j < HC_SB_MAX_SM; j++) {
1064 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1065 j, hc_sm_p[j].__flags,
1066 hc_sm_p[j].igu_sb_id,
1067 hc_sm_p[j].igu_seg_id,
1068 hc_sm_p[j].time_to_expire,
1069 hc_sm_p[j].timer_value);
1070 }
1071
1072 /* Indices data */
1073 for (j = 0; j < loop; j++) {
1074 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1075 hc_index_p[j].flags,
1076 hc_index_p[j].timeout);
1077 }
1078 }
1079
1080 #ifdef BNX2X_STOP_ON_ERROR
1081 if (IS_PF(bp)) {
1082 /* event queue */
1083 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1084 for (i = 0; i < NUM_EQ_DESC; i++) {
1085 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1086
1087 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1088 i, bp->eq_ring[i].message.opcode,
1089 bp->eq_ring[i].message.error);
1090 BNX2X_ERR("data: %x %x %x\n",
1091 data[0], data[1], data[2]);
1092 }
1093 }
1094
1095 /* Rings */
1096 /* Rx */
1097 for_each_valid_rx_queue(bp, i) {
1098 struct bnx2x_fastpath *fp = &bp->fp[i];
1099
1100 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1101 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1102 for (j = start; j != end; j = RX_BD(j + 1)) {
1103 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1104 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1105
1106 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1107 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1108 }
1109
1110 start = RX_SGE(fp->rx_sge_prod);
1111 end = RX_SGE(fp->last_max_sge);
1112 for (j = start; j != end; j = RX_SGE(j + 1)) {
1113 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1114 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1115
1116 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1117 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1118 }
1119
1120 start = RCQ_BD(fp->rx_comp_cons - 10);
1121 end = RCQ_BD(fp->rx_comp_cons + 503);
1122 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1123 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1124
1125 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1126 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1127 }
1128 }
1129
1130 /* Tx */
1131 for_each_valid_tx_queue(bp, i) {
1132 struct bnx2x_fastpath *fp = &bp->fp[i];
1133 for_each_cos_in_tx_queue(fp, cos) {
1134 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1135
1136 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1137 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1138 for (j = start; j != end; j = TX_BD(j + 1)) {
1139 struct sw_tx_bd *sw_bd =
1140 &txdata->tx_buf_ring[j];
1141
1142 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1143 i, cos, j, sw_bd->skb,
1144 sw_bd->first_bd);
1145 }
1146
1147 start = TX_BD(txdata->tx_bd_cons - 10);
1148 end = TX_BD(txdata->tx_bd_cons + 254);
1149 for (j = start; j != end; j = TX_BD(j + 1)) {
1150 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1151
1152 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1153 i, cos, j, tx_bd[0], tx_bd[1],
1154 tx_bd[2], tx_bd[3]);
1155 }
1156 }
1157 }
1158 #endif
1159 if (IS_PF(bp)) {
1160 bnx2x_fw_dump(bp);
1161 bnx2x_mc_assert(bp);
1162 }
1163 BNX2X_ERR("end crash dump -----------------\n");
1164 }
1165
1166 /*
1167 * FLR Support for E2
1168 *
1169 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1170 * initialization.
1171 */
1172 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1173 #define FLR_WAIT_INTERVAL 50 /* usec */
1174 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1175
1176 struct pbf_pN_buf_regs {
1177 int pN;
1178 u32 init_crd;
1179 u32 crd;
1180 u32 crd_freed;
1181 };
1182
1183 struct pbf_pN_cmd_regs {
1184 int pN;
1185 u32 lines_occup;
1186 u32 lines_freed;
1187 };
1188
1189 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1190 struct pbf_pN_buf_regs *regs,
1191 u32 poll_count)
1192 {
1193 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1194 u32 cur_cnt = poll_count;
1195
1196 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1197 crd = crd_start = REG_RD(bp, regs->crd);
1198 init_crd = REG_RD(bp, regs->init_crd);
1199
1200 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1201 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1202 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1203
1204 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1205 (init_crd - crd_start))) {
1206 if (cur_cnt--) {
1207 udelay(FLR_WAIT_INTERVAL);
1208 crd = REG_RD(bp, regs->crd);
1209 crd_freed = REG_RD(bp, regs->crd_freed);
1210 } else {
1211 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1212 regs->pN);
1213 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1214 regs->pN, crd);
1215 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1216 regs->pN, crd_freed);
1217 break;
1218 }
1219 }
1220 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1221 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1222 }
1223
1224 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1225 struct pbf_pN_cmd_regs *regs,
1226 u32 poll_count)
1227 {
1228 u32 occup, to_free, freed, freed_start;
1229 u32 cur_cnt = poll_count;
1230
1231 occup = to_free = REG_RD(bp, regs->lines_occup);
1232 freed = freed_start = REG_RD(bp, regs->lines_freed);
1233
1234 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1235 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1236
1237 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1238 if (cur_cnt--) {
1239 udelay(FLR_WAIT_INTERVAL);
1240 occup = REG_RD(bp, regs->lines_occup);
1241 freed = REG_RD(bp, regs->lines_freed);
1242 } else {
1243 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1244 regs->pN);
1245 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1246 regs->pN, occup);
1247 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1248 regs->pN, freed);
1249 break;
1250 }
1251 }
1252 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1253 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1254 }
1255
1256 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1257 u32 expected, u32 poll_count)
1258 {
1259 u32 cur_cnt = poll_count;
1260 u32 val;
1261
1262 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1263 udelay(FLR_WAIT_INTERVAL);
1264
1265 return val;
1266 }
1267
1268 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1269 char *msg, u32 poll_cnt)
1270 {
1271 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1272 if (val != 0) {
1273 BNX2X_ERR("%s usage count=%d\n", msg, val);
1274 return 1;
1275 }
1276 return 0;
1277 }
1278
1279 /* Common routines with VF FLR cleanup */
1280 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1281 {
1282 /* adjust polling timeout */
1283 if (CHIP_REV_IS_EMUL(bp))
1284 return FLR_POLL_CNT * 2000;
1285
1286 if (CHIP_REV_IS_FPGA(bp))
1287 return FLR_POLL_CNT * 120;
1288
1289 return FLR_POLL_CNT;
1290 }
1291
1292 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1293 {
1294 struct pbf_pN_cmd_regs cmd_regs[] = {
1295 {0, (CHIP_IS_E3B0(bp)) ?
1296 PBF_REG_TQ_OCCUPANCY_Q0 :
1297 PBF_REG_P0_TQ_OCCUPANCY,
1298 (CHIP_IS_E3B0(bp)) ?
1299 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1300 PBF_REG_P0_TQ_LINES_FREED_CNT},
1301 {1, (CHIP_IS_E3B0(bp)) ?
1302 PBF_REG_TQ_OCCUPANCY_Q1 :
1303 PBF_REG_P1_TQ_OCCUPANCY,
1304 (CHIP_IS_E3B0(bp)) ?
1305 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1306 PBF_REG_P1_TQ_LINES_FREED_CNT},
1307 {4, (CHIP_IS_E3B0(bp)) ?
1308 PBF_REG_TQ_OCCUPANCY_LB_Q :
1309 PBF_REG_P4_TQ_OCCUPANCY,
1310 (CHIP_IS_E3B0(bp)) ?
1311 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1312 PBF_REG_P4_TQ_LINES_FREED_CNT}
1313 };
1314
1315 struct pbf_pN_buf_regs buf_regs[] = {
1316 {0, (CHIP_IS_E3B0(bp)) ?
1317 PBF_REG_INIT_CRD_Q0 :
1318 PBF_REG_P0_INIT_CRD ,
1319 (CHIP_IS_E3B0(bp)) ?
1320 PBF_REG_CREDIT_Q0 :
1321 PBF_REG_P0_CREDIT,
1322 (CHIP_IS_E3B0(bp)) ?
1323 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1324 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1325 {1, (CHIP_IS_E3B0(bp)) ?
1326 PBF_REG_INIT_CRD_Q1 :
1327 PBF_REG_P1_INIT_CRD,
1328 (CHIP_IS_E3B0(bp)) ?
1329 PBF_REG_CREDIT_Q1 :
1330 PBF_REG_P1_CREDIT,
1331 (CHIP_IS_E3B0(bp)) ?
1332 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1333 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1334 {4, (CHIP_IS_E3B0(bp)) ?
1335 PBF_REG_INIT_CRD_LB_Q :
1336 PBF_REG_P4_INIT_CRD,
1337 (CHIP_IS_E3B0(bp)) ?
1338 PBF_REG_CREDIT_LB_Q :
1339 PBF_REG_P4_CREDIT,
1340 (CHIP_IS_E3B0(bp)) ?
1341 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1342 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1343 };
1344
1345 int i;
1346
1347 /* Verify the command queues are flushed P0, P1, P4 */
1348 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1349 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1350
1351 /* Verify the transmission buffers are flushed P0, P1, P4 */
1352 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1353 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1354 }
1355
1356 #define OP_GEN_PARAM(param) \
1357 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1358
1359 #define OP_GEN_TYPE(type) \
1360 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1361
1362 #define OP_GEN_AGG_VECT(index) \
1363 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1364
1365 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1366 {
1367 u32 op_gen_command = 0;
1368 u32 comp_addr = BAR_CSTRORM_INTMEM +
1369 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1370 int ret = 0;
1371
1372 if (REG_RD(bp, comp_addr)) {
1373 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1374 return 1;
1375 }
1376
1377 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1378 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1379 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1380 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1381
1382 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1383 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1384
1385 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1386 BNX2X_ERR("FW final cleanup did not succeed\n");
1387 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1388 (REG_RD(bp, comp_addr)));
1389 bnx2x_panic();
1390 return 1;
1391 }
1392 /* Zero completion for next FLR */
1393 REG_WR(bp, comp_addr, 0);
1394
1395 return ret;
1396 }
1397
1398 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1399 {
1400 u16 status;
1401
1402 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1403 return status & PCI_EXP_DEVSTA_TRPND;
1404 }
1405
1406 /* PF FLR specific routines
1407 */
1408 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1409 {
1410 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1411 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1412 CFC_REG_NUM_LCIDS_INSIDE_PF,
1413 "CFC PF usage counter timed out",
1414 poll_cnt))
1415 return 1;
1416
1417 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1418 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1419 DORQ_REG_PF_USAGE_CNT,
1420 "DQ PF usage counter timed out",
1421 poll_cnt))
1422 return 1;
1423
1424 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1425 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1427 "QM PF usage counter timed out",
1428 poll_cnt))
1429 return 1;
1430
1431 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1432 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1434 "Timers VNIC usage counter timed out",
1435 poll_cnt))
1436 return 1;
1437 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1439 "Timers NUM_SCANS usage counter timed out",
1440 poll_cnt))
1441 return 1;
1442
1443 /* Wait DMAE PF usage counter to zero */
1444 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445 dmae_reg_go_c[INIT_DMAE_C(bp)],
1446 "DMAE command register timed out",
1447 poll_cnt))
1448 return 1;
1449
1450 return 0;
1451 }
1452
1453 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1454 {
1455 u32 val;
1456
1457 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1458 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1459
1460 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1461 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1462
1463 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1464 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1465
1466 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1467 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1468
1469 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1470 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1471
1472 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1473 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1474
1475 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1476 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1477
1478 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1479 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1480 val);
1481 }
1482
1483 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1484 {
1485 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1486
1487 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1488
1489 /* Re-enable PF target read access */
1490 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1491
1492 /* Poll HW usage counters */
1493 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1494 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1495 return -EBUSY;
1496
1497 /* Zero the igu 'trailing edge' and 'leading edge' */
1498
1499 /* Send the FW cleanup command */
1500 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1501 return -EBUSY;
1502
1503 /* ATC cleanup */
1504
1505 /* Verify TX hw is flushed */
1506 bnx2x_tx_hw_flushed(bp, poll_cnt);
1507
1508 /* Wait 100ms (not adjusted according to platform) */
1509 msleep(100);
1510
1511 /* Verify no pending pci transactions */
1512 if (bnx2x_is_pcie_pending(bp->pdev))
1513 BNX2X_ERR("PCIE Transactions still pending\n");
1514
1515 /* Debug */
1516 bnx2x_hw_enable_status(bp);
1517
1518 /*
1519 * Master enable - Due to WB DMAE writes performed before this
1520 * register is re-initialized as part of the regular function init
1521 */
1522 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1523
1524 return 0;
1525 }
1526
1527 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1528 {
1529 int port = BP_PORT(bp);
1530 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1531 u32 val = REG_RD(bp, addr);
1532 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1533 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1534 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1535
1536 if (msix) {
1537 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1538 HC_CONFIG_0_REG_INT_LINE_EN_0);
1539 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1540 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1541 if (single_msix)
1542 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1543 } else if (msi) {
1544 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1545 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1546 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1547 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1548 } else {
1549 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1550 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1551 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1552 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1553
1554 if (!CHIP_IS_E1(bp)) {
1555 DP(NETIF_MSG_IFUP,
1556 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1557
1558 REG_WR(bp, addr, val);
1559
1560 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1561 }
1562 }
1563
1564 if (CHIP_IS_E1(bp))
1565 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1566
1567 DP(NETIF_MSG_IFUP,
1568 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1569 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1570
1571 REG_WR(bp, addr, val);
1572 /*
1573 * Ensure that HC_CONFIG is written before leading/trailing edge config
1574 */
1575 mmiowb();
1576 barrier();
1577
1578 if (!CHIP_IS_E1(bp)) {
1579 /* init leading/trailing edge */
1580 if (IS_MF(bp)) {
1581 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1582 if (bp->port.pmf)
1583 /* enable nig and gpio3 attention */
1584 val |= 0x1100;
1585 } else
1586 val = 0xffff;
1587
1588 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1589 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1590 }
1591
1592 /* Make sure that interrupts are indeed enabled from here on */
1593 mmiowb();
1594 }
1595
1596 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1597 {
1598 u32 val;
1599 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1600 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1601 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1602
1603 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1604
1605 if (msix) {
1606 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1607 IGU_PF_CONF_SINGLE_ISR_EN);
1608 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1609 IGU_PF_CONF_ATTN_BIT_EN);
1610
1611 if (single_msix)
1612 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1613 } else if (msi) {
1614 val &= ~IGU_PF_CONF_INT_LINE_EN;
1615 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1616 IGU_PF_CONF_ATTN_BIT_EN |
1617 IGU_PF_CONF_SINGLE_ISR_EN);
1618 } else {
1619 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1620 val |= (IGU_PF_CONF_INT_LINE_EN |
1621 IGU_PF_CONF_ATTN_BIT_EN |
1622 IGU_PF_CONF_SINGLE_ISR_EN);
1623 }
1624
1625 /* Clean previous status - need to configure igu prior to ack*/
1626 if ((!msix) || single_msix) {
1627 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1628 bnx2x_ack_int(bp);
1629 }
1630
1631 val |= IGU_PF_CONF_FUNC_EN;
1632
1633 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1634 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1635
1636 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1637
1638 if (val & IGU_PF_CONF_INT_LINE_EN)
1639 pci_intx(bp->pdev, true);
1640
1641 barrier();
1642
1643 /* init leading/trailing edge */
1644 if (IS_MF(bp)) {
1645 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1646 if (bp->port.pmf)
1647 /* enable nig and gpio3 attention */
1648 val |= 0x1100;
1649 } else
1650 val = 0xffff;
1651
1652 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1653 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1654
1655 /* Make sure that interrupts are indeed enabled from here on */
1656 mmiowb();
1657 }
1658
1659 void bnx2x_int_enable(struct bnx2x *bp)
1660 {
1661 if (bp->common.int_block == INT_BLOCK_HC)
1662 bnx2x_hc_int_enable(bp);
1663 else
1664 bnx2x_igu_int_enable(bp);
1665 }
1666
1667 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1668 {
1669 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1670 int i, offset;
1671
1672 if (disable_hw)
1673 /* prevent the HW from sending interrupts */
1674 bnx2x_int_disable(bp);
1675
1676 /* make sure all ISRs are done */
1677 if (msix) {
1678 synchronize_irq(bp->msix_table[0].vector);
1679 offset = 1;
1680 if (CNIC_SUPPORT(bp))
1681 offset++;
1682 for_each_eth_queue(bp, i)
1683 synchronize_irq(bp->msix_table[offset++].vector);
1684 } else
1685 synchronize_irq(bp->pdev->irq);
1686
1687 /* make sure sp_task is not running */
1688 cancel_delayed_work(&bp->sp_task);
1689 cancel_delayed_work(&bp->period_task);
1690 flush_workqueue(bnx2x_wq);
1691 }
1692
1693 /* fast path */
1694
1695 /*
1696 * General service functions
1697 */
1698
1699 /* Return true if succeeded to acquire the lock */
1700 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1701 {
1702 u32 lock_status;
1703 u32 resource_bit = (1 << resource);
1704 int func = BP_FUNC(bp);
1705 u32 hw_lock_control_reg;
1706
1707 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1708 "Trying to take a lock on resource %d\n", resource);
1709
1710 /* Validating that the resource is within range */
1711 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1712 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1714 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1715 return false;
1716 }
1717
1718 if (func <= 5)
1719 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1720 else
1721 hw_lock_control_reg =
1722 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1723
1724 /* Try to acquire the lock */
1725 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1726 lock_status = REG_RD(bp, hw_lock_control_reg);
1727 if (lock_status & resource_bit)
1728 return true;
1729
1730 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 "Failed to get a lock on resource %d\n", resource);
1732 return false;
1733 }
1734
1735 /**
1736 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1737 *
1738 * @bp: driver handle
1739 *
1740 * Returns the recovery leader resource id according to the engine this function
1741 * belongs to. Currently only only 2 engines is supported.
1742 */
1743 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1744 {
1745 if (BP_PATH(bp))
1746 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1747 else
1748 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1749 }
1750
1751 /**
1752 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1753 *
1754 * @bp: driver handle
1755 *
1756 * Tries to acquire a leader lock for current engine.
1757 */
1758 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1759 {
1760 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1761 }
1762
1763 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1764
1765 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1766 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1767 {
1768 /* Set the interrupt occurred bit for the sp-task to recognize it
1769 * must ack the interrupt and transition according to the IGU
1770 * state machine.
1771 */
1772 atomic_set(&bp->interrupt_occurred, 1);
1773
1774 /* The sp_task must execute only after this bit
1775 * is set, otherwise we will get out of sync and miss all
1776 * further interrupts. Hence, the barrier.
1777 */
1778 smp_wmb();
1779
1780 /* schedule sp_task to workqueue */
1781 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1782 }
1783
1784 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1785 {
1786 struct bnx2x *bp = fp->bp;
1787 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1788 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1789 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1790 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1791
1792 DP(BNX2X_MSG_SP,
1793 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1794 fp->index, cid, command, bp->state,
1795 rr_cqe->ramrod_cqe.ramrod_type);
1796
1797 /* If cid is within VF range, replace the slowpath object with the
1798 * one corresponding to this VF
1799 */
1800 if (cid >= BNX2X_FIRST_VF_CID &&
1801 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1802 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1803
1804 switch (command) {
1805 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1806 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1807 drv_cmd = BNX2X_Q_CMD_UPDATE;
1808 break;
1809
1810 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1811 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1812 drv_cmd = BNX2X_Q_CMD_SETUP;
1813 break;
1814
1815 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1816 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1817 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1818 break;
1819
1820 case (RAMROD_CMD_ID_ETH_HALT):
1821 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1822 drv_cmd = BNX2X_Q_CMD_HALT;
1823 break;
1824
1825 case (RAMROD_CMD_ID_ETH_TERMINATE):
1826 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1827 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1828 break;
1829
1830 case (RAMROD_CMD_ID_ETH_EMPTY):
1831 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1832 drv_cmd = BNX2X_Q_CMD_EMPTY;
1833 break;
1834
1835 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1836 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1837 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1838 break;
1839
1840 default:
1841 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1842 command, fp->index);
1843 return;
1844 }
1845
1846 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1847 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1848 /* q_obj->complete_cmd() failure means that this was
1849 * an unexpected completion.
1850 *
1851 * In this case we don't want to increase the bp->spq_left
1852 * because apparently we haven't sent this command the first
1853 * place.
1854 */
1855 #ifdef BNX2X_STOP_ON_ERROR
1856 bnx2x_panic();
1857 #else
1858 return;
1859 #endif
1860
1861 smp_mb__before_atomic();
1862 atomic_inc(&bp->cq_spq_left);
1863 /* push the change in bp->spq_left and towards the memory */
1864 smp_mb__after_atomic();
1865
1866 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1867
1868 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1869 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1870 /* if Q update ramrod is completed for last Q in AFEX vif set
1871 * flow, then ACK MCP at the end
1872 *
1873 * mark pending ACK to MCP bit.
1874 * prevent case that both bits are cleared.
1875 * At the end of load/unload driver checks that
1876 * sp_state is cleared, and this order prevents
1877 * races
1878 */
1879 smp_mb__before_atomic();
1880 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1881 wmb();
1882 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1883 smp_mb__after_atomic();
1884
1885 /* schedule the sp task as mcp ack is required */
1886 bnx2x_schedule_sp_task(bp);
1887 }
1888
1889 return;
1890 }
1891
1892 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1893 {
1894 struct bnx2x *bp = netdev_priv(dev_instance);
1895 u16 status = bnx2x_ack_int(bp);
1896 u16 mask;
1897 int i;
1898 u8 cos;
1899
1900 /* Return here if interrupt is shared and it's not for us */
1901 if (unlikely(status == 0)) {
1902 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1903 return IRQ_NONE;
1904 }
1905 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1906
1907 #ifdef BNX2X_STOP_ON_ERROR
1908 if (unlikely(bp->panic))
1909 return IRQ_HANDLED;
1910 #endif
1911
1912 for_each_eth_queue(bp, i) {
1913 struct bnx2x_fastpath *fp = &bp->fp[i];
1914
1915 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1916 if (status & mask) {
1917 /* Handle Rx or Tx according to SB id */
1918 for_each_cos_in_tx_queue(fp, cos)
1919 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1920 prefetch(&fp->sb_running_index[SM_RX_ID]);
1921 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1922 status &= ~mask;
1923 }
1924 }
1925
1926 if (CNIC_SUPPORT(bp)) {
1927 mask = 0x2;
1928 if (status & (mask | 0x1)) {
1929 struct cnic_ops *c_ops = NULL;
1930
1931 rcu_read_lock();
1932 c_ops = rcu_dereference(bp->cnic_ops);
1933 if (c_ops && (bp->cnic_eth_dev.drv_state &
1934 CNIC_DRV_STATE_HANDLES_IRQ))
1935 c_ops->cnic_handler(bp->cnic_data, NULL);
1936 rcu_read_unlock();
1937
1938 status &= ~mask;
1939 }
1940 }
1941
1942 if (unlikely(status & 0x1)) {
1943
1944 /* schedule sp task to perform default status block work, ack
1945 * attentions and enable interrupts.
1946 */
1947 bnx2x_schedule_sp_task(bp);
1948
1949 status &= ~0x1;
1950 if (!status)
1951 return IRQ_HANDLED;
1952 }
1953
1954 if (unlikely(status))
1955 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1956 status);
1957
1958 return IRQ_HANDLED;
1959 }
1960
1961 /* Link */
1962
1963 /*
1964 * General service functions
1965 */
1966
1967 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969 u32 lock_status;
1970 u32 resource_bit = (1 << resource);
1971 int func = BP_FUNC(bp);
1972 u32 hw_lock_control_reg;
1973 int cnt;
1974
1975 /* Validating that the resource is within range */
1976 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1977 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1978 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1979 return -EINVAL;
1980 }
1981
1982 if (func <= 5) {
1983 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1984 } else {
1985 hw_lock_control_reg =
1986 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1987 }
1988
1989 /* Validating that the resource is not already taken */
1990 lock_status = REG_RD(bp, hw_lock_control_reg);
1991 if (lock_status & resource_bit) {
1992 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
1993 lock_status, resource_bit);
1994 return -EEXIST;
1995 }
1996
1997 /* Try for 5 second every 5ms */
1998 for (cnt = 0; cnt < 1000; cnt++) {
1999 /* Try to acquire the lock */
2000 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2001 lock_status = REG_RD(bp, hw_lock_control_reg);
2002 if (lock_status & resource_bit)
2003 return 0;
2004
2005 usleep_range(5000, 10000);
2006 }
2007 BNX2X_ERR("Timeout\n");
2008 return -EAGAIN;
2009 }
2010
2011 int bnx2x_release_leader_lock(struct bnx2x *bp)
2012 {
2013 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2014 }
2015
2016 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2017 {
2018 u32 lock_status;
2019 u32 resource_bit = (1 << resource);
2020 int func = BP_FUNC(bp);
2021 u32 hw_lock_control_reg;
2022
2023 /* Validating that the resource is within range */
2024 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2025 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2026 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2027 return -EINVAL;
2028 }
2029
2030 if (func <= 5) {
2031 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2032 } else {
2033 hw_lock_control_reg =
2034 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2035 }
2036
2037 /* Validating that the resource is currently taken */
2038 lock_status = REG_RD(bp, hw_lock_control_reg);
2039 if (!(lock_status & resource_bit)) {
2040 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2041 lock_status, resource_bit);
2042 return -EFAULT;
2043 }
2044
2045 REG_WR(bp, hw_lock_control_reg, resource_bit);
2046 return 0;
2047 }
2048
2049 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2050 {
2051 /* The GPIO should be swapped if swap register is set and active */
2052 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2053 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2054 int gpio_shift = gpio_num +
2055 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2056 u32 gpio_mask = (1 << gpio_shift);
2057 u32 gpio_reg;
2058 int value;
2059
2060 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2061 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2062 return -EINVAL;
2063 }
2064
2065 /* read GPIO value */
2066 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2067
2068 /* get the requested pin value */
2069 if ((gpio_reg & gpio_mask) == gpio_mask)
2070 value = 1;
2071 else
2072 value = 0;
2073
2074 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
2075
2076 return value;
2077 }
2078
2079 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2080 {
2081 /* The GPIO should be swapped if swap register is set and active */
2082 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084 int gpio_shift = gpio_num +
2085 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086 u32 gpio_mask = (1 << gpio_shift);
2087 u32 gpio_reg;
2088
2089 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2090 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2091 return -EINVAL;
2092 }
2093
2094 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2095 /* read GPIO and mask except the float bits */
2096 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2097
2098 switch (mode) {
2099 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2100 DP(NETIF_MSG_LINK,
2101 "Set GPIO %d (shift %d) -> output low\n",
2102 gpio_num, gpio_shift);
2103 /* clear FLOAT and set CLR */
2104 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2105 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2106 break;
2107
2108 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2109 DP(NETIF_MSG_LINK,
2110 "Set GPIO %d (shift %d) -> output high\n",
2111 gpio_num, gpio_shift);
2112 /* clear FLOAT and set SET */
2113 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2114 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2115 break;
2116
2117 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2118 DP(NETIF_MSG_LINK,
2119 "Set GPIO %d (shift %d) -> input\n",
2120 gpio_num, gpio_shift);
2121 /* set FLOAT */
2122 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2123 break;
2124
2125 default:
2126 break;
2127 }
2128
2129 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2130 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2131
2132 return 0;
2133 }
2134
2135 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2136 {
2137 u32 gpio_reg = 0;
2138 int rc = 0;
2139
2140 /* Any port swapping should be handled by caller. */
2141
2142 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143 /* read GPIO and mask except the float bits */
2144 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2145 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2146 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2147 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2148
2149 switch (mode) {
2150 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2151 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2152 /* set CLR */
2153 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2154 break;
2155
2156 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2157 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2158 /* set SET */
2159 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2160 break;
2161
2162 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2163 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2164 /* set FLOAT */
2165 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2166 break;
2167
2168 default:
2169 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2170 rc = -EINVAL;
2171 break;
2172 }
2173
2174 if (rc == 0)
2175 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2176
2177 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2178
2179 return rc;
2180 }
2181
2182 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2183 {
2184 /* The GPIO should be swapped if swap register is set and active */
2185 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2186 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2187 int gpio_shift = gpio_num +
2188 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2189 u32 gpio_mask = (1 << gpio_shift);
2190 u32 gpio_reg;
2191
2192 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2193 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2194 return -EINVAL;
2195 }
2196
2197 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2198 /* read GPIO int */
2199 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2200
2201 switch (mode) {
2202 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2203 DP(NETIF_MSG_LINK,
2204 "Clear GPIO INT %d (shift %d) -> output low\n",
2205 gpio_num, gpio_shift);
2206 /* clear SET and set CLR */
2207 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2208 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2209 break;
2210
2211 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2212 DP(NETIF_MSG_LINK,
2213 "Set GPIO INT %d (shift %d) -> output high\n",
2214 gpio_num, gpio_shift);
2215 /* clear CLR and set SET */
2216 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2217 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2218 break;
2219
2220 default:
2221 break;
2222 }
2223
2224 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2225 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2226
2227 return 0;
2228 }
2229
2230 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2231 {
2232 u32 spio_reg;
2233
2234 /* Only 2 SPIOs are configurable */
2235 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2236 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2237 return -EINVAL;
2238 }
2239
2240 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2241 /* read SPIO and mask except the float bits */
2242 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2243
2244 switch (mode) {
2245 case MISC_SPIO_OUTPUT_LOW:
2246 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2247 /* clear FLOAT and set CLR */
2248 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2249 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2250 break;
2251
2252 case MISC_SPIO_OUTPUT_HIGH:
2253 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2254 /* clear FLOAT and set SET */
2255 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2256 spio_reg |= (spio << MISC_SPIO_SET_POS);
2257 break;
2258
2259 case MISC_SPIO_INPUT_HI_Z:
2260 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2261 /* set FLOAT */
2262 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2263 break;
2264
2265 default:
2266 break;
2267 }
2268
2269 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2270 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2271
2272 return 0;
2273 }
2274
2275 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2276 {
2277 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2278 switch (bp->link_vars.ieee_fc &
2279 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2280 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2281 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2282 ADVERTISED_Pause);
2283 break;
2284
2285 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2286 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2287 ADVERTISED_Pause);
2288 break;
2289
2290 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2291 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2292 break;
2293
2294 default:
2295 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2296 ADVERTISED_Pause);
2297 break;
2298 }
2299 }
2300
2301 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2302 {
2303 /* Initialize link parameters structure variables
2304 * It is recommended to turn off RX FC for jumbo frames
2305 * for better performance
2306 */
2307 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2308 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2309 else
2310 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2311 }
2312
2313 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2314 {
2315 u32 pause_enabled = 0;
2316
2317 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2318 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2319 pause_enabled = 1;
2320
2321 REG_WR(bp, BAR_USTRORM_INTMEM +
2322 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2323 pause_enabled);
2324 }
2325
2326 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2327 pause_enabled ? "enabled" : "disabled");
2328 }
2329
2330 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2331 {
2332 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2333 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2334
2335 if (!BP_NOMCP(bp)) {
2336 bnx2x_set_requested_fc(bp);
2337 bnx2x_acquire_phy_lock(bp);
2338
2339 if (load_mode == LOAD_DIAG) {
2340 struct link_params *lp = &bp->link_params;
2341 lp->loopback_mode = LOOPBACK_XGXS;
2342 /* do PHY loopback at 10G speed, if possible */
2343 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2344 if (lp->speed_cap_mask[cfx_idx] &
2345 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2346 lp->req_line_speed[cfx_idx] =
2347 SPEED_10000;
2348 else
2349 lp->req_line_speed[cfx_idx] =
2350 SPEED_1000;
2351 }
2352 }
2353
2354 if (load_mode == LOAD_LOOPBACK_EXT) {
2355 struct link_params *lp = &bp->link_params;
2356 lp->loopback_mode = LOOPBACK_EXT;
2357 }
2358
2359 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2360
2361 bnx2x_release_phy_lock(bp);
2362
2363 bnx2x_init_dropless_fc(bp);
2364
2365 bnx2x_calc_fc_adv(bp);
2366
2367 if (bp->link_vars.link_up) {
2368 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2369 bnx2x_link_report(bp);
2370 }
2371 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2372 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2373 return rc;
2374 }
2375 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2376 return -EINVAL;
2377 }
2378
2379 void bnx2x_link_set(struct bnx2x *bp)
2380 {
2381 if (!BP_NOMCP(bp)) {
2382 bnx2x_acquire_phy_lock(bp);
2383 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2384 bnx2x_release_phy_lock(bp);
2385
2386 bnx2x_init_dropless_fc(bp);
2387
2388 bnx2x_calc_fc_adv(bp);
2389 } else
2390 BNX2X_ERR("Bootcode is missing - can not set link\n");
2391 }
2392
2393 static void bnx2x__link_reset(struct bnx2x *bp)
2394 {
2395 if (!BP_NOMCP(bp)) {
2396 bnx2x_acquire_phy_lock(bp);
2397 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2398 bnx2x_release_phy_lock(bp);
2399 } else
2400 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2401 }
2402
2403 void bnx2x_force_link_reset(struct bnx2x *bp)
2404 {
2405 bnx2x_acquire_phy_lock(bp);
2406 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2407 bnx2x_release_phy_lock(bp);
2408 }
2409
2410 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2411 {
2412 u8 rc = 0;
2413
2414 if (!BP_NOMCP(bp)) {
2415 bnx2x_acquire_phy_lock(bp);
2416 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2417 is_serdes);
2418 bnx2x_release_phy_lock(bp);
2419 } else
2420 BNX2X_ERR("Bootcode is missing - can not test link\n");
2421
2422 return rc;
2423 }
2424
2425 /* Calculates the sum of vn_min_rates.
2426 It's needed for further normalizing of the min_rates.
2427 Returns:
2428 sum of vn_min_rates.
2429 or
2430 0 - if all the min_rates are 0.
2431 In the later case fairness algorithm should be deactivated.
2432 If not all min_rates are zero then those that are zeroes will be set to 1.
2433 */
2434 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2435 struct cmng_init_input *input)
2436 {
2437 int all_zero = 1;
2438 int vn;
2439
2440 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2441 u32 vn_cfg = bp->mf_config[vn];
2442 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2443 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2444
2445 /* Skip hidden vns */
2446 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2447 vn_min_rate = 0;
2448 /* If min rate is zero - set it to 1 */
2449 else if (!vn_min_rate)
2450 vn_min_rate = DEF_MIN_RATE;
2451 else
2452 all_zero = 0;
2453
2454 input->vnic_min_rate[vn] = vn_min_rate;
2455 }
2456
2457 /* if ETS or all min rates are zeros - disable fairness */
2458 if (BNX2X_IS_ETS_ENABLED(bp)) {
2459 input->flags.cmng_enables &=
2460 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2461 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2462 } else if (all_zero) {
2463 input->flags.cmng_enables &=
2464 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2465 DP(NETIF_MSG_IFUP,
2466 "All MIN values are zeroes fairness will be disabled\n");
2467 } else
2468 input->flags.cmng_enables |=
2469 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2470 }
2471
2472 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2473 struct cmng_init_input *input)
2474 {
2475 u16 vn_max_rate;
2476 u32 vn_cfg = bp->mf_config[vn];
2477
2478 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2479 vn_max_rate = 0;
2480 else {
2481 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2482
2483 if (IS_MF_SI(bp)) {
2484 /* maxCfg in percents of linkspeed */
2485 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2486 } else /* SD modes */
2487 /* maxCfg is absolute in 100Mb units */
2488 vn_max_rate = maxCfg * 100;
2489 }
2490
2491 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2492
2493 input->vnic_max_rate[vn] = vn_max_rate;
2494 }
2495
2496 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2497 {
2498 if (CHIP_REV_IS_SLOW(bp))
2499 return CMNG_FNS_NONE;
2500 if (IS_MF(bp))
2501 return CMNG_FNS_MINMAX;
2502
2503 return CMNG_FNS_NONE;
2504 }
2505
2506 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2507 {
2508 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2509
2510 if (BP_NOMCP(bp))
2511 return; /* what should be the default value in this case */
2512
2513 /* For 2 port configuration the absolute function number formula
2514 * is:
2515 * abs_func = 2 * vn + BP_PORT + BP_PATH
2516 *
2517 * and there are 4 functions per port
2518 *
2519 * For 4 port configuration it is
2520 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2521 *
2522 * and there are 2 functions per port
2523 */
2524 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2525 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2526
2527 if (func >= E1H_FUNC_MAX)
2528 break;
2529
2530 bp->mf_config[vn] =
2531 MF_CFG_RD(bp, func_mf_config[func].config);
2532 }
2533 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2534 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2535 bp->flags |= MF_FUNC_DIS;
2536 } else {
2537 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2538 bp->flags &= ~MF_FUNC_DIS;
2539 }
2540 }
2541
2542 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2543 {
2544 struct cmng_init_input input;
2545 memset(&input, 0, sizeof(struct cmng_init_input));
2546
2547 input.port_rate = bp->link_vars.line_speed;
2548
2549 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2550 int vn;
2551
2552 /* read mf conf from shmem */
2553 if (read_cfg)
2554 bnx2x_read_mf_cfg(bp);
2555
2556 /* vn_weight_sum and enable fairness if not 0 */
2557 bnx2x_calc_vn_min(bp, &input);
2558
2559 /* calculate and set min-max rate for each vn */
2560 if (bp->port.pmf)
2561 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2562 bnx2x_calc_vn_max(bp, vn, &input);
2563
2564 /* always enable rate shaping and fairness */
2565 input.flags.cmng_enables |=
2566 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2567
2568 bnx2x_init_cmng(&input, &bp->cmng);
2569 return;
2570 }
2571
2572 /* rate shaping and fairness are disabled */
2573 DP(NETIF_MSG_IFUP,
2574 "rate shaping and fairness are disabled\n");
2575 }
2576
2577 static void storm_memset_cmng(struct bnx2x *bp,
2578 struct cmng_init *cmng,
2579 u8 port)
2580 {
2581 int vn;
2582 size_t size = sizeof(struct cmng_struct_per_port);
2583
2584 u32 addr = BAR_XSTRORM_INTMEM +
2585 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2586
2587 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2588
2589 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2590 int func = func_by_vn(bp, vn);
2591
2592 addr = BAR_XSTRORM_INTMEM +
2593 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2594 size = sizeof(struct rate_shaping_vars_per_vn);
2595 __storm_memset_struct(bp, addr, size,
2596 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2597
2598 addr = BAR_XSTRORM_INTMEM +
2599 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2600 size = sizeof(struct fairness_vars_per_vn);
2601 __storm_memset_struct(bp, addr, size,
2602 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2603 }
2604 }
2605
2606 /* init cmng mode in HW according to local configuration */
2607 void bnx2x_set_local_cmng(struct bnx2x *bp)
2608 {
2609 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2610
2611 if (cmng_fns != CMNG_FNS_NONE) {
2612 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2613 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2614 } else {
2615 /* rate shaping and fairness are disabled */
2616 DP(NETIF_MSG_IFUP,
2617 "single function mode without fairness\n");
2618 }
2619 }
2620
2621 /* This function is called upon link interrupt */
2622 static void bnx2x_link_attn(struct bnx2x *bp)
2623 {
2624 /* Make sure that we are synced with the current statistics */
2625 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2626
2627 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2628
2629 bnx2x_init_dropless_fc(bp);
2630
2631 if (bp->link_vars.link_up) {
2632
2633 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2634 struct host_port_stats *pstats;
2635
2636 pstats = bnx2x_sp(bp, port_stats);
2637 /* reset old mac stats */
2638 memset(&(pstats->mac_stx[0]), 0,
2639 sizeof(struct mac_stx));
2640 }
2641 if (bp->state == BNX2X_STATE_OPEN)
2642 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2643 }
2644
2645 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2646 bnx2x_set_local_cmng(bp);
2647
2648 __bnx2x_link_report(bp);
2649
2650 if (IS_MF(bp))
2651 bnx2x_link_sync_notify(bp);
2652 }
2653
2654 void bnx2x__link_status_update(struct bnx2x *bp)
2655 {
2656 if (bp->state != BNX2X_STATE_OPEN)
2657 return;
2658
2659 /* read updated dcb configuration */
2660 if (IS_PF(bp)) {
2661 bnx2x_dcbx_pmf_update(bp);
2662 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2663 if (bp->link_vars.link_up)
2664 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2665 else
2666 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2667 /* indicate link status */
2668 bnx2x_link_report(bp);
2669
2670 } else { /* VF */
2671 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2672 SUPPORTED_10baseT_Full |
2673 SUPPORTED_100baseT_Half |
2674 SUPPORTED_100baseT_Full |
2675 SUPPORTED_1000baseT_Full |
2676 SUPPORTED_2500baseX_Full |
2677 SUPPORTED_10000baseT_Full |
2678 SUPPORTED_TP |
2679 SUPPORTED_FIBRE |
2680 SUPPORTED_Autoneg |
2681 SUPPORTED_Pause |
2682 SUPPORTED_Asym_Pause);
2683 bp->port.advertising[0] = bp->port.supported[0];
2684
2685 bp->link_params.bp = bp;
2686 bp->link_params.port = BP_PORT(bp);
2687 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2688 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2689 bp->link_params.req_line_speed[0] = SPEED_10000;
2690 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2691 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2692 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2693 bp->link_vars.line_speed = SPEED_10000;
2694 bp->link_vars.link_status =
2695 (LINK_STATUS_LINK_UP |
2696 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2697 bp->link_vars.link_up = 1;
2698 bp->link_vars.duplex = DUPLEX_FULL;
2699 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2700 __bnx2x_link_report(bp);
2701 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2702 }
2703 }
2704
2705 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2706 u16 vlan_val, u8 allowed_prio)
2707 {
2708 struct bnx2x_func_state_params func_params = {NULL};
2709 struct bnx2x_func_afex_update_params *f_update_params =
2710 &func_params.params.afex_update;
2711
2712 func_params.f_obj = &bp->func_obj;
2713 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2714
2715 /* no need to wait for RAMROD completion, so don't
2716 * set RAMROD_COMP_WAIT flag
2717 */
2718
2719 f_update_params->vif_id = vifid;
2720 f_update_params->afex_default_vlan = vlan_val;
2721 f_update_params->allowed_priorities = allowed_prio;
2722
2723 /* if ramrod can not be sent, response to MCP immediately */
2724 if (bnx2x_func_state_change(bp, &func_params) < 0)
2725 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2726
2727 return 0;
2728 }
2729
2730 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2731 u16 vif_index, u8 func_bit_map)
2732 {
2733 struct bnx2x_func_state_params func_params = {NULL};
2734 struct bnx2x_func_afex_viflists_params *update_params =
2735 &func_params.params.afex_viflists;
2736 int rc;
2737 u32 drv_msg_code;
2738
2739 /* validate only LIST_SET and LIST_GET are received from switch */
2740 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2741 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2742 cmd_type);
2743
2744 func_params.f_obj = &bp->func_obj;
2745 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2746
2747 /* set parameters according to cmd_type */
2748 update_params->afex_vif_list_command = cmd_type;
2749 update_params->vif_list_index = vif_index;
2750 update_params->func_bit_map =
2751 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2752 update_params->func_to_clear = 0;
2753 drv_msg_code =
2754 (cmd_type == VIF_LIST_RULE_GET) ?
2755 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2756 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2757
2758 /* if ramrod can not be sent, respond to MCP immediately for
2759 * SET and GET requests (other are not triggered from MCP)
2760 */
2761 rc = bnx2x_func_state_change(bp, &func_params);
2762 if (rc < 0)
2763 bnx2x_fw_command(bp, drv_msg_code, 0);
2764
2765 return 0;
2766 }
2767
2768 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2769 {
2770 struct afex_stats afex_stats;
2771 u32 func = BP_ABS_FUNC(bp);
2772 u32 mf_config;
2773 u16 vlan_val;
2774 u32 vlan_prio;
2775 u16 vif_id;
2776 u8 allowed_prio;
2777 u8 vlan_mode;
2778 u32 addr_to_write, vifid, addrs, stats_type, i;
2779
2780 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2781 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2782 DP(BNX2X_MSG_MCP,
2783 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2784 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2785 }
2786
2787 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2788 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2789 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2790 DP(BNX2X_MSG_MCP,
2791 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2792 vifid, addrs);
2793 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2794 addrs);
2795 }
2796
2797 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2798 addr_to_write = SHMEM2_RD(bp,
2799 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2800 stats_type = SHMEM2_RD(bp,
2801 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2802
2803 DP(BNX2X_MSG_MCP,
2804 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2805 addr_to_write);
2806
2807 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2808
2809 /* write response to scratchpad, for MCP */
2810 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2811 REG_WR(bp, addr_to_write + i*sizeof(u32),
2812 *(((u32 *)(&afex_stats))+i));
2813
2814 /* send ack message to MCP */
2815 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2816 }
2817
2818 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2819 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2820 bp->mf_config[BP_VN(bp)] = mf_config;
2821 DP(BNX2X_MSG_MCP,
2822 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2823 mf_config);
2824
2825 /* if VIF_SET is "enabled" */
2826 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2827 /* set rate limit directly to internal RAM */
2828 struct cmng_init_input cmng_input;
2829 struct rate_shaping_vars_per_vn m_rs_vn;
2830 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2831 u32 addr = BAR_XSTRORM_INTMEM +
2832 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2833
2834 bp->mf_config[BP_VN(bp)] = mf_config;
2835
2836 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2837 m_rs_vn.vn_counter.rate =
2838 cmng_input.vnic_max_rate[BP_VN(bp)];
2839 m_rs_vn.vn_counter.quota =
2840 (m_rs_vn.vn_counter.rate *
2841 RS_PERIODIC_TIMEOUT_USEC) / 8;
2842
2843 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2844
2845 /* read relevant values from mf_cfg struct in shmem */
2846 vif_id =
2847 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2848 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2849 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2850 vlan_val =
2851 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2852 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2853 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2854 vlan_prio = (mf_config &
2855 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2856 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2857 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2858 vlan_mode =
2859 (MF_CFG_RD(bp,
2860 func_mf_config[func].afex_config) &
2861 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2862 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2863 allowed_prio =
2864 (MF_CFG_RD(bp,
2865 func_mf_config[func].afex_config) &
2866 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2867 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2868
2869 /* send ramrod to FW, return in case of failure */
2870 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2871 allowed_prio))
2872 return;
2873
2874 bp->afex_def_vlan_tag = vlan_val;
2875 bp->afex_vlan_mode = vlan_mode;
2876 } else {
2877 /* notify link down because BP->flags is disabled */
2878 bnx2x_link_report(bp);
2879
2880 /* send INVALID VIF ramrod to FW */
2881 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2882
2883 /* Reset the default afex VLAN */
2884 bp->afex_def_vlan_tag = -1;
2885 }
2886 }
2887 }
2888
2889 static void bnx2x_pmf_update(struct bnx2x *bp)
2890 {
2891 int port = BP_PORT(bp);
2892 u32 val;
2893
2894 bp->port.pmf = 1;
2895 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2896
2897 /*
2898 * We need the mb() to ensure the ordering between the writing to
2899 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2900 */
2901 smp_mb();
2902
2903 /* queue a periodic task */
2904 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2905
2906 bnx2x_dcbx_pmf_update(bp);
2907
2908 /* enable nig attention */
2909 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2910 if (bp->common.int_block == INT_BLOCK_HC) {
2911 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2912 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2913 } else if (!CHIP_IS_E1x(bp)) {
2914 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2915 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2916 }
2917
2918 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2919 }
2920
2921 /* end of Link */
2922
2923 /* slow path */
2924
2925 /*
2926 * General service functions
2927 */
2928
2929 /* send the MCP a request, block until there is a reply */
2930 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2931 {
2932 int mb_idx = BP_FW_MB_IDX(bp);
2933 u32 seq;
2934 u32 rc = 0;
2935 u32 cnt = 1;
2936 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2937
2938 mutex_lock(&bp->fw_mb_mutex);
2939 seq = ++bp->fw_seq;
2940 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2941 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2942
2943 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2944 (command | seq), param);
2945
2946 do {
2947 /* let the FW do it's magic ... */
2948 msleep(delay);
2949
2950 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2951
2952 /* Give the FW up to 5 second (500*10ms) */
2953 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2954
2955 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2956 cnt*delay, rc, seq);
2957
2958 /* is this a reply to our command? */
2959 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2960 rc &= FW_MSG_CODE_MASK;
2961 else {
2962 /* FW BUG! */
2963 BNX2X_ERR("FW failed to respond!\n");
2964 bnx2x_fw_dump(bp);
2965 rc = 0;
2966 }
2967 mutex_unlock(&bp->fw_mb_mutex);
2968
2969 return rc;
2970 }
2971
2972 static void storm_memset_func_cfg(struct bnx2x *bp,
2973 struct tstorm_eth_function_common_config *tcfg,
2974 u16 abs_fid)
2975 {
2976 size_t size = sizeof(struct tstorm_eth_function_common_config);
2977
2978 u32 addr = BAR_TSTRORM_INTMEM +
2979 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2980
2981 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2982 }
2983
2984 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2985 {
2986 if (CHIP_IS_E1x(bp)) {
2987 struct tstorm_eth_function_common_config tcfg = {0};
2988
2989 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2990 }
2991
2992 /* Enable the function in the FW */
2993 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2994 storm_memset_func_en(bp, p->func_id, 1);
2995
2996 /* spq */
2997 if (p->func_flgs & FUNC_FLG_SPQ) {
2998 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2999 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3000 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3001 }
3002 }
3003
3004 /**
3005 * bnx2x_get_common_flags - Return common flags
3006 *
3007 * @bp device handle
3008 * @fp queue handle
3009 * @zero_stats TRUE if statistics zeroing is needed
3010 *
3011 * Return the flags that are common for the Tx-only and not normal connections.
3012 */
3013 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3014 struct bnx2x_fastpath *fp,
3015 bool zero_stats)
3016 {
3017 unsigned long flags = 0;
3018
3019 /* PF driver will always initialize the Queue to an ACTIVE state */
3020 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3021
3022 /* tx only connections collect statistics (on the same index as the
3023 * parent connection). The statistics are zeroed when the parent
3024 * connection is initialized.
3025 */
3026
3027 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3028 if (zero_stats)
3029 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3030
3031 if (bp->flags & TX_SWITCHING)
3032 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3033
3034 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3035 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3036
3037 #ifdef BNX2X_STOP_ON_ERROR
3038 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3039 #endif
3040
3041 return flags;
3042 }
3043
3044 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3045 struct bnx2x_fastpath *fp,
3046 bool leading)
3047 {
3048 unsigned long flags = 0;
3049
3050 /* calculate other queue flags */
3051 if (IS_MF_SD(bp))
3052 __set_bit(BNX2X_Q_FLG_OV, &flags);
3053
3054 if (IS_FCOE_FP(fp)) {
3055 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3056 /* For FCoE - force usage of default priority (for afex) */
3057 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3058 }
3059
3060 if (!fp->disable_tpa) {
3061 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3062 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3063 if (fp->mode == TPA_MODE_GRO)
3064 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3065 }
3066
3067 if (leading) {
3068 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3069 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3070 }
3071
3072 /* Always set HW VLAN stripping */
3073 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3074
3075 /* configure silent vlan removal */
3076 if (IS_MF_AFEX(bp))
3077 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3078
3079 return flags | bnx2x_get_common_flags(bp, fp, true);
3080 }
3081
3082 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3083 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3084 u8 cos)
3085 {
3086 gen_init->stat_id = bnx2x_stats_id(fp);
3087 gen_init->spcl_id = fp->cl_id;
3088
3089 /* Always use mini-jumbo MTU for FCoE L2 ring */
3090 if (IS_FCOE_FP(fp))
3091 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3092 else
3093 gen_init->mtu = bp->dev->mtu;
3094
3095 gen_init->cos = cos;
3096 }
3097
3098 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3099 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3100 struct bnx2x_rxq_setup_params *rxq_init)
3101 {
3102 u8 max_sge = 0;
3103 u16 sge_sz = 0;
3104 u16 tpa_agg_size = 0;
3105
3106 if (!fp->disable_tpa) {
3107 pause->sge_th_lo = SGE_TH_LO(bp);
3108 pause->sge_th_hi = SGE_TH_HI(bp);
3109
3110 /* validate SGE ring has enough to cross high threshold */
3111 WARN_ON(bp->dropless_fc &&
3112 pause->sge_th_hi + FW_PREFETCH_CNT >
3113 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3114
3115 tpa_agg_size = TPA_AGG_SIZE;
3116 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3117 SGE_PAGE_SHIFT;
3118 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3119 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3120 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3121 }
3122
3123 /* pause - not for e1 */
3124 if (!CHIP_IS_E1(bp)) {
3125 pause->bd_th_lo = BD_TH_LO(bp);
3126 pause->bd_th_hi = BD_TH_HI(bp);
3127
3128 pause->rcq_th_lo = RCQ_TH_LO(bp);
3129 pause->rcq_th_hi = RCQ_TH_HI(bp);
3130 /*
3131 * validate that rings have enough entries to cross
3132 * high thresholds
3133 */
3134 WARN_ON(bp->dropless_fc &&
3135 pause->bd_th_hi + FW_PREFETCH_CNT >
3136 bp->rx_ring_size);
3137 WARN_ON(bp->dropless_fc &&
3138 pause->rcq_th_hi + FW_PREFETCH_CNT >
3139 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3140
3141 pause->pri_map = 1;
3142 }
3143
3144 /* rxq setup */
3145 rxq_init->dscr_map = fp->rx_desc_mapping;
3146 rxq_init->sge_map = fp->rx_sge_mapping;
3147 rxq_init->rcq_map = fp->rx_comp_mapping;
3148 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3149
3150 /* This should be a maximum number of data bytes that may be
3151 * placed on the BD (not including paddings).
3152 */
3153 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3154 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3155
3156 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3157 rxq_init->tpa_agg_sz = tpa_agg_size;
3158 rxq_init->sge_buf_sz = sge_sz;
3159 rxq_init->max_sges_pkt = max_sge;
3160 rxq_init->rss_engine_id = BP_FUNC(bp);
3161 rxq_init->mcast_engine_id = BP_FUNC(bp);
3162
3163 /* Maximum number or simultaneous TPA aggregation for this Queue.
3164 *
3165 * For PF Clients it should be the maximum available number.
3166 * VF driver(s) may want to define it to a smaller value.
3167 */
3168 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3169
3170 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3171 rxq_init->fw_sb_id = fp->fw_sb_id;
3172
3173 if (IS_FCOE_FP(fp))
3174 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3175 else
3176 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3177 /* configure silent vlan removal
3178 * if multi function mode is afex, then mask default vlan
3179 */
3180 if (IS_MF_AFEX(bp)) {
3181 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3182 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3183 }
3184 }
3185
3186 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3187 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3188 u8 cos)
3189 {
3190 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3191 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3192 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3193 txq_init->fw_sb_id = fp->fw_sb_id;
3194
3195 /*
3196 * set the tss leading client id for TX classification ==
3197 * leading RSS client id
3198 */
3199 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3200
3201 if (IS_FCOE_FP(fp)) {
3202 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3203 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3204 }
3205 }
3206
3207 static void bnx2x_pf_init(struct bnx2x *bp)
3208 {
3209 struct bnx2x_func_init_params func_init = {0};
3210 struct event_ring_data eq_data = { {0} };
3211 u16 flags;
3212
3213 if (!CHIP_IS_E1x(bp)) {
3214 /* reset IGU PF statistics: MSIX + ATTN */
3215 /* PF */
3216 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3217 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3218 (CHIP_MODE_IS_4_PORT(bp) ?
3219 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3220 /* ATTN */
3221 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3222 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3223 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3224 (CHIP_MODE_IS_4_PORT(bp) ?
3225 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3226 }
3227
3228 /* function setup flags */
3229 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3230
3231 /* This flag is relevant for E1x only.
3232 * E2 doesn't have a TPA configuration in a function level.
3233 */
3234 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3235
3236 func_init.func_flgs = flags;
3237 func_init.pf_id = BP_FUNC(bp);
3238 func_init.func_id = BP_FUNC(bp);
3239 func_init.spq_map = bp->spq_mapping;
3240 func_init.spq_prod = bp->spq_prod_idx;
3241
3242 bnx2x_func_init(bp, &func_init);
3243
3244 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3245
3246 /*
3247 * Congestion management values depend on the link rate
3248 * There is no active link so initial link rate is set to 10 Gbps.
3249 * When the link comes up The congestion management values are
3250 * re-calculated according to the actual link rate.
3251 */
3252 bp->link_vars.line_speed = SPEED_10000;
3253 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3254
3255 /* Only the PMF sets the HW */
3256 if (bp->port.pmf)
3257 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3258
3259 /* init Event Queue - PCI bus guarantees correct endianity*/
3260 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3261 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3262 eq_data.producer = bp->eq_prod;
3263 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3264 eq_data.sb_id = DEF_SB_ID;
3265 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3266 }
3267
3268 static void bnx2x_e1h_disable(struct bnx2x *bp)
3269 {
3270 int port = BP_PORT(bp);
3271
3272 bnx2x_tx_disable(bp);
3273
3274 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3275 }
3276
3277 static void bnx2x_e1h_enable(struct bnx2x *bp)
3278 {
3279 int port = BP_PORT(bp);
3280
3281 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3282
3283 /* Tx queue should be only re-enabled */
3284 netif_tx_wake_all_queues(bp->dev);
3285
3286 /*
3287 * Should not call netif_carrier_on since it will be called if the link
3288 * is up when checking for link state
3289 */
3290 }
3291
3292 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3293
3294 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3295 {
3296 struct eth_stats_info *ether_stat =
3297 &bp->slowpath->drv_info_to_mcp.ether_stat;
3298 struct bnx2x_vlan_mac_obj *mac_obj =
3299 &bp->sp_objs->mac_obj;
3300 int i;
3301
3302 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3303 ETH_STAT_INFO_VERSION_LEN);
3304
3305 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3306 * mac_local field in ether_stat struct. The base address is offset by 2
3307 * bytes to account for the field being 8 bytes but a mac address is
3308 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3309 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3310 * allocated by the ether_stat struct, so the macs will land in their
3311 * proper positions.
3312 */
3313 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3314 memset(ether_stat->mac_local + i, 0,
3315 sizeof(ether_stat->mac_local[0]));
3316 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3317 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3318 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3319 ETH_ALEN);
3320 ether_stat->mtu_size = bp->dev->mtu;
3321 if (bp->dev->features & NETIF_F_RXCSUM)
3322 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3323 if (bp->dev->features & NETIF_F_TSO)
3324 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3325 ether_stat->feature_flags |= bp->common.boot_mode;
3326
3327 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3328
3329 ether_stat->txq_size = bp->tx_ring_size;
3330 ether_stat->rxq_size = bp->rx_ring_size;
3331
3332 #ifdef CONFIG_BNX2X_SRIOV
3333 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3334 #endif
3335 }
3336
3337 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3338 {
3339 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3340 struct fcoe_stats_info *fcoe_stat =
3341 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3342
3343 if (!CNIC_LOADED(bp))
3344 return;
3345
3346 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3347
3348 fcoe_stat->qos_priority =
3349 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3350
3351 /* insert FCoE stats from ramrod response */
3352 if (!NO_FCOE(bp)) {
3353 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3354 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3355 tstorm_queue_statistics;
3356
3357 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3358 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3359 xstorm_queue_statistics;
3360
3361 struct fcoe_statistics_params *fw_fcoe_stat =
3362 &bp->fw_stats_data->fcoe;
3363
3364 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3365 fcoe_stat->rx_bytes_lo,
3366 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3367
3368 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3369 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3370 fcoe_stat->rx_bytes_lo,
3371 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3372
3373 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3374 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3375 fcoe_stat->rx_bytes_lo,
3376 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3377
3378 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3379 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3380 fcoe_stat->rx_bytes_lo,
3381 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3382
3383 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3384 fcoe_stat->rx_frames_lo,
3385 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3386
3387 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3388 fcoe_stat->rx_frames_lo,
3389 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3390
3391 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3392 fcoe_stat->rx_frames_lo,
3393 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3394
3395 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3396 fcoe_stat->rx_frames_lo,
3397 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3398
3399 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3400 fcoe_stat->tx_bytes_lo,
3401 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3402
3403 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3404 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3405 fcoe_stat->tx_bytes_lo,
3406 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3407
3408 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3409 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3410 fcoe_stat->tx_bytes_lo,
3411 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3412
3413 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3414 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3415 fcoe_stat->tx_bytes_lo,
3416 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3417
3418 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3419 fcoe_stat->tx_frames_lo,
3420 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3421
3422 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3423 fcoe_stat->tx_frames_lo,
3424 fcoe_q_xstorm_stats->ucast_pkts_sent);
3425
3426 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3427 fcoe_stat->tx_frames_lo,
3428 fcoe_q_xstorm_stats->bcast_pkts_sent);
3429
3430 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3431 fcoe_stat->tx_frames_lo,
3432 fcoe_q_xstorm_stats->mcast_pkts_sent);
3433 }
3434
3435 /* ask L5 driver to add data to the struct */
3436 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3437 }
3438
3439 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3440 {
3441 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3442 struct iscsi_stats_info *iscsi_stat =
3443 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3444
3445 if (!CNIC_LOADED(bp))
3446 return;
3447
3448 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3449 ETH_ALEN);
3450
3451 iscsi_stat->qos_priority =
3452 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3453
3454 /* ask L5 driver to add data to the struct */
3455 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3456 }
3457
3458 /* called due to MCP event (on pmf):
3459 * reread new bandwidth configuration
3460 * configure FW
3461 * notify others function about the change
3462 */
3463 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3464 {
3465 if (bp->link_vars.link_up) {
3466 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3467 bnx2x_link_sync_notify(bp);
3468 }
3469 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3470 }
3471
3472 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3473 {
3474 bnx2x_config_mf_bw(bp);
3475 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3476 }
3477
3478 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3479 {
3480 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3481 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3482 }
3483
3484 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3485 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3486
3487 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3488 {
3489 enum drv_info_opcode op_code;
3490 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3491 bool release = false;
3492 int wait;
3493
3494 /* if drv_info version supported by MFW doesn't match - send NACK */
3495 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3496 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3497 return;
3498 }
3499
3500 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3501 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3502
3503 /* Must prevent other flows from accessing drv_info_to_mcp */
3504 mutex_lock(&bp->drv_info_mutex);
3505
3506 memset(&bp->slowpath->drv_info_to_mcp, 0,
3507 sizeof(union drv_info_to_mcp));
3508
3509 switch (op_code) {
3510 case ETH_STATS_OPCODE:
3511 bnx2x_drv_info_ether_stat(bp);
3512 break;
3513 case FCOE_STATS_OPCODE:
3514 bnx2x_drv_info_fcoe_stat(bp);
3515 break;
3516 case ISCSI_STATS_OPCODE:
3517 bnx2x_drv_info_iscsi_stat(bp);
3518 break;
3519 default:
3520 /* if op code isn't supported - send NACK */
3521 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3522 goto out;
3523 }
3524
3525 /* if we got drv_info attn from MFW then these fields are defined in
3526 * shmem2 for sure
3527 */
3528 SHMEM2_WR(bp, drv_info_host_addr_lo,
3529 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3530 SHMEM2_WR(bp, drv_info_host_addr_hi,
3531 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3532
3533 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3534
3535 /* Since possible management wants both this and get_driver_version
3536 * need to wait until management notifies us it finished utilizing
3537 * the buffer.
3538 */
3539 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3540 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3541 } else if (!bp->drv_info_mng_owner) {
3542 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3543
3544 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3545 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3546
3547 /* Management is done; need to clear indication */
3548 if (indication & bit) {
3549 SHMEM2_WR(bp, mfw_drv_indication,
3550 indication & ~bit);
3551 release = true;
3552 break;
3553 }
3554
3555 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3556 }
3557 }
3558 if (!release) {
3559 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3560 bp->drv_info_mng_owner = true;
3561 }
3562
3563 out:
3564 mutex_unlock(&bp->drv_info_mutex);
3565 }
3566
3567 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3568 {
3569 u8 vals[4];
3570 int i = 0;
3571
3572 if (bnx2x_format) {
3573 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3574 &vals[0], &vals[1], &vals[2], &vals[3]);
3575 if (i > 0)
3576 vals[0] -= '0';
3577 } else {
3578 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3579 &vals[0], &vals[1], &vals[2], &vals[3]);
3580 }
3581
3582 while (i < 4)
3583 vals[i++] = 0;
3584
3585 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3586 }
3587
3588 void bnx2x_update_mng_version(struct bnx2x *bp)
3589 {
3590 u32 iscsiver = DRV_VER_NOT_LOADED;
3591 u32 fcoever = DRV_VER_NOT_LOADED;
3592 u32 ethver = DRV_VER_NOT_LOADED;
3593 int idx = BP_FW_MB_IDX(bp);
3594 u8 *version;
3595
3596 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3597 return;
3598
3599 mutex_lock(&bp->drv_info_mutex);
3600 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3601 if (bp->drv_info_mng_owner)
3602 goto out;
3603
3604 if (bp->state != BNX2X_STATE_OPEN)
3605 goto out;
3606
3607 /* Parse ethernet driver version */
3608 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3609 if (!CNIC_LOADED(bp))
3610 goto out;
3611
3612 /* Try getting storage driver version via cnic */
3613 memset(&bp->slowpath->drv_info_to_mcp, 0,
3614 sizeof(union drv_info_to_mcp));
3615 bnx2x_drv_info_iscsi_stat(bp);
3616 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3617 iscsiver = bnx2x_update_mng_version_utility(version, false);
3618
3619 memset(&bp->slowpath->drv_info_to_mcp, 0,
3620 sizeof(union drv_info_to_mcp));
3621 bnx2x_drv_info_fcoe_stat(bp);
3622 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3623 fcoever = bnx2x_update_mng_version_utility(version, false);
3624
3625 out:
3626 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3627 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3628 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3629
3630 mutex_unlock(&bp->drv_info_mutex);
3631
3632 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3633 ethver, iscsiver, fcoever);
3634 }
3635
3636 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3637 {
3638 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3639
3640 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3641
3642 /*
3643 * This is the only place besides the function initialization
3644 * where the bp->flags can change so it is done without any
3645 * locks
3646 */
3647 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3648 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3649 bp->flags |= MF_FUNC_DIS;
3650
3651 bnx2x_e1h_disable(bp);
3652 } else {
3653 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3654 bp->flags &= ~MF_FUNC_DIS;
3655
3656 bnx2x_e1h_enable(bp);
3657 }
3658 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3659 }
3660 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3661 bnx2x_config_mf_bw(bp);
3662 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3663 }
3664
3665 /* Report results to MCP */
3666 if (dcc_event)
3667 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3668 else
3669 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3670 }
3671
3672 /* must be called under the spq lock */
3673 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3674 {
3675 struct eth_spe *next_spe = bp->spq_prod_bd;
3676
3677 if (bp->spq_prod_bd == bp->spq_last_bd) {
3678 bp->spq_prod_bd = bp->spq;
3679 bp->spq_prod_idx = 0;
3680 DP(BNX2X_MSG_SP, "end of spq\n");
3681 } else {
3682 bp->spq_prod_bd++;
3683 bp->spq_prod_idx++;
3684 }
3685 return next_spe;
3686 }
3687
3688 /* must be called under the spq lock */
3689 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3690 {
3691 int func = BP_FUNC(bp);
3692
3693 /*
3694 * Make sure that BD data is updated before writing the producer:
3695 * BD data is written to the memory, the producer is read from the
3696 * memory, thus we need a full memory barrier to ensure the ordering.
3697 */
3698 mb();
3699
3700 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3701 bp->spq_prod_idx);
3702 mmiowb();
3703 }
3704
3705 /**
3706 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3707 *
3708 * @cmd: command to check
3709 * @cmd_type: command type
3710 */
3711 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3712 {
3713 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3714 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3715 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3716 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3717 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3718 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3719 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3720 return true;
3721 else
3722 return false;
3723 }
3724
3725 /**
3726 * bnx2x_sp_post - place a single command on an SP ring
3727 *
3728 * @bp: driver handle
3729 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3730 * @cid: SW CID the command is related to
3731 * @data_hi: command private data address (high 32 bits)
3732 * @data_lo: command private data address (low 32 bits)
3733 * @cmd_type: command type (e.g. NONE, ETH)
3734 *
3735 * SP data is handled as if it's always an address pair, thus data fields are
3736 * not swapped to little endian in upper functions. Instead this function swaps
3737 * data as if it's two u32 fields.
3738 */
3739 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3740 u32 data_hi, u32 data_lo, int cmd_type)
3741 {
3742 struct eth_spe *spe;
3743 u16 type;
3744 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3745
3746 #ifdef BNX2X_STOP_ON_ERROR
3747 if (unlikely(bp->panic)) {
3748 BNX2X_ERR("Can't post SP when there is panic\n");
3749 return -EIO;
3750 }
3751 #endif
3752
3753 spin_lock_bh(&bp->spq_lock);
3754
3755 if (common) {
3756 if (!atomic_read(&bp->eq_spq_left)) {
3757 BNX2X_ERR("BUG! EQ ring full!\n");
3758 spin_unlock_bh(&bp->spq_lock);
3759 bnx2x_panic();
3760 return -EBUSY;
3761 }
3762 } else if (!atomic_read(&bp->cq_spq_left)) {
3763 BNX2X_ERR("BUG! SPQ ring full!\n");
3764 spin_unlock_bh(&bp->spq_lock);
3765 bnx2x_panic();
3766 return -EBUSY;
3767 }
3768
3769 spe = bnx2x_sp_get_next(bp);
3770
3771 /* CID needs port number to be encoded int it */
3772 spe->hdr.conn_and_cmd_data =
3773 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3774 HW_CID(bp, cid));
3775
3776 /* In some cases, type may already contain the func-id
3777 * mainly in SRIOV related use cases, so we add it here only
3778 * if it's not already set.
3779 */
3780 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3781 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3782 SPE_HDR_CONN_TYPE;
3783 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3784 SPE_HDR_FUNCTION_ID);
3785 } else {
3786 type = cmd_type;
3787 }
3788
3789 spe->hdr.type = cpu_to_le16(type);
3790
3791 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3792 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3793
3794 /*
3795 * It's ok if the actual decrement is issued towards the memory
3796 * somewhere between the spin_lock and spin_unlock. Thus no
3797 * more explicit memory barrier is needed.
3798 */
3799 if (common)
3800 atomic_dec(&bp->eq_spq_left);
3801 else
3802 atomic_dec(&bp->cq_spq_left);
3803
3804 DP(BNX2X_MSG_SP,
3805 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3806 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3807 (u32)(U64_LO(bp->spq_mapping) +
3808 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3809 HW_CID(bp, cid), data_hi, data_lo, type,
3810 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3811
3812 bnx2x_sp_prod_update(bp);
3813 spin_unlock_bh(&bp->spq_lock);
3814 return 0;
3815 }
3816
3817 /* acquire split MCP access lock register */
3818 static int bnx2x_acquire_alr(struct bnx2x *bp)
3819 {
3820 u32 j, val;
3821 int rc = 0;
3822
3823 might_sleep();
3824 for (j = 0; j < 1000; j++) {
3825 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3826 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3827 if (val & MCPR_ACCESS_LOCK_LOCK)
3828 break;
3829
3830 usleep_range(5000, 10000);
3831 }
3832 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3833 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3834 rc = -EBUSY;
3835 }
3836
3837 return rc;
3838 }
3839
3840 /* release split MCP access lock register */
3841 static void bnx2x_release_alr(struct bnx2x *bp)
3842 {
3843 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3844 }
3845
3846 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3847 #define BNX2X_DEF_SB_IDX 0x0002
3848
3849 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3850 {
3851 struct host_sp_status_block *def_sb = bp->def_status_blk;
3852 u16 rc = 0;
3853
3854 barrier(); /* status block is written to by the chip */
3855 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3856 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3857 rc |= BNX2X_DEF_SB_ATT_IDX;
3858 }
3859
3860 if (bp->def_idx != def_sb->sp_sb.running_index) {
3861 bp->def_idx = def_sb->sp_sb.running_index;
3862 rc |= BNX2X_DEF_SB_IDX;
3863 }
3864
3865 /* Do not reorder: indices reading should complete before handling */
3866 barrier();
3867 return rc;
3868 }
3869
3870 /*
3871 * slow path service functions
3872 */
3873
3874 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3875 {
3876 int port = BP_PORT(bp);
3877 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3878 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3879 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3880 NIG_REG_MASK_INTERRUPT_PORT0;
3881 u32 aeu_mask;
3882 u32 nig_mask = 0;
3883 u32 reg_addr;
3884
3885 if (bp->attn_state & asserted)
3886 BNX2X_ERR("IGU ERROR\n");
3887
3888 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3889 aeu_mask = REG_RD(bp, aeu_addr);
3890
3891 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3892 aeu_mask, asserted);
3893 aeu_mask &= ~(asserted & 0x3ff);
3894 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3895
3896 REG_WR(bp, aeu_addr, aeu_mask);
3897 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3898
3899 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3900 bp->attn_state |= asserted;
3901 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3902
3903 if (asserted & ATTN_HARD_WIRED_MASK) {
3904 if (asserted & ATTN_NIG_FOR_FUNC) {
3905
3906 bnx2x_acquire_phy_lock(bp);
3907
3908 /* save nig interrupt mask */
3909 nig_mask = REG_RD(bp, nig_int_mask_addr);
3910
3911 /* If nig_mask is not set, no need to call the update
3912 * function.
3913 */
3914 if (nig_mask) {
3915 REG_WR(bp, nig_int_mask_addr, 0);
3916
3917 bnx2x_link_attn(bp);
3918 }
3919
3920 /* handle unicore attn? */
3921 }
3922 if (asserted & ATTN_SW_TIMER_4_FUNC)
3923 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3924
3925 if (asserted & GPIO_2_FUNC)
3926 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3927
3928 if (asserted & GPIO_3_FUNC)
3929 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3930
3931 if (asserted & GPIO_4_FUNC)
3932 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3933
3934 if (port == 0) {
3935 if (asserted & ATTN_GENERAL_ATTN_1) {
3936 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3937 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3938 }
3939 if (asserted & ATTN_GENERAL_ATTN_2) {
3940 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3941 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3942 }
3943 if (asserted & ATTN_GENERAL_ATTN_3) {
3944 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3945 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3946 }
3947 } else {
3948 if (asserted & ATTN_GENERAL_ATTN_4) {
3949 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3950 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3951 }
3952 if (asserted & ATTN_GENERAL_ATTN_5) {
3953 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3954 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3955 }
3956 if (asserted & ATTN_GENERAL_ATTN_6) {
3957 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3958 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3959 }
3960 }
3961
3962 } /* if hardwired */
3963
3964 if (bp->common.int_block == INT_BLOCK_HC)
3965 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3966 COMMAND_REG_ATTN_BITS_SET);
3967 else
3968 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3969
3970 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3971 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3972 REG_WR(bp, reg_addr, asserted);
3973
3974 /* now set back the mask */
3975 if (asserted & ATTN_NIG_FOR_FUNC) {
3976 /* Verify that IGU ack through BAR was written before restoring
3977 * NIG mask. This loop should exit after 2-3 iterations max.
3978 */
3979 if (bp->common.int_block != INT_BLOCK_HC) {
3980 u32 cnt = 0, igu_acked;
3981 do {
3982 igu_acked = REG_RD(bp,
3983 IGU_REG_ATTENTION_ACK_BITS);
3984 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3985 (++cnt < MAX_IGU_ATTN_ACK_TO));
3986 if (!igu_acked)
3987 DP(NETIF_MSG_HW,
3988 "Failed to verify IGU ack on time\n");
3989 barrier();
3990 }
3991 REG_WR(bp, nig_int_mask_addr, nig_mask);
3992 bnx2x_release_phy_lock(bp);
3993 }
3994 }
3995
3996 static void bnx2x_fan_failure(struct bnx2x *bp)
3997 {
3998 int port = BP_PORT(bp);
3999 u32 ext_phy_config;
4000 /* mark the failure */
4001 ext_phy_config =
4002 SHMEM_RD(bp,
4003 dev_info.port_hw_config[port].external_phy_config);
4004
4005 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4006 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4007 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4008 ext_phy_config);
4009
4010 /* log the failure */
4011 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4012 "Please contact OEM Support for assistance\n");
4013
4014 /* Schedule device reset (unload)
4015 * This is due to some boards consuming sufficient power when driver is
4016 * up to overheat if fan fails.
4017 */
4018 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4019 }
4020
4021 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4022 {
4023 int port = BP_PORT(bp);
4024 int reg_offset;
4025 u32 val;
4026
4027 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4028 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4029
4030 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4031
4032 val = REG_RD(bp, reg_offset);
4033 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4034 REG_WR(bp, reg_offset, val);
4035
4036 BNX2X_ERR("SPIO5 hw attention\n");
4037
4038 /* Fan failure attention */
4039 bnx2x_hw_reset_phy(&bp->link_params);
4040 bnx2x_fan_failure(bp);
4041 }
4042
4043 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4044 bnx2x_acquire_phy_lock(bp);
4045 bnx2x_handle_module_detect_int(&bp->link_params);
4046 bnx2x_release_phy_lock(bp);
4047 }
4048
4049 if (attn & HW_INTERRUT_ASSERT_SET_0) {
4050
4051 val = REG_RD(bp, reg_offset);
4052 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4053 REG_WR(bp, reg_offset, val);
4054
4055 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4056 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4057 bnx2x_panic();
4058 }
4059 }
4060
4061 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4062 {
4063 u32 val;
4064
4065 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4066
4067 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4068 BNX2X_ERR("DB hw attention 0x%x\n", val);
4069 /* DORQ discard attention */
4070 if (val & 0x2)
4071 BNX2X_ERR("FATAL error from DORQ\n");
4072 }
4073
4074 if (attn & HW_INTERRUT_ASSERT_SET_1) {
4075
4076 int port = BP_PORT(bp);
4077 int reg_offset;
4078
4079 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4080 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4081
4082 val = REG_RD(bp, reg_offset);
4083 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4084 REG_WR(bp, reg_offset, val);
4085
4086 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4087 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4088 bnx2x_panic();
4089 }
4090 }
4091
4092 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4093 {
4094 u32 val;
4095
4096 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4097
4098 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4099 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4100 /* CFC error attention */
4101 if (val & 0x2)
4102 BNX2X_ERR("FATAL error from CFC\n");
4103 }
4104
4105 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4106 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4107 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4108 /* RQ_USDMDP_FIFO_OVERFLOW */
4109 if (val & 0x18000)
4110 BNX2X_ERR("FATAL error from PXP\n");
4111
4112 if (!CHIP_IS_E1x(bp)) {
4113 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4114 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4115 }
4116 }
4117
4118 if (attn & HW_INTERRUT_ASSERT_SET_2) {
4119
4120 int port = BP_PORT(bp);
4121 int reg_offset;
4122
4123 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4124 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4125
4126 val = REG_RD(bp, reg_offset);
4127 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4128 REG_WR(bp, reg_offset, val);
4129
4130 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4131 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4132 bnx2x_panic();
4133 }
4134 }
4135
4136 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4137 {
4138 u32 val;
4139
4140 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4141
4142 if (attn & BNX2X_PMF_LINK_ASSERT) {
4143 int func = BP_FUNC(bp);
4144
4145 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4146 bnx2x_read_mf_cfg(bp);
4147 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4148 func_mf_config[BP_ABS_FUNC(bp)].config);
4149 val = SHMEM_RD(bp,
4150 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4151 if (val & DRV_STATUS_DCC_EVENT_MASK)
4152 bnx2x_dcc_event(bp,
4153 (val & DRV_STATUS_DCC_EVENT_MASK));
4154
4155 if (val & DRV_STATUS_SET_MF_BW)
4156 bnx2x_set_mf_bw(bp);
4157
4158 if (val & DRV_STATUS_DRV_INFO_REQ)
4159 bnx2x_handle_drv_info_req(bp);
4160
4161 if (val & DRV_STATUS_VF_DISABLED)
4162 bnx2x_schedule_iov_task(bp,
4163 BNX2X_IOV_HANDLE_FLR);
4164
4165 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4166 bnx2x_pmf_update(bp);
4167
4168 if (bp->port.pmf &&
4169 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4170 bp->dcbx_enabled > 0)
4171 /* start dcbx state machine */
4172 bnx2x_dcbx_set_params(bp,
4173 BNX2X_DCBX_STATE_NEG_RECEIVED);
4174 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4175 bnx2x_handle_afex_cmd(bp,
4176 val & DRV_STATUS_AFEX_EVENT_MASK);
4177 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4178 bnx2x_handle_eee_event(bp);
4179 if (bp->link_vars.periodic_flags &
4180 PERIODIC_FLAGS_LINK_EVENT) {
4181 /* sync with link */
4182 bnx2x_acquire_phy_lock(bp);
4183 bp->link_vars.periodic_flags &=
4184 ~PERIODIC_FLAGS_LINK_EVENT;
4185 bnx2x_release_phy_lock(bp);
4186 if (IS_MF(bp))
4187 bnx2x_link_sync_notify(bp);
4188 bnx2x_link_report(bp);
4189 }
4190 /* Always call it here: bnx2x_link_report() will
4191 * prevent the link indication duplication.
4192 */
4193 bnx2x__link_status_update(bp);
4194 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4195
4196 BNX2X_ERR("MC assert!\n");
4197 bnx2x_mc_assert(bp);
4198 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4199 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4200 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4201 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4202 bnx2x_panic();
4203
4204 } else if (attn & BNX2X_MCP_ASSERT) {
4205
4206 BNX2X_ERR("MCP assert!\n");
4207 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4208 bnx2x_fw_dump(bp);
4209
4210 } else
4211 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4212 }
4213
4214 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4215 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4216 if (attn & BNX2X_GRC_TIMEOUT) {
4217 val = CHIP_IS_E1(bp) ? 0 :
4218 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4219 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4220 }
4221 if (attn & BNX2X_GRC_RSV) {
4222 val = CHIP_IS_E1(bp) ? 0 :
4223 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4224 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4225 }
4226 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4227 }
4228 }
4229
4230 /*
4231 * Bits map:
4232 * 0-7 - Engine0 load counter.
4233 * 8-15 - Engine1 load counter.
4234 * 16 - Engine0 RESET_IN_PROGRESS bit.
4235 * 17 - Engine1 RESET_IN_PROGRESS bit.
4236 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4237 * on the engine
4238 * 19 - Engine1 ONE_IS_LOADED.
4239 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4240 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4241 * just the one belonging to its engine).
4242 *
4243 */
4244 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4245
4246 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4247 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4248 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4249 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4250 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4251 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4252 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4253
4254 /*
4255 * Set the GLOBAL_RESET bit.
4256 *
4257 * Should be run under rtnl lock
4258 */
4259 void bnx2x_set_reset_global(struct bnx2x *bp)
4260 {
4261 u32 val;
4262 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4263 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4264 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4265 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4266 }
4267
4268 /*
4269 * Clear the GLOBAL_RESET bit.
4270 *
4271 * Should be run under rtnl lock
4272 */
4273 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4274 {
4275 u32 val;
4276 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4277 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4278 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4279 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4280 }
4281
4282 /*
4283 * Checks the GLOBAL_RESET bit.
4284 *
4285 * should be run under rtnl lock
4286 */
4287 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4288 {
4289 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4290
4291 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4292 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4293 }
4294
4295 /*
4296 * Clear RESET_IN_PROGRESS bit for the current engine.
4297 *
4298 * Should be run under rtnl lock
4299 */
4300 static void bnx2x_set_reset_done(struct bnx2x *bp)
4301 {
4302 u32 val;
4303 u32 bit = BP_PATH(bp) ?
4304 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4305 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4306 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4307
4308 /* Clear the bit */
4309 val &= ~bit;
4310 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4311
4312 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4313 }
4314
4315 /*
4316 * Set RESET_IN_PROGRESS for the current engine.
4317 *
4318 * should be run under rtnl lock
4319 */
4320 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4321 {
4322 u32 val;
4323 u32 bit = BP_PATH(bp) ?
4324 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4325 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4326 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4327
4328 /* Set the bit */
4329 val |= bit;
4330 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4331 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4332 }
4333
4334 /*
4335 * Checks the RESET_IN_PROGRESS bit for the given engine.
4336 * should be run under rtnl lock
4337 */
4338 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4339 {
4340 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4341 u32 bit = engine ?
4342 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4343
4344 /* return false if bit is set */
4345 return (val & bit) ? false : true;
4346 }
4347
4348 /*
4349 * set pf load for the current pf.
4350 *
4351 * should be run under rtnl lock
4352 */
4353 void bnx2x_set_pf_load(struct bnx2x *bp)
4354 {
4355 u32 val1, val;
4356 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4357 BNX2X_PATH0_LOAD_CNT_MASK;
4358 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4359 BNX2X_PATH0_LOAD_CNT_SHIFT;
4360
4361 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4362 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4363
4364 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4365
4366 /* get the current counter value */
4367 val1 = (val & mask) >> shift;
4368
4369 /* set bit of that PF */
4370 val1 |= (1 << bp->pf_num);
4371
4372 /* clear the old value */
4373 val &= ~mask;
4374
4375 /* set the new one */
4376 val |= ((val1 << shift) & mask);
4377
4378 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4379 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4380 }
4381
4382 /**
4383 * bnx2x_clear_pf_load - clear pf load mark
4384 *
4385 * @bp: driver handle
4386 *
4387 * Should be run under rtnl lock.
4388 * Decrements the load counter for the current engine. Returns
4389 * whether other functions are still loaded
4390 */
4391 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4392 {
4393 u32 val1, val;
4394 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4395 BNX2X_PATH0_LOAD_CNT_MASK;
4396 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4397 BNX2X_PATH0_LOAD_CNT_SHIFT;
4398
4399 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4400 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4401 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4402
4403 /* get the current counter value */
4404 val1 = (val & mask) >> shift;
4405
4406 /* clear bit of that PF */
4407 val1 &= ~(1 << bp->pf_num);
4408
4409 /* clear the old value */
4410 val &= ~mask;
4411
4412 /* set the new one */
4413 val |= ((val1 << shift) & mask);
4414
4415 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4416 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4417 return val1 != 0;
4418 }
4419
4420 /*
4421 * Read the load status for the current engine.
4422 *
4423 * should be run under rtnl lock
4424 */
4425 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4426 {
4427 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4428 BNX2X_PATH0_LOAD_CNT_MASK);
4429 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4430 BNX2X_PATH0_LOAD_CNT_SHIFT);
4431 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4432
4433 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4434
4435 val = (val & mask) >> shift;
4436
4437 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4438 engine, val);
4439
4440 return val != 0;
4441 }
4442
4443 static void _print_parity(struct bnx2x *bp, u32 reg)
4444 {
4445 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4446 }
4447
4448 static void _print_next_block(int idx, const char *blk)
4449 {
4450 pr_cont("%s%s", idx ? ", " : "", blk);
4451 }
4452
4453 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4454 int *par_num, bool print)
4455 {
4456 u32 cur_bit;
4457 bool res;
4458 int i;
4459
4460 res = false;
4461
4462 for (i = 0; sig; i++) {
4463 cur_bit = (0x1UL << i);
4464 if (sig & cur_bit) {
4465 res |= true; /* Each bit is real error! */
4466
4467 if (print) {
4468 switch (cur_bit) {
4469 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4470 _print_next_block((*par_num)++, "BRB");
4471 _print_parity(bp,
4472 BRB1_REG_BRB1_PRTY_STS);
4473 break;
4474 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4475 _print_next_block((*par_num)++,
4476 "PARSER");
4477 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4478 break;
4479 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4480 _print_next_block((*par_num)++, "TSDM");
4481 _print_parity(bp,
4482 TSDM_REG_TSDM_PRTY_STS);
4483 break;
4484 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4485 _print_next_block((*par_num)++,
4486 "SEARCHER");
4487 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4488 break;
4489 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4490 _print_next_block((*par_num)++, "TCM");
4491 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4492 break;
4493 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4494 _print_next_block((*par_num)++,
4495 "TSEMI");
4496 _print_parity(bp,
4497 TSEM_REG_TSEM_PRTY_STS_0);
4498 _print_parity(bp,
4499 TSEM_REG_TSEM_PRTY_STS_1);
4500 break;
4501 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4502 _print_next_block((*par_num)++, "XPB");
4503 _print_parity(bp, GRCBASE_XPB +
4504 PB_REG_PB_PRTY_STS);
4505 break;
4506 }
4507 }
4508
4509 /* Clear the bit */
4510 sig &= ~cur_bit;
4511 }
4512 }
4513
4514 return res;
4515 }
4516
4517 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4518 int *par_num, bool *global,
4519 bool print)
4520 {
4521 u32 cur_bit;
4522 bool res;
4523 int i;
4524
4525 res = false;
4526
4527 for (i = 0; sig; i++) {
4528 cur_bit = (0x1UL << i);
4529 if (sig & cur_bit) {
4530 res |= true; /* Each bit is real error! */
4531 switch (cur_bit) {
4532 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4533 if (print) {
4534 _print_next_block((*par_num)++, "PBF");
4535 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4536 }
4537 break;
4538 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4539 if (print) {
4540 _print_next_block((*par_num)++, "QM");
4541 _print_parity(bp, QM_REG_QM_PRTY_STS);
4542 }
4543 break;
4544 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4545 if (print) {
4546 _print_next_block((*par_num)++, "TM");
4547 _print_parity(bp, TM_REG_TM_PRTY_STS);
4548 }
4549 break;
4550 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4551 if (print) {
4552 _print_next_block((*par_num)++, "XSDM");
4553 _print_parity(bp,
4554 XSDM_REG_XSDM_PRTY_STS);
4555 }
4556 break;
4557 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4558 if (print) {
4559 _print_next_block((*par_num)++, "XCM");
4560 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4561 }
4562 break;
4563 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4564 if (print) {
4565 _print_next_block((*par_num)++,
4566 "XSEMI");
4567 _print_parity(bp,
4568 XSEM_REG_XSEM_PRTY_STS_0);
4569 _print_parity(bp,
4570 XSEM_REG_XSEM_PRTY_STS_1);
4571 }
4572 break;
4573 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4574 if (print) {
4575 _print_next_block((*par_num)++,
4576 "DOORBELLQ");
4577 _print_parity(bp,
4578 DORQ_REG_DORQ_PRTY_STS);
4579 }
4580 break;
4581 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4582 if (print) {
4583 _print_next_block((*par_num)++, "NIG");
4584 if (CHIP_IS_E1x(bp)) {
4585 _print_parity(bp,
4586 NIG_REG_NIG_PRTY_STS);
4587 } else {
4588 _print_parity(bp,
4589 NIG_REG_NIG_PRTY_STS_0);
4590 _print_parity(bp,
4591 NIG_REG_NIG_PRTY_STS_1);
4592 }
4593 }
4594 break;
4595 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4596 if (print)
4597 _print_next_block((*par_num)++,
4598 "VAUX PCI CORE");
4599 *global = true;
4600 break;
4601 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4602 if (print) {
4603 _print_next_block((*par_num)++,
4604 "DEBUG");
4605 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4606 }
4607 break;
4608 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4609 if (print) {
4610 _print_next_block((*par_num)++, "USDM");
4611 _print_parity(bp,
4612 USDM_REG_USDM_PRTY_STS);
4613 }
4614 break;
4615 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4616 if (print) {
4617 _print_next_block((*par_num)++, "UCM");
4618 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4619 }
4620 break;
4621 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4622 if (print) {
4623 _print_next_block((*par_num)++,
4624 "USEMI");
4625 _print_parity(bp,
4626 USEM_REG_USEM_PRTY_STS_0);
4627 _print_parity(bp,
4628 USEM_REG_USEM_PRTY_STS_1);
4629 }
4630 break;
4631 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4632 if (print) {
4633 _print_next_block((*par_num)++, "UPB");
4634 _print_parity(bp, GRCBASE_UPB +
4635 PB_REG_PB_PRTY_STS);
4636 }
4637 break;
4638 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4639 if (print) {
4640 _print_next_block((*par_num)++, "CSDM");
4641 _print_parity(bp,
4642 CSDM_REG_CSDM_PRTY_STS);
4643 }
4644 break;
4645 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4646 if (print) {
4647 _print_next_block((*par_num)++, "CCM");
4648 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4649 }
4650 break;
4651 }
4652
4653 /* Clear the bit */
4654 sig &= ~cur_bit;
4655 }
4656 }
4657
4658 return res;
4659 }
4660
4661 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4662 int *par_num, bool print)
4663 {
4664 u32 cur_bit;
4665 bool res;
4666 int i;
4667
4668 res = false;
4669
4670 for (i = 0; sig; i++) {
4671 cur_bit = (0x1UL << i);
4672 if (sig & cur_bit) {
4673 res |= true; /* Each bit is real error! */
4674 if (print) {
4675 switch (cur_bit) {
4676 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4677 _print_next_block((*par_num)++,
4678 "CSEMI");
4679 _print_parity(bp,
4680 CSEM_REG_CSEM_PRTY_STS_0);
4681 _print_parity(bp,
4682 CSEM_REG_CSEM_PRTY_STS_1);
4683 break;
4684 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4685 _print_next_block((*par_num)++, "PXP");
4686 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4687 _print_parity(bp,
4688 PXP2_REG_PXP2_PRTY_STS_0);
4689 _print_parity(bp,
4690 PXP2_REG_PXP2_PRTY_STS_1);
4691 break;
4692 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4693 _print_next_block((*par_num)++,
4694 "PXPPCICLOCKCLIENT");
4695 break;
4696 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4697 _print_next_block((*par_num)++, "CFC");
4698 _print_parity(bp,
4699 CFC_REG_CFC_PRTY_STS);
4700 break;
4701 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4702 _print_next_block((*par_num)++, "CDU");
4703 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4704 break;
4705 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4706 _print_next_block((*par_num)++, "DMAE");
4707 _print_parity(bp,
4708 DMAE_REG_DMAE_PRTY_STS);
4709 break;
4710 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4711 _print_next_block((*par_num)++, "IGU");
4712 if (CHIP_IS_E1x(bp))
4713 _print_parity(bp,
4714 HC_REG_HC_PRTY_STS);
4715 else
4716 _print_parity(bp,
4717 IGU_REG_IGU_PRTY_STS);
4718 break;
4719 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4720 _print_next_block((*par_num)++, "MISC");
4721 _print_parity(bp,
4722 MISC_REG_MISC_PRTY_STS);
4723 break;
4724 }
4725 }
4726
4727 /* Clear the bit */
4728 sig &= ~cur_bit;
4729 }
4730 }
4731
4732 return res;
4733 }
4734
4735 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4736 int *par_num, bool *global,
4737 bool print)
4738 {
4739 bool res = false;
4740 u32 cur_bit;
4741 int i;
4742
4743 for (i = 0; sig; i++) {
4744 cur_bit = (0x1UL << i);
4745 if (sig & cur_bit) {
4746 switch (cur_bit) {
4747 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4748 if (print)
4749 _print_next_block((*par_num)++,
4750 "MCP ROM");
4751 *global = true;
4752 res |= true;
4753 break;
4754 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4755 if (print)
4756 _print_next_block((*par_num)++,
4757 "MCP UMP RX");
4758 *global = true;
4759 res |= true;
4760 break;
4761 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4762 if (print)
4763 _print_next_block((*par_num)++,
4764 "MCP UMP TX");
4765 *global = true;
4766 res |= true;
4767 break;
4768 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4769 if (print)
4770 _print_next_block((*par_num)++,
4771 "MCP SCPAD");
4772 /* clear latched SCPAD PATIRY from MCP */
4773 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4774 1UL << 10);
4775 break;
4776 }
4777
4778 /* Clear the bit */
4779 sig &= ~cur_bit;
4780 }
4781 }
4782
4783 return res;
4784 }
4785
4786 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4787 int *par_num, bool print)
4788 {
4789 u32 cur_bit;
4790 bool res;
4791 int i;
4792
4793 res = false;
4794
4795 for (i = 0; sig; i++) {
4796 cur_bit = (0x1UL << i);
4797 if (sig & cur_bit) {
4798 res |= true; /* Each bit is real error! */
4799 if (print) {
4800 switch (cur_bit) {
4801 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4802 _print_next_block((*par_num)++,
4803 "PGLUE_B");
4804 _print_parity(bp,
4805 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4806 break;
4807 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4808 _print_next_block((*par_num)++, "ATC");
4809 _print_parity(bp,
4810 ATC_REG_ATC_PRTY_STS);
4811 break;
4812 }
4813 }
4814 /* Clear the bit */
4815 sig &= ~cur_bit;
4816 }
4817 }
4818
4819 return res;
4820 }
4821
4822 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4823 u32 *sig)
4824 {
4825 bool res = false;
4826
4827 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4828 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4829 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4830 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4831 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4832 int par_num = 0;
4833 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4834 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4835 sig[0] & HW_PRTY_ASSERT_SET_0,
4836 sig[1] & HW_PRTY_ASSERT_SET_1,
4837 sig[2] & HW_PRTY_ASSERT_SET_2,
4838 sig[3] & HW_PRTY_ASSERT_SET_3,
4839 sig[4] & HW_PRTY_ASSERT_SET_4);
4840 if (print)
4841 netdev_err(bp->dev,
4842 "Parity errors detected in blocks: ");
4843 res |= bnx2x_check_blocks_with_parity0(bp,
4844 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4845 res |= bnx2x_check_blocks_with_parity1(bp,
4846 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4847 res |= bnx2x_check_blocks_with_parity2(bp,
4848 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4849 res |= bnx2x_check_blocks_with_parity3(bp,
4850 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4851 res |= bnx2x_check_blocks_with_parity4(bp,
4852 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4853
4854 if (print)
4855 pr_cont("\n");
4856 }
4857
4858 return res;
4859 }
4860
4861 /**
4862 * bnx2x_chk_parity_attn - checks for parity attentions.
4863 *
4864 * @bp: driver handle
4865 * @global: true if there was a global attention
4866 * @print: show parity attention in syslog
4867 */
4868 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4869 {
4870 struct attn_route attn = { {0} };
4871 int port = BP_PORT(bp);
4872
4873 attn.sig[0] = REG_RD(bp,
4874 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4875 port*4);
4876 attn.sig[1] = REG_RD(bp,
4877 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4878 port*4);
4879 attn.sig[2] = REG_RD(bp,
4880 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4881 port*4);
4882 attn.sig[3] = REG_RD(bp,
4883 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4884 port*4);
4885 /* Since MCP attentions can't be disabled inside the block, we need to
4886 * read AEU registers to see whether they're currently disabled
4887 */
4888 attn.sig[3] &= ((REG_RD(bp,
4889 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4890 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4891 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4892 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4893
4894 if (!CHIP_IS_E1x(bp))
4895 attn.sig[4] = REG_RD(bp,
4896 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4897 port*4);
4898
4899 return bnx2x_parity_attn(bp, global, print, attn.sig);
4900 }
4901
4902 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4903 {
4904 u32 val;
4905 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4906
4907 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4908 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4909 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4910 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4911 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4912 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4913 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4914 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4915 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4916 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4917 if (val &
4918 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4919 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4920 if (val &
4921 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4922 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4923 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4924 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4925 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4926 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4927 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4928 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4929 }
4930 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4931 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4932 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4933 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4934 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4935 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4936 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4937 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4938 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4939 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4940 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4941 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4942 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4943 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4944 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4945 }
4946
4947 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4948 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4949 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4950 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4951 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4952 }
4953 }
4954
4955 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4956 {
4957 struct attn_route attn, *group_mask;
4958 int port = BP_PORT(bp);
4959 int index;
4960 u32 reg_addr;
4961 u32 val;
4962 u32 aeu_mask;
4963 bool global = false;
4964
4965 /* need to take HW lock because MCP or other port might also
4966 try to handle this event */
4967 bnx2x_acquire_alr(bp);
4968
4969 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4970 #ifndef BNX2X_STOP_ON_ERROR
4971 bp->recovery_state = BNX2X_RECOVERY_INIT;
4972 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4973 /* Disable HW interrupts */
4974 bnx2x_int_disable(bp);
4975 /* In case of parity errors don't handle attentions so that
4976 * other function would "see" parity errors.
4977 */
4978 #else
4979 bnx2x_panic();
4980 #endif
4981 bnx2x_release_alr(bp);
4982 return;
4983 }
4984
4985 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4986 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4987 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4988 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4989 if (!CHIP_IS_E1x(bp))
4990 attn.sig[4] =
4991 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4992 else
4993 attn.sig[4] = 0;
4994
4995 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4996 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4997
4998 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4999 if (deasserted & (1 << index)) {
5000 group_mask = &bp->attn_group[index];
5001
5002 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5003 index,
5004 group_mask->sig[0], group_mask->sig[1],
5005 group_mask->sig[2], group_mask->sig[3],
5006 group_mask->sig[4]);
5007
5008 bnx2x_attn_int_deasserted4(bp,
5009 attn.sig[4] & group_mask->sig[4]);
5010 bnx2x_attn_int_deasserted3(bp,
5011 attn.sig[3] & group_mask->sig[3]);
5012 bnx2x_attn_int_deasserted1(bp,
5013 attn.sig[1] & group_mask->sig[1]);
5014 bnx2x_attn_int_deasserted2(bp,
5015 attn.sig[2] & group_mask->sig[2]);
5016 bnx2x_attn_int_deasserted0(bp,
5017 attn.sig[0] & group_mask->sig[0]);
5018 }
5019 }
5020
5021 bnx2x_release_alr(bp);
5022
5023 if (bp->common.int_block == INT_BLOCK_HC)
5024 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5025 COMMAND_REG_ATTN_BITS_CLR);
5026 else
5027 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5028
5029 val = ~deasserted;
5030 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5031 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5032 REG_WR(bp, reg_addr, val);
5033
5034 if (~bp->attn_state & deasserted)
5035 BNX2X_ERR("IGU ERROR\n");
5036
5037 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5038 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5039
5040 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5041 aeu_mask = REG_RD(bp, reg_addr);
5042
5043 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5044 aeu_mask, deasserted);
5045 aeu_mask |= (deasserted & 0x3ff);
5046 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5047
5048 REG_WR(bp, reg_addr, aeu_mask);
5049 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5050
5051 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5052 bp->attn_state &= ~deasserted;
5053 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5054 }
5055
5056 static void bnx2x_attn_int(struct bnx2x *bp)
5057 {
5058 /* read local copy of bits */
5059 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5060 attn_bits);
5061 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5062 attn_bits_ack);
5063 u32 attn_state = bp->attn_state;
5064
5065 /* look for changed bits */
5066 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5067 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5068
5069 DP(NETIF_MSG_HW,
5070 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5071 attn_bits, attn_ack, asserted, deasserted);
5072
5073 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5074 BNX2X_ERR("BAD attention state\n");
5075
5076 /* handle bits that were raised */
5077 if (asserted)
5078 bnx2x_attn_int_asserted(bp, asserted);
5079
5080 if (deasserted)
5081 bnx2x_attn_int_deasserted(bp, deasserted);
5082 }
5083
5084 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5085 u16 index, u8 op, u8 update)
5086 {
5087 u32 igu_addr = bp->igu_base_addr;
5088 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5089 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5090 igu_addr);
5091 }
5092
5093 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5094 {
5095 /* No memory barriers */
5096 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5097 mmiowb(); /* keep prod updates ordered */
5098 }
5099
5100 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5101 union event_ring_elem *elem)
5102 {
5103 u8 err = elem->message.error;
5104
5105 if (!bp->cnic_eth_dev.starting_cid ||
5106 (cid < bp->cnic_eth_dev.starting_cid &&
5107 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5108 return 1;
5109
5110 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5111
5112 if (unlikely(err)) {
5113
5114 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5115 cid);
5116 bnx2x_panic_dump(bp, false);
5117 }
5118 bnx2x_cnic_cfc_comp(bp, cid, err);
5119 return 0;
5120 }
5121
5122 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5123 {
5124 struct bnx2x_mcast_ramrod_params rparam;
5125 int rc;
5126
5127 memset(&rparam, 0, sizeof(rparam));
5128
5129 rparam.mcast_obj = &bp->mcast_obj;
5130
5131 netif_addr_lock_bh(bp->dev);
5132
5133 /* Clear pending state for the last command */
5134 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5135
5136 /* If there are pending mcast commands - send them */
5137 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5138 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5139 if (rc < 0)
5140 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5141 rc);
5142 }
5143
5144 netif_addr_unlock_bh(bp->dev);
5145 }
5146
5147 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5148 union event_ring_elem *elem)
5149 {
5150 unsigned long ramrod_flags = 0;
5151 int rc = 0;
5152 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5153 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5154
5155 /* Always push next commands out, don't wait here */
5156 __set_bit(RAMROD_CONT, &ramrod_flags);
5157
5158 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5159 >> BNX2X_SWCID_SHIFT) {
5160 case BNX2X_FILTER_MAC_PENDING:
5161 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5162 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5163 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5164 else
5165 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5166
5167 break;
5168 case BNX2X_FILTER_MCAST_PENDING:
5169 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5170 /* This is only relevant for 57710 where multicast MACs are
5171 * configured as unicast MACs using the same ramrod.
5172 */
5173 bnx2x_handle_mcast_eqe(bp);
5174 return;
5175 default:
5176 BNX2X_ERR("Unsupported classification command: %d\n",
5177 elem->message.data.eth_event.echo);
5178 return;
5179 }
5180
5181 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5182
5183 if (rc < 0)
5184 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5185 else if (rc > 0)
5186 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5187 }
5188
5189 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5190
5191 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5192 {
5193 netif_addr_lock_bh(bp->dev);
5194
5195 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5196
5197 /* Send rx_mode command again if was requested */
5198 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5199 bnx2x_set_storm_rx_mode(bp);
5200 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5201 &bp->sp_state))
5202 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5203 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5204 &bp->sp_state))
5205 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5206
5207 netif_addr_unlock_bh(bp->dev);
5208 }
5209
5210 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5211 union event_ring_elem *elem)
5212 {
5213 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5214 DP(BNX2X_MSG_SP,
5215 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5216 elem->message.data.vif_list_event.func_bit_map);
5217 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5218 elem->message.data.vif_list_event.func_bit_map);
5219 } else if (elem->message.data.vif_list_event.echo ==
5220 VIF_LIST_RULE_SET) {
5221 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5222 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5223 }
5224 }
5225
5226 /* called with rtnl_lock */
5227 static void bnx2x_after_function_update(struct bnx2x *bp)
5228 {
5229 int q, rc;
5230 struct bnx2x_fastpath *fp;
5231 struct bnx2x_queue_state_params queue_params = {NULL};
5232 struct bnx2x_queue_update_params *q_update_params =
5233 &queue_params.params.update;
5234
5235 /* Send Q update command with afex vlan removal values for all Qs */
5236 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5237
5238 /* set silent vlan removal values according to vlan mode */
5239 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5240 &q_update_params->update_flags);
5241 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5242 &q_update_params->update_flags);
5243 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5244
5245 /* in access mode mark mask and value are 0 to strip all vlans */
5246 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5247 q_update_params->silent_removal_value = 0;
5248 q_update_params->silent_removal_mask = 0;
5249 } else {
5250 q_update_params->silent_removal_value =
5251 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5252 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5253 }
5254
5255 for_each_eth_queue(bp, q) {
5256 /* Set the appropriate Queue object */
5257 fp = &bp->fp[q];
5258 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5259
5260 /* send the ramrod */
5261 rc = bnx2x_queue_state_change(bp, &queue_params);
5262 if (rc < 0)
5263 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5264 q);
5265 }
5266
5267 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5268 fp = &bp->fp[FCOE_IDX(bp)];
5269 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5270
5271 /* clear pending completion bit */
5272 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5273
5274 /* mark latest Q bit */
5275 smp_mb__before_atomic();
5276 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5277 smp_mb__after_atomic();
5278
5279 /* send Q update ramrod for FCoE Q */
5280 rc = bnx2x_queue_state_change(bp, &queue_params);
5281 if (rc < 0)
5282 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5283 q);
5284 } else {
5285 /* If no FCoE ring - ACK MCP now */
5286 bnx2x_link_report(bp);
5287 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5288 }
5289 }
5290
5291 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5292 struct bnx2x *bp, u32 cid)
5293 {
5294 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5295
5296 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5297 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5298 else
5299 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5300 }
5301
5302 static void bnx2x_eq_int(struct bnx2x *bp)
5303 {
5304 u16 hw_cons, sw_cons, sw_prod;
5305 union event_ring_elem *elem;
5306 u8 echo;
5307 u32 cid;
5308 u8 opcode;
5309 int rc, spqe_cnt = 0;
5310 struct bnx2x_queue_sp_obj *q_obj;
5311 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5312 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5313
5314 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5315
5316 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5317 * when we get the next-page we need to adjust so the loop
5318 * condition below will be met. The next element is the size of a
5319 * regular element and hence incrementing by 1
5320 */
5321 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5322 hw_cons++;
5323
5324 /* This function may never run in parallel with itself for a
5325 * specific bp, thus there is no need in "paired" read memory
5326 * barrier here.
5327 */
5328 sw_cons = bp->eq_cons;
5329 sw_prod = bp->eq_prod;
5330
5331 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5332 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5333
5334 for (; sw_cons != hw_cons;
5335 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5336
5337 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5338
5339 rc = bnx2x_iov_eq_sp_event(bp, elem);
5340 if (!rc) {
5341 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5342 rc);
5343 goto next_spqe;
5344 }
5345
5346 /* elem CID originates from FW; actually LE */
5347 cid = SW_CID((__force __le32)
5348 elem->message.data.cfc_del_event.cid);
5349 opcode = elem->message.opcode;
5350
5351 /* handle eq element */
5352 switch (opcode) {
5353 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5354 bnx2x_vf_mbx_schedule(bp,
5355 &elem->message.data.vf_pf_event);
5356 continue;
5357
5358 case EVENT_RING_OPCODE_STAT_QUERY:
5359 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5360 "got statistics comp event %d\n",
5361 bp->stats_comp++);
5362 /* nothing to do with stats comp */
5363 goto next_spqe;
5364
5365 case EVENT_RING_OPCODE_CFC_DEL:
5366 /* handle according to cid range */
5367 /*
5368 * we may want to verify here that the bp state is
5369 * HALTING
5370 */
5371 DP(BNX2X_MSG_SP,
5372 "got delete ramrod for MULTI[%d]\n", cid);
5373
5374 if (CNIC_LOADED(bp) &&
5375 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5376 goto next_spqe;
5377
5378 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5379
5380 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5381 break;
5382
5383 goto next_spqe;
5384
5385 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5386 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5387 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5388 if (f_obj->complete_cmd(bp, f_obj,
5389 BNX2X_F_CMD_TX_STOP))
5390 break;
5391 goto next_spqe;
5392
5393 case EVENT_RING_OPCODE_START_TRAFFIC:
5394 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5395 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5396 if (f_obj->complete_cmd(bp, f_obj,
5397 BNX2X_F_CMD_TX_START))
5398 break;
5399 goto next_spqe;
5400
5401 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5402 echo = elem->message.data.function_update_event.echo;
5403 if (echo == SWITCH_UPDATE) {
5404 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5405 "got FUNC_SWITCH_UPDATE ramrod\n");
5406 if (f_obj->complete_cmd(
5407 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5408 break;
5409
5410 } else {
5411 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5412
5413 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5414 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5415 f_obj->complete_cmd(bp, f_obj,
5416 BNX2X_F_CMD_AFEX_UPDATE);
5417
5418 /* We will perform the Queues update from
5419 * sp_rtnl task as all Queue SP operations
5420 * should run under rtnl_lock.
5421 */
5422 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5423 }
5424
5425 goto next_spqe;
5426
5427 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5428 f_obj->complete_cmd(bp, f_obj,
5429 BNX2X_F_CMD_AFEX_VIFLISTS);
5430 bnx2x_after_afex_vif_lists(bp, elem);
5431 goto next_spqe;
5432 case EVENT_RING_OPCODE_FUNCTION_START:
5433 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5434 "got FUNC_START ramrod\n");
5435 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5436 break;
5437
5438 goto next_spqe;
5439
5440 case EVENT_RING_OPCODE_FUNCTION_STOP:
5441 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5442 "got FUNC_STOP ramrod\n");
5443 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5444 break;
5445
5446 goto next_spqe;
5447 }
5448
5449 switch (opcode | bp->state) {
5450 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5451 BNX2X_STATE_OPEN):
5452 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5453 BNX2X_STATE_OPENING_WAIT4_PORT):
5454 cid = elem->message.data.eth_event.echo &
5455 BNX2X_SWCID_MASK;
5456 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5457 cid);
5458 rss_raw->clear_pending(rss_raw);
5459 break;
5460
5461 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5462 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5463 case (EVENT_RING_OPCODE_SET_MAC |
5464 BNX2X_STATE_CLOSING_WAIT4_HALT):
5465 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5466 BNX2X_STATE_OPEN):
5467 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5468 BNX2X_STATE_DIAG):
5469 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5470 BNX2X_STATE_CLOSING_WAIT4_HALT):
5471 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5472 bnx2x_handle_classification_eqe(bp, elem);
5473 break;
5474
5475 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5476 BNX2X_STATE_OPEN):
5477 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5478 BNX2X_STATE_DIAG):
5479 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5480 BNX2X_STATE_CLOSING_WAIT4_HALT):
5481 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5482 bnx2x_handle_mcast_eqe(bp);
5483 break;
5484
5485 case (EVENT_RING_OPCODE_FILTERS_RULES |
5486 BNX2X_STATE_OPEN):
5487 case (EVENT_RING_OPCODE_FILTERS_RULES |
5488 BNX2X_STATE_DIAG):
5489 case (EVENT_RING_OPCODE_FILTERS_RULES |
5490 BNX2X_STATE_CLOSING_WAIT4_HALT):
5491 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5492 bnx2x_handle_rx_mode_eqe(bp);
5493 break;
5494 default:
5495 /* unknown event log error and continue */
5496 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5497 elem->message.opcode, bp->state);
5498 }
5499 next_spqe:
5500 spqe_cnt++;
5501 } /* for */
5502
5503 smp_mb__before_atomic();
5504 atomic_add(spqe_cnt, &bp->eq_spq_left);
5505
5506 bp->eq_cons = sw_cons;
5507 bp->eq_prod = sw_prod;
5508 /* Make sure that above mem writes were issued towards the memory */
5509 smp_wmb();
5510
5511 /* update producer */
5512 bnx2x_update_eq_prod(bp, bp->eq_prod);
5513 }
5514
5515 static void bnx2x_sp_task(struct work_struct *work)
5516 {
5517 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5518
5519 DP(BNX2X_MSG_SP, "sp task invoked\n");
5520
5521 /* make sure the atomic interrupt_occurred has been written */
5522 smp_rmb();
5523 if (atomic_read(&bp->interrupt_occurred)) {
5524
5525 /* what work needs to be performed? */
5526 u16 status = bnx2x_update_dsb_idx(bp);
5527
5528 DP(BNX2X_MSG_SP, "status %x\n", status);
5529 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5530 atomic_set(&bp->interrupt_occurred, 0);
5531
5532 /* HW attentions */
5533 if (status & BNX2X_DEF_SB_ATT_IDX) {
5534 bnx2x_attn_int(bp);
5535 status &= ~BNX2X_DEF_SB_ATT_IDX;
5536 }
5537
5538 /* SP events: STAT_QUERY and others */
5539 if (status & BNX2X_DEF_SB_IDX) {
5540 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5541
5542 if (FCOE_INIT(bp) &&
5543 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5544 /* Prevent local bottom-halves from running as
5545 * we are going to change the local NAPI list.
5546 */
5547 local_bh_disable();
5548 napi_schedule(&bnx2x_fcoe(bp, napi));
5549 local_bh_enable();
5550 }
5551
5552 /* Handle EQ completions */
5553 bnx2x_eq_int(bp);
5554 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5555 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5556
5557 status &= ~BNX2X_DEF_SB_IDX;
5558 }
5559
5560 /* if status is non zero then perhaps something went wrong */
5561 if (unlikely(status))
5562 DP(BNX2X_MSG_SP,
5563 "got an unknown interrupt! (status 0x%x)\n", status);
5564
5565 /* ack status block only if something was actually handled */
5566 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5567 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5568 }
5569
5570 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5571 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5572 &bp->sp_state)) {
5573 bnx2x_link_report(bp);
5574 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5575 }
5576 }
5577
5578 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5579 {
5580 struct net_device *dev = dev_instance;
5581 struct bnx2x *bp = netdev_priv(dev);
5582
5583 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5584 IGU_INT_DISABLE, 0);
5585
5586 #ifdef BNX2X_STOP_ON_ERROR
5587 if (unlikely(bp->panic))
5588 return IRQ_HANDLED;
5589 #endif
5590
5591 if (CNIC_LOADED(bp)) {
5592 struct cnic_ops *c_ops;
5593
5594 rcu_read_lock();
5595 c_ops = rcu_dereference(bp->cnic_ops);
5596 if (c_ops)
5597 c_ops->cnic_handler(bp->cnic_data, NULL);
5598 rcu_read_unlock();
5599 }
5600
5601 /* schedule sp task to perform default status block work, ack
5602 * attentions and enable interrupts.
5603 */
5604 bnx2x_schedule_sp_task(bp);
5605
5606 return IRQ_HANDLED;
5607 }
5608
5609 /* end of slow path */
5610
5611 void bnx2x_drv_pulse(struct bnx2x *bp)
5612 {
5613 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5614 bp->fw_drv_pulse_wr_seq);
5615 }
5616
5617 static void bnx2x_timer(unsigned long data)
5618 {
5619 struct bnx2x *bp = (struct bnx2x *) data;
5620
5621 if (!netif_running(bp->dev))
5622 return;
5623
5624 if (IS_PF(bp) &&
5625 !BP_NOMCP(bp)) {
5626 int mb_idx = BP_FW_MB_IDX(bp);
5627 u16 drv_pulse;
5628 u16 mcp_pulse;
5629
5630 ++bp->fw_drv_pulse_wr_seq;
5631 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5632 drv_pulse = bp->fw_drv_pulse_wr_seq;
5633 bnx2x_drv_pulse(bp);
5634
5635 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5636 MCP_PULSE_SEQ_MASK);
5637 /* The delta between driver pulse and mcp response
5638 * should not get too big. If the MFW is more than 5 pulses
5639 * behind, we should worry about it enough to generate an error
5640 * log.
5641 */
5642 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5643 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5644 drv_pulse, mcp_pulse);
5645 }
5646
5647 if (bp->state == BNX2X_STATE_OPEN)
5648 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5649
5650 /* sample pf vf bulletin board for new posts from pf */
5651 if (IS_VF(bp))
5652 bnx2x_timer_sriov(bp);
5653
5654 mod_timer(&bp->timer, jiffies + bp->current_interval);
5655 }
5656
5657 /* end of Statistics */
5658
5659 /* nic init */
5660
5661 /*
5662 * nic init service functions
5663 */
5664
5665 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5666 {
5667 u32 i;
5668 if (!(len%4) && !(addr%4))
5669 for (i = 0; i < len; i += 4)
5670 REG_WR(bp, addr + i, fill);
5671 else
5672 for (i = 0; i < len; i++)
5673 REG_WR8(bp, addr + i, fill);
5674 }
5675
5676 /* helper: writes FP SP data to FW - data_size in dwords */
5677 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5678 int fw_sb_id,
5679 u32 *sb_data_p,
5680 u32 data_size)
5681 {
5682 int index;
5683 for (index = 0; index < data_size; index++)
5684 REG_WR(bp, BAR_CSTRORM_INTMEM +
5685 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5686 sizeof(u32)*index,
5687 *(sb_data_p + index));
5688 }
5689
5690 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5691 {
5692 u32 *sb_data_p;
5693 u32 data_size = 0;
5694 struct hc_status_block_data_e2 sb_data_e2;
5695 struct hc_status_block_data_e1x sb_data_e1x;
5696
5697 /* disable the function first */
5698 if (!CHIP_IS_E1x(bp)) {
5699 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5700 sb_data_e2.common.state = SB_DISABLED;
5701 sb_data_e2.common.p_func.vf_valid = false;
5702 sb_data_p = (u32 *)&sb_data_e2;
5703 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5704 } else {
5705 memset(&sb_data_e1x, 0,
5706 sizeof(struct hc_status_block_data_e1x));
5707 sb_data_e1x.common.state = SB_DISABLED;
5708 sb_data_e1x.common.p_func.vf_valid = false;
5709 sb_data_p = (u32 *)&sb_data_e1x;
5710 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5711 }
5712 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5713
5714 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5715 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5716 CSTORM_STATUS_BLOCK_SIZE);
5717 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5718 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5719 CSTORM_SYNC_BLOCK_SIZE);
5720 }
5721
5722 /* helper: writes SP SB data to FW */
5723 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5724 struct hc_sp_status_block_data *sp_sb_data)
5725 {
5726 int func = BP_FUNC(bp);
5727 int i;
5728 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5729 REG_WR(bp, BAR_CSTRORM_INTMEM +
5730 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5731 i*sizeof(u32),
5732 *((u32 *)sp_sb_data + i));
5733 }
5734
5735 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5736 {
5737 int func = BP_FUNC(bp);
5738 struct hc_sp_status_block_data sp_sb_data;
5739 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5740
5741 sp_sb_data.state = SB_DISABLED;
5742 sp_sb_data.p_func.vf_valid = false;
5743
5744 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5745
5746 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5747 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5748 CSTORM_SP_STATUS_BLOCK_SIZE);
5749 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5750 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5751 CSTORM_SP_SYNC_BLOCK_SIZE);
5752 }
5753
5754 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5755 int igu_sb_id, int igu_seg_id)
5756 {
5757 hc_sm->igu_sb_id = igu_sb_id;
5758 hc_sm->igu_seg_id = igu_seg_id;
5759 hc_sm->timer_value = 0xFF;
5760 hc_sm->time_to_expire = 0xFFFFFFFF;
5761 }
5762
5763 /* allocates state machine ids. */
5764 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5765 {
5766 /* zero out state machine indices */
5767 /* rx indices */
5768 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5769
5770 /* tx indices */
5771 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5772 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5773 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5774 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5775
5776 /* map indices */
5777 /* rx indices */
5778 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5779 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5780
5781 /* tx indices */
5782 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5783 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5784 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5785 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5786 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5787 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5788 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5789 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5790 }
5791
5792 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5793 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5794 {
5795 int igu_seg_id;
5796
5797 struct hc_status_block_data_e2 sb_data_e2;
5798 struct hc_status_block_data_e1x sb_data_e1x;
5799 struct hc_status_block_sm *hc_sm_p;
5800 int data_size;
5801 u32 *sb_data_p;
5802
5803 if (CHIP_INT_MODE_IS_BC(bp))
5804 igu_seg_id = HC_SEG_ACCESS_NORM;
5805 else
5806 igu_seg_id = IGU_SEG_ACCESS_NORM;
5807
5808 bnx2x_zero_fp_sb(bp, fw_sb_id);
5809
5810 if (!CHIP_IS_E1x(bp)) {
5811 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5812 sb_data_e2.common.state = SB_ENABLED;
5813 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5814 sb_data_e2.common.p_func.vf_id = vfid;
5815 sb_data_e2.common.p_func.vf_valid = vf_valid;
5816 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5817 sb_data_e2.common.same_igu_sb_1b = true;
5818 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5819 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5820 hc_sm_p = sb_data_e2.common.state_machine;
5821 sb_data_p = (u32 *)&sb_data_e2;
5822 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5823 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5824 } else {
5825 memset(&sb_data_e1x, 0,
5826 sizeof(struct hc_status_block_data_e1x));
5827 sb_data_e1x.common.state = SB_ENABLED;
5828 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5829 sb_data_e1x.common.p_func.vf_id = 0xff;
5830 sb_data_e1x.common.p_func.vf_valid = false;
5831 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5832 sb_data_e1x.common.same_igu_sb_1b = true;
5833 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5834 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5835 hc_sm_p = sb_data_e1x.common.state_machine;
5836 sb_data_p = (u32 *)&sb_data_e1x;
5837 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5838 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5839 }
5840
5841 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5842 igu_sb_id, igu_seg_id);
5843 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5844 igu_sb_id, igu_seg_id);
5845
5846 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5847
5848 /* write indices to HW - PCI guarantees endianity of regpairs */
5849 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5850 }
5851
5852 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5853 u16 tx_usec, u16 rx_usec)
5854 {
5855 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5856 false, rx_usec);
5857 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5858 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5859 tx_usec);
5860 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5861 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5862 tx_usec);
5863 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5864 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5865 tx_usec);
5866 }
5867
5868 static void bnx2x_init_def_sb(struct bnx2x *bp)
5869 {
5870 struct host_sp_status_block *def_sb = bp->def_status_blk;
5871 dma_addr_t mapping = bp->def_status_blk_mapping;
5872 int igu_sp_sb_index;
5873 int igu_seg_id;
5874 int port = BP_PORT(bp);
5875 int func = BP_FUNC(bp);
5876 int reg_offset, reg_offset_en5;
5877 u64 section;
5878 int index;
5879 struct hc_sp_status_block_data sp_sb_data;
5880 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5881
5882 if (CHIP_INT_MODE_IS_BC(bp)) {
5883 igu_sp_sb_index = DEF_SB_IGU_ID;
5884 igu_seg_id = HC_SEG_ACCESS_DEF;
5885 } else {
5886 igu_sp_sb_index = bp->igu_dsb_id;
5887 igu_seg_id = IGU_SEG_ACCESS_DEF;
5888 }
5889
5890 /* ATTN */
5891 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5892 atten_status_block);
5893 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5894
5895 bp->attn_state = 0;
5896
5897 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5898 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5899 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5900 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5901 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5902 int sindex;
5903 /* take care of sig[0]..sig[4] */
5904 for (sindex = 0; sindex < 4; sindex++)
5905 bp->attn_group[index].sig[sindex] =
5906 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5907
5908 if (!CHIP_IS_E1x(bp))
5909 /*
5910 * enable5 is separate from the rest of the registers,
5911 * and therefore the address skip is 4
5912 * and not 16 between the different groups
5913 */
5914 bp->attn_group[index].sig[4] = REG_RD(bp,
5915 reg_offset_en5 + 0x4*index);
5916 else
5917 bp->attn_group[index].sig[4] = 0;
5918 }
5919
5920 if (bp->common.int_block == INT_BLOCK_HC) {
5921 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5922 HC_REG_ATTN_MSG0_ADDR_L);
5923
5924 REG_WR(bp, reg_offset, U64_LO(section));
5925 REG_WR(bp, reg_offset + 4, U64_HI(section));
5926 } else if (!CHIP_IS_E1x(bp)) {
5927 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5928 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5929 }
5930
5931 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5932 sp_sb);
5933
5934 bnx2x_zero_sp_sb(bp);
5935
5936 /* PCI guarantees endianity of regpairs */
5937 sp_sb_data.state = SB_ENABLED;
5938 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5939 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5940 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5941 sp_sb_data.igu_seg_id = igu_seg_id;
5942 sp_sb_data.p_func.pf_id = func;
5943 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5944 sp_sb_data.p_func.vf_id = 0xff;
5945
5946 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5947
5948 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5949 }
5950
5951 void bnx2x_update_coalesce(struct bnx2x *bp)
5952 {
5953 int i;
5954
5955 for_each_eth_queue(bp, i)
5956 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5957 bp->tx_ticks, bp->rx_ticks);
5958 }
5959
5960 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5961 {
5962 spin_lock_init(&bp->spq_lock);
5963 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5964
5965 bp->spq_prod_idx = 0;
5966 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5967 bp->spq_prod_bd = bp->spq;
5968 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5969 }
5970
5971 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5972 {
5973 int i;
5974 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5975 union event_ring_elem *elem =
5976 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5977
5978 elem->next_page.addr.hi =
5979 cpu_to_le32(U64_HI(bp->eq_mapping +
5980 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5981 elem->next_page.addr.lo =
5982 cpu_to_le32(U64_LO(bp->eq_mapping +
5983 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5984 }
5985 bp->eq_cons = 0;
5986 bp->eq_prod = NUM_EQ_DESC;
5987 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5988 /* we want a warning message before it gets wrought... */
5989 atomic_set(&bp->eq_spq_left,
5990 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5991 }
5992
5993 /* called with netif_addr_lock_bh() */
5994 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5995 unsigned long rx_mode_flags,
5996 unsigned long rx_accept_flags,
5997 unsigned long tx_accept_flags,
5998 unsigned long ramrod_flags)
5999 {
6000 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6001 int rc;
6002
6003 memset(&ramrod_param, 0, sizeof(ramrod_param));
6004
6005 /* Prepare ramrod parameters */
6006 ramrod_param.cid = 0;
6007 ramrod_param.cl_id = cl_id;
6008 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6009 ramrod_param.func_id = BP_FUNC(bp);
6010
6011 ramrod_param.pstate = &bp->sp_state;
6012 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6013
6014 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6015 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6016
6017 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6018
6019 ramrod_param.ramrod_flags = ramrod_flags;
6020 ramrod_param.rx_mode_flags = rx_mode_flags;
6021
6022 ramrod_param.rx_accept_flags = rx_accept_flags;
6023 ramrod_param.tx_accept_flags = tx_accept_flags;
6024
6025 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6026 if (rc < 0) {
6027 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6028 return rc;
6029 }
6030
6031 return 0;
6032 }
6033
6034 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6035 unsigned long *rx_accept_flags,
6036 unsigned long *tx_accept_flags)
6037 {
6038 /* Clear the flags first */
6039 *rx_accept_flags = 0;
6040 *tx_accept_flags = 0;
6041
6042 switch (rx_mode) {
6043 case BNX2X_RX_MODE_NONE:
6044 /*
6045 * 'drop all' supersedes any accept flags that may have been
6046 * passed to the function.
6047 */
6048 break;
6049 case BNX2X_RX_MODE_NORMAL:
6050 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6051 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6052 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6053
6054 /* internal switching mode */
6055 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6056 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6057 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6058
6059 break;
6060 case BNX2X_RX_MODE_ALLMULTI:
6061 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6062 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6063 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6064
6065 /* internal switching mode */
6066 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6067 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6068 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6069
6070 break;
6071 case BNX2X_RX_MODE_PROMISC:
6072 /* According to definition of SI mode, iface in promisc mode
6073 * should receive matched and unmatched (in resolution of port)
6074 * unicast packets.
6075 */
6076 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6077 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6078 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6079 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6080
6081 /* internal switching mode */
6082 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6083 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6084
6085 if (IS_MF_SI(bp))
6086 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6087 else
6088 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6089
6090 break;
6091 default:
6092 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6093 return -EINVAL;
6094 }
6095
6096 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6097 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
6098 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6099 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6100 }
6101
6102 return 0;
6103 }
6104
6105 /* called with netif_addr_lock_bh() */
6106 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6107 {
6108 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6109 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6110 int rc;
6111
6112 if (!NO_FCOE(bp))
6113 /* Configure rx_mode of FCoE Queue */
6114 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6115
6116 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6117 &tx_accept_flags);
6118 if (rc)
6119 return rc;
6120
6121 __set_bit(RAMROD_RX, &ramrod_flags);
6122 __set_bit(RAMROD_TX, &ramrod_flags);
6123
6124 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6125 rx_accept_flags, tx_accept_flags,
6126 ramrod_flags);
6127 }
6128
6129 static void bnx2x_init_internal_common(struct bnx2x *bp)
6130 {
6131 int i;
6132
6133 /* Zero this manually as its initialization is
6134 currently missing in the initTool */
6135 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6136 REG_WR(bp, BAR_USTRORM_INTMEM +
6137 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6138 if (!CHIP_IS_E1x(bp)) {
6139 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6140 CHIP_INT_MODE_IS_BC(bp) ?
6141 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6142 }
6143 }
6144
6145 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6146 {
6147 switch (load_code) {
6148 case FW_MSG_CODE_DRV_LOAD_COMMON:
6149 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6150 bnx2x_init_internal_common(bp);
6151 /* no break */
6152
6153 case FW_MSG_CODE_DRV_LOAD_PORT:
6154 /* nothing to do */
6155 /* no break */
6156
6157 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6158 /* internal memory per function is
6159 initialized inside bnx2x_pf_init */
6160 break;
6161
6162 default:
6163 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6164 break;
6165 }
6166 }
6167
6168 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6169 {
6170 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6171 }
6172
6173 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6174 {
6175 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6176 }
6177
6178 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6179 {
6180 if (CHIP_IS_E1x(fp->bp))
6181 return BP_L_ID(fp->bp) + fp->index;
6182 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6183 return bnx2x_fp_igu_sb_id(fp);
6184 }
6185
6186 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6187 {
6188 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6189 u8 cos;
6190 unsigned long q_type = 0;
6191 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6192 fp->rx_queue = fp_idx;
6193 fp->cid = fp_idx;
6194 fp->cl_id = bnx2x_fp_cl_id(fp);
6195 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6196 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6197 /* qZone id equals to FW (per path) client id */
6198 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6199
6200 /* init shortcut */
6201 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6202
6203 /* Setup SB indices */
6204 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6205
6206 /* Configure Queue State object */
6207 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6208 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6209
6210 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6211
6212 /* init tx data */
6213 for_each_cos_in_tx_queue(fp, cos) {
6214 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6215 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6216 FP_COS_TO_TXQ(fp, cos, bp),
6217 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6218 cids[cos] = fp->txdata_ptr[cos]->cid;
6219 }
6220
6221 /* nothing more for vf to do here */
6222 if (IS_VF(bp))
6223 return;
6224
6225 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6226 fp->fw_sb_id, fp->igu_sb_id);
6227 bnx2x_update_fpsb_idx(fp);
6228 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6229 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6230 bnx2x_sp_mapping(bp, q_rdata), q_type);
6231
6232 /**
6233 * Configure classification DBs: Always enable Tx switching
6234 */
6235 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6236
6237 DP(NETIF_MSG_IFUP,
6238 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6239 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6240 fp->igu_sb_id);
6241 }
6242
6243 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6244 {
6245 int i;
6246
6247 for (i = 1; i <= NUM_TX_RINGS; i++) {
6248 struct eth_tx_next_bd *tx_next_bd =
6249 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6250
6251 tx_next_bd->addr_hi =
6252 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6253 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6254 tx_next_bd->addr_lo =
6255 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6256 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6257 }
6258
6259 *txdata->tx_cons_sb = cpu_to_le16(0);
6260
6261 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6262 txdata->tx_db.data.zero_fill1 = 0;
6263 txdata->tx_db.data.prod = 0;
6264
6265 txdata->tx_pkt_prod = 0;
6266 txdata->tx_pkt_cons = 0;
6267 txdata->tx_bd_prod = 0;
6268 txdata->tx_bd_cons = 0;
6269 txdata->tx_pkt = 0;
6270 }
6271
6272 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6273 {
6274 int i;
6275
6276 for_each_tx_queue_cnic(bp, i)
6277 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6278 }
6279
6280 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6281 {
6282 int i;
6283 u8 cos;
6284
6285 for_each_eth_queue(bp, i)
6286 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6287 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6288 }
6289
6290 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6291 {
6292 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6293 unsigned long q_type = 0;
6294
6295 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6296 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6297 BNX2X_FCOE_ETH_CL_ID_IDX);
6298 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6299 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6300 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6301 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6302 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6303 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6304 fp);
6305
6306 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6307
6308 /* qZone id equals to FW (per path) client id */
6309 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6310 /* init shortcut */
6311 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6312 bnx2x_rx_ustorm_prods_offset(fp);
6313
6314 /* Configure Queue State object */
6315 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6316 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6317
6318 /* No multi-CoS for FCoE L2 client */
6319 BUG_ON(fp->max_cos != 1);
6320
6321 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6322 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6323 bnx2x_sp_mapping(bp, q_rdata), q_type);
6324
6325 DP(NETIF_MSG_IFUP,
6326 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6327 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6328 fp->igu_sb_id);
6329 }
6330
6331 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6332 {
6333 if (!NO_FCOE(bp))
6334 bnx2x_init_fcoe_fp(bp);
6335
6336 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6337 BNX2X_VF_ID_INVALID, false,
6338 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6339
6340 /* ensure status block indices were read */
6341 rmb();
6342 bnx2x_init_rx_rings_cnic(bp);
6343 bnx2x_init_tx_rings_cnic(bp);
6344
6345 /* flush all */
6346 mb();
6347 mmiowb();
6348 }
6349
6350 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6351 {
6352 int i;
6353
6354 /* Setup NIC internals and enable interrupts */
6355 for_each_eth_queue(bp, i)
6356 bnx2x_init_eth_fp(bp, i);
6357
6358 /* ensure status block indices were read */
6359 rmb();
6360 bnx2x_init_rx_rings(bp);
6361 bnx2x_init_tx_rings(bp);
6362
6363 if (IS_PF(bp)) {
6364 /* Initialize MOD_ABS interrupts */
6365 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6366 bp->common.shmem_base,
6367 bp->common.shmem2_base, BP_PORT(bp));
6368
6369 /* initialize the default status block and sp ring */
6370 bnx2x_init_def_sb(bp);
6371 bnx2x_update_dsb_idx(bp);
6372 bnx2x_init_sp_ring(bp);
6373 } else {
6374 bnx2x_memset_stats(bp);
6375 }
6376 }
6377
6378 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6379 {
6380 bnx2x_init_eq_ring(bp);
6381 bnx2x_init_internal(bp, load_code);
6382 bnx2x_pf_init(bp);
6383 bnx2x_stats_init(bp);
6384
6385 /* flush all before enabling interrupts */
6386 mb();
6387 mmiowb();
6388
6389 bnx2x_int_enable(bp);
6390
6391 /* Check for SPIO5 */
6392 bnx2x_attn_int_deasserted0(bp,
6393 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6394 AEU_INPUTS_ATTN_BITS_SPIO5);
6395 }
6396
6397 /* gzip service functions */
6398 static int bnx2x_gunzip_init(struct bnx2x *bp)
6399 {
6400 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6401 &bp->gunzip_mapping, GFP_KERNEL);
6402 if (bp->gunzip_buf == NULL)
6403 goto gunzip_nomem1;
6404
6405 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6406 if (bp->strm == NULL)
6407 goto gunzip_nomem2;
6408
6409 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6410 if (bp->strm->workspace == NULL)
6411 goto gunzip_nomem3;
6412
6413 return 0;
6414
6415 gunzip_nomem3:
6416 kfree(bp->strm);
6417 bp->strm = NULL;
6418
6419 gunzip_nomem2:
6420 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6421 bp->gunzip_mapping);
6422 bp->gunzip_buf = NULL;
6423
6424 gunzip_nomem1:
6425 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6426 return -ENOMEM;
6427 }
6428
6429 static void bnx2x_gunzip_end(struct bnx2x *bp)
6430 {
6431 if (bp->strm) {
6432 vfree(bp->strm->workspace);
6433 kfree(bp->strm);
6434 bp->strm = NULL;
6435 }
6436
6437 if (bp->gunzip_buf) {
6438 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6439 bp->gunzip_mapping);
6440 bp->gunzip_buf = NULL;
6441 }
6442 }
6443
6444 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6445 {
6446 int n, rc;
6447
6448 /* check gzip header */
6449 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6450 BNX2X_ERR("Bad gzip header\n");
6451 return -EINVAL;
6452 }
6453
6454 n = 10;
6455
6456 #define FNAME 0x8
6457
6458 if (zbuf[3] & FNAME)
6459 while ((zbuf[n++] != 0) && (n < len));
6460
6461 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6462 bp->strm->avail_in = len - n;
6463 bp->strm->next_out = bp->gunzip_buf;
6464 bp->strm->avail_out = FW_BUF_SIZE;
6465
6466 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6467 if (rc != Z_OK)
6468 return rc;
6469
6470 rc = zlib_inflate(bp->strm, Z_FINISH);
6471 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6472 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6473 bp->strm->msg);
6474
6475 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6476 if (bp->gunzip_outlen & 0x3)
6477 netdev_err(bp->dev,
6478 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6479 bp->gunzip_outlen);
6480 bp->gunzip_outlen >>= 2;
6481
6482 zlib_inflateEnd(bp->strm);
6483
6484 if (rc == Z_STREAM_END)
6485 return 0;
6486
6487 return rc;
6488 }
6489
6490 /* nic load/unload */
6491
6492 /*
6493 * General service functions
6494 */
6495
6496 /* send a NIG loopback debug packet */
6497 static void bnx2x_lb_pckt(struct bnx2x *bp)
6498 {
6499 u32 wb_write[3];
6500
6501 /* Ethernet source and destination addresses */
6502 wb_write[0] = 0x55555555;
6503 wb_write[1] = 0x55555555;
6504 wb_write[2] = 0x20; /* SOP */
6505 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6506
6507 /* NON-IP protocol */
6508 wb_write[0] = 0x09000000;
6509 wb_write[1] = 0x55555555;
6510 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6511 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6512 }
6513
6514 /* some of the internal memories
6515 * are not directly readable from the driver
6516 * to test them we send debug packets
6517 */
6518 static int bnx2x_int_mem_test(struct bnx2x *bp)
6519 {
6520 int factor;
6521 int count, i;
6522 u32 val = 0;
6523
6524 if (CHIP_REV_IS_FPGA(bp))
6525 factor = 120;
6526 else if (CHIP_REV_IS_EMUL(bp))
6527 factor = 200;
6528 else
6529 factor = 1;
6530
6531 /* Disable inputs of parser neighbor blocks */
6532 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6533 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6534 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6535 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6536
6537 /* Write 0 to parser credits for CFC search request */
6538 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6539
6540 /* send Ethernet packet */
6541 bnx2x_lb_pckt(bp);
6542
6543 /* TODO do i reset NIG statistic? */
6544 /* Wait until NIG register shows 1 packet of size 0x10 */
6545 count = 1000 * factor;
6546 while (count) {
6547
6548 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6549 val = *bnx2x_sp(bp, wb_data[0]);
6550 if (val == 0x10)
6551 break;
6552
6553 usleep_range(10000, 20000);
6554 count--;
6555 }
6556 if (val != 0x10) {
6557 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6558 return -1;
6559 }
6560
6561 /* Wait until PRS register shows 1 packet */
6562 count = 1000 * factor;
6563 while (count) {
6564 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6565 if (val == 1)
6566 break;
6567
6568 usleep_range(10000, 20000);
6569 count--;
6570 }
6571 if (val != 0x1) {
6572 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6573 return -2;
6574 }
6575
6576 /* Reset and init BRB, PRS */
6577 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6578 msleep(50);
6579 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6580 msleep(50);
6581 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6582 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6583
6584 DP(NETIF_MSG_HW, "part2\n");
6585
6586 /* Disable inputs of parser neighbor blocks */
6587 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6588 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6589 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6590 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6591
6592 /* Write 0 to parser credits for CFC search request */
6593 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6594
6595 /* send 10 Ethernet packets */
6596 for (i = 0; i < 10; i++)
6597 bnx2x_lb_pckt(bp);
6598
6599 /* Wait until NIG register shows 10 + 1
6600 packets of size 11*0x10 = 0xb0 */
6601 count = 1000 * factor;
6602 while (count) {
6603
6604 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6605 val = *bnx2x_sp(bp, wb_data[0]);
6606 if (val == 0xb0)
6607 break;
6608
6609 usleep_range(10000, 20000);
6610 count--;
6611 }
6612 if (val != 0xb0) {
6613 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6614 return -3;
6615 }
6616
6617 /* Wait until PRS register shows 2 packets */
6618 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6619 if (val != 2)
6620 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6621
6622 /* Write 1 to parser credits for CFC search request */
6623 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6624
6625 /* Wait until PRS register shows 3 packets */
6626 msleep(10 * factor);
6627 /* Wait until NIG register shows 1 packet of size 0x10 */
6628 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6629 if (val != 3)
6630 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6631
6632 /* clear NIG EOP FIFO */
6633 for (i = 0; i < 11; i++)
6634 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6635 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6636 if (val != 1) {
6637 BNX2X_ERR("clear of NIG failed\n");
6638 return -4;
6639 }
6640
6641 /* Reset and init BRB, PRS, NIG */
6642 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6643 msleep(50);
6644 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6645 msleep(50);
6646 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6647 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6648 if (!CNIC_SUPPORT(bp))
6649 /* set NIC mode */
6650 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6651
6652 /* Enable inputs of parser neighbor blocks */
6653 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6654 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6655 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6656 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6657
6658 DP(NETIF_MSG_HW, "done\n");
6659
6660 return 0; /* OK */
6661 }
6662
6663 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6664 {
6665 u32 val;
6666
6667 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6668 if (!CHIP_IS_E1x(bp))
6669 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6670 else
6671 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6672 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6673 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6674 /*
6675 * mask read length error interrupts in brb for parser
6676 * (parsing unit and 'checksum and crc' unit)
6677 * these errors are legal (PU reads fixed length and CAC can cause
6678 * read length error on truncated packets)
6679 */
6680 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6681 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6682 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6683 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6684 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6685 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6686 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6687 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6688 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6689 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6690 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6691 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6692 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6693 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6694 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6695 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6696 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6697 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6698 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6699
6700 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6701 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6702 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6703 if (!CHIP_IS_E1x(bp))
6704 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6705 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6706 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6707
6708 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6709 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6710 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6711 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6712
6713 if (!CHIP_IS_E1x(bp))
6714 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6715 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6716
6717 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6718 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6719 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6720 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6721 }
6722
6723 static void bnx2x_reset_common(struct bnx2x *bp)
6724 {
6725 u32 val = 0x1400;
6726
6727 /* reset_common */
6728 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6729 0xd3ffff7f);
6730
6731 if (CHIP_IS_E3(bp)) {
6732 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6733 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6734 }
6735
6736 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6737 }
6738
6739 static void bnx2x_setup_dmae(struct bnx2x *bp)
6740 {
6741 bp->dmae_ready = 0;
6742 spin_lock_init(&bp->dmae_lock);
6743 }
6744
6745 static void bnx2x_init_pxp(struct bnx2x *bp)
6746 {
6747 u16 devctl;
6748 int r_order, w_order;
6749
6750 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6751 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6752 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6753 if (bp->mrrs == -1)
6754 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6755 else {
6756 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6757 r_order = bp->mrrs;
6758 }
6759
6760 bnx2x_init_pxp_arb(bp, r_order, w_order);
6761 }
6762
6763 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6764 {
6765 int is_required;
6766 u32 val;
6767 int port;
6768
6769 if (BP_NOMCP(bp))
6770 return;
6771
6772 is_required = 0;
6773 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6774 SHARED_HW_CFG_FAN_FAILURE_MASK;
6775
6776 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6777 is_required = 1;
6778
6779 /*
6780 * The fan failure mechanism is usually related to the PHY type since
6781 * the power consumption of the board is affected by the PHY. Currently,
6782 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6783 */
6784 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6785 for (port = PORT_0; port < PORT_MAX; port++) {
6786 is_required |=
6787 bnx2x_fan_failure_det_req(
6788 bp,
6789 bp->common.shmem_base,
6790 bp->common.shmem2_base,
6791 port);
6792 }
6793
6794 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6795
6796 if (is_required == 0)
6797 return;
6798
6799 /* Fan failure is indicated by SPIO 5 */
6800 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6801
6802 /* set to active low mode */
6803 val = REG_RD(bp, MISC_REG_SPIO_INT);
6804 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6805 REG_WR(bp, MISC_REG_SPIO_INT, val);
6806
6807 /* enable interrupt to signal the IGU */
6808 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6809 val |= MISC_SPIO_SPIO5;
6810 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6811 }
6812
6813 void bnx2x_pf_disable(struct bnx2x *bp)
6814 {
6815 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6816 val &= ~IGU_PF_CONF_FUNC_EN;
6817
6818 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6819 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6820 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6821 }
6822
6823 static void bnx2x__common_init_phy(struct bnx2x *bp)
6824 {
6825 u32 shmem_base[2], shmem2_base[2];
6826 /* Avoid common init in case MFW supports LFA */
6827 if (SHMEM2_RD(bp, size) >
6828 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6829 return;
6830 shmem_base[0] = bp->common.shmem_base;
6831 shmem2_base[0] = bp->common.shmem2_base;
6832 if (!CHIP_IS_E1x(bp)) {
6833 shmem_base[1] =
6834 SHMEM2_RD(bp, other_shmem_base_addr);
6835 shmem2_base[1] =
6836 SHMEM2_RD(bp, other_shmem2_base_addr);
6837 }
6838 bnx2x_acquire_phy_lock(bp);
6839 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6840 bp->common.chip_id);
6841 bnx2x_release_phy_lock(bp);
6842 }
6843
6844 /**
6845 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6846 *
6847 * @bp: driver handle
6848 */
6849 static int bnx2x_init_hw_common(struct bnx2x *bp)
6850 {
6851 u32 val;
6852
6853 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
6854
6855 /*
6856 * take the RESET lock to protect undi_unload flow from accessing
6857 * registers while we're resetting the chip
6858 */
6859 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6860
6861 bnx2x_reset_common(bp);
6862 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6863
6864 val = 0xfffc;
6865 if (CHIP_IS_E3(bp)) {
6866 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6867 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6868 }
6869 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6870
6871 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6872
6873 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6874
6875 if (!CHIP_IS_E1x(bp)) {
6876 u8 abs_func_id;
6877
6878 /**
6879 * 4-port mode or 2-port mode we need to turn of master-enable
6880 * for everyone, after that, turn it back on for self.
6881 * so, we disregard multi-function or not, and always disable
6882 * for all functions on the given path, this means 0,2,4,6 for
6883 * path 0 and 1,3,5,7 for path 1
6884 */
6885 for (abs_func_id = BP_PATH(bp);
6886 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6887 if (abs_func_id == BP_ABS_FUNC(bp)) {
6888 REG_WR(bp,
6889 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6890 1);
6891 continue;
6892 }
6893
6894 bnx2x_pretend_func(bp, abs_func_id);
6895 /* clear pf enable */
6896 bnx2x_pf_disable(bp);
6897 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6898 }
6899 }
6900
6901 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6902 if (CHIP_IS_E1(bp)) {
6903 /* enable HW interrupt from PXP on USDM overflow
6904 bit 16 on INT_MASK_0 */
6905 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6906 }
6907
6908 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6909 bnx2x_init_pxp(bp);
6910
6911 #ifdef __BIG_ENDIAN
6912 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6913 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6914 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6915 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6916 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6917 /* make sure this value is 0 */
6918 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6919
6920 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6921 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6922 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6923 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6924 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6925 #endif
6926
6927 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6928
6929 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6930 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6931
6932 /* let the HW do it's magic ... */
6933 msleep(100);
6934 /* finish PXP init */
6935 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6936 if (val != 1) {
6937 BNX2X_ERR("PXP2 CFG failed\n");
6938 return -EBUSY;
6939 }
6940 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6941 if (val != 1) {
6942 BNX2X_ERR("PXP2 RD_INIT failed\n");
6943 return -EBUSY;
6944 }
6945
6946 /* Timers bug workaround E2 only. We need to set the entire ILT to
6947 * have entries with value "0" and valid bit on.
6948 * This needs to be done by the first PF that is loaded in a path
6949 * (i.e. common phase)
6950 */
6951 if (!CHIP_IS_E1x(bp)) {
6952 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6953 * (i.e. vnic3) to start even if it is marked as "scan-off".
6954 * This occurs when a different function (func2,3) is being marked
6955 * as "scan-off". Real-life scenario for example: if a driver is being
6956 * load-unloaded while func6,7 are down. This will cause the timer to access
6957 * the ilt, translate to a logical address and send a request to read/write.
6958 * Since the ilt for the function that is down is not valid, this will cause
6959 * a translation error which is unrecoverable.
6960 * The Workaround is intended to make sure that when this happens nothing fatal
6961 * will occur. The workaround:
6962 * 1. First PF driver which loads on a path will:
6963 * a. After taking the chip out of reset, by using pretend,
6964 * it will write "0" to the following registers of
6965 * the other vnics.
6966 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6967 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6968 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6969 * And for itself it will write '1' to
6970 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6971 * dmae-operations (writing to pram for example.)
6972 * note: can be done for only function 6,7 but cleaner this
6973 * way.
6974 * b. Write zero+valid to the entire ILT.
6975 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6976 * VNIC3 (of that port). The range allocated will be the
6977 * entire ILT. This is needed to prevent ILT range error.
6978 * 2. Any PF driver load flow:
6979 * a. ILT update with the physical addresses of the allocated
6980 * logical pages.
6981 * b. Wait 20msec. - note that this timeout is needed to make
6982 * sure there are no requests in one of the PXP internal
6983 * queues with "old" ILT addresses.
6984 * c. PF enable in the PGLC.
6985 * d. Clear the was_error of the PF in the PGLC. (could have
6986 * occurred while driver was down)
6987 * e. PF enable in the CFC (WEAK + STRONG)
6988 * f. Timers scan enable
6989 * 3. PF driver unload flow:
6990 * a. Clear the Timers scan_en.
6991 * b. Polling for scan_on=0 for that PF.
6992 * c. Clear the PF enable bit in the PXP.
6993 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6994 * e. Write zero+valid to all ILT entries (The valid bit must
6995 * stay set)
6996 * f. If this is VNIC 3 of a port then also init
6997 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6998 * to the last entry in the ILT.
6999 *
7000 * Notes:
7001 * Currently the PF error in the PGLC is non recoverable.
7002 * In the future the there will be a recovery routine for this error.
7003 * Currently attention is masked.
7004 * Having an MCP lock on the load/unload process does not guarantee that
7005 * there is no Timer disable during Func6/7 enable. This is because the
7006 * Timers scan is currently being cleared by the MCP on FLR.
7007 * Step 2.d can be done only for PF6/7 and the driver can also check if
7008 * there is error before clearing it. But the flow above is simpler and
7009 * more general.
7010 * All ILT entries are written by zero+valid and not just PF6/7
7011 * ILT entries since in the future the ILT entries allocation for
7012 * PF-s might be dynamic.
7013 */
7014 struct ilt_client_info ilt_cli;
7015 struct bnx2x_ilt ilt;
7016 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7017 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7018
7019 /* initialize dummy TM client */
7020 ilt_cli.start = 0;
7021 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7022 ilt_cli.client_num = ILT_CLIENT_TM;
7023
7024 /* Step 1: set zeroes to all ilt page entries with valid bit on
7025 * Step 2: set the timers first/last ilt entry to point
7026 * to the entire range to prevent ILT range error for 3rd/4th
7027 * vnic (this code assumes existence of the vnic)
7028 *
7029 * both steps performed by call to bnx2x_ilt_client_init_op()
7030 * with dummy TM client
7031 *
7032 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7033 * and his brother are split registers
7034 */
7035 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7036 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7037 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7038
7039 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7040 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7041 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7042 }
7043
7044 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7045 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7046
7047 if (!CHIP_IS_E1x(bp)) {
7048 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7049 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7050 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7051
7052 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7053
7054 /* let the HW do it's magic ... */
7055 do {
7056 msleep(200);
7057 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7058 } while (factor-- && (val != 1));
7059
7060 if (val != 1) {
7061 BNX2X_ERR("ATC_INIT failed\n");
7062 return -EBUSY;
7063 }
7064 }
7065
7066 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7067
7068 bnx2x_iov_init_dmae(bp);
7069
7070 /* clean the DMAE memory */
7071 bp->dmae_ready = 1;
7072 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7073
7074 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7075
7076 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7077
7078 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7079
7080 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7081
7082 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7083 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7084 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7085 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7086
7087 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7088
7089 /* QM queues pointers table */
7090 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7091
7092 /* soft reset pulse */
7093 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7094 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7095
7096 if (CNIC_SUPPORT(bp))
7097 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7098
7099 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7100
7101 if (!CHIP_REV_IS_SLOW(bp))
7102 /* enable hw interrupt from doorbell Q */
7103 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7104
7105 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7106
7107 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7108 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7109
7110 if (!CHIP_IS_E1(bp))
7111 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7112
7113 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7114 if (IS_MF_AFEX(bp)) {
7115 /* configure that VNTag and VLAN headers must be
7116 * received in afex mode
7117 */
7118 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7119 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7120 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7121 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7122 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7123 } else {
7124 /* Bit-map indicating which L2 hdrs may appear
7125 * after the basic Ethernet header
7126 */
7127 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7128 bp->path_has_ovlan ? 7 : 6);
7129 }
7130 }
7131
7132 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7133 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7134 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7135 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7136
7137 if (!CHIP_IS_E1x(bp)) {
7138 /* reset VFC memories */
7139 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7140 VFC_MEMORIES_RST_REG_CAM_RST |
7141 VFC_MEMORIES_RST_REG_RAM_RST);
7142 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7143 VFC_MEMORIES_RST_REG_CAM_RST |
7144 VFC_MEMORIES_RST_REG_RAM_RST);
7145
7146 msleep(20);
7147 }
7148
7149 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7150 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7151 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7152 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7153
7154 /* sync semi rtc */
7155 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7156 0x80000000);
7157 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7158 0x80000000);
7159
7160 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7161 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7162 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7163
7164 if (!CHIP_IS_E1x(bp)) {
7165 if (IS_MF_AFEX(bp)) {
7166 /* configure that VNTag and VLAN headers must be
7167 * sent in afex mode
7168 */
7169 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7170 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7171 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7172 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7173 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7174 } else {
7175 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7176 bp->path_has_ovlan ? 7 : 6);
7177 }
7178 }
7179
7180 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7181
7182 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7183
7184 if (CNIC_SUPPORT(bp)) {
7185 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7186 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7187 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7188 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7189 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7190 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7191 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7192 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7193 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7194 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7195 }
7196 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7197
7198 if (sizeof(union cdu_context) != 1024)
7199 /* we currently assume that a context is 1024 bytes */
7200 dev_alert(&bp->pdev->dev,
7201 "please adjust the size of cdu_context(%ld)\n",
7202 (long)sizeof(union cdu_context));
7203
7204 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7205 val = (4 << 24) + (0 << 12) + 1024;
7206 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7207
7208 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7209 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7210 /* enable context validation interrupt from CFC */
7211 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7212
7213 /* set the thresholds to prevent CFC/CDU race */
7214 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7215
7216 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7217
7218 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7219 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7220
7221 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7222 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7223
7224 /* Reset PCIE errors for debug */
7225 REG_WR(bp, 0x2814, 0xffffffff);
7226 REG_WR(bp, 0x3820, 0xffffffff);
7227
7228 if (!CHIP_IS_E1x(bp)) {
7229 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7230 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7231 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7232 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7233 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7234 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7235 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7236 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7237 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7238 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7239 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7240 }
7241
7242 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7243 if (!CHIP_IS_E1(bp)) {
7244 /* in E3 this done in per-port section */
7245 if (!CHIP_IS_E3(bp))
7246 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7247 }
7248 if (CHIP_IS_E1H(bp))
7249 /* not applicable for E2 (and above ...) */
7250 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7251
7252 if (CHIP_REV_IS_SLOW(bp))
7253 msleep(200);
7254
7255 /* finish CFC init */
7256 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7257 if (val != 1) {
7258 BNX2X_ERR("CFC LL_INIT failed\n");
7259 return -EBUSY;
7260 }
7261 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7262 if (val != 1) {
7263 BNX2X_ERR("CFC AC_INIT failed\n");
7264 return -EBUSY;
7265 }
7266 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7267 if (val != 1) {
7268 BNX2X_ERR("CFC CAM_INIT failed\n");
7269 return -EBUSY;
7270 }
7271 REG_WR(bp, CFC_REG_DEBUG0, 0);
7272
7273 if (CHIP_IS_E1(bp)) {
7274 /* read NIG statistic
7275 to see if this is our first up since powerup */
7276 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7277 val = *bnx2x_sp(bp, wb_data[0]);
7278
7279 /* do internal memory self test */
7280 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7281 BNX2X_ERR("internal mem self test failed\n");
7282 return -EBUSY;
7283 }
7284 }
7285
7286 bnx2x_setup_fan_failure_detection(bp);
7287
7288 /* clear PXP2 attentions */
7289 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7290
7291 bnx2x_enable_blocks_attention(bp);
7292 bnx2x_enable_blocks_parity(bp);
7293
7294 if (!BP_NOMCP(bp)) {
7295 if (CHIP_IS_E1x(bp))
7296 bnx2x__common_init_phy(bp);
7297 } else
7298 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7299
7300 return 0;
7301 }
7302
7303 /**
7304 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7305 *
7306 * @bp: driver handle
7307 */
7308 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7309 {
7310 int rc = bnx2x_init_hw_common(bp);
7311
7312 if (rc)
7313 return rc;
7314
7315 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7316 if (!BP_NOMCP(bp))
7317 bnx2x__common_init_phy(bp);
7318
7319 return 0;
7320 }
7321
7322 static int bnx2x_init_hw_port(struct bnx2x *bp)
7323 {
7324 int port = BP_PORT(bp);
7325 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7326 u32 low, high;
7327 u32 val, reg;
7328
7329 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7330
7331 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7332
7333 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7334 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7335 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7336
7337 /* Timers bug workaround: disables the pf_master bit in pglue at
7338 * common phase, we need to enable it here before any dmae access are
7339 * attempted. Therefore we manually added the enable-master to the
7340 * port phase (it also happens in the function phase)
7341 */
7342 if (!CHIP_IS_E1x(bp))
7343 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7344
7345 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7346 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7347 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7348 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7349
7350 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7351 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7352 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7353 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7354
7355 /* QM cid (connection) count */
7356 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7357
7358 if (CNIC_SUPPORT(bp)) {
7359 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7360 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7361 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7362 }
7363
7364 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7365
7366 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7367
7368 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7369
7370 if (IS_MF(bp))
7371 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7372 else if (bp->dev->mtu > 4096) {
7373 if (bp->flags & ONE_PORT_FLAG)
7374 low = 160;
7375 else {
7376 val = bp->dev->mtu;
7377 /* (24*1024 + val*4)/256 */
7378 low = 96 + (val/64) +
7379 ((val % 64) ? 1 : 0);
7380 }
7381 } else
7382 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7383 high = low + 56; /* 14*1024/256 */
7384 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7385 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7386 }
7387
7388 if (CHIP_MODE_IS_4_PORT(bp))
7389 REG_WR(bp, (BP_PORT(bp) ?
7390 BRB1_REG_MAC_GUARANTIED_1 :
7391 BRB1_REG_MAC_GUARANTIED_0), 40);
7392
7393 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7394 if (CHIP_IS_E3B0(bp)) {
7395 if (IS_MF_AFEX(bp)) {
7396 /* configure headers for AFEX mode */
7397 REG_WR(bp, BP_PORT(bp) ?
7398 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7399 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7400 REG_WR(bp, BP_PORT(bp) ?
7401 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7402 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7403 REG_WR(bp, BP_PORT(bp) ?
7404 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7405 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7406 } else {
7407 /* Ovlan exists only if we are in multi-function +
7408 * switch-dependent mode, in switch-independent there
7409 * is no ovlan headers
7410 */
7411 REG_WR(bp, BP_PORT(bp) ?
7412 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7413 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7414 (bp->path_has_ovlan ? 7 : 6));
7415 }
7416 }
7417
7418 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7419 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7420 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7421 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7422
7423 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7424 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7425 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7426 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7427
7428 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7429 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7430
7431 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7432
7433 if (CHIP_IS_E1x(bp)) {
7434 /* configure PBF to work without PAUSE mtu 9000 */
7435 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7436
7437 /* update threshold */
7438 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7439 /* update init credit */
7440 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7441
7442 /* probe changes */
7443 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7444 udelay(50);
7445 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7446 }
7447
7448 if (CNIC_SUPPORT(bp))
7449 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7450
7451 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7452 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7453
7454 if (CHIP_IS_E1(bp)) {
7455 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7456 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7457 }
7458 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7459
7460 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7461
7462 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7463 /* init aeu_mask_attn_func_0/1:
7464 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7465 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7466 * bits 4-7 are used for "per vn group attention" */
7467 val = IS_MF(bp) ? 0xF7 : 0x7;
7468 /* Enable DCBX attention for all but E1 */
7469 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7470 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7471
7472 /* SCPAD_PARITY should NOT trigger close the gates */
7473 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7474 REG_WR(bp, reg,
7475 REG_RD(bp, reg) &
7476 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7477
7478 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7479 REG_WR(bp, reg,
7480 REG_RD(bp, reg) &
7481 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7482
7483 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7484
7485 if (!CHIP_IS_E1x(bp)) {
7486 /* Bit-map indicating which L2 hdrs may appear after the
7487 * basic Ethernet header
7488 */
7489 if (IS_MF_AFEX(bp))
7490 REG_WR(bp, BP_PORT(bp) ?
7491 NIG_REG_P1_HDRS_AFTER_BASIC :
7492 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7493 else
7494 REG_WR(bp, BP_PORT(bp) ?
7495 NIG_REG_P1_HDRS_AFTER_BASIC :
7496 NIG_REG_P0_HDRS_AFTER_BASIC,
7497 IS_MF_SD(bp) ? 7 : 6);
7498
7499 if (CHIP_IS_E3(bp))
7500 REG_WR(bp, BP_PORT(bp) ?
7501 NIG_REG_LLH1_MF_MODE :
7502 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7503 }
7504 if (!CHIP_IS_E3(bp))
7505 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7506
7507 if (!CHIP_IS_E1(bp)) {
7508 /* 0x2 disable mf_ov, 0x1 enable */
7509 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7510 (IS_MF_SD(bp) ? 0x1 : 0x2));
7511
7512 if (!CHIP_IS_E1x(bp)) {
7513 val = 0;
7514 switch (bp->mf_mode) {
7515 case MULTI_FUNCTION_SD:
7516 val = 1;
7517 break;
7518 case MULTI_FUNCTION_SI:
7519 case MULTI_FUNCTION_AFEX:
7520 val = 2;
7521 break;
7522 }
7523
7524 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7525 NIG_REG_LLH0_CLS_TYPE), val);
7526 }
7527 {
7528 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7529 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7530 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7531 }
7532 }
7533
7534 /* If SPIO5 is set to generate interrupts, enable it for this port */
7535 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7536 if (val & MISC_SPIO_SPIO5) {
7537 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7538 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7539 val = REG_RD(bp, reg_addr);
7540 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7541 REG_WR(bp, reg_addr, val);
7542 }
7543
7544 return 0;
7545 }
7546
7547 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7548 {
7549 int reg;
7550 u32 wb_write[2];
7551
7552 if (CHIP_IS_E1(bp))
7553 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7554 else
7555 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7556
7557 wb_write[0] = ONCHIP_ADDR1(addr);
7558 wb_write[1] = ONCHIP_ADDR2(addr);
7559 REG_WR_DMAE(bp, reg, wb_write, 2);
7560 }
7561
7562 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7563 {
7564 u32 data, ctl, cnt = 100;
7565 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7566 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7567 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7568 u32 sb_bit = 1 << (idu_sb_id%32);
7569 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7570 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7571
7572 /* Not supported in BC mode */
7573 if (CHIP_INT_MODE_IS_BC(bp))
7574 return;
7575
7576 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7577 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7578 IGU_REGULAR_CLEANUP_SET |
7579 IGU_REGULAR_BCLEANUP;
7580
7581 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7582 func_encode << IGU_CTRL_REG_FID_SHIFT |
7583 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7584
7585 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7586 data, igu_addr_data);
7587 REG_WR(bp, igu_addr_data, data);
7588 mmiowb();
7589 barrier();
7590 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7591 ctl, igu_addr_ctl);
7592 REG_WR(bp, igu_addr_ctl, ctl);
7593 mmiowb();
7594 barrier();
7595
7596 /* wait for clean up to finish */
7597 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7598 msleep(20);
7599
7600 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7601 DP(NETIF_MSG_HW,
7602 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7603 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7604 }
7605 }
7606
7607 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7608 {
7609 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7610 }
7611
7612 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7613 {
7614 u32 i, base = FUNC_ILT_BASE(func);
7615 for (i = base; i < base + ILT_PER_FUNC; i++)
7616 bnx2x_ilt_wr(bp, i, 0);
7617 }
7618
7619 static void bnx2x_init_searcher(struct bnx2x *bp)
7620 {
7621 int port = BP_PORT(bp);
7622 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7623 /* T1 hash bits value determines the T1 number of entries */
7624 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7625 }
7626
7627 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7628 {
7629 int rc;
7630 struct bnx2x_func_state_params func_params = {NULL};
7631 struct bnx2x_func_switch_update_params *switch_update_params =
7632 &func_params.params.switch_update;
7633
7634 /* Prepare parameters for function state transitions */
7635 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7636 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7637
7638 func_params.f_obj = &bp->func_obj;
7639 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7640
7641 /* Function parameters */
7642 switch_update_params->suspend = suspend;
7643
7644 rc = bnx2x_func_state_change(bp, &func_params);
7645
7646 return rc;
7647 }
7648
7649 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7650 {
7651 int rc, i, port = BP_PORT(bp);
7652 int vlan_en = 0, mac_en[NUM_MACS];
7653
7654 /* Close input from network */
7655 if (bp->mf_mode == SINGLE_FUNCTION) {
7656 bnx2x_set_rx_filter(&bp->link_params, 0);
7657 } else {
7658 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7659 NIG_REG_LLH0_FUNC_EN);
7660 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7661 NIG_REG_LLH0_FUNC_EN, 0);
7662 for (i = 0; i < NUM_MACS; i++) {
7663 mac_en[i] = REG_RD(bp, port ?
7664 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7665 4 * i) :
7666 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7667 4 * i));
7668 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7669 4 * i) :
7670 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7671 }
7672 }
7673
7674 /* Close BMC to host */
7675 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7676 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7677
7678 /* Suspend Tx switching to the PF. Completion of this ramrod
7679 * further guarantees that all the packets of that PF / child
7680 * VFs in BRB were processed by the Parser, so it is safe to
7681 * change the NIC_MODE register.
7682 */
7683 rc = bnx2x_func_switch_update(bp, 1);
7684 if (rc) {
7685 BNX2X_ERR("Can't suspend tx-switching!\n");
7686 return rc;
7687 }
7688
7689 /* Change NIC_MODE register */
7690 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7691
7692 /* Open input from network */
7693 if (bp->mf_mode == SINGLE_FUNCTION) {
7694 bnx2x_set_rx_filter(&bp->link_params, 1);
7695 } else {
7696 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7697 NIG_REG_LLH0_FUNC_EN, vlan_en);
7698 for (i = 0; i < NUM_MACS; i++) {
7699 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7700 4 * i) :
7701 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7702 mac_en[i]);
7703 }
7704 }
7705
7706 /* Enable BMC to host */
7707 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7708 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7709
7710 /* Resume Tx switching to the PF */
7711 rc = bnx2x_func_switch_update(bp, 0);
7712 if (rc) {
7713 BNX2X_ERR("Can't resume tx-switching!\n");
7714 return rc;
7715 }
7716
7717 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7718 return 0;
7719 }
7720
7721 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7722 {
7723 int rc;
7724
7725 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7726
7727 if (CONFIGURE_NIC_MODE(bp)) {
7728 /* Configure searcher as part of function hw init */
7729 bnx2x_init_searcher(bp);
7730
7731 /* Reset NIC mode */
7732 rc = bnx2x_reset_nic_mode(bp);
7733 if (rc)
7734 BNX2X_ERR("Can't change NIC mode!\n");
7735 return rc;
7736 }
7737
7738 return 0;
7739 }
7740
7741 static int bnx2x_init_hw_func(struct bnx2x *bp)
7742 {
7743 int port = BP_PORT(bp);
7744 int func = BP_FUNC(bp);
7745 int init_phase = PHASE_PF0 + func;
7746 struct bnx2x_ilt *ilt = BP_ILT(bp);
7747 u16 cdu_ilt_start;
7748 u32 addr, val;
7749 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7750 int i, main_mem_width, rc;
7751
7752 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7753
7754 /* FLR cleanup - hmmm */
7755 if (!CHIP_IS_E1x(bp)) {
7756 rc = bnx2x_pf_flr_clnup(bp);
7757 if (rc) {
7758 bnx2x_fw_dump(bp);
7759 return rc;
7760 }
7761 }
7762
7763 /* set MSI reconfigure capability */
7764 if (bp->common.int_block == INT_BLOCK_HC) {
7765 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7766 val = REG_RD(bp, addr);
7767 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7768 REG_WR(bp, addr, val);
7769 }
7770
7771 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7772 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7773
7774 ilt = BP_ILT(bp);
7775 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7776
7777 if (IS_SRIOV(bp))
7778 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7779 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7780
7781 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7782 * those of the VFs, so start line should be reset
7783 */
7784 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7785 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7786 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7787 ilt->lines[cdu_ilt_start + i].page_mapping =
7788 bp->context[i].cxt_mapping;
7789 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7790 }
7791
7792 bnx2x_ilt_init_op(bp, INITOP_SET);
7793
7794 if (!CONFIGURE_NIC_MODE(bp)) {
7795 bnx2x_init_searcher(bp);
7796 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7797 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7798 } else {
7799 /* Set NIC mode */
7800 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7801 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7802 }
7803
7804 if (!CHIP_IS_E1x(bp)) {
7805 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7806
7807 /* Turn on a single ISR mode in IGU if driver is going to use
7808 * INT#x or MSI
7809 */
7810 if (!(bp->flags & USING_MSIX_FLAG))
7811 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7812 /*
7813 * Timers workaround bug: function init part.
7814 * Need to wait 20msec after initializing ILT,
7815 * needed to make sure there are no requests in
7816 * one of the PXP internal queues with "old" ILT addresses
7817 */
7818 msleep(20);
7819 /*
7820 * Master enable - Due to WB DMAE writes performed before this
7821 * register is re-initialized as part of the regular function
7822 * init
7823 */
7824 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7825 /* Enable the function in IGU */
7826 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7827 }
7828
7829 bp->dmae_ready = 1;
7830
7831 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7832
7833 if (!CHIP_IS_E1x(bp))
7834 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7835
7836 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7837 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7838 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7839 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7840 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7841 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7842 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7843 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7844 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7845 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7846 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7847 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7848 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7849
7850 if (!CHIP_IS_E1x(bp))
7851 REG_WR(bp, QM_REG_PF_EN, 1);
7852
7853 if (!CHIP_IS_E1x(bp)) {
7854 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7855 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7856 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7857 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7858 }
7859 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7860
7861 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7862 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7863 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7864
7865 bnx2x_iov_init_dq(bp);
7866
7867 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7868 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7869 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7870 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7871 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7872 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7873 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7874 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7875 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7876 if (!CHIP_IS_E1x(bp))
7877 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7878
7879 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7880
7881 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7882
7883 if (!CHIP_IS_E1x(bp))
7884 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7885
7886 if (IS_MF(bp)) {
7887 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7888 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7889 }
7890
7891 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7892
7893 /* HC init per function */
7894 if (bp->common.int_block == INT_BLOCK_HC) {
7895 if (CHIP_IS_E1H(bp)) {
7896 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7897
7898 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7899 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7900 }
7901 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7902
7903 } else {
7904 int num_segs, sb_idx, prod_offset;
7905
7906 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7907
7908 if (!CHIP_IS_E1x(bp)) {
7909 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7910 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7911 }
7912
7913 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7914
7915 if (!CHIP_IS_E1x(bp)) {
7916 int dsb_idx = 0;
7917 /**
7918 * Producer memory:
7919 * E2 mode: address 0-135 match to the mapping memory;
7920 * 136 - PF0 default prod; 137 - PF1 default prod;
7921 * 138 - PF2 default prod; 139 - PF3 default prod;
7922 * 140 - PF0 attn prod; 141 - PF1 attn prod;
7923 * 142 - PF2 attn prod; 143 - PF3 attn prod;
7924 * 144-147 reserved.
7925 *
7926 * E1.5 mode - In backward compatible mode;
7927 * for non default SB; each even line in the memory
7928 * holds the U producer and each odd line hold
7929 * the C producer. The first 128 producers are for
7930 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7931 * producers are for the DSB for each PF.
7932 * Each PF has five segments: (the order inside each
7933 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7934 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7935 * 144-147 attn prods;
7936 */
7937 /* non-default-status-blocks */
7938 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7939 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7940 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7941 prod_offset = (bp->igu_base_sb + sb_idx) *
7942 num_segs;
7943
7944 for (i = 0; i < num_segs; i++) {
7945 addr = IGU_REG_PROD_CONS_MEMORY +
7946 (prod_offset + i) * 4;
7947 REG_WR(bp, addr, 0);
7948 }
7949 /* send consumer update with value 0 */
7950 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7951 USTORM_ID, 0, IGU_INT_NOP, 1);
7952 bnx2x_igu_clear_sb(bp,
7953 bp->igu_base_sb + sb_idx);
7954 }
7955
7956 /* default-status-blocks */
7957 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7958 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7959
7960 if (CHIP_MODE_IS_4_PORT(bp))
7961 dsb_idx = BP_FUNC(bp);
7962 else
7963 dsb_idx = BP_VN(bp);
7964
7965 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7966 IGU_BC_BASE_DSB_PROD + dsb_idx :
7967 IGU_NORM_BASE_DSB_PROD + dsb_idx);
7968
7969 /*
7970 * igu prods come in chunks of E1HVN_MAX (4) -
7971 * does not matters what is the current chip mode
7972 */
7973 for (i = 0; i < (num_segs * E1HVN_MAX);
7974 i += E1HVN_MAX) {
7975 addr = IGU_REG_PROD_CONS_MEMORY +
7976 (prod_offset + i)*4;
7977 REG_WR(bp, addr, 0);
7978 }
7979 /* send consumer update with 0 */
7980 if (CHIP_INT_MODE_IS_BC(bp)) {
7981 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7982 USTORM_ID, 0, IGU_INT_NOP, 1);
7983 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7984 CSTORM_ID, 0, IGU_INT_NOP, 1);
7985 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7986 XSTORM_ID, 0, IGU_INT_NOP, 1);
7987 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7988 TSTORM_ID, 0, IGU_INT_NOP, 1);
7989 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7990 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7991 } else {
7992 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7993 USTORM_ID, 0, IGU_INT_NOP, 1);
7994 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7995 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7996 }
7997 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7998
7999 /* !!! These should become driver const once
8000 rf-tool supports split-68 const */
8001 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8002 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8003 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8004 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8005 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8006 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8007 }
8008 }
8009
8010 /* Reset PCIE errors for debug */
8011 REG_WR(bp, 0x2114, 0xffffffff);
8012 REG_WR(bp, 0x2120, 0xffffffff);
8013
8014 if (CHIP_IS_E1x(bp)) {
8015 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8016 main_mem_base = HC_REG_MAIN_MEMORY +
8017 BP_PORT(bp) * (main_mem_size * 4);
8018 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8019 main_mem_width = 8;
8020
8021 val = REG_RD(bp, main_mem_prty_clr);
8022 if (val)
8023 DP(NETIF_MSG_HW,
8024 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8025 val);
8026
8027 /* Clear "false" parity errors in MSI-X table */
8028 for (i = main_mem_base;
8029 i < main_mem_base + main_mem_size * 4;
8030 i += main_mem_width) {
8031 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8032 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8033 i, main_mem_width / 4);
8034 }
8035 /* Clear HC parity attention */
8036 REG_RD(bp, main_mem_prty_clr);
8037 }
8038
8039 #ifdef BNX2X_STOP_ON_ERROR
8040 /* Enable STORMs SP logging */
8041 REG_WR8(bp, BAR_USTRORM_INTMEM +
8042 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8043 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8044 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8045 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8046 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8047 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8048 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8049 #endif
8050
8051 bnx2x_phy_probe(&bp->link_params);
8052
8053 return 0;
8054 }
8055
8056 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8057 {
8058 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8059
8060 if (!CHIP_IS_E1x(bp))
8061 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8062 sizeof(struct host_hc_status_block_e2));
8063 else
8064 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8065 sizeof(struct host_hc_status_block_e1x));
8066
8067 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8068 }
8069
8070 void bnx2x_free_mem(struct bnx2x *bp)
8071 {
8072 int i;
8073
8074 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8075 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8076
8077 if (IS_VF(bp))
8078 return;
8079
8080 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8081 sizeof(struct host_sp_status_block));
8082
8083 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8084 sizeof(struct bnx2x_slowpath));
8085
8086 for (i = 0; i < L2_ILT_LINES(bp); i++)
8087 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8088 bp->context[i].size);
8089 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8090
8091 BNX2X_FREE(bp->ilt->lines);
8092
8093 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8094
8095 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8096 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8097
8098 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8099
8100 bnx2x_iov_free_mem(bp);
8101 }
8102
8103 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8104 {
8105 if (!CHIP_IS_E1x(bp)) {
8106 /* size = the status block + ramrod buffers */
8107 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8108 sizeof(struct host_hc_status_block_e2));
8109 if (!bp->cnic_sb.e2_sb)
8110 goto alloc_mem_err;
8111 } else {
8112 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8113 sizeof(struct host_hc_status_block_e1x));
8114 if (!bp->cnic_sb.e1x_sb)
8115 goto alloc_mem_err;
8116 }
8117
8118 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8119 /* allocate searcher T2 table, as it wasn't allocated before */
8120 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8121 if (!bp->t2)
8122 goto alloc_mem_err;
8123 }
8124
8125 /* write address to which L5 should insert its values */
8126 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8127 &bp->slowpath->drv_info_to_mcp;
8128
8129 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8130 goto alloc_mem_err;
8131
8132 return 0;
8133
8134 alloc_mem_err:
8135 bnx2x_free_mem_cnic(bp);
8136 BNX2X_ERR("Can't allocate memory\n");
8137 return -ENOMEM;
8138 }
8139
8140 int bnx2x_alloc_mem(struct bnx2x *bp)
8141 {
8142 int i, allocated, context_size;
8143
8144 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8145 /* allocate searcher T2 table */
8146 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8147 if (!bp->t2)
8148 goto alloc_mem_err;
8149 }
8150
8151 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8152 sizeof(struct host_sp_status_block));
8153 if (!bp->def_status_blk)
8154 goto alloc_mem_err;
8155
8156 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8157 sizeof(struct bnx2x_slowpath));
8158 if (!bp->slowpath)
8159 goto alloc_mem_err;
8160
8161 /* Allocate memory for CDU context:
8162 * This memory is allocated separately and not in the generic ILT
8163 * functions because CDU differs in few aspects:
8164 * 1. There are multiple entities allocating memory for context -
8165 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8166 * its own ILT lines.
8167 * 2. Since CDU page-size is not a single 4KB page (which is the case
8168 * for the other ILT clients), to be efficient we want to support
8169 * allocation of sub-page-size in the last entry.
8170 * 3. Context pointers are used by the driver to pass to FW / update
8171 * the context (for the other ILT clients the pointers are used just to
8172 * free the memory during unload).
8173 */
8174 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8175
8176 for (i = 0, allocated = 0; allocated < context_size; i++) {
8177 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8178 (context_size - allocated));
8179 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8180 bp->context[i].size);
8181 if (!bp->context[i].vcxt)
8182 goto alloc_mem_err;
8183 allocated += bp->context[i].size;
8184 }
8185 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8186 GFP_KERNEL);
8187 if (!bp->ilt->lines)
8188 goto alloc_mem_err;
8189
8190 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8191 goto alloc_mem_err;
8192
8193 if (bnx2x_iov_alloc_mem(bp))
8194 goto alloc_mem_err;
8195
8196 /* Slow path ring */
8197 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8198 if (!bp->spq)
8199 goto alloc_mem_err;
8200
8201 /* EQ */
8202 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8203 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8204 if (!bp->eq_ring)
8205 goto alloc_mem_err;
8206
8207 return 0;
8208
8209 alloc_mem_err:
8210 bnx2x_free_mem(bp);
8211 BNX2X_ERR("Can't allocate memory\n");
8212 return -ENOMEM;
8213 }
8214
8215 /*
8216 * Init service functions
8217 */
8218
8219 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8220 struct bnx2x_vlan_mac_obj *obj, bool set,
8221 int mac_type, unsigned long *ramrod_flags)
8222 {
8223 int rc;
8224 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8225
8226 memset(&ramrod_param, 0, sizeof(ramrod_param));
8227
8228 /* Fill general parameters */
8229 ramrod_param.vlan_mac_obj = obj;
8230 ramrod_param.ramrod_flags = *ramrod_flags;
8231
8232 /* Fill a user request section if needed */
8233 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8234 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8235
8236 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8237
8238 /* Set the command: ADD or DEL */
8239 if (set)
8240 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8241 else
8242 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8243 }
8244
8245 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8246
8247 if (rc == -EEXIST) {
8248 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8249 /* do not treat adding same MAC as error */
8250 rc = 0;
8251 } else if (rc < 0)
8252 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8253
8254 return rc;
8255 }
8256
8257 int bnx2x_del_all_macs(struct bnx2x *bp,
8258 struct bnx2x_vlan_mac_obj *mac_obj,
8259 int mac_type, bool wait_for_comp)
8260 {
8261 int rc;
8262 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8263
8264 /* Wait for completion of requested */
8265 if (wait_for_comp)
8266 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8267
8268 /* Set the mac type of addresses we want to clear */
8269 __set_bit(mac_type, &vlan_mac_flags);
8270
8271 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8272 if (rc < 0)
8273 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8274
8275 return rc;
8276 }
8277
8278 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8279 {
8280 if (is_zero_ether_addr(bp->dev->dev_addr) &&
8281 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8282 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8283 "Ignoring Zero MAC for STORAGE SD mode\n");
8284 return 0;
8285 }
8286
8287 if (IS_PF(bp)) {
8288 unsigned long ramrod_flags = 0;
8289
8290 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8291 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8292 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8293 &bp->sp_objs->mac_obj, set,
8294 BNX2X_ETH_MAC, &ramrod_flags);
8295 } else { /* vf */
8296 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8297 bp->fp->index, true);
8298 }
8299 }
8300
8301 int bnx2x_setup_leading(struct bnx2x *bp)
8302 {
8303 if (IS_PF(bp))
8304 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8305 else /* VF */
8306 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8307 }
8308
8309 /**
8310 * bnx2x_set_int_mode - configure interrupt mode
8311 *
8312 * @bp: driver handle
8313 *
8314 * In case of MSI-X it will also try to enable MSI-X.
8315 */
8316 int bnx2x_set_int_mode(struct bnx2x *bp)
8317 {
8318 int rc = 0;
8319
8320 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8321 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8322 return -EINVAL;
8323 }
8324
8325 switch (int_mode) {
8326 case BNX2X_INT_MODE_MSIX:
8327 /* attempt to enable msix */
8328 rc = bnx2x_enable_msix(bp);
8329
8330 /* msix attained */
8331 if (!rc)
8332 return 0;
8333
8334 /* vfs use only msix */
8335 if (rc && IS_VF(bp))
8336 return rc;
8337
8338 /* failed to enable multiple MSI-X */
8339 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8340 bp->num_queues,
8341 1 + bp->num_cnic_queues);
8342
8343 /* falling through... */
8344 case BNX2X_INT_MODE_MSI:
8345 bnx2x_enable_msi(bp);
8346
8347 /* falling through... */
8348 case BNX2X_INT_MODE_INTX:
8349 bp->num_ethernet_queues = 1;
8350 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8351 BNX2X_DEV_INFO("set number of queues to 1\n");
8352 break;
8353 default:
8354 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8355 return -EINVAL;
8356 }
8357 return 0;
8358 }
8359
8360 /* must be called prior to any HW initializations */
8361 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8362 {
8363 if (IS_SRIOV(bp))
8364 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8365 return L2_ILT_LINES(bp);
8366 }
8367
8368 void bnx2x_ilt_set_info(struct bnx2x *bp)
8369 {
8370 struct ilt_client_info *ilt_client;
8371 struct bnx2x_ilt *ilt = BP_ILT(bp);
8372 u16 line = 0;
8373
8374 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8375 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8376
8377 /* CDU */
8378 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8379 ilt_client->client_num = ILT_CLIENT_CDU;
8380 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8381 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8382 ilt_client->start = line;
8383 line += bnx2x_cid_ilt_lines(bp);
8384
8385 if (CNIC_SUPPORT(bp))
8386 line += CNIC_ILT_LINES;
8387 ilt_client->end = line - 1;
8388
8389 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8390 ilt_client->start,
8391 ilt_client->end,
8392 ilt_client->page_size,
8393 ilt_client->flags,
8394 ilog2(ilt_client->page_size >> 12));
8395
8396 /* QM */
8397 if (QM_INIT(bp->qm_cid_count)) {
8398 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8399 ilt_client->client_num = ILT_CLIENT_QM;
8400 ilt_client->page_size = QM_ILT_PAGE_SZ;
8401 ilt_client->flags = 0;
8402 ilt_client->start = line;
8403
8404 /* 4 bytes for each cid */
8405 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8406 QM_ILT_PAGE_SZ);
8407
8408 ilt_client->end = line - 1;
8409
8410 DP(NETIF_MSG_IFUP,
8411 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8412 ilt_client->start,
8413 ilt_client->end,
8414 ilt_client->page_size,
8415 ilt_client->flags,
8416 ilog2(ilt_client->page_size >> 12));
8417 }
8418
8419 if (CNIC_SUPPORT(bp)) {
8420 /* SRC */
8421 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8422 ilt_client->client_num = ILT_CLIENT_SRC;
8423 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8424 ilt_client->flags = 0;
8425 ilt_client->start = line;
8426 line += SRC_ILT_LINES;
8427 ilt_client->end = line - 1;
8428
8429 DP(NETIF_MSG_IFUP,
8430 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8431 ilt_client->start,
8432 ilt_client->end,
8433 ilt_client->page_size,
8434 ilt_client->flags,
8435 ilog2(ilt_client->page_size >> 12));
8436
8437 /* TM */
8438 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8439 ilt_client->client_num = ILT_CLIENT_TM;
8440 ilt_client->page_size = TM_ILT_PAGE_SZ;
8441 ilt_client->flags = 0;
8442 ilt_client->start = line;
8443 line += TM_ILT_LINES;
8444 ilt_client->end = line - 1;
8445
8446 DP(NETIF_MSG_IFUP,
8447 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8448 ilt_client->start,
8449 ilt_client->end,
8450 ilt_client->page_size,
8451 ilt_client->flags,
8452 ilog2(ilt_client->page_size >> 12));
8453 }
8454
8455 BUG_ON(line > ILT_MAX_LINES);
8456 }
8457
8458 /**
8459 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8460 *
8461 * @bp: driver handle
8462 * @fp: pointer to fastpath
8463 * @init_params: pointer to parameters structure
8464 *
8465 * parameters configured:
8466 * - HC configuration
8467 * - Queue's CDU context
8468 */
8469 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8470 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8471 {
8472 u8 cos;
8473 int cxt_index, cxt_offset;
8474
8475 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8476 if (!IS_FCOE_FP(fp)) {
8477 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8478 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8479
8480 /* If HC is supported, enable host coalescing in the transition
8481 * to INIT state.
8482 */
8483 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8484 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8485
8486 /* HC rate */
8487 init_params->rx.hc_rate = bp->rx_ticks ?
8488 (1000000 / bp->rx_ticks) : 0;
8489 init_params->tx.hc_rate = bp->tx_ticks ?
8490 (1000000 / bp->tx_ticks) : 0;
8491
8492 /* FW SB ID */
8493 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8494 fp->fw_sb_id;
8495
8496 /*
8497 * CQ index among the SB indices: FCoE clients uses the default
8498 * SB, therefore it's different.
8499 */
8500 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8501 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8502 }
8503
8504 /* set maximum number of COSs supported by this queue */
8505 init_params->max_cos = fp->max_cos;
8506
8507 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8508 fp->index, init_params->max_cos);
8509
8510 /* set the context pointers queue object */
8511 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8512 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8513 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8514 ILT_PAGE_CIDS);
8515 init_params->cxts[cos] =
8516 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8517 }
8518 }
8519
8520 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8521 struct bnx2x_queue_state_params *q_params,
8522 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8523 int tx_index, bool leading)
8524 {
8525 memset(tx_only_params, 0, sizeof(*tx_only_params));
8526
8527 /* Set the command */
8528 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8529
8530 /* Set tx-only QUEUE flags: don't zero statistics */
8531 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8532
8533 /* choose the index of the cid to send the slow path on */
8534 tx_only_params->cid_index = tx_index;
8535
8536 /* Set general TX_ONLY_SETUP parameters */
8537 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8538
8539 /* Set Tx TX_ONLY_SETUP parameters */
8540 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8541
8542 DP(NETIF_MSG_IFUP,
8543 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8544 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8545 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8546 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8547
8548 /* send the ramrod */
8549 return bnx2x_queue_state_change(bp, q_params);
8550 }
8551
8552 /**
8553 * bnx2x_setup_queue - setup queue
8554 *
8555 * @bp: driver handle
8556 * @fp: pointer to fastpath
8557 * @leading: is leading
8558 *
8559 * This function performs 2 steps in a Queue state machine
8560 * actually: 1) RESET->INIT 2) INIT->SETUP
8561 */
8562
8563 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8564 bool leading)
8565 {
8566 struct bnx2x_queue_state_params q_params = {NULL};
8567 struct bnx2x_queue_setup_params *setup_params =
8568 &q_params.params.setup;
8569 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8570 &q_params.params.tx_only;
8571 int rc;
8572 u8 tx_index;
8573
8574 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8575
8576 /* reset IGU state skip FCoE L2 queue */
8577 if (!IS_FCOE_FP(fp))
8578 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8579 IGU_INT_ENABLE, 0);
8580
8581 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8582 /* We want to wait for completion in this context */
8583 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8584
8585 /* Prepare the INIT parameters */
8586 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8587
8588 /* Set the command */
8589 q_params.cmd = BNX2X_Q_CMD_INIT;
8590
8591 /* Change the state to INIT */
8592 rc = bnx2x_queue_state_change(bp, &q_params);
8593 if (rc) {
8594 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8595 return rc;
8596 }
8597
8598 DP(NETIF_MSG_IFUP, "init complete\n");
8599
8600 /* Now move the Queue to the SETUP state... */
8601 memset(setup_params, 0, sizeof(*setup_params));
8602
8603 /* Set QUEUE flags */
8604 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8605
8606 /* Set general SETUP parameters */
8607 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8608 FIRST_TX_COS_INDEX);
8609
8610 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8611 &setup_params->rxq_params);
8612
8613 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8614 FIRST_TX_COS_INDEX);
8615
8616 /* Set the command */
8617 q_params.cmd = BNX2X_Q_CMD_SETUP;
8618
8619 if (IS_FCOE_FP(fp))
8620 bp->fcoe_init = true;
8621
8622 /* Change the state to SETUP */
8623 rc = bnx2x_queue_state_change(bp, &q_params);
8624 if (rc) {
8625 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8626 return rc;
8627 }
8628
8629 /* loop through the relevant tx-only indices */
8630 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8631 tx_index < fp->max_cos;
8632 tx_index++) {
8633
8634 /* prepare and send tx-only ramrod*/
8635 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8636 tx_only_params, tx_index, leading);
8637 if (rc) {
8638 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8639 fp->index, tx_index);
8640 return rc;
8641 }
8642 }
8643
8644 return rc;
8645 }
8646
8647 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8648 {
8649 struct bnx2x_fastpath *fp = &bp->fp[index];
8650 struct bnx2x_fp_txdata *txdata;
8651 struct bnx2x_queue_state_params q_params = {NULL};
8652 int rc, tx_index;
8653
8654 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8655
8656 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8657 /* We want to wait for completion in this context */
8658 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8659
8660 /* close tx-only connections */
8661 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8662 tx_index < fp->max_cos;
8663 tx_index++){
8664
8665 /* ascertain this is a normal queue*/
8666 txdata = fp->txdata_ptr[tx_index];
8667
8668 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8669 txdata->txq_index);
8670
8671 /* send halt terminate on tx-only connection */
8672 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8673 memset(&q_params.params.terminate, 0,
8674 sizeof(q_params.params.terminate));
8675 q_params.params.terminate.cid_index = tx_index;
8676
8677 rc = bnx2x_queue_state_change(bp, &q_params);
8678 if (rc)
8679 return rc;
8680
8681 /* send halt terminate on tx-only connection */
8682 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8683 memset(&q_params.params.cfc_del, 0,
8684 sizeof(q_params.params.cfc_del));
8685 q_params.params.cfc_del.cid_index = tx_index;
8686 rc = bnx2x_queue_state_change(bp, &q_params);
8687 if (rc)
8688 return rc;
8689 }
8690 /* Stop the primary connection: */
8691 /* ...halt the connection */
8692 q_params.cmd = BNX2X_Q_CMD_HALT;
8693 rc = bnx2x_queue_state_change(bp, &q_params);
8694 if (rc)
8695 return rc;
8696
8697 /* ...terminate the connection */
8698 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8699 memset(&q_params.params.terminate, 0,
8700 sizeof(q_params.params.terminate));
8701 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8702 rc = bnx2x_queue_state_change(bp, &q_params);
8703 if (rc)
8704 return rc;
8705 /* ...delete cfc entry */
8706 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8707 memset(&q_params.params.cfc_del, 0,
8708 sizeof(q_params.params.cfc_del));
8709 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8710 return bnx2x_queue_state_change(bp, &q_params);
8711 }
8712
8713 static void bnx2x_reset_func(struct bnx2x *bp)
8714 {
8715 int port = BP_PORT(bp);
8716 int func = BP_FUNC(bp);
8717 int i;
8718
8719 /* Disable the function in the FW */
8720 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8721 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8722 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8723 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8724
8725 /* FP SBs */
8726 for_each_eth_queue(bp, i) {
8727 struct bnx2x_fastpath *fp = &bp->fp[i];
8728 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8729 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8730 SB_DISABLED);
8731 }
8732
8733 if (CNIC_LOADED(bp))
8734 /* CNIC SB */
8735 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8736 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8737 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8738
8739 /* SP SB */
8740 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8741 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8742 SB_DISABLED);
8743
8744 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8745 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8746 0);
8747
8748 /* Configure IGU */
8749 if (bp->common.int_block == INT_BLOCK_HC) {
8750 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8751 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8752 } else {
8753 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8754 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8755 }
8756
8757 if (CNIC_LOADED(bp)) {
8758 /* Disable Timer scan */
8759 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8760 /*
8761 * Wait for at least 10ms and up to 2 second for the timers
8762 * scan to complete
8763 */
8764 for (i = 0; i < 200; i++) {
8765 usleep_range(10000, 20000);
8766 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8767 break;
8768 }
8769 }
8770 /* Clear ILT */
8771 bnx2x_clear_func_ilt(bp, func);
8772
8773 /* Timers workaround bug for E2: if this is vnic-3,
8774 * we need to set the entire ilt range for this timers.
8775 */
8776 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8777 struct ilt_client_info ilt_cli;
8778 /* use dummy TM client */
8779 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8780 ilt_cli.start = 0;
8781 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8782 ilt_cli.client_num = ILT_CLIENT_TM;
8783
8784 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8785 }
8786
8787 /* this assumes that reset_port() called before reset_func()*/
8788 if (!CHIP_IS_E1x(bp))
8789 bnx2x_pf_disable(bp);
8790
8791 bp->dmae_ready = 0;
8792 }
8793
8794 static void bnx2x_reset_port(struct bnx2x *bp)
8795 {
8796 int port = BP_PORT(bp);
8797 u32 val;
8798
8799 /* Reset physical Link */
8800 bnx2x__link_reset(bp);
8801
8802 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8803
8804 /* Do not rcv packets to BRB */
8805 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8806 /* Do not direct rcv packets that are not for MCP to the BRB */
8807 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8808 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8809
8810 /* Configure AEU */
8811 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8812
8813 msleep(100);
8814 /* Check for BRB port occupancy */
8815 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8816 if (val)
8817 DP(NETIF_MSG_IFDOWN,
8818 "BRB1 is not empty %d blocks are occupied\n", val);
8819
8820 /* TODO: Close Doorbell port? */
8821 }
8822
8823 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8824 {
8825 struct bnx2x_func_state_params func_params = {NULL};
8826
8827 /* Prepare parameters for function state transitions */
8828 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8829
8830 func_params.f_obj = &bp->func_obj;
8831 func_params.cmd = BNX2X_F_CMD_HW_RESET;
8832
8833 func_params.params.hw_init.load_phase = load_code;
8834
8835 return bnx2x_func_state_change(bp, &func_params);
8836 }
8837
8838 static int bnx2x_func_stop(struct bnx2x *bp)
8839 {
8840 struct bnx2x_func_state_params func_params = {NULL};
8841 int rc;
8842
8843 /* Prepare parameters for function state transitions */
8844 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8845 func_params.f_obj = &bp->func_obj;
8846 func_params.cmd = BNX2X_F_CMD_STOP;
8847
8848 /*
8849 * Try to stop the function the 'good way'. If fails (in case
8850 * of a parity error during bnx2x_chip_cleanup()) and we are
8851 * not in a debug mode, perform a state transaction in order to
8852 * enable further HW_RESET transaction.
8853 */
8854 rc = bnx2x_func_state_change(bp, &func_params);
8855 if (rc) {
8856 #ifdef BNX2X_STOP_ON_ERROR
8857 return rc;
8858 #else
8859 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8860 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8861 return bnx2x_func_state_change(bp, &func_params);
8862 #endif
8863 }
8864
8865 return 0;
8866 }
8867
8868 /**
8869 * bnx2x_send_unload_req - request unload mode from the MCP.
8870 *
8871 * @bp: driver handle
8872 * @unload_mode: requested function's unload mode
8873 *
8874 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8875 */
8876 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8877 {
8878 u32 reset_code = 0;
8879 int port = BP_PORT(bp);
8880
8881 /* Select the UNLOAD request mode */
8882 if (unload_mode == UNLOAD_NORMAL)
8883 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8884
8885 else if (bp->flags & NO_WOL_FLAG)
8886 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8887
8888 else if (bp->wol) {
8889 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8890 u8 *mac_addr = bp->dev->dev_addr;
8891 struct pci_dev *pdev = bp->pdev;
8892 u32 val;
8893 u16 pmc;
8894
8895 /* The mac address is written to entries 1-4 to
8896 * preserve entry 0 which is used by the PMF
8897 */
8898 u8 entry = (BP_VN(bp) + 1)*8;
8899
8900 val = (mac_addr[0] << 8) | mac_addr[1];
8901 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8902
8903 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8904 (mac_addr[4] << 8) | mac_addr[5];
8905 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8906
8907 /* Enable the PME and clear the status */
8908 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8909 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8910 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8911
8912 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8913
8914 } else
8915 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8916
8917 /* Send the request to the MCP */
8918 if (!BP_NOMCP(bp))
8919 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8920 else {
8921 int path = BP_PATH(bp);
8922
8923 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
8924 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8925 bnx2x_load_count[path][2]);
8926 bnx2x_load_count[path][0]--;
8927 bnx2x_load_count[path][1 + port]--;
8928 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
8929 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8930 bnx2x_load_count[path][2]);
8931 if (bnx2x_load_count[path][0] == 0)
8932 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8933 else if (bnx2x_load_count[path][1 + port] == 0)
8934 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8935 else
8936 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8937 }
8938
8939 return reset_code;
8940 }
8941
8942 /**
8943 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8944 *
8945 * @bp: driver handle
8946 * @keep_link: true iff link should be kept up
8947 */
8948 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8949 {
8950 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8951
8952 /* Report UNLOAD_DONE to MCP */
8953 if (!BP_NOMCP(bp))
8954 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8955 }
8956
8957 static int bnx2x_func_wait_started(struct bnx2x *bp)
8958 {
8959 int tout = 50;
8960 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8961
8962 if (!bp->port.pmf)
8963 return 0;
8964
8965 /*
8966 * (assumption: No Attention from MCP at this stage)
8967 * PMF probably in the middle of TX disable/enable transaction
8968 * 1. Sync IRS for default SB
8969 * 2. Sync SP queue - this guarantees us that attention handling started
8970 * 3. Wait, that TX disable/enable transaction completes
8971 *
8972 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8973 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8974 * received completion for the transaction the state is TX_STOPPED.
8975 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8976 * transaction.
8977 */
8978
8979 /* make sure default SB ISR is done */
8980 if (msix)
8981 synchronize_irq(bp->msix_table[0].vector);
8982 else
8983 synchronize_irq(bp->pdev->irq);
8984
8985 flush_workqueue(bnx2x_wq);
8986 flush_workqueue(bnx2x_iov_wq);
8987
8988 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8989 BNX2X_F_STATE_STARTED && tout--)
8990 msleep(20);
8991
8992 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8993 BNX2X_F_STATE_STARTED) {
8994 #ifdef BNX2X_STOP_ON_ERROR
8995 BNX2X_ERR("Wrong function state\n");
8996 return -EBUSY;
8997 #else
8998 /*
8999 * Failed to complete the transaction in a "good way"
9000 * Force both transactions with CLR bit
9001 */
9002 struct bnx2x_func_state_params func_params = {NULL};
9003
9004 DP(NETIF_MSG_IFDOWN,
9005 "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
9006
9007 func_params.f_obj = &bp->func_obj;
9008 __set_bit(RAMROD_DRV_CLR_ONLY,
9009 &func_params.ramrod_flags);
9010
9011 /* STARTED-->TX_ST0PPED */
9012 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9013 bnx2x_func_state_change(bp, &func_params);
9014
9015 /* TX_ST0PPED-->STARTED */
9016 func_params.cmd = BNX2X_F_CMD_TX_START;
9017 return bnx2x_func_state_change(bp, &func_params);
9018 #endif
9019 }
9020
9021 return 0;
9022 }
9023
9024 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9025 {
9026 int port = BP_PORT(bp);
9027 int i, rc = 0;
9028 u8 cos;
9029 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9030 u32 reset_code;
9031
9032 /* Wait until tx fastpath tasks complete */
9033 for_each_tx_queue(bp, i) {
9034 struct bnx2x_fastpath *fp = &bp->fp[i];
9035
9036 for_each_cos_in_tx_queue(fp, cos)
9037 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9038 #ifdef BNX2X_STOP_ON_ERROR
9039 if (rc)
9040 return;
9041 #endif
9042 }
9043
9044 /* Give HW time to discard old tx messages */
9045 usleep_range(1000, 2000);
9046
9047 /* Clean all ETH MACs */
9048 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9049 false);
9050 if (rc < 0)
9051 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9052
9053 /* Clean up UC list */
9054 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9055 true);
9056 if (rc < 0)
9057 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9058 rc);
9059
9060 /* Disable LLH */
9061 if (!CHIP_IS_E1(bp))
9062 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9063
9064 /* Set "drop all" (stop Rx).
9065 * We need to take a netif_addr_lock() here in order to prevent
9066 * a race between the completion code and this code.
9067 */
9068 netif_addr_lock_bh(bp->dev);
9069 /* Schedule the rx_mode command */
9070 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9071 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9072 else
9073 bnx2x_set_storm_rx_mode(bp);
9074
9075 /* Cleanup multicast configuration */
9076 rparam.mcast_obj = &bp->mcast_obj;
9077 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9078 if (rc < 0)
9079 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9080
9081 netif_addr_unlock_bh(bp->dev);
9082
9083 bnx2x_iov_chip_cleanup(bp);
9084
9085 /*
9086 * Send the UNLOAD_REQUEST to the MCP. This will return if
9087 * this function should perform FUNC, PORT or COMMON HW
9088 * reset.
9089 */
9090 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9091
9092 /*
9093 * (assumption: No Attention from MCP at this stage)
9094 * PMF probably in the middle of TX disable/enable transaction
9095 */
9096 rc = bnx2x_func_wait_started(bp);
9097 if (rc) {
9098 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9099 #ifdef BNX2X_STOP_ON_ERROR
9100 return;
9101 #endif
9102 }
9103
9104 /* Close multi and leading connections
9105 * Completions for ramrods are collected in a synchronous way
9106 */
9107 for_each_eth_queue(bp, i)
9108 if (bnx2x_stop_queue(bp, i))
9109 #ifdef BNX2X_STOP_ON_ERROR
9110 return;
9111 #else
9112 goto unload_error;
9113 #endif
9114
9115 if (CNIC_LOADED(bp)) {
9116 for_each_cnic_queue(bp, i)
9117 if (bnx2x_stop_queue(bp, i))
9118 #ifdef BNX2X_STOP_ON_ERROR
9119 return;
9120 #else
9121 goto unload_error;
9122 #endif
9123 }
9124
9125 /* If SP settings didn't get completed so far - something
9126 * very wrong has happen.
9127 */
9128 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9129 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9130
9131 #ifndef BNX2X_STOP_ON_ERROR
9132 unload_error:
9133 #endif
9134 rc = bnx2x_func_stop(bp);
9135 if (rc) {
9136 BNX2X_ERR("Function stop failed!\n");
9137 #ifdef BNX2X_STOP_ON_ERROR
9138 return;
9139 #endif
9140 }
9141
9142 /* Disable HW interrupts, NAPI */
9143 bnx2x_netif_stop(bp, 1);
9144 /* Delete all NAPI objects */
9145 bnx2x_del_all_napi(bp);
9146 if (CNIC_LOADED(bp))
9147 bnx2x_del_all_napi_cnic(bp);
9148
9149 /* Release IRQs */
9150 bnx2x_free_irq(bp);
9151
9152 /* Reset the chip */
9153 rc = bnx2x_reset_hw(bp, reset_code);
9154 if (rc)
9155 BNX2X_ERR("HW_RESET failed\n");
9156
9157 /* Report UNLOAD_DONE to MCP */
9158 bnx2x_send_unload_done(bp, keep_link);
9159 }
9160
9161 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9162 {
9163 u32 val;
9164
9165 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9166
9167 if (CHIP_IS_E1(bp)) {
9168 int port = BP_PORT(bp);
9169 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9170 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9171
9172 val = REG_RD(bp, addr);
9173 val &= ~(0x300);
9174 REG_WR(bp, addr, val);
9175 } else {
9176 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9177 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9178 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9179 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9180 }
9181 }
9182
9183 /* Close gates #2, #3 and #4: */
9184 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9185 {
9186 u32 val;
9187
9188 /* Gates #2 and #4a are closed/opened for "not E1" only */
9189 if (!CHIP_IS_E1(bp)) {
9190 /* #4 */
9191 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9192 /* #2 */
9193 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9194 }
9195
9196 /* #3 */
9197 if (CHIP_IS_E1x(bp)) {
9198 /* Prevent interrupts from HC on both ports */
9199 val = REG_RD(bp, HC_REG_CONFIG_1);
9200 REG_WR(bp, HC_REG_CONFIG_1,
9201 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9202 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9203
9204 val = REG_RD(bp, HC_REG_CONFIG_0);
9205 REG_WR(bp, HC_REG_CONFIG_0,
9206 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9207 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9208 } else {
9209 /* Prevent incoming interrupts in IGU */
9210 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9211
9212 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9213 (!close) ?
9214 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9215 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9216 }
9217
9218 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9219 close ? "closing" : "opening");
9220 mmiowb();
9221 }
9222
9223 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9224
9225 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9226 {
9227 /* Do some magic... */
9228 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9229 *magic_val = val & SHARED_MF_CLP_MAGIC;
9230 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9231 }
9232
9233 /**
9234 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9235 *
9236 * @bp: driver handle
9237 * @magic_val: old value of the `magic' bit.
9238 */
9239 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9240 {
9241 /* Restore the `magic' bit value... */
9242 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9243 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9244 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9245 }
9246
9247 /**
9248 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9249 *
9250 * @bp: driver handle
9251 * @magic_val: old value of 'magic' bit.
9252 *
9253 * Takes care of CLP configurations.
9254 */
9255 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9256 {
9257 u32 shmem;
9258 u32 validity_offset;
9259
9260 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9261
9262 /* Set `magic' bit in order to save MF config */
9263 if (!CHIP_IS_E1(bp))
9264 bnx2x_clp_reset_prep(bp, magic_val);
9265
9266 /* Get shmem offset */
9267 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9268 validity_offset =
9269 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9270
9271 /* Clear validity map flags */
9272 if (shmem > 0)
9273 REG_WR(bp, shmem + validity_offset, 0);
9274 }
9275
9276 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9277 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9278
9279 /**
9280 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9281 *
9282 * @bp: driver handle
9283 */
9284 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9285 {
9286 /* special handling for emulation and FPGA,
9287 wait 10 times longer */
9288 if (CHIP_REV_IS_SLOW(bp))
9289 msleep(MCP_ONE_TIMEOUT*10);
9290 else
9291 msleep(MCP_ONE_TIMEOUT);
9292 }
9293
9294 /*
9295 * initializes bp->common.shmem_base and waits for validity signature to appear
9296 */
9297 static int bnx2x_init_shmem(struct bnx2x *bp)
9298 {
9299 int cnt = 0;
9300 u32 val = 0;
9301
9302 do {
9303 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9304 if (bp->common.shmem_base) {
9305 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9306 if (val & SHR_MEM_VALIDITY_MB)
9307 return 0;
9308 }
9309
9310 bnx2x_mcp_wait_one(bp);
9311
9312 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9313
9314 BNX2X_ERR("BAD MCP validity signature\n");
9315
9316 return -ENODEV;
9317 }
9318
9319 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9320 {
9321 int rc = bnx2x_init_shmem(bp);
9322
9323 /* Restore the `magic' bit value */
9324 if (!CHIP_IS_E1(bp))
9325 bnx2x_clp_reset_done(bp, magic_val);
9326
9327 return rc;
9328 }
9329
9330 static void bnx2x_pxp_prep(struct bnx2x *bp)
9331 {
9332 if (!CHIP_IS_E1(bp)) {
9333 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9334 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9335 mmiowb();
9336 }
9337 }
9338
9339 /*
9340 * Reset the whole chip except for:
9341 * - PCIE core
9342 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9343 * one reset bit)
9344 * - IGU
9345 * - MISC (including AEU)
9346 * - GRC
9347 * - RBCN, RBCP
9348 */
9349 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9350 {
9351 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9352 u32 global_bits2, stay_reset2;
9353
9354 /*
9355 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9356 * (per chip) blocks.
9357 */
9358 global_bits2 =
9359 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9360 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9361
9362 /* Don't reset the following blocks.
9363 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9364 * reset, as in 4 port device they might still be owned
9365 * by the MCP (there is only one leader per path).
9366 */
9367 not_reset_mask1 =
9368 MISC_REGISTERS_RESET_REG_1_RST_HC |
9369 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9370 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9371
9372 not_reset_mask2 =
9373 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9374 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9375 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9376 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9377 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9378 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9379 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9380 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9381 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9382 MISC_REGISTERS_RESET_REG_2_PGLC |
9383 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9384 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9385 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9386 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9387 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9388 MISC_REGISTERS_RESET_REG_2_UMAC1;
9389
9390 /*
9391 * Keep the following blocks in reset:
9392 * - all xxMACs are handled by the bnx2x_link code.
9393 */
9394 stay_reset2 =
9395 MISC_REGISTERS_RESET_REG_2_XMAC |
9396 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9397
9398 /* Full reset masks according to the chip */
9399 reset_mask1 = 0xffffffff;
9400
9401 if (CHIP_IS_E1(bp))
9402 reset_mask2 = 0xffff;
9403 else if (CHIP_IS_E1H(bp))
9404 reset_mask2 = 0x1ffff;
9405 else if (CHIP_IS_E2(bp))
9406 reset_mask2 = 0xfffff;
9407 else /* CHIP_IS_E3 */
9408 reset_mask2 = 0x3ffffff;
9409
9410 /* Don't reset global blocks unless we need to */
9411 if (!global)
9412 reset_mask2 &= ~global_bits2;
9413
9414 /*
9415 * In case of attention in the QM, we need to reset PXP
9416 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9417 * because otherwise QM reset would release 'close the gates' shortly
9418 * before resetting the PXP, then the PSWRQ would send a write
9419 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9420 * read the payload data from PSWWR, but PSWWR would not
9421 * respond. The write queue in PGLUE would stuck, dmae commands
9422 * would not return. Therefore it's important to reset the second
9423 * reset register (containing the
9424 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9425 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9426 * bit).
9427 */
9428 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9429 reset_mask2 & (~not_reset_mask2));
9430
9431 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9432 reset_mask1 & (~not_reset_mask1));
9433
9434 barrier();
9435 mmiowb();
9436
9437 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9438 reset_mask2 & (~stay_reset2));
9439
9440 barrier();
9441 mmiowb();
9442
9443 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9444 mmiowb();
9445 }
9446
9447 /**
9448 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9449 * It should get cleared in no more than 1s.
9450 *
9451 * @bp: driver handle
9452 *
9453 * It should get cleared in no more than 1s. Returns 0 if
9454 * pending writes bit gets cleared.
9455 */
9456 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9457 {
9458 u32 cnt = 1000;
9459 u32 pend_bits = 0;
9460
9461 do {
9462 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9463
9464 if (pend_bits == 0)
9465 break;
9466
9467 usleep_range(1000, 2000);
9468 } while (cnt-- > 0);
9469
9470 if (cnt <= 0) {
9471 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9472 pend_bits);
9473 return -EBUSY;
9474 }
9475
9476 return 0;
9477 }
9478
9479 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9480 {
9481 int cnt = 1000;
9482 u32 val = 0;
9483 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9484 u32 tags_63_32 = 0;
9485
9486 /* Empty the Tetris buffer, wait for 1s */
9487 do {
9488 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9489 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9490 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9491 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9492 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9493 if (CHIP_IS_E3(bp))
9494 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9495
9496 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9497 ((port_is_idle_0 & 0x1) == 0x1) &&
9498 ((port_is_idle_1 & 0x1) == 0x1) &&
9499 (pgl_exp_rom2 == 0xffffffff) &&
9500 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9501 break;
9502 usleep_range(1000, 2000);
9503 } while (cnt-- > 0);
9504
9505 if (cnt <= 0) {
9506 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9507 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9508 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9509 pgl_exp_rom2);
9510 return -EAGAIN;
9511 }
9512
9513 barrier();
9514
9515 /* Close gates #2, #3 and #4 */
9516 bnx2x_set_234_gates(bp, true);
9517
9518 /* Poll for IGU VQs for 57712 and newer chips */
9519 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9520 return -EAGAIN;
9521
9522 /* TBD: Indicate that "process kill" is in progress to MCP */
9523
9524 /* Clear "unprepared" bit */
9525 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9526 barrier();
9527
9528 /* Make sure all is written to the chip before the reset */
9529 mmiowb();
9530
9531 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9532 * PSWHST, GRC and PSWRD Tetris buffer.
9533 */
9534 usleep_range(1000, 2000);
9535
9536 /* Prepare to chip reset: */
9537 /* MCP */
9538 if (global)
9539 bnx2x_reset_mcp_prep(bp, &val);
9540
9541 /* PXP */
9542 bnx2x_pxp_prep(bp);
9543 barrier();
9544
9545 /* reset the chip */
9546 bnx2x_process_kill_chip_reset(bp, global);
9547 barrier();
9548
9549 /* clear errors in PGB */
9550 if (!CHIP_IS_E1x(bp))
9551 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9552
9553 /* Recover after reset: */
9554 /* MCP */
9555 if (global && bnx2x_reset_mcp_comp(bp, val))
9556 return -EAGAIN;
9557
9558 /* TBD: Add resetting the NO_MCP mode DB here */
9559
9560 /* Open the gates #2, #3 and #4 */
9561 bnx2x_set_234_gates(bp, false);
9562
9563 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9564 * reset state, re-enable attentions. */
9565
9566 return 0;
9567 }
9568
9569 static int bnx2x_leader_reset(struct bnx2x *bp)
9570 {
9571 int rc = 0;
9572 bool global = bnx2x_reset_is_global(bp);
9573 u32 load_code;
9574
9575 /* if not going to reset MCP - load "fake" driver to reset HW while
9576 * driver is owner of the HW
9577 */
9578 if (!global && !BP_NOMCP(bp)) {
9579 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9580 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9581 if (!load_code) {
9582 BNX2X_ERR("MCP response failure, aborting\n");
9583 rc = -EAGAIN;
9584 goto exit_leader_reset;
9585 }
9586 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9587 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9588 BNX2X_ERR("MCP unexpected resp, aborting\n");
9589 rc = -EAGAIN;
9590 goto exit_leader_reset2;
9591 }
9592 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9593 if (!load_code) {
9594 BNX2X_ERR("MCP response failure, aborting\n");
9595 rc = -EAGAIN;
9596 goto exit_leader_reset2;
9597 }
9598 }
9599
9600 /* Try to recover after the failure */
9601 if (bnx2x_process_kill(bp, global)) {
9602 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9603 BP_PATH(bp));
9604 rc = -EAGAIN;
9605 goto exit_leader_reset2;
9606 }
9607
9608 /*
9609 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9610 * state.
9611 */
9612 bnx2x_set_reset_done(bp);
9613 if (global)
9614 bnx2x_clear_reset_global(bp);
9615
9616 exit_leader_reset2:
9617 /* unload "fake driver" if it was loaded */
9618 if (!global && !BP_NOMCP(bp)) {
9619 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9620 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9621 }
9622 exit_leader_reset:
9623 bp->is_leader = 0;
9624 bnx2x_release_leader_lock(bp);
9625 smp_mb();
9626 return rc;
9627 }
9628
9629 static void bnx2x_recovery_failed(struct bnx2x *bp)
9630 {
9631 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9632
9633 /* Disconnect this device */
9634 netif_device_detach(bp->dev);
9635
9636 /*
9637 * Block ifup for all function on this engine until "process kill"
9638 * or power cycle.
9639 */
9640 bnx2x_set_reset_in_progress(bp);
9641
9642 /* Shut down the power */
9643 bnx2x_set_power_state(bp, PCI_D3hot);
9644
9645 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9646
9647 smp_mb();
9648 }
9649
9650 /*
9651 * Assumption: runs under rtnl lock. This together with the fact
9652 * that it's called only from bnx2x_sp_rtnl() ensure that it
9653 * will never be called when netif_running(bp->dev) is false.
9654 */
9655 static void bnx2x_parity_recover(struct bnx2x *bp)
9656 {
9657 bool global = false;
9658 u32 error_recovered, error_unrecovered;
9659 bool is_parity;
9660
9661 DP(NETIF_MSG_HW, "Handling parity\n");
9662 while (1) {
9663 switch (bp->recovery_state) {
9664 case BNX2X_RECOVERY_INIT:
9665 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9666 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9667 WARN_ON(!is_parity);
9668
9669 /* Try to get a LEADER_LOCK HW lock */
9670 if (bnx2x_trylock_leader_lock(bp)) {
9671 bnx2x_set_reset_in_progress(bp);
9672 /*
9673 * Check if there is a global attention and if
9674 * there was a global attention, set the global
9675 * reset bit.
9676 */
9677
9678 if (global)
9679 bnx2x_set_reset_global(bp);
9680
9681 bp->is_leader = 1;
9682 }
9683
9684 /* Stop the driver */
9685 /* If interface has been removed - break */
9686 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9687 return;
9688
9689 bp->recovery_state = BNX2X_RECOVERY_WAIT;
9690
9691 /* Ensure "is_leader", MCP command sequence and
9692 * "recovery_state" update values are seen on other
9693 * CPUs.
9694 */
9695 smp_mb();
9696 break;
9697
9698 case BNX2X_RECOVERY_WAIT:
9699 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9700 if (bp->is_leader) {
9701 int other_engine = BP_PATH(bp) ? 0 : 1;
9702 bool other_load_status =
9703 bnx2x_get_load_status(bp, other_engine);
9704 bool load_status =
9705 bnx2x_get_load_status(bp, BP_PATH(bp));
9706 global = bnx2x_reset_is_global(bp);
9707
9708 /*
9709 * In case of a parity in a global block, let
9710 * the first leader that performs a
9711 * leader_reset() reset the global blocks in
9712 * order to clear global attentions. Otherwise
9713 * the gates will remain closed for that
9714 * engine.
9715 */
9716 if (load_status ||
9717 (global && other_load_status)) {
9718 /* Wait until all other functions get
9719 * down.
9720 */
9721 schedule_delayed_work(&bp->sp_rtnl_task,
9722 HZ/10);
9723 return;
9724 } else {
9725 /* If all other functions got down -
9726 * try to bring the chip back to
9727 * normal. In any case it's an exit
9728 * point for a leader.
9729 */
9730 if (bnx2x_leader_reset(bp)) {
9731 bnx2x_recovery_failed(bp);
9732 return;
9733 }
9734
9735 /* If we are here, means that the
9736 * leader has succeeded and doesn't
9737 * want to be a leader any more. Try
9738 * to continue as a none-leader.
9739 */
9740 break;
9741 }
9742 } else { /* non-leader */
9743 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9744 /* Try to get a LEADER_LOCK HW lock as
9745 * long as a former leader may have
9746 * been unloaded by the user or
9747 * released a leadership by another
9748 * reason.
9749 */
9750 if (bnx2x_trylock_leader_lock(bp)) {
9751 /* I'm a leader now! Restart a
9752 * switch case.
9753 */
9754 bp->is_leader = 1;
9755 break;
9756 }
9757
9758 schedule_delayed_work(&bp->sp_rtnl_task,
9759 HZ/10);
9760 return;
9761
9762 } else {
9763 /*
9764 * If there was a global attention, wait
9765 * for it to be cleared.
9766 */
9767 if (bnx2x_reset_is_global(bp)) {
9768 schedule_delayed_work(
9769 &bp->sp_rtnl_task,
9770 HZ/10);
9771 return;
9772 }
9773
9774 error_recovered =
9775 bp->eth_stats.recoverable_error;
9776 error_unrecovered =
9777 bp->eth_stats.unrecoverable_error;
9778 bp->recovery_state =
9779 BNX2X_RECOVERY_NIC_LOADING;
9780 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9781 error_unrecovered++;
9782 netdev_err(bp->dev,
9783 "Recovery failed. Power cycle needed\n");
9784 /* Disconnect this device */
9785 netif_device_detach(bp->dev);
9786 /* Shut down the power */
9787 bnx2x_set_power_state(
9788 bp, PCI_D3hot);
9789 smp_mb();
9790 } else {
9791 bp->recovery_state =
9792 BNX2X_RECOVERY_DONE;
9793 error_recovered++;
9794 smp_mb();
9795 }
9796 bp->eth_stats.recoverable_error =
9797 error_recovered;
9798 bp->eth_stats.unrecoverable_error =
9799 error_unrecovered;
9800
9801 return;
9802 }
9803 }
9804 default:
9805 return;
9806 }
9807 }
9808 }
9809
9810 static int bnx2x_close(struct net_device *dev);
9811
9812 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9813 * scheduled on a general queue in order to prevent a dead lock.
9814 */
9815 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9816 {
9817 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9818
9819 rtnl_lock();
9820
9821 if (!netif_running(bp->dev)) {
9822 rtnl_unlock();
9823 return;
9824 }
9825
9826 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9827 #ifdef BNX2X_STOP_ON_ERROR
9828 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9829 "you will need to reboot when done\n");
9830 goto sp_rtnl_not_reset;
9831 #endif
9832 /*
9833 * Clear all pending SP commands as we are going to reset the
9834 * function anyway.
9835 */
9836 bp->sp_rtnl_state = 0;
9837 smp_mb();
9838
9839 bnx2x_parity_recover(bp);
9840
9841 rtnl_unlock();
9842 return;
9843 }
9844
9845 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9846 #ifdef BNX2X_STOP_ON_ERROR
9847 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9848 "you will need to reboot when done\n");
9849 goto sp_rtnl_not_reset;
9850 #endif
9851
9852 /*
9853 * Clear all pending SP commands as we are going to reset the
9854 * function anyway.
9855 */
9856 bp->sp_rtnl_state = 0;
9857 smp_mb();
9858
9859 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9860 bnx2x_nic_load(bp, LOAD_NORMAL);
9861
9862 rtnl_unlock();
9863 return;
9864 }
9865 #ifdef BNX2X_STOP_ON_ERROR
9866 sp_rtnl_not_reset:
9867 #endif
9868 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9869 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9870 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9871 bnx2x_after_function_update(bp);
9872 /*
9873 * in case of fan failure we need to reset id if the "stop on error"
9874 * debug flag is set, since we trying to prevent permanent overheating
9875 * damage
9876 */
9877 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9878 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9879 netif_device_detach(bp->dev);
9880 bnx2x_close(bp->dev);
9881 rtnl_unlock();
9882 return;
9883 }
9884
9885 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9886 DP(BNX2X_MSG_SP,
9887 "sending set mcast vf pf channel message from rtnl sp-task\n");
9888 bnx2x_vfpf_set_mcast(bp->dev);
9889 }
9890 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9891 &bp->sp_rtnl_state)){
9892 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9893 bnx2x_tx_disable(bp);
9894 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9895 }
9896 }
9897
9898 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9899 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9900 bnx2x_set_rx_mode_inner(bp);
9901 }
9902
9903 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9904 &bp->sp_rtnl_state))
9905 bnx2x_pf_set_vfs_vlan(bp);
9906
9907 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9908 bnx2x_dcbx_stop_hw_tx(bp);
9909 bnx2x_dcbx_resume_hw_tx(bp);
9910 }
9911
9912 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
9913 &bp->sp_rtnl_state))
9914 bnx2x_update_mng_version(bp);
9915
9916 /* work which needs rtnl lock not-taken (as it takes the lock itself and
9917 * can be called from other contexts as well)
9918 */
9919 rtnl_unlock();
9920
9921 /* enable SR-IOV if applicable */
9922 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9923 &bp->sp_rtnl_state)) {
9924 bnx2x_disable_sriov(bp);
9925 bnx2x_enable_sriov(bp);
9926 }
9927 }
9928
9929 static void bnx2x_period_task(struct work_struct *work)
9930 {
9931 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9932
9933 if (!netif_running(bp->dev))
9934 goto period_task_exit;
9935
9936 if (CHIP_REV_IS_SLOW(bp)) {
9937 BNX2X_ERR("period task called on emulation, ignoring\n");
9938 goto period_task_exit;
9939 }
9940
9941 bnx2x_acquire_phy_lock(bp);
9942 /*
9943 * The barrier is needed to ensure the ordering between the writing to
9944 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9945 * the reading here.
9946 */
9947 smp_mb();
9948 if (bp->port.pmf) {
9949 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9950
9951 /* Re-queue task in 1 sec */
9952 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9953 }
9954
9955 bnx2x_release_phy_lock(bp);
9956 period_task_exit:
9957 return;
9958 }
9959
9960 /*
9961 * Init service functions
9962 */
9963
9964 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9965 {
9966 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9967 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9968 return base + (BP_ABS_FUNC(bp)) * stride;
9969 }
9970
9971 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9972 struct bnx2x_mac_vals *vals)
9973 {
9974 u32 val, base_addr, offset, mask, reset_reg;
9975 bool mac_stopped = false;
9976 u8 port = BP_PORT(bp);
9977
9978 /* reset addresses as they also mark which values were changed */
9979 vals->bmac_addr = 0;
9980 vals->umac_addr = 0;
9981 vals->xmac_addr = 0;
9982 vals->emac_addr = 0;
9983
9984 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9985
9986 if (!CHIP_IS_E3(bp)) {
9987 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9988 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9989 if ((mask & reset_reg) && val) {
9990 u32 wb_data[2];
9991 BNX2X_DEV_INFO("Disable bmac Rx\n");
9992 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9993 : NIG_REG_INGRESS_BMAC0_MEM;
9994 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9995 : BIGMAC_REGISTER_BMAC_CONTROL;
9996
9997 /*
9998 * use rd/wr since we cannot use dmae. This is safe
9999 * since MCP won't access the bus due to the request
10000 * to unload, and no function on the path can be
10001 * loaded at this time.
10002 */
10003 wb_data[0] = REG_RD(bp, base_addr + offset);
10004 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10005 vals->bmac_addr = base_addr + offset;
10006 vals->bmac_val[0] = wb_data[0];
10007 vals->bmac_val[1] = wb_data[1];
10008 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10009 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10010 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10011 }
10012 BNX2X_DEV_INFO("Disable emac Rx\n");
10013 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10014 vals->emac_val = REG_RD(bp, vals->emac_addr);
10015 REG_WR(bp, vals->emac_addr, 0);
10016 mac_stopped = true;
10017 } else {
10018 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10019 BNX2X_DEV_INFO("Disable xmac Rx\n");
10020 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10021 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10022 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10023 val & ~(1 << 1));
10024 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10025 val | (1 << 1));
10026 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10027 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10028 REG_WR(bp, vals->xmac_addr, 0);
10029 mac_stopped = true;
10030 }
10031 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10032 if (mask & reset_reg) {
10033 BNX2X_DEV_INFO("Disable umac Rx\n");
10034 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10035 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10036 vals->umac_val = REG_RD(bp, vals->umac_addr);
10037 REG_WR(bp, vals->umac_addr, 0);
10038 mac_stopped = true;
10039 }
10040 }
10041
10042 if (mac_stopped)
10043 msleep(20);
10044 }
10045
10046 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10047 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10048 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10049 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10050
10051 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10052 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10053 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10054 #define BNX2X_PREV_UNDI_MF_PORT(p) (0x1a150c + ((p) << 4))
10055 #define BNX2X_PREV_UNDI_MF_FUNC(f) (0x1a184c + ((f) << 4))
10056 static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
10057 {
10058 u8 major, minor, version;
10059 u32 fw;
10060
10061 /* Must check that FW is loaded */
10062 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10063 MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
10064 BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
10065 return false;
10066 }
10067
10068 /* Read Currently loaded FW version */
10069 fw = REG_RD(bp, XSEM_REG_PRAM);
10070 major = fw & 0xff;
10071 minor = (fw >> 0x8) & 0xff;
10072 version = (fw >> 0x10) & 0xff;
10073 BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
10074 fw, major, minor, version);
10075
10076 if (major > BCM_5710_UNDI_FW_MF_MAJOR)
10077 return true;
10078
10079 if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10080 (minor > BCM_5710_UNDI_FW_MF_MINOR))
10081 return true;
10082
10083 if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10084 (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
10085 (version >= BCM_5710_UNDI_FW_MF_VERS))
10086 return true;
10087
10088 return false;
10089 }
10090
10091 static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
10092 {
10093 int i;
10094
10095 /* Due to legacy (FW) code, the first function on each engine has a
10096 * different offset macro from the rest of the functions.
10097 * Setting this for all 8 functions is harmless regardless of whether
10098 * this is actually a multi-function device.
10099 */
10100 for (i = 0; i < 2; i++)
10101 REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
10102
10103 for (i = 2; i < 8; i++)
10104 REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
10105
10106 BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
10107 }
10108
10109 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
10110 {
10111 u16 rcq, bd;
10112 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
10113
10114 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10115 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10116
10117 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10118 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
10119
10120 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10121 port, bd, rcq);
10122 }
10123
10124 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10125 {
10126 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10127 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10128 if (!rc) {
10129 BNX2X_ERR("MCP response failure, aborting\n");
10130 return -EBUSY;
10131 }
10132
10133 return 0;
10134 }
10135
10136 static struct bnx2x_prev_path_list *
10137 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10138 {
10139 struct bnx2x_prev_path_list *tmp_list;
10140
10141 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10142 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10143 bp->pdev->bus->number == tmp_list->bus &&
10144 BP_PATH(bp) == tmp_list->path)
10145 return tmp_list;
10146
10147 return NULL;
10148 }
10149
10150 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10151 {
10152 struct bnx2x_prev_path_list *tmp_list;
10153 int rc;
10154
10155 rc = down_interruptible(&bnx2x_prev_sem);
10156 if (rc) {
10157 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10158 return rc;
10159 }
10160
10161 tmp_list = bnx2x_prev_path_get_entry(bp);
10162 if (tmp_list) {
10163 tmp_list->aer = 1;
10164 rc = 0;
10165 } else {
10166 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10167 BP_PATH(bp));
10168 }
10169
10170 up(&bnx2x_prev_sem);
10171
10172 return rc;
10173 }
10174
10175 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10176 {
10177 struct bnx2x_prev_path_list *tmp_list;
10178 bool rc = false;
10179
10180 if (down_trylock(&bnx2x_prev_sem))
10181 return false;
10182
10183 tmp_list = bnx2x_prev_path_get_entry(bp);
10184 if (tmp_list) {
10185 if (tmp_list->aer) {
10186 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10187 BP_PATH(bp));
10188 } else {
10189 rc = true;
10190 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10191 BP_PATH(bp));
10192 }
10193 }
10194
10195 up(&bnx2x_prev_sem);
10196
10197 return rc;
10198 }
10199
10200 bool bnx2x_port_after_undi(struct bnx2x *bp)
10201 {
10202 struct bnx2x_prev_path_list *entry;
10203 bool val;
10204
10205 down(&bnx2x_prev_sem);
10206
10207 entry = bnx2x_prev_path_get_entry(bp);
10208 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10209
10210 up(&bnx2x_prev_sem);
10211
10212 return val;
10213 }
10214
10215 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10216 {
10217 struct bnx2x_prev_path_list *tmp_list;
10218 int rc;
10219
10220 rc = down_interruptible(&bnx2x_prev_sem);
10221 if (rc) {
10222 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10223 return rc;
10224 }
10225
10226 /* Check whether the entry for this path already exists */
10227 tmp_list = bnx2x_prev_path_get_entry(bp);
10228 if (tmp_list) {
10229 if (!tmp_list->aer) {
10230 BNX2X_ERR("Re-Marking the path.\n");
10231 } else {
10232 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10233 BP_PATH(bp));
10234 tmp_list->aer = 0;
10235 }
10236 up(&bnx2x_prev_sem);
10237 return 0;
10238 }
10239 up(&bnx2x_prev_sem);
10240
10241 /* Create an entry for this path and add it */
10242 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10243 if (!tmp_list) {
10244 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10245 return -ENOMEM;
10246 }
10247
10248 tmp_list->bus = bp->pdev->bus->number;
10249 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10250 tmp_list->path = BP_PATH(bp);
10251 tmp_list->aer = 0;
10252 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10253
10254 rc = down_interruptible(&bnx2x_prev_sem);
10255 if (rc) {
10256 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10257 kfree(tmp_list);
10258 } else {
10259 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10260 BP_PATH(bp));
10261 list_add(&tmp_list->list, &bnx2x_prev_list);
10262 up(&bnx2x_prev_sem);
10263 }
10264
10265 return rc;
10266 }
10267
10268 static int bnx2x_do_flr(struct bnx2x *bp)
10269 {
10270 struct pci_dev *dev = bp->pdev;
10271
10272 if (CHIP_IS_E1x(bp)) {
10273 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10274 return -EINVAL;
10275 }
10276
10277 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10278 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10279 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10280 bp->common.bc_ver);
10281 return -EINVAL;
10282 }
10283
10284 if (!pci_wait_for_pending_transaction(dev))
10285 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10286
10287 BNX2X_DEV_INFO("Initiating FLR\n");
10288 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10289
10290 return 0;
10291 }
10292
10293 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10294 {
10295 int rc;
10296
10297 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10298
10299 /* Test if previous unload process was already finished for this path */
10300 if (bnx2x_prev_is_path_marked(bp))
10301 return bnx2x_prev_mcp_done(bp);
10302
10303 BNX2X_DEV_INFO("Path is unmarked\n");
10304
10305 /* If function has FLR capabilities, and existing FW version matches
10306 * the one required, then FLR will be sufficient to clean any residue
10307 * left by previous driver
10308 */
10309 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10310
10311 if (!rc) {
10312 /* fw version is good */
10313 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10314 rc = bnx2x_do_flr(bp);
10315 }
10316
10317 if (!rc) {
10318 /* FLR was performed */
10319 BNX2X_DEV_INFO("FLR successful\n");
10320 return 0;
10321 }
10322
10323 BNX2X_DEV_INFO("Could not FLR\n");
10324
10325 /* Close the MCP request, return failure*/
10326 rc = bnx2x_prev_mcp_done(bp);
10327 if (!rc)
10328 rc = BNX2X_PREV_WAIT_NEEDED;
10329
10330 return rc;
10331 }
10332
10333 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10334 {
10335 u32 reset_reg, tmp_reg = 0, rc;
10336 bool prev_undi = false;
10337 struct bnx2x_mac_vals mac_vals;
10338
10339 /* It is possible a previous function received 'common' answer,
10340 * but hasn't loaded yet, therefore creating a scenario of
10341 * multiple functions receiving 'common' on the same path.
10342 */
10343 BNX2X_DEV_INFO("Common unload Flow\n");
10344
10345 memset(&mac_vals, 0, sizeof(mac_vals));
10346
10347 if (bnx2x_prev_is_path_marked(bp))
10348 return bnx2x_prev_mcp_done(bp);
10349
10350 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10351
10352 /* Reset should be performed after BRB is emptied */
10353 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10354 u32 timer_count = 1000;
10355
10356 /* Close the MAC Rx to prevent BRB from filling up */
10357 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10358
10359 /* close LLH filters towards the BRB */
10360 bnx2x_set_rx_filter(&bp->link_params, 0);
10361
10362 /* Check if the UNDI driver was previously loaded
10363 * UNDI driver initializes CID offset for normal bell to 0x7
10364 */
10365 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10366 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10367 if (tmp_reg == 0x7) {
10368 BNX2X_DEV_INFO("UNDI previously loaded\n");
10369 prev_undi = true;
10370 /* clear the UNDI indication */
10371 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10372 /* clear possible idle check errors */
10373 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10374 }
10375 }
10376 if (!CHIP_IS_E1x(bp))
10377 /* block FW from writing to host */
10378 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10379
10380 /* wait until BRB is empty */
10381 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10382 while (timer_count) {
10383 u32 prev_brb = tmp_reg;
10384
10385 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10386 if (!tmp_reg)
10387 break;
10388
10389 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10390
10391 /* reset timer as long as BRB actually gets emptied */
10392 if (prev_brb > tmp_reg)
10393 timer_count = 1000;
10394 else
10395 timer_count--;
10396
10397 /* New UNDI FW supports MF and contains better
10398 * cleaning methods - might be redundant but harmless.
10399 */
10400 if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10401 bnx2x_prev_unload_undi_mf(bp);
10402 } else if (prev_undi) {
10403 /* If UNDI resides in memory,
10404 * manually increment it
10405 */
10406 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10407 }
10408 udelay(10);
10409 }
10410
10411 if (!timer_count)
10412 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10413 }
10414
10415 /* No packets are in the pipeline, path is ready for reset */
10416 bnx2x_reset_common(bp);
10417
10418 if (mac_vals.xmac_addr)
10419 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10420 if (mac_vals.umac_addr)
10421 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10422 if (mac_vals.emac_addr)
10423 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10424 if (mac_vals.bmac_addr) {
10425 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10426 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10427 }
10428
10429 rc = bnx2x_prev_mark_path(bp, prev_undi);
10430 if (rc) {
10431 bnx2x_prev_mcp_done(bp);
10432 return rc;
10433 }
10434
10435 return bnx2x_prev_mcp_done(bp);
10436 }
10437
10438 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10439 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10440 * the addresses of the transaction, resulting in was-error bit set in the pci
10441 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10442 * to clear the interrupt which detected this from the pglueb and the was done
10443 * bit
10444 */
10445 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10446 {
10447 if (!CHIP_IS_E1x(bp)) {
10448 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10449 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10450 DP(BNX2X_MSG_SP,
10451 "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10452 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10453 1 << BP_FUNC(bp));
10454 }
10455 }
10456 }
10457
10458 static int bnx2x_prev_unload(struct bnx2x *bp)
10459 {
10460 int time_counter = 10;
10461 u32 rc, fw, hw_lock_reg, hw_lock_val;
10462 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10463
10464 /* clear hw from errors which may have resulted from an interrupted
10465 * dmae transaction.
10466 */
10467 bnx2x_prev_interrupted_dmae(bp);
10468
10469 /* Release previously held locks */
10470 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10471 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10472 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10473
10474 hw_lock_val = REG_RD(bp, hw_lock_reg);
10475 if (hw_lock_val) {
10476 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10477 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10478 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10479 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10480 }
10481
10482 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10483 REG_WR(bp, hw_lock_reg, 0xffffffff);
10484 } else
10485 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10486
10487 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10488 BNX2X_DEV_INFO("Release previously held alr\n");
10489 bnx2x_release_alr(bp);
10490 }
10491
10492 do {
10493 int aer = 0;
10494 /* Lock MCP using an unload request */
10495 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10496 if (!fw) {
10497 BNX2X_ERR("MCP response failure, aborting\n");
10498 rc = -EBUSY;
10499 break;
10500 }
10501
10502 rc = down_interruptible(&bnx2x_prev_sem);
10503 if (rc) {
10504 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10505 rc);
10506 } else {
10507 /* If Path is marked by EEH, ignore unload status */
10508 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10509 bnx2x_prev_path_get_entry(bp)->aer);
10510 up(&bnx2x_prev_sem);
10511 }
10512
10513 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10514 rc = bnx2x_prev_unload_common(bp);
10515 break;
10516 }
10517
10518 /* non-common reply from MCP might require looping */
10519 rc = bnx2x_prev_unload_uncommon(bp);
10520 if (rc != BNX2X_PREV_WAIT_NEEDED)
10521 break;
10522
10523 msleep(20);
10524 } while (--time_counter);
10525
10526 if (!time_counter || rc) {
10527 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10528 rc = -EPROBE_DEFER;
10529 }
10530
10531 /* Mark function if its port was used to boot from SAN */
10532 if (bnx2x_port_after_undi(bp))
10533 bp->link_params.feature_config_flags |=
10534 FEATURE_CONFIG_BOOT_FROM_SAN;
10535
10536 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10537
10538 return rc;
10539 }
10540
10541 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10542 {
10543 u32 val, val2, val3, val4, id, boot_mode;
10544 u16 pmc;
10545
10546 /* Get the chip revision id and number. */
10547 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10548 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10549 id = ((val & 0xffff) << 16);
10550 val = REG_RD(bp, MISC_REG_CHIP_REV);
10551 id |= ((val & 0xf) << 12);
10552
10553 /* Metal is read from PCI regs, but we can't access >=0x400 from
10554 * the configuration space (so we need to reg_rd)
10555 */
10556 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10557 id |= (((val >> 24) & 0xf) << 4);
10558 val = REG_RD(bp, MISC_REG_BOND_ID);
10559 id |= (val & 0xf);
10560 bp->common.chip_id = id;
10561
10562 /* force 57811 according to MISC register */
10563 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10564 if (CHIP_IS_57810(bp))
10565 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10566 (bp->common.chip_id & 0x0000FFFF);
10567 else if (CHIP_IS_57810_MF(bp))
10568 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10569 (bp->common.chip_id & 0x0000FFFF);
10570 bp->common.chip_id |= 0x1;
10571 }
10572
10573 /* Set doorbell size */
10574 bp->db_size = (1 << BNX2X_DB_SHIFT);
10575
10576 if (!CHIP_IS_E1x(bp)) {
10577 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10578 if ((val & 1) == 0)
10579 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10580 else
10581 val = (val >> 1) & 1;
10582 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10583 "2_PORT_MODE");
10584 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10585 CHIP_2_PORT_MODE;
10586
10587 if (CHIP_MODE_IS_4_PORT(bp))
10588 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10589 else
10590 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10591 } else {
10592 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10593 bp->pfid = bp->pf_num; /* 0..7 */
10594 }
10595
10596 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10597
10598 bp->link_params.chip_id = bp->common.chip_id;
10599 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10600
10601 val = (REG_RD(bp, 0x2874) & 0x55);
10602 if ((bp->common.chip_id & 0x1) ||
10603 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10604 bp->flags |= ONE_PORT_FLAG;
10605 BNX2X_DEV_INFO("single port device\n");
10606 }
10607
10608 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10609 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10610 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10611 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10612 bp->common.flash_size, bp->common.flash_size);
10613
10614 bnx2x_init_shmem(bp);
10615
10616 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10617 MISC_REG_GENERIC_CR_1 :
10618 MISC_REG_GENERIC_CR_0));
10619
10620 bp->link_params.shmem_base = bp->common.shmem_base;
10621 bp->link_params.shmem2_base = bp->common.shmem2_base;
10622 if (SHMEM2_RD(bp, size) >
10623 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10624 bp->link_params.lfa_base =
10625 REG_RD(bp, bp->common.shmem2_base +
10626 (u32)offsetof(struct shmem2_region,
10627 lfa_host_addr[BP_PORT(bp)]));
10628 else
10629 bp->link_params.lfa_base = 0;
10630 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
10631 bp->common.shmem_base, bp->common.shmem2_base);
10632
10633 if (!bp->common.shmem_base) {
10634 BNX2X_DEV_INFO("MCP not active\n");
10635 bp->flags |= NO_MCP_FLAG;
10636 return;
10637 }
10638
10639 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10640 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10641
10642 bp->link_params.hw_led_mode = ((bp->common.hw_config &
10643 SHARED_HW_CFG_LED_MODE_MASK) >>
10644 SHARED_HW_CFG_LED_MODE_SHIFT);
10645
10646 bp->link_params.feature_config_flags = 0;
10647 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10648 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10649 bp->link_params.feature_config_flags |=
10650 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10651 else
10652 bp->link_params.feature_config_flags &=
10653 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10654
10655 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10656 bp->common.bc_ver = val;
10657 BNX2X_DEV_INFO("bc_ver %X\n", val);
10658 if (val < BNX2X_BC_VER) {
10659 /* for now only warn
10660 * later we might need to enforce this */
10661 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10662 BNX2X_BC_VER, val);
10663 }
10664 bp->link_params.feature_config_flags |=
10665 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10666 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10667
10668 bp->link_params.feature_config_flags |=
10669 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10670 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10671 bp->link_params.feature_config_flags |=
10672 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10673 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10674 bp->link_params.feature_config_flags |=
10675 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10676 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10677
10678 bp->link_params.feature_config_flags |=
10679 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10680 FEATURE_CONFIG_MT_SUPPORT : 0;
10681
10682 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10683 BC_SUPPORTS_PFC_STATS : 0;
10684
10685 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10686 BC_SUPPORTS_FCOE_FEATURES : 0;
10687
10688 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10689 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10690
10691 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10692 BC_SUPPORTS_RMMOD_CMD : 0;
10693
10694 boot_mode = SHMEM_RD(bp,
10695 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10696 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10697 switch (boot_mode) {
10698 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10699 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10700 break;
10701 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10702 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10703 break;
10704 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10705 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10706 break;
10707 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10708 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10709 break;
10710 }
10711
10712 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10713 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10714
10715 BNX2X_DEV_INFO("%sWoL capable\n",
10716 (bp->flags & NO_WOL_FLAG) ? "not " : "");
10717
10718 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10719 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10720 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10721 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10722
10723 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10724 val, val2, val3, val4);
10725 }
10726
10727 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10728 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10729
10730 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10731 {
10732 int pfid = BP_FUNC(bp);
10733 int igu_sb_id;
10734 u32 val;
10735 u8 fid, igu_sb_cnt = 0;
10736
10737 bp->igu_base_sb = 0xff;
10738 if (CHIP_INT_MODE_IS_BC(bp)) {
10739 int vn = BP_VN(bp);
10740 igu_sb_cnt = bp->igu_sb_cnt;
10741 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10742 FP_SB_MAX_E1x;
10743
10744 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
10745 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10746
10747 return 0;
10748 }
10749
10750 /* IGU in normal mode - read CAM */
10751 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10752 igu_sb_id++) {
10753 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10754 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10755 continue;
10756 fid = IGU_FID(val);
10757 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10758 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10759 continue;
10760 if (IGU_VEC(val) == 0)
10761 /* default status block */
10762 bp->igu_dsb_id = igu_sb_id;
10763 else {
10764 if (bp->igu_base_sb == 0xff)
10765 bp->igu_base_sb = igu_sb_id;
10766 igu_sb_cnt++;
10767 }
10768 }
10769 }
10770
10771 #ifdef CONFIG_PCI_MSI
10772 /* Due to new PF resource allocation by MFW T7.4 and above, it's
10773 * optional that number of CAM entries will not be equal to the value
10774 * advertised in PCI.
10775 * Driver should use the minimal value of both as the actual status
10776 * block count
10777 */
10778 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10779 #endif
10780
10781 if (igu_sb_cnt == 0) {
10782 BNX2X_ERR("CAM configuration error\n");
10783 return -EINVAL;
10784 }
10785
10786 return 0;
10787 }
10788
10789 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10790 {
10791 int cfg_size = 0, idx, port = BP_PORT(bp);
10792
10793 /* Aggregation of supported attributes of all external phys */
10794 bp->port.supported[0] = 0;
10795 bp->port.supported[1] = 0;
10796 switch (bp->link_params.num_phys) {
10797 case 1:
10798 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10799 cfg_size = 1;
10800 break;
10801 case 2:
10802 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10803 cfg_size = 1;
10804 break;
10805 case 3:
10806 if (bp->link_params.multi_phy_config &
10807 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10808 bp->port.supported[1] =
10809 bp->link_params.phy[EXT_PHY1].supported;
10810 bp->port.supported[0] =
10811 bp->link_params.phy[EXT_PHY2].supported;
10812 } else {
10813 bp->port.supported[0] =
10814 bp->link_params.phy[EXT_PHY1].supported;
10815 bp->port.supported[1] =
10816 bp->link_params.phy[EXT_PHY2].supported;
10817 }
10818 cfg_size = 2;
10819 break;
10820 }
10821
10822 if (!(bp->port.supported[0] || bp->port.supported[1])) {
10823 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10824 SHMEM_RD(bp,
10825 dev_info.port_hw_config[port].external_phy_config),
10826 SHMEM_RD(bp,
10827 dev_info.port_hw_config[port].external_phy_config2));
10828 return;
10829 }
10830
10831 if (CHIP_IS_E3(bp))
10832 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10833 else {
10834 switch (switch_cfg) {
10835 case SWITCH_CFG_1G:
10836 bp->port.phy_addr = REG_RD(
10837 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10838 break;
10839 case SWITCH_CFG_10G:
10840 bp->port.phy_addr = REG_RD(
10841 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10842 break;
10843 default:
10844 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10845 bp->port.link_config[0]);
10846 return;
10847 }
10848 }
10849 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10850 /* mask what we support according to speed_cap_mask per configuration */
10851 for (idx = 0; idx < cfg_size; idx++) {
10852 if (!(bp->link_params.speed_cap_mask[idx] &
10853 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10854 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10855
10856 if (!(bp->link_params.speed_cap_mask[idx] &
10857 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10858 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10859
10860 if (!(bp->link_params.speed_cap_mask[idx] &
10861 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10862 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10863
10864 if (!(bp->link_params.speed_cap_mask[idx] &
10865 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10866 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10867
10868 if (!(bp->link_params.speed_cap_mask[idx] &
10869 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10870 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10871 SUPPORTED_1000baseT_Full);
10872
10873 if (!(bp->link_params.speed_cap_mask[idx] &
10874 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10875 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10876
10877 if (!(bp->link_params.speed_cap_mask[idx] &
10878 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10879 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10880
10881 if (!(bp->link_params.speed_cap_mask[idx] &
10882 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10883 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10884 }
10885
10886 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10887 bp->port.supported[1]);
10888 }
10889
10890 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10891 {
10892 u32 link_config, idx, cfg_size = 0;
10893 bp->port.advertising[0] = 0;
10894 bp->port.advertising[1] = 0;
10895 switch (bp->link_params.num_phys) {
10896 case 1:
10897 case 2:
10898 cfg_size = 1;
10899 break;
10900 case 3:
10901 cfg_size = 2;
10902 break;
10903 }
10904 for (idx = 0; idx < cfg_size; idx++) {
10905 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10906 link_config = bp->port.link_config[idx];
10907 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10908 case PORT_FEATURE_LINK_SPEED_AUTO:
10909 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10910 bp->link_params.req_line_speed[idx] =
10911 SPEED_AUTO_NEG;
10912 bp->port.advertising[idx] |=
10913 bp->port.supported[idx];
10914 if (bp->link_params.phy[EXT_PHY1].type ==
10915 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10916 bp->port.advertising[idx] |=
10917 (SUPPORTED_100baseT_Half |
10918 SUPPORTED_100baseT_Full);
10919 } else {
10920 /* force 10G, no AN */
10921 bp->link_params.req_line_speed[idx] =
10922 SPEED_10000;
10923 bp->port.advertising[idx] |=
10924 (ADVERTISED_10000baseT_Full |
10925 ADVERTISED_FIBRE);
10926 continue;
10927 }
10928 break;
10929
10930 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10931 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10932 bp->link_params.req_line_speed[idx] =
10933 SPEED_10;
10934 bp->port.advertising[idx] |=
10935 (ADVERTISED_10baseT_Full |
10936 ADVERTISED_TP);
10937 } else {
10938 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10939 link_config,
10940 bp->link_params.speed_cap_mask[idx]);
10941 return;
10942 }
10943 break;
10944
10945 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10946 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10947 bp->link_params.req_line_speed[idx] =
10948 SPEED_10;
10949 bp->link_params.req_duplex[idx] =
10950 DUPLEX_HALF;
10951 bp->port.advertising[idx] |=
10952 (ADVERTISED_10baseT_Half |
10953 ADVERTISED_TP);
10954 } else {
10955 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10956 link_config,
10957 bp->link_params.speed_cap_mask[idx]);
10958 return;
10959 }
10960 break;
10961
10962 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10963 if (bp->port.supported[idx] &
10964 SUPPORTED_100baseT_Full) {
10965 bp->link_params.req_line_speed[idx] =
10966 SPEED_100;
10967 bp->port.advertising[idx] |=
10968 (ADVERTISED_100baseT_Full |
10969 ADVERTISED_TP);
10970 } else {
10971 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10972 link_config,
10973 bp->link_params.speed_cap_mask[idx]);
10974 return;
10975 }
10976 break;
10977
10978 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10979 if (bp->port.supported[idx] &
10980 SUPPORTED_100baseT_Half) {
10981 bp->link_params.req_line_speed[idx] =
10982 SPEED_100;
10983 bp->link_params.req_duplex[idx] =
10984 DUPLEX_HALF;
10985 bp->port.advertising[idx] |=
10986 (ADVERTISED_100baseT_Half |
10987 ADVERTISED_TP);
10988 } else {
10989 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10990 link_config,
10991 bp->link_params.speed_cap_mask[idx]);
10992 return;
10993 }
10994 break;
10995
10996 case PORT_FEATURE_LINK_SPEED_1G:
10997 if (bp->port.supported[idx] &
10998 SUPPORTED_1000baseT_Full) {
10999 bp->link_params.req_line_speed[idx] =
11000 SPEED_1000;
11001 bp->port.advertising[idx] |=
11002 (ADVERTISED_1000baseT_Full |
11003 ADVERTISED_TP);
11004 } else {
11005 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11006 link_config,
11007 bp->link_params.speed_cap_mask[idx]);
11008 return;
11009 }
11010 break;
11011
11012 case PORT_FEATURE_LINK_SPEED_2_5G:
11013 if (bp->port.supported[idx] &
11014 SUPPORTED_2500baseX_Full) {
11015 bp->link_params.req_line_speed[idx] =
11016 SPEED_2500;
11017 bp->port.advertising[idx] |=
11018 (ADVERTISED_2500baseX_Full |
11019 ADVERTISED_TP);
11020 } else {
11021 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11022 link_config,
11023 bp->link_params.speed_cap_mask[idx]);
11024 return;
11025 }
11026 break;
11027
11028 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11029 if (bp->port.supported[idx] &
11030 SUPPORTED_10000baseT_Full) {
11031 bp->link_params.req_line_speed[idx] =
11032 SPEED_10000;
11033 bp->port.advertising[idx] |=
11034 (ADVERTISED_10000baseT_Full |
11035 ADVERTISED_FIBRE);
11036 } else {
11037 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11038 link_config,
11039 bp->link_params.speed_cap_mask[idx]);
11040 return;
11041 }
11042 break;
11043 case PORT_FEATURE_LINK_SPEED_20G:
11044 bp->link_params.req_line_speed[idx] = SPEED_20000;
11045
11046 break;
11047 default:
11048 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11049 link_config);
11050 bp->link_params.req_line_speed[idx] =
11051 SPEED_AUTO_NEG;
11052 bp->port.advertising[idx] =
11053 bp->port.supported[idx];
11054 break;
11055 }
11056
11057 bp->link_params.req_flow_ctrl[idx] = (link_config &
11058 PORT_FEATURE_FLOW_CONTROL_MASK);
11059 if (bp->link_params.req_flow_ctrl[idx] ==
11060 BNX2X_FLOW_CTRL_AUTO) {
11061 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11062 bp->link_params.req_flow_ctrl[idx] =
11063 BNX2X_FLOW_CTRL_NONE;
11064 else
11065 bnx2x_set_requested_fc(bp);
11066 }
11067
11068 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11069 bp->link_params.req_line_speed[idx],
11070 bp->link_params.req_duplex[idx],
11071 bp->link_params.req_flow_ctrl[idx],
11072 bp->port.advertising[idx]);
11073 }
11074 }
11075
11076 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11077 {
11078 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11079 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11080 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11081 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11082 }
11083
11084 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11085 {
11086 int port = BP_PORT(bp);
11087 u32 config;
11088 u32 ext_phy_type, ext_phy_config, eee_mode;
11089
11090 bp->link_params.bp = bp;
11091 bp->link_params.port = port;
11092
11093 bp->link_params.lane_config =
11094 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11095
11096 bp->link_params.speed_cap_mask[0] =
11097 SHMEM_RD(bp,
11098 dev_info.port_hw_config[port].speed_capability_mask) &
11099 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11100 bp->link_params.speed_cap_mask[1] =
11101 SHMEM_RD(bp,
11102 dev_info.port_hw_config[port].speed_capability_mask2) &
11103 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11104 bp->port.link_config[0] =
11105 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11106
11107 bp->port.link_config[1] =
11108 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11109
11110 bp->link_params.multi_phy_config =
11111 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11112 /* If the device is capable of WoL, set the default state according
11113 * to the HW
11114 */
11115 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11116 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11117 (config & PORT_FEATURE_WOL_ENABLED));
11118
11119 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11120 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11121 bp->flags |= NO_ISCSI_FLAG;
11122 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11123 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11124 bp->flags |= NO_FCOE_FLAG;
11125
11126 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11127 bp->link_params.lane_config,
11128 bp->link_params.speed_cap_mask[0],
11129 bp->port.link_config[0]);
11130
11131 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11132 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11133 bnx2x_phy_probe(&bp->link_params);
11134 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11135
11136 bnx2x_link_settings_requested(bp);
11137
11138 /*
11139 * If connected directly, work with the internal PHY, otherwise, work
11140 * with the external PHY
11141 */
11142 ext_phy_config =
11143 SHMEM_RD(bp,
11144 dev_info.port_hw_config[port].external_phy_config);
11145 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11146 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11147 bp->mdio.prtad = bp->port.phy_addr;
11148
11149 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11150 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11151 bp->mdio.prtad =
11152 XGXS_EXT_PHY_ADDR(ext_phy_config);
11153
11154 /* Configure link feature according to nvram value */
11155 eee_mode = (((SHMEM_RD(bp, dev_info.
11156 port_feature_config[port].eee_power_mode)) &
11157 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11158 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11159 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11160 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11161 EEE_MODE_ENABLE_LPI |
11162 EEE_MODE_OUTPUT_TIME;
11163 } else {
11164 bp->link_params.eee_mode = 0;
11165 }
11166 }
11167
11168 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11169 {
11170 u32 no_flags = NO_ISCSI_FLAG;
11171 int port = BP_PORT(bp);
11172 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11173 drv_lic_key[port].max_iscsi_conn);
11174
11175 if (!CNIC_SUPPORT(bp)) {
11176 bp->flags |= no_flags;
11177 return;
11178 }
11179
11180 /* Get the number of maximum allowed iSCSI connections */
11181 bp->cnic_eth_dev.max_iscsi_conn =
11182 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11183 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11184
11185 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11186 bp->cnic_eth_dev.max_iscsi_conn);
11187
11188 /*
11189 * If maximum allowed number of connections is zero -
11190 * disable the feature.
11191 */
11192 if (!bp->cnic_eth_dev.max_iscsi_conn)
11193 bp->flags |= no_flags;
11194 }
11195
11196 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11197 {
11198 /* Port info */
11199 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11200 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11201 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11202 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11203
11204 /* Node info */
11205 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11206 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11207 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11208 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11209 }
11210
11211 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11212 {
11213 u8 count = 0;
11214
11215 if (IS_MF(bp)) {
11216 u8 fid;
11217
11218 /* iterate over absolute function ids for this path: */
11219 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11220 if (IS_MF_SD(bp)) {
11221 u32 cfg = MF_CFG_RD(bp,
11222 func_mf_config[fid].config);
11223
11224 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11225 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11226 FUNC_MF_CFG_PROTOCOL_FCOE))
11227 count++;
11228 } else {
11229 u32 cfg = MF_CFG_RD(bp,
11230 func_ext_config[fid].
11231 func_cfg);
11232
11233 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11234 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11235 count++;
11236 }
11237 }
11238 } else { /* SF */
11239 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11240
11241 for (port = 0; port < port_cnt; port++) {
11242 u32 lic = SHMEM_RD(bp,
11243 drv_lic_key[port].max_fcoe_conn) ^
11244 FW_ENCODE_32BIT_PATTERN;
11245 if (lic)
11246 count++;
11247 }
11248 }
11249
11250 return count;
11251 }
11252
11253 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11254 {
11255 int port = BP_PORT(bp);
11256 int func = BP_ABS_FUNC(bp);
11257 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11258 drv_lic_key[port].max_fcoe_conn);
11259 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11260
11261 if (!CNIC_SUPPORT(bp)) {
11262 bp->flags |= NO_FCOE_FLAG;
11263 return;
11264 }
11265
11266 /* Get the number of maximum allowed FCoE connections */
11267 bp->cnic_eth_dev.max_fcoe_conn =
11268 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11269 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11270
11271 /* Calculate the number of maximum allowed FCoE tasks */
11272 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11273
11274 /* check if FCoE resources must be shared between different functions */
11275 if (num_fcoe_func)
11276 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11277
11278 /* Read the WWN: */
11279 if (!IS_MF(bp)) {
11280 /* Port info */
11281 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11282 SHMEM_RD(bp,
11283 dev_info.port_hw_config[port].
11284 fcoe_wwn_port_name_upper);
11285 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11286 SHMEM_RD(bp,
11287 dev_info.port_hw_config[port].
11288 fcoe_wwn_port_name_lower);
11289
11290 /* Node info */
11291 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11292 SHMEM_RD(bp,
11293 dev_info.port_hw_config[port].
11294 fcoe_wwn_node_name_upper);
11295 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11296 SHMEM_RD(bp,
11297 dev_info.port_hw_config[port].
11298 fcoe_wwn_node_name_lower);
11299 } else if (!IS_MF_SD(bp)) {
11300 /*
11301 * Read the WWN info only if the FCoE feature is enabled for
11302 * this function.
11303 */
11304 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11305 bnx2x_get_ext_wwn_info(bp, func);
11306
11307 } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11308 bnx2x_get_ext_wwn_info(bp, func);
11309 }
11310
11311 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11312
11313 /*
11314 * If maximum allowed number of connections is zero -
11315 * disable the feature.
11316 */
11317 if (!bp->cnic_eth_dev.max_fcoe_conn)
11318 bp->flags |= NO_FCOE_FLAG;
11319 }
11320
11321 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11322 {
11323 /*
11324 * iSCSI may be dynamically disabled but reading
11325 * info here we will decrease memory usage by driver
11326 * if the feature is disabled for good
11327 */
11328 bnx2x_get_iscsi_info(bp);
11329 bnx2x_get_fcoe_info(bp);
11330 }
11331
11332 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11333 {
11334 u32 val, val2;
11335 int func = BP_ABS_FUNC(bp);
11336 int port = BP_PORT(bp);
11337 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11338 u8 *fip_mac = bp->fip_mac;
11339
11340 if (IS_MF(bp)) {
11341 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11342 * FCoE MAC then the appropriate feature should be disabled.
11343 * In non SD mode features configuration comes from struct
11344 * func_ext_config.
11345 */
11346 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11347 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11348 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11349 val2 = MF_CFG_RD(bp, func_ext_config[func].
11350 iscsi_mac_addr_upper);
11351 val = MF_CFG_RD(bp, func_ext_config[func].
11352 iscsi_mac_addr_lower);
11353 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11354 BNX2X_DEV_INFO
11355 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11356 } else {
11357 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11358 }
11359
11360 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11361 val2 = MF_CFG_RD(bp, func_ext_config[func].
11362 fcoe_mac_addr_upper);
11363 val = MF_CFG_RD(bp, func_ext_config[func].
11364 fcoe_mac_addr_lower);
11365 bnx2x_set_mac_buf(fip_mac, val, val2);
11366 BNX2X_DEV_INFO
11367 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11368 } else {
11369 bp->flags |= NO_FCOE_FLAG;
11370 }
11371
11372 bp->mf_ext_config = cfg;
11373
11374 } else { /* SD MODE */
11375 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11376 /* use primary mac as iscsi mac */
11377 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11378
11379 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11380 BNX2X_DEV_INFO
11381 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11382 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11383 /* use primary mac as fip mac */
11384 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11385 BNX2X_DEV_INFO("SD FCoE MODE\n");
11386 BNX2X_DEV_INFO
11387 ("Read FIP MAC: %pM\n", fip_mac);
11388 }
11389 }
11390
11391 /* If this is a storage-only interface, use SAN mac as
11392 * primary MAC. Notice that for SD this is already the case,
11393 * as the SAN mac was copied from the primary MAC.
11394 */
11395 if (IS_MF_FCOE_AFEX(bp))
11396 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11397 } else {
11398 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11399 iscsi_mac_upper);
11400 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11401 iscsi_mac_lower);
11402 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11403
11404 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11405 fcoe_fip_mac_upper);
11406 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11407 fcoe_fip_mac_lower);
11408 bnx2x_set_mac_buf(fip_mac, val, val2);
11409 }
11410
11411 /* Disable iSCSI OOO if MAC configuration is invalid. */
11412 if (!is_valid_ether_addr(iscsi_mac)) {
11413 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11414 memset(iscsi_mac, 0, ETH_ALEN);
11415 }
11416
11417 /* Disable FCoE if MAC configuration is invalid. */
11418 if (!is_valid_ether_addr(fip_mac)) {
11419 bp->flags |= NO_FCOE_FLAG;
11420 memset(bp->fip_mac, 0, ETH_ALEN);
11421 }
11422 }
11423
11424 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11425 {
11426 u32 val, val2;
11427 int func = BP_ABS_FUNC(bp);
11428 int port = BP_PORT(bp);
11429
11430 /* Zero primary MAC configuration */
11431 memset(bp->dev->dev_addr, 0, ETH_ALEN);
11432
11433 if (BP_NOMCP(bp)) {
11434 BNX2X_ERROR("warning: random MAC workaround active\n");
11435 eth_hw_addr_random(bp->dev);
11436 } else if (IS_MF(bp)) {
11437 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11438 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11439 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11440 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11441 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11442
11443 if (CNIC_SUPPORT(bp))
11444 bnx2x_get_cnic_mac_hwinfo(bp);
11445 } else {
11446 /* in SF read MACs from port configuration */
11447 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11448 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11449 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11450
11451 if (CNIC_SUPPORT(bp))
11452 bnx2x_get_cnic_mac_hwinfo(bp);
11453 }
11454
11455 if (!BP_NOMCP(bp)) {
11456 /* Read physical port identifier from shmem */
11457 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11458 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11459 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11460 bp->flags |= HAS_PHYS_PORT_ID;
11461 }
11462
11463 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11464
11465 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11466 dev_err(&bp->pdev->dev,
11467 "bad Ethernet MAC address configuration: %pM\n"
11468 "change it manually before bringing up the appropriate network interface\n",
11469 bp->dev->dev_addr);
11470 }
11471
11472 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11473 {
11474 int tmp;
11475 u32 cfg;
11476
11477 if (IS_VF(bp))
11478 return 0;
11479
11480 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11481 /* Take function: tmp = func */
11482 tmp = BP_ABS_FUNC(bp);
11483 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11484 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11485 } else {
11486 /* Take port: tmp = port */
11487 tmp = BP_PORT(bp);
11488 cfg = SHMEM_RD(bp,
11489 dev_info.port_hw_config[tmp].generic_features);
11490 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11491 }
11492 return cfg;
11493 }
11494
11495 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11496 {
11497 int /*abs*/func = BP_ABS_FUNC(bp);
11498 int vn;
11499 u32 val = 0;
11500 int rc = 0;
11501
11502 bnx2x_get_common_hwinfo(bp);
11503
11504 /*
11505 * initialize IGU parameters
11506 */
11507 if (CHIP_IS_E1x(bp)) {
11508 bp->common.int_block = INT_BLOCK_HC;
11509
11510 bp->igu_dsb_id = DEF_SB_IGU_ID;
11511 bp->igu_base_sb = 0;
11512 } else {
11513 bp->common.int_block = INT_BLOCK_IGU;
11514
11515 /* do not allow device reset during IGU info processing */
11516 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11517
11518 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11519
11520 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11521 int tout = 5000;
11522
11523 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11524
11525 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11526 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11527 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11528
11529 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11530 tout--;
11531 usleep_range(1000, 2000);
11532 }
11533
11534 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11535 dev_err(&bp->pdev->dev,
11536 "FORCING Normal Mode failed!!!\n");
11537 bnx2x_release_hw_lock(bp,
11538 HW_LOCK_RESOURCE_RESET);
11539 return -EPERM;
11540 }
11541 }
11542
11543 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11544 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11545 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11546 } else
11547 BNX2X_DEV_INFO("IGU Normal Mode\n");
11548
11549 rc = bnx2x_get_igu_cam_info(bp);
11550 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11551 if (rc)
11552 return rc;
11553 }
11554
11555 /*
11556 * set base FW non-default (fast path) status block id, this value is
11557 * used to initialize the fw_sb_id saved on the fp/queue structure to
11558 * determine the id used by the FW.
11559 */
11560 if (CHIP_IS_E1x(bp))
11561 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11562 else /*
11563 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11564 * the same queue are indicated on the same IGU SB). So we prefer
11565 * FW and IGU SBs to be the same value.
11566 */
11567 bp->base_fw_ndsb = bp->igu_base_sb;
11568
11569 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11570 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11571 bp->igu_sb_cnt, bp->base_fw_ndsb);
11572
11573 /*
11574 * Initialize MF configuration
11575 */
11576
11577 bp->mf_ov = 0;
11578 bp->mf_mode = 0;
11579 vn = BP_VN(bp);
11580
11581 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11582 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11583 bp->common.shmem2_base, SHMEM2_RD(bp, size),
11584 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11585
11586 if (SHMEM2_HAS(bp, mf_cfg_addr))
11587 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11588 else
11589 bp->common.mf_cfg_base = bp->common.shmem_base +
11590 offsetof(struct shmem_region, func_mb) +
11591 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11592 /*
11593 * get mf configuration:
11594 * 1. Existence of MF configuration
11595 * 2. MAC address must be legal (check only upper bytes)
11596 * for Switch-Independent mode;
11597 * OVLAN must be legal for Switch-Dependent mode
11598 * 3. SF_MODE configures specific MF mode
11599 */
11600 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11601 /* get mf configuration */
11602 val = SHMEM_RD(bp,
11603 dev_info.shared_feature_config.config);
11604 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11605
11606 switch (val) {
11607 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11608 val = MF_CFG_RD(bp, func_mf_config[func].
11609 mac_upper);
11610 /* check for legal mac (upper bytes)*/
11611 if (val != 0xffff) {
11612 bp->mf_mode = MULTI_FUNCTION_SI;
11613 bp->mf_config[vn] = MF_CFG_RD(bp,
11614 func_mf_config[func].config);
11615 } else
11616 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11617 break;
11618 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11619 if ((!CHIP_IS_E1x(bp)) &&
11620 (MF_CFG_RD(bp, func_mf_config[func].
11621 mac_upper) != 0xffff) &&
11622 (SHMEM2_HAS(bp,
11623 afex_driver_support))) {
11624 bp->mf_mode = MULTI_FUNCTION_AFEX;
11625 bp->mf_config[vn] = MF_CFG_RD(bp,
11626 func_mf_config[func].config);
11627 } else {
11628 BNX2X_DEV_INFO("can not configure afex mode\n");
11629 }
11630 break;
11631 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11632 /* get OV configuration */
11633 val = MF_CFG_RD(bp,
11634 func_mf_config[FUNC_0].e1hov_tag);
11635 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11636
11637 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11638 bp->mf_mode = MULTI_FUNCTION_SD;
11639 bp->mf_config[vn] = MF_CFG_RD(bp,
11640 func_mf_config[func].config);
11641 } else
11642 BNX2X_DEV_INFO("illegal OV for SD\n");
11643 break;
11644 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11645 bp->mf_config[vn] = 0;
11646 break;
11647 default:
11648 /* Unknown configuration: reset mf_config */
11649 bp->mf_config[vn] = 0;
11650 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11651 }
11652 }
11653
11654 BNX2X_DEV_INFO("%s function mode\n",
11655 IS_MF(bp) ? "multi" : "single");
11656
11657 switch (bp->mf_mode) {
11658 case MULTI_FUNCTION_SD:
11659 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11660 FUNC_MF_CFG_E1HOV_TAG_MASK;
11661 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11662 bp->mf_ov = val;
11663 bp->path_has_ovlan = true;
11664
11665 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11666 func, bp->mf_ov, bp->mf_ov);
11667 } else {
11668 dev_err(&bp->pdev->dev,
11669 "No valid MF OV for func %d, aborting\n",
11670 func);
11671 return -EPERM;
11672 }
11673 break;
11674 case MULTI_FUNCTION_AFEX:
11675 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11676 break;
11677 case MULTI_FUNCTION_SI:
11678 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11679 func);
11680 break;
11681 default:
11682 if (vn) {
11683 dev_err(&bp->pdev->dev,
11684 "VN %d is in a single function mode, aborting\n",
11685 vn);
11686 return -EPERM;
11687 }
11688 break;
11689 }
11690
11691 /* check if other port on the path needs ovlan:
11692 * Since MF configuration is shared between ports
11693 * Possible mixed modes are only
11694 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11695 */
11696 if (CHIP_MODE_IS_4_PORT(bp) &&
11697 !bp->path_has_ovlan &&
11698 !IS_MF(bp) &&
11699 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11700 u8 other_port = !BP_PORT(bp);
11701 u8 other_func = BP_PATH(bp) + 2*other_port;
11702 val = MF_CFG_RD(bp,
11703 func_mf_config[other_func].e1hov_tag);
11704 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11705 bp->path_has_ovlan = true;
11706 }
11707 }
11708
11709 /* adjust igu_sb_cnt to MF for E1H */
11710 if (CHIP_IS_E1H(bp) && IS_MF(bp))
11711 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11712
11713 /* port info */
11714 bnx2x_get_port_hwinfo(bp);
11715
11716 /* Get MAC addresses */
11717 bnx2x_get_mac_hwinfo(bp);
11718
11719 bnx2x_get_cnic_info(bp);
11720
11721 return rc;
11722 }
11723
11724 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11725 {
11726 int cnt, i, block_end, rodi;
11727 char vpd_start[BNX2X_VPD_LEN+1];
11728 char str_id_reg[VENDOR_ID_LEN+1];
11729 char str_id_cap[VENDOR_ID_LEN+1];
11730 char *vpd_data;
11731 char *vpd_extended_data = NULL;
11732 u8 len;
11733
11734 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11735 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11736
11737 if (cnt < BNX2X_VPD_LEN)
11738 goto out_not_found;
11739
11740 /* VPD RO tag should be first tag after identifier string, hence
11741 * we should be able to find it in first BNX2X_VPD_LEN chars
11742 */
11743 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11744 PCI_VPD_LRDT_RO_DATA);
11745 if (i < 0)
11746 goto out_not_found;
11747
11748 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11749 pci_vpd_lrdt_size(&vpd_start[i]);
11750
11751 i += PCI_VPD_LRDT_TAG_SIZE;
11752
11753 if (block_end > BNX2X_VPD_LEN) {
11754 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11755 if (vpd_extended_data == NULL)
11756 goto out_not_found;
11757
11758 /* read rest of vpd image into vpd_extended_data */
11759 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11760 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11761 block_end - BNX2X_VPD_LEN,
11762 vpd_extended_data + BNX2X_VPD_LEN);
11763 if (cnt < (block_end - BNX2X_VPD_LEN))
11764 goto out_not_found;
11765 vpd_data = vpd_extended_data;
11766 } else
11767 vpd_data = vpd_start;
11768
11769 /* now vpd_data holds full vpd content in both cases */
11770
11771 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11772 PCI_VPD_RO_KEYWORD_MFR_ID);
11773 if (rodi < 0)
11774 goto out_not_found;
11775
11776 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11777
11778 if (len != VENDOR_ID_LEN)
11779 goto out_not_found;
11780
11781 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11782
11783 /* vendor specific info */
11784 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11785 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11786 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11787 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11788
11789 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11790 PCI_VPD_RO_KEYWORD_VENDOR0);
11791 if (rodi >= 0) {
11792 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11793
11794 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11795
11796 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11797 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11798 bp->fw_ver[len] = ' ';
11799 }
11800 }
11801 kfree(vpd_extended_data);
11802 return;
11803 }
11804 out_not_found:
11805 kfree(vpd_extended_data);
11806 return;
11807 }
11808
11809 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11810 {
11811 u32 flags = 0;
11812
11813 if (CHIP_REV_IS_FPGA(bp))
11814 SET_FLAGS(flags, MODE_FPGA);
11815 else if (CHIP_REV_IS_EMUL(bp))
11816 SET_FLAGS(flags, MODE_EMUL);
11817 else
11818 SET_FLAGS(flags, MODE_ASIC);
11819
11820 if (CHIP_MODE_IS_4_PORT(bp))
11821 SET_FLAGS(flags, MODE_PORT4);
11822 else
11823 SET_FLAGS(flags, MODE_PORT2);
11824
11825 if (CHIP_IS_E2(bp))
11826 SET_FLAGS(flags, MODE_E2);
11827 else if (CHIP_IS_E3(bp)) {
11828 SET_FLAGS(flags, MODE_E3);
11829 if (CHIP_REV(bp) == CHIP_REV_Ax)
11830 SET_FLAGS(flags, MODE_E3_A0);
11831 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11832 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11833 }
11834
11835 if (IS_MF(bp)) {
11836 SET_FLAGS(flags, MODE_MF);
11837 switch (bp->mf_mode) {
11838 case MULTI_FUNCTION_SD:
11839 SET_FLAGS(flags, MODE_MF_SD);
11840 break;
11841 case MULTI_FUNCTION_SI:
11842 SET_FLAGS(flags, MODE_MF_SI);
11843 break;
11844 case MULTI_FUNCTION_AFEX:
11845 SET_FLAGS(flags, MODE_MF_AFEX);
11846 break;
11847 }
11848 } else
11849 SET_FLAGS(flags, MODE_SF);
11850
11851 #if defined(__LITTLE_ENDIAN)
11852 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11853 #else /*(__BIG_ENDIAN)*/
11854 SET_FLAGS(flags, MODE_BIG_ENDIAN);
11855 #endif
11856 INIT_MODE_FLAGS(bp) = flags;
11857 }
11858
11859 static int bnx2x_init_bp(struct bnx2x *bp)
11860 {
11861 int func;
11862 int rc;
11863
11864 mutex_init(&bp->port.phy_mutex);
11865 mutex_init(&bp->fw_mb_mutex);
11866 mutex_init(&bp->drv_info_mutex);
11867 bp->drv_info_mng_owner = false;
11868 spin_lock_init(&bp->stats_lock);
11869 sema_init(&bp->stats_sema, 1);
11870
11871 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11872 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11873 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11874 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
11875 if (IS_PF(bp)) {
11876 rc = bnx2x_get_hwinfo(bp);
11877 if (rc)
11878 return rc;
11879 } else {
11880 eth_zero_addr(bp->dev->dev_addr);
11881 }
11882
11883 bnx2x_set_modes_bitmap(bp);
11884
11885 rc = bnx2x_alloc_mem_bp(bp);
11886 if (rc)
11887 return rc;
11888
11889 bnx2x_read_fwinfo(bp);
11890
11891 func = BP_FUNC(bp);
11892
11893 /* need to reset chip if undi was active */
11894 if (IS_PF(bp) && !BP_NOMCP(bp)) {
11895 /* init fw_seq */
11896 bp->fw_seq =
11897 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11898 DRV_MSG_SEQ_NUMBER_MASK;
11899 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11900
11901 rc = bnx2x_prev_unload(bp);
11902 if (rc) {
11903 bnx2x_free_mem_bp(bp);
11904 return rc;
11905 }
11906 }
11907
11908 if (CHIP_REV_IS_FPGA(bp))
11909 dev_err(&bp->pdev->dev, "FPGA detected\n");
11910
11911 if (BP_NOMCP(bp) && (func == 0))
11912 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11913
11914 bp->disable_tpa = disable_tpa;
11915 bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11916 /* Reduce memory usage in kdump environment by disabling TPA */
11917 bp->disable_tpa |= reset_devices;
11918
11919 /* Set TPA flags */
11920 if (bp->disable_tpa) {
11921 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11922 bp->dev->features &= ~NETIF_F_LRO;
11923 } else {
11924 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11925 bp->dev->features |= NETIF_F_LRO;
11926 }
11927
11928 if (CHIP_IS_E1(bp))
11929 bp->dropless_fc = 0;
11930 else
11931 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11932
11933 bp->mrrs = mrrs;
11934
11935 bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11936 if (IS_VF(bp))
11937 bp->rx_ring_size = MAX_RX_AVAIL;
11938
11939 /* make sure that the numbers are in the right granularity */
11940 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11941 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11942
11943 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11944
11945 init_timer(&bp->timer);
11946 bp->timer.expires = jiffies + bp->current_interval;
11947 bp->timer.data = (unsigned long) bp;
11948 bp->timer.function = bnx2x_timer;
11949
11950 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11951 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11952 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11953 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11954 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11955 bnx2x_dcbx_init_params(bp);
11956 } else {
11957 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11958 }
11959
11960 if (CHIP_IS_E1x(bp))
11961 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11962 else
11963 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11964
11965 /* multiple tx priority */
11966 if (IS_VF(bp))
11967 bp->max_cos = 1;
11968 else if (CHIP_IS_E1x(bp))
11969 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11970 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11971 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11972 else if (CHIP_IS_E3B0(bp))
11973 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11974 else
11975 BNX2X_ERR("unknown chip %x revision %x\n",
11976 CHIP_NUM(bp), CHIP_REV(bp));
11977 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11978
11979 /* We need at least one default status block for slow-path events,
11980 * second status block for the L2 queue, and a third status block for
11981 * CNIC if supported.
11982 */
11983 if (IS_VF(bp))
11984 bp->min_msix_vec_cnt = 1;
11985 else if (CNIC_SUPPORT(bp))
11986 bp->min_msix_vec_cnt = 3;
11987 else /* PF w/o cnic */
11988 bp->min_msix_vec_cnt = 2;
11989 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11990
11991 bp->dump_preset_idx = 1;
11992
11993 return rc;
11994 }
11995
11996 /****************************************************************************
11997 * General service functions
11998 ****************************************************************************/
11999
12000 /*
12001 * net_device service functions
12002 */
12003
12004 /* called with rtnl_lock */
12005 static int bnx2x_open(struct net_device *dev)
12006 {
12007 struct bnx2x *bp = netdev_priv(dev);
12008 int rc;
12009
12010 bp->stats_init = true;
12011
12012 netif_carrier_off(dev);
12013
12014 bnx2x_set_power_state(bp, PCI_D0);
12015
12016 /* If parity had happen during the unload, then attentions
12017 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12018 * want the first function loaded on the current engine to
12019 * complete the recovery.
12020 * Parity recovery is only relevant for PF driver.
12021 */
12022 if (IS_PF(bp)) {
12023 int other_engine = BP_PATH(bp) ? 0 : 1;
12024 bool other_load_status, load_status;
12025 bool global = false;
12026
12027 other_load_status = bnx2x_get_load_status(bp, other_engine);
12028 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12029 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12030 bnx2x_chk_parity_attn(bp, &global, true)) {
12031 do {
12032 /* If there are attentions and they are in a
12033 * global blocks, set the GLOBAL_RESET bit
12034 * regardless whether it will be this function
12035 * that will complete the recovery or not.
12036 */
12037 if (global)
12038 bnx2x_set_reset_global(bp);
12039
12040 /* Only the first function on the current
12041 * engine should try to recover in open. In case
12042 * of attentions in global blocks only the first
12043 * in the chip should try to recover.
12044 */
12045 if ((!load_status &&
12046 (!global || !other_load_status)) &&
12047 bnx2x_trylock_leader_lock(bp) &&
12048 !bnx2x_leader_reset(bp)) {
12049 netdev_info(bp->dev,
12050 "Recovered in open\n");
12051 break;
12052 }
12053
12054 /* recovery has failed... */
12055 bnx2x_set_power_state(bp, PCI_D3hot);
12056 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12057
12058 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12059 "If you still see this message after a few retries then power cycle is required.\n");
12060
12061 return -EAGAIN;
12062 } while (0);
12063 }
12064 }
12065
12066 bp->recovery_state = BNX2X_RECOVERY_DONE;
12067 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12068 if (rc)
12069 return rc;
12070 return 0;
12071 }
12072
12073 /* called with rtnl_lock */
12074 static int bnx2x_close(struct net_device *dev)
12075 {
12076 struct bnx2x *bp = netdev_priv(dev);
12077
12078 /* Unload the driver, release IRQs */
12079 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12080
12081 return 0;
12082 }
12083
12084 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12085 struct bnx2x_mcast_ramrod_params *p)
12086 {
12087 int mc_count = netdev_mc_count(bp->dev);
12088 struct bnx2x_mcast_list_elem *mc_mac =
12089 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12090 struct netdev_hw_addr *ha;
12091
12092 if (!mc_mac)
12093 return -ENOMEM;
12094
12095 INIT_LIST_HEAD(&p->mcast_list);
12096
12097 netdev_for_each_mc_addr(ha, bp->dev) {
12098 mc_mac->mac = bnx2x_mc_addr(ha);
12099 list_add_tail(&mc_mac->link, &p->mcast_list);
12100 mc_mac++;
12101 }
12102
12103 p->mcast_list_len = mc_count;
12104
12105 return 0;
12106 }
12107
12108 static void bnx2x_free_mcast_macs_list(
12109 struct bnx2x_mcast_ramrod_params *p)
12110 {
12111 struct bnx2x_mcast_list_elem *mc_mac =
12112 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12113 link);
12114
12115 WARN_ON(!mc_mac);
12116 kfree(mc_mac);
12117 }
12118
12119 /**
12120 * bnx2x_set_uc_list - configure a new unicast MACs list.
12121 *
12122 * @bp: driver handle
12123 *
12124 * We will use zero (0) as a MAC type for these MACs.
12125 */
12126 static int bnx2x_set_uc_list(struct bnx2x *bp)
12127 {
12128 int rc;
12129 struct net_device *dev = bp->dev;
12130 struct netdev_hw_addr *ha;
12131 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12132 unsigned long ramrod_flags = 0;
12133
12134 /* First schedule a cleanup up of old configuration */
12135 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12136 if (rc < 0) {
12137 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12138 return rc;
12139 }
12140
12141 netdev_for_each_uc_addr(ha, dev) {
12142 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12143 BNX2X_UC_LIST_MAC, &ramrod_flags);
12144 if (rc == -EEXIST) {
12145 DP(BNX2X_MSG_SP,
12146 "Failed to schedule ADD operations: %d\n", rc);
12147 /* do not treat adding same MAC as error */
12148 rc = 0;
12149
12150 } else if (rc < 0) {
12151
12152 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12153 rc);
12154 return rc;
12155 }
12156 }
12157
12158 /* Execute the pending commands */
12159 __set_bit(RAMROD_CONT, &ramrod_flags);
12160 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12161 BNX2X_UC_LIST_MAC, &ramrod_flags);
12162 }
12163
12164 static int bnx2x_set_mc_list(struct bnx2x *bp)
12165 {
12166 struct net_device *dev = bp->dev;
12167 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12168 int rc = 0;
12169
12170 rparam.mcast_obj = &bp->mcast_obj;
12171
12172 /* first, clear all configured multicast MACs */
12173 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12174 if (rc < 0) {
12175 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12176 return rc;
12177 }
12178
12179 /* then, configure a new MACs list */
12180 if (netdev_mc_count(dev)) {
12181 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12182 if (rc) {
12183 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12184 rc);
12185 return rc;
12186 }
12187
12188 /* Now add the new MACs */
12189 rc = bnx2x_config_mcast(bp, &rparam,
12190 BNX2X_MCAST_CMD_ADD);
12191 if (rc < 0)
12192 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12193 rc);
12194
12195 bnx2x_free_mcast_macs_list(&rparam);
12196 }
12197
12198 return rc;
12199 }
12200
12201 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12202 static void bnx2x_set_rx_mode(struct net_device *dev)
12203 {
12204 struct bnx2x *bp = netdev_priv(dev);
12205
12206 if (bp->state != BNX2X_STATE_OPEN) {
12207 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12208 return;
12209 } else {
12210 /* Schedule an SP task to handle rest of change */
12211 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12212 NETIF_MSG_IFUP);
12213 }
12214 }
12215
12216 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12217 {
12218 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12219
12220 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12221
12222 netif_addr_lock_bh(bp->dev);
12223
12224 if (bp->dev->flags & IFF_PROMISC) {
12225 rx_mode = BNX2X_RX_MODE_PROMISC;
12226 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12227 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12228 CHIP_IS_E1(bp))) {
12229 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12230 } else {
12231 if (IS_PF(bp)) {
12232 /* some multicasts */
12233 if (bnx2x_set_mc_list(bp) < 0)
12234 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12235
12236 /* release bh lock, as bnx2x_set_uc_list might sleep */
12237 netif_addr_unlock_bh(bp->dev);
12238 if (bnx2x_set_uc_list(bp) < 0)
12239 rx_mode = BNX2X_RX_MODE_PROMISC;
12240 netif_addr_lock_bh(bp->dev);
12241 } else {
12242 /* configuring mcast to a vf involves sleeping (when we
12243 * wait for the pf's response).
12244 */
12245 bnx2x_schedule_sp_rtnl(bp,
12246 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12247 }
12248 }
12249
12250 bp->rx_mode = rx_mode;
12251 /* handle ISCSI SD mode */
12252 if (IS_MF_ISCSI_SD(bp))
12253 bp->rx_mode = BNX2X_RX_MODE_NONE;
12254
12255 /* Schedule the rx_mode command */
12256 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12257 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12258 netif_addr_unlock_bh(bp->dev);
12259 return;
12260 }
12261
12262 if (IS_PF(bp)) {
12263 bnx2x_set_storm_rx_mode(bp);
12264 netif_addr_unlock_bh(bp->dev);
12265 } else {
12266 /* VF will need to request the PF to make this change, and so
12267 * the VF needs to release the bottom-half lock prior to the
12268 * request (as it will likely require sleep on the VF side)
12269 */
12270 netif_addr_unlock_bh(bp->dev);
12271 bnx2x_vfpf_storm_rx_mode(bp);
12272 }
12273 }
12274
12275 /* called with rtnl_lock */
12276 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12277 int devad, u16 addr)
12278 {
12279 struct bnx2x *bp = netdev_priv(netdev);
12280 u16 value;
12281 int rc;
12282
12283 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12284 prtad, devad, addr);
12285
12286 /* The HW expects different devad if CL22 is used */
12287 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12288
12289 bnx2x_acquire_phy_lock(bp);
12290 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12291 bnx2x_release_phy_lock(bp);
12292 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12293
12294 if (!rc)
12295 rc = value;
12296 return rc;
12297 }
12298
12299 /* called with rtnl_lock */
12300 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12301 u16 addr, u16 value)
12302 {
12303 struct bnx2x *bp = netdev_priv(netdev);
12304 int rc;
12305
12306 DP(NETIF_MSG_LINK,
12307 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12308 prtad, devad, addr, value);
12309
12310 /* The HW expects different devad if CL22 is used */
12311 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12312
12313 bnx2x_acquire_phy_lock(bp);
12314 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12315 bnx2x_release_phy_lock(bp);
12316 return rc;
12317 }
12318
12319 /* called with rtnl_lock */
12320 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12321 {
12322 struct bnx2x *bp = netdev_priv(dev);
12323 struct mii_ioctl_data *mdio = if_mii(ifr);
12324
12325 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12326 mdio->phy_id, mdio->reg_num, mdio->val_in);
12327
12328 if (!netif_running(dev))
12329 return -EAGAIN;
12330
12331 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12332 }
12333
12334 #ifdef CONFIG_NET_POLL_CONTROLLER
12335 static void poll_bnx2x(struct net_device *dev)
12336 {
12337 struct bnx2x *bp = netdev_priv(dev);
12338 int i;
12339
12340 for_each_eth_queue(bp, i) {
12341 struct bnx2x_fastpath *fp = &bp->fp[i];
12342 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12343 }
12344 }
12345 #endif
12346
12347 static int bnx2x_validate_addr(struct net_device *dev)
12348 {
12349 struct bnx2x *bp = netdev_priv(dev);
12350
12351 /* query the bulletin board for mac address configured by the PF */
12352 if (IS_VF(bp))
12353 bnx2x_sample_bulletin(bp);
12354
12355 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12356 BNX2X_ERR("Non-valid Ethernet address\n");
12357 return -EADDRNOTAVAIL;
12358 }
12359 return 0;
12360 }
12361
12362 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12363 struct netdev_phys_port_id *ppid)
12364 {
12365 struct bnx2x *bp = netdev_priv(netdev);
12366
12367 if (!(bp->flags & HAS_PHYS_PORT_ID))
12368 return -EOPNOTSUPP;
12369
12370 ppid->id_len = sizeof(bp->phys_port_id);
12371 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12372
12373 return 0;
12374 }
12375
12376 static const struct net_device_ops bnx2x_netdev_ops = {
12377 .ndo_open = bnx2x_open,
12378 .ndo_stop = bnx2x_close,
12379 .ndo_start_xmit = bnx2x_start_xmit,
12380 .ndo_select_queue = bnx2x_select_queue,
12381 .ndo_set_rx_mode = bnx2x_set_rx_mode,
12382 .ndo_set_mac_address = bnx2x_change_mac_addr,
12383 .ndo_validate_addr = bnx2x_validate_addr,
12384 .ndo_do_ioctl = bnx2x_ioctl,
12385 .ndo_change_mtu = bnx2x_change_mtu,
12386 .ndo_fix_features = bnx2x_fix_features,
12387 .ndo_set_features = bnx2x_set_features,
12388 .ndo_tx_timeout = bnx2x_tx_timeout,
12389 #ifdef CONFIG_NET_POLL_CONTROLLER
12390 .ndo_poll_controller = poll_bnx2x,
12391 #endif
12392 .ndo_setup_tc = bnx2x_setup_tc,
12393 #ifdef CONFIG_BNX2X_SRIOV
12394 .ndo_set_vf_mac = bnx2x_set_vf_mac,
12395 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
12396 .ndo_get_vf_config = bnx2x_get_vf_config,
12397 #endif
12398 #ifdef NETDEV_FCOE_WWNN
12399 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
12400 #endif
12401
12402 #ifdef CONFIG_NET_RX_BUSY_POLL
12403 .ndo_busy_poll = bnx2x_low_latency_recv,
12404 #endif
12405 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
12406 };
12407
12408 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12409 {
12410 struct device *dev = &bp->pdev->dev;
12411
12412 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12413 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12414 dev_err(dev, "System does not support DMA, aborting\n");
12415 return -EIO;
12416 }
12417
12418 return 0;
12419 }
12420
12421 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12422 {
12423 if (bp->flags & AER_ENABLED) {
12424 pci_disable_pcie_error_reporting(bp->pdev);
12425 bp->flags &= ~AER_ENABLED;
12426 }
12427 }
12428
12429 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12430 struct net_device *dev, unsigned long board_type)
12431 {
12432 int rc;
12433 u32 pci_cfg_dword;
12434 bool chip_is_e1x = (board_type == BCM57710 ||
12435 board_type == BCM57711 ||
12436 board_type == BCM57711E);
12437
12438 SET_NETDEV_DEV(dev, &pdev->dev);
12439
12440 bp->dev = dev;
12441 bp->pdev = pdev;
12442
12443 rc = pci_enable_device(pdev);
12444 if (rc) {
12445 dev_err(&bp->pdev->dev,
12446 "Cannot enable PCI device, aborting\n");
12447 goto err_out;
12448 }
12449
12450 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12451 dev_err(&bp->pdev->dev,
12452 "Cannot find PCI device base address, aborting\n");
12453 rc = -ENODEV;
12454 goto err_out_disable;
12455 }
12456
12457 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12458 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12459 rc = -ENODEV;
12460 goto err_out_disable;
12461 }
12462
12463 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12464 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12465 PCICFG_REVESION_ID_ERROR_VAL) {
12466 pr_err("PCI device error, probably due to fan failure, aborting\n");
12467 rc = -ENODEV;
12468 goto err_out_disable;
12469 }
12470
12471 if (atomic_read(&pdev->enable_cnt) == 1) {
12472 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12473 if (rc) {
12474 dev_err(&bp->pdev->dev,
12475 "Cannot obtain PCI resources, aborting\n");
12476 goto err_out_disable;
12477 }
12478
12479 pci_set_master(pdev);
12480 pci_save_state(pdev);
12481 }
12482
12483 if (IS_PF(bp)) {
12484 if (!pdev->pm_cap) {
12485 dev_err(&bp->pdev->dev,
12486 "Cannot find power management capability, aborting\n");
12487 rc = -EIO;
12488 goto err_out_release;
12489 }
12490 }
12491
12492 if (!pci_is_pcie(pdev)) {
12493 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12494 rc = -EIO;
12495 goto err_out_release;
12496 }
12497
12498 rc = bnx2x_set_coherency_mask(bp);
12499 if (rc)
12500 goto err_out_release;
12501
12502 dev->mem_start = pci_resource_start(pdev, 0);
12503 dev->base_addr = dev->mem_start;
12504 dev->mem_end = pci_resource_end(pdev, 0);
12505
12506 dev->irq = pdev->irq;
12507
12508 bp->regview = pci_ioremap_bar(pdev, 0);
12509 if (!bp->regview) {
12510 dev_err(&bp->pdev->dev,
12511 "Cannot map register space, aborting\n");
12512 rc = -ENOMEM;
12513 goto err_out_release;
12514 }
12515
12516 /* In E1/E1H use pci device function given by kernel.
12517 * In E2/E3 read physical function from ME register since these chips
12518 * support Physical Device Assignment where kernel BDF maybe arbitrary
12519 * (depending on hypervisor).
12520 */
12521 if (chip_is_e1x) {
12522 bp->pf_num = PCI_FUNC(pdev->devfn);
12523 } else {
12524 /* chip is E2/3*/
12525 pci_read_config_dword(bp->pdev,
12526 PCICFG_ME_REGISTER, &pci_cfg_dword);
12527 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12528 ME_REG_ABS_PF_NUM_SHIFT);
12529 }
12530 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12531
12532 /* clean indirect addresses */
12533 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12534 PCICFG_VENDOR_ID_OFFSET);
12535
12536 /* AER (Advanced Error reporting) configuration */
12537 rc = pci_enable_pcie_error_reporting(pdev);
12538 if (!rc)
12539 bp->flags |= AER_ENABLED;
12540 else
12541 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12542
12543 /*
12544 * Clean the following indirect addresses for all functions since it
12545 * is not used by the driver.
12546 */
12547 if (IS_PF(bp)) {
12548 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12549 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12550 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12551 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12552
12553 if (chip_is_e1x) {
12554 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12555 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12556 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12557 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12558 }
12559
12560 /* Enable internal target-read (in case we are probed after PF
12561 * FLR). Must be done prior to any BAR read access. Only for
12562 * 57712 and up
12563 */
12564 if (!chip_is_e1x)
12565 REG_WR(bp,
12566 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12567 }
12568
12569 dev->watchdog_timeo = TX_TIMEOUT;
12570
12571 dev->netdev_ops = &bnx2x_netdev_ops;
12572 bnx2x_set_ethtool_ops(bp, dev);
12573
12574 dev->priv_flags |= IFF_UNICAST_FLT;
12575
12576 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12577 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12578 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12579 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12580 if (!CHIP_IS_E1x(bp)) {
12581 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12582 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12583 dev->hw_enc_features =
12584 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12585 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12586 NETIF_F_GSO_IPIP |
12587 NETIF_F_GSO_SIT |
12588 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12589 }
12590
12591 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12592 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12593
12594 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12595 dev->features |= NETIF_F_HIGHDMA;
12596
12597 /* Add Loopback capability to the device */
12598 dev->hw_features |= NETIF_F_LOOPBACK;
12599
12600 #ifdef BCM_DCBNL
12601 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12602 #endif
12603
12604 /* get_port_hwinfo() will set prtad and mmds properly */
12605 bp->mdio.prtad = MDIO_PRTAD_NONE;
12606 bp->mdio.mmds = 0;
12607 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12608 bp->mdio.dev = dev;
12609 bp->mdio.mdio_read = bnx2x_mdio_read;
12610 bp->mdio.mdio_write = bnx2x_mdio_write;
12611
12612 return 0;
12613
12614 err_out_release:
12615 if (atomic_read(&pdev->enable_cnt) == 1)
12616 pci_release_regions(pdev);
12617
12618 err_out_disable:
12619 pci_disable_device(pdev);
12620
12621 err_out:
12622 return rc;
12623 }
12624
12625 static int bnx2x_check_firmware(struct bnx2x *bp)
12626 {
12627 const struct firmware *firmware = bp->firmware;
12628 struct bnx2x_fw_file_hdr *fw_hdr;
12629 struct bnx2x_fw_file_section *sections;
12630 u32 offset, len, num_ops;
12631 __be16 *ops_offsets;
12632 int i;
12633 const u8 *fw_ver;
12634
12635 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12636 BNX2X_ERR("Wrong FW size\n");
12637 return -EINVAL;
12638 }
12639
12640 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12641 sections = (struct bnx2x_fw_file_section *)fw_hdr;
12642
12643 /* Make sure none of the offsets and sizes make us read beyond
12644 * the end of the firmware data */
12645 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12646 offset = be32_to_cpu(sections[i].offset);
12647 len = be32_to_cpu(sections[i].len);
12648 if (offset + len > firmware->size) {
12649 BNX2X_ERR("Section %d length is out of bounds\n", i);
12650 return -EINVAL;
12651 }
12652 }
12653
12654 /* Likewise for the init_ops offsets */
12655 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12656 ops_offsets = (__force __be16 *)(firmware->data + offset);
12657 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12658
12659 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12660 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12661 BNX2X_ERR("Section offset %d is out of bounds\n", i);
12662 return -EINVAL;
12663 }
12664 }
12665
12666 /* Check FW version */
12667 offset = be32_to_cpu(fw_hdr->fw_version.offset);
12668 fw_ver = firmware->data + offset;
12669 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12670 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12671 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12672 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12673 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12674 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12675 BCM_5710_FW_MAJOR_VERSION,
12676 BCM_5710_FW_MINOR_VERSION,
12677 BCM_5710_FW_REVISION_VERSION,
12678 BCM_5710_FW_ENGINEERING_VERSION);
12679 return -EINVAL;
12680 }
12681
12682 return 0;
12683 }
12684
12685 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12686 {
12687 const __be32 *source = (const __be32 *)_source;
12688 u32 *target = (u32 *)_target;
12689 u32 i;
12690
12691 for (i = 0; i < n/4; i++)
12692 target[i] = be32_to_cpu(source[i]);
12693 }
12694
12695 /*
12696 Ops array is stored in the following format:
12697 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12698 */
12699 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12700 {
12701 const __be32 *source = (const __be32 *)_source;
12702 struct raw_op *target = (struct raw_op *)_target;
12703 u32 i, j, tmp;
12704
12705 for (i = 0, j = 0; i < n/8; i++, j += 2) {
12706 tmp = be32_to_cpu(source[j]);
12707 target[i].op = (tmp >> 24) & 0xff;
12708 target[i].offset = tmp & 0xffffff;
12709 target[i].raw_data = be32_to_cpu(source[j + 1]);
12710 }
12711 }
12712
12713 /* IRO array is stored in the following format:
12714 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12715 */
12716 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12717 {
12718 const __be32 *source = (const __be32 *)_source;
12719 struct iro *target = (struct iro *)_target;
12720 u32 i, j, tmp;
12721
12722 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12723 target[i].base = be32_to_cpu(source[j]);
12724 j++;
12725 tmp = be32_to_cpu(source[j]);
12726 target[i].m1 = (tmp >> 16) & 0xffff;
12727 target[i].m2 = tmp & 0xffff;
12728 j++;
12729 tmp = be32_to_cpu(source[j]);
12730 target[i].m3 = (tmp >> 16) & 0xffff;
12731 target[i].size = tmp & 0xffff;
12732 j++;
12733 }
12734 }
12735
12736 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12737 {
12738 const __be16 *source = (const __be16 *)_source;
12739 u16 *target = (u16 *)_target;
12740 u32 i;
12741
12742 for (i = 0; i < n/2; i++)
12743 target[i] = be16_to_cpu(source[i]);
12744 }
12745
12746 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
12747 do { \
12748 u32 len = be32_to_cpu(fw_hdr->arr.len); \
12749 bp->arr = kmalloc(len, GFP_KERNEL); \
12750 if (!bp->arr) \
12751 goto lbl; \
12752 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
12753 (u8 *)bp->arr, len); \
12754 } while (0)
12755
12756 static int bnx2x_init_firmware(struct bnx2x *bp)
12757 {
12758 const char *fw_file_name;
12759 struct bnx2x_fw_file_hdr *fw_hdr;
12760 int rc;
12761
12762 if (bp->firmware)
12763 return 0;
12764
12765 if (CHIP_IS_E1(bp))
12766 fw_file_name = FW_FILE_NAME_E1;
12767 else if (CHIP_IS_E1H(bp))
12768 fw_file_name = FW_FILE_NAME_E1H;
12769 else if (!CHIP_IS_E1x(bp))
12770 fw_file_name = FW_FILE_NAME_E2;
12771 else {
12772 BNX2X_ERR("Unsupported chip revision\n");
12773 return -EINVAL;
12774 }
12775 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12776
12777 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12778 if (rc) {
12779 BNX2X_ERR("Can't load firmware file %s\n",
12780 fw_file_name);
12781 goto request_firmware_exit;
12782 }
12783
12784 rc = bnx2x_check_firmware(bp);
12785 if (rc) {
12786 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12787 goto request_firmware_exit;
12788 }
12789
12790 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12791
12792 /* Initialize the pointers to the init arrays */
12793 /* Blob */
12794 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12795
12796 /* Opcodes */
12797 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12798
12799 /* Offsets */
12800 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12801 be16_to_cpu_n);
12802
12803 /* STORMs firmware */
12804 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12805 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12806 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
12807 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12808 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12809 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12810 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
12811 be32_to_cpu(fw_hdr->usem_pram_data.offset);
12812 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12813 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12814 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
12815 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12816 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12817 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12818 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
12819 be32_to_cpu(fw_hdr->csem_pram_data.offset);
12820 /* IRO */
12821 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12822
12823 return 0;
12824
12825 iro_alloc_err:
12826 kfree(bp->init_ops_offsets);
12827 init_offsets_alloc_err:
12828 kfree(bp->init_ops);
12829 init_ops_alloc_err:
12830 kfree(bp->init_data);
12831 request_firmware_exit:
12832 release_firmware(bp->firmware);
12833 bp->firmware = NULL;
12834
12835 return rc;
12836 }
12837
12838 static void bnx2x_release_firmware(struct bnx2x *bp)
12839 {
12840 kfree(bp->init_ops_offsets);
12841 kfree(bp->init_ops);
12842 kfree(bp->init_data);
12843 release_firmware(bp->firmware);
12844 bp->firmware = NULL;
12845 }
12846
12847 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12848 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12849 .init_hw_cmn = bnx2x_init_hw_common,
12850 .init_hw_port = bnx2x_init_hw_port,
12851 .init_hw_func = bnx2x_init_hw_func,
12852
12853 .reset_hw_cmn = bnx2x_reset_common,
12854 .reset_hw_port = bnx2x_reset_port,
12855 .reset_hw_func = bnx2x_reset_func,
12856
12857 .gunzip_init = bnx2x_gunzip_init,
12858 .gunzip_end = bnx2x_gunzip_end,
12859
12860 .init_fw = bnx2x_init_firmware,
12861 .release_fw = bnx2x_release_firmware,
12862 };
12863
12864 void bnx2x__init_func_obj(struct bnx2x *bp)
12865 {
12866 /* Prepare DMAE related driver resources */
12867 bnx2x_setup_dmae(bp);
12868
12869 bnx2x_init_func_obj(bp, &bp->func_obj,
12870 bnx2x_sp(bp, func_rdata),
12871 bnx2x_sp_mapping(bp, func_rdata),
12872 bnx2x_sp(bp, func_afex_rdata),
12873 bnx2x_sp_mapping(bp, func_afex_rdata),
12874 &bnx2x_func_sp_drv);
12875 }
12876
12877 /* must be called after sriov-enable */
12878 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12879 {
12880 int cid_count = BNX2X_L2_MAX_CID(bp);
12881
12882 if (IS_SRIOV(bp))
12883 cid_count += BNX2X_VF_CIDS;
12884
12885 if (CNIC_SUPPORT(bp))
12886 cid_count += CNIC_CID_MAX;
12887
12888 return roundup(cid_count, QM_CID_ROUND);
12889 }
12890
12891 /**
12892 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12893 *
12894 * @dev: pci device
12895 *
12896 */
12897 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12898 {
12899 int index;
12900 u16 control = 0;
12901
12902 /*
12903 * If MSI-X is not supported - return number of SBs needed to support
12904 * one fast path queue: one FP queue + SB for CNIC
12905 */
12906 if (!pdev->msix_cap) {
12907 dev_info(&pdev->dev, "no msix capability found\n");
12908 return 1 + cnic_cnt;
12909 }
12910 dev_info(&pdev->dev, "msix capability found\n");
12911
12912 /*
12913 * The value in the PCI configuration space is the index of the last
12914 * entry, namely one less than the actual size of the table, which is
12915 * exactly what we want to return from this function: number of all SBs
12916 * without the default SB.
12917 * For VFs there is no default SB, then we return (index+1).
12918 */
12919 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12920
12921 index = control & PCI_MSIX_FLAGS_QSIZE;
12922
12923 return index;
12924 }
12925
12926 static int set_max_cos_est(int chip_id)
12927 {
12928 switch (chip_id) {
12929 case BCM57710:
12930 case BCM57711:
12931 case BCM57711E:
12932 return BNX2X_MULTI_TX_COS_E1X;
12933 case BCM57712:
12934 case BCM57712_MF:
12935 return BNX2X_MULTI_TX_COS_E2_E3A0;
12936 case BCM57800:
12937 case BCM57800_MF:
12938 case BCM57810:
12939 case BCM57810_MF:
12940 case BCM57840_4_10:
12941 case BCM57840_2_20:
12942 case BCM57840_O:
12943 case BCM57840_MFO:
12944 case BCM57840_MF:
12945 case BCM57811:
12946 case BCM57811_MF:
12947 return BNX2X_MULTI_TX_COS_E3B0;
12948 case BCM57712_VF:
12949 case BCM57800_VF:
12950 case BCM57810_VF:
12951 case BCM57840_VF:
12952 case BCM57811_VF:
12953 return 1;
12954 default:
12955 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12956 return -ENODEV;
12957 }
12958 }
12959
12960 static int set_is_vf(int chip_id)
12961 {
12962 switch (chip_id) {
12963 case BCM57712_VF:
12964 case BCM57800_VF:
12965 case BCM57810_VF:
12966 case BCM57840_VF:
12967 case BCM57811_VF:
12968 return true;
12969 default:
12970 return false;
12971 }
12972 }
12973
12974 static int bnx2x_init_one(struct pci_dev *pdev,
12975 const struct pci_device_id *ent)
12976 {
12977 struct net_device *dev = NULL;
12978 struct bnx2x *bp;
12979 enum pcie_link_width pcie_width;
12980 enum pci_bus_speed pcie_speed;
12981 int rc, max_non_def_sbs;
12982 int rx_count, tx_count, rss_count, doorbell_size;
12983 int max_cos_est;
12984 bool is_vf;
12985 int cnic_cnt;
12986
12987 /* An estimated maximum supported CoS number according to the chip
12988 * version.
12989 * We will try to roughly estimate the maximum number of CoSes this chip
12990 * may support in order to minimize the memory allocated for Tx
12991 * netdev_queue's. This number will be accurately calculated during the
12992 * initialization of bp->max_cos based on the chip versions AND chip
12993 * revision in the bnx2x_init_bp().
12994 */
12995 max_cos_est = set_max_cos_est(ent->driver_data);
12996 if (max_cos_est < 0)
12997 return max_cos_est;
12998 is_vf = set_is_vf(ent->driver_data);
12999 cnic_cnt = is_vf ? 0 : 1;
13000
13001 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13002
13003 /* add another SB for VF as it has no default SB */
13004 max_non_def_sbs += is_vf ? 1 : 0;
13005
13006 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13007 rss_count = max_non_def_sbs - cnic_cnt;
13008
13009 if (rss_count < 1)
13010 return -EINVAL;
13011
13012 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13013 rx_count = rss_count + cnic_cnt;
13014
13015 /* Maximum number of netdev Tx queues:
13016 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13017 */
13018 tx_count = rss_count * max_cos_est + cnic_cnt;
13019
13020 /* dev zeroed in init_etherdev */
13021 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13022 if (!dev)
13023 return -ENOMEM;
13024
13025 bp = netdev_priv(dev);
13026
13027 bp->flags = 0;
13028 if (is_vf)
13029 bp->flags |= IS_VF_FLAG;
13030
13031 bp->igu_sb_cnt = max_non_def_sbs;
13032 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13033 bp->msg_enable = debug;
13034 bp->cnic_support = cnic_cnt;
13035 bp->cnic_probe = bnx2x_cnic_probe;
13036
13037 pci_set_drvdata(pdev, dev);
13038
13039 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13040 if (rc < 0) {
13041 free_netdev(dev);
13042 return rc;
13043 }
13044
13045 BNX2X_DEV_INFO("This is a %s function\n",
13046 IS_PF(bp) ? "physical" : "virtual");
13047 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13048 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13049 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13050 tx_count, rx_count);
13051
13052 rc = bnx2x_init_bp(bp);
13053 if (rc)
13054 goto init_one_exit;
13055
13056 /* Map doorbells here as we need the real value of bp->max_cos which
13057 * is initialized in bnx2x_init_bp() to determine the number of
13058 * l2 connections.
13059 */
13060 if (IS_VF(bp)) {
13061 bp->doorbells = bnx2x_vf_doorbells(bp);
13062 rc = bnx2x_vf_pci_alloc(bp);
13063 if (rc)
13064 goto init_one_exit;
13065 } else {
13066 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13067 if (doorbell_size > pci_resource_len(pdev, 2)) {
13068 dev_err(&bp->pdev->dev,
13069 "Cannot map doorbells, bar size too small, aborting\n");
13070 rc = -ENOMEM;
13071 goto init_one_exit;
13072 }
13073 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13074 doorbell_size);
13075 }
13076 if (!bp->doorbells) {
13077 dev_err(&bp->pdev->dev,
13078 "Cannot map doorbell space, aborting\n");
13079 rc = -ENOMEM;
13080 goto init_one_exit;
13081 }
13082
13083 if (IS_VF(bp)) {
13084 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13085 if (rc)
13086 goto init_one_exit;
13087 }
13088
13089 /* Enable SRIOV if capability found in configuration space */
13090 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13091 if (rc)
13092 goto init_one_exit;
13093
13094 /* calc qm_cid_count */
13095 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13096 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13097
13098 /* disable FCOE L2 queue for E1x*/
13099 if (CHIP_IS_E1x(bp))
13100 bp->flags |= NO_FCOE_FLAG;
13101
13102 /* Set bp->num_queues for MSI-X mode*/
13103 bnx2x_set_num_queues(bp);
13104
13105 /* Configure interrupt mode: try to enable MSI-X/MSI if
13106 * needed.
13107 */
13108 rc = bnx2x_set_int_mode(bp);
13109 if (rc) {
13110 dev_err(&pdev->dev, "Cannot set interrupts\n");
13111 goto init_one_exit;
13112 }
13113 BNX2X_DEV_INFO("set interrupts successfully\n");
13114
13115 /* register the net device */
13116 rc = register_netdev(dev);
13117 if (rc) {
13118 dev_err(&pdev->dev, "Cannot register net device\n");
13119 goto init_one_exit;
13120 }
13121 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13122
13123 if (!NO_FCOE(bp)) {
13124 /* Add storage MAC address */
13125 rtnl_lock();
13126 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13127 rtnl_unlock();
13128 }
13129 if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13130 pcie_speed == PCI_SPEED_UNKNOWN ||
13131 pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13132 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13133 else
13134 BNX2X_DEV_INFO(
13135 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13136 board_info[ent->driver_data].name,
13137 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13138 pcie_width,
13139 pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13140 pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13141 pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13142 "Unknown",
13143 dev->base_addr, bp->pdev->irq, dev->dev_addr);
13144
13145 return 0;
13146
13147 init_one_exit:
13148 bnx2x_disable_pcie_error_reporting(bp);
13149
13150 if (bp->regview)
13151 iounmap(bp->regview);
13152
13153 if (IS_PF(bp) && bp->doorbells)
13154 iounmap(bp->doorbells);
13155
13156 free_netdev(dev);
13157
13158 if (atomic_read(&pdev->enable_cnt) == 1)
13159 pci_release_regions(pdev);
13160
13161 pci_disable_device(pdev);
13162
13163 return rc;
13164 }
13165
13166 static void __bnx2x_remove(struct pci_dev *pdev,
13167 struct net_device *dev,
13168 struct bnx2x *bp,
13169 bool remove_netdev)
13170 {
13171 /* Delete storage MAC address */
13172 if (!NO_FCOE(bp)) {
13173 rtnl_lock();
13174 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13175 rtnl_unlock();
13176 }
13177
13178 #ifdef BCM_DCBNL
13179 /* Delete app tlvs from dcbnl */
13180 bnx2x_dcbnl_update_applist(bp, true);
13181 #endif
13182
13183 if (IS_PF(bp) &&
13184 !BP_NOMCP(bp) &&
13185 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13186 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13187
13188 /* Close the interface - either directly or implicitly */
13189 if (remove_netdev) {
13190 unregister_netdev(dev);
13191 } else {
13192 rtnl_lock();
13193 dev_close(dev);
13194 rtnl_unlock();
13195 }
13196
13197 bnx2x_iov_remove_one(bp);
13198
13199 /* Power on: we can't let PCI layer write to us while we are in D3 */
13200 if (IS_PF(bp))
13201 bnx2x_set_power_state(bp, PCI_D0);
13202
13203 /* Disable MSI/MSI-X */
13204 bnx2x_disable_msi(bp);
13205
13206 /* Power off */
13207 if (IS_PF(bp))
13208 bnx2x_set_power_state(bp, PCI_D3hot);
13209
13210 /* Make sure RESET task is not scheduled before continuing */
13211 cancel_delayed_work_sync(&bp->sp_rtnl_task);
13212
13213 /* send message via vfpf channel to release the resources of this vf */
13214 if (IS_VF(bp))
13215 bnx2x_vfpf_release(bp);
13216
13217 /* Assumes no further PCIe PM changes will occur */
13218 if (system_state == SYSTEM_POWER_OFF) {
13219 pci_wake_from_d3(pdev, bp->wol);
13220 pci_set_power_state(pdev, PCI_D3hot);
13221 }
13222
13223 bnx2x_disable_pcie_error_reporting(bp);
13224 if (remove_netdev) {
13225 if (bp->regview)
13226 iounmap(bp->regview);
13227
13228 /* For vfs, doorbells are part of the regview and were unmapped
13229 * along with it. FW is only loaded by PF.
13230 */
13231 if (IS_PF(bp)) {
13232 if (bp->doorbells)
13233 iounmap(bp->doorbells);
13234
13235 bnx2x_release_firmware(bp);
13236 }
13237 bnx2x_free_mem_bp(bp);
13238
13239 free_netdev(dev);
13240
13241 if (atomic_read(&pdev->enable_cnt) == 1)
13242 pci_release_regions(pdev);
13243
13244 pci_disable_device(pdev);
13245 }
13246 }
13247
13248 static void bnx2x_remove_one(struct pci_dev *pdev)
13249 {
13250 struct net_device *dev = pci_get_drvdata(pdev);
13251 struct bnx2x *bp;
13252
13253 if (!dev) {
13254 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13255 return;
13256 }
13257 bp = netdev_priv(dev);
13258
13259 __bnx2x_remove(pdev, dev, bp, true);
13260 }
13261
13262 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13263 {
13264 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13265
13266 bp->rx_mode = BNX2X_RX_MODE_NONE;
13267
13268 if (CNIC_LOADED(bp))
13269 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13270
13271 /* Stop Tx */
13272 bnx2x_tx_disable(bp);
13273 /* Delete all NAPI objects */
13274 bnx2x_del_all_napi(bp);
13275 if (CNIC_LOADED(bp))
13276 bnx2x_del_all_napi_cnic(bp);
13277 netdev_reset_tc(bp->dev);
13278
13279 del_timer_sync(&bp->timer);
13280 cancel_delayed_work(&bp->sp_task);
13281 cancel_delayed_work(&bp->period_task);
13282
13283 spin_lock_bh(&bp->stats_lock);
13284 bp->stats_state = STATS_STATE_DISABLED;
13285 spin_unlock_bh(&bp->stats_lock);
13286
13287 bnx2x_save_statistics(bp);
13288
13289 netif_carrier_off(bp->dev);
13290
13291 return 0;
13292 }
13293
13294 /**
13295 * bnx2x_io_error_detected - called when PCI error is detected
13296 * @pdev: Pointer to PCI device
13297 * @state: The current pci connection state
13298 *
13299 * This function is called after a PCI bus error affecting
13300 * this device has been detected.
13301 */
13302 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13303 pci_channel_state_t state)
13304 {
13305 struct net_device *dev = pci_get_drvdata(pdev);
13306 struct bnx2x *bp = netdev_priv(dev);
13307
13308 rtnl_lock();
13309
13310 BNX2X_ERR("IO error detected\n");
13311
13312 netif_device_detach(dev);
13313
13314 if (state == pci_channel_io_perm_failure) {
13315 rtnl_unlock();
13316 return PCI_ERS_RESULT_DISCONNECT;
13317 }
13318
13319 if (netif_running(dev))
13320 bnx2x_eeh_nic_unload(bp);
13321
13322 bnx2x_prev_path_mark_eeh(bp);
13323
13324 pci_disable_device(pdev);
13325
13326 rtnl_unlock();
13327
13328 /* Request a slot reset */
13329 return PCI_ERS_RESULT_NEED_RESET;
13330 }
13331
13332 /**
13333 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13334 * @pdev: Pointer to PCI device
13335 *
13336 * Restart the card from scratch, as if from a cold-boot.
13337 */
13338 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13339 {
13340 struct net_device *dev = pci_get_drvdata(pdev);
13341 struct bnx2x *bp = netdev_priv(dev);
13342 int i;
13343
13344 rtnl_lock();
13345 BNX2X_ERR("IO slot reset initializing...\n");
13346 if (pci_enable_device(pdev)) {
13347 dev_err(&pdev->dev,
13348 "Cannot re-enable PCI device after reset\n");
13349 rtnl_unlock();
13350 return PCI_ERS_RESULT_DISCONNECT;
13351 }
13352
13353 pci_set_master(pdev);
13354 pci_restore_state(pdev);
13355 pci_save_state(pdev);
13356
13357 if (netif_running(dev))
13358 bnx2x_set_power_state(bp, PCI_D0);
13359
13360 if (netif_running(dev)) {
13361 BNX2X_ERR("IO slot reset --> driver unload\n");
13362
13363 /* MCP should have been reset; Need to wait for validity */
13364 bnx2x_init_shmem(bp);
13365
13366 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13367 u32 v;
13368
13369 v = SHMEM2_RD(bp,
13370 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13371 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13372 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13373 }
13374 bnx2x_drain_tx_queues(bp);
13375 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13376 bnx2x_netif_stop(bp, 1);
13377 bnx2x_free_irq(bp);
13378
13379 /* Report UNLOAD_DONE to MCP */
13380 bnx2x_send_unload_done(bp, true);
13381
13382 bp->sp_state = 0;
13383 bp->port.pmf = 0;
13384
13385 bnx2x_prev_unload(bp);
13386
13387 /* We should have reseted the engine, so It's fair to
13388 * assume the FW will no longer write to the bnx2x driver.
13389 */
13390 bnx2x_squeeze_objects(bp);
13391 bnx2x_free_skbs(bp);
13392 for_each_rx_queue(bp, i)
13393 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13394 bnx2x_free_fp_mem(bp);
13395 bnx2x_free_mem(bp);
13396
13397 bp->state = BNX2X_STATE_CLOSED;
13398 }
13399
13400 rtnl_unlock();
13401
13402 /* If AER, perform cleanup of the PCIe registers */
13403 if (bp->flags & AER_ENABLED) {
13404 if (pci_cleanup_aer_uncorrect_error_status(pdev))
13405 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13406 else
13407 DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13408 }
13409
13410 return PCI_ERS_RESULT_RECOVERED;
13411 }
13412
13413 /**
13414 * bnx2x_io_resume - called when traffic can start flowing again
13415 * @pdev: Pointer to PCI device
13416 *
13417 * This callback is called when the error recovery driver tells us that
13418 * its OK to resume normal operation.
13419 */
13420 static void bnx2x_io_resume(struct pci_dev *pdev)
13421 {
13422 struct net_device *dev = pci_get_drvdata(pdev);
13423 struct bnx2x *bp = netdev_priv(dev);
13424
13425 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13426 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13427 return;
13428 }
13429
13430 rtnl_lock();
13431
13432 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13433 DRV_MSG_SEQ_NUMBER_MASK;
13434
13435 if (netif_running(dev))
13436 bnx2x_nic_load(bp, LOAD_NORMAL);
13437
13438 netif_device_attach(dev);
13439
13440 rtnl_unlock();
13441 }
13442
13443 static const struct pci_error_handlers bnx2x_err_handler = {
13444 .error_detected = bnx2x_io_error_detected,
13445 .slot_reset = bnx2x_io_slot_reset,
13446 .resume = bnx2x_io_resume,
13447 };
13448
13449 static void bnx2x_shutdown(struct pci_dev *pdev)
13450 {
13451 struct net_device *dev = pci_get_drvdata(pdev);
13452 struct bnx2x *bp;
13453
13454 if (!dev)
13455 return;
13456
13457 bp = netdev_priv(dev);
13458 if (!bp)
13459 return;
13460
13461 rtnl_lock();
13462 netif_device_detach(dev);
13463 rtnl_unlock();
13464
13465 /* Don't remove the netdevice, as there are scenarios which will cause
13466 * the kernel to hang, e.g., when trying to remove bnx2i while the
13467 * rootfs is mounted from SAN.
13468 */
13469 __bnx2x_remove(pdev, dev, bp, false);
13470 }
13471
13472 static struct pci_driver bnx2x_pci_driver = {
13473 .name = DRV_MODULE_NAME,
13474 .id_table = bnx2x_pci_tbl,
13475 .probe = bnx2x_init_one,
13476 .remove = bnx2x_remove_one,
13477 .suspend = bnx2x_suspend,
13478 .resume = bnx2x_resume,
13479 .err_handler = &bnx2x_err_handler,
13480 #ifdef CONFIG_BNX2X_SRIOV
13481 .sriov_configure = bnx2x_sriov_configure,
13482 #endif
13483 .shutdown = bnx2x_shutdown,
13484 };
13485
13486 static int __init bnx2x_init(void)
13487 {
13488 int ret;
13489
13490 pr_info("%s", version);
13491
13492 bnx2x_wq = create_singlethread_workqueue("bnx2x");
13493 if (bnx2x_wq == NULL) {
13494 pr_err("Cannot create workqueue\n");
13495 return -ENOMEM;
13496 }
13497 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13498 if (!bnx2x_iov_wq) {
13499 pr_err("Cannot create iov workqueue\n");
13500 destroy_workqueue(bnx2x_wq);
13501 return -ENOMEM;
13502 }
13503
13504 ret = pci_register_driver(&bnx2x_pci_driver);
13505 if (ret) {
13506 pr_err("Cannot register driver\n");
13507 destroy_workqueue(bnx2x_wq);
13508 destroy_workqueue(bnx2x_iov_wq);
13509 }
13510 return ret;
13511 }
13512
13513 static void __exit bnx2x_cleanup(void)
13514 {
13515 struct list_head *pos, *q;
13516
13517 pci_unregister_driver(&bnx2x_pci_driver);
13518
13519 destroy_workqueue(bnx2x_wq);
13520 destroy_workqueue(bnx2x_iov_wq);
13521
13522 /* Free globally allocated resources */
13523 list_for_each_safe(pos, q, &bnx2x_prev_list) {
13524 struct bnx2x_prev_path_list *tmp =
13525 list_entry(pos, struct bnx2x_prev_path_list, list);
13526 list_del(pos);
13527 kfree(tmp);
13528 }
13529 }
13530
13531 void bnx2x_notify_link_changed(struct bnx2x *bp)
13532 {
13533 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13534 }
13535
13536 module_init(bnx2x_init);
13537 module_exit(bnx2x_cleanup);
13538
13539 /**
13540 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13541 *
13542 * @bp: driver handle
13543 * @set: set or clear the CAM entry
13544 *
13545 * This function will wait until the ramrod completion returns.
13546 * Return 0 if success, -ENODEV if ramrod doesn't return.
13547 */
13548 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13549 {
13550 unsigned long ramrod_flags = 0;
13551
13552 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13553 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13554 &bp->iscsi_l2_mac_obj, true,
13555 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13556 }
13557
13558 /* count denotes the number of new completions we have seen */
13559 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13560 {
13561 struct eth_spe *spe;
13562 int cxt_index, cxt_offset;
13563
13564 #ifdef BNX2X_STOP_ON_ERROR
13565 if (unlikely(bp->panic))
13566 return;
13567 #endif
13568
13569 spin_lock_bh(&bp->spq_lock);
13570 BUG_ON(bp->cnic_spq_pending < count);
13571 bp->cnic_spq_pending -= count;
13572
13573 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13574 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13575 & SPE_HDR_CONN_TYPE) >>
13576 SPE_HDR_CONN_TYPE_SHIFT;
13577 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13578 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13579
13580 /* Set validation for iSCSI L2 client before sending SETUP
13581 * ramrod
13582 */
13583 if (type == ETH_CONNECTION_TYPE) {
13584 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13585 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13586 ILT_PAGE_CIDS;
13587 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13588 (cxt_index * ILT_PAGE_CIDS);
13589 bnx2x_set_ctx_validation(bp,
13590 &bp->context[cxt_index].
13591 vcxt[cxt_offset].eth,
13592 BNX2X_ISCSI_ETH_CID(bp));
13593 }
13594 }
13595
13596 /*
13597 * There may be not more than 8 L2, not more than 8 L5 SPEs
13598 * and in the air. We also check that number of outstanding
13599 * COMMON ramrods is not more than the EQ and SPQ can
13600 * accommodate.
13601 */
13602 if (type == ETH_CONNECTION_TYPE) {
13603 if (!atomic_read(&bp->cq_spq_left))
13604 break;
13605 else
13606 atomic_dec(&bp->cq_spq_left);
13607 } else if (type == NONE_CONNECTION_TYPE) {
13608 if (!atomic_read(&bp->eq_spq_left))
13609 break;
13610 else
13611 atomic_dec(&bp->eq_spq_left);
13612 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13613 (type == FCOE_CONNECTION_TYPE)) {
13614 if (bp->cnic_spq_pending >=
13615 bp->cnic_eth_dev.max_kwqe_pending)
13616 break;
13617 else
13618 bp->cnic_spq_pending++;
13619 } else {
13620 BNX2X_ERR("Unknown SPE type: %d\n", type);
13621 bnx2x_panic();
13622 break;
13623 }
13624
13625 spe = bnx2x_sp_get_next(bp);
13626 *spe = *bp->cnic_kwq_cons;
13627
13628 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13629 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13630
13631 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13632 bp->cnic_kwq_cons = bp->cnic_kwq;
13633 else
13634 bp->cnic_kwq_cons++;
13635 }
13636 bnx2x_sp_prod_update(bp);
13637 spin_unlock_bh(&bp->spq_lock);
13638 }
13639
13640 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13641 struct kwqe_16 *kwqes[], u32 count)
13642 {
13643 struct bnx2x *bp = netdev_priv(dev);
13644 int i;
13645
13646 #ifdef BNX2X_STOP_ON_ERROR
13647 if (unlikely(bp->panic)) {
13648 BNX2X_ERR("Can't post to SP queue while panic\n");
13649 return -EIO;
13650 }
13651 #endif
13652
13653 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13654 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13655 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13656 return -EAGAIN;
13657 }
13658
13659 spin_lock_bh(&bp->spq_lock);
13660
13661 for (i = 0; i < count; i++) {
13662 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13663
13664 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13665 break;
13666
13667 *bp->cnic_kwq_prod = *spe;
13668
13669 bp->cnic_kwq_pending++;
13670
13671 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13672 spe->hdr.conn_and_cmd_data, spe->hdr.type,
13673 spe->data.update_data_addr.hi,
13674 spe->data.update_data_addr.lo,
13675 bp->cnic_kwq_pending);
13676
13677 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13678 bp->cnic_kwq_prod = bp->cnic_kwq;
13679 else
13680 bp->cnic_kwq_prod++;
13681 }
13682
13683 spin_unlock_bh(&bp->spq_lock);
13684
13685 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13686 bnx2x_cnic_sp_post(bp, 0);
13687
13688 return i;
13689 }
13690
13691 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13692 {
13693 struct cnic_ops *c_ops;
13694 int rc = 0;
13695
13696 mutex_lock(&bp->cnic_mutex);
13697 c_ops = rcu_dereference_protected(bp->cnic_ops,
13698 lockdep_is_held(&bp->cnic_mutex));
13699 if (c_ops)
13700 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13701 mutex_unlock(&bp->cnic_mutex);
13702
13703 return rc;
13704 }
13705
13706 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13707 {
13708 struct cnic_ops *c_ops;
13709 int rc = 0;
13710
13711 rcu_read_lock();
13712 c_ops = rcu_dereference(bp->cnic_ops);
13713 if (c_ops)
13714 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13715 rcu_read_unlock();
13716
13717 return rc;
13718 }
13719
13720 /*
13721 * for commands that have no data
13722 */
13723 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13724 {
13725 struct cnic_ctl_info ctl = {0};
13726
13727 ctl.cmd = cmd;
13728
13729 return bnx2x_cnic_ctl_send(bp, &ctl);
13730 }
13731
13732 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13733 {
13734 struct cnic_ctl_info ctl = {0};
13735
13736 /* first we tell CNIC and only then we count this as a completion */
13737 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13738 ctl.data.comp.cid = cid;
13739 ctl.data.comp.error = err;
13740
13741 bnx2x_cnic_ctl_send_bh(bp, &ctl);
13742 bnx2x_cnic_sp_post(bp, 0);
13743 }
13744
13745 /* Called with netif_addr_lock_bh() taken.
13746 * Sets an rx_mode config for an iSCSI ETH client.
13747 * Doesn't block.
13748 * Completion should be checked outside.
13749 */
13750 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13751 {
13752 unsigned long accept_flags = 0, ramrod_flags = 0;
13753 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13754 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13755
13756 if (start) {
13757 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13758 * because it's the only way for UIO Queue to accept
13759 * multicasts (in non-promiscuous mode only one Queue per
13760 * function will receive multicast packets (leading in our
13761 * case).
13762 */
13763 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13764 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13765 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13766 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13767
13768 /* Clear STOP_PENDING bit if START is requested */
13769 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13770
13771 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13772 } else
13773 /* Clear START_PENDING bit if STOP is requested */
13774 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13775
13776 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13777 set_bit(sched_state, &bp->sp_state);
13778 else {
13779 __set_bit(RAMROD_RX, &ramrod_flags);
13780 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13781 ramrod_flags);
13782 }
13783 }
13784
13785 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13786 {
13787 struct bnx2x *bp = netdev_priv(dev);
13788 int rc = 0;
13789
13790 switch (ctl->cmd) {
13791 case DRV_CTL_CTXTBL_WR_CMD: {
13792 u32 index = ctl->data.io.offset;
13793 dma_addr_t addr = ctl->data.io.dma_addr;
13794
13795 bnx2x_ilt_wr(bp, index, addr);
13796 break;
13797 }
13798
13799 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13800 int count = ctl->data.credit.credit_count;
13801
13802 bnx2x_cnic_sp_post(bp, count);
13803 break;
13804 }
13805
13806 /* rtnl_lock is held. */
13807 case DRV_CTL_START_L2_CMD: {
13808 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13809 unsigned long sp_bits = 0;
13810
13811 /* Configure the iSCSI classification object */
13812 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13813 cp->iscsi_l2_client_id,
13814 cp->iscsi_l2_cid, BP_FUNC(bp),
13815 bnx2x_sp(bp, mac_rdata),
13816 bnx2x_sp_mapping(bp, mac_rdata),
13817 BNX2X_FILTER_MAC_PENDING,
13818 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13819 &bp->macs_pool);
13820
13821 /* Set iSCSI MAC address */
13822 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13823 if (rc)
13824 break;
13825
13826 mmiowb();
13827 barrier();
13828
13829 /* Start accepting on iSCSI L2 ring */
13830
13831 netif_addr_lock_bh(dev);
13832 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13833 netif_addr_unlock_bh(dev);
13834
13835 /* bits to wait on */
13836 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13837 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13838
13839 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13840 BNX2X_ERR("rx_mode completion timed out!\n");
13841
13842 break;
13843 }
13844
13845 /* rtnl_lock is held. */
13846 case DRV_CTL_STOP_L2_CMD: {
13847 unsigned long sp_bits = 0;
13848
13849 /* Stop accepting on iSCSI L2 ring */
13850 netif_addr_lock_bh(dev);
13851 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13852 netif_addr_unlock_bh(dev);
13853
13854 /* bits to wait on */
13855 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13856 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13857
13858 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13859 BNX2X_ERR("rx_mode completion timed out!\n");
13860
13861 mmiowb();
13862 barrier();
13863
13864 /* Unset iSCSI L2 MAC */
13865 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13866 BNX2X_ISCSI_ETH_MAC, true);
13867 break;
13868 }
13869 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13870 int count = ctl->data.credit.credit_count;
13871
13872 smp_mb__before_atomic();
13873 atomic_add(count, &bp->cq_spq_left);
13874 smp_mb__after_atomic();
13875 break;
13876 }
13877 case DRV_CTL_ULP_REGISTER_CMD: {
13878 int ulp_type = ctl->data.register_data.ulp_type;
13879
13880 if (CHIP_IS_E3(bp)) {
13881 int idx = BP_FW_MB_IDX(bp);
13882 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13883 int path = BP_PATH(bp);
13884 int port = BP_PORT(bp);
13885 int i;
13886 u32 scratch_offset;
13887 u32 *host_addr;
13888
13889 /* first write capability to shmem2 */
13890 if (ulp_type == CNIC_ULP_ISCSI)
13891 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13892 else if (ulp_type == CNIC_ULP_FCOE)
13893 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13894 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13895
13896 if ((ulp_type != CNIC_ULP_FCOE) ||
13897 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13898 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
13899 break;
13900
13901 /* if reached here - should write fcoe capabilities */
13902 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13903 if (!scratch_offset)
13904 break;
13905 scratch_offset += offsetof(struct glob_ncsi_oem_data,
13906 fcoe_features[path][port]);
13907 host_addr = (u32 *) &(ctl->data.register_data.
13908 fcoe_features);
13909 for (i = 0; i < sizeof(struct fcoe_capabilities);
13910 i += 4)
13911 REG_WR(bp, scratch_offset + i,
13912 *(host_addr + i/4));
13913 }
13914 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13915 break;
13916 }
13917
13918 case DRV_CTL_ULP_UNREGISTER_CMD: {
13919 int ulp_type = ctl->data.ulp_type;
13920
13921 if (CHIP_IS_E3(bp)) {
13922 int idx = BP_FW_MB_IDX(bp);
13923 u32 cap;
13924
13925 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13926 if (ulp_type == CNIC_ULP_ISCSI)
13927 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13928 else if (ulp_type == CNIC_ULP_FCOE)
13929 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13930 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13931 }
13932 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13933 break;
13934 }
13935
13936 default:
13937 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13938 rc = -EINVAL;
13939 }
13940
13941 return rc;
13942 }
13943
13944 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13945 {
13946 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13947
13948 if (bp->flags & USING_MSIX_FLAG) {
13949 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13950 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13951 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13952 } else {
13953 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13954 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13955 }
13956 if (!CHIP_IS_E1x(bp))
13957 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13958 else
13959 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13960
13961 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
13962 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13963 cp->irq_arr[1].status_blk = bp->def_status_blk;
13964 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13965 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13966
13967 cp->num_irq = 2;
13968 }
13969
13970 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13971 {
13972 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13973
13974 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13975 bnx2x_cid_ilt_lines(bp);
13976 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13977 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13978 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13979
13980 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13981 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13982 cp->iscsi_l2_cid);
13983
13984 if (NO_ISCSI_OOO(bp))
13985 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13986 }
13987
13988 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13989 void *data)
13990 {
13991 struct bnx2x *bp = netdev_priv(dev);
13992 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13993 int rc;
13994
13995 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13996
13997 if (ops == NULL) {
13998 BNX2X_ERR("NULL ops received\n");
13999 return -EINVAL;
14000 }
14001
14002 if (!CNIC_SUPPORT(bp)) {
14003 BNX2X_ERR("Can't register CNIC when not supported\n");
14004 return -EOPNOTSUPP;
14005 }
14006
14007 if (!CNIC_LOADED(bp)) {
14008 rc = bnx2x_load_cnic(bp);
14009 if (rc) {
14010 BNX2X_ERR("CNIC-related load failed\n");
14011 return rc;
14012 }
14013 }
14014
14015 bp->cnic_enabled = true;
14016
14017 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14018 if (!bp->cnic_kwq)
14019 return -ENOMEM;
14020
14021 bp->cnic_kwq_cons = bp->cnic_kwq;
14022 bp->cnic_kwq_prod = bp->cnic_kwq;
14023 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14024
14025 bp->cnic_spq_pending = 0;
14026 bp->cnic_kwq_pending = 0;
14027
14028 bp->cnic_data = data;
14029
14030 cp->num_irq = 0;
14031 cp->drv_state |= CNIC_DRV_STATE_REGD;
14032 cp->iro_arr = bp->iro_arr;
14033
14034 bnx2x_setup_cnic_irq_info(bp);
14035
14036 rcu_assign_pointer(bp->cnic_ops, ops);
14037
14038 /* Schedule driver to read CNIC driver versions */
14039 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14040
14041 return 0;
14042 }
14043
14044 static int bnx2x_unregister_cnic(struct net_device *dev)
14045 {
14046 struct bnx2x *bp = netdev_priv(dev);
14047 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14048
14049 mutex_lock(&bp->cnic_mutex);
14050 cp->drv_state = 0;
14051 RCU_INIT_POINTER(bp->cnic_ops, NULL);
14052 mutex_unlock(&bp->cnic_mutex);
14053 synchronize_rcu();
14054 bp->cnic_enabled = false;
14055 kfree(bp->cnic_kwq);
14056 bp->cnic_kwq = NULL;
14057
14058 return 0;
14059 }
14060
14061 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14062 {
14063 struct bnx2x *bp = netdev_priv(dev);
14064 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14065
14066 /* If both iSCSI and FCoE are disabled - return NULL in
14067 * order to indicate CNIC that it should not try to work
14068 * with this device.
14069 */
14070 if (NO_ISCSI(bp) && NO_FCOE(bp))
14071 return NULL;
14072
14073 cp->drv_owner = THIS_MODULE;
14074 cp->chip_id = CHIP_ID(bp);
14075 cp->pdev = bp->pdev;
14076 cp->io_base = bp->regview;
14077 cp->io_base2 = bp->doorbells;
14078 cp->max_kwqe_pending = 8;
14079 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14080 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14081 bnx2x_cid_ilt_lines(bp);
14082 cp->ctx_tbl_len = CNIC_ILT_LINES;
14083 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14084 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14085 cp->drv_ctl = bnx2x_drv_ctl;
14086 cp->drv_register_cnic = bnx2x_register_cnic;
14087 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14088 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14089 cp->iscsi_l2_client_id =
14090 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14091 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14092
14093 if (NO_ISCSI_OOO(bp))
14094 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14095
14096 if (NO_ISCSI(bp))
14097 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14098
14099 if (NO_FCOE(bp))
14100 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14101
14102 BNX2X_DEV_INFO(
14103 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14104 cp->ctx_blk_size,
14105 cp->ctx_tbl_offset,
14106 cp->ctx_tbl_len,
14107 cp->starting_cid);
14108 return cp;
14109 }
14110
14111 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14112 {
14113 struct bnx2x *bp = fp->bp;
14114 u32 offset = BAR_USTRORM_INTMEM;
14115
14116 if (IS_VF(bp))
14117 return bnx2x_vf_ustorm_prods_offset(bp, fp);
14118 else if (!CHIP_IS_E1x(bp))
14119 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14120 else
14121 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14122
14123 return offset;
14124 }
14125
14126 /* called only on E1H or E2.
14127 * When pretending to be PF, the pretend value is the function number 0...7
14128 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14129 * combination
14130 */
14131 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14132 {
14133 u32 pretend_reg;
14134
14135 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14136 return -1;
14137
14138 /* get my own pretend register */
14139 pretend_reg = bnx2x_get_pretend_reg(bp);
14140 REG_WR(bp, pretend_reg, pretend_func_val);
14141 REG_RD(bp, pretend_reg);
14142 return 0;
14143 }