]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
bnx2x: Fix 20G KR2 support claims
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION \
70 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
71 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
72 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
73 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT (5*HZ)
80
81 static char version[] =
82 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 "BCM57710/57711/57711E/"
88 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 " Set number of queues (default is as a number of CPUs)");
100
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 "(1 INT#x; 2 MSI)");
109
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121
122 struct workqueue_struct *bnx2x_wq;
123
124 struct bnx2x_mac_vals {
125 u32 xmac_addr;
126 u32 xmac_val;
127 u32 emac_addr;
128 u32 emac_val;
129 u32 umac_addr;
130 u32 umac_val;
131 u32 bmac_addr;
132 u32 bmac_val[2];
133 };
134
135 enum bnx2x_board_type {
136 BCM57710 = 0,
137 BCM57711,
138 BCM57711E,
139 BCM57712,
140 BCM57712_MF,
141 BCM57712_VF,
142 BCM57800,
143 BCM57800_MF,
144 BCM57800_VF,
145 BCM57810,
146 BCM57810_MF,
147 BCM57810_VF,
148 BCM57840_4_10,
149 BCM57840_2_20,
150 BCM57840_MF,
151 BCM57840_VF,
152 BCM57811,
153 BCM57811_MF,
154 BCM57840_O,
155 BCM57840_MFO,
156 BCM57811_VF
157 };
158
159 /* indexed by board_type, above */
160 static struct {
161 char *name;
162 } board_info[] = {
163 [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
248 #endif
249
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 { 0 }
273 };
274
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 u32 addr, dma_addr_t mapping)
287 {
288 REG_WR(bp, addr, U64_LO(mapping));
289 REG_WR(bp, addr + 4, U64_HI(mapping));
290 }
291
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 dma_addr_t mapping, u16 abs_fid)
294 {
295 u32 addr = XSEM_REG_FAST_MEMORY +
296 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297
298 __storm_memset_dma_mapping(bp, addr, mapping);
299 }
300
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 u16 pf_id)
303 {
304 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 pf_id);
306 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 pf_id);
308 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 pf_id);
310 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 pf_id);
312 }
313
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 u8 enable)
316 {
317 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 enable);
319 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 enable);
321 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 enable);
323 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 enable);
325 }
326
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 struct event_ring_data *eq_data,
329 u16 pfid)
330 {
331 size_t size = sizeof(struct event_ring_data);
332
333 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334
335 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 u16 pfid)
340 {
341 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 REG_WR16(bp, addr, eq_prod);
343 }
344
345 /* used only at init
346 * locking is done by mcp
347 */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 PCICFG_VENDOR_ID_OFFSET);
354 }
355
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358 u32 val;
359
360 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 PCICFG_VENDOR_ID_OFFSET);
364
365 return val;
366 }
367
368 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE "dst_addr [none]"
373
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 struct dmae_command *dmae, int msglvl)
376 {
377 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 int i;
379
380 switch (dmae->opcode & DMAE_COMMAND_DST) {
381 case DMAE_CMD_DST_PCI:
382 if (src_type == DMAE_CMD_SRC_PCI)
383 DP(msglvl, "DMAE: opcode 0x%08x\n"
384 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 dmae->comp_addr_hi, dmae->comp_addr_lo,
389 dmae->comp_val);
390 else
391 DP(msglvl, "DMAE: opcode 0x%08x\n"
392 "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 dmae->opcode, dmae->src_addr_lo >> 2,
395 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 dmae->comp_addr_hi, dmae->comp_addr_lo,
397 dmae->comp_val);
398 break;
399 case DMAE_CMD_DST_GRC:
400 if (src_type == DMAE_CMD_SRC_PCI)
401 DP(msglvl, "DMAE: opcode 0x%08x\n"
402 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 dmae->len, dmae->dst_addr_lo >> 2,
406 dmae->comp_addr_hi, dmae->comp_addr_lo,
407 dmae->comp_val);
408 else
409 DP(msglvl, "DMAE: opcode 0x%08x\n"
410 "src [%08x], len [%d*4], dst [%08x]\n"
411 "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 dmae->opcode, dmae->src_addr_lo >> 2,
413 dmae->len, dmae->dst_addr_lo >> 2,
414 dmae->comp_addr_hi, dmae->comp_addr_lo,
415 dmae->comp_val);
416 break;
417 default:
418 if (src_type == DMAE_CMD_SRC_PCI)
419 DP(msglvl, "DMAE: opcode 0x%08x\n"
420 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
421 "comp_addr [%x:%08x] comp_val 0x%08x\n",
422 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 dmae->comp_val);
425 else
426 DP(msglvl, "DMAE: opcode 0x%08x\n"
427 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
428 "comp_addr [%x:%08x] comp_val 0x%08x\n",
429 dmae->opcode, dmae->src_addr_lo >> 2,
430 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 dmae->comp_val);
432 break;
433 }
434
435 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 i, *(((u32 *)dmae) + i));
438 }
439
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443 u32 cmd_offset;
444 int i;
445
446 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449 }
450 REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 DMAE_CMD_C_ENABLE);
457 }
458
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461 return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 bool with_comp, u8 comp_type)
466 {
467 u32 opcode = 0;
468
469 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 (dst_type << DMAE_COMMAND_DST_SHIFT));
471
472 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473
474 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478
479 #ifdef __BIG_ENDIAN
480 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 if (with_comp)
485 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 return opcode;
487 }
488
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 struct dmae_command *dmae,
491 u8 src_type, u8 dst_type)
492 {
493 memset(dmae, 0, sizeof(struct dmae_command));
494
495 /* set the opcode */
496 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 true, DMAE_COMP_PCI);
498
499 /* fill in the completion parameters */
500 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 dmae->comp_val = DMAE_COMP_VAL;
503 }
504
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 int rc = 0;
511
512 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513
514 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 * as long as this code is called both from syscall context and
516 * from ndo_set_rx_mode() flow that may be called from BH.
517 */
518 spin_lock_bh(&bp->dmae_lock);
519
520 /* reset completion */
521 *wb_comp = 0;
522
523 /* post the command on the channel used for initializations */
524 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525
526 /* wait for completion */
527 udelay(5);
528 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529
530 if (!cnt ||
531 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 BNX2X_ERR("DMAE timeout!\n");
534 rc = DMAE_TIMEOUT;
535 goto unlock;
536 }
537 cnt--;
538 udelay(50);
539 }
540 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541 BNX2X_ERR("DMAE PCI error!\n");
542 rc = DMAE_PCI_ERROR;
543 }
544
545 unlock:
546 spin_unlock_bh(&bp->dmae_lock);
547 return rc;
548 }
549
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 u32 len32)
552 {
553 int rc;
554 struct dmae_command dmae;
555
556 if (!bp->dmae_ready) {
557 u32 *data = bnx2x_sp(bp, wb_data[0]);
558
559 if (CHIP_IS_E1(bp))
560 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 else
562 bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 return;
564 }
565
566 /* set opcode and fixed command fields */
567 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568
569 /* fill in addresses and len */
570 dmae.src_addr_lo = U64_LO(dma_addr);
571 dmae.src_addr_hi = U64_HI(dma_addr);
572 dmae.dst_addr_lo = dst_addr >> 2;
573 dmae.dst_addr_hi = 0;
574 dmae.len = len32;
575
576 /* issue the command and wait for completion */
577 rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578 if (rc) {
579 BNX2X_ERR("DMAE returned failure %d\n", rc);
580 bnx2x_panic();
581 }
582 }
583
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586 int rc;
587 struct dmae_command dmae;
588
589 if (!bp->dmae_ready) {
590 u32 *data = bnx2x_sp(bp, wb_data[0]);
591 int i;
592
593 if (CHIP_IS_E1(bp))
594 for (i = 0; i < len32; i++)
595 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596 else
597 for (i = 0; i < len32; i++)
598 data[i] = REG_RD(bp, src_addr + i*4);
599
600 return;
601 }
602
603 /* set opcode and fixed command fields */
604 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605
606 /* fill in addresses and len */
607 dmae.src_addr_lo = src_addr >> 2;
608 dmae.src_addr_hi = 0;
609 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611 dmae.len = len32;
612
613 /* issue the command and wait for completion */
614 rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615 if (rc) {
616 BNX2X_ERR("DMAE returned failure %d\n", rc);
617 bnx2x_panic();
618 };
619 }
620
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622 u32 addr, u32 len)
623 {
624 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625 int offset = 0;
626
627 while (len > dmae_wr_max) {
628 bnx2x_write_dmae(bp, phys_addr + offset,
629 addr + offset, dmae_wr_max);
630 offset += dmae_wr_max * 4;
631 len -= dmae_wr_max;
632 }
633
634 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639 char last_idx;
640 int i, rc = 0;
641 u32 row0, row1, row2, row3;
642
643 /* XSTORM */
644 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645 XSTORM_ASSERT_LIST_INDEX_OFFSET);
646 if (last_idx)
647 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648
649 /* print the asserts */
650 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651
652 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653 XSTORM_ASSERT_LIST_OFFSET(i));
654 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660
661 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 i, row3, row2, row1, row0);
664 rc++;
665 } else {
666 break;
667 }
668 }
669
670 /* TSTORM */
671 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672 TSTORM_ASSERT_LIST_INDEX_OFFSET);
673 if (last_idx)
674 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675
676 /* print the asserts */
677 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678
679 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680 TSTORM_ASSERT_LIST_OFFSET(i));
681 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687
688 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690 i, row3, row2, row1, row0);
691 rc++;
692 } else {
693 break;
694 }
695 }
696
697 /* CSTORM */
698 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699 CSTORM_ASSERT_LIST_INDEX_OFFSET);
700 if (last_idx)
701 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702
703 /* print the asserts */
704 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705
706 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707 CSTORM_ASSERT_LIST_OFFSET(i));
708 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714
715 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717 i, row3, row2, row1, row0);
718 rc++;
719 } else {
720 break;
721 }
722 }
723
724 /* USTORM */
725 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726 USTORM_ASSERT_LIST_INDEX_OFFSET);
727 if (last_idx)
728 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729
730 /* print the asserts */
731 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732
733 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734 USTORM_ASSERT_LIST_OFFSET(i));
735 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736 USTORM_ASSERT_LIST_OFFSET(i) + 4);
737 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 USTORM_ASSERT_LIST_OFFSET(i) + 8);
739 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 USTORM_ASSERT_LIST_OFFSET(i) + 12);
741
742 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744 i, row3, row2, row1, row0);
745 rc++;
746 } else {
747 break;
748 }
749 }
750
751 return rc;
752 }
753
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756 u32 addr, val;
757 u32 mark, offset;
758 __be32 data[9];
759 int word;
760 u32 trace_shmem_base;
761 if (BP_NOMCP(bp)) {
762 BNX2X_ERR("NO MCP - can not dump\n");
763 return;
764 }
765 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766 (bp->common.bc_ver & 0xff0000) >> 16,
767 (bp->common.bc_ver & 0xff00) >> 8,
768 (bp->common.bc_ver & 0xff));
769
770 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773
774 if (BP_PATH(bp) == 0)
775 trace_shmem_base = bp->common.shmem_base;
776 else
777 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778 addr = trace_shmem_base - 0x800;
779
780 /* validate TRCB signature */
781 mark = REG_RD(bp, addr);
782 if (mark != MFW_TRACE_SIGNATURE) {
783 BNX2X_ERR("Trace buffer signature is missing.");
784 return ;
785 }
786
787 /* read cyclic buffer pointer */
788 addr += 4;
789 mark = REG_RD(bp, addr);
790 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791 + ((mark + 0x3) & ~0x3) - 0x08000000;
792 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793
794 printk("%s", lvl);
795
796 /* dump buffer after the mark */
797 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798 for (word = 0; word < 8; word++)
799 data[word] = htonl(REG_RD(bp, offset + 4*word));
800 data[8] = 0x0;
801 pr_cont("%s", (char *)data);
802 }
803
804 /* dump buffer before the mark */
805 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806 for (word = 0; word < 8; word++)
807 data[word] = htonl(REG_RD(bp, offset + 4*word));
808 data[8] = 0x0;
809 pr_cont("%s", (char *)data);
810 }
811 printk("%s" "end of fw dump\n", lvl);
812 }
813
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816 bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821 int port = BP_PORT(bp);
822 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823 u32 val = REG_RD(bp, addr);
824
825 /* in E1 we must use only PCI configuration space to disable
826 * MSI/MSIX capability
827 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828 */
829 if (CHIP_IS_E1(bp)) {
830 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831 * Use mask register to prevent from HC sending interrupts
832 * after we exit the function
833 */
834 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835
836 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837 HC_CONFIG_0_REG_INT_LINE_EN_0 |
838 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839 } else
840 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842 HC_CONFIG_0_REG_INT_LINE_EN_0 |
843 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844
845 DP(NETIF_MSG_IFDOWN,
846 "write %x to HC %d (addr 0x%x)\n",
847 val, port, addr);
848
849 /* flush all outstanding writes */
850 mmiowb();
851
852 REG_WR(bp, addr, val);
853 if (REG_RD(bp, addr) != val)
854 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860
861 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862 IGU_PF_CONF_INT_LINE_EN |
863 IGU_PF_CONF_ATTN_BIT_EN);
864
865 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866
867 /* flush all outstanding writes */
868 mmiowb();
869
870 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877 if (bp->common.int_block == INT_BLOCK_HC)
878 bnx2x_hc_int_disable(bp);
879 else
880 bnx2x_igu_int_disable(bp);
881 }
882
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885 int i;
886 u16 j;
887 struct hc_sp_status_block_data sp_sb_data;
888 int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890 u16 start = 0, end = 0;
891 u8 cos;
892 #endif
893 if (disable_int)
894 bnx2x_int_disable(bp);
895
896 bp->stats_state = STATS_STATE_DISABLED;
897 bp->eth_stats.unrecoverable_error++;
898 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899
900 BNX2X_ERR("begin crash dump -----------------\n");
901
902 /* Indices */
903 /* Common */
904 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905 bp->def_idx, bp->def_att_idx, bp->attn_state,
906 bp->spq_prod_idx, bp->stats_counter);
907 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
908 bp->def_status_blk->atten_status_block.attn_bits,
909 bp->def_status_blk->atten_status_block.attn_bits_ack,
910 bp->def_status_blk->atten_status_block.status_block_id,
911 bp->def_status_blk->atten_status_block.attn_bits_index);
912 BNX2X_ERR(" def (");
913 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914 pr_cont("0x%x%s",
915 bp->def_status_blk->sp_sb.index_values[i],
916 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
917
918 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921 i*sizeof(u32));
922
923 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
924 sp_sb_data.igu_sb_id,
925 sp_sb_data.igu_seg_id,
926 sp_sb_data.p_func.pf_id,
927 sp_sb_data.p_func.vnic_id,
928 sp_sb_data.p_func.vf_id,
929 sp_sb_data.p_func.vf_valid,
930 sp_sb_data.state);
931
932 for_each_eth_queue(bp, i) {
933 struct bnx2x_fastpath *fp = &bp->fp[i];
934 int loop;
935 struct hc_status_block_data_e2 sb_data_e2;
936 struct hc_status_block_data_e1x sb_data_e1x;
937 struct hc_status_block_sm *hc_sm_p =
938 CHIP_IS_E1x(bp) ?
939 sb_data_e1x.common.state_machine :
940 sb_data_e2.common.state_machine;
941 struct hc_index_data *hc_index_p =
942 CHIP_IS_E1x(bp) ?
943 sb_data_e1x.index_data :
944 sb_data_e2.index_data;
945 u8 data_size, cos;
946 u32 *sb_data_p;
947 struct bnx2x_fp_txdata txdata;
948
949 /* Rx */
950 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
951 i, fp->rx_bd_prod, fp->rx_bd_cons,
952 fp->rx_comp_prod,
953 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
955 fp->rx_sge_prod, fp->last_max_sge,
956 le16_to_cpu(fp->fp_hc_idx));
957
958 /* Tx */
959 for_each_cos_in_tx_queue(fp, cos)
960 {
961 txdata = *fp->txdata_ptr[cos];
962 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
963 i, txdata.tx_pkt_prod,
964 txdata.tx_pkt_cons, txdata.tx_bd_prod,
965 txdata.tx_bd_cons,
966 le16_to_cpu(*txdata.tx_cons_sb));
967 }
968
969 loop = CHIP_IS_E1x(bp) ?
970 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971
972 /* host sb data */
973
974 if (IS_FCOE_FP(fp))
975 continue;
976
977 BNX2X_ERR(" run indexes (");
978 for (j = 0; j < HC_SB_MAX_SM; j++)
979 pr_cont("0x%x%s",
980 fp->sb_running_index[j],
981 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982
983 BNX2X_ERR(" indexes (");
984 for (j = 0; j < loop; j++)
985 pr_cont("0x%x%s",
986 fp->sb_index_values[j],
987 (j == loop - 1) ? ")" : " ");
988 /* fw sb data */
989 data_size = CHIP_IS_E1x(bp) ?
990 sizeof(struct hc_status_block_data_e1x) :
991 sizeof(struct hc_status_block_data_e2);
992 data_size /= sizeof(u32);
993 sb_data_p = CHIP_IS_E1x(bp) ?
994 (u32 *)&sb_data_e1x :
995 (u32 *)&sb_data_e2;
996 /* copy sb data in here */
997 for (j = 0; j < data_size; j++)
998 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000 j * sizeof(u32));
1001
1002 if (!CHIP_IS_E1x(bp)) {
1003 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1004 sb_data_e2.common.p_func.pf_id,
1005 sb_data_e2.common.p_func.vf_id,
1006 sb_data_e2.common.p_func.vf_valid,
1007 sb_data_e2.common.p_func.vnic_id,
1008 sb_data_e2.common.same_igu_sb_1b,
1009 sb_data_e2.common.state);
1010 } else {
1011 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1012 sb_data_e1x.common.p_func.pf_id,
1013 sb_data_e1x.common.p_func.vf_id,
1014 sb_data_e1x.common.p_func.vf_valid,
1015 sb_data_e1x.common.p_func.vnic_id,
1016 sb_data_e1x.common.same_igu_sb_1b,
1017 sb_data_e1x.common.state);
1018 }
1019
1020 /* SB_SMs data */
1021 for (j = 0; j < HC_SB_MAX_SM; j++) {
1022 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023 j, hc_sm_p[j].__flags,
1024 hc_sm_p[j].igu_sb_id,
1025 hc_sm_p[j].igu_seg_id,
1026 hc_sm_p[j].time_to_expire,
1027 hc_sm_p[j].timer_value);
1028 }
1029
1030 /* Indices data */
1031 for (j = 0; j < loop; j++) {
1032 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033 hc_index_p[j].flags,
1034 hc_index_p[j].timeout);
1035 }
1036 }
1037
1038 #ifdef BNX2X_STOP_ON_ERROR
1039
1040 /* event queue */
1041 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042 for (i = 0; i < NUM_EQ_DESC; i++) {
1043 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044
1045 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046 i, bp->eq_ring[i].message.opcode,
1047 bp->eq_ring[i].message.error);
1048 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049 }
1050
1051 /* Rings */
1052 /* Rx */
1053 for_each_valid_rx_queue(bp, i) {
1054 struct bnx2x_fastpath *fp = &bp->fp[i];
1055
1056 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058 for (j = start; j != end; j = RX_BD(j + 1)) {
1059 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061
1062 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1063 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064 }
1065
1066 start = RX_SGE(fp->rx_sge_prod);
1067 end = RX_SGE(fp->last_max_sge);
1068 for (j = start; j != end; j = RX_SGE(j + 1)) {
1069 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071
1072 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1073 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074 }
1075
1076 start = RCQ_BD(fp->rx_comp_cons - 10);
1077 end = RCQ_BD(fp->rx_comp_cons + 503);
1078 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080
1081 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083 }
1084 }
1085
1086 /* Tx */
1087 for_each_valid_tx_queue(bp, i) {
1088 struct bnx2x_fastpath *fp = &bp->fp[i];
1089 for_each_cos_in_tx_queue(fp, cos) {
1090 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091
1092 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094 for (j = start; j != end; j = TX_BD(j + 1)) {
1095 struct sw_tx_bd *sw_bd =
1096 &txdata->tx_buf_ring[j];
1097
1098 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099 i, cos, j, sw_bd->skb,
1100 sw_bd->first_bd);
1101 }
1102
1103 start = TX_BD(txdata->tx_bd_cons - 10);
1104 end = TX_BD(txdata->tx_bd_cons + 254);
1105 for (j = start; j != end; j = TX_BD(j + 1)) {
1106 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107
1108 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109 i, cos, j, tx_bd[0], tx_bd[1],
1110 tx_bd[2], tx_bd[3]);
1111 }
1112 }
1113 }
1114 #endif
1115 bnx2x_fw_dump(bp);
1116 bnx2x_mc_assert(bp);
1117 BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119
1120 /*
1121 * FLR Support for E2
1122 *
1123 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124 * initialization.
1125 */
1126 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL 50 /* usec */
1128 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129
1130 struct pbf_pN_buf_regs {
1131 int pN;
1132 u32 init_crd;
1133 u32 crd;
1134 u32 crd_freed;
1135 };
1136
1137 struct pbf_pN_cmd_regs {
1138 int pN;
1139 u32 lines_occup;
1140 u32 lines_freed;
1141 };
1142
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144 struct pbf_pN_buf_regs *regs,
1145 u32 poll_count)
1146 {
1147 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148 u32 cur_cnt = poll_count;
1149
1150 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151 crd = crd_start = REG_RD(bp, regs->crd);
1152 init_crd = REG_RD(bp, regs->init_crd);
1153
1154 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1156 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157
1158 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159 (init_crd - crd_start))) {
1160 if (cur_cnt--) {
1161 udelay(FLR_WAIT_INTERVAL);
1162 crd = REG_RD(bp, regs->crd);
1163 crd_freed = REG_RD(bp, regs->crd_freed);
1164 } else {
1165 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166 regs->pN);
1167 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1168 regs->pN, crd);
1169 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170 regs->pN, crd_freed);
1171 break;
1172 }
1173 }
1174 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179 struct pbf_pN_cmd_regs *regs,
1180 u32 poll_count)
1181 {
1182 u32 occup, to_free, freed, freed_start;
1183 u32 cur_cnt = poll_count;
1184
1185 occup = to_free = REG_RD(bp, regs->lines_occup);
1186 freed = freed_start = REG_RD(bp, regs->lines_freed);
1187
1188 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1189 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190
1191 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192 if (cur_cnt--) {
1193 udelay(FLR_WAIT_INTERVAL);
1194 occup = REG_RD(bp, regs->lines_occup);
1195 freed = REG_RD(bp, regs->lines_freed);
1196 } else {
1197 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198 regs->pN);
1199 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1200 regs->pN, occup);
1201 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202 regs->pN, freed);
1203 break;
1204 }
1205 }
1206 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211 u32 expected, u32 poll_count)
1212 {
1213 u32 cur_cnt = poll_count;
1214 u32 val;
1215
1216 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217 udelay(FLR_WAIT_INTERVAL);
1218
1219 return val;
1220 }
1221
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223 char *msg, u32 poll_cnt)
1224 {
1225 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226 if (val != 0) {
1227 BNX2X_ERR("%s usage count=%d\n", msg, val);
1228 return 1;
1229 }
1230 return 0;
1231 }
1232
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236 /* adjust polling timeout */
1237 if (CHIP_REV_IS_EMUL(bp))
1238 return FLR_POLL_CNT * 2000;
1239
1240 if (CHIP_REV_IS_FPGA(bp))
1241 return FLR_POLL_CNT * 120;
1242
1243 return FLR_POLL_CNT;
1244 }
1245
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248 struct pbf_pN_cmd_regs cmd_regs[] = {
1249 {0, (CHIP_IS_E3B0(bp)) ?
1250 PBF_REG_TQ_OCCUPANCY_Q0 :
1251 PBF_REG_P0_TQ_OCCUPANCY,
1252 (CHIP_IS_E3B0(bp)) ?
1253 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254 PBF_REG_P0_TQ_LINES_FREED_CNT},
1255 {1, (CHIP_IS_E3B0(bp)) ?
1256 PBF_REG_TQ_OCCUPANCY_Q1 :
1257 PBF_REG_P1_TQ_OCCUPANCY,
1258 (CHIP_IS_E3B0(bp)) ?
1259 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260 PBF_REG_P1_TQ_LINES_FREED_CNT},
1261 {4, (CHIP_IS_E3B0(bp)) ?
1262 PBF_REG_TQ_OCCUPANCY_LB_Q :
1263 PBF_REG_P4_TQ_OCCUPANCY,
1264 (CHIP_IS_E3B0(bp)) ?
1265 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266 PBF_REG_P4_TQ_LINES_FREED_CNT}
1267 };
1268
1269 struct pbf_pN_buf_regs buf_regs[] = {
1270 {0, (CHIP_IS_E3B0(bp)) ?
1271 PBF_REG_INIT_CRD_Q0 :
1272 PBF_REG_P0_INIT_CRD ,
1273 (CHIP_IS_E3B0(bp)) ?
1274 PBF_REG_CREDIT_Q0 :
1275 PBF_REG_P0_CREDIT,
1276 (CHIP_IS_E3B0(bp)) ?
1277 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279 {1, (CHIP_IS_E3B0(bp)) ?
1280 PBF_REG_INIT_CRD_Q1 :
1281 PBF_REG_P1_INIT_CRD,
1282 (CHIP_IS_E3B0(bp)) ?
1283 PBF_REG_CREDIT_Q1 :
1284 PBF_REG_P1_CREDIT,
1285 (CHIP_IS_E3B0(bp)) ?
1286 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288 {4, (CHIP_IS_E3B0(bp)) ?
1289 PBF_REG_INIT_CRD_LB_Q :
1290 PBF_REG_P4_INIT_CRD,
1291 (CHIP_IS_E3B0(bp)) ?
1292 PBF_REG_CREDIT_LB_Q :
1293 PBF_REG_P4_CREDIT,
1294 (CHIP_IS_E3B0(bp)) ?
1295 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297 };
1298
1299 int i;
1300
1301 /* Verify the command queues are flushed P0, P1, P4 */
1302 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304
1305 /* Verify the transmission buffers are flushed P0, P1, P4 */
1306 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309
1310 #define OP_GEN_PARAM(param) \
1311 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312
1313 #define OP_GEN_TYPE(type) \
1314 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315
1316 #define OP_GEN_AGG_VECT(index) \
1317 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321 u32 op_gen_command = 0;
1322 u32 comp_addr = BAR_CSTRORM_INTMEM +
1323 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324 int ret = 0;
1325
1326 if (REG_RD(bp, comp_addr)) {
1327 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328 return 1;
1329 }
1330
1331 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335
1336 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338
1339 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340 BNX2X_ERR("FW final cleanup did not succeed\n");
1341 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342 (REG_RD(bp, comp_addr)));
1343 bnx2x_panic();
1344 return 1;
1345 }
1346 /* Zero completion for next FLR */
1347 REG_WR(bp, comp_addr, 0);
1348
1349 return ret;
1350 }
1351
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354 u16 status;
1355
1356 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357 return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366 CFC_REG_NUM_LCIDS_INSIDE_PF,
1367 "CFC PF usage counter timed out",
1368 poll_cnt))
1369 return 1;
1370
1371 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373 DORQ_REG_PF_USAGE_CNT,
1374 "DQ PF usage counter timed out",
1375 poll_cnt))
1376 return 1;
1377
1378 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381 "QM PF usage counter timed out",
1382 poll_cnt))
1383 return 1;
1384
1385 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388 "Timers VNIC usage counter timed out",
1389 poll_cnt))
1390 return 1;
1391 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393 "Timers NUM_SCANS usage counter timed out",
1394 poll_cnt))
1395 return 1;
1396
1397 /* Wait DMAE PF usage counter to zero */
1398 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399 dmae_reg_go_c[INIT_DMAE_C(bp)],
1400 "DMAE command register timed out",
1401 poll_cnt))
1402 return 1;
1403
1404 return 0;
1405 }
1406
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409 u32 val;
1410
1411 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413
1414 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416
1417 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419
1420 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422
1423 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425
1426 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428
1429 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431
1432 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434 val);
1435 }
1436
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440
1441 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442
1443 /* Re-enable PF target read access */
1444 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445
1446 /* Poll HW usage counters */
1447 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449 return -EBUSY;
1450
1451 /* Zero the igu 'trailing edge' and 'leading edge' */
1452
1453 /* Send the FW cleanup command */
1454 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455 return -EBUSY;
1456
1457 /* ATC cleanup */
1458
1459 /* Verify TX hw is flushed */
1460 bnx2x_tx_hw_flushed(bp, poll_cnt);
1461
1462 /* Wait 100ms (not adjusted according to platform) */
1463 msleep(100);
1464
1465 /* Verify no pending pci transactions */
1466 if (bnx2x_is_pcie_pending(bp->pdev))
1467 BNX2X_ERR("PCIE Transactions still pending\n");
1468
1469 /* Debug */
1470 bnx2x_hw_enable_status(bp);
1471
1472 /*
1473 * Master enable - Due to WB DMAE writes performed before this
1474 * register is re-initialized as part of the regular function init
1475 */
1476 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477
1478 return 0;
1479 }
1480
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483 int port = BP_PORT(bp);
1484 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485 u32 val = REG_RD(bp, addr);
1486 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489
1490 if (msix) {
1491 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492 HC_CONFIG_0_REG_INT_LINE_EN_0);
1493 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 if (single_msix)
1496 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497 } else if (msi) {
1498 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502 } else {
1503 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507
1508 if (!CHIP_IS_E1(bp)) {
1509 DP(NETIF_MSG_IFUP,
1510 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511
1512 REG_WR(bp, addr, val);
1513
1514 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515 }
1516 }
1517
1518 if (CHIP_IS_E1(bp))
1519 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520
1521 DP(NETIF_MSG_IFUP,
1522 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524
1525 REG_WR(bp, addr, val);
1526 /*
1527 * Ensure that HC_CONFIG is written before leading/trailing edge config
1528 */
1529 mmiowb();
1530 barrier();
1531
1532 if (!CHIP_IS_E1(bp)) {
1533 /* init leading/trailing edge */
1534 if (IS_MF(bp)) {
1535 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536 if (bp->port.pmf)
1537 /* enable nig and gpio3 attention */
1538 val |= 0x1100;
1539 } else
1540 val = 0xffff;
1541
1542 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544 }
1545
1546 /* Make sure that interrupts are indeed enabled from here on */
1547 mmiowb();
1548 }
1549
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552 u32 val;
1553 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556
1557 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558
1559 if (msix) {
1560 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561 IGU_PF_CONF_SINGLE_ISR_EN);
1562 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563 IGU_PF_CONF_ATTN_BIT_EN);
1564
1565 if (single_msix)
1566 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567 } else if (msi) {
1568 val &= ~IGU_PF_CONF_INT_LINE_EN;
1569 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570 IGU_PF_CONF_ATTN_BIT_EN |
1571 IGU_PF_CONF_SINGLE_ISR_EN);
1572 } else {
1573 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574 val |= (IGU_PF_CONF_INT_LINE_EN |
1575 IGU_PF_CONF_ATTN_BIT_EN |
1576 IGU_PF_CONF_SINGLE_ISR_EN);
1577 }
1578
1579 /* Clean previous status - need to configure igu prior to ack*/
1580 if ((!msix) || single_msix) {
1581 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582 bnx2x_ack_int(bp);
1583 }
1584
1585 val |= IGU_PF_CONF_FUNC_EN;
1586
1587 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1588 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591
1592 if (val & IGU_PF_CONF_INT_LINE_EN)
1593 pci_intx(bp->pdev, true);
1594
1595 barrier();
1596
1597 /* init leading/trailing edge */
1598 if (IS_MF(bp)) {
1599 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 if (bp->port.pmf)
1601 /* enable nig and gpio3 attention */
1602 val |= 0x1100;
1603 } else
1604 val = 0xffff;
1605
1606 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608
1609 /* Make sure that interrupts are indeed enabled from here on */
1610 mmiowb();
1611 }
1612
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615 if (bp->common.int_block == INT_BLOCK_HC)
1616 bnx2x_hc_int_enable(bp);
1617 else
1618 bnx2x_igu_int_enable(bp);
1619 }
1620
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624 int i, offset;
1625
1626 if (disable_hw)
1627 /* prevent the HW from sending interrupts */
1628 bnx2x_int_disable(bp);
1629
1630 /* make sure all ISRs are done */
1631 if (msix) {
1632 synchronize_irq(bp->msix_table[0].vector);
1633 offset = 1;
1634 if (CNIC_SUPPORT(bp))
1635 offset++;
1636 for_each_eth_queue(bp, i)
1637 synchronize_irq(bp->msix_table[offset++].vector);
1638 } else
1639 synchronize_irq(bp->pdev->irq);
1640
1641 /* make sure sp_task is not running */
1642 cancel_delayed_work(&bp->sp_task);
1643 cancel_delayed_work(&bp->period_task);
1644 flush_workqueue(bnx2x_wq);
1645 }
1646
1647 /* fast path */
1648
1649 /*
1650 * General service functions
1651 */
1652
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656 u32 lock_status;
1657 u32 resource_bit = (1 << resource);
1658 int func = BP_FUNC(bp);
1659 u32 hw_lock_control_reg;
1660
1661 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662 "Trying to take a lock on resource %d\n", resource);
1663
1664 /* Validating that the resource is within range */
1665 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669 return false;
1670 }
1671
1672 if (func <= 5)
1673 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674 else
1675 hw_lock_control_reg =
1676 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677
1678 /* Try to acquire the lock */
1679 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680 lock_status = REG_RD(bp, hw_lock_control_reg);
1681 if (lock_status & resource_bit)
1682 return true;
1683
1684 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685 "Failed to get a lock on resource %d\n", resource);
1686 return false;
1687 }
1688
1689 /**
1690 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691 *
1692 * @bp: driver handle
1693 *
1694 * Returns the recovery leader resource id according to the engine this function
1695 * belongs to. Currently only only 2 engines is supported.
1696 */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699 if (BP_PATH(bp))
1700 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701 else
1702 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704
1705 /**
1706 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707 *
1708 * @bp: driver handle
1709 *
1710 * Tries to acquire a leader lock for current engine.
1711 */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722 /* Set the interrupt occurred bit for the sp-task to recognize it
1723 * must ack the interrupt and transition according to the IGU
1724 * state machine.
1725 */
1726 atomic_set(&bp->interrupt_occurred, 1);
1727
1728 /* The sp_task must execute only after this bit
1729 * is set, otherwise we will get out of sync and miss all
1730 * further interrupts. Hence, the barrier.
1731 */
1732 smp_wmb();
1733
1734 /* schedule sp_task to workqueue */
1735 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740 struct bnx2x *bp = fp->bp;
1741 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745
1746 DP(BNX2X_MSG_SP,
1747 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1748 fp->index, cid, command, bp->state,
1749 rr_cqe->ramrod_cqe.ramrod_type);
1750
1751 /* If cid is within VF range, replace the slowpath object with the
1752 * one corresponding to this VF
1753 */
1754 if (cid >= BNX2X_FIRST_VF_CID &&
1755 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757
1758 switch (command) {
1759 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761 drv_cmd = BNX2X_Q_CMD_UPDATE;
1762 break;
1763
1764 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766 drv_cmd = BNX2X_Q_CMD_SETUP;
1767 break;
1768
1769 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772 break;
1773
1774 case (RAMROD_CMD_ID_ETH_HALT):
1775 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776 drv_cmd = BNX2X_Q_CMD_HALT;
1777 break;
1778
1779 case (RAMROD_CMD_ID_ETH_TERMINATE):
1780 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782 break;
1783
1784 case (RAMROD_CMD_ID_ETH_EMPTY):
1785 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786 drv_cmd = BNX2X_Q_CMD_EMPTY;
1787 break;
1788
1789 default:
1790 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791 command, fp->index);
1792 return;
1793 }
1794
1795 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797 /* q_obj->complete_cmd() failure means that this was
1798 * an unexpected completion.
1799 *
1800 * In this case we don't want to increase the bp->spq_left
1801 * because apparently we haven't sent this command the first
1802 * place.
1803 */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805 bnx2x_panic();
1806 #else
1807 return;
1808 #endif
1809 /* SRIOV: reschedule any 'in_progress' operations */
1810 bnx2x_iov_sp_event(bp, cid, true);
1811
1812 smp_mb__before_atomic_inc();
1813 atomic_inc(&bp->cq_spq_left);
1814 /* push the change in bp->spq_left and towards the memory */
1815 smp_mb__after_atomic_inc();
1816
1817 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818
1819 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821 /* if Q update ramrod is completed for last Q in AFEX vif set
1822 * flow, then ACK MCP at the end
1823 *
1824 * mark pending ACK to MCP bit.
1825 * prevent case that both bits are cleared.
1826 * At the end of load/unload driver checks that
1827 * sp_state is cleared, and this order prevents
1828 * races
1829 */
1830 smp_mb__before_clear_bit();
1831 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832 wmb();
1833 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834 smp_mb__after_clear_bit();
1835
1836 /* schedule the sp task as mcp ack is required */
1837 bnx2x_schedule_sp_task(bp);
1838 }
1839
1840 return;
1841 }
1842
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845 struct bnx2x *bp = netdev_priv(dev_instance);
1846 u16 status = bnx2x_ack_int(bp);
1847 u16 mask;
1848 int i;
1849 u8 cos;
1850
1851 /* Return here if interrupt is shared and it's not for us */
1852 if (unlikely(status == 0)) {
1853 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854 return IRQ_NONE;
1855 }
1856 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1857
1858 #ifdef BNX2X_STOP_ON_ERROR
1859 if (unlikely(bp->panic))
1860 return IRQ_HANDLED;
1861 #endif
1862
1863 for_each_eth_queue(bp, i) {
1864 struct bnx2x_fastpath *fp = &bp->fp[i];
1865
1866 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867 if (status & mask) {
1868 /* Handle Rx or Tx according to SB id */
1869 for_each_cos_in_tx_queue(fp, cos)
1870 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871 prefetch(&fp->sb_running_index[SM_RX_ID]);
1872 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873 status &= ~mask;
1874 }
1875 }
1876
1877 if (CNIC_SUPPORT(bp)) {
1878 mask = 0x2;
1879 if (status & (mask | 0x1)) {
1880 struct cnic_ops *c_ops = NULL;
1881
1882 rcu_read_lock();
1883 c_ops = rcu_dereference(bp->cnic_ops);
1884 if (c_ops && (bp->cnic_eth_dev.drv_state &
1885 CNIC_DRV_STATE_HANDLES_IRQ))
1886 c_ops->cnic_handler(bp->cnic_data, NULL);
1887 rcu_read_unlock();
1888
1889 status &= ~mask;
1890 }
1891 }
1892
1893 if (unlikely(status & 0x1)) {
1894
1895 /* schedule sp task to perform default status block work, ack
1896 * attentions and enable interrupts.
1897 */
1898 bnx2x_schedule_sp_task(bp);
1899
1900 status &= ~0x1;
1901 if (!status)
1902 return IRQ_HANDLED;
1903 }
1904
1905 if (unlikely(status))
1906 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907 status);
1908
1909 return IRQ_HANDLED;
1910 }
1911
1912 /* Link */
1913
1914 /*
1915 * General service functions
1916 */
1917
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920 u32 lock_status;
1921 u32 resource_bit = (1 << resource);
1922 int func = BP_FUNC(bp);
1923 u32 hw_lock_control_reg;
1924 int cnt;
1925
1926 /* Validating that the resource is within range */
1927 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930 return -EINVAL;
1931 }
1932
1933 if (func <= 5) {
1934 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935 } else {
1936 hw_lock_control_reg =
1937 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938 }
1939
1940 /* Validating that the resource is not already taken */
1941 lock_status = REG_RD(bp, hw_lock_control_reg);
1942 if (lock_status & resource_bit) {
1943 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
1944 lock_status, resource_bit);
1945 return -EEXIST;
1946 }
1947
1948 /* Try for 5 second every 5ms */
1949 for (cnt = 0; cnt < 1000; cnt++) {
1950 /* Try to acquire the lock */
1951 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952 lock_status = REG_RD(bp, hw_lock_control_reg);
1953 if (lock_status & resource_bit)
1954 return 0;
1955
1956 usleep_range(5000, 10000);
1957 }
1958 BNX2X_ERR("Timeout\n");
1959 return -EAGAIN;
1960 }
1961
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969 u32 lock_status;
1970 u32 resource_bit = (1 << resource);
1971 int func = BP_FUNC(bp);
1972 u32 hw_lock_control_reg;
1973
1974 /* Validating that the resource is within range */
1975 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978 return -EINVAL;
1979 }
1980
1981 if (func <= 5) {
1982 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983 } else {
1984 hw_lock_control_reg =
1985 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986 }
1987
1988 /* Validating that the resource is currently taken */
1989 lock_status = REG_RD(bp, hw_lock_control_reg);
1990 if (!(lock_status & resource_bit)) {
1991 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992 lock_status, resource_bit);
1993 return -EFAULT;
1994 }
1995
1996 REG_WR(bp, hw_lock_control_reg, resource_bit);
1997 return 0;
1998 }
1999
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002 /* The GPIO should be swapped if swap register is set and active */
2003 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005 int gpio_shift = gpio_num +
2006 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007 u32 gpio_mask = (1 << gpio_shift);
2008 u32 gpio_reg;
2009 int value;
2010
2011 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013 return -EINVAL;
2014 }
2015
2016 /* read GPIO value */
2017 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018
2019 /* get the requested pin value */
2020 if ((gpio_reg & gpio_mask) == gpio_mask)
2021 value = 1;
2022 else
2023 value = 0;
2024
2025 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
2026
2027 return value;
2028 }
2029
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032 /* The GPIO should be swapped if swap register is set and active */
2033 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035 int gpio_shift = gpio_num +
2036 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037 u32 gpio_mask = (1 << gpio_shift);
2038 u32 gpio_reg;
2039
2040 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042 return -EINVAL;
2043 }
2044
2045 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046 /* read GPIO and mask except the float bits */
2047 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048
2049 switch (mode) {
2050 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051 DP(NETIF_MSG_LINK,
2052 "Set GPIO %d (shift %d) -> output low\n",
2053 gpio_num, gpio_shift);
2054 /* clear FLOAT and set CLR */
2055 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057 break;
2058
2059 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060 DP(NETIF_MSG_LINK,
2061 "Set GPIO %d (shift %d) -> output high\n",
2062 gpio_num, gpio_shift);
2063 /* clear FLOAT and set SET */
2064 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066 break;
2067
2068 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069 DP(NETIF_MSG_LINK,
2070 "Set GPIO %d (shift %d) -> input\n",
2071 gpio_num, gpio_shift);
2072 /* set FLOAT */
2073 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074 break;
2075
2076 default:
2077 break;
2078 }
2079
2080 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082
2083 return 0;
2084 }
2085
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088 u32 gpio_reg = 0;
2089 int rc = 0;
2090
2091 /* Any port swapping should be handled by caller. */
2092
2093 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094 /* read GPIO and mask except the float bits */
2095 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099
2100 switch (mode) {
2101 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103 /* set CLR */
2104 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105 break;
2106
2107 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109 /* set SET */
2110 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111 break;
2112
2113 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115 /* set FLOAT */
2116 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117 break;
2118
2119 default:
2120 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121 rc = -EINVAL;
2122 break;
2123 }
2124
2125 if (rc == 0)
2126 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127
2128 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129
2130 return rc;
2131 }
2132
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135 /* The GPIO should be swapped if swap register is set and active */
2136 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138 int gpio_shift = gpio_num +
2139 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140 u32 gpio_mask = (1 << gpio_shift);
2141 u32 gpio_reg;
2142
2143 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145 return -EINVAL;
2146 }
2147
2148 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149 /* read GPIO int */
2150 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151
2152 switch (mode) {
2153 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154 DP(NETIF_MSG_LINK,
2155 "Clear GPIO INT %d (shift %d) -> output low\n",
2156 gpio_num, gpio_shift);
2157 /* clear SET and set CLR */
2158 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160 break;
2161
2162 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163 DP(NETIF_MSG_LINK,
2164 "Set GPIO INT %d (shift %d) -> output high\n",
2165 gpio_num, gpio_shift);
2166 /* clear CLR and set SET */
2167 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169 break;
2170
2171 default:
2172 break;
2173 }
2174
2175 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177
2178 return 0;
2179 }
2180
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183 u32 spio_reg;
2184
2185 /* Only 2 SPIOs are configurable */
2186 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188 return -EINVAL;
2189 }
2190
2191 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192 /* read SPIO and mask except the float bits */
2193 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194
2195 switch (mode) {
2196 case MISC_SPIO_OUTPUT_LOW:
2197 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198 /* clear FLOAT and set CLR */
2199 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2201 break;
2202
2203 case MISC_SPIO_OUTPUT_HIGH:
2204 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205 /* clear FLOAT and set SET */
2206 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207 spio_reg |= (spio << MISC_SPIO_SET_POS);
2208 break;
2209
2210 case MISC_SPIO_INPUT_HI_Z:
2211 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212 /* set FLOAT */
2213 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214 break;
2215
2216 default:
2217 break;
2218 }
2219
2220 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222
2223 return 0;
2224 }
2225
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229 switch (bp->link_vars.ieee_fc &
2230 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233 ADVERTISED_Pause);
2234 break;
2235
2236 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238 ADVERTISED_Pause);
2239 break;
2240
2241 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243 break;
2244
2245 default:
2246 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247 ADVERTISED_Pause);
2248 break;
2249 }
2250 }
2251
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254 /* Initialize link parameters structure variables
2255 * It is recommended to turn off RX FC for jumbo frames
2256 * for better performance
2257 */
2258 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260 else
2261 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263
2264 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2265 {
2266 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2267 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2268
2269 if (!BP_NOMCP(bp)) {
2270 bnx2x_set_requested_fc(bp);
2271 bnx2x_acquire_phy_lock(bp);
2272
2273 if (load_mode == LOAD_DIAG) {
2274 struct link_params *lp = &bp->link_params;
2275 lp->loopback_mode = LOOPBACK_XGXS;
2276 /* do PHY loopback at 10G speed, if possible */
2277 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2278 if (lp->speed_cap_mask[cfx_idx] &
2279 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2280 lp->req_line_speed[cfx_idx] =
2281 SPEED_10000;
2282 else
2283 lp->req_line_speed[cfx_idx] =
2284 SPEED_1000;
2285 }
2286 }
2287
2288 if (load_mode == LOAD_LOOPBACK_EXT) {
2289 struct link_params *lp = &bp->link_params;
2290 lp->loopback_mode = LOOPBACK_EXT;
2291 }
2292
2293 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2294
2295 bnx2x_release_phy_lock(bp);
2296
2297 bnx2x_calc_fc_adv(bp);
2298
2299 if (bp->link_vars.link_up) {
2300 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2301 bnx2x_link_report(bp);
2302 }
2303 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2304 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2305 return rc;
2306 }
2307 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2308 return -EINVAL;
2309 }
2310
2311 void bnx2x_link_set(struct bnx2x *bp)
2312 {
2313 if (!BP_NOMCP(bp)) {
2314 bnx2x_acquire_phy_lock(bp);
2315 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2316 bnx2x_release_phy_lock(bp);
2317
2318 bnx2x_calc_fc_adv(bp);
2319 } else
2320 BNX2X_ERR("Bootcode is missing - can not set link\n");
2321 }
2322
2323 static void bnx2x__link_reset(struct bnx2x *bp)
2324 {
2325 if (!BP_NOMCP(bp)) {
2326 bnx2x_acquire_phy_lock(bp);
2327 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2328 bnx2x_release_phy_lock(bp);
2329 } else
2330 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2331 }
2332
2333 void bnx2x_force_link_reset(struct bnx2x *bp)
2334 {
2335 bnx2x_acquire_phy_lock(bp);
2336 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2337 bnx2x_release_phy_lock(bp);
2338 }
2339
2340 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2341 {
2342 u8 rc = 0;
2343
2344 if (!BP_NOMCP(bp)) {
2345 bnx2x_acquire_phy_lock(bp);
2346 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2347 is_serdes);
2348 bnx2x_release_phy_lock(bp);
2349 } else
2350 BNX2X_ERR("Bootcode is missing - can not test link\n");
2351
2352 return rc;
2353 }
2354
2355 /* Calculates the sum of vn_min_rates.
2356 It's needed for further normalizing of the min_rates.
2357 Returns:
2358 sum of vn_min_rates.
2359 or
2360 0 - if all the min_rates are 0.
2361 In the later case fairness algorithm should be deactivated.
2362 If not all min_rates are zero then those that are zeroes will be set to 1.
2363 */
2364 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2365 struct cmng_init_input *input)
2366 {
2367 int all_zero = 1;
2368 int vn;
2369
2370 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2371 u32 vn_cfg = bp->mf_config[vn];
2372 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2373 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2374
2375 /* Skip hidden vns */
2376 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2377 vn_min_rate = 0;
2378 /* If min rate is zero - set it to 1 */
2379 else if (!vn_min_rate)
2380 vn_min_rate = DEF_MIN_RATE;
2381 else
2382 all_zero = 0;
2383
2384 input->vnic_min_rate[vn] = vn_min_rate;
2385 }
2386
2387 /* if ETS or all min rates are zeros - disable fairness */
2388 if (BNX2X_IS_ETS_ENABLED(bp)) {
2389 input->flags.cmng_enables &=
2390 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2391 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2392 } else if (all_zero) {
2393 input->flags.cmng_enables &=
2394 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2395 DP(NETIF_MSG_IFUP,
2396 "All MIN values are zeroes fairness will be disabled\n");
2397 } else
2398 input->flags.cmng_enables |=
2399 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2400 }
2401
2402 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2403 struct cmng_init_input *input)
2404 {
2405 u16 vn_max_rate;
2406 u32 vn_cfg = bp->mf_config[vn];
2407
2408 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2409 vn_max_rate = 0;
2410 else {
2411 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2412
2413 if (IS_MF_SI(bp)) {
2414 /* maxCfg in percents of linkspeed */
2415 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2416 } else /* SD modes */
2417 /* maxCfg is absolute in 100Mb units */
2418 vn_max_rate = maxCfg * 100;
2419 }
2420
2421 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2422
2423 input->vnic_max_rate[vn] = vn_max_rate;
2424 }
2425
2426 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2427 {
2428 if (CHIP_REV_IS_SLOW(bp))
2429 return CMNG_FNS_NONE;
2430 if (IS_MF(bp))
2431 return CMNG_FNS_MINMAX;
2432
2433 return CMNG_FNS_NONE;
2434 }
2435
2436 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2437 {
2438 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2439
2440 if (BP_NOMCP(bp))
2441 return; /* what should be the default value in this case */
2442
2443 /* For 2 port configuration the absolute function number formula
2444 * is:
2445 * abs_func = 2 * vn + BP_PORT + BP_PATH
2446 *
2447 * and there are 4 functions per port
2448 *
2449 * For 4 port configuration it is
2450 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2451 *
2452 * and there are 2 functions per port
2453 */
2454 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2455 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2456
2457 if (func >= E1H_FUNC_MAX)
2458 break;
2459
2460 bp->mf_config[vn] =
2461 MF_CFG_RD(bp, func_mf_config[func].config);
2462 }
2463 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2464 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2465 bp->flags |= MF_FUNC_DIS;
2466 } else {
2467 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2468 bp->flags &= ~MF_FUNC_DIS;
2469 }
2470 }
2471
2472 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2473 {
2474 struct cmng_init_input input;
2475 memset(&input, 0, sizeof(struct cmng_init_input));
2476
2477 input.port_rate = bp->link_vars.line_speed;
2478
2479 if (cmng_type == CMNG_FNS_MINMAX) {
2480 int vn;
2481
2482 /* read mf conf from shmem */
2483 if (read_cfg)
2484 bnx2x_read_mf_cfg(bp);
2485
2486 /* vn_weight_sum and enable fairness if not 0 */
2487 bnx2x_calc_vn_min(bp, &input);
2488
2489 /* calculate and set min-max rate for each vn */
2490 if (bp->port.pmf)
2491 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2492 bnx2x_calc_vn_max(bp, vn, &input);
2493
2494 /* always enable rate shaping and fairness */
2495 input.flags.cmng_enables |=
2496 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2497
2498 bnx2x_init_cmng(&input, &bp->cmng);
2499 return;
2500 }
2501
2502 /* rate shaping and fairness are disabled */
2503 DP(NETIF_MSG_IFUP,
2504 "rate shaping and fairness are disabled\n");
2505 }
2506
2507 static void storm_memset_cmng(struct bnx2x *bp,
2508 struct cmng_init *cmng,
2509 u8 port)
2510 {
2511 int vn;
2512 size_t size = sizeof(struct cmng_struct_per_port);
2513
2514 u32 addr = BAR_XSTRORM_INTMEM +
2515 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2516
2517 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2518
2519 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2520 int func = func_by_vn(bp, vn);
2521
2522 addr = BAR_XSTRORM_INTMEM +
2523 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2524 size = sizeof(struct rate_shaping_vars_per_vn);
2525 __storm_memset_struct(bp, addr, size,
2526 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2527
2528 addr = BAR_XSTRORM_INTMEM +
2529 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2530 size = sizeof(struct fairness_vars_per_vn);
2531 __storm_memset_struct(bp, addr, size,
2532 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2533 }
2534 }
2535
2536 /* This function is called upon link interrupt */
2537 static void bnx2x_link_attn(struct bnx2x *bp)
2538 {
2539 /* Make sure that we are synced with the current statistics */
2540 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2541
2542 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2543
2544 if (bp->link_vars.link_up) {
2545
2546 /* dropless flow control */
2547 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2548 int port = BP_PORT(bp);
2549 u32 pause_enabled = 0;
2550
2551 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2552 pause_enabled = 1;
2553
2554 REG_WR(bp, BAR_USTRORM_INTMEM +
2555 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2556 pause_enabled);
2557 }
2558
2559 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2560 struct host_port_stats *pstats;
2561
2562 pstats = bnx2x_sp(bp, port_stats);
2563 /* reset old mac stats */
2564 memset(&(pstats->mac_stx[0]), 0,
2565 sizeof(struct mac_stx));
2566 }
2567 if (bp->state == BNX2X_STATE_OPEN)
2568 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2569 }
2570
2571 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2572 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2573
2574 if (cmng_fns != CMNG_FNS_NONE) {
2575 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2576 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2577 } else
2578 /* rate shaping and fairness are disabled */
2579 DP(NETIF_MSG_IFUP,
2580 "single function mode without fairness\n");
2581 }
2582
2583 __bnx2x_link_report(bp);
2584
2585 if (IS_MF(bp))
2586 bnx2x_link_sync_notify(bp);
2587 }
2588
2589 void bnx2x__link_status_update(struct bnx2x *bp)
2590 {
2591 if (bp->state != BNX2X_STATE_OPEN)
2592 return;
2593
2594 /* read updated dcb configuration */
2595 if (IS_PF(bp)) {
2596 bnx2x_dcbx_pmf_update(bp);
2597 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2598 if (bp->link_vars.link_up)
2599 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2600 else
2601 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2602 /* indicate link status */
2603 bnx2x_link_report(bp);
2604
2605 } else { /* VF */
2606 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2607 SUPPORTED_10baseT_Full |
2608 SUPPORTED_100baseT_Half |
2609 SUPPORTED_100baseT_Full |
2610 SUPPORTED_1000baseT_Full |
2611 SUPPORTED_2500baseX_Full |
2612 SUPPORTED_10000baseT_Full |
2613 SUPPORTED_TP |
2614 SUPPORTED_FIBRE |
2615 SUPPORTED_Autoneg |
2616 SUPPORTED_Pause |
2617 SUPPORTED_Asym_Pause);
2618 bp->port.advertising[0] = bp->port.supported[0];
2619
2620 bp->link_params.bp = bp;
2621 bp->link_params.port = BP_PORT(bp);
2622 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2623 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2624 bp->link_params.req_line_speed[0] = SPEED_10000;
2625 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2626 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2627 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2628 bp->link_vars.line_speed = SPEED_10000;
2629 bp->link_vars.link_status =
2630 (LINK_STATUS_LINK_UP |
2631 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2632 bp->link_vars.link_up = 1;
2633 bp->link_vars.duplex = DUPLEX_FULL;
2634 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2635 __bnx2x_link_report(bp);
2636 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2637 }
2638 }
2639
2640 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2641 u16 vlan_val, u8 allowed_prio)
2642 {
2643 struct bnx2x_func_state_params func_params = {NULL};
2644 struct bnx2x_func_afex_update_params *f_update_params =
2645 &func_params.params.afex_update;
2646
2647 func_params.f_obj = &bp->func_obj;
2648 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2649
2650 /* no need to wait for RAMROD completion, so don't
2651 * set RAMROD_COMP_WAIT flag
2652 */
2653
2654 f_update_params->vif_id = vifid;
2655 f_update_params->afex_default_vlan = vlan_val;
2656 f_update_params->allowed_priorities = allowed_prio;
2657
2658 /* if ramrod can not be sent, response to MCP immediately */
2659 if (bnx2x_func_state_change(bp, &func_params) < 0)
2660 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2661
2662 return 0;
2663 }
2664
2665 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2666 u16 vif_index, u8 func_bit_map)
2667 {
2668 struct bnx2x_func_state_params func_params = {NULL};
2669 struct bnx2x_func_afex_viflists_params *update_params =
2670 &func_params.params.afex_viflists;
2671 int rc;
2672 u32 drv_msg_code;
2673
2674 /* validate only LIST_SET and LIST_GET are received from switch */
2675 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2676 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2677 cmd_type);
2678
2679 func_params.f_obj = &bp->func_obj;
2680 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2681
2682 /* set parameters according to cmd_type */
2683 update_params->afex_vif_list_command = cmd_type;
2684 update_params->vif_list_index = vif_index;
2685 update_params->func_bit_map =
2686 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2687 update_params->func_to_clear = 0;
2688 drv_msg_code =
2689 (cmd_type == VIF_LIST_RULE_GET) ?
2690 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2691 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2692
2693 /* if ramrod can not be sent, respond to MCP immediately for
2694 * SET and GET requests (other are not triggered from MCP)
2695 */
2696 rc = bnx2x_func_state_change(bp, &func_params);
2697 if (rc < 0)
2698 bnx2x_fw_command(bp, drv_msg_code, 0);
2699
2700 return 0;
2701 }
2702
2703 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2704 {
2705 struct afex_stats afex_stats;
2706 u32 func = BP_ABS_FUNC(bp);
2707 u32 mf_config;
2708 u16 vlan_val;
2709 u32 vlan_prio;
2710 u16 vif_id;
2711 u8 allowed_prio;
2712 u8 vlan_mode;
2713 u32 addr_to_write, vifid, addrs, stats_type, i;
2714
2715 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2716 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2717 DP(BNX2X_MSG_MCP,
2718 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2719 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2720 }
2721
2722 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2723 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2724 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2725 DP(BNX2X_MSG_MCP,
2726 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2727 vifid, addrs);
2728 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2729 addrs);
2730 }
2731
2732 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2733 addr_to_write = SHMEM2_RD(bp,
2734 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2735 stats_type = SHMEM2_RD(bp,
2736 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2737
2738 DP(BNX2X_MSG_MCP,
2739 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2740 addr_to_write);
2741
2742 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2743
2744 /* write response to scratchpad, for MCP */
2745 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2746 REG_WR(bp, addr_to_write + i*sizeof(u32),
2747 *(((u32 *)(&afex_stats))+i));
2748
2749 /* send ack message to MCP */
2750 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2751 }
2752
2753 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2754 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2755 bp->mf_config[BP_VN(bp)] = mf_config;
2756 DP(BNX2X_MSG_MCP,
2757 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2758 mf_config);
2759
2760 /* if VIF_SET is "enabled" */
2761 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2762 /* set rate limit directly to internal RAM */
2763 struct cmng_init_input cmng_input;
2764 struct rate_shaping_vars_per_vn m_rs_vn;
2765 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2766 u32 addr = BAR_XSTRORM_INTMEM +
2767 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2768
2769 bp->mf_config[BP_VN(bp)] = mf_config;
2770
2771 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2772 m_rs_vn.vn_counter.rate =
2773 cmng_input.vnic_max_rate[BP_VN(bp)];
2774 m_rs_vn.vn_counter.quota =
2775 (m_rs_vn.vn_counter.rate *
2776 RS_PERIODIC_TIMEOUT_USEC) / 8;
2777
2778 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2779
2780 /* read relevant values from mf_cfg struct in shmem */
2781 vif_id =
2782 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2783 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2784 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2785 vlan_val =
2786 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2787 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2788 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2789 vlan_prio = (mf_config &
2790 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2791 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2792 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2793 vlan_mode =
2794 (MF_CFG_RD(bp,
2795 func_mf_config[func].afex_config) &
2796 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2797 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2798 allowed_prio =
2799 (MF_CFG_RD(bp,
2800 func_mf_config[func].afex_config) &
2801 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2802 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2803
2804 /* send ramrod to FW, return in case of failure */
2805 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2806 allowed_prio))
2807 return;
2808
2809 bp->afex_def_vlan_tag = vlan_val;
2810 bp->afex_vlan_mode = vlan_mode;
2811 } else {
2812 /* notify link down because BP->flags is disabled */
2813 bnx2x_link_report(bp);
2814
2815 /* send INVALID VIF ramrod to FW */
2816 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2817
2818 /* Reset the default afex VLAN */
2819 bp->afex_def_vlan_tag = -1;
2820 }
2821 }
2822 }
2823
2824 static void bnx2x_pmf_update(struct bnx2x *bp)
2825 {
2826 int port = BP_PORT(bp);
2827 u32 val;
2828
2829 bp->port.pmf = 1;
2830 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2831
2832 /*
2833 * We need the mb() to ensure the ordering between the writing to
2834 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2835 */
2836 smp_mb();
2837
2838 /* queue a periodic task */
2839 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2840
2841 bnx2x_dcbx_pmf_update(bp);
2842
2843 /* enable nig attention */
2844 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2845 if (bp->common.int_block == INT_BLOCK_HC) {
2846 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2847 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2848 } else if (!CHIP_IS_E1x(bp)) {
2849 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2850 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2851 }
2852
2853 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2854 }
2855
2856 /* end of Link */
2857
2858 /* slow path */
2859
2860 /*
2861 * General service functions
2862 */
2863
2864 /* send the MCP a request, block until there is a reply */
2865 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2866 {
2867 int mb_idx = BP_FW_MB_IDX(bp);
2868 u32 seq;
2869 u32 rc = 0;
2870 u32 cnt = 1;
2871 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2872
2873 mutex_lock(&bp->fw_mb_mutex);
2874 seq = ++bp->fw_seq;
2875 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2876 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2877
2878 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2879 (command | seq), param);
2880
2881 do {
2882 /* let the FW do it's magic ... */
2883 msleep(delay);
2884
2885 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2886
2887 /* Give the FW up to 5 second (500*10ms) */
2888 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2889
2890 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2891 cnt*delay, rc, seq);
2892
2893 /* is this a reply to our command? */
2894 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2895 rc &= FW_MSG_CODE_MASK;
2896 else {
2897 /* FW BUG! */
2898 BNX2X_ERR("FW failed to respond!\n");
2899 bnx2x_fw_dump(bp);
2900 rc = 0;
2901 }
2902 mutex_unlock(&bp->fw_mb_mutex);
2903
2904 return rc;
2905 }
2906
2907 static void storm_memset_func_cfg(struct bnx2x *bp,
2908 struct tstorm_eth_function_common_config *tcfg,
2909 u16 abs_fid)
2910 {
2911 size_t size = sizeof(struct tstorm_eth_function_common_config);
2912
2913 u32 addr = BAR_TSTRORM_INTMEM +
2914 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2915
2916 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2917 }
2918
2919 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2920 {
2921 if (CHIP_IS_E1x(bp)) {
2922 struct tstorm_eth_function_common_config tcfg = {0};
2923
2924 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2925 }
2926
2927 /* Enable the function in the FW */
2928 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2929 storm_memset_func_en(bp, p->func_id, 1);
2930
2931 /* spq */
2932 if (p->func_flgs & FUNC_FLG_SPQ) {
2933 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2934 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2935 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2936 }
2937 }
2938
2939 /**
2940 * bnx2x_get_common_flags - Return common flags
2941 *
2942 * @bp device handle
2943 * @fp queue handle
2944 * @zero_stats TRUE if statistics zeroing is needed
2945 *
2946 * Return the flags that are common for the Tx-only and not normal connections.
2947 */
2948 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2949 struct bnx2x_fastpath *fp,
2950 bool zero_stats)
2951 {
2952 unsigned long flags = 0;
2953
2954 /* PF driver will always initialize the Queue to an ACTIVE state */
2955 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2956
2957 /* tx only connections collect statistics (on the same index as the
2958 * parent connection). The statistics are zeroed when the parent
2959 * connection is initialized.
2960 */
2961
2962 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2963 if (zero_stats)
2964 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2965
2966 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2967 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2968
2969 #ifdef BNX2X_STOP_ON_ERROR
2970 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2971 #endif
2972
2973 return flags;
2974 }
2975
2976 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2977 struct bnx2x_fastpath *fp,
2978 bool leading)
2979 {
2980 unsigned long flags = 0;
2981
2982 /* calculate other queue flags */
2983 if (IS_MF_SD(bp))
2984 __set_bit(BNX2X_Q_FLG_OV, &flags);
2985
2986 if (IS_FCOE_FP(fp)) {
2987 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2988 /* For FCoE - force usage of default priority (for afex) */
2989 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2990 }
2991
2992 if (!fp->disable_tpa) {
2993 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2994 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2995 if (fp->mode == TPA_MODE_GRO)
2996 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2997 }
2998
2999 if (leading) {
3000 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3001 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3002 }
3003
3004 /* Always set HW VLAN stripping */
3005 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3006
3007 /* configure silent vlan removal */
3008 if (IS_MF_AFEX(bp))
3009 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3010
3011 return flags | bnx2x_get_common_flags(bp, fp, true);
3012 }
3013
3014 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3015 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3016 u8 cos)
3017 {
3018 gen_init->stat_id = bnx2x_stats_id(fp);
3019 gen_init->spcl_id = fp->cl_id;
3020
3021 /* Always use mini-jumbo MTU for FCoE L2 ring */
3022 if (IS_FCOE_FP(fp))
3023 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3024 else
3025 gen_init->mtu = bp->dev->mtu;
3026
3027 gen_init->cos = cos;
3028 }
3029
3030 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3031 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3032 struct bnx2x_rxq_setup_params *rxq_init)
3033 {
3034 u8 max_sge = 0;
3035 u16 sge_sz = 0;
3036 u16 tpa_agg_size = 0;
3037
3038 if (!fp->disable_tpa) {
3039 pause->sge_th_lo = SGE_TH_LO(bp);
3040 pause->sge_th_hi = SGE_TH_HI(bp);
3041
3042 /* validate SGE ring has enough to cross high threshold */
3043 WARN_ON(bp->dropless_fc &&
3044 pause->sge_th_hi + FW_PREFETCH_CNT >
3045 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3046
3047 tpa_agg_size = TPA_AGG_SIZE;
3048 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3049 SGE_PAGE_SHIFT;
3050 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3051 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3052 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3053 }
3054
3055 /* pause - not for e1 */
3056 if (!CHIP_IS_E1(bp)) {
3057 pause->bd_th_lo = BD_TH_LO(bp);
3058 pause->bd_th_hi = BD_TH_HI(bp);
3059
3060 pause->rcq_th_lo = RCQ_TH_LO(bp);
3061 pause->rcq_th_hi = RCQ_TH_HI(bp);
3062 /*
3063 * validate that rings have enough entries to cross
3064 * high thresholds
3065 */
3066 WARN_ON(bp->dropless_fc &&
3067 pause->bd_th_hi + FW_PREFETCH_CNT >
3068 bp->rx_ring_size);
3069 WARN_ON(bp->dropless_fc &&
3070 pause->rcq_th_hi + FW_PREFETCH_CNT >
3071 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3072
3073 pause->pri_map = 1;
3074 }
3075
3076 /* rxq setup */
3077 rxq_init->dscr_map = fp->rx_desc_mapping;
3078 rxq_init->sge_map = fp->rx_sge_mapping;
3079 rxq_init->rcq_map = fp->rx_comp_mapping;
3080 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3081
3082 /* This should be a maximum number of data bytes that may be
3083 * placed on the BD (not including paddings).
3084 */
3085 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3086 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3087
3088 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3089 rxq_init->tpa_agg_sz = tpa_agg_size;
3090 rxq_init->sge_buf_sz = sge_sz;
3091 rxq_init->max_sges_pkt = max_sge;
3092 rxq_init->rss_engine_id = BP_FUNC(bp);
3093 rxq_init->mcast_engine_id = BP_FUNC(bp);
3094
3095 /* Maximum number or simultaneous TPA aggregation for this Queue.
3096 *
3097 * For PF Clients it should be the maximum available number.
3098 * VF driver(s) may want to define it to a smaller value.
3099 */
3100 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3101
3102 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3103 rxq_init->fw_sb_id = fp->fw_sb_id;
3104
3105 if (IS_FCOE_FP(fp))
3106 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3107 else
3108 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3109 /* configure silent vlan removal
3110 * if multi function mode is afex, then mask default vlan
3111 */
3112 if (IS_MF_AFEX(bp)) {
3113 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3114 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3115 }
3116 }
3117
3118 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3119 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3120 u8 cos)
3121 {
3122 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3123 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3124 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3125 txq_init->fw_sb_id = fp->fw_sb_id;
3126
3127 /*
3128 * set the tss leading client id for TX classification ==
3129 * leading RSS client id
3130 */
3131 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3132
3133 if (IS_FCOE_FP(fp)) {
3134 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3135 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3136 }
3137 }
3138
3139 static void bnx2x_pf_init(struct bnx2x *bp)
3140 {
3141 struct bnx2x_func_init_params func_init = {0};
3142 struct event_ring_data eq_data = { {0} };
3143 u16 flags;
3144
3145 if (!CHIP_IS_E1x(bp)) {
3146 /* reset IGU PF statistics: MSIX + ATTN */
3147 /* PF */
3148 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3149 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3150 (CHIP_MODE_IS_4_PORT(bp) ?
3151 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3152 /* ATTN */
3153 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3154 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3155 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3156 (CHIP_MODE_IS_4_PORT(bp) ?
3157 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3158 }
3159
3160 /* function setup flags */
3161 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3162
3163 /* This flag is relevant for E1x only.
3164 * E2 doesn't have a TPA configuration in a function level.
3165 */
3166 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3167
3168 func_init.func_flgs = flags;
3169 func_init.pf_id = BP_FUNC(bp);
3170 func_init.func_id = BP_FUNC(bp);
3171 func_init.spq_map = bp->spq_mapping;
3172 func_init.spq_prod = bp->spq_prod_idx;
3173
3174 bnx2x_func_init(bp, &func_init);
3175
3176 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3177
3178 /*
3179 * Congestion management values depend on the link rate
3180 * There is no active link so initial link rate is set to 10 Gbps.
3181 * When the link comes up The congestion management values are
3182 * re-calculated according to the actual link rate.
3183 */
3184 bp->link_vars.line_speed = SPEED_10000;
3185 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3186
3187 /* Only the PMF sets the HW */
3188 if (bp->port.pmf)
3189 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3190
3191 /* init Event Queue - PCI bus guarantees correct endianity*/
3192 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3193 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3194 eq_data.producer = bp->eq_prod;
3195 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3196 eq_data.sb_id = DEF_SB_ID;
3197 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3198 }
3199
3200 static void bnx2x_e1h_disable(struct bnx2x *bp)
3201 {
3202 int port = BP_PORT(bp);
3203
3204 bnx2x_tx_disable(bp);
3205
3206 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3207 }
3208
3209 static void bnx2x_e1h_enable(struct bnx2x *bp)
3210 {
3211 int port = BP_PORT(bp);
3212
3213 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3214
3215 /* Tx queue should be only re-enabled */
3216 netif_tx_wake_all_queues(bp->dev);
3217
3218 /*
3219 * Should not call netif_carrier_on since it will be called if the link
3220 * is up when checking for link state
3221 */
3222 }
3223
3224 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3225
3226 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3227 {
3228 struct eth_stats_info *ether_stat =
3229 &bp->slowpath->drv_info_to_mcp.ether_stat;
3230 struct bnx2x_vlan_mac_obj *mac_obj =
3231 &bp->sp_objs->mac_obj;
3232 int i;
3233
3234 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3235 ETH_STAT_INFO_VERSION_LEN);
3236
3237 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3238 * mac_local field in ether_stat struct. The base address is offset by 2
3239 * bytes to account for the field being 8 bytes but a mac address is
3240 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3241 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3242 * allocated by the ether_stat struct, so the macs will land in their
3243 * proper positions.
3244 */
3245 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3246 memset(ether_stat->mac_local + i, 0,
3247 sizeof(ether_stat->mac_local[0]));
3248 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3249 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3250 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3251 ETH_ALEN);
3252 ether_stat->mtu_size = bp->dev->mtu;
3253 if (bp->dev->features & NETIF_F_RXCSUM)
3254 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3255 if (bp->dev->features & NETIF_F_TSO)
3256 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3257 ether_stat->feature_flags |= bp->common.boot_mode;
3258
3259 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3260
3261 ether_stat->txq_size = bp->tx_ring_size;
3262 ether_stat->rxq_size = bp->rx_ring_size;
3263 }
3264
3265 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3266 {
3267 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3268 struct fcoe_stats_info *fcoe_stat =
3269 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3270
3271 if (!CNIC_LOADED(bp))
3272 return;
3273
3274 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3275
3276 fcoe_stat->qos_priority =
3277 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3278
3279 /* insert FCoE stats from ramrod response */
3280 if (!NO_FCOE(bp)) {
3281 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3282 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3283 tstorm_queue_statistics;
3284
3285 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3286 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3287 xstorm_queue_statistics;
3288
3289 struct fcoe_statistics_params *fw_fcoe_stat =
3290 &bp->fw_stats_data->fcoe;
3291
3292 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3293 fcoe_stat->rx_bytes_lo,
3294 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3295
3296 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3297 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3298 fcoe_stat->rx_bytes_lo,
3299 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3300
3301 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3302 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3303 fcoe_stat->rx_bytes_lo,
3304 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3305
3306 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3307 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3308 fcoe_stat->rx_bytes_lo,
3309 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3310
3311 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3312 fcoe_stat->rx_frames_lo,
3313 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3314
3315 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3316 fcoe_stat->rx_frames_lo,
3317 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3318
3319 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3320 fcoe_stat->rx_frames_lo,
3321 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3322
3323 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3324 fcoe_stat->rx_frames_lo,
3325 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3326
3327 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3328 fcoe_stat->tx_bytes_lo,
3329 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3330
3331 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3332 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3333 fcoe_stat->tx_bytes_lo,
3334 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3335
3336 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3337 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3338 fcoe_stat->tx_bytes_lo,
3339 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3340
3341 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3342 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3343 fcoe_stat->tx_bytes_lo,
3344 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3345
3346 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3347 fcoe_stat->tx_frames_lo,
3348 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3349
3350 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3351 fcoe_stat->tx_frames_lo,
3352 fcoe_q_xstorm_stats->ucast_pkts_sent);
3353
3354 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3355 fcoe_stat->tx_frames_lo,
3356 fcoe_q_xstorm_stats->bcast_pkts_sent);
3357
3358 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3359 fcoe_stat->tx_frames_lo,
3360 fcoe_q_xstorm_stats->mcast_pkts_sent);
3361 }
3362
3363 /* ask L5 driver to add data to the struct */
3364 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3365 }
3366
3367 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3368 {
3369 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3370 struct iscsi_stats_info *iscsi_stat =
3371 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3372
3373 if (!CNIC_LOADED(bp))
3374 return;
3375
3376 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3377 ETH_ALEN);
3378
3379 iscsi_stat->qos_priority =
3380 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3381
3382 /* ask L5 driver to add data to the struct */
3383 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3384 }
3385
3386 /* called due to MCP event (on pmf):
3387 * reread new bandwidth configuration
3388 * configure FW
3389 * notify others function about the change
3390 */
3391 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3392 {
3393 if (bp->link_vars.link_up) {
3394 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3395 bnx2x_link_sync_notify(bp);
3396 }
3397 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3398 }
3399
3400 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3401 {
3402 bnx2x_config_mf_bw(bp);
3403 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3404 }
3405
3406 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3407 {
3408 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3409 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3410 }
3411
3412 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3413 {
3414 enum drv_info_opcode op_code;
3415 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3416
3417 /* if drv_info version supported by MFW doesn't match - send NACK */
3418 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3419 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3420 return;
3421 }
3422
3423 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3424 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3425
3426 memset(&bp->slowpath->drv_info_to_mcp, 0,
3427 sizeof(union drv_info_to_mcp));
3428
3429 switch (op_code) {
3430 case ETH_STATS_OPCODE:
3431 bnx2x_drv_info_ether_stat(bp);
3432 break;
3433 case FCOE_STATS_OPCODE:
3434 bnx2x_drv_info_fcoe_stat(bp);
3435 break;
3436 case ISCSI_STATS_OPCODE:
3437 bnx2x_drv_info_iscsi_stat(bp);
3438 break;
3439 default:
3440 /* if op code isn't supported - send NACK */
3441 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3442 return;
3443 }
3444
3445 /* if we got drv_info attn from MFW then these fields are defined in
3446 * shmem2 for sure
3447 */
3448 SHMEM2_WR(bp, drv_info_host_addr_lo,
3449 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3450 SHMEM2_WR(bp, drv_info_host_addr_hi,
3451 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3452
3453 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3454 }
3455
3456 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3457 {
3458 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3459
3460 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3461
3462 /*
3463 * This is the only place besides the function initialization
3464 * where the bp->flags can change so it is done without any
3465 * locks
3466 */
3467 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3468 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3469 bp->flags |= MF_FUNC_DIS;
3470
3471 bnx2x_e1h_disable(bp);
3472 } else {
3473 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3474 bp->flags &= ~MF_FUNC_DIS;
3475
3476 bnx2x_e1h_enable(bp);
3477 }
3478 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3479 }
3480 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3481 bnx2x_config_mf_bw(bp);
3482 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3483 }
3484
3485 /* Report results to MCP */
3486 if (dcc_event)
3487 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3488 else
3489 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3490 }
3491
3492 /* must be called under the spq lock */
3493 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3494 {
3495 struct eth_spe *next_spe = bp->spq_prod_bd;
3496
3497 if (bp->spq_prod_bd == bp->spq_last_bd) {
3498 bp->spq_prod_bd = bp->spq;
3499 bp->spq_prod_idx = 0;
3500 DP(BNX2X_MSG_SP, "end of spq\n");
3501 } else {
3502 bp->spq_prod_bd++;
3503 bp->spq_prod_idx++;
3504 }
3505 return next_spe;
3506 }
3507
3508 /* must be called under the spq lock */
3509 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3510 {
3511 int func = BP_FUNC(bp);
3512
3513 /*
3514 * Make sure that BD data is updated before writing the producer:
3515 * BD data is written to the memory, the producer is read from the
3516 * memory, thus we need a full memory barrier to ensure the ordering.
3517 */
3518 mb();
3519
3520 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3521 bp->spq_prod_idx);
3522 mmiowb();
3523 }
3524
3525 /**
3526 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3527 *
3528 * @cmd: command to check
3529 * @cmd_type: command type
3530 */
3531 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3532 {
3533 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3534 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3535 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3536 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3537 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3538 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3539 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3540 return true;
3541 else
3542 return false;
3543 }
3544
3545 /**
3546 * bnx2x_sp_post - place a single command on an SP ring
3547 *
3548 * @bp: driver handle
3549 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3550 * @cid: SW CID the command is related to
3551 * @data_hi: command private data address (high 32 bits)
3552 * @data_lo: command private data address (low 32 bits)
3553 * @cmd_type: command type (e.g. NONE, ETH)
3554 *
3555 * SP data is handled as if it's always an address pair, thus data fields are
3556 * not swapped to little endian in upper functions. Instead this function swaps
3557 * data as if it's two u32 fields.
3558 */
3559 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3560 u32 data_hi, u32 data_lo, int cmd_type)
3561 {
3562 struct eth_spe *spe;
3563 u16 type;
3564 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3565
3566 #ifdef BNX2X_STOP_ON_ERROR
3567 if (unlikely(bp->panic)) {
3568 BNX2X_ERR("Can't post SP when there is panic\n");
3569 return -EIO;
3570 }
3571 #endif
3572
3573 spin_lock_bh(&bp->spq_lock);
3574
3575 if (common) {
3576 if (!atomic_read(&bp->eq_spq_left)) {
3577 BNX2X_ERR("BUG! EQ ring full!\n");
3578 spin_unlock_bh(&bp->spq_lock);
3579 bnx2x_panic();
3580 return -EBUSY;
3581 }
3582 } else if (!atomic_read(&bp->cq_spq_left)) {
3583 BNX2X_ERR("BUG! SPQ ring full!\n");
3584 spin_unlock_bh(&bp->spq_lock);
3585 bnx2x_panic();
3586 return -EBUSY;
3587 }
3588
3589 spe = bnx2x_sp_get_next(bp);
3590
3591 /* CID needs port number to be encoded int it */
3592 spe->hdr.conn_and_cmd_data =
3593 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3594 HW_CID(bp, cid));
3595
3596 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3597
3598 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3599 SPE_HDR_FUNCTION_ID);
3600
3601 spe->hdr.type = cpu_to_le16(type);
3602
3603 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3604 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3605
3606 /*
3607 * It's ok if the actual decrement is issued towards the memory
3608 * somewhere between the spin_lock and spin_unlock. Thus no
3609 * more explicit memory barrier is needed.
3610 */
3611 if (common)
3612 atomic_dec(&bp->eq_spq_left);
3613 else
3614 atomic_dec(&bp->cq_spq_left);
3615
3616 DP(BNX2X_MSG_SP,
3617 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3618 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3619 (u32)(U64_LO(bp->spq_mapping) +
3620 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3621 HW_CID(bp, cid), data_hi, data_lo, type,
3622 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3623
3624 bnx2x_sp_prod_update(bp);
3625 spin_unlock_bh(&bp->spq_lock);
3626 return 0;
3627 }
3628
3629 /* acquire split MCP access lock register */
3630 static int bnx2x_acquire_alr(struct bnx2x *bp)
3631 {
3632 u32 j, val;
3633 int rc = 0;
3634
3635 might_sleep();
3636 for (j = 0; j < 1000; j++) {
3637 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3638 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3639 if (val & MCPR_ACCESS_LOCK_LOCK)
3640 break;
3641
3642 usleep_range(5000, 10000);
3643 }
3644 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3645 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3646 rc = -EBUSY;
3647 }
3648
3649 return rc;
3650 }
3651
3652 /* release split MCP access lock register */
3653 static void bnx2x_release_alr(struct bnx2x *bp)
3654 {
3655 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3656 }
3657
3658 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3659 #define BNX2X_DEF_SB_IDX 0x0002
3660
3661 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3662 {
3663 struct host_sp_status_block *def_sb = bp->def_status_blk;
3664 u16 rc = 0;
3665
3666 barrier(); /* status block is written to by the chip */
3667 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3668 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3669 rc |= BNX2X_DEF_SB_ATT_IDX;
3670 }
3671
3672 if (bp->def_idx != def_sb->sp_sb.running_index) {
3673 bp->def_idx = def_sb->sp_sb.running_index;
3674 rc |= BNX2X_DEF_SB_IDX;
3675 }
3676
3677 /* Do not reorder: indices reading should complete before handling */
3678 barrier();
3679 return rc;
3680 }
3681
3682 /*
3683 * slow path service functions
3684 */
3685
3686 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3687 {
3688 int port = BP_PORT(bp);
3689 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3690 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3691 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3692 NIG_REG_MASK_INTERRUPT_PORT0;
3693 u32 aeu_mask;
3694 u32 nig_mask = 0;
3695 u32 reg_addr;
3696
3697 if (bp->attn_state & asserted)
3698 BNX2X_ERR("IGU ERROR\n");
3699
3700 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3701 aeu_mask = REG_RD(bp, aeu_addr);
3702
3703 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3704 aeu_mask, asserted);
3705 aeu_mask &= ~(asserted & 0x3ff);
3706 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3707
3708 REG_WR(bp, aeu_addr, aeu_mask);
3709 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3710
3711 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3712 bp->attn_state |= asserted;
3713 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3714
3715 if (asserted & ATTN_HARD_WIRED_MASK) {
3716 if (asserted & ATTN_NIG_FOR_FUNC) {
3717
3718 bnx2x_acquire_phy_lock(bp);
3719
3720 /* save nig interrupt mask */
3721 nig_mask = REG_RD(bp, nig_int_mask_addr);
3722
3723 /* If nig_mask is not set, no need to call the update
3724 * function.
3725 */
3726 if (nig_mask) {
3727 REG_WR(bp, nig_int_mask_addr, 0);
3728
3729 bnx2x_link_attn(bp);
3730 }
3731
3732 /* handle unicore attn? */
3733 }
3734 if (asserted & ATTN_SW_TIMER_4_FUNC)
3735 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3736
3737 if (asserted & GPIO_2_FUNC)
3738 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3739
3740 if (asserted & GPIO_3_FUNC)
3741 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3742
3743 if (asserted & GPIO_4_FUNC)
3744 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3745
3746 if (port == 0) {
3747 if (asserted & ATTN_GENERAL_ATTN_1) {
3748 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3749 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3750 }
3751 if (asserted & ATTN_GENERAL_ATTN_2) {
3752 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3753 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3754 }
3755 if (asserted & ATTN_GENERAL_ATTN_3) {
3756 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3757 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3758 }
3759 } else {
3760 if (asserted & ATTN_GENERAL_ATTN_4) {
3761 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3762 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3763 }
3764 if (asserted & ATTN_GENERAL_ATTN_5) {
3765 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3766 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3767 }
3768 if (asserted & ATTN_GENERAL_ATTN_6) {
3769 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3770 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3771 }
3772 }
3773
3774 } /* if hardwired */
3775
3776 if (bp->common.int_block == INT_BLOCK_HC)
3777 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3778 COMMAND_REG_ATTN_BITS_SET);
3779 else
3780 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3781
3782 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3783 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3784 REG_WR(bp, reg_addr, asserted);
3785
3786 /* now set back the mask */
3787 if (asserted & ATTN_NIG_FOR_FUNC) {
3788 /* Verify that IGU ack through BAR was written before restoring
3789 * NIG mask. This loop should exit after 2-3 iterations max.
3790 */
3791 if (bp->common.int_block != INT_BLOCK_HC) {
3792 u32 cnt = 0, igu_acked;
3793 do {
3794 igu_acked = REG_RD(bp,
3795 IGU_REG_ATTENTION_ACK_BITS);
3796 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3797 (++cnt < MAX_IGU_ATTN_ACK_TO));
3798 if (!igu_acked)
3799 DP(NETIF_MSG_HW,
3800 "Failed to verify IGU ack on time\n");
3801 barrier();
3802 }
3803 REG_WR(bp, nig_int_mask_addr, nig_mask);
3804 bnx2x_release_phy_lock(bp);
3805 }
3806 }
3807
3808 static void bnx2x_fan_failure(struct bnx2x *bp)
3809 {
3810 int port = BP_PORT(bp);
3811 u32 ext_phy_config;
3812 /* mark the failure */
3813 ext_phy_config =
3814 SHMEM_RD(bp,
3815 dev_info.port_hw_config[port].external_phy_config);
3816
3817 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3818 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3819 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3820 ext_phy_config);
3821
3822 /* log the failure */
3823 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3824 "Please contact OEM Support for assistance\n");
3825
3826 /* Schedule device reset (unload)
3827 * This is due to some boards consuming sufficient power when driver is
3828 * up to overheat if fan fails.
3829 */
3830 smp_mb__before_clear_bit();
3831 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3832 smp_mb__after_clear_bit();
3833 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3834 }
3835
3836 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3837 {
3838 int port = BP_PORT(bp);
3839 int reg_offset;
3840 u32 val;
3841
3842 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3843 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3844
3845 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3846
3847 val = REG_RD(bp, reg_offset);
3848 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3849 REG_WR(bp, reg_offset, val);
3850
3851 BNX2X_ERR("SPIO5 hw attention\n");
3852
3853 /* Fan failure attention */
3854 bnx2x_hw_reset_phy(&bp->link_params);
3855 bnx2x_fan_failure(bp);
3856 }
3857
3858 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3859 bnx2x_acquire_phy_lock(bp);
3860 bnx2x_handle_module_detect_int(&bp->link_params);
3861 bnx2x_release_phy_lock(bp);
3862 }
3863
3864 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3865
3866 val = REG_RD(bp, reg_offset);
3867 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3868 REG_WR(bp, reg_offset, val);
3869
3870 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3871 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3872 bnx2x_panic();
3873 }
3874 }
3875
3876 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3877 {
3878 u32 val;
3879
3880 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3881
3882 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3883 BNX2X_ERR("DB hw attention 0x%x\n", val);
3884 /* DORQ discard attention */
3885 if (val & 0x2)
3886 BNX2X_ERR("FATAL error from DORQ\n");
3887 }
3888
3889 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3890
3891 int port = BP_PORT(bp);
3892 int reg_offset;
3893
3894 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3895 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3896
3897 val = REG_RD(bp, reg_offset);
3898 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3899 REG_WR(bp, reg_offset, val);
3900
3901 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3902 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3903 bnx2x_panic();
3904 }
3905 }
3906
3907 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3908 {
3909 u32 val;
3910
3911 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3912
3913 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3914 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3915 /* CFC error attention */
3916 if (val & 0x2)
3917 BNX2X_ERR("FATAL error from CFC\n");
3918 }
3919
3920 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3921 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3922 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3923 /* RQ_USDMDP_FIFO_OVERFLOW */
3924 if (val & 0x18000)
3925 BNX2X_ERR("FATAL error from PXP\n");
3926
3927 if (!CHIP_IS_E1x(bp)) {
3928 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3929 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3930 }
3931 }
3932
3933 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3934
3935 int port = BP_PORT(bp);
3936 int reg_offset;
3937
3938 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3939 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3940
3941 val = REG_RD(bp, reg_offset);
3942 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3943 REG_WR(bp, reg_offset, val);
3944
3945 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3946 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3947 bnx2x_panic();
3948 }
3949 }
3950
3951 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3952 {
3953 u32 val;
3954
3955 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3956
3957 if (attn & BNX2X_PMF_LINK_ASSERT) {
3958 int func = BP_FUNC(bp);
3959
3960 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3961 bnx2x_read_mf_cfg(bp);
3962 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3963 func_mf_config[BP_ABS_FUNC(bp)].config);
3964 val = SHMEM_RD(bp,
3965 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3966 if (val & DRV_STATUS_DCC_EVENT_MASK)
3967 bnx2x_dcc_event(bp,
3968 (val & DRV_STATUS_DCC_EVENT_MASK));
3969
3970 if (val & DRV_STATUS_SET_MF_BW)
3971 bnx2x_set_mf_bw(bp);
3972
3973 if (val & DRV_STATUS_DRV_INFO_REQ)
3974 bnx2x_handle_drv_info_req(bp);
3975
3976 if (val & DRV_STATUS_VF_DISABLED)
3977 bnx2x_vf_handle_flr_event(bp);
3978
3979 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3980 bnx2x_pmf_update(bp);
3981
3982 if (bp->port.pmf &&
3983 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3984 bp->dcbx_enabled > 0)
3985 /* start dcbx state machine */
3986 bnx2x_dcbx_set_params(bp,
3987 BNX2X_DCBX_STATE_NEG_RECEIVED);
3988 if (val & DRV_STATUS_AFEX_EVENT_MASK)
3989 bnx2x_handle_afex_cmd(bp,
3990 val & DRV_STATUS_AFEX_EVENT_MASK);
3991 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3992 bnx2x_handle_eee_event(bp);
3993 if (bp->link_vars.periodic_flags &
3994 PERIODIC_FLAGS_LINK_EVENT) {
3995 /* sync with link */
3996 bnx2x_acquire_phy_lock(bp);
3997 bp->link_vars.periodic_flags &=
3998 ~PERIODIC_FLAGS_LINK_EVENT;
3999 bnx2x_release_phy_lock(bp);
4000 if (IS_MF(bp))
4001 bnx2x_link_sync_notify(bp);
4002 bnx2x_link_report(bp);
4003 }
4004 /* Always call it here: bnx2x_link_report() will
4005 * prevent the link indication duplication.
4006 */
4007 bnx2x__link_status_update(bp);
4008 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4009
4010 BNX2X_ERR("MC assert!\n");
4011 bnx2x_mc_assert(bp);
4012 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4013 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4014 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4015 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4016 bnx2x_panic();
4017
4018 } else if (attn & BNX2X_MCP_ASSERT) {
4019
4020 BNX2X_ERR("MCP assert!\n");
4021 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4022 bnx2x_fw_dump(bp);
4023
4024 } else
4025 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4026 }
4027
4028 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4029 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4030 if (attn & BNX2X_GRC_TIMEOUT) {
4031 val = CHIP_IS_E1(bp) ? 0 :
4032 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4033 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4034 }
4035 if (attn & BNX2X_GRC_RSV) {
4036 val = CHIP_IS_E1(bp) ? 0 :
4037 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4038 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4039 }
4040 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4041 }
4042 }
4043
4044 /*
4045 * Bits map:
4046 * 0-7 - Engine0 load counter.
4047 * 8-15 - Engine1 load counter.
4048 * 16 - Engine0 RESET_IN_PROGRESS bit.
4049 * 17 - Engine1 RESET_IN_PROGRESS bit.
4050 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4051 * on the engine
4052 * 19 - Engine1 ONE_IS_LOADED.
4053 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4054 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4055 * just the one belonging to its engine).
4056 *
4057 */
4058 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4059
4060 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4061 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4062 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4063 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4064 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4065 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4066 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4067
4068 /*
4069 * Set the GLOBAL_RESET bit.
4070 *
4071 * Should be run under rtnl lock
4072 */
4073 void bnx2x_set_reset_global(struct bnx2x *bp)
4074 {
4075 u32 val;
4076 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4077 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4078 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4079 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4080 }
4081
4082 /*
4083 * Clear the GLOBAL_RESET bit.
4084 *
4085 * Should be run under rtnl lock
4086 */
4087 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4088 {
4089 u32 val;
4090 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4091 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4092 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4093 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4094 }
4095
4096 /*
4097 * Checks the GLOBAL_RESET bit.
4098 *
4099 * should be run under rtnl lock
4100 */
4101 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4102 {
4103 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4104
4105 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4106 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4107 }
4108
4109 /*
4110 * Clear RESET_IN_PROGRESS bit for the current engine.
4111 *
4112 * Should be run under rtnl lock
4113 */
4114 static void bnx2x_set_reset_done(struct bnx2x *bp)
4115 {
4116 u32 val;
4117 u32 bit = BP_PATH(bp) ?
4118 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4119 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4120 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4121
4122 /* Clear the bit */
4123 val &= ~bit;
4124 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4125
4126 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4127 }
4128
4129 /*
4130 * Set RESET_IN_PROGRESS for the current engine.
4131 *
4132 * should be run under rtnl lock
4133 */
4134 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4135 {
4136 u32 val;
4137 u32 bit = BP_PATH(bp) ?
4138 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4139 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4140 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4141
4142 /* Set the bit */
4143 val |= bit;
4144 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4145 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4146 }
4147
4148 /*
4149 * Checks the RESET_IN_PROGRESS bit for the given engine.
4150 * should be run under rtnl lock
4151 */
4152 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4153 {
4154 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4155 u32 bit = engine ?
4156 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4157
4158 /* return false if bit is set */
4159 return (val & bit) ? false : true;
4160 }
4161
4162 /*
4163 * set pf load for the current pf.
4164 *
4165 * should be run under rtnl lock
4166 */
4167 void bnx2x_set_pf_load(struct bnx2x *bp)
4168 {
4169 u32 val1, val;
4170 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4171 BNX2X_PATH0_LOAD_CNT_MASK;
4172 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4173 BNX2X_PATH0_LOAD_CNT_SHIFT;
4174
4175 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4176 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4177
4178 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4179
4180 /* get the current counter value */
4181 val1 = (val & mask) >> shift;
4182
4183 /* set bit of that PF */
4184 val1 |= (1 << bp->pf_num);
4185
4186 /* clear the old value */
4187 val &= ~mask;
4188
4189 /* set the new one */
4190 val |= ((val1 << shift) & mask);
4191
4192 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4193 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4194 }
4195
4196 /**
4197 * bnx2x_clear_pf_load - clear pf load mark
4198 *
4199 * @bp: driver handle
4200 *
4201 * Should be run under rtnl lock.
4202 * Decrements the load counter for the current engine. Returns
4203 * whether other functions are still loaded
4204 */
4205 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4206 {
4207 u32 val1, val;
4208 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4209 BNX2X_PATH0_LOAD_CNT_MASK;
4210 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4211 BNX2X_PATH0_LOAD_CNT_SHIFT;
4212
4213 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4214 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4215 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4216
4217 /* get the current counter value */
4218 val1 = (val & mask) >> shift;
4219
4220 /* clear bit of that PF */
4221 val1 &= ~(1 << bp->pf_num);
4222
4223 /* clear the old value */
4224 val &= ~mask;
4225
4226 /* set the new one */
4227 val |= ((val1 << shift) & mask);
4228
4229 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4230 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4231 return val1 != 0;
4232 }
4233
4234 /*
4235 * Read the load status for the current engine.
4236 *
4237 * should be run under rtnl lock
4238 */
4239 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4240 {
4241 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4242 BNX2X_PATH0_LOAD_CNT_MASK);
4243 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4244 BNX2X_PATH0_LOAD_CNT_SHIFT);
4245 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4246
4247 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4248
4249 val = (val & mask) >> shift;
4250
4251 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4252 engine, val);
4253
4254 return val != 0;
4255 }
4256
4257 static void _print_parity(struct bnx2x *bp, u32 reg)
4258 {
4259 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4260 }
4261
4262 static void _print_next_block(int idx, const char *blk)
4263 {
4264 pr_cont("%s%s", idx ? ", " : "", blk);
4265 }
4266
4267 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4268 int par_num, bool print)
4269 {
4270 int i = 0;
4271 u32 cur_bit = 0;
4272 for (i = 0; sig; i++) {
4273 cur_bit = ((u32)0x1 << i);
4274 if (sig & cur_bit) {
4275 switch (cur_bit) {
4276 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4277 if (print) {
4278 _print_next_block(par_num++, "BRB");
4279 _print_parity(bp,
4280 BRB1_REG_BRB1_PRTY_STS);
4281 }
4282 break;
4283 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4284 if (print) {
4285 _print_next_block(par_num++, "PARSER");
4286 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4287 }
4288 break;
4289 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4290 if (print) {
4291 _print_next_block(par_num++, "TSDM");
4292 _print_parity(bp,
4293 TSDM_REG_TSDM_PRTY_STS);
4294 }
4295 break;
4296 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4297 if (print) {
4298 _print_next_block(par_num++,
4299 "SEARCHER");
4300 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4301 }
4302 break;
4303 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4304 if (print) {
4305 _print_next_block(par_num++, "TCM");
4306 _print_parity(bp,
4307 TCM_REG_TCM_PRTY_STS);
4308 }
4309 break;
4310 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4311 if (print) {
4312 _print_next_block(par_num++, "TSEMI");
4313 _print_parity(bp,
4314 TSEM_REG_TSEM_PRTY_STS_0);
4315 _print_parity(bp,
4316 TSEM_REG_TSEM_PRTY_STS_1);
4317 }
4318 break;
4319 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4320 if (print) {
4321 _print_next_block(par_num++, "XPB");
4322 _print_parity(bp, GRCBASE_XPB +
4323 PB_REG_PB_PRTY_STS);
4324 }
4325 break;
4326 }
4327
4328 /* Clear the bit */
4329 sig &= ~cur_bit;
4330 }
4331 }
4332
4333 return par_num;
4334 }
4335
4336 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4337 int par_num, bool *global,
4338 bool print)
4339 {
4340 int i = 0;
4341 u32 cur_bit = 0;
4342 for (i = 0; sig; i++) {
4343 cur_bit = ((u32)0x1 << i);
4344 if (sig & cur_bit) {
4345 switch (cur_bit) {
4346 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4347 if (print) {
4348 _print_next_block(par_num++, "PBF");
4349 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4350 }
4351 break;
4352 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4353 if (print) {
4354 _print_next_block(par_num++, "QM");
4355 _print_parity(bp, QM_REG_QM_PRTY_STS);
4356 }
4357 break;
4358 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4359 if (print) {
4360 _print_next_block(par_num++, "TM");
4361 _print_parity(bp, TM_REG_TM_PRTY_STS);
4362 }
4363 break;
4364 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4365 if (print) {
4366 _print_next_block(par_num++, "XSDM");
4367 _print_parity(bp,
4368 XSDM_REG_XSDM_PRTY_STS);
4369 }
4370 break;
4371 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4372 if (print) {
4373 _print_next_block(par_num++, "XCM");
4374 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4375 }
4376 break;
4377 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4378 if (print) {
4379 _print_next_block(par_num++, "XSEMI");
4380 _print_parity(bp,
4381 XSEM_REG_XSEM_PRTY_STS_0);
4382 _print_parity(bp,
4383 XSEM_REG_XSEM_PRTY_STS_1);
4384 }
4385 break;
4386 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4387 if (print) {
4388 _print_next_block(par_num++,
4389 "DOORBELLQ");
4390 _print_parity(bp,
4391 DORQ_REG_DORQ_PRTY_STS);
4392 }
4393 break;
4394 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4395 if (print) {
4396 _print_next_block(par_num++, "NIG");
4397 if (CHIP_IS_E1x(bp)) {
4398 _print_parity(bp,
4399 NIG_REG_NIG_PRTY_STS);
4400 } else {
4401 _print_parity(bp,
4402 NIG_REG_NIG_PRTY_STS_0);
4403 _print_parity(bp,
4404 NIG_REG_NIG_PRTY_STS_1);
4405 }
4406 }
4407 break;
4408 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4409 if (print)
4410 _print_next_block(par_num++,
4411 "VAUX PCI CORE");
4412 *global = true;
4413 break;
4414 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4415 if (print) {
4416 _print_next_block(par_num++, "DEBUG");
4417 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4418 }
4419 break;
4420 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4421 if (print) {
4422 _print_next_block(par_num++, "USDM");
4423 _print_parity(bp,
4424 USDM_REG_USDM_PRTY_STS);
4425 }
4426 break;
4427 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4428 if (print) {
4429 _print_next_block(par_num++, "UCM");
4430 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4431 }
4432 break;
4433 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4434 if (print) {
4435 _print_next_block(par_num++, "USEMI");
4436 _print_parity(bp,
4437 USEM_REG_USEM_PRTY_STS_0);
4438 _print_parity(bp,
4439 USEM_REG_USEM_PRTY_STS_1);
4440 }
4441 break;
4442 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4443 if (print) {
4444 _print_next_block(par_num++, "UPB");
4445 _print_parity(bp, GRCBASE_UPB +
4446 PB_REG_PB_PRTY_STS);
4447 }
4448 break;
4449 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4450 if (print) {
4451 _print_next_block(par_num++, "CSDM");
4452 _print_parity(bp,
4453 CSDM_REG_CSDM_PRTY_STS);
4454 }
4455 break;
4456 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4457 if (print) {
4458 _print_next_block(par_num++, "CCM");
4459 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4460 }
4461 break;
4462 }
4463
4464 /* Clear the bit */
4465 sig &= ~cur_bit;
4466 }
4467 }
4468
4469 return par_num;
4470 }
4471
4472 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4473 int par_num, bool print)
4474 {
4475 int i = 0;
4476 u32 cur_bit = 0;
4477 for (i = 0; sig; i++) {
4478 cur_bit = ((u32)0x1 << i);
4479 if (sig & cur_bit) {
4480 switch (cur_bit) {
4481 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4482 if (print) {
4483 _print_next_block(par_num++, "CSEMI");
4484 _print_parity(bp,
4485 CSEM_REG_CSEM_PRTY_STS_0);
4486 _print_parity(bp,
4487 CSEM_REG_CSEM_PRTY_STS_1);
4488 }
4489 break;
4490 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4491 if (print) {
4492 _print_next_block(par_num++, "PXP");
4493 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4494 _print_parity(bp,
4495 PXP2_REG_PXP2_PRTY_STS_0);
4496 _print_parity(bp,
4497 PXP2_REG_PXP2_PRTY_STS_1);
4498 }
4499 break;
4500 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4501 if (print)
4502 _print_next_block(par_num++,
4503 "PXPPCICLOCKCLIENT");
4504 break;
4505 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4506 if (print) {
4507 _print_next_block(par_num++, "CFC");
4508 _print_parity(bp,
4509 CFC_REG_CFC_PRTY_STS);
4510 }
4511 break;
4512 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4513 if (print) {
4514 _print_next_block(par_num++, "CDU");
4515 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4516 }
4517 break;
4518 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4519 if (print) {
4520 _print_next_block(par_num++, "DMAE");
4521 _print_parity(bp,
4522 DMAE_REG_DMAE_PRTY_STS);
4523 }
4524 break;
4525 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4526 if (print) {
4527 _print_next_block(par_num++, "IGU");
4528 if (CHIP_IS_E1x(bp))
4529 _print_parity(bp,
4530 HC_REG_HC_PRTY_STS);
4531 else
4532 _print_parity(bp,
4533 IGU_REG_IGU_PRTY_STS);
4534 }
4535 break;
4536 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4537 if (print) {
4538 _print_next_block(par_num++, "MISC");
4539 _print_parity(bp,
4540 MISC_REG_MISC_PRTY_STS);
4541 }
4542 break;
4543 }
4544
4545 /* Clear the bit */
4546 sig &= ~cur_bit;
4547 }
4548 }
4549
4550 return par_num;
4551 }
4552
4553 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4554 bool *global, bool print)
4555 {
4556 int i = 0;
4557 u32 cur_bit = 0;
4558 for (i = 0; sig; i++) {
4559 cur_bit = ((u32)0x1 << i);
4560 if (sig & cur_bit) {
4561 switch (cur_bit) {
4562 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4563 if (print)
4564 _print_next_block(par_num++, "MCP ROM");
4565 *global = true;
4566 break;
4567 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4568 if (print)
4569 _print_next_block(par_num++,
4570 "MCP UMP RX");
4571 *global = true;
4572 break;
4573 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4574 if (print)
4575 _print_next_block(par_num++,
4576 "MCP UMP TX");
4577 *global = true;
4578 break;
4579 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4580 if (print)
4581 _print_next_block(par_num++,
4582 "MCP SCPAD");
4583 *global = true;
4584 break;
4585 }
4586
4587 /* Clear the bit */
4588 sig &= ~cur_bit;
4589 }
4590 }
4591
4592 return par_num;
4593 }
4594
4595 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4596 int par_num, bool print)
4597 {
4598 int i = 0;
4599 u32 cur_bit = 0;
4600 for (i = 0; sig; i++) {
4601 cur_bit = ((u32)0x1 << i);
4602 if (sig & cur_bit) {
4603 switch (cur_bit) {
4604 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4605 if (print) {
4606 _print_next_block(par_num++, "PGLUE_B");
4607 _print_parity(bp,
4608 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4609 }
4610 break;
4611 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4612 if (print) {
4613 _print_next_block(par_num++, "ATC");
4614 _print_parity(bp,
4615 ATC_REG_ATC_PRTY_STS);
4616 }
4617 break;
4618 }
4619
4620 /* Clear the bit */
4621 sig &= ~cur_bit;
4622 }
4623 }
4624
4625 return par_num;
4626 }
4627
4628 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4629 u32 *sig)
4630 {
4631 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4632 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4633 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4634 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4635 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4636 int par_num = 0;
4637 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4638 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4639 sig[0] & HW_PRTY_ASSERT_SET_0,
4640 sig[1] & HW_PRTY_ASSERT_SET_1,
4641 sig[2] & HW_PRTY_ASSERT_SET_2,
4642 sig[3] & HW_PRTY_ASSERT_SET_3,
4643 sig[4] & HW_PRTY_ASSERT_SET_4);
4644 if (print)
4645 netdev_err(bp->dev,
4646 "Parity errors detected in blocks: ");
4647 par_num = bnx2x_check_blocks_with_parity0(bp,
4648 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4649 par_num = bnx2x_check_blocks_with_parity1(bp,
4650 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4651 par_num = bnx2x_check_blocks_with_parity2(bp,
4652 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4653 par_num = bnx2x_check_blocks_with_parity3(
4654 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4655 par_num = bnx2x_check_blocks_with_parity4(bp,
4656 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4657
4658 if (print)
4659 pr_cont("\n");
4660
4661 return true;
4662 } else
4663 return false;
4664 }
4665
4666 /**
4667 * bnx2x_chk_parity_attn - checks for parity attentions.
4668 *
4669 * @bp: driver handle
4670 * @global: true if there was a global attention
4671 * @print: show parity attention in syslog
4672 */
4673 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4674 {
4675 struct attn_route attn = { {0} };
4676 int port = BP_PORT(bp);
4677
4678 attn.sig[0] = REG_RD(bp,
4679 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4680 port*4);
4681 attn.sig[1] = REG_RD(bp,
4682 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4683 port*4);
4684 attn.sig[2] = REG_RD(bp,
4685 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4686 port*4);
4687 attn.sig[3] = REG_RD(bp,
4688 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4689 port*4);
4690
4691 if (!CHIP_IS_E1x(bp))
4692 attn.sig[4] = REG_RD(bp,
4693 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4694 port*4);
4695
4696 return bnx2x_parity_attn(bp, global, print, attn.sig);
4697 }
4698
4699 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4700 {
4701 u32 val;
4702 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4703
4704 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4705 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4706 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4707 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4708 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4709 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4710 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4711 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4712 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4713 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4714 if (val &
4715 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4716 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4717 if (val &
4718 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4719 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4720 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4721 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4722 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4723 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4724 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4725 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4726 }
4727 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4728 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4729 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4730 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4731 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4732 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4733 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4734 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4735 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4736 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4737 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4738 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4739 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4740 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4741 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4742 }
4743
4744 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4745 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4746 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4747 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4748 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4749 }
4750 }
4751
4752 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4753 {
4754 struct attn_route attn, *group_mask;
4755 int port = BP_PORT(bp);
4756 int index;
4757 u32 reg_addr;
4758 u32 val;
4759 u32 aeu_mask;
4760 bool global = false;
4761
4762 /* need to take HW lock because MCP or other port might also
4763 try to handle this event */
4764 bnx2x_acquire_alr(bp);
4765
4766 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4767 #ifndef BNX2X_STOP_ON_ERROR
4768 bp->recovery_state = BNX2X_RECOVERY_INIT;
4769 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4770 /* Disable HW interrupts */
4771 bnx2x_int_disable(bp);
4772 /* In case of parity errors don't handle attentions so that
4773 * other function would "see" parity errors.
4774 */
4775 #else
4776 bnx2x_panic();
4777 #endif
4778 bnx2x_release_alr(bp);
4779 return;
4780 }
4781
4782 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4783 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4784 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4785 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4786 if (!CHIP_IS_E1x(bp))
4787 attn.sig[4] =
4788 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4789 else
4790 attn.sig[4] = 0;
4791
4792 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4793 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4794
4795 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4796 if (deasserted & (1 << index)) {
4797 group_mask = &bp->attn_group[index];
4798
4799 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4800 index,
4801 group_mask->sig[0], group_mask->sig[1],
4802 group_mask->sig[2], group_mask->sig[3],
4803 group_mask->sig[4]);
4804
4805 bnx2x_attn_int_deasserted4(bp,
4806 attn.sig[4] & group_mask->sig[4]);
4807 bnx2x_attn_int_deasserted3(bp,
4808 attn.sig[3] & group_mask->sig[3]);
4809 bnx2x_attn_int_deasserted1(bp,
4810 attn.sig[1] & group_mask->sig[1]);
4811 bnx2x_attn_int_deasserted2(bp,
4812 attn.sig[2] & group_mask->sig[2]);
4813 bnx2x_attn_int_deasserted0(bp,
4814 attn.sig[0] & group_mask->sig[0]);
4815 }
4816 }
4817
4818 bnx2x_release_alr(bp);
4819
4820 if (bp->common.int_block == INT_BLOCK_HC)
4821 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4822 COMMAND_REG_ATTN_BITS_CLR);
4823 else
4824 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4825
4826 val = ~deasserted;
4827 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4828 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4829 REG_WR(bp, reg_addr, val);
4830
4831 if (~bp->attn_state & deasserted)
4832 BNX2X_ERR("IGU ERROR\n");
4833
4834 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4835 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4836
4837 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4838 aeu_mask = REG_RD(bp, reg_addr);
4839
4840 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4841 aeu_mask, deasserted);
4842 aeu_mask |= (deasserted & 0x3ff);
4843 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4844
4845 REG_WR(bp, reg_addr, aeu_mask);
4846 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4847
4848 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4849 bp->attn_state &= ~deasserted;
4850 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4851 }
4852
4853 static void bnx2x_attn_int(struct bnx2x *bp)
4854 {
4855 /* read local copy of bits */
4856 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4857 attn_bits);
4858 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4859 attn_bits_ack);
4860 u32 attn_state = bp->attn_state;
4861
4862 /* look for changed bits */
4863 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4864 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4865
4866 DP(NETIF_MSG_HW,
4867 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4868 attn_bits, attn_ack, asserted, deasserted);
4869
4870 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4871 BNX2X_ERR("BAD attention state\n");
4872
4873 /* handle bits that were raised */
4874 if (asserted)
4875 bnx2x_attn_int_asserted(bp, asserted);
4876
4877 if (deasserted)
4878 bnx2x_attn_int_deasserted(bp, deasserted);
4879 }
4880
4881 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4882 u16 index, u8 op, u8 update)
4883 {
4884 u32 igu_addr = bp->igu_base_addr;
4885 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4886 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4887 igu_addr);
4888 }
4889
4890 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4891 {
4892 /* No memory barriers */
4893 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4894 mmiowb(); /* keep prod updates ordered */
4895 }
4896
4897 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4898 union event_ring_elem *elem)
4899 {
4900 u8 err = elem->message.error;
4901
4902 if (!bp->cnic_eth_dev.starting_cid ||
4903 (cid < bp->cnic_eth_dev.starting_cid &&
4904 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4905 return 1;
4906
4907 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4908
4909 if (unlikely(err)) {
4910
4911 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4912 cid);
4913 bnx2x_panic_dump(bp, false);
4914 }
4915 bnx2x_cnic_cfc_comp(bp, cid, err);
4916 return 0;
4917 }
4918
4919 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4920 {
4921 struct bnx2x_mcast_ramrod_params rparam;
4922 int rc;
4923
4924 memset(&rparam, 0, sizeof(rparam));
4925
4926 rparam.mcast_obj = &bp->mcast_obj;
4927
4928 netif_addr_lock_bh(bp->dev);
4929
4930 /* Clear pending state for the last command */
4931 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4932
4933 /* If there are pending mcast commands - send them */
4934 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4935 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4936 if (rc < 0)
4937 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4938 rc);
4939 }
4940
4941 netif_addr_unlock_bh(bp->dev);
4942 }
4943
4944 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4945 union event_ring_elem *elem)
4946 {
4947 unsigned long ramrod_flags = 0;
4948 int rc = 0;
4949 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4950 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4951
4952 /* Always push next commands out, don't wait here */
4953 __set_bit(RAMROD_CONT, &ramrod_flags);
4954
4955 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4956 >> BNX2X_SWCID_SHIFT) {
4957 case BNX2X_FILTER_MAC_PENDING:
4958 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4959 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4960 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4961 else
4962 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4963
4964 break;
4965 case BNX2X_FILTER_MCAST_PENDING:
4966 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4967 /* This is only relevant for 57710 where multicast MACs are
4968 * configured as unicast MACs using the same ramrod.
4969 */
4970 bnx2x_handle_mcast_eqe(bp);
4971 return;
4972 default:
4973 BNX2X_ERR("Unsupported classification command: %d\n",
4974 elem->message.data.eth_event.echo);
4975 return;
4976 }
4977
4978 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4979
4980 if (rc < 0)
4981 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4982 else if (rc > 0)
4983 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4984 }
4985
4986 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4987
4988 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4989 {
4990 netif_addr_lock_bh(bp->dev);
4991
4992 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4993
4994 /* Send rx_mode command again if was requested */
4995 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4996 bnx2x_set_storm_rx_mode(bp);
4997 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4998 &bp->sp_state))
4999 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5000 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5001 &bp->sp_state))
5002 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5003
5004 netif_addr_unlock_bh(bp->dev);
5005 }
5006
5007 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5008 union event_ring_elem *elem)
5009 {
5010 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5011 DP(BNX2X_MSG_SP,
5012 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5013 elem->message.data.vif_list_event.func_bit_map);
5014 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5015 elem->message.data.vif_list_event.func_bit_map);
5016 } else if (elem->message.data.vif_list_event.echo ==
5017 VIF_LIST_RULE_SET) {
5018 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5019 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5020 }
5021 }
5022
5023 /* called with rtnl_lock */
5024 static void bnx2x_after_function_update(struct bnx2x *bp)
5025 {
5026 int q, rc;
5027 struct bnx2x_fastpath *fp;
5028 struct bnx2x_queue_state_params queue_params = {NULL};
5029 struct bnx2x_queue_update_params *q_update_params =
5030 &queue_params.params.update;
5031
5032 /* Send Q update command with afex vlan removal values for all Qs */
5033 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5034
5035 /* set silent vlan removal values according to vlan mode */
5036 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5037 &q_update_params->update_flags);
5038 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5039 &q_update_params->update_flags);
5040 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5041
5042 /* in access mode mark mask and value are 0 to strip all vlans */
5043 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5044 q_update_params->silent_removal_value = 0;
5045 q_update_params->silent_removal_mask = 0;
5046 } else {
5047 q_update_params->silent_removal_value =
5048 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5049 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5050 }
5051
5052 for_each_eth_queue(bp, q) {
5053 /* Set the appropriate Queue object */
5054 fp = &bp->fp[q];
5055 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5056
5057 /* send the ramrod */
5058 rc = bnx2x_queue_state_change(bp, &queue_params);
5059 if (rc < 0)
5060 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5061 q);
5062 }
5063
5064 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5065 fp = &bp->fp[FCOE_IDX(bp)];
5066 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5067
5068 /* clear pending completion bit */
5069 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5070
5071 /* mark latest Q bit */
5072 smp_mb__before_clear_bit();
5073 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5074 smp_mb__after_clear_bit();
5075
5076 /* send Q update ramrod for FCoE Q */
5077 rc = bnx2x_queue_state_change(bp, &queue_params);
5078 if (rc < 0)
5079 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5080 q);
5081 } else {
5082 /* If no FCoE ring - ACK MCP now */
5083 bnx2x_link_report(bp);
5084 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5085 }
5086 }
5087
5088 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5089 struct bnx2x *bp, u32 cid)
5090 {
5091 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5092
5093 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5094 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5095 else
5096 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5097 }
5098
5099 static void bnx2x_eq_int(struct bnx2x *bp)
5100 {
5101 u16 hw_cons, sw_cons, sw_prod;
5102 union event_ring_elem *elem;
5103 u8 echo;
5104 u32 cid;
5105 u8 opcode;
5106 int rc, spqe_cnt = 0;
5107 struct bnx2x_queue_sp_obj *q_obj;
5108 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5109 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5110
5111 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5112
5113 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5114 * when we get the next-page we need to adjust so the loop
5115 * condition below will be met. The next element is the size of a
5116 * regular element and hence incrementing by 1
5117 */
5118 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5119 hw_cons++;
5120
5121 /* This function may never run in parallel with itself for a
5122 * specific bp, thus there is no need in "paired" read memory
5123 * barrier here.
5124 */
5125 sw_cons = bp->eq_cons;
5126 sw_prod = bp->eq_prod;
5127
5128 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5129 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5130
5131 for (; sw_cons != hw_cons;
5132 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5133
5134 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5135
5136 rc = bnx2x_iov_eq_sp_event(bp, elem);
5137 if (!rc) {
5138 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5139 rc);
5140 goto next_spqe;
5141 }
5142
5143 /* elem CID originates from FW; actually LE */
5144 cid = SW_CID((__force __le32)
5145 elem->message.data.cfc_del_event.cid);
5146 opcode = elem->message.opcode;
5147
5148 /* handle eq element */
5149 switch (opcode) {
5150 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5151 DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5152 bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5153 continue;
5154
5155 case EVENT_RING_OPCODE_STAT_QUERY:
5156 DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5157 "got statistics comp event %d\n",
5158 bp->stats_comp++);
5159 /* nothing to do with stats comp */
5160 goto next_spqe;
5161
5162 case EVENT_RING_OPCODE_CFC_DEL:
5163 /* handle according to cid range */
5164 /*
5165 * we may want to verify here that the bp state is
5166 * HALTING
5167 */
5168 DP(BNX2X_MSG_SP,
5169 "got delete ramrod for MULTI[%d]\n", cid);
5170
5171 if (CNIC_LOADED(bp) &&
5172 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5173 goto next_spqe;
5174
5175 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5176
5177 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5178 break;
5179
5180 goto next_spqe;
5181
5182 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5183 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5184 if (f_obj->complete_cmd(bp, f_obj,
5185 BNX2X_F_CMD_TX_STOP))
5186 break;
5187 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5188 goto next_spqe;
5189
5190 case EVENT_RING_OPCODE_START_TRAFFIC:
5191 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5192 if (f_obj->complete_cmd(bp, f_obj,
5193 BNX2X_F_CMD_TX_START))
5194 break;
5195 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5196 goto next_spqe;
5197
5198 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5199 echo = elem->message.data.function_update_event.echo;
5200 if (echo == SWITCH_UPDATE) {
5201 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5202 "got FUNC_SWITCH_UPDATE ramrod\n");
5203 if (f_obj->complete_cmd(
5204 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5205 break;
5206
5207 } else {
5208 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5209 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5210 f_obj->complete_cmd(bp, f_obj,
5211 BNX2X_F_CMD_AFEX_UPDATE);
5212
5213 /* We will perform the Queues update from
5214 * sp_rtnl task as all Queue SP operations
5215 * should run under rtnl_lock.
5216 */
5217 smp_mb__before_clear_bit();
5218 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5219 &bp->sp_rtnl_state);
5220 smp_mb__after_clear_bit();
5221
5222 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5223 }
5224
5225 goto next_spqe;
5226
5227 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5228 f_obj->complete_cmd(bp, f_obj,
5229 BNX2X_F_CMD_AFEX_VIFLISTS);
5230 bnx2x_after_afex_vif_lists(bp, elem);
5231 goto next_spqe;
5232 case EVENT_RING_OPCODE_FUNCTION_START:
5233 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5234 "got FUNC_START ramrod\n");
5235 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5236 break;
5237
5238 goto next_spqe;
5239
5240 case EVENT_RING_OPCODE_FUNCTION_STOP:
5241 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5242 "got FUNC_STOP ramrod\n");
5243 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5244 break;
5245
5246 goto next_spqe;
5247 }
5248
5249 switch (opcode | bp->state) {
5250 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5251 BNX2X_STATE_OPEN):
5252 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5253 BNX2X_STATE_OPENING_WAIT4_PORT):
5254 cid = elem->message.data.eth_event.echo &
5255 BNX2X_SWCID_MASK;
5256 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5257 cid);
5258 rss_raw->clear_pending(rss_raw);
5259 break;
5260
5261 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5262 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5263 case (EVENT_RING_OPCODE_SET_MAC |
5264 BNX2X_STATE_CLOSING_WAIT4_HALT):
5265 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5266 BNX2X_STATE_OPEN):
5267 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5268 BNX2X_STATE_DIAG):
5269 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5270 BNX2X_STATE_CLOSING_WAIT4_HALT):
5271 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5272 bnx2x_handle_classification_eqe(bp, elem);
5273 break;
5274
5275 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5276 BNX2X_STATE_OPEN):
5277 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5278 BNX2X_STATE_DIAG):
5279 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5280 BNX2X_STATE_CLOSING_WAIT4_HALT):
5281 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5282 bnx2x_handle_mcast_eqe(bp);
5283 break;
5284
5285 case (EVENT_RING_OPCODE_FILTERS_RULES |
5286 BNX2X_STATE_OPEN):
5287 case (EVENT_RING_OPCODE_FILTERS_RULES |
5288 BNX2X_STATE_DIAG):
5289 case (EVENT_RING_OPCODE_FILTERS_RULES |
5290 BNX2X_STATE_CLOSING_WAIT4_HALT):
5291 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5292 bnx2x_handle_rx_mode_eqe(bp);
5293 break;
5294 default:
5295 /* unknown event log error and continue */
5296 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5297 elem->message.opcode, bp->state);
5298 }
5299 next_spqe:
5300 spqe_cnt++;
5301 } /* for */
5302
5303 smp_mb__before_atomic_inc();
5304 atomic_add(spqe_cnt, &bp->eq_spq_left);
5305
5306 bp->eq_cons = sw_cons;
5307 bp->eq_prod = sw_prod;
5308 /* Make sure that above mem writes were issued towards the memory */
5309 smp_wmb();
5310
5311 /* update producer */
5312 bnx2x_update_eq_prod(bp, bp->eq_prod);
5313 }
5314
5315 static void bnx2x_sp_task(struct work_struct *work)
5316 {
5317 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5318
5319 DP(BNX2X_MSG_SP, "sp task invoked\n");
5320
5321 /* make sure the atomic interrupt_occurred has been written */
5322 smp_rmb();
5323 if (atomic_read(&bp->interrupt_occurred)) {
5324
5325 /* what work needs to be performed? */
5326 u16 status = bnx2x_update_dsb_idx(bp);
5327
5328 DP(BNX2X_MSG_SP, "status %x\n", status);
5329 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5330 atomic_set(&bp->interrupt_occurred, 0);
5331
5332 /* HW attentions */
5333 if (status & BNX2X_DEF_SB_ATT_IDX) {
5334 bnx2x_attn_int(bp);
5335 status &= ~BNX2X_DEF_SB_ATT_IDX;
5336 }
5337
5338 /* SP events: STAT_QUERY and others */
5339 if (status & BNX2X_DEF_SB_IDX) {
5340 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5341
5342 if (FCOE_INIT(bp) &&
5343 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5344 /* Prevent local bottom-halves from running as
5345 * we are going to change the local NAPI list.
5346 */
5347 local_bh_disable();
5348 napi_schedule(&bnx2x_fcoe(bp, napi));
5349 local_bh_enable();
5350 }
5351
5352 /* Handle EQ completions */
5353 bnx2x_eq_int(bp);
5354 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5355 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5356
5357 status &= ~BNX2X_DEF_SB_IDX;
5358 }
5359
5360 /* if status is non zero then perhaps something went wrong */
5361 if (unlikely(status))
5362 DP(BNX2X_MSG_SP,
5363 "got an unknown interrupt! (status 0x%x)\n", status);
5364
5365 /* ack status block only if something was actually handled */
5366 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5367 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5368 }
5369
5370 /* must be called after the EQ processing (since eq leads to sriov
5371 * ramrod completion flows).
5372 * This flow may have been scheduled by the arrival of a ramrod
5373 * completion, or by the sriov code rescheduling itself.
5374 */
5375 bnx2x_iov_sp_task(bp);
5376
5377 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5378 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5379 &bp->sp_state)) {
5380 bnx2x_link_report(bp);
5381 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5382 }
5383 }
5384
5385 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5386 {
5387 struct net_device *dev = dev_instance;
5388 struct bnx2x *bp = netdev_priv(dev);
5389
5390 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5391 IGU_INT_DISABLE, 0);
5392
5393 #ifdef BNX2X_STOP_ON_ERROR
5394 if (unlikely(bp->panic))
5395 return IRQ_HANDLED;
5396 #endif
5397
5398 if (CNIC_LOADED(bp)) {
5399 struct cnic_ops *c_ops;
5400
5401 rcu_read_lock();
5402 c_ops = rcu_dereference(bp->cnic_ops);
5403 if (c_ops)
5404 c_ops->cnic_handler(bp->cnic_data, NULL);
5405 rcu_read_unlock();
5406 }
5407
5408 /* schedule sp task to perform default status block work, ack
5409 * attentions and enable interrupts.
5410 */
5411 bnx2x_schedule_sp_task(bp);
5412
5413 return IRQ_HANDLED;
5414 }
5415
5416 /* end of slow path */
5417
5418 void bnx2x_drv_pulse(struct bnx2x *bp)
5419 {
5420 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5421 bp->fw_drv_pulse_wr_seq);
5422 }
5423
5424 static void bnx2x_timer(unsigned long data)
5425 {
5426 struct bnx2x *bp = (struct bnx2x *) data;
5427
5428 if (!netif_running(bp->dev))
5429 return;
5430
5431 if (IS_PF(bp) &&
5432 !BP_NOMCP(bp)) {
5433 int mb_idx = BP_FW_MB_IDX(bp);
5434 u32 drv_pulse;
5435 u32 mcp_pulse;
5436
5437 ++bp->fw_drv_pulse_wr_seq;
5438 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5439 /* TBD - add SYSTEM_TIME */
5440 drv_pulse = bp->fw_drv_pulse_wr_seq;
5441 bnx2x_drv_pulse(bp);
5442
5443 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5444 MCP_PULSE_SEQ_MASK);
5445 /* The delta between driver pulse and mcp response
5446 * should be 1 (before mcp response) or 0 (after mcp response)
5447 */
5448 if ((drv_pulse != mcp_pulse) &&
5449 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5450 /* someone lost a heartbeat... */
5451 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5452 drv_pulse, mcp_pulse);
5453 }
5454 }
5455
5456 if (bp->state == BNX2X_STATE_OPEN)
5457 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5458
5459 /* sample pf vf bulletin board for new posts from pf */
5460 if (IS_VF(bp)) {
5461 bnx2x_sample_bulletin(bp);
5462
5463 /* if channel is down we need to self destruct */
5464 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) {
5465 smp_mb__before_clear_bit();
5466 set_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
5467 &bp->sp_rtnl_state);
5468 smp_mb__after_clear_bit();
5469 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5470 }
5471 }
5472
5473 mod_timer(&bp->timer, jiffies + bp->current_interval);
5474 }
5475
5476 /* end of Statistics */
5477
5478 /* nic init */
5479
5480 /*
5481 * nic init service functions
5482 */
5483
5484 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5485 {
5486 u32 i;
5487 if (!(len%4) && !(addr%4))
5488 for (i = 0; i < len; i += 4)
5489 REG_WR(bp, addr + i, fill);
5490 else
5491 for (i = 0; i < len; i++)
5492 REG_WR8(bp, addr + i, fill);
5493 }
5494
5495 /* helper: writes FP SP data to FW - data_size in dwords */
5496 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5497 int fw_sb_id,
5498 u32 *sb_data_p,
5499 u32 data_size)
5500 {
5501 int index;
5502 for (index = 0; index < data_size; index++)
5503 REG_WR(bp, BAR_CSTRORM_INTMEM +
5504 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5505 sizeof(u32)*index,
5506 *(sb_data_p + index));
5507 }
5508
5509 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5510 {
5511 u32 *sb_data_p;
5512 u32 data_size = 0;
5513 struct hc_status_block_data_e2 sb_data_e2;
5514 struct hc_status_block_data_e1x sb_data_e1x;
5515
5516 /* disable the function first */
5517 if (!CHIP_IS_E1x(bp)) {
5518 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5519 sb_data_e2.common.state = SB_DISABLED;
5520 sb_data_e2.common.p_func.vf_valid = false;
5521 sb_data_p = (u32 *)&sb_data_e2;
5522 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5523 } else {
5524 memset(&sb_data_e1x, 0,
5525 sizeof(struct hc_status_block_data_e1x));
5526 sb_data_e1x.common.state = SB_DISABLED;
5527 sb_data_e1x.common.p_func.vf_valid = false;
5528 sb_data_p = (u32 *)&sb_data_e1x;
5529 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5530 }
5531 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5532
5533 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5534 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5535 CSTORM_STATUS_BLOCK_SIZE);
5536 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5537 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5538 CSTORM_SYNC_BLOCK_SIZE);
5539 }
5540
5541 /* helper: writes SP SB data to FW */
5542 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5543 struct hc_sp_status_block_data *sp_sb_data)
5544 {
5545 int func = BP_FUNC(bp);
5546 int i;
5547 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5548 REG_WR(bp, BAR_CSTRORM_INTMEM +
5549 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5550 i*sizeof(u32),
5551 *((u32 *)sp_sb_data + i));
5552 }
5553
5554 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5555 {
5556 int func = BP_FUNC(bp);
5557 struct hc_sp_status_block_data sp_sb_data;
5558 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5559
5560 sp_sb_data.state = SB_DISABLED;
5561 sp_sb_data.p_func.vf_valid = false;
5562
5563 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5564
5565 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5566 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5567 CSTORM_SP_STATUS_BLOCK_SIZE);
5568 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5569 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5570 CSTORM_SP_SYNC_BLOCK_SIZE);
5571 }
5572
5573 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5574 int igu_sb_id, int igu_seg_id)
5575 {
5576 hc_sm->igu_sb_id = igu_sb_id;
5577 hc_sm->igu_seg_id = igu_seg_id;
5578 hc_sm->timer_value = 0xFF;
5579 hc_sm->time_to_expire = 0xFFFFFFFF;
5580 }
5581
5582 /* allocates state machine ids. */
5583 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5584 {
5585 /* zero out state machine indices */
5586 /* rx indices */
5587 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5588
5589 /* tx indices */
5590 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5591 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5592 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5593 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5594
5595 /* map indices */
5596 /* rx indices */
5597 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5598 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5599
5600 /* tx indices */
5601 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5602 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5603 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5604 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5605 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5606 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5607 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5608 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5609 }
5610
5611 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5612 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5613 {
5614 int igu_seg_id;
5615
5616 struct hc_status_block_data_e2 sb_data_e2;
5617 struct hc_status_block_data_e1x sb_data_e1x;
5618 struct hc_status_block_sm *hc_sm_p;
5619 int data_size;
5620 u32 *sb_data_p;
5621
5622 if (CHIP_INT_MODE_IS_BC(bp))
5623 igu_seg_id = HC_SEG_ACCESS_NORM;
5624 else
5625 igu_seg_id = IGU_SEG_ACCESS_NORM;
5626
5627 bnx2x_zero_fp_sb(bp, fw_sb_id);
5628
5629 if (!CHIP_IS_E1x(bp)) {
5630 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5631 sb_data_e2.common.state = SB_ENABLED;
5632 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5633 sb_data_e2.common.p_func.vf_id = vfid;
5634 sb_data_e2.common.p_func.vf_valid = vf_valid;
5635 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5636 sb_data_e2.common.same_igu_sb_1b = true;
5637 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5638 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5639 hc_sm_p = sb_data_e2.common.state_machine;
5640 sb_data_p = (u32 *)&sb_data_e2;
5641 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5642 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5643 } else {
5644 memset(&sb_data_e1x, 0,
5645 sizeof(struct hc_status_block_data_e1x));
5646 sb_data_e1x.common.state = SB_ENABLED;
5647 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5648 sb_data_e1x.common.p_func.vf_id = 0xff;
5649 sb_data_e1x.common.p_func.vf_valid = false;
5650 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5651 sb_data_e1x.common.same_igu_sb_1b = true;
5652 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5653 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5654 hc_sm_p = sb_data_e1x.common.state_machine;
5655 sb_data_p = (u32 *)&sb_data_e1x;
5656 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5657 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5658 }
5659
5660 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5661 igu_sb_id, igu_seg_id);
5662 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5663 igu_sb_id, igu_seg_id);
5664
5665 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5666
5667 /* write indices to HW - PCI guarantees endianity of regpairs */
5668 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5669 }
5670
5671 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5672 u16 tx_usec, u16 rx_usec)
5673 {
5674 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5675 false, rx_usec);
5676 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5677 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5678 tx_usec);
5679 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5680 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5681 tx_usec);
5682 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5683 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5684 tx_usec);
5685 }
5686
5687 static void bnx2x_init_def_sb(struct bnx2x *bp)
5688 {
5689 struct host_sp_status_block *def_sb = bp->def_status_blk;
5690 dma_addr_t mapping = bp->def_status_blk_mapping;
5691 int igu_sp_sb_index;
5692 int igu_seg_id;
5693 int port = BP_PORT(bp);
5694 int func = BP_FUNC(bp);
5695 int reg_offset, reg_offset_en5;
5696 u64 section;
5697 int index;
5698 struct hc_sp_status_block_data sp_sb_data;
5699 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5700
5701 if (CHIP_INT_MODE_IS_BC(bp)) {
5702 igu_sp_sb_index = DEF_SB_IGU_ID;
5703 igu_seg_id = HC_SEG_ACCESS_DEF;
5704 } else {
5705 igu_sp_sb_index = bp->igu_dsb_id;
5706 igu_seg_id = IGU_SEG_ACCESS_DEF;
5707 }
5708
5709 /* ATTN */
5710 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5711 atten_status_block);
5712 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5713
5714 bp->attn_state = 0;
5715
5716 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5717 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5718 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5719 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5720 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5721 int sindex;
5722 /* take care of sig[0]..sig[4] */
5723 for (sindex = 0; sindex < 4; sindex++)
5724 bp->attn_group[index].sig[sindex] =
5725 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5726
5727 if (!CHIP_IS_E1x(bp))
5728 /*
5729 * enable5 is separate from the rest of the registers,
5730 * and therefore the address skip is 4
5731 * and not 16 between the different groups
5732 */
5733 bp->attn_group[index].sig[4] = REG_RD(bp,
5734 reg_offset_en5 + 0x4*index);
5735 else
5736 bp->attn_group[index].sig[4] = 0;
5737 }
5738
5739 if (bp->common.int_block == INT_BLOCK_HC) {
5740 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5741 HC_REG_ATTN_MSG0_ADDR_L);
5742
5743 REG_WR(bp, reg_offset, U64_LO(section));
5744 REG_WR(bp, reg_offset + 4, U64_HI(section));
5745 } else if (!CHIP_IS_E1x(bp)) {
5746 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5747 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5748 }
5749
5750 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5751 sp_sb);
5752
5753 bnx2x_zero_sp_sb(bp);
5754
5755 /* PCI guarantees endianity of regpairs */
5756 sp_sb_data.state = SB_ENABLED;
5757 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5758 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5759 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5760 sp_sb_data.igu_seg_id = igu_seg_id;
5761 sp_sb_data.p_func.pf_id = func;
5762 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5763 sp_sb_data.p_func.vf_id = 0xff;
5764
5765 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5766
5767 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5768 }
5769
5770 void bnx2x_update_coalesce(struct bnx2x *bp)
5771 {
5772 int i;
5773
5774 for_each_eth_queue(bp, i)
5775 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5776 bp->tx_ticks, bp->rx_ticks);
5777 }
5778
5779 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5780 {
5781 spin_lock_init(&bp->spq_lock);
5782 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5783
5784 bp->spq_prod_idx = 0;
5785 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5786 bp->spq_prod_bd = bp->spq;
5787 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5788 }
5789
5790 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5791 {
5792 int i;
5793 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5794 union event_ring_elem *elem =
5795 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5796
5797 elem->next_page.addr.hi =
5798 cpu_to_le32(U64_HI(bp->eq_mapping +
5799 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5800 elem->next_page.addr.lo =
5801 cpu_to_le32(U64_LO(bp->eq_mapping +
5802 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5803 }
5804 bp->eq_cons = 0;
5805 bp->eq_prod = NUM_EQ_DESC;
5806 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5807 /* we want a warning message before it gets wrought... */
5808 atomic_set(&bp->eq_spq_left,
5809 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5810 }
5811
5812 /* called with netif_addr_lock_bh() */
5813 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5814 unsigned long rx_mode_flags,
5815 unsigned long rx_accept_flags,
5816 unsigned long tx_accept_flags,
5817 unsigned long ramrod_flags)
5818 {
5819 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5820 int rc;
5821
5822 memset(&ramrod_param, 0, sizeof(ramrod_param));
5823
5824 /* Prepare ramrod parameters */
5825 ramrod_param.cid = 0;
5826 ramrod_param.cl_id = cl_id;
5827 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5828 ramrod_param.func_id = BP_FUNC(bp);
5829
5830 ramrod_param.pstate = &bp->sp_state;
5831 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5832
5833 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5834 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5835
5836 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5837
5838 ramrod_param.ramrod_flags = ramrod_flags;
5839 ramrod_param.rx_mode_flags = rx_mode_flags;
5840
5841 ramrod_param.rx_accept_flags = rx_accept_flags;
5842 ramrod_param.tx_accept_flags = tx_accept_flags;
5843
5844 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5845 if (rc < 0) {
5846 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5847 return rc;
5848 }
5849
5850 return 0;
5851 }
5852
5853 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5854 unsigned long *rx_accept_flags,
5855 unsigned long *tx_accept_flags)
5856 {
5857 /* Clear the flags first */
5858 *rx_accept_flags = 0;
5859 *tx_accept_flags = 0;
5860
5861 switch (rx_mode) {
5862 case BNX2X_RX_MODE_NONE:
5863 /*
5864 * 'drop all' supersedes any accept flags that may have been
5865 * passed to the function.
5866 */
5867 break;
5868 case BNX2X_RX_MODE_NORMAL:
5869 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5870 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5871 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5872
5873 /* internal switching mode */
5874 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5875 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5876 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5877
5878 break;
5879 case BNX2X_RX_MODE_ALLMULTI:
5880 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5881 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5882 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5883
5884 /* internal switching mode */
5885 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5886 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5887 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5888
5889 break;
5890 case BNX2X_RX_MODE_PROMISC:
5891 /* According to definition of SI mode, iface in promisc mode
5892 * should receive matched and unmatched (in resolution of port)
5893 * unicast packets.
5894 */
5895 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5896 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5897 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5898 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5899
5900 /* internal switching mode */
5901 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5902 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5903
5904 if (IS_MF_SI(bp))
5905 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5906 else
5907 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5908
5909 break;
5910 default:
5911 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5912 return -EINVAL;
5913 }
5914
5915 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5916 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5917 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5918 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5919 }
5920
5921 return 0;
5922 }
5923
5924 /* called with netif_addr_lock_bh() */
5925 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5926 {
5927 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5928 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5929 int rc;
5930
5931 if (!NO_FCOE(bp))
5932 /* Configure rx_mode of FCoE Queue */
5933 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5934
5935 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5936 &tx_accept_flags);
5937 if (rc)
5938 return rc;
5939
5940 __set_bit(RAMROD_RX, &ramrod_flags);
5941 __set_bit(RAMROD_TX, &ramrod_flags);
5942
5943 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5944 rx_accept_flags, tx_accept_flags,
5945 ramrod_flags);
5946 }
5947
5948 static void bnx2x_init_internal_common(struct bnx2x *bp)
5949 {
5950 int i;
5951
5952 if (IS_MF_SI(bp))
5953 /*
5954 * In switch independent mode, the TSTORM needs to accept
5955 * packets that failed classification, since approximate match
5956 * mac addresses aren't written to NIG LLH
5957 */
5958 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5959 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5960 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5961 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5962 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5963
5964 /* Zero this manually as its initialization is
5965 currently missing in the initTool */
5966 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5967 REG_WR(bp, BAR_USTRORM_INTMEM +
5968 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5969 if (!CHIP_IS_E1x(bp)) {
5970 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5971 CHIP_INT_MODE_IS_BC(bp) ?
5972 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5973 }
5974 }
5975
5976 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5977 {
5978 switch (load_code) {
5979 case FW_MSG_CODE_DRV_LOAD_COMMON:
5980 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5981 bnx2x_init_internal_common(bp);
5982 /* no break */
5983
5984 case FW_MSG_CODE_DRV_LOAD_PORT:
5985 /* nothing to do */
5986 /* no break */
5987
5988 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5989 /* internal memory per function is
5990 initialized inside bnx2x_pf_init */
5991 break;
5992
5993 default:
5994 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5995 break;
5996 }
5997 }
5998
5999 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6000 {
6001 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6002 }
6003
6004 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6005 {
6006 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6007 }
6008
6009 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6010 {
6011 if (CHIP_IS_E1x(fp->bp))
6012 return BP_L_ID(fp->bp) + fp->index;
6013 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6014 return bnx2x_fp_igu_sb_id(fp);
6015 }
6016
6017 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6018 {
6019 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6020 u8 cos;
6021 unsigned long q_type = 0;
6022 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6023 fp->rx_queue = fp_idx;
6024 fp->cid = fp_idx;
6025 fp->cl_id = bnx2x_fp_cl_id(fp);
6026 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6027 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6028 /* qZone id equals to FW (per path) client id */
6029 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6030
6031 /* init shortcut */
6032 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6033
6034 /* Setup SB indices */
6035 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6036
6037 /* Configure Queue State object */
6038 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6039 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6040
6041 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6042
6043 /* init tx data */
6044 for_each_cos_in_tx_queue(fp, cos) {
6045 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6046 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6047 FP_COS_TO_TXQ(fp, cos, bp),
6048 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6049 cids[cos] = fp->txdata_ptr[cos]->cid;
6050 }
6051
6052 /* nothing more for vf to do here */
6053 if (IS_VF(bp))
6054 return;
6055
6056 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6057 fp->fw_sb_id, fp->igu_sb_id);
6058 bnx2x_update_fpsb_idx(fp);
6059 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6060 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6061 bnx2x_sp_mapping(bp, q_rdata), q_type);
6062
6063 /**
6064 * Configure classification DBs: Always enable Tx switching
6065 */
6066 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6067
6068 DP(NETIF_MSG_IFUP,
6069 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6070 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6071 fp->igu_sb_id);
6072 }
6073
6074 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6075 {
6076 int i;
6077
6078 for (i = 1; i <= NUM_TX_RINGS; i++) {
6079 struct eth_tx_next_bd *tx_next_bd =
6080 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6081
6082 tx_next_bd->addr_hi =
6083 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6084 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6085 tx_next_bd->addr_lo =
6086 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6087 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6088 }
6089
6090 *txdata->tx_cons_sb = cpu_to_le16(0);
6091
6092 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6093 txdata->tx_db.data.zero_fill1 = 0;
6094 txdata->tx_db.data.prod = 0;
6095
6096 txdata->tx_pkt_prod = 0;
6097 txdata->tx_pkt_cons = 0;
6098 txdata->tx_bd_prod = 0;
6099 txdata->tx_bd_cons = 0;
6100 txdata->tx_pkt = 0;
6101 }
6102
6103 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6104 {
6105 int i;
6106
6107 for_each_tx_queue_cnic(bp, i)
6108 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6109 }
6110
6111 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6112 {
6113 int i;
6114 u8 cos;
6115
6116 for_each_eth_queue(bp, i)
6117 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6118 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6119 }
6120
6121 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6122 {
6123 if (!NO_FCOE(bp))
6124 bnx2x_init_fcoe_fp(bp);
6125
6126 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6127 BNX2X_VF_ID_INVALID, false,
6128 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6129
6130 /* ensure status block indices were read */
6131 rmb();
6132 bnx2x_init_rx_rings_cnic(bp);
6133 bnx2x_init_tx_rings_cnic(bp);
6134
6135 /* flush all */
6136 mb();
6137 mmiowb();
6138 }
6139
6140 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6141 {
6142 int i;
6143
6144 /* Setup NIC internals and enable interrupts */
6145 for_each_eth_queue(bp, i)
6146 bnx2x_init_eth_fp(bp, i);
6147
6148 /* ensure status block indices were read */
6149 rmb();
6150 bnx2x_init_rx_rings(bp);
6151 bnx2x_init_tx_rings(bp);
6152
6153 if (IS_PF(bp)) {
6154 /* Initialize MOD_ABS interrupts */
6155 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6156 bp->common.shmem_base,
6157 bp->common.shmem2_base, BP_PORT(bp));
6158
6159 /* initialize the default status block and sp ring */
6160 bnx2x_init_def_sb(bp);
6161 bnx2x_update_dsb_idx(bp);
6162 bnx2x_init_sp_ring(bp);
6163 } else {
6164 bnx2x_memset_stats(bp);
6165 }
6166 }
6167
6168 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6169 {
6170 bnx2x_init_eq_ring(bp);
6171 bnx2x_init_internal(bp, load_code);
6172 bnx2x_pf_init(bp);
6173 bnx2x_stats_init(bp);
6174
6175 /* flush all before enabling interrupts */
6176 mb();
6177 mmiowb();
6178
6179 bnx2x_int_enable(bp);
6180
6181 /* Check for SPIO5 */
6182 bnx2x_attn_int_deasserted0(bp,
6183 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6184 AEU_INPUTS_ATTN_BITS_SPIO5);
6185 }
6186
6187 /* gzip service functions */
6188 static int bnx2x_gunzip_init(struct bnx2x *bp)
6189 {
6190 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6191 &bp->gunzip_mapping, GFP_KERNEL);
6192 if (bp->gunzip_buf == NULL)
6193 goto gunzip_nomem1;
6194
6195 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6196 if (bp->strm == NULL)
6197 goto gunzip_nomem2;
6198
6199 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6200 if (bp->strm->workspace == NULL)
6201 goto gunzip_nomem3;
6202
6203 return 0;
6204
6205 gunzip_nomem3:
6206 kfree(bp->strm);
6207 bp->strm = NULL;
6208
6209 gunzip_nomem2:
6210 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6211 bp->gunzip_mapping);
6212 bp->gunzip_buf = NULL;
6213
6214 gunzip_nomem1:
6215 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6216 return -ENOMEM;
6217 }
6218
6219 static void bnx2x_gunzip_end(struct bnx2x *bp)
6220 {
6221 if (bp->strm) {
6222 vfree(bp->strm->workspace);
6223 kfree(bp->strm);
6224 bp->strm = NULL;
6225 }
6226
6227 if (bp->gunzip_buf) {
6228 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6229 bp->gunzip_mapping);
6230 bp->gunzip_buf = NULL;
6231 }
6232 }
6233
6234 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6235 {
6236 int n, rc;
6237
6238 /* check gzip header */
6239 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6240 BNX2X_ERR("Bad gzip header\n");
6241 return -EINVAL;
6242 }
6243
6244 n = 10;
6245
6246 #define FNAME 0x8
6247
6248 if (zbuf[3] & FNAME)
6249 while ((zbuf[n++] != 0) && (n < len));
6250
6251 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6252 bp->strm->avail_in = len - n;
6253 bp->strm->next_out = bp->gunzip_buf;
6254 bp->strm->avail_out = FW_BUF_SIZE;
6255
6256 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6257 if (rc != Z_OK)
6258 return rc;
6259
6260 rc = zlib_inflate(bp->strm, Z_FINISH);
6261 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6262 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6263 bp->strm->msg);
6264
6265 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6266 if (bp->gunzip_outlen & 0x3)
6267 netdev_err(bp->dev,
6268 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6269 bp->gunzip_outlen);
6270 bp->gunzip_outlen >>= 2;
6271
6272 zlib_inflateEnd(bp->strm);
6273
6274 if (rc == Z_STREAM_END)
6275 return 0;
6276
6277 return rc;
6278 }
6279
6280 /* nic load/unload */
6281
6282 /*
6283 * General service functions
6284 */
6285
6286 /* send a NIG loopback debug packet */
6287 static void bnx2x_lb_pckt(struct bnx2x *bp)
6288 {
6289 u32 wb_write[3];
6290
6291 /* Ethernet source and destination addresses */
6292 wb_write[0] = 0x55555555;
6293 wb_write[1] = 0x55555555;
6294 wb_write[2] = 0x20; /* SOP */
6295 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6296
6297 /* NON-IP protocol */
6298 wb_write[0] = 0x09000000;
6299 wb_write[1] = 0x55555555;
6300 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6301 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6302 }
6303
6304 /* some of the internal memories
6305 * are not directly readable from the driver
6306 * to test them we send debug packets
6307 */
6308 static int bnx2x_int_mem_test(struct bnx2x *bp)
6309 {
6310 int factor;
6311 int count, i;
6312 u32 val = 0;
6313
6314 if (CHIP_REV_IS_FPGA(bp))
6315 factor = 120;
6316 else if (CHIP_REV_IS_EMUL(bp))
6317 factor = 200;
6318 else
6319 factor = 1;
6320
6321 /* Disable inputs of parser neighbor blocks */
6322 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6323 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6324 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6325 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6326
6327 /* Write 0 to parser credits for CFC search request */
6328 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6329
6330 /* send Ethernet packet */
6331 bnx2x_lb_pckt(bp);
6332
6333 /* TODO do i reset NIG statistic? */
6334 /* Wait until NIG register shows 1 packet of size 0x10 */
6335 count = 1000 * factor;
6336 while (count) {
6337
6338 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6339 val = *bnx2x_sp(bp, wb_data[0]);
6340 if (val == 0x10)
6341 break;
6342
6343 usleep_range(10000, 20000);
6344 count--;
6345 }
6346 if (val != 0x10) {
6347 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6348 return -1;
6349 }
6350
6351 /* Wait until PRS register shows 1 packet */
6352 count = 1000 * factor;
6353 while (count) {
6354 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6355 if (val == 1)
6356 break;
6357
6358 usleep_range(10000, 20000);
6359 count--;
6360 }
6361 if (val != 0x1) {
6362 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6363 return -2;
6364 }
6365
6366 /* Reset and init BRB, PRS */
6367 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6368 msleep(50);
6369 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6370 msleep(50);
6371 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6372 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6373
6374 DP(NETIF_MSG_HW, "part2\n");
6375
6376 /* Disable inputs of parser neighbor blocks */
6377 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6378 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6379 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6380 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6381
6382 /* Write 0 to parser credits for CFC search request */
6383 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6384
6385 /* send 10 Ethernet packets */
6386 for (i = 0; i < 10; i++)
6387 bnx2x_lb_pckt(bp);
6388
6389 /* Wait until NIG register shows 10 + 1
6390 packets of size 11*0x10 = 0xb0 */
6391 count = 1000 * factor;
6392 while (count) {
6393
6394 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6395 val = *bnx2x_sp(bp, wb_data[0]);
6396 if (val == 0xb0)
6397 break;
6398
6399 usleep_range(10000, 20000);
6400 count--;
6401 }
6402 if (val != 0xb0) {
6403 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6404 return -3;
6405 }
6406
6407 /* Wait until PRS register shows 2 packets */
6408 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6409 if (val != 2)
6410 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6411
6412 /* Write 1 to parser credits for CFC search request */
6413 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6414
6415 /* Wait until PRS register shows 3 packets */
6416 msleep(10 * factor);
6417 /* Wait until NIG register shows 1 packet of size 0x10 */
6418 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6419 if (val != 3)
6420 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6421
6422 /* clear NIG EOP FIFO */
6423 for (i = 0; i < 11; i++)
6424 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6425 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6426 if (val != 1) {
6427 BNX2X_ERR("clear of NIG failed\n");
6428 return -4;
6429 }
6430
6431 /* Reset and init BRB, PRS, NIG */
6432 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6433 msleep(50);
6434 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6435 msleep(50);
6436 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6437 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6438 if (!CNIC_SUPPORT(bp))
6439 /* set NIC mode */
6440 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6441
6442 /* Enable inputs of parser neighbor blocks */
6443 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6444 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6445 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6446 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6447
6448 DP(NETIF_MSG_HW, "done\n");
6449
6450 return 0; /* OK */
6451 }
6452
6453 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6454 {
6455 u32 val;
6456
6457 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6458 if (!CHIP_IS_E1x(bp))
6459 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6460 else
6461 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6462 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6463 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6464 /*
6465 * mask read length error interrupts in brb for parser
6466 * (parsing unit and 'checksum and crc' unit)
6467 * these errors are legal (PU reads fixed length and CAC can cause
6468 * read length error on truncated packets)
6469 */
6470 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6471 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6472 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6473 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6474 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6475 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6476 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6477 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6478 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6479 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6480 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6481 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6482 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6483 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6484 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6485 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6486 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6487 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6488 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6489
6490 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6491 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6492 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6493 if (!CHIP_IS_E1x(bp))
6494 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6495 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6496 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6497
6498 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6499 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6500 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6501 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6502
6503 if (!CHIP_IS_E1x(bp))
6504 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6505 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6506
6507 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6508 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6509 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6510 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6511 }
6512
6513 static void bnx2x_reset_common(struct bnx2x *bp)
6514 {
6515 u32 val = 0x1400;
6516
6517 /* reset_common */
6518 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6519 0xd3ffff7f);
6520
6521 if (CHIP_IS_E3(bp)) {
6522 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6523 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6524 }
6525
6526 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6527 }
6528
6529 static void bnx2x_setup_dmae(struct bnx2x *bp)
6530 {
6531 bp->dmae_ready = 0;
6532 spin_lock_init(&bp->dmae_lock);
6533 }
6534
6535 static void bnx2x_init_pxp(struct bnx2x *bp)
6536 {
6537 u16 devctl;
6538 int r_order, w_order;
6539
6540 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6541 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6542 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6543 if (bp->mrrs == -1)
6544 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6545 else {
6546 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6547 r_order = bp->mrrs;
6548 }
6549
6550 bnx2x_init_pxp_arb(bp, r_order, w_order);
6551 }
6552
6553 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6554 {
6555 int is_required;
6556 u32 val;
6557 int port;
6558
6559 if (BP_NOMCP(bp))
6560 return;
6561
6562 is_required = 0;
6563 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6564 SHARED_HW_CFG_FAN_FAILURE_MASK;
6565
6566 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6567 is_required = 1;
6568
6569 /*
6570 * The fan failure mechanism is usually related to the PHY type since
6571 * the power consumption of the board is affected by the PHY. Currently,
6572 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6573 */
6574 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6575 for (port = PORT_0; port < PORT_MAX; port++) {
6576 is_required |=
6577 bnx2x_fan_failure_det_req(
6578 bp,
6579 bp->common.shmem_base,
6580 bp->common.shmem2_base,
6581 port);
6582 }
6583
6584 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6585
6586 if (is_required == 0)
6587 return;
6588
6589 /* Fan failure is indicated by SPIO 5 */
6590 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6591
6592 /* set to active low mode */
6593 val = REG_RD(bp, MISC_REG_SPIO_INT);
6594 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6595 REG_WR(bp, MISC_REG_SPIO_INT, val);
6596
6597 /* enable interrupt to signal the IGU */
6598 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6599 val |= MISC_SPIO_SPIO5;
6600 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6601 }
6602
6603 void bnx2x_pf_disable(struct bnx2x *bp)
6604 {
6605 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6606 val &= ~IGU_PF_CONF_FUNC_EN;
6607
6608 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6609 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6610 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6611 }
6612
6613 static void bnx2x__common_init_phy(struct bnx2x *bp)
6614 {
6615 u32 shmem_base[2], shmem2_base[2];
6616 /* Avoid common init in case MFW supports LFA */
6617 if (SHMEM2_RD(bp, size) >
6618 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6619 return;
6620 shmem_base[0] = bp->common.shmem_base;
6621 shmem2_base[0] = bp->common.shmem2_base;
6622 if (!CHIP_IS_E1x(bp)) {
6623 shmem_base[1] =
6624 SHMEM2_RD(bp, other_shmem_base_addr);
6625 shmem2_base[1] =
6626 SHMEM2_RD(bp, other_shmem2_base_addr);
6627 }
6628 bnx2x_acquire_phy_lock(bp);
6629 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6630 bp->common.chip_id);
6631 bnx2x_release_phy_lock(bp);
6632 }
6633
6634 /**
6635 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6636 *
6637 * @bp: driver handle
6638 */
6639 static int bnx2x_init_hw_common(struct bnx2x *bp)
6640 {
6641 u32 val;
6642
6643 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
6644
6645 /*
6646 * take the RESET lock to protect undi_unload flow from accessing
6647 * registers while we're resetting the chip
6648 */
6649 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6650
6651 bnx2x_reset_common(bp);
6652 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6653
6654 val = 0xfffc;
6655 if (CHIP_IS_E3(bp)) {
6656 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6657 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6658 }
6659 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6660
6661 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6662
6663 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6664
6665 if (!CHIP_IS_E1x(bp)) {
6666 u8 abs_func_id;
6667
6668 /**
6669 * 4-port mode or 2-port mode we need to turn of master-enable
6670 * for everyone, after that, turn it back on for self.
6671 * so, we disregard multi-function or not, and always disable
6672 * for all functions on the given path, this means 0,2,4,6 for
6673 * path 0 and 1,3,5,7 for path 1
6674 */
6675 for (abs_func_id = BP_PATH(bp);
6676 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6677 if (abs_func_id == BP_ABS_FUNC(bp)) {
6678 REG_WR(bp,
6679 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6680 1);
6681 continue;
6682 }
6683
6684 bnx2x_pretend_func(bp, abs_func_id);
6685 /* clear pf enable */
6686 bnx2x_pf_disable(bp);
6687 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6688 }
6689 }
6690
6691 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6692 if (CHIP_IS_E1(bp)) {
6693 /* enable HW interrupt from PXP on USDM overflow
6694 bit 16 on INT_MASK_0 */
6695 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6696 }
6697
6698 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6699 bnx2x_init_pxp(bp);
6700
6701 #ifdef __BIG_ENDIAN
6702 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6703 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6704 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6705 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6706 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6707 /* make sure this value is 0 */
6708 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6709
6710 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6711 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6712 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6713 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6714 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6715 #endif
6716
6717 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6718
6719 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6720 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6721
6722 /* let the HW do it's magic ... */
6723 msleep(100);
6724 /* finish PXP init */
6725 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6726 if (val != 1) {
6727 BNX2X_ERR("PXP2 CFG failed\n");
6728 return -EBUSY;
6729 }
6730 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6731 if (val != 1) {
6732 BNX2X_ERR("PXP2 RD_INIT failed\n");
6733 return -EBUSY;
6734 }
6735
6736 /* Timers bug workaround E2 only. We need to set the entire ILT to
6737 * have entries with value "0" and valid bit on.
6738 * This needs to be done by the first PF that is loaded in a path
6739 * (i.e. common phase)
6740 */
6741 if (!CHIP_IS_E1x(bp)) {
6742 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6743 * (i.e. vnic3) to start even if it is marked as "scan-off".
6744 * This occurs when a different function (func2,3) is being marked
6745 * as "scan-off". Real-life scenario for example: if a driver is being
6746 * load-unloaded while func6,7 are down. This will cause the timer to access
6747 * the ilt, translate to a logical address and send a request to read/write.
6748 * Since the ilt for the function that is down is not valid, this will cause
6749 * a translation error which is unrecoverable.
6750 * The Workaround is intended to make sure that when this happens nothing fatal
6751 * will occur. The workaround:
6752 * 1. First PF driver which loads on a path will:
6753 * a. After taking the chip out of reset, by using pretend,
6754 * it will write "0" to the following registers of
6755 * the other vnics.
6756 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6757 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6758 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6759 * And for itself it will write '1' to
6760 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6761 * dmae-operations (writing to pram for example.)
6762 * note: can be done for only function 6,7 but cleaner this
6763 * way.
6764 * b. Write zero+valid to the entire ILT.
6765 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6766 * VNIC3 (of that port). The range allocated will be the
6767 * entire ILT. This is needed to prevent ILT range error.
6768 * 2. Any PF driver load flow:
6769 * a. ILT update with the physical addresses of the allocated
6770 * logical pages.
6771 * b. Wait 20msec. - note that this timeout is needed to make
6772 * sure there are no requests in one of the PXP internal
6773 * queues with "old" ILT addresses.
6774 * c. PF enable in the PGLC.
6775 * d. Clear the was_error of the PF in the PGLC. (could have
6776 * occurred while driver was down)
6777 * e. PF enable in the CFC (WEAK + STRONG)
6778 * f. Timers scan enable
6779 * 3. PF driver unload flow:
6780 * a. Clear the Timers scan_en.
6781 * b. Polling for scan_on=0 for that PF.
6782 * c. Clear the PF enable bit in the PXP.
6783 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6784 * e. Write zero+valid to all ILT entries (The valid bit must
6785 * stay set)
6786 * f. If this is VNIC 3 of a port then also init
6787 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6788 * to the last entry in the ILT.
6789 *
6790 * Notes:
6791 * Currently the PF error in the PGLC is non recoverable.
6792 * In the future the there will be a recovery routine for this error.
6793 * Currently attention is masked.
6794 * Having an MCP lock on the load/unload process does not guarantee that
6795 * there is no Timer disable during Func6/7 enable. This is because the
6796 * Timers scan is currently being cleared by the MCP on FLR.
6797 * Step 2.d can be done only for PF6/7 and the driver can also check if
6798 * there is error before clearing it. But the flow above is simpler and
6799 * more general.
6800 * All ILT entries are written by zero+valid and not just PF6/7
6801 * ILT entries since in the future the ILT entries allocation for
6802 * PF-s might be dynamic.
6803 */
6804 struct ilt_client_info ilt_cli;
6805 struct bnx2x_ilt ilt;
6806 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6807 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6808
6809 /* initialize dummy TM client */
6810 ilt_cli.start = 0;
6811 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6812 ilt_cli.client_num = ILT_CLIENT_TM;
6813
6814 /* Step 1: set zeroes to all ilt page entries with valid bit on
6815 * Step 2: set the timers first/last ilt entry to point
6816 * to the entire range to prevent ILT range error for 3rd/4th
6817 * vnic (this code assumes existence of the vnic)
6818 *
6819 * both steps performed by call to bnx2x_ilt_client_init_op()
6820 * with dummy TM client
6821 *
6822 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6823 * and his brother are split registers
6824 */
6825 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6826 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6827 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6828
6829 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6830 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6831 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6832 }
6833
6834 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6835 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6836
6837 if (!CHIP_IS_E1x(bp)) {
6838 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6839 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6840 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6841
6842 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6843
6844 /* let the HW do it's magic ... */
6845 do {
6846 msleep(200);
6847 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6848 } while (factor-- && (val != 1));
6849
6850 if (val != 1) {
6851 BNX2X_ERR("ATC_INIT failed\n");
6852 return -EBUSY;
6853 }
6854 }
6855
6856 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6857
6858 bnx2x_iov_init_dmae(bp);
6859
6860 /* clean the DMAE memory */
6861 bp->dmae_ready = 1;
6862 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6863
6864 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6865
6866 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6867
6868 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6869
6870 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6871
6872 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6873 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6874 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6875 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6876
6877 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6878
6879 /* QM queues pointers table */
6880 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6881
6882 /* soft reset pulse */
6883 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6884 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6885
6886 if (CNIC_SUPPORT(bp))
6887 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6888
6889 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6890 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6891 if (!CHIP_REV_IS_SLOW(bp))
6892 /* enable hw interrupt from doorbell Q */
6893 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6894
6895 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6896
6897 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6898 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6899
6900 if (!CHIP_IS_E1(bp))
6901 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6902
6903 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6904 if (IS_MF_AFEX(bp)) {
6905 /* configure that VNTag and VLAN headers must be
6906 * received in afex mode
6907 */
6908 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6909 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6910 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6911 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6912 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6913 } else {
6914 /* Bit-map indicating which L2 hdrs may appear
6915 * after the basic Ethernet header
6916 */
6917 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6918 bp->path_has_ovlan ? 7 : 6);
6919 }
6920 }
6921
6922 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6923 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6924 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6925 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6926
6927 if (!CHIP_IS_E1x(bp)) {
6928 /* reset VFC memories */
6929 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6930 VFC_MEMORIES_RST_REG_CAM_RST |
6931 VFC_MEMORIES_RST_REG_RAM_RST);
6932 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6933 VFC_MEMORIES_RST_REG_CAM_RST |
6934 VFC_MEMORIES_RST_REG_RAM_RST);
6935
6936 msleep(20);
6937 }
6938
6939 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6940 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6941 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6942 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6943
6944 /* sync semi rtc */
6945 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6946 0x80000000);
6947 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6948 0x80000000);
6949
6950 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6951 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6952 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6953
6954 if (!CHIP_IS_E1x(bp)) {
6955 if (IS_MF_AFEX(bp)) {
6956 /* configure that VNTag and VLAN headers must be
6957 * sent in afex mode
6958 */
6959 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6960 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6961 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6962 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6963 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6964 } else {
6965 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6966 bp->path_has_ovlan ? 7 : 6);
6967 }
6968 }
6969
6970 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6971
6972 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6973
6974 if (CNIC_SUPPORT(bp)) {
6975 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6976 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6977 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6978 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6979 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6980 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6981 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6982 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6983 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6984 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6985 }
6986 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6987
6988 if (sizeof(union cdu_context) != 1024)
6989 /* we currently assume that a context is 1024 bytes */
6990 dev_alert(&bp->pdev->dev,
6991 "please adjust the size of cdu_context(%ld)\n",
6992 (long)sizeof(union cdu_context));
6993
6994 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6995 val = (4 << 24) + (0 << 12) + 1024;
6996 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6997
6998 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6999 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7000 /* enable context validation interrupt from CFC */
7001 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7002
7003 /* set the thresholds to prevent CFC/CDU race */
7004 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7005
7006 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7007
7008 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7009 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7010
7011 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7012 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7013
7014 /* Reset PCIE errors for debug */
7015 REG_WR(bp, 0x2814, 0xffffffff);
7016 REG_WR(bp, 0x3820, 0xffffffff);
7017
7018 if (!CHIP_IS_E1x(bp)) {
7019 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7020 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7021 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7022 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7023 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7024 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7025 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7026 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7027 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7028 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7029 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7030 }
7031
7032 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7033 if (!CHIP_IS_E1(bp)) {
7034 /* in E3 this done in per-port section */
7035 if (!CHIP_IS_E3(bp))
7036 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7037 }
7038 if (CHIP_IS_E1H(bp))
7039 /* not applicable for E2 (and above ...) */
7040 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7041
7042 if (CHIP_REV_IS_SLOW(bp))
7043 msleep(200);
7044
7045 /* finish CFC init */
7046 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7047 if (val != 1) {
7048 BNX2X_ERR("CFC LL_INIT failed\n");
7049 return -EBUSY;
7050 }
7051 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7052 if (val != 1) {
7053 BNX2X_ERR("CFC AC_INIT failed\n");
7054 return -EBUSY;
7055 }
7056 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7057 if (val != 1) {
7058 BNX2X_ERR("CFC CAM_INIT failed\n");
7059 return -EBUSY;
7060 }
7061 REG_WR(bp, CFC_REG_DEBUG0, 0);
7062
7063 if (CHIP_IS_E1(bp)) {
7064 /* read NIG statistic
7065 to see if this is our first up since powerup */
7066 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7067 val = *bnx2x_sp(bp, wb_data[0]);
7068
7069 /* do internal memory self test */
7070 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7071 BNX2X_ERR("internal mem self test failed\n");
7072 return -EBUSY;
7073 }
7074 }
7075
7076 bnx2x_setup_fan_failure_detection(bp);
7077
7078 /* clear PXP2 attentions */
7079 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7080
7081 bnx2x_enable_blocks_attention(bp);
7082 bnx2x_enable_blocks_parity(bp);
7083
7084 if (!BP_NOMCP(bp)) {
7085 if (CHIP_IS_E1x(bp))
7086 bnx2x__common_init_phy(bp);
7087 } else
7088 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7089
7090 return 0;
7091 }
7092
7093 /**
7094 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7095 *
7096 * @bp: driver handle
7097 */
7098 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7099 {
7100 int rc = bnx2x_init_hw_common(bp);
7101
7102 if (rc)
7103 return rc;
7104
7105 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7106 if (!BP_NOMCP(bp))
7107 bnx2x__common_init_phy(bp);
7108
7109 return 0;
7110 }
7111
7112 static int bnx2x_init_hw_port(struct bnx2x *bp)
7113 {
7114 int port = BP_PORT(bp);
7115 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7116 u32 low, high;
7117 u32 val;
7118
7119 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7120
7121 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7122
7123 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7124 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7125 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7126
7127 /* Timers bug workaround: disables the pf_master bit in pglue at
7128 * common phase, we need to enable it here before any dmae access are
7129 * attempted. Therefore we manually added the enable-master to the
7130 * port phase (it also happens in the function phase)
7131 */
7132 if (!CHIP_IS_E1x(bp))
7133 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7134
7135 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7136 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7137 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7138 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7139
7140 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7141 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7142 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7143 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7144
7145 /* QM cid (connection) count */
7146 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7147
7148 if (CNIC_SUPPORT(bp)) {
7149 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7150 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7151 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7152 }
7153
7154 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7155
7156 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7157
7158 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7159
7160 if (IS_MF(bp))
7161 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7162 else if (bp->dev->mtu > 4096) {
7163 if (bp->flags & ONE_PORT_FLAG)
7164 low = 160;
7165 else {
7166 val = bp->dev->mtu;
7167 /* (24*1024 + val*4)/256 */
7168 low = 96 + (val/64) +
7169 ((val % 64) ? 1 : 0);
7170 }
7171 } else
7172 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7173 high = low + 56; /* 14*1024/256 */
7174 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7175 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7176 }
7177
7178 if (CHIP_MODE_IS_4_PORT(bp))
7179 REG_WR(bp, (BP_PORT(bp) ?
7180 BRB1_REG_MAC_GUARANTIED_1 :
7181 BRB1_REG_MAC_GUARANTIED_0), 40);
7182
7183 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7184 if (CHIP_IS_E3B0(bp)) {
7185 if (IS_MF_AFEX(bp)) {
7186 /* configure headers for AFEX mode */
7187 REG_WR(bp, BP_PORT(bp) ?
7188 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7189 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7190 REG_WR(bp, BP_PORT(bp) ?
7191 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7192 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7193 REG_WR(bp, BP_PORT(bp) ?
7194 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7195 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7196 } else {
7197 /* Ovlan exists only if we are in multi-function +
7198 * switch-dependent mode, in switch-independent there
7199 * is no ovlan headers
7200 */
7201 REG_WR(bp, BP_PORT(bp) ?
7202 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7203 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7204 (bp->path_has_ovlan ? 7 : 6));
7205 }
7206 }
7207
7208 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7209 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7210 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7211 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7212
7213 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7214 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7215 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7216 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7217
7218 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7219 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7220
7221 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7222
7223 if (CHIP_IS_E1x(bp)) {
7224 /* configure PBF to work without PAUSE mtu 9000 */
7225 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7226
7227 /* update threshold */
7228 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7229 /* update init credit */
7230 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7231
7232 /* probe changes */
7233 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7234 udelay(50);
7235 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7236 }
7237
7238 if (CNIC_SUPPORT(bp))
7239 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7240
7241 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7242 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7243
7244 if (CHIP_IS_E1(bp)) {
7245 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7246 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7247 }
7248 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7249
7250 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7251
7252 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7253 /* init aeu_mask_attn_func_0/1:
7254 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7255 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7256 * bits 4-7 are used for "per vn group attention" */
7257 val = IS_MF(bp) ? 0xF7 : 0x7;
7258 /* Enable DCBX attention for all but E1 */
7259 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7260 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7261
7262 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7263
7264 if (!CHIP_IS_E1x(bp)) {
7265 /* Bit-map indicating which L2 hdrs may appear after the
7266 * basic Ethernet header
7267 */
7268 if (IS_MF_AFEX(bp))
7269 REG_WR(bp, BP_PORT(bp) ?
7270 NIG_REG_P1_HDRS_AFTER_BASIC :
7271 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7272 else
7273 REG_WR(bp, BP_PORT(bp) ?
7274 NIG_REG_P1_HDRS_AFTER_BASIC :
7275 NIG_REG_P0_HDRS_AFTER_BASIC,
7276 IS_MF_SD(bp) ? 7 : 6);
7277
7278 if (CHIP_IS_E3(bp))
7279 REG_WR(bp, BP_PORT(bp) ?
7280 NIG_REG_LLH1_MF_MODE :
7281 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7282 }
7283 if (!CHIP_IS_E3(bp))
7284 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7285
7286 if (!CHIP_IS_E1(bp)) {
7287 /* 0x2 disable mf_ov, 0x1 enable */
7288 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7289 (IS_MF_SD(bp) ? 0x1 : 0x2));
7290
7291 if (!CHIP_IS_E1x(bp)) {
7292 val = 0;
7293 switch (bp->mf_mode) {
7294 case MULTI_FUNCTION_SD:
7295 val = 1;
7296 break;
7297 case MULTI_FUNCTION_SI:
7298 case MULTI_FUNCTION_AFEX:
7299 val = 2;
7300 break;
7301 }
7302
7303 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7304 NIG_REG_LLH0_CLS_TYPE), val);
7305 }
7306 {
7307 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7308 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7309 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7310 }
7311 }
7312
7313 /* If SPIO5 is set to generate interrupts, enable it for this port */
7314 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7315 if (val & MISC_SPIO_SPIO5) {
7316 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7317 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7318 val = REG_RD(bp, reg_addr);
7319 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7320 REG_WR(bp, reg_addr, val);
7321 }
7322
7323 return 0;
7324 }
7325
7326 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7327 {
7328 int reg;
7329 u32 wb_write[2];
7330
7331 if (CHIP_IS_E1(bp))
7332 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7333 else
7334 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7335
7336 wb_write[0] = ONCHIP_ADDR1(addr);
7337 wb_write[1] = ONCHIP_ADDR2(addr);
7338 REG_WR_DMAE(bp, reg, wb_write, 2);
7339 }
7340
7341 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7342 {
7343 u32 data, ctl, cnt = 100;
7344 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7345 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7346 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7347 u32 sb_bit = 1 << (idu_sb_id%32);
7348 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7349 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7350
7351 /* Not supported in BC mode */
7352 if (CHIP_INT_MODE_IS_BC(bp))
7353 return;
7354
7355 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7356 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7357 IGU_REGULAR_CLEANUP_SET |
7358 IGU_REGULAR_BCLEANUP;
7359
7360 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7361 func_encode << IGU_CTRL_REG_FID_SHIFT |
7362 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7363
7364 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7365 data, igu_addr_data);
7366 REG_WR(bp, igu_addr_data, data);
7367 mmiowb();
7368 barrier();
7369 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7370 ctl, igu_addr_ctl);
7371 REG_WR(bp, igu_addr_ctl, ctl);
7372 mmiowb();
7373 barrier();
7374
7375 /* wait for clean up to finish */
7376 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7377 msleep(20);
7378
7379 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7380 DP(NETIF_MSG_HW,
7381 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7382 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7383 }
7384 }
7385
7386 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7387 {
7388 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7389 }
7390
7391 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7392 {
7393 u32 i, base = FUNC_ILT_BASE(func);
7394 for (i = base; i < base + ILT_PER_FUNC; i++)
7395 bnx2x_ilt_wr(bp, i, 0);
7396 }
7397
7398 static void bnx2x_init_searcher(struct bnx2x *bp)
7399 {
7400 int port = BP_PORT(bp);
7401 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7402 /* T1 hash bits value determines the T1 number of entries */
7403 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7404 }
7405
7406 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7407 {
7408 int rc;
7409 struct bnx2x_func_state_params func_params = {NULL};
7410 struct bnx2x_func_switch_update_params *switch_update_params =
7411 &func_params.params.switch_update;
7412
7413 /* Prepare parameters for function state transitions */
7414 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7415 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7416
7417 func_params.f_obj = &bp->func_obj;
7418 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7419
7420 /* Function parameters */
7421 switch_update_params->suspend = suspend;
7422
7423 rc = bnx2x_func_state_change(bp, &func_params);
7424
7425 return rc;
7426 }
7427
7428 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7429 {
7430 int rc, i, port = BP_PORT(bp);
7431 int vlan_en = 0, mac_en[NUM_MACS];
7432
7433 /* Close input from network */
7434 if (bp->mf_mode == SINGLE_FUNCTION) {
7435 bnx2x_set_rx_filter(&bp->link_params, 0);
7436 } else {
7437 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7438 NIG_REG_LLH0_FUNC_EN);
7439 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7440 NIG_REG_LLH0_FUNC_EN, 0);
7441 for (i = 0; i < NUM_MACS; i++) {
7442 mac_en[i] = REG_RD(bp, port ?
7443 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7444 4 * i) :
7445 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7446 4 * i));
7447 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7448 4 * i) :
7449 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7450 }
7451 }
7452
7453 /* Close BMC to host */
7454 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7455 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7456
7457 /* Suspend Tx switching to the PF. Completion of this ramrod
7458 * further guarantees that all the packets of that PF / child
7459 * VFs in BRB were processed by the Parser, so it is safe to
7460 * change the NIC_MODE register.
7461 */
7462 rc = bnx2x_func_switch_update(bp, 1);
7463 if (rc) {
7464 BNX2X_ERR("Can't suspend tx-switching!\n");
7465 return rc;
7466 }
7467
7468 /* Change NIC_MODE register */
7469 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7470
7471 /* Open input from network */
7472 if (bp->mf_mode == SINGLE_FUNCTION) {
7473 bnx2x_set_rx_filter(&bp->link_params, 1);
7474 } else {
7475 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7476 NIG_REG_LLH0_FUNC_EN, vlan_en);
7477 for (i = 0; i < NUM_MACS; i++) {
7478 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7479 4 * i) :
7480 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7481 mac_en[i]);
7482 }
7483 }
7484
7485 /* Enable BMC to host */
7486 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7487 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7488
7489 /* Resume Tx switching to the PF */
7490 rc = bnx2x_func_switch_update(bp, 0);
7491 if (rc) {
7492 BNX2X_ERR("Can't resume tx-switching!\n");
7493 return rc;
7494 }
7495
7496 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7497 return 0;
7498 }
7499
7500 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7501 {
7502 int rc;
7503
7504 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7505
7506 if (CONFIGURE_NIC_MODE(bp)) {
7507 /* Configure searcher as part of function hw init */
7508 bnx2x_init_searcher(bp);
7509
7510 /* Reset NIC mode */
7511 rc = bnx2x_reset_nic_mode(bp);
7512 if (rc)
7513 BNX2X_ERR("Can't change NIC mode!\n");
7514 return rc;
7515 }
7516
7517 return 0;
7518 }
7519
7520 static int bnx2x_init_hw_func(struct bnx2x *bp)
7521 {
7522 int port = BP_PORT(bp);
7523 int func = BP_FUNC(bp);
7524 int init_phase = PHASE_PF0 + func;
7525 struct bnx2x_ilt *ilt = BP_ILT(bp);
7526 u16 cdu_ilt_start;
7527 u32 addr, val;
7528 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7529 int i, main_mem_width, rc;
7530
7531 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7532
7533 /* FLR cleanup - hmmm */
7534 if (!CHIP_IS_E1x(bp)) {
7535 rc = bnx2x_pf_flr_clnup(bp);
7536 if (rc) {
7537 bnx2x_fw_dump(bp);
7538 return rc;
7539 }
7540 }
7541
7542 /* set MSI reconfigure capability */
7543 if (bp->common.int_block == INT_BLOCK_HC) {
7544 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7545 val = REG_RD(bp, addr);
7546 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7547 REG_WR(bp, addr, val);
7548 }
7549
7550 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7551 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7552
7553 ilt = BP_ILT(bp);
7554 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7555
7556 if (IS_SRIOV(bp))
7557 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7558 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7559
7560 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7561 * those of the VFs, so start line should be reset
7562 */
7563 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7564 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7565 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7566 ilt->lines[cdu_ilt_start + i].page_mapping =
7567 bp->context[i].cxt_mapping;
7568 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7569 }
7570
7571 bnx2x_ilt_init_op(bp, INITOP_SET);
7572
7573 if (!CONFIGURE_NIC_MODE(bp)) {
7574 bnx2x_init_searcher(bp);
7575 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7576 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7577 } else {
7578 /* Set NIC mode */
7579 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7580 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7581 }
7582
7583 if (!CHIP_IS_E1x(bp)) {
7584 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7585
7586 /* Turn on a single ISR mode in IGU if driver is going to use
7587 * INT#x or MSI
7588 */
7589 if (!(bp->flags & USING_MSIX_FLAG))
7590 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7591 /*
7592 * Timers workaround bug: function init part.
7593 * Need to wait 20msec after initializing ILT,
7594 * needed to make sure there are no requests in
7595 * one of the PXP internal queues with "old" ILT addresses
7596 */
7597 msleep(20);
7598 /*
7599 * Master enable - Due to WB DMAE writes performed before this
7600 * register is re-initialized as part of the regular function
7601 * init
7602 */
7603 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7604 /* Enable the function in IGU */
7605 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7606 }
7607
7608 bp->dmae_ready = 1;
7609
7610 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7611
7612 if (!CHIP_IS_E1x(bp))
7613 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7614
7615 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7616 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7617 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7618 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7619 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7620 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7621 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7622 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7623 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7624 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7625 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7626 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7627 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7628
7629 if (!CHIP_IS_E1x(bp))
7630 REG_WR(bp, QM_REG_PF_EN, 1);
7631
7632 if (!CHIP_IS_E1x(bp)) {
7633 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7634 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7635 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7636 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7637 }
7638 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7639
7640 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7641 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7642
7643 bnx2x_iov_init_dq(bp);
7644
7645 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7646 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7647 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7648 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7649 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7650 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7651 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7652 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7653 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7654 if (!CHIP_IS_E1x(bp))
7655 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7656
7657 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7658
7659 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7660
7661 if (!CHIP_IS_E1x(bp))
7662 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7663
7664 if (IS_MF(bp)) {
7665 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7666 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7667 }
7668
7669 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7670
7671 /* HC init per function */
7672 if (bp->common.int_block == INT_BLOCK_HC) {
7673 if (CHIP_IS_E1H(bp)) {
7674 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7675
7676 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7677 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7678 }
7679 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7680
7681 } else {
7682 int num_segs, sb_idx, prod_offset;
7683
7684 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7685
7686 if (!CHIP_IS_E1x(bp)) {
7687 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7688 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7689 }
7690
7691 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7692
7693 if (!CHIP_IS_E1x(bp)) {
7694 int dsb_idx = 0;
7695 /**
7696 * Producer memory:
7697 * E2 mode: address 0-135 match to the mapping memory;
7698 * 136 - PF0 default prod; 137 - PF1 default prod;
7699 * 138 - PF2 default prod; 139 - PF3 default prod;
7700 * 140 - PF0 attn prod; 141 - PF1 attn prod;
7701 * 142 - PF2 attn prod; 143 - PF3 attn prod;
7702 * 144-147 reserved.
7703 *
7704 * E1.5 mode - In backward compatible mode;
7705 * for non default SB; each even line in the memory
7706 * holds the U producer and each odd line hold
7707 * the C producer. The first 128 producers are for
7708 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7709 * producers are for the DSB for each PF.
7710 * Each PF has five segments: (the order inside each
7711 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7712 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7713 * 144-147 attn prods;
7714 */
7715 /* non-default-status-blocks */
7716 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7717 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7718 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7719 prod_offset = (bp->igu_base_sb + sb_idx) *
7720 num_segs;
7721
7722 for (i = 0; i < num_segs; i++) {
7723 addr = IGU_REG_PROD_CONS_MEMORY +
7724 (prod_offset + i) * 4;
7725 REG_WR(bp, addr, 0);
7726 }
7727 /* send consumer update with value 0 */
7728 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7729 USTORM_ID, 0, IGU_INT_NOP, 1);
7730 bnx2x_igu_clear_sb(bp,
7731 bp->igu_base_sb + sb_idx);
7732 }
7733
7734 /* default-status-blocks */
7735 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7736 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7737
7738 if (CHIP_MODE_IS_4_PORT(bp))
7739 dsb_idx = BP_FUNC(bp);
7740 else
7741 dsb_idx = BP_VN(bp);
7742
7743 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7744 IGU_BC_BASE_DSB_PROD + dsb_idx :
7745 IGU_NORM_BASE_DSB_PROD + dsb_idx);
7746
7747 /*
7748 * igu prods come in chunks of E1HVN_MAX (4) -
7749 * does not matters what is the current chip mode
7750 */
7751 for (i = 0; i < (num_segs * E1HVN_MAX);
7752 i += E1HVN_MAX) {
7753 addr = IGU_REG_PROD_CONS_MEMORY +
7754 (prod_offset + i)*4;
7755 REG_WR(bp, addr, 0);
7756 }
7757 /* send consumer update with 0 */
7758 if (CHIP_INT_MODE_IS_BC(bp)) {
7759 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7760 USTORM_ID, 0, IGU_INT_NOP, 1);
7761 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7762 CSTORM_ID, 0, IGU_INT_NOP, 1);
7763 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7764 XSTORM_ID, 0, IGU_INT_NOP, 1);
7765 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7766 TSTORM_ID, 0, IGU_INT_NOP, 1);
7767 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7768 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7769 } else {
7770 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7771 USTORM_ID, 0, IGU_INT_NOP, 1);
7772 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7773 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7774 }
7775 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7776
7777 /* !!! These should become driver const once
7778 rf-tool supports split-68 const */
7779 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7780 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7781 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7782 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7783 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7784 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7785 }
7786 }
7787
7788 /* Reset PCIE errors for debug */
7789 REG_WR(bp, 0x2114, 0xffffffff);
7790 REG_WR(bp, 0x2120, 0xffffffff);
7791
7792 if (CHIP_IS_E1x(bp)) {
7793 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7794 main_mem_base = HC_REG_MAIN_MEMORY +
7795 BP_PORT(bp) * (main_mem_size * 4);
7796 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7797 main_mem_width = 8;
7798
7799 val = REG_RD(bp, main_mem_prty_clr);
7800 if (val)
7801 DP(NETIF_MSG_HW,
7802 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7803 val);
7804
7805 /* Clear "false" parity errors in MSI-X table */
7806 for (i = main_mem_base;
7807 i < main_mem_base + main_mem_size * 4;
7808 i += main_mem_width) {
7809 bnx2x_read_dmae(bp, i, main_mem_width / 4);
7810 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7811 i, main_mem_width / 4);
7812 }
7813 /* Clear HC parity attention */
7814 REG_RD(bp, main_mem_prty_clr);
7815 }
7816
7817 #ifdef BNX2X_STOP_ON_ERROR
7818 /* Enable STORMs SP logging */
7819 REG_WR8(bp, BAR_USTRORM_INTMEM +
7820 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7821 REG_WR8(bp, BAR_TSTRORM_INTMEM +
7822 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7823 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7824 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7825 REG_WR8(bp, BAR_XSTRORM_INTMEM +
7826 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7827 #endif
7828
7829 bnx2x_phy_probe(&bp->link_params);
7830
7831 return 0;
7832 }
7833
7834 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7835 {
7836 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7837
7838 if (!CHIP_IS_E1x(bp))
7839 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7840 sizeof(struct host_hc_status_block_e2));
7841 else
7842 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7843 sizeof(struct host_hc_status_block_e1x));
7844
7845 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7846 }
7847
7848 void bnx2x_free_mem(struct bnx2x *bp)
7849 {
7850 int i;
7851
7852 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7853 sizeof(struct host_sp_status_block));
7854
7855 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7856 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7857
7858 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7859 sizeof(struct bnx2x_slowpath));
7860
7861 for (i = 0; i < L2_ILT_LINES(bp); i++)
7862 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7863 bp->context[i].size);
7864 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7865
7866 BNX2X_FREE(bp->ilt->lines);
7867
7868 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7869
7870 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7871 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7872
7873 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7874
7875 bnx2x_iov_free_mem(bp);
7876 }
7877
7878 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7879 {
7880 if (!CHIP_IS_E1x(bp))
7881 /* size = the status block + ramrod buffers */
7882 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7883 sizeof(struct host_hc_status_block_e2));
7884 else
7885 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7886 &bp->cnic_sb_mapping,
7887 sizeof(struct
7888 host_hc_status_block_e1x));
7889
7890 if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7891 /* allocate searcher T2 table, as it wasn't allocated before */
7892 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7893
7894 /* write address to which L5 should insert its values */
7895 bp->cnic_eth_dev.addr_drv_info_to_mcp =
7896 &bp->slowpath->drv_info_to_mcp;
7897
7898 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7899 goto alloc_mem_err;
7900
7901 return 0;
7902
7903 alloc_mem_err:
7904 bnx2x_free_mem_cnic(bp);
7905 BNX2X_ERR("Can't allocate memory\n");
7906 return -ENOMEM;
7907 }
7908
7909 int bnx2x_alloc_mem(struct bnx2x *bp)
7910 {
7911 int i, allocated, context_size;
7912
7913 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7914 /* allocate searcher T2 table */
7915 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7916
7917 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7918 sizeof(struct host_sp_status_block));
7919
7920 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7921 sizeof(struct bnx2x_slowpath));
7922
7923 /* Allocate memory for CDU context:
7924 * This memory is allocated separately and not in the generic ILT
7925 * functions because CDU differs in few aspects:
7926 * 1. There are multiple entities allocating memory for context -
7927 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7928 * its own ILT lines.
7929 * 2. Since CDU page-size is not a single 4KB page (which is the case
7930 * for the other ILT clients), to be efficient we want to support
7931 * allocation of sub-page-size in the last entry.
7932 * 3. Context pointers are used by the driver to pass to FW / update
7933 * the context (for the other ILT clients the pointers are used just to
7934 * free the memory during unload).
7935 */
7936 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7937
7938 for (i = 0, allocated = 0; allocated < context_size; i++) {
7939 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7940 (context_size - allocated));
7941 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7942 &bp->context[i].cxt_mapping,
7943 bp->context[i].size);
7944 allocated += bp->context[i].size;
7945 }
7946 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7947
7948 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7949 goto alloc_mem_err;
7950
7951 if (bnx2x_iov_alloc_mem(bp))
7952 goto alloc_mem_err;
7953
7954 /* Slow path ring */
7955 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7956
7957 /* EQ */
7958 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7959 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7960
7961 return 0;
7962
7963 alloc_mem_err:
7964 bnx2x_free_mem(bp);
7965 BNX2X_ERR("Can't allocate memory\n");
7966 return -ENOMEM;
7967 }
7968
7969 /*
7970 * Init service functions
7971 */
7972
7973 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7974 struct bnx2x_vlan_mac_obj *obj, bool set,
7975 int mac_type, unsigned long *ramrod_flags)
7976 {
7977 int rc;
7978 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7979
7980 memset(&ramrod_param, 0, sizeof(ramrod_param));
7981
7982 /* Fill general parameters */
7983 ramrod_param.vlan_mac_obj = obj;
7984 ramrod_param.ramrod_flags = *ramrod_flags;
7985
7986 /* Fill a user request section if needed */
7987 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7988 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7989
7990 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7991
7992 /* Set the command: ADD or DEL */
7993 if (set)
7994 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7995 else
7996 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7997 }
7998
7999 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8000
8001 if (rc == -EEXIST) {
8002 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8003 /* do not treat adding same MAC as error */
8004 rc = 0;
8005 } else if (rc < 0)
8006 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8007
8008 return rc;
8009 }
8010
8011 int bnx2x_del_all_macs(struct bnx2x *bp,
8012 struct bnx2x_vlan_mac_obj *mac_obj,
8013 int mac_type, bool wait_for_comp)
8014 {
8015 int rc;
8016 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8017
8018 /* Wait for completion of requested */
8019 if (wait_for_comp)
8020 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8021
8022 /* Set the mac type of addresses we want to clear */
8023 __set_bit(mac_type, &vlan_mac_flags);
8024
8025 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8026 if (rc < 0)
8027 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8028
8029 return rc;
8030 }
8031
8032 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8033 {
8034 if (is_zero_ether_addr(bp->dev->dev_addr) &&
8035 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8036 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8037 "Ignoring Zero MAC for STORAGE SD mode\n");
8038 return 0;
8039 }
8040
8041 if (IS_PF(bp)) {
8042 unsigned long ramrod_flags = 0;
8043
8044 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8045 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8046 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8047 &bp->sp_objs->mac_obj, set,
8048 BNX2X_ETH_MAC, &ramrod_flags);
8049 } else { /* vf */
8050 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8051 bp->fp->index, true);
8052 }
8053 }
8054
8055 int bnx2x_setup_leading(struct bnx2x *bp)
8056 {
8057 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
8058 }
8059
8060 /**
8061 * bnx2x_set_int_mode - configure interrupt mode
8062 *
8063 * @bp: driver handle
8064 *
8065 * In case of MSI-X it will also try to enable MSI-X.
8066 */
8067 int bnx2x_set_int_mode(struct bnx2x *bp)
8068 {
8069 int rc = 0;
8070
8071 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
8072 return -EINVAL;
8073
8074 switch (int_mode) {
8075 case BNX2X_INT_MODE_MSIX:
8076 /* attempt to enable msix */
8077 rc = bnx2x_enable_msix(bp);
8078
8079 /* msix attained */
8080 if (!rc)
8081 return 0;
8082
8083 /* vfs use only msix */
8084 if (rc && IS_VF(bp))
8085 return rc;
8086
8087 /* failed to enable multiple MSI-X */
8088 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8089 bp->num_queues,
8090 1 + bp->num_cnic_queues);
8091
8092 /* falling through... */
8093 case BNX2X_INT_MODE_MSI:
8094 bnx2x_enable_msi(bp);
8095
8096 /* falling through... */
8097 case BNX2X_INT_MODE_INTX:
8098 bp->num_ethernet_queues = 1;
8099 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8100 BNX2X_DEV_INFO("set number of queues to 1\n");
8101 break;
8102 default:
8103 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8104 return -EINVAL;
8105 }
8106 return 0;
8107 }
8108
8109 /* must be called prior to any HW initializations */
8110 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8111 {
8112 if (IS_SRIOV(bp))
8113 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8114 return L2_ILT_LINES(bp);
8115 }
8116
8117 void bnx2x_ilt_set_info(struct bnx2x *bp)
8118 {
8119 struct ilt_client_info *ilt_client;
8120 struct bnx2x_ilt *ilt = BP_ILT(bp);
8121 u16 line = 0;
8122
8123 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8124 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8125
8126 /* CDU */
8127 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8128 ilt_client->client_num = ILT_CLIENT_CDU;
8129 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8130 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8131 ilt_client->start = line;
8132 line += bnx2x_cid_ilt_lines(bp);
8133
8134 if (CNIC_SUPPORT(bp))
8135 line += CNIC_ILT_LINES;
8136 ilt_client->end = line - 1;
8137
8138 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8139 ilt_client->start,
8140 ilt_client->end,
8141 ilt_client->page_size,
8142 ilt_client->flags,
8143 ilog2(ilt_client->page_size >> 12));
8144
8145 /* QM */
8146 if (QM_INIT(bp->qm_cid_count)) {
8147 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8148 ilt_client->client_num = ILT_CLIENT_QM;
8149 ilt_client->page_size = QM_ILT_PAGE_SZ;
8150 ilt_client->flags = 0;
8151 ilt_client->start = line;
8152
8153 /* 4 bytes for each cid */
8154 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8155 QM_ILT_PAGE_SZ);
8156
8157 ilt_client->end = line - 1;
8158
8159 DP(NETIF_MSG_IFUP,
8160 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8161 ilt_client->start,
8162 ilt_client->end,
8163 ilt_client->page_size,
8164 ilt_client->flags,
8165 ilog2(ilt_client->page_size >> 12));
8166 }
8167
8168 if (CNIC_SUPPORT(bp)) {
8169 /* SRC */
8170 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8171 ilt_client->client_num = ILT_CLIENT_SRC;
8172 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8173 ilt_client->flags = 0;
8174 ilt_client->start = line;
8175 line += SRC_ILT_LINES;
8176 ilt_client->end = line - 1;
8177
8178 DP(NETIF_MSG_IFUP,
8179 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8180 ilt_client->start,
8181 ilt_client->end,
8182 ilt_client->page_size,
8183 ilt_client->flags,
8184 ilog2(ilt_client->page_size >> 12));
8185
8186 /* TM */
8187 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8188 ilt_client->client_num = ILT_CLIENT_TM;
8189 ilt_client->page_size = TM_ILT_PAGE_SZ;
8190 ilt_client->flags = 0;
8191 ilt_client->start = line;
8192 line += TM_ILT_LINES;
8193 ilt_client->end = line - 1;
8194
8195 DP(NETIF_MSG_IFUP,
8196 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8197 ilt_client->start,
8198 ilt_client->end,
8199 ilt_client->page_size,
8200 ilt_client->flags,
8201 ilog2(ilt_client->page_size >> 12));
8202 }
8203
8204 BUG_ON(line > ILT_MAX_LINES);
8205 }
8206
8207 /**
8208 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8209 *
8210 * @bp: driver handle
8211 * @fp: pointer to fastpath
8212 * @init_params: pointer to parameters structure
8213 *
8214 * parameters configured:
8215 * - HC configuration
8216 * - Queue's CDU context
8217 */
8218 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8219 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8220 {
8221 u8 cos;
8222 int cxt_index, cxt_offset;
8223
8224 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8225 if (!IS_FCOE_FP(fp)) {
8226 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8227 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8228
8229 /* If HC is supported, enable host coalescing in the transition
8230 * to INIT state.
8231 */
8232 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8233 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8234
8235 /* HC rate */
8236 init_params->rx.hc_rate = bp->rx_ticks ?
8237 (1000000 / bp->rx_ticks) : 0;
8238 init_params->tx.hc_rate = bp->tx_ticks ?
8239 (1000000 / bp->tx_ticks) : 0;
8240
8241 /* FW SB ID */
8242 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8243 fp->fw_sb_id;
8244
8245 /*
8246 * CQ index among the SB indices: FCoE clients uses the default
8247 * SB, therefore it's different.
8248 */
8249 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8250 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8251 }
8252
8253 /* set maximum number of COSs supported by this queue */
8254 init_params->max_cos = fp->max_cos;
8255
8256 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8257 fp->index, init_params->max_cos);
8258
8259 /* set the context pointers queue object */
8260 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8261 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8262 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8263 ILT_PAGE_CIDS);
8264 init_params->cxts[cos] =
8265 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8266 }
8267 }
8268
8269 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8270 struct bnx2x_queue_state_params *q_params,
8271 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8272 int tx_index, bool leading)
8273 {
8274 memset(tx_only_params, 0, sizeof(*tx_only_params));
8275
8276 /* Set the command */
8277 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8278
8279 /* Set tx-only QUEUE flags: don't zero statistics */
8280 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8281
8282 /* choose the index of the cid to send the slow path on */
8283 tx_only_params->cid_index = tx_index;
8284
8285 /* Set general TX_ONLY_SETUP parameters */
8286 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8287
8288 /* Set Tx TX_ONLY_SETUP parameters */
8289 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8290
8291 DP(NETIF_MSG_IFUP,
8292 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8293 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8294 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8295 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8296
8297 /* send the ramrod */
8298 return bnx2x_queue_state_change(bp, q_params);
8299 }
8300
8301 /**
8302 * bnx2x_setup_queue - setup queue
8303 *
8304 * @bp: driver handle
8305 * @fp: pointer to fastpath
8306 * @leading: is leading
8307 *
8308 * This function performs 2 steps in a Queue state machine
8309 * actually: 1) RESET->INIT 2) INIT->SETUP
8310 */
8311
8312 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8313 bool leading)
8314 {
8315 struct bnx2x_queue_state_params q_params = {NULL};
8316 struct bnx2x_queue_setup_params *setup_params =
8317 &q_params.params.setup;
8318 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8319 &q_params.params.tx_only;
8320 int rc;
8321 u8 tx_index;
8322
8323 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8324
8325 /* reset IGU state skip FCoE L2 queue */
8326 if (!IS_FCOE_FP(fp))
8327 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8328 IGU_INT_ENABLE, 0);
8329
8330 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8331 /* We want to wait for completion in this context */
8332 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8333
8334 /* Prepare the INIT parameters */
8335 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8336
8337 /* Set the command */
8338 q_params.cmd = BNX2X_Q_CMD_INIT;
8339
8340 /* Change the state to INIT */
8341 rc = bnx2x_queue_state_change(bp, &q_params);
8342 if (rc) {
8343 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8344 return rc;
8345 }
8346
8347 DP(NETIF_MSG_IFUP, "init complete\n");
8348
8349 /* Now move the Queue to the SETUP state... */
8350 memset(setup_params, 0, sizeof(*setup_params));
8351
8352 /* Set QUEUE flags */
8353 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8354
8355 /* Set general SETUP parameters */
8356 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8357 FIRST_TX_COS_INDEX);
8358
8359 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8360 &setup_params->rxq_params);
8361
8362 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8363 FIRST_TX_COS_INDEX);
8364
8365 /* Set the command */
8366 q_params.cmd = BNX2X_Q_CMD_SETUP;
8367
8368 if (IS_FCOE_FP(fp))
8369 bp->fcoe_init = true;
8370
8371 /* Change the state to SETUP */
8372 rc = bnx2x_queue_state_change(bp, &q_params);
8373 if (rc) {
8374 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8375 return rc;
8376 }
8377
8378 /* loop through the relevant tx-only indices */
8379 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8380 tx_index < fp->max_cos;
8381 tx_index++) {
8382
8383 /* prepare and send tx-only ramrod*/
8384 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8385 tx_only_params, tx_index, leading);
8386 if (rc) {
8387 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8388 fp->index, tx_index);
8389 return rc;
8390 }
8391 }
8392
8393 return rc;
8394 }
8395
8396 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8397 {
8398 struct bnx2x_fastpath *fp = &bp->fp[index];
8399 struct bnx2x_fp_txdata *txdata;
8400 struct bnx2x_queue_state_params q_params = {NULL};
8401 int rc, tx_index;
8402
8403 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8404
8405 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8406 /* We want to wait for completion in this context */
8407 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8408
8409 /* close tx-only connections */
8410 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8411 tx_index < fp->max_cos;
8412 tx_index++){
8413
8414 /* ascertain this is a normal queue*/
8415 txdata = fp->txdata_ptr[tx_index];
8416
8417 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8418 txdata->txq_index);
8419
8420 /* send halt terminate on tx-only connection */
8421 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8422 memset(&q_params.params.terminate, 0,
8423 sizeof(q_params.params.terminate));
8424 q_params.params.terminate.cid_index = tx_index;
8425
8426 rc = bnx2x_queue_state_change(bp, &q_params);
8427 if (rc)
8428 return rc;
8429
8430 /* send halt terminate on tx-only connection */
8431 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8432 memset(&q_params.params.cfc_del, 0,
8433 sizeof(q_params.params.cfc_del));
8434 q_params.params.cfc_del.cid_index = tx_index;
8435 rc = bnx2x_queue_state_change(bp, &q_params);
8436 if (rc)
8437 return rc;
8438 }
8439 /* Stop the primary connection: */
8440 /* ...halt the connection */
8441 q_params.cmd = BNX2X_Q_CMD_HALT;
8442 rc = bnx2x_queue_state_change(bp, &q_params);
8443 if (rc)
8444 return rc;
8445
8446 /* ...terminate the connection */
8447 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8448 memset(&q_params.params.terminate, 0,
8449 sizeof(q_params.params.terminate));
8450 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8451 rc = bnx2x_queue_state_change(bp, &q_params);
8452 if (rc)
8453 return rc;
8454 /* ...delete cfc entry */
8455 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8456 memset(&q_params.params.cfc_del, 0,
8457 sizeof(q_params.params.cfc_del));
8458 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8459 return bnx2x_queue_state_change(bp, &q_params);
8460 }
8461
8462 static void bnx2x_reset_func(struct bnx2x *bp)
8463 {
8464 int port = BP_PORT(bp);
8465 int func = BP_FUNC(bp);
8466 int i;
8467
8468 /* Disable the function in the FW */
8469 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8470 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8471 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8472 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8473
8474 /* FP SBs */
8475 for_each_eth_queue(bp, i) {
8476 struct bnx2x_fastpath *fp = &bp->fp[i];
8477 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8478 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8479 SB_DISABLED);
8480 }
8481
8482 if (CNIC_LOADED(bp))
8483 /* CNIC SB */
8484 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8485 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8486 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8487
8488 /* SP SB */
8489 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8490 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8491 SB_DISABLED);
8492
8493 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8494 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8495 0);
8496
8497 /* Configure IGU */
8498 if (bp->common.int_block == INT_BLOCK_HC) {
8499 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8500 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8501 } else {
8502 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8503 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8504 }
8505
8506 if (CNIC_LOADED(bp)) {
8507 /* Disable Timer scan */
8508 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8509 /*
8510 * Wait for at least 10ms and up to 2 second for the timers
8511 * scan to complete
8512 */
8513 for (i = 0; i < 200; i++) {
8514 usleep_range(10000, 20000);
8515 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8516 break;
8517 }
8518 }
8519 /* Clear ILT */
8520 bnx2x_clear_func_ilt(bp, func);
8521
8522 /* Timers workaround bug for E2: if this is vnic-3,
8523 * we need to set the entire ilt range for this timers.
8524 */
8525 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8526 struct ilt_client_info ilt_cli;
8527 /* use dummy TM client */
8528 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8529 ilt_cli.start = 0;
8530 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8531 ilt_cli.client_num = ILT_CLIENT_TM;
8532
8533 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8534 }
8535
8536 /* this assumes that reset_port() called before reset_func()*/
8537 if (!CHIP_IS_E1x(bp))
8538 bnx2x_pf_disable(bp);
8539
8540 bp->dmae_ready = 0;
8541 }
8542
8543 static void bnx2x_reset_port(struct bnx2x *bp)
8544 {
8545 int port = BP_PORT(bp);
8546 u32 val;
8547
8548 /* Reset physical Link */
8549 bnx2x__link_reset(bp);
8550
8551 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8552
8553 /* Do not rcv packets to BRB */
8554 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8555 /* Do not direct rcv packets that are not for MCP to the BRB */
8556 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8557 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8558
8559 /* Configure AEU */
8560 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8561
8562 msleep(100);
8563 /* Check for BRB port occupancy */
8564 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8565 if (val)
8566 DP(NETIF_MSG_IFDOWN,
8567 "BRB1 is not empty %d blocks are occupied\n", val);
8568
8569 /* TODO: Close Doorbell port? */
8570 }
8571
8572 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8573 {
8574 struct bnx2x_func_state_params func_params = {NULL};
8575
8576 /* Prepare parameters for function state transitions */
8577 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8578
8579 func_params.f_obj = &bp->func_obj;
8580 func_params.cmd = BNX2X_F_CMD_HW_RESET;
8581
8582 func_params.params.hw_init.load_phase = load_code;
8583
8584 return bnx2x_func_state_change(bp, &func_params);
8585 }
8586
8587 static int bnx2x_func_stop(struct bnx2x *bp)
8588 {
8589 struct bnx2x_func_state_params func_params = {NULL};
8590 int rc;
8591
8592 /* Prepare parameters for function state transitions */
8593 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8594 func_params.f_obj = &bp->func_obj;
8595 func_params.cmd = BNX2X_F_CMD_STOP;
8596
8597 /*
8598 * Try to stop the function the 'good way'. If fails (in case
8599 * of a parity error during bnx2x_chip_cleanup()) and we are
8600 * not in a debug mode, perform a state transaction in order to
8601 * enable further HW_RESET transaction.
8602 */
8603 rc = bnx2x_func_state_change(bp, &func_params);
8604 if (rc) {
8605 #ifdef BNX2X_STOP_ON_ERROR
8606 return rc;
8607 #else
8608 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8609 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8610 return bnx2x_func_state_change(bp, &func_params);
8611 #endif
8612 }
8613
8614 return 0;
8615 }
8616
8617 /**
8618 * bnx2x_send_unload_req - request unload mode from the MCP.
8619 *
8620 * @bp: driver handle
8621 * @unload_mode: requested function's unload mode
8622 *
8623 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8624 */
8625 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8626 {
8627 u32 reset_code = 0;
8628 int port = BP_PORT(bp);
8629
8630 /* Select the UNLOAD request mode */
8631 if (unload_mode == UNLOAD_NORMAL)
8632 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8633
8634 else if (bp->flags & NO_WOL_FLAG)
8635 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8636
8637 else if (bp->wol) {
8638 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8639 u8 *mac_addr = bp->dev->dev_addr;
8640 u32 val;
8641 u16 pmc;
8642
8643 /* The mac address is written to entries 1-4 to
8644 * preserve entry 0 which is used by the PMF
8645 */
8646 u8 entry = (BP_VN(bp) + 1)*8;
8647
8648 val = (mac_addr[0] << 8) | mac_addr[1];
8649 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8650
8651 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8652 (mac_addr[4] << 8) | mac_addr[5];
8653 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8654
8655 /* Enable the PME and clear the status */
8656 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8657 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8658 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8659
8660 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8661
8662 } else
8663 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8664
8665 /* Send the request to the MCP */
8666 if (!BP_NOMCP(bp))
8667 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8668 else {
8669 int path = BP_PATH(bp);
8670
8671 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
8672 path, load_count[path][0], load_count[path][1],
8673 load_count[path][2]);
8674 load_count[path][0]--;
8675 load_count[path][1 + port]--;
8676 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
8677 path, load_count[path][0], load_count[path][1],
8678 load_count[path][2]);
8679 if (load_count[path][0] == 0)
8680 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8681 else if (load_count[path][1 + port] == 0)
8682 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8683 else
8684 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8685 }
8686
8687 return reset_code;
8688 }
8689
8690 /**
8691 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8692 *
8693 * @bp: driver handle
8694 * @keep_link: true iff link should be kept up
8695 */
8696 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8697 {
8698 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8699
8700 /* Report UNLOAD_DONE to MCP */
8701 if (!BP_NOMCP(bp))
8702 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8703 }
8704
8705 static int bnx2x_func_wait_started(struct bnx2x *bp)
8706 {
8707 int tout = 50;
8708 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8709
8710 if (!bp->port.pmf)
8711 return 0;
8712
8713 /*
8714 * (assumption: No Attention from MCP at this stage)
8715 * PMF probably in the middle of TX disable/enable transaction
8716 * 1. Sync IRS for default SB
8717 * 2. Sync SP queue - this guarantees us that attention handling started
8718 * 3. Wait, that TX disable/enable transaction completes
8719 *
8720 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8721 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8722 * received completion for the transaction the state is TX_STOPPED.
8723 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8724 * transaction.
8725 */
8726
8727 /* make sure default SB ISR is done */
8728 if (msix)
8729 synchronize_irq(bp->msix_table[0].vector);
8730 else
8731 synchronize_irq(bp->pdev->irq);
8732
8733 flush_workqueue(bnx2x_wq);
8734
8735 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8736 BNX2X_F_STATE_STARTED && tout--)
8737 msleep(20);
8738
8739 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8740 BNX2X_F_STATE_STARTED) {
8741 #ifdef BNX2X_STOP_ON_ERROR
8742 BNX2X_ERR("Wrong function state\n");
8743 return -EBUSY;
8744 #else
8745 /*
8746 * Failed to complete the transaction in a "good way"
8747 * Force both transactions with CLR bit
8748 */
8749 struct bnx2x_func_state_params func_params = {NULL};
8750
8751 DP(NETIF_MSG_IFDOWN,
8752 "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8753
8754 func_params.f_obj = &bp->func_obj;
8755 __set_bit(RAMROD_DRV_CLR_ONLY,
8756 &func_params.ramrod_flags);
8757
8758 /* STARTED-->TX_ST0PPED */
8759 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8760 bnx2x_func_state_change(bp, &func_params);
8761
8762 /* TX_ST0PPED-->STARTED */
8763 func_params.cmd = BNX2X_F_CMD_TX_START;
8764 return bnx2x_func_state_change(bp, &func_params);
8765 #endif
8766 }
8767
8768 return 0;
8769 }
8770
8771 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8772 {
8773 int port = BP_PORT(bp);
8774 int i, rc = 0;
8775 u8 cos;
8776 struct bnx2x_mcast_ramrod_params rparam = {NULL};
8777 u32 reset_code;
8778
8779 /* Wait until tx fastpath tasks complete */
8780 for_each_tx_queue(bp, i) {
8781 struct bnx2x_fastpath *fp = &bp->fp[i];
8782
8783 for_each_cos_in_tx_queue(fp, cos)
8784 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8785 #ifdef BNX2X_STOP_ON_ERROR
8786 if (rc)
8787 return;
8788 #endif
8789 }
8790
8791 /* Give HW time to discard old tx messages */
8792 usleep_range(1000, 2000);
8793
8794 /* Clean all ETH MACs */
8795 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8796 false);
8797 if (rc < 0)
8798 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8799
8800 /* Clean up UC list */
8801 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8802 true);
8803 if (rc < 0)
8804 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8805 rc);
8806
8807 /* Disable LLH */
8808 if (!CHIP_IS_E1(bp))
8809 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8810
8811 /* Set "drop all" (stop Rx).
8812 * We need to take a netif_addr_lock() here in order to prevent
8813 * a race between the completion code and this code.
8814 */
8815 netif_addr_lock_bh(bp->dev);
8816 /* Schedule the rx_mode command */
8817 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8818 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8819 else
8820 bnx2x_set_storm_rx_mode(bp);
8821
8822 /* Cleanup multicast configuration */
8823 rparam.mcast_obj = &bp->mcast_obj;
8824 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8825 if (rc < 0)
8826 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8827
8828 netif_addr_unlock_bh(bp->dev);
8829
8830 bnx2x_iov_chip_cleanup(bp);
8831
8832 /*
8833 * Send the UNLOAD_REQUEST to the MCP. This will return if
8834 * this function should perform FUNC, PORT or COMMON HW
8835 * reset.
8836 */
8837 reset_code = bnx2x_send_unload_req(bp, unload_mode);
8838
8839 /*
8840 * (assumption: No Attention from MCP at this stage)
8841 * PMF probably in the middle of TX disable/enable transaction
8842 */
8843 rc = bnx2x_func_wait_started(bp);
8844 if (rc) {
8845 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8846 #ifdef BNX2X_STOP_ON_ERROR
8847 return;
8848 #endif
8849 }
8850
8851 /* Close multi and leading connections
8852 * Completions for ramrods are collected in a synchronous way
8853 */
8854 for_each_eth_queue(bp, i)
8855 if (bnx2x_stop_queue(bp, i))
8856 #ifdef BNX2X_STOP_ON_ERROR
8857 return;
8858 #else
8859 goto unload_error;
8860 #endif
8861
8862 if (CNIC_LOADED(bp)) {
8863 for_each_cnic_queue(bp, i)
8864 if (bnx2x_stop_queue(bp, i))
8865 #ifdef BNX2X_STOP_ON_ERROR
8866 return;
8867 #else
8868 goto unload_error;
8869 #endif
8870 }
8871
8872 /* If SP settings didn't get completed so far - something
8873 * very wrong has happen.
8874 */
8875 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8876 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8877
8878 #ifndef BNX2X_STOP_ON_ERROR
8879 unload_error:
8880 #endif
8881 rc = bnx2x_func_stop(bp);
8882 if (rc) {
8883 BNX2X_ERR("Function stop failed!\n");
8884 #ifdef BNX2X_STOP_ON_ERROR
8885 return;
8886 #endif
8887 }
8888
8889 /* Disable HW interrupts, NAPI */
8890 bnx2x_netif_stop(bp, 1);
8891 /* Delete all NAPI objects */
8892 bnx2x_del_all_napi(bp);
8893 if (CNIC_LOADED(bp))
8894 bnx2x_del_all_napi_cnic(bp);
8895
8896 /* Release IRQs */
8897 bnx2x_free_irq(bp);
8898
8899 /* Reset the chip */
8900 rc = bnx2x_reset_hw(bp, reset_code);
8901 if (rc)
8902 BNX2X_ERR("HW_RESET failed\n");
8903
8904 /* Report UNLOAD_DONE to MCP */
8905 bnx2x_send_unload_done(bp, keep_link);
8906 }
8907
8908 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8909 {
8910 u32 val;
8911
8912 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8913
8914 if (CHIP_IS_E1(bp)) {
8915 int port = BP_PORT(bp);
8916 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8917 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8918
8919 val = REG_RD(bp, addr);
8920 val &= ~(0x300);
8921 REG_WR(bp, addr, val);
8922 } else {
8923 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8924 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8925 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8926 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8927 }
8928 }
8929
8930 /* Close gates #2, #3 and #4: */
8931 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8932 {
8933 u32 val;
8934
8935 /* Gates #2 and #4a are closed/opened for "not E1" only */
8936 if (!CHIP_IS_E1(bp)) {
8937 /* #4 */
8938 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8939 /* #2 */
8940 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8941 }
8942
8943 /* #3 */
8944 if (CHIP_IS_E1x(bp)) {
8945 /* Prevent interrupts from HC on both ports */
8946 val = REG_RD(bp, HC_REG_CONFIG_1);
8947 REG_WR(bp, HC_REG_CONFIG_1,
8948 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8949 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8950
8951 val = REG_RD(bp, HC_REG_CONFIG_0);
8952 REG_WR(bp, HC_REG_CONFIG_0,
8953 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8954 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8955 } else {
8956 /* Prevent incoming interrupts in IGU */
8957 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8958
8959 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8960 (!close) ?
8961 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8962 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8963 }
8964
8965 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8966 close ? "closing" : "opening");
8967 mmiowb();
8968 }
8969
8970 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8971
8972 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8973 {
8974 /* Do some magic... */
8975 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8976 *magic_val = val & SHARED_MF_CLP_MAGIC;
8977 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8978 }
8979
8980 /**
8981 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8982 *
8983 * @bp: driver handle
8984 * @magic_val: old value of the `magic' bit.
8985 */
8986 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8987 {
8988 /* Restore the `magic' bit value... */
8989 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8990 MF_CFG_WR(bp, shared_mf_config.clp_mb,
8991 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8992 }
8993
8994 /**
8995 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8996 *
8997 * @bp: driver handle
8998 * @magic_val: old value of 'magic' bit.
8999 *
9000 * Takes care of CLP configurations.
9001 */
9002 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9003 {
9004 u32 shmem;
9005 u32 validity_offset;
9006
9007 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9008
9009 /* Set `magic' bit in order to save MF config */
9010 if (!CHIP_IS_E1(bp))
9011 bnx2x_clp_reset_prep(bp, magic_val);
9012
9013 /* Get shmem offset */
9014 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9015 validity_offset =
9016 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9017
9018 /* Clear validity map flags */
9019 if (shmem > 0)
9020 REG_WR(bp, shmem + validity_offset, 0);
9021 }
9022
9023 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9024 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9025
9026 /**
9027 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9028 *
9029 * @bp: driver handle
9030 */
9031 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9032 {
9033 /* special handling for emulation and FPGA,
9034 wait 10 times longer */
9035 if (CHIP_REV_IS_SLOW(bp))
9036 msleep(MCP_ONE_TIMEOUT*10);
9037 else
9038 msleep(MCP_ONE_TIMEOUT);
9039 }
9040
9041 /*
9042 * initializes bp->common.shmem_base and waits for validity signature to appear
9043 */
9044 static int bnx2x_init_shmem(struct bnx2x *bp)
9045 {
9046 int cnt = 0;
9047 u32 val = 0;
9048
9049 do {
9050 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9051 if (bp->common.shmem_base) {
9052 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9053 if (val & SHR_MEM_VALIDITY_MB)
9054 return 0;
9055 }
9056
9057 bnx2x_mcp_wait_one(bp);
9058
9059 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9060
9061 BNX2X_ERR("BAD MCP validity signature\n");
9062
9063 return -ENODEV;
9064 }
9065
9066 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9067 {
9068 int rc = bnx2x_init_shmem(bp);
9069
9070 /* Restore the `magic' bit value */
9071 if (!CHIP_IS_E1(bp))
9072 bnx2x_clp_reset_done(bp, magic_val);
9073
9074 return rc;
9075 }
9076
9077 static void bnx2x_pxp_prep(struct bnx2x *bp)
9078 {
9079 if (!CHIP_IS_E1(bp)) {
9080 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9081 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9082 mmiowb();
9083 }
9084 }
9085
9086 /*
9087 * Reset the whole chip except for:
9088 * - PCIE core
9089 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9090 * one reset bit)
9091 * - IGU
9092 * - MISC (including AEU)
9093 * - GRC
9094 * - RBCN, RBCP
9095 */
9096 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9097 {
9098 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9099 u32 global_bits2, stay_reset2;
9100
9101 /*
9102 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9103 * (per chip) blocks.
9104 */
9105 global_bits2 =
9106 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9107 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9108
9109 /* Don't reset the following blocks.
9110 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9111 * reset, as in 4 port device they might still be owned
9112 * by the MCP (there is only one leader per path).
9113 */
9114 not_reset_mask1 =
9115 MISC_REGISTERS_RESET_REG_1_RST_HC |
9116 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9117 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9118
9119 not_reset_mask2 =
9120 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9121 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9122 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9123 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9124 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9125 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9126 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9127 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9128 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9129 MISC_REGISTERS_RESET_REG_2_PGLC |
9130 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9131 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9132 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9133 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9134 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9135 MISC_REGISTERS_RESET_REG_2_UMAC1;
9136
9137 /*
9138 * Keep the following blocks in reset:
9139 * - all xxMACs are handled by the bnx2x_link code.
9140 */
9141 stay_reset2 =
9142 MISC_REGISTERS_RESET_REG_2_XMAC |
9143 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9144
9145 /* Full reset masks according to the chip */
9146 reset_mask1 = 0xffffffff;
9147
9148 if (CHIP_IS_E1(bp))
9149 reset_mask2 = 0xffff;
9150 else if (CHIP_IS_E1H(bp))
9151 reset_mask2 = 0x1ffff;
9152 else if (CHIP_IS_E2(bp))
9153 reset_mask2 = 0xfffff;
9154 else /* CHIP_IS_E3 */
9155 reset_mask2 = 0x3ffffff;
9156
9157 /* Don't reset global blocks unless we need to */
9158 if (!global)
9159 reset_mask2 &= ~global_bits2;
9160
9161 /*
9162 * In case of attention in the QM, we need to reset PXP
9163 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9164 * because otherwise QM reset would release 'close the gates' shortly
9165 * before resetting the PXP, then the PSWRQ would send a write
9166 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9167 * read the payload data from PSWWR, but PSWWR would not
9168 * respond. The write queue in PGLUE would stuck, dmae commands
9169 * would not return. Therefore it's important to reset the second
9170 * reset register (containing the
9171 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9172 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9173 * bit).
9174 */
9175 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9176 reset_mask2 & (~not_reset_mask2));
9177
9178 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9179 reset_mask1 & (~not_reset_mask1));
9180
9181 barrier();
9182 mmiowb();
9183
9184 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9185 reset_mask2 & (~stay_reset2));
9186
9187 barrier();
9188 mmiowb();
9189
9190 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9191 mmiowb();
9192 }
9193
9194 /**
9195 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9196 * It should get cleared in no more than 1s.
9197 *
9198 * @bp: driver handle
9199 *
9200 * It should get cleared in no more than 1s. Returns 0 if
9201 * pending writes bit gets cleared.
9202 */
9203 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9204 {
9205 u32 cnt = 1000;
9206 u32 pend_bits = 0;
9207
9208 do {
9209 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9210
9211 if (pend_bits == 0)
9212 break;
9213
9214 usleep_range(1000, 2000);
9215 } while (cnt-- > 0);
9216
9217 if (cnt <= 0) {
9218 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9219 pend_bits);
9220 return -EBUSY;
9221 }
9222
9223 return 0;
9224 }
9225
9226 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9227 {
9228 int cnt = 1000;
9229 u32 val = 0;
9230 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9231 u32 tags_63_32 = 0;
9232
9233 /* Empty the Tetris buffer, wait for 1s */
9234 do {
9235 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9236 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9237 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9238 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9239 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9240 if (CHIP_IS_E3(bp))
9241 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9242
9243 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9244 ((port_is_idle_0 & 0x1) == 0x1) &&
9245 ((port_is_idle_1 & 0x1) == 0x1) &&
9246 (pgl_exp_rom2 == 0xffffffff) &&
9247 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9248 break;
9249 usleep_range(1000, 2000);
9250 } while (cnt-- > 0);
9251
9252 if (cnt <= 0) {
9253 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9254 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9255 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9256 pgl_exp_rom2);
9257 return -EAGAIN;
9258 }
9259
9260 barrier();
9261
9262 /* Close gates #2, #3 and #4 */
9263 bnx2x_set_234_gates(bp, true);
9264
9265 /* Poll for IGU VQs for 57712 and newer chips */
9266 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9267 return -EAGAIN;
9268
9269 /* TBD: Indicate that "process kill" is in progress to MCP */
9270
9271 /* Clear "unprepared" bit */
9272 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9273 barrier();
9274
9275 /* Make sure all is written to the chip before the reset */
9276 mmiowb();
9277
9278 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9279 * PSWHST, GRC and PSWRD Tetris buffer.
9280 */
9281 usleep_range(1000, 2000);
9282
9283 /* Prepare to chip reset: */
9284 /* MCP */
9285 if (global)
9286 bnx2x_reset_mcp_prep(bp, &val);
9287
9288 /* PXP */
9289 bnx2x_pxp_prep(bp);
9290 barrier();
9291
9292 /* reset the chip */
9293 bnx2x_process_kill_chip_reset(bp, global);
9294 barrier();
9295
9296 /* Recover after reset: */
9297 /* MCP */
9298 if (global && bnx2x_reset_mcp_comp(bp, val))
9299 return -EAGAIN;
9300
9301 /* TBD: Add resetting the NO_MCP mode DB here */
9302
9303 /* Open the gates #2, #3 and #4 */
9304 bnx2x_set_234_gates(bp, false);
9305
9306 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9307 * reset state, re-enable attentions. */
9308
9309 return 0;
9310 }
9311
9312 static int bnx2x_leader_reset(struct bnx2x *bp)
9313 {
9314 int rc = 0;
9315 bool global = bnx2x_reset_is_global(bp);
9316 u32 load_code;
9317
9318 /* if not going to reset MCP - load "fake" driver to reset HW while
9319 * driver is owner of the HW
9320 */
9321 if (!global && !BP_NOMCP(bp)) {
9322 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9323 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9324 if (!load_code) {
9325 BNX2X_ERR("MCP response failure, aborting\n");
9326 rc = -EAGAIN;
9327 goto exit_leader_reset;
9328 }
9329 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9330 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9331 BNX2X_ERR("MCP unexpected resp, aborting\n");
9332 rc = -EAGAIN;
9333 goto exit_leader_reset2;
9334 }
9335 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9336 if (!load_code) {
9337 BNX2X_ERR("MCP response failure, aborting\n");
9338 rc = -EAGAIN;
9339 goto exit_leader_reset2;
9340 }
9341 }
9342
9343 /* Try to recover after the failure */
9344 if (bnx2x_process_kill(bp, global)) {
9345 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9346 BP_PATH(bp));
9347 rc = -EAGAIN;
9348 goto exit_leader_reset2;
9349 }
9350
9351 /*
9352 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9353 * state.
9354 */
9355 bnx2x_set_reset_done(bp);
9356 if (global)
9357 bnx2x_clear_reset_global(bp);
9358
9359 exit_leader_reset2:
9360 /* unload "fake driver" if it was loaded */
9361 if (!global && !BP_NOMCP(bp)) {
9362 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9363 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9364 }
9365 exit_leader_reset:
9366 bp->is_leader = 0;
9367 bnx2x_release_leader_lock(bp);
9368 smp_mb();
9369 return rc;
9370 }
9371
9372 static void bnx2x_recovery_failed(struct bnx2x *bp)
9373 {
9374 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9375
9376 /* Disconnect this device */
9377 netif_device_detach(bp->dev);
9378
9379 /*
9380 * Block ifup for all function on this engine until "process kill"
9381 * or power cycle.
9382 */
9383 bnx2x_set_reset_in_progress(bp);
9384
9385 /* Shut down the power */
9386 bnx2x_set_power_state(bp, PCI_D3hot);
9387
9388 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9389
9390 smp_mb();
9391 }
9392
9393 /*
9394 * Assumption: runs under rtnl lock. This together with the fact
9395 * that it's called only from bnx2x_sp_rtnl() ensure that it
9396 * will never be called when netif_running(bp->dev) is false.
9397 */
9398 static void bnx2x_parity_recover(struct bnx2x *bp)
9399 {
9400 bool global = false;
9401 u32 error_recovered, error_unrecovered;
9402 bool is_parity;
9403
9404 DP(NETIF_MSG_HW, "Handling parity\n");
9405 while (1) {
9406 switch (bp->recovery_state) {
9407 case BNX2X_RECOVERY_INIT:
9408 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9409 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9410 WARN_ON(!is_parity);
9411
9412 /* Try to get a LEADER_LOCK HW lock */
9413 if (bnx2x_trylock_leader_lock(bp)) {
9414 bnx2x_set_reset_in_progress(bp);
9415 /*
9416 * Check if there is a global attention and if
9417 * there was a global attention, set the global
9418 * reset bit.
9419 */
9420
9421 if (global)
9422 bnx2x_set_reset_global(bp);
9423
9424 bp->is_leader = 1;
9425 }
9426
9427 /* Stop the driver */
9428 /* If interface has been removed - break */
9429 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9430 return;
9431
9432 bp->recovery_state = BNX2X_RECOVERY_WAIT;
9433
9434 /* Ensure "is_leader", MCP command sequence and
9435 * "recovery_state" update values are seen on other
9436 * CPUs.
9437 */
9438 smp_mb();
9439 break;
9440
9441 case BNX2X_RECOVERY_WAIT:
9442 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9443 if (bp->is_leader) {
9444 int other_engine = BP_PATH(bp) ? 0 : 1;
9445 bool other_load_status =
9446 bnx2x_get_load_status(bp, other_engine);
9447 bool load_status =
9448 bnx2x_get_load_status(bp, BP_PATH(bp));
9449 global = bnx2x_reset_is_global(bp);
9450
9451 /*
9452 * In case of a parity in a global block, let
9453 * the first leader that performs a
9454 * leader_reset() reset the global blocks in
9455 * order to clear global attentions. Otherwise
9456 * the gates will remain closed for that
9457 * engine.
9458 */
9459 if (load_status ||
9460 (global && other_load_status)) {
9461 /* Wait until all other functions get
9462 * down.
9463 */
9464 schedule_delayed_work(&bp->sp_rtnl_task,
9465 HZ/10);
9466 return;
9467 } else {
9468 /* If all other functions got down -
9469 * try to bring the chip back to
9470 * normal. In any case it's an exit
9471 * point for a leader.
9472 */
9473 if (bnx2x_leader_reset(bp)) {
9474 bnx2x_recovery_failed(bp);
9475 return;
9476 }
9477
9478 /* If we are here, means that the
9479 * leader has succeeded and doesn't
9480 * want to be a leader any more. Try
9481 * to continue as a none-leader.
9482 */
9483 break;
9484 }
9485 } else { /* non-leader */
9486 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9487 /* Try to get a LEADER_LOCK HW lock as
9488 * long as a former leader may have
9489 * been unloaded by the user or
9490 * released a leadership by another
9491 * reason.
9492 */
9493 if (bnx2x_trylock_leader_lock(bp)) {
9494 /* I'm a leader now! Restart a
9495 * switch case.
9496 */
9497 bp->is_leader = 1;
9498 break;
9499 }
9500
9501 schedule_delayed_work(&bp->sp_rtnl_task,
9502 HZ/10);
9503 return;
9504
9505 } else {
9506 /*
9507 * If there was a global attention, wait
9508 * for it to be cleared.
9509 */
9510 if (bnx2x_reset_is_global(bp)) {
9511 schedule_delayed_work(
9512 &bp->sp_rtnl_task,
9513 HZ/10);
9514 return;
9515 }
9516
9517 error_recovered =
9518 bp->eth_stats.recoverable_error;
9519 error_unrecovered =
9520 bp->eth_stats.unrecoverable_error;
9521 bp->recovery_state =
9522 BNX2X_RECOVERY_NIC_LOADING;
9523 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9524 error_unrecovered++;
9525 netdev_err(bp->dev,
9526 "Recovery failed. Power cycle needed\n");
9527 /* Disconnect this device */
9528 netif_device_detach(bp->dev);
9529 /* Shut down the power */
9530 bnx2x_set_power_state(
9531 bp, PCI_D3hot);
9532 smp_mb();
9533 } else {
9534 bp->recovery_state =
9535 BNX2X_RECOVERY_DONE;
9536 error_recovered++;
9537 smp_mb();
9538 }
9539 bp->eth_stats.recoverable_error =
9540 error_recovered;
9541 bp->eth_stats.unrecoverable_error =
9542 error_unrecovered;
9543
9544 return;
9545 }
9546 }
9547 default:
9548 return;
9549 }
9550 }
9551 }
9552
9553 static int bnx2x_close(struct net_device *dev);
9554
9555 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9556 * scheduled on a general queue in order to prevent a dead lock.
9557 */
9558 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9559 {
9560 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9561
9562 rtnl_lock();
9563
9564 if (!netif_running(bp->dev)) {
9565 rtnl_unlock();
9566 return;
9567 }
9568
9569 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9570 #ifdef BNX2X_STOP_ON_ERROR
9571 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9572 "you will need to reboot when done\n");
9573 goto sp_rtnl_not_reset;
9574 #endif
9575 /*
9576 * Clear all pending SP commands as we are going to reset the
9577 * function anyway.
9578 */
9579 bp->sp_rtnl_state = 0;
9580 smp_mb();
9581
9582 bnx2x_parity_recover(bp);
9583
9584 rtnl_unlock();
9585 return;
9586 }
9587
9588 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9589 #ifdef BNX2X_STOP_ON_ERROR
9590 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9591 "you will need to reboot when done\n");
9592 goto sp_rtnl_not_reset;
9593 #endif
9594
9595 /*
9596 * Clear all pending SP commands as we are going to reset the
9597 * function anyway.
9598 */
9599 bp->sp_rtnl_state = 0;
9600 smp_mb();
9601
9602 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9603 bnx2x_nic_load(bp, LOAD_NORMAL);
9604
9605 rtnl_unlock();
9606 return;
9607 }
9608 #ifdef BNX2X_STOP_ON_ERROR
9609 sp_rtnl_not_reset:
9610 #endif
9611 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9612 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9613 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9614 bnx2x_after_function_update(bp);
9615 /*
9616 * in case of fan failure we need to reset id if the "stop on error"
9617 * debug flag is set, since we trying to prevent permanent overheating
9618 * damage
9619 */
9620 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9621 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9622 netif_device_detach(bp->dev);
9623 bnx2x_close(bp->dev);
9624 rtnl_unlock();
9625 return;
9626 }
9627
9628 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9629 DP(BNX2X_MSG_SP,
9630 "sending set mcast vf pf channel message from rtnl sp-task\n");
9631 bnx2x_vfpf_set_mcast(bp->dev);
9632 }
9633 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9634 &bp->sp_rtnl_state)){
9635 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9636 bnx2x_tx_disable(bp);
9637 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9638 }
9639 }
9640
9641 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9642 &bp->sp_rtnl_state)) {
9643 DP(BNX2X_MSG_SP,
9644 "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9645 bnx2x_vfpf_storm_rx_mode(bp);
9646 }
9647
9648 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9649 &bp->sp_rtnl_state))
9650 bnx2x_pf_set_vfs_vlan(bp);
9651
9652 /* work which needs rtnl lock not-taken (as it takes the lock itself and
9653 * can be called from other contexts as well)
9654 */
9655 rtnl_unlock();
9656
9657 /* enable SR-IOV if applicable */
9658 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9659 &bp->sp_rtnl_state)) {
9660 bnx2x_disable_sriov(bp);
9661 bnx2x_enable_sriov(bp);
9662 }
9663 }
9664
9665 static void bnx2x_period_task(struct work_struct *work)
9666 {
9667 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9668
9669 if (!netif_running(bp->dev))
9670 goto period_task_exit;
9671
9672 if (CHIP_REV_IS_SLOW(bp)) {
9673 BNX2X_ERR("period task called on emulation, ignoring\n");
9674 goto period_task_exit;
9675 }
9676
9677 bnx2x_acquire_phy_lock(bp);
9678 /*
9679 * The barrier is needed to ensure the ordering between the writing to
9680 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9681 * the reading here.
9682 */
9683 smp_mb();
9684 if (bp->port.pmf) {
9685 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9686
9687 /* Re-queue task in 1 sec */
9688 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9689 }
9690
9691 bnx2x_release_phy_lock(bp);
9692 period_task_exit:
9693 return;
9694 }
9695
9696 /*
9697 * Init service functions
9698 */
9699
9700 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9701 {
9702 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9703 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9704 return base + (BP_ABS_FUNC(bp)) * stride;
9705 }
9706
9707 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9708 struct bnx2x_mac_vals *vals)
9709 {
9710 u32 val, base_addr, offset, mask, reset_reg;
9711 bool mac_stopped = false;
9712 u8 port = BP_PORT(bp);
9713
9714 /* reset addresses as they also mark which values were changed */
9715 vals->bmac_addr = 0;
9716 vals->umac_addr = 0;
9717 vals->xmac_addr = 0;
9718 vals->emac_addr = 0;
9719
9720 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9721
9722 if (!CHIP_IS_E3(bp)) {
9723 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9724 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9725 if ((mask & reset_reg) && val) {
9726 u32 wb_data[2];
9727 BNX2X_DEV_INFO("Disable bmac Rx\n");
9728 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9729 : NIG_REG_INGRESS_BMAC0_MEM;
9730 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9731 : BIGMAC_REGISTER_BMAC_CONTROL;
9732
9733 /*
9734 * use rd/wr since we cannot use dmae. This is safe
9735 * since MCP won't access the bus due to the request
9736 * to unload, and no function on the path can be
9737 * loaded at this time.
9738 */
9739 wb_data[0] = REG_RD(bp, base_addr + offset);
9740 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9741 vals->bmac_addr = base_addr + offset;
9742 vals->bmac_val[0] = wb_data[0];
9743 vals->bmac_val[1] = wb_data[1];
9744 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9745 REG_WR(bp, vals->bmac_addr, wb_data[0]);
9746 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9747 }
9748 BNX2X_DEV_INFO("Disable emac Rx\n");
9749 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9750 vals->emac_val = REG_RD(bp, vals->emac_addr);
9751 REG_WR(bp, vals->emac_addr, 0);
9752 mac_stopped = true;
9753 } else {
9754 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9755 BNX2X_DEV_INFO("Disable xmac Rx\n");
9756 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9757 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9758 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9759 val & ~(1 << 1));
9760 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9761 val | (1 << 1));
9762 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9763 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9764 REG_WR(bp, vals->xmac_addr, 0);
9765 mac_stopped = true;
9766 }
9767 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9768 if (mask & reset_reg) {
9769 BNX2X_DEV_INFO("Disable umac Rx\n");
9770 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9771 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9772 vals->umac_val = REG_RD(bp, vals->umac_addr);
9773 REG_WR(bp, vals->umac_addr, 0);
9774 mac_stopped = true;
9775 }
9776 }
9777
9778 if (mac_stopped)
9779 msleep(20);
9780 }
9781
9782 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9783 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
9784 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
9785 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9786
9787 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9788 {
9789 u16 rcq, bd;
9790 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9791
9792 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9793 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9794
9795 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9796 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9797
9798 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9799 port, bd, rcq);
9800 }
9801
9802 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9803 {
9804 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9805 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9806 if (!rc) {
9807 BNX2X_ERR("MCP response failure, aborting\n");
9808 return -EBUSY;
9809 }
9810
9811 return 0;
9812 }
9813
9814 static struct bnx2x_prev_path_list *
9815 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9816 {
9817 struct bnx2x_prev_path_list *tmp_list;
9818
9819 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9820 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9821 bp->pdev->bus->number == tmp_list->bus &&
9822 BP_PATH(bp) == tmp_list->path)
9823 return tmp_list;
9824
9825 return NULL;
9826 }
9827
9828 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9829 {
9830 struct bnx2x_prev_path_list *tmp_list;
9831 int rc;
9832
9833 rc = down_interruptible(&bnx2x_prev_sem);
9834 if (rc) {
9835 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9836 return rc;
9837 }
9838
9839 tmp_list = bnx2x_prev_path_get_entry(bp);
9840 if (tmp_list) {
9841 tmp_list->aer = 1;
9842 rc = 0;
9843 } else {
9844 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9845 BP_PATH(bp));
9846 }
9847
9848 up(&bnx2x_prev_sem);
9849
9850 return rc;
9851 }
9852
9853 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9854 {
9855 struct bnx2x_prev_path_list *tmp_list;
9856 int rc = false;
9857
9858 if (down_trylock(&bnx2x_prev_sem))
9859 return false;
9860
9861 tmp_list = bnx2x_prev_path_get_entry(bp);
9862 if (tmp_list) {
9863 if (tmp_list->aer) {
9864 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9865 BP_PATH(bp));
9866 } else {
9867 rc = true;
9868 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9869 BP_PATH(bp));
9870 }
9871 }
9872
9873 up(&bnx2x_prev_sem);
9874
9875 return rc;
9876 }
9877
9878 bool bnx2x_port_after_undi(struct bnx2x *bp)
9879 {
9880 struct bnx2x_prev_path_list *entry;
9881 bool val;
9882
9883 down(&bnx2x_prev_sem);
9884
9885 entry = bnx2x_prev_path_get_entry(bp);
9886 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9887
9888 up(&bnx2x_prev_sem);
9889
9890 return val;
9891 }
9892
9893 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9894 {
9895 struct bnx2x_prev_path_list *tmp_list;
9896 int rc;
9897
9898 rc = down_interruptible(&bnx2x_prev_sem);
9899 if (rc) {
9900 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9901 return rc;
9902 }
9903
9904 /* Check whether the entry for this path already exists */
9905 tmp_list = bnx2x_prev_path_get_entry(bp);
9906 if (tmp_list) {
9907 if (!tmp_list->aer) {
9908 BNX2X_ERR("Re-Marking the path.\n");
9909 } else {
9910 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9911 BP_PATH(bp));
9912 tmp_list->aer = 0;
9913 }
9914 up(&bnx2x_prev_sem);
9915 return 0;
9916 }
9917 up(&bnx2x_prev_sem);
9918
9919 /* Create an entry for this path and add it */
9920 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9921 if (!tmp_list) {
9922 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9923 return -ENOMEM;
9924 }
9925
9926 tmp_list->bus = bp->pdev->bus->number;
9927 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9928 tmp_list->path = BP_PATH(bp);
9929 tmp_list->aer = 0;
9930 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9931
9932 rc = down_interruptible(&bnx2x_prev_sem);
9933 if (rc) {
9934 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9935 kfree(tmp_list);
9936 } else {
9937 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9938 BP_PATH(bp));
9939 list_add(&tmp_list->list, &bnx2x_prev_list);
9940 up(&bnx2x_prev_sem);
9941 }
9942
9943 return rc;
9944 }
9945
9946 static int bnx2x_do_flr(struct bnx2x *bp)
9947 {
9948 int i;
9949 u16 status;
9950 struct pci_dev *dev = bp->pdev;
9951
9952 if (CHIP_IS_E1x(bp)) {
9953 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9954 return -EINVAL;
9955 }
9956
9957 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9958 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9959 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9960 bp->common.bc_ver);
9961 return -EINVAL;
9962 }
9963
9964 /* Wait for Transaction Pending bit clean */
9965 for (i = 0; i < 4; i++) {
9966 if (i)
9967 msleep((1 << (i - 1)) * 100);
9968
9969 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9970 if (!(status & PCI_EXP_DEVSTA_TRPND))
9971 goto clear;
9972 }
9973
9974 dev_err(&dev->dev,
9975 "transaction is not cleared; proceeding with reset anyway\n");
9976
9977 clear:
9978
9979 BNX2X_DEV_INFO("Initiating FLR\n");
9980 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9981
9982 return 0;
9983 }
9984
9985 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9986 {
9987 int rc;
9988
9989 BNX2X_DEV_INFO("Uncommon unload Flow\n");
9990
9991 /* Test if previous unload process was already finished for this path */
9992 if (bnx2x_prev_is_path_marked(bp))
9993 return bnx2x_prev_mcp_done(bp);
9994
9995 BNX2X_DEV_INFO("Path is unmarked\n");
9996
9997 /* If function has FLR capabilities, and existing FW version matches
9998 * the one required, then FLR will be sufficient to clean any residue
9999 * left by previous driver
10000 */
10001 rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10002
10003 if (!rc) {
10004 /* fw version is good */
10005 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10006 rc = bnx2x_do_flr(bp);
10007 }
10008
10009 if (!rc) {
10010 /* FLR was performed */
10011 BNX2X_DEV_INFO("FLR successful\n");
10012 return 0;
10013 }
10014
10015 BNX2X_DEV_INFO("Could not FLR\n");
10016
10017 /* Close the MCP request, return failure*/
10018 rc = bnx2x_prev_mcp_done(bp);
10019 if (!rc)
10020 rc = BNX2X_PREV_WAIT_NEEDED;
10021
10022 return rc;
10023 }
10024
10025 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10026 {
10027 u32 reset_reg, tmp_reg = 0, rc;
10028 bool prev_undi = false;
10029 struct bnx2x_mac_vals mac_vals;
10030
10031 /* It is possible a previous function received 'common' answer,
10032 * but hasn't loaded yet, therefore creating a scenario of
10033 * multiple functions receiving 'common' on the same path.
10034 */
10035 BNX2X_DEV_INFO("Common unload Flow\n");
10036
10037 memset(&mac_vals, 0, sizeof(mac_vals));
10038
10039 if (bnx2x_prev_is_path_marked(bp))
10040 return bnx2x_prev_mcp_done(bp);
10041
10042 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10043
10044 /* Reset should be performed after BRB is emptied */
10045 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10046 u32 timer_count = 1000;
10047
10048 /* Close the MAC Rx to prevent BRB from filling up */
10049 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10050
10051 /* close LLH filters towards the BRB */
10052 bnx2x_set_rx_filter(&bp->link_params, 0);
10053
10054 /* Check if the UNDI driver was previously loaded
10055 * UNDI driver initializes CID offset for normal bell to 0x7
10056 */
10057 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10058 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10059 if (tmp_reg == 0x7) {
10060 BNX2X_DEV_INFO("UNDI previously loaded\n");
10061 prev_undi = true;
10062 /* clear the UNDI indication */
10063 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10064 /* clear possible idle check errors */
10065 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10066 }
10067 }
10068 if (!CHIP_IS_E1x(bp))
10069 /* block FW from writing to host */
10070 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10071
10072 /* wait until BRB is empty */
10073 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10074 while (timer_count) {
10075 u32 prev_brb = tmp_reg;
10076
10077 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10078 if (!tmp_reg)
10079 break;
10080
10081 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10082
10083 /* reset timer as long as BRB actually gets emptied */
10084 if (prev_brb > tmp_reg)
10085 timer_count = 1000;
10086 else
10087 timer_count--;
10088
10089 /* If UNDI resides in memory, manually increment it */
10090 if (prev_undi)
10091 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10092
10093 udelay(10);
10094 }
10095
10096 if (!timer_count)
10097 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10098 }
10099
10100 /* No packets are in the pipeline, path is ready for reset */
10101 bnx2x_reset_common(bp);
10102
10103 if (mac_vals.xmac_addr)
10104 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10105 if (mac_vals.umac_addr)
10106 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10107 if (mac_vals.emac_addr)
10108 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10109 if (mac_vals.bmac_addr) {
10110 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10111 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10112 }
10113
10114 rc = bnx2x_prev_mark_path(bp, prev_undi);
10115 if (rc) {
10116 bnx2x_prev_mcp_done(bp);
10117 return rc;
10118 }
10119
10120 return bnx2x_prev_mcp_done(bp);
10121 }
10122
10123 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10124 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10125 * the addresses of the transaction, resulting in was-error bit set in the pci
10126 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10127 * to clear the interrupt which detected this from the pglueb and the was done
10128 * bit
10129 */
10130 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10131 {
10132 if (!CHIP_IS_E1x(bp)) {
10133 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10134 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10135 DP(BNX2X_MSG_SP,
10136 "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10137 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10138 1 << BP_FUNC(bp));
10139 }
10140 }
10141 }
10142
10143 static int bnx2x_prev_unload(struct bnx2x *bp)
10144 {
10145 int time_counter = 10;
10146 u32 rc, fw, hw_lock_reg, hw_lock_val;
10147 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10148
10149 /* clear hw from errors which may have resulted from an interrupted
10150 * dmae transaction.
10151 */
10152 bnx2x_prev_interrupted_dmae(bp);
10153
10154 /* Release previously held locks */
10155 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10156 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10157 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10158
10159 hw_lock_val = REG_RD(bp, hw_lock_reg);
10160 if (hw_lock_val) {
10161 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10162 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10163 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10164 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10165 }
10166
10167 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10168 REG_WR(bp, hw_lock_reg, 0xffffffff);
10169 } else
10170 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10171
10172 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10173 BNX2X_DEV_INFO("Release previously held alr\n");
10174 bnx2x_release_alr(bp);
10175 }
10176
10177 do {
10178 int aer = 0;
10179 /* Lock MCP using an unload request */
10180 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10181 if (!fw) {
10182 BNX2X_ERR("MCP response failure, aborting\n");
10183 rc = -EBUSY;
10184 break;
10185 }
10186
10187 rc = down_interruptible(&bnx2x_prev_sem);
10188 if (rc) {
10189 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10190 rc);
10191 } else {
10192 /* If Path is marked by EEH, ignore unload status */
10193 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10194 bnx2x_prev_path_get_entry(bp)->aer);
10195 up(&bnx2x_prev_sem);
10196 }
10197
10198 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10199 rc = bnx2x_prev_unload_common(bp);
10200 break;
10201 }
10202
10203 /* non-common reply from MCP might require looping */
10204 rc = bnx2x_prev_unload_uncommon(bp);
10205 if (rc != BNX2X_PREV_WAIT_NEEDED)
10206 break;
10207
10208 msleep(20);
10209 } while (--time_counter);
10210
10211 if (!time_counter || rc) {
10212 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10213 rc = -EBUSY;
10214 }
10215
10216 /* Mark function if its port was used to boot from SAN */
10217 if (bnx2x_port_after_undi(bp))
10218 bp->link_params.feature_config_flags |=
10219 FEATURE_CONFIG_BOOT_FROM_SAN;
10220
10221 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10222
10223 return rc;
10224 }
10225
10226 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10227 {
10228 u32 val, val2, val3, val4, id, boot_mode;
10229 u16 pmc;
10230
10231 /* Get the chip revision id and number. */
10232 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10233 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10234 id = ((val & 0xffff) << 16);
10235 val = REG_RD(bp, MISC_REG_CHIP_REV);
10236 id |= ((val & 0xf) << 12);
10237
10238 /* Metal is read from PCI regs, but we can't access >=0x400 from
10239 * the configuration space (so we need to reg_rd)
10240 */
10241 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10242 id |= (((val >> 24) & 0xf) << 4);
10243 val = REG_RD(bp, MISC_REG_BOND_ID);
10244 id |= (val & 0xf);
10245 bp->common.chip_id = id;
10246
10247 /* force 57811 according to MISC register */
10248 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10249 if (CHIP_IS_57810(bp))
10250 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10251 (bp->common.chip_id & 0x0000FFFF);
10252 else if (CHIP_IS_57810_MF(bp))
10253 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10254 (bp->common.chip_id & 0x0000FFFF);
10255 bp->common.chip_id |= 0x1;
10256 }
10257
10258 /* Set doorbell size */
10259 bp->db_size = (1 << BNX2X_DB_SHIFT);
10260
10261 if (!CHIP_IS_E1x(bp)) {
10262 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10263 if ((val & 1) == 0)
10264 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10265 else
10266 val = (val >> 1) & 1;
10267 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10268 "2_PORT_MODE");
10269 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10270 CHIP_2_PORT_MODE;
10271
10272 if (CHIP_MODE_IS_4_PORT(bp))
10273 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10274 else
10275 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10276 } else {
10277 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10278 bp->pfid = bp->pf_num; /* 0..7 */
10279 }
10280
10281 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10282
10283 bp->link_params.chip_id = bp->common.chip_id;
10284 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10285
10286 val = (REG_RD(bp, 0x2874) & 0x55);
10287 if ((bp->common.chip_id & 0x1) ||
10288 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10289 bp->flags |= ONE_PORT_FLAG;
10290 BNX2X_DEV_INFO("single port device\n");
10291 }
10292
10293 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10294 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10295 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10296 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10297 bp->common.flash_size, bp->common.flash_size);
10298
10299 bnx2x_init_shmem(bp);
10300
10301 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10302 MISC_REG_GENERIC_CR_1 :
10303 MISC_REG_GENERIC_CR_0));
10304
10305 bp->link_params.shmem_base = bp->common.shmem_base;
10306 bp->link_params.shmem2_base = bp->common.shmem2_base;
10307 if (SHMEM2_RD(bp, size) >
10308 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10309 bp->link_params.lfa_base =
10310 REG_RD(bp, bp->common.shmem2_base +
10311 (u32)offsetof(struct shmem2_region,
10312 lfa_host_addr[BP_PORT(bp)]));
10313 else
10314 bp->link_params.lfa_base = 0;
10315 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
10316 bp->common.shmem_base, bp->common.shmem2_base);
10317
10318 if (!bp->common.shmem_base) {
10319 BNX2X_DEV_INFO("MCP not active\n");
10320 bp->flags |= NO_MCP_FLAG;
10321 return;
10322 }
10323
10324 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10325 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10326
10327 bp->link_params.hw_led_mode = ((bp->common.hw_config &
10328 SHARED_HW_CFG_LED_MODE_MASK) >>
10329 SHARED_HW_CFG_LED_MODE_SHIFT);
10330
10331 bp->link_params.feature_config_flags = 0;
10332 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10333 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10334 bp->link_params.feature_config_flags |=
10335 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10336 else
10337 bp->link_params.feature_config_flags &=
10338 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10339
10340 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10341 bp->common.bc_ver = val;
10342 BNX2X_DEV_INFO("bc_ver %X\n", val);
10343 if (val < BNX2X_BC_VER) {
10344 /* for now only warn
10345 * later we might need to enforce this */
10346 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10347 BNX2X_BC_VER, val);
10348 }
10349 bp->link_params.feature_config_flags |=
10350 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10351 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10352
10353 bp->link_params.feature_config_flags |=
10354 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10355 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10356 bp->link_params.feature_config_flags |=
10357 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10358 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10359 bp->link_params.feature_config_flags |=
10360 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10361 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10362
10363 bp->link_params.feature_config_flags |=
10364 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10365 FEATURE_CONFIG_MT_SUPPORT : 0;
10366
10367 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10368 BC_SUPPORTS_PFC_STATS : 0;
10369
10370 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10371 BC_SUPPORTS_FCOE_FEATURES : 0;
10372
10373 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10374 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10375 boot_mode = SHMEM_RD(bp,
10376 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10377 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10378 switch (boot_mode) {
10379 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10380 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10381 break;
10382 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10383 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10384 break;
10385 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10386 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10387 break;
10388 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10389 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10390 break;
10391 }
10392
10393 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10394 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10395
10396 BNX2X_DEV_INFO("%sWoL capable\n",
10397 (bp->flags & NO_WOL_FLAG) ? "not " : "");
10398
10399 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10400 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10401 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10402 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10403
10404 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10405 val, val2, val3, val4);
10406 }
10407
10408 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10409 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10410
10411 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10412 {
10413 int pfid = BP_FUNC(bp);
10414 int igu_sb_id;
10415 u32 val;
10416 u8 fid, igu_sb_cnt = 0;
10417
10418 bp->igu_base_sb = 0xff;
10419 if (CHIP_INT_MODE_IS_BC(bp)) {
10420 int vn = BP_VN(bp);
10421 igu_sb_cnt = bp->igu_sb_cnt;
10422 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10423 FP_SB_MAX_E1x;
10424
10425 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
10426 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10427
10428 return 0;
10429 }
10430
10431 /* IGU in normal mode - read CAM */
10432 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10433 igu_sb_id++) {
10434 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10435 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10436 continue;
10437 fid = IGU_FID(val);
10438 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10439 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10440 continue;
10441 if (IGU_VEC(val) == 0)
10442 /* default status block */
10443 bp->igu_dsb_id = igu_sb_id;
10444 else {
10445 if (bp->igu_base_sb == 0xff)
10446 bp->igu_base_sb = igu_sb_id;
10447 igu_sb_cnt++;
10448 }
10449 }
10450 }
10451
10452 #ifdef CONFIG_PCI_MSI
10453 /* Due to new PF resource allocation by MFW T7.4 and above, it's
10454 * optional that number of CAM entries will not be equal to the value
10455 * advertised in PCI.
10456 * Driver should use the minimal value of both as the actual status
10457 * block count
10458 */
10459 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10460 #endif
10461
10462 if (igu_sb_cnt == 0) {
10463 BNX2X_ERR("CAM configuration error\n");
10464 return -EINVAL;
10465 }
10466
10467 return 0;
10468 }
10469
10470 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10471 {
10472 int cfg_size = 0, idx, port = BP_PORT(bp);
10473
10474 /* Aggregation of supported attributes of all external phys */
10475 bp->port.supported[0] = 0;
10476 bp->port.supported[1] = 0;
10477 switch (bp->link_params.num_phys) {
10478 case 1:
10479 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10480 cfg_size = 1;
10481 break;
10482 case 2:
10483 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10484 cfg_size = 1;
10485 break;
10486 case 3:
10487 if (bp->link_params.multi_phy_config &
10488 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10489 bp->port.supported[1] =
10490 bp->link_params.phy[EXT_PHY1].supported;
10491 bp->port.supported[0] =
10492 bp->link_params.phy[EXT_PHY2].supported;
10493 } else {
10494 bp->port.supported[0] =
10495 bp->link_params.phy[EXT_PHY1].supported;
10496 bp->port.supported[1] =
10497 bp->link_params.phy[EXT_PHY2].supported;
10498 }
10499 cfg_size = 2;
10500 break;
10501 }
10502
10503 if (!(bp->port.supported[0] || bp->port.supported[1])) {
10504 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10505 SHMEM_RD(bp,
10506 dev_info.port_hw_config[port].external_phy_config),
10507 SHMEM_RD(bp,
10508 dev_info.port_hw_config[port].external_phy_config2));
10509 return;
10510 }
10511
10512 if (CHIP_IS_E3(bp))
10513 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10514 else {
10515 switch (switch_cfg) {
10516 case SWITCH_CFG_1G:
10517 bp->port.phy_addr = REG_RD(
10518 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10519 break;
10520 case SWITCH_CFG_10G:
10521 bp->port.phy_addr = REG_RD(
10522 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10523 break;
10524 default:
10525 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10526 bp->port.link_config[0]);
10527 return;
10528 }
10529 }
10530 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10531 /* mask what we support according to speed_cap_mask per configuration */
10532 for (idx = 0; idx < cfg_size; idx++) {
10533 if (!(bp->link_params.speed_cap_mask[idx] &
10534 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10535 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10536
10537 if (!(bp->link_params.speed_cap_mask[idx] &
10538 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10539 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10540
10541 if (!(bp->link_params.speed_cap_mask[idx] &
10542 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10543 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10544
10545 if (!(bp->link_params.speed_cap_mask[idx] &
10546 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10547 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10548
10549 if (!(bp->link_params.speed_cap_mask[idx] &
10550 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10551 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10552 SUPPORTED_1000baseT_Full);
10553
10554 if (!(bp->link_params.speed_cap_mask[idx] &
10555 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10556 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10557
10558 if (!(bp->link_params.speed_cap_mask[idx] &
10559 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10560 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10561
10562 if (!(bp->link_params.speed_cap_mask[idx] &
10563 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10564 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10565 }
10566
10567 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10568 bp->port.supported[1]);
10569 }
10570
10571 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10572 {
10573 u32 link_config, idx, cfg_size = 0;
10574 bp->port.advertising[0] = 0;
10575 bp->port.advertising[1] = 0;
10576 switch (bp->link_params.num_phys) {
10577 case 1:
10578 case 2:
10579 cfg_size = 1;
10580 break;
10581 case 3:
10582 cfg_size = 2;
10583 break;
10584 }
10585 for (idx = 0; idx < cfg_size; idx++) {
10586 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10587 link_config = bp->port.link_config[idx];
10588 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10589 case PORT_FEATURE_LINK_SPEED_AUTO:
10590 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10591 bp->link_params.req_line_speed[idx] =
10592 SPEED_AUTO_NEG;
10593 bp->port.advertising[idx] |=
10594 bp->port.supported[idx];
10595 if (bp->link_params.phy[EXT_PHY1].type ==
10596 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10597 bp->port.advertising[idx] |=
10598 (SUPPORTED_100baseT_Half |
10599 SUPPORTED_100baseT_Full);
10600 } else {
10601 /* force 10G, no AN */
10602 bp->link_params.req_line_speed[idx] =
10603 SPEED_10000;
10604 bp->port.advertising[idx] |=
10605 (ADVERTISED_10000baseT_Full |
10606 ADVERTISED_FIBRE);
10607 continue;
10608 }
10609 break;
10610
10611 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10612 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10613 bp->link_params.req_line_speed[idx] =
10614 SPEED_10;
10615 bp->port.advertising[idx] |=
10616 (ADVERTISED_10baseT_Full |
10617 ADVERTISED_TP);
10618 } else {
10619 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10620 link_config,
10621 bp->link_params.speed_cap_mask[idx]);
10622 return;
10623 }
10624 break;
10625
10626 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10627 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10628 bp->link_params.req_line_speed[idx] =
10629 SPEED_10;
10630 bp->link_params.req_duplex[idx] =
10631 DUPLEX_HALF;
10632 bp->port.advertising[idx] |=
10633 (ADVERTISED_10baseT_Half |
10634 ADVERTISED_TP);
10635 } else {
10636 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10637 link_config,
10638 bp->link_params.speed_cap_mask[idx]);
10639 return;
10640 }
10641 break;
10642
10643 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10644 if (bp->port.supported[idx] &
10645 SUPPORTED_100baseT_Full) {
10646 bp->link_params.req_line_speed[idx] =
10647 SPEED_100;
10648 bp->port.advertising[idx] |=
10649 (ADVERTISED_100baseT_Full |
10650 ADVERTISED_TP);
10651 } else {
10652 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10653 link_config,
10654 bp->link_params.speed_cap_mask[idx]);
10655 return;
10656 }
10657 break;
10658
10659 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10660 if (bp->port.supported[idx] &
10661 SUPPORTED_100baseT_Half) {
10662 bp->link_params.req_line_speed[idx] =
10663 SPEED_100;
10664 bp->link_params.req_duplex[idx] =
10665 DUPLEX_HALF;
10666 bp->port.advertising[idx] |=
10667 (ADVERTISED_100baseT_Half |
10668 ADVERTISED_TP);
10669 } else {
10670 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10671 link_config,
10672 bp->link_params.speed_cap_mask[idx]);
10673 return;
10674 }
10675 break;
10676
10677 case PORT_FEATURE_LINK_SPEED_1G:
10678 if (bp->port.supported[idx] &
10679 SUPPORTED_1000baseT_Full) {
10680 bp->link_params.req_line_speed[idx] =
10681 SPEED_1000;
10682 bp->port.advertising[idx] |=
10683 (ADVERTISED_1000baseT_Full |
10684 ADVERTISED_TP);
10685 } else {
10686 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10687 link_config,
10688 bp->link_params.speed_cap_mask[idx]);
10689 return;
10690 }
10691 break;
10692
10693 case PORT_FEATURE_LINK_SPEED_2_5G:
10694 if (bp->port.supported[idx] &
10695 SUPPORTED_2500baseX_Full) {
10696 bp->link_params.req_line_speed[idx] =
10697 SPEED_2500;
10698 bp->port.advertising[idx] |=
10699 (ADVERTISED_2500baseX_Full |
10700 ADVERTISED_TP);
10701 } else {
10702 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10703 link_config,
10704 bp->link_params.speed_cap_mask[idx]);
10705 return;
10706 }
10707 break;
10708
10709 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10710 if (bp->port.supported[idx] &
10711 SUPPORTED_10000baseT_Full) {
10712 bp->link_params.req_line_speed[idx] =
10713 SPEED_10000;
10714 bp->port.advertising[idx] |=
10715 (ADVERTISED_10000baseT_Full |
10716 ADVERTISED_FIBRE);
10717 } else {
10718 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10719 link_config,
10720 bp->link_params.speed_cap_mask[idx]);
10721 return;
10722 }
10723 break;
10724 case PORT_FEATURE_LINK_SPEED_20G:
10725 bp->link_params.req_line_speed[idx] = SPEED_20000;
10726
10727 break;
10728 default:
10729 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10730 link_config);
10731 bp->link_params.req_line_speed[idx] =
10732 SPEED_AUTO_NEG;
10733 bp->port.advertising[idx] =
10734 bp->port.supported[idx];
10735 break;
10736 }
10737
10738 bp->link_params.req_flow_ctrl[idx] = (link_config &
10739 PORT_FEATURE_FLOW_CONTROL_MASK);
10740 if (bp->link_params.req_flow_ctrl[idx] ==
10741 BNX2X_FLOW_CTRL_AUTO) {
10742 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10743 bp->link_params.req_flow_ctrl[idx] =
10744 BNX2X_FLOW_CTRL_NONE;
10745 else
10746 bnx2x_set_requested_fc(bp);
10747 }
10748
10749 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10750 bp->link_params.req_line_speed[idx],
10751 bp->link_params.req_duplex[idx],
10752 bp->link_params.req_flow_ctrl[idx],
10753 bp->port.advertising[idx]);
10754 }
10755 }
10756
10757 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10758 {
10759 __be16 mac_hi_be = cpu_to_be16(mac_hi);
10760 __be32 mac_lo_be = cpu_to_be32(mac_lo);
10761 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10762 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10763 }
10764
10765 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10766 {
10767 int port = BP_PORT(bp);
10768 u32 config;
10769 u32 ext_phy_type, ext_phy_config, eee_mode;
10770
10771 bp->link_params.bp = bp;
10772 bp->link_params.port = port;
10773
10774 bp->link_params.lane_config =
10775 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10776
10777 bp->link_params.speed_cap_mask[0] =
10778 SHMEM_RD(bp,
10779 dev_info.port_hw_config[port].speed_capability_mask) &
10780 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10781 bp->link_params.speed_cap_mask[1] =
10782 SHMEM_RD(bp,
10783 dev_info.port_hw_config[port].speed_capability_mask2) &
10784 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10785 bp->port.link_config[0] =
10786 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10787
10788 bp->port.link_config[1] =
10789 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10790
10791 bp->link_params.multi_phy_config =
10792 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10793 /* If the device is capable of WoL, set the default state according
10794 * to the HW
10795 */
10796 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10797 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10798 (config & PORT_FEATURE_WOL_ENABLED));
10799
10800 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10801 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10802 bp->flags |= NO_ISCSI_FLAG;
10803 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10804 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10805 bp->flags |= NO_FCOE_FLAG;
10806
10807 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
10808 bp->link_params.lane_config,
10809 bp->link_params.speed_cap_mask[0],
10810 bp->port.link_config[0]);
10811
10812 bp->link_params.switch_cfg = (bp->port.link_config[0] &
10813 PORT_FEATURE_CONNECTED_SWITCH_MASK);
10814 bnx2x_phy_probe(&bp->link_params);
10815 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10816
10817 bnx2x_link_settings_requested(bp);
10818
10819 /*
10820 * If connected directly, work with the internal PHY, otherwise, work
10821 * with the external PHY
10822 */
10823 ext_phy_config =
10824 SHMEM_RD(bp,
10825 dev_info.port_hw_config[port].external_phy_config);
10826 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10827 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10828 bp->mdio.prtad = bp->port.phy_addr;
10829
10830 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10831 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10832 bp->mdio.prtad =
10833 XGXS_EXT_PHY_ADDR(ext_phy_config);
10834
10835 /* Configure link feature according to nvram value */
10836 eee_mode = (((SHMEM_RD(bp, dev_info.
10837 port_feature_config[port].eee_power_mode)) &
10838 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10839 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10840 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10841 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10842 EEE_MODE_ENABLE_LPI |
10843 EEE_MODE_OUTPUT_TIME;
10844 } else {
10845 bp->link_params.eee_mode = 0;
10846 }
10847 }
10848
10849 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10850 {
10851 u32 no_flags = NO_ISCSI_FLAG;
10852 int port = BP_PORT(bp);
10853 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10854 drv_lic_key[port].max_iscsi_conn);
10855
10856 if (!CNIC_SUPPORT(bp)) {
10857 bp->flags |= no_flags;
10858 return;
10859 }
10860
10861 /* Get the number of maximum allowed iSCSI connections */
10862 bp->cnic_eth_dev.max_iscsi_conn =
10863 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10864 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10865
10866 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10867 bp->cnic_eth_dev.max_iscsi_conn);
10868
10869 /*
10870 * If maximum allowed number of connections is zero -
10871 * disable the feature.
10872 */
10873 if (!bp->cnic_eth_dev.max_iscsi_conn)
10874 bp->flags |= no_flags;
10875 }
10876
10877 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10878 {
10879 /* Port info */
10880 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10881 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10882 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10883 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10884
10885 /* Node info */
10886 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10887 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10888 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10889 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10890 }
10891
10892 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10893 {
10894 u8 count = 0;
10895
10896 if (IS_MF(bp)) {
10897 u8 fid;
10898
10899 /* iterate over absolute function ids for this path: */
10900 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10901 if (IS_MF_SD(bp)) {
10902 u32 cfg = MF_CFG_RD(bp,
10903 func_mf_config[fid].config);
10904
10905 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10906 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10907 FUNC_MF_CFG_PROTOCOL_FCOE))
10908 count++;
10909 } else {
10910 u32 cfg = MF_CFG_RD(bp,
10911 func_ext_config[fid].
10912 func_cfg);
10913
10914 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10915 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10916 count++;
10917 }
10918 }
10919 } else { /* SF */
10920 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10921
10922 for (port = 0; port < port_cnt; port++) {
10923 u32 lic = SHMEM_RD(bp,
10924 drv_lic_key[port].max_fcoe_conn) ^
10925 FW_ENCODE_32BIT_PATTERN;
10926 if (lic)
10927 count++;
10928 }
10929 }
10930
10931 return count;
10932 }
10933
10934 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10935 {
10936 int port = BP_PORT(bp);
10937 int func = BP_ABS_FUNC(bp);
10938 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10939 drv_lic_key[port].max_fcoe_conn);
10940 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10941
10942 if (!CNIC_SUPPORT(bp)) {
10943 bp->flags |= NO_FCOE_FLAG;
10944 return;
10945 }
10946
10947 /* Get the number of maximum allowed FCoE connections */
10948 bp->cnic_eth_dev.max_fcoe_conn =
10949 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10950 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10951
10952 /* Calculate the number of maximum allowed FCoE tasks */
10953 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10954
10955 /* check if FCoE resources must be shared between different functions */
10956 if (num_fcoe_func)
10957 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10958
10959 /* Read the WWN: */
10960 if (!IS_MF(bp)) {
10961 /* Port info */
10962 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10963 SHMEM_RD(bp,
10964 dev_info.port_hw_config[port].
10965 fcoe_wwn_port_name_upper);
10966 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10967 SHMEM_RD(bp,
10968 dev_info.port_hw_config[port].
10969 fcoe_wwn_port_name_lower);
10970
10971 /* Node info */
10972 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10973 SHMEM_RD(bp,
10974 dev_info.port_hw_config[port].
10975 fcoe_wwn_node_name_upper);
10976 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10977 SHMEM_RD(bp,
10978 dev_info.port_hw_config[port].
10979 fcoe_wwn_node_name_lower);
10980 } else if (!IS_MF_SD(bp)) {
10981 /*
10982 * Read the WWN info only if the FCoE feature is enabled for
10983 * this function.
10984 */
10985 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10986 bnx2x_get_ext_wwn_info(bp, func);
10987
10988 } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10989 bnx2x_get_ext_wwn_info(bp, func);
10990 }
10991
10992 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10993
10994 /*
10995 * If maximum allowed number of connections is zero -
10996 * disable the feature.
10997 */
10998 if (!bp->cnic_eth_dev.max_fcoe_conn)
10999 bp->flags |= NO_FCOE_FLAG;
11000 }
11001
11002 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11003 {
11004 /*
11005 * iSCSI may be dynamically disabled but reading
11006 * info here we will decrease memory usage by driver
11007 * if the feature is disabled for good
11008 */
11009 bnx2x_get_iscsi_info(bp);
11010 bnx2x_get_fcoe_info(bp);
11011 }
11012
11013 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11014 {
11015 u32 val, val2;
11016 int func = BP_ABS_FUNC(bp);
11017 int port = BP_PORT(bp);
11018 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11019 u8 *fip_mac = bp->fip_mac;
11020
11021 if (IS_MF(bp)) {
11022 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11023 * FCoE MAC then the appropriate feature should be disabled.
11024 * In non SD mode features configuration comes from struct
11025 * func_ext_config.
11026 */
11027 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11028 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11029 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11030 val2 = MF_CFG_RD(bp, func_ext_config[func].
11031 iscsi_mac_addr_upper);
11032 val = MF_CFG_RD(bp, func_ext_config[func].
11033 iscsi_mac_addr_lower);
11034 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11035 BNX2X_DEV_INFO
11036 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11037 } else {
11038 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11039 }
11040
11041 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11042 val2 = MF_CFG_RD(bp, func_ext_config[func].
11043 fcoe_mac_addr_upper);
11044 val = MF_CFG_RD(bp, func_ext_config[func].
11045 fcoe_mac_addr_lower);
11046 bnx2x_set_mac_buf(fip_mac, val, val2);
11047 BNX2X_DEV_INFO
11048 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11049 } else {
11050 bp->flags |= NO_FCOE_FLAG;
11051 }
11052
11053 bp->mf_ext_config = cfg;
11054
11055 } else { /* SD MODE */
11056 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11057 /* use primary mac as iscsi mac */
11058 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11059
11060 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11061 BNX2X_DEV_INFO
11062 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11063 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11064 /* use primary mac as fip mac */
11065 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11066 BNX2X_DEV_INFO("SD FCoE MODE\n");
11067 BNX2X_DEV_INFO
11068 ("Read FIP MAC: %pM\n", fip_mac);
11069 }
11070 }
11071
11072 /* If this is a storage-only interface, use SAN mac as
11073 * primary MAC. Notice that for SD this is already the case,
11074 * as the SAN mac was copied from the primary MAC.
11075 */
11076 if (IS_MF_FCOE_AFEX(bp))
11077 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11078 } else {
11079 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11080 iscsi_mac_upper);
11081 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11082 iscsi_mac_lower);
11083 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11084
11085 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11086 fcoe_fip_mac_upper);
11087 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11088 fcoe_fip_mac_lower);
11089 bnx2x_set_mac_buf(fip_mac, val, val2);
11090 }
11091
11092 /* Disable iSCSI OOO if MAC configuration is invalid. */
11093 if (!is_valid_ether_addr(iscsi_mac)) {
11094 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11095 memset(iscsi_mac, 0, ETH_ALEN);
11096 }
11097
11098 /* Disable FCoE if MAC configuration is invalid. */
11099 if (!is_valid_ether_addr(fip_mac)) {
11100 bp->flags |= NO_FCOE_FLAG;
11101 memset(bp->fip_mac, 0, ETH_ALEN);
11102 }
11103 }
11104
11105 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11106 {
11107 u32 val, val2;
11108 int func = BP_ABS_FUNC(bp);
11109 int port = BP_PORT(bp);
11110
11111 /* Zero primary MAC configuration */
11112 memset(bp->dev->dev_addr, 0, ETH_ALEN);
11113
11114 if (BP_NOMCP(bp)) {
11115 BNX2X_ERROR("warning: random MAC workaround active\n");
11116 eth_hw_addr_random(bp->dev);
11117 } else if (IS_MF(bp)) {
11118 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11119 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11120 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11121 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11122 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11123
11124 if (CNIC_SUPPORT(bp))
11125 bnx2x_get_cnic_mac_hwinfo(bp);
11126 } else {
11127 /* in SF read MACs from port configuration */
11128 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11129 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11130 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11131
11132 if (CNIC_SUPPORT(bp))
11133 bnx2x_get_cnic_mac_hwinfo(bp);
11134 }
11135
11136 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11137
11138 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11139 dev_err(&bp->pdev->dev,
11140 "bad Ethernet MAC address configuration: %pM\n"
11141 "change it manually before bringing up the appropriate network interface\n",
11142 bp->dev->dev_addr);
11143 }
11144
11145 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11146 {
11147 int tmp;
11148 u32 cfg;
11149
11150 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11151 /* Take function: tmp = func */
11152 tmp = BP_ABS_FUNC(bp);
11153 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11154 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11155 } else {
11156 /* Take port: tmp = port */
11157 tmp = BP_PORT(bp);
11158 cfg = SHMEM_RD(bp,
11159 dev_info.port_hw_config[tmp].generic_features);
11160 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11161 }
11162 return cfg;
11163 }
11164
11165 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11166 {
11167 int /*abs*/func = BP_ABS_FUNC(bp);
11168 int vn;
11169 u32 val = 0;
11170 int rc = 0;
11171
11172 bnx2x_get_common_hwinfo(bp);
11173
11174 /*
11175 * initialize IGU parameters
11176 */
11177 if (CHIP_IS_E1x(bp)) {
11178 bp->common.int_block = INT_BLOCK_HC;
11179
11180 bp->igu_dsb_id = DEF_SB_IGU_ID;
11181 bp->igu_base_sb = 0;
11182 } else {
11183 bp->common.int_block = INT_BLOCK_IGU;
11184
11185 /* do not allow device reset during IGU info processing */
11186 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11187
11188 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11189
11190 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11191 int tout = 5000;
11192
11193 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11194
11195 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11196 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11197 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11198
11199 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11200 tout--;
11201 usleep_range(1000, 2000);
11202 }
11203
11204 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11205 dev_err(&bp->pdev->dev,
11206 "FORCING Normal Mode failed!!!\n");
11207 bnx2x_release_hw_lock(bp,
11208 HW_LOCK_RESOURCE_RESET);
11209 return -EPERM;
11210 }
11211 }
11212
11213 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11214 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11215 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11216 } else
11217 BNX2X_DEV_INFO("IGU Normal Mode\n");
11218
11219 rc = bnx2x_get_igu_cam_info(bp);
11220 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11221 if (rc)
11222 return rc;
11223 }
11224
11225 /*
11226 * set base FW non-default (fast path) status block id, this value is
11227 * used to initialize the fw_sb_id saved on the fp/queue structure to
11228 * determine the id used by the FW.
11229 */
11230 if (CHIP_IS_E1x(bp))
11231 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11232 else /*
11233 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11234 * the same queue are indicated on the same IGU SB). So we prefer
11235 * FW and IGU SBs to be the same value.
11236 */
11237 bp->base_fw_ndsb = bp->igu_base_sb;
11238
11239 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11240 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11241 bp->igu_sb_cnt, bp->base_fw_ndsb);
11242
11243 /*
11244 * Initialize MF configuration
11245 */
11246
11247 bp->mf_ov = 0;
11248 bp->mf_mode = 0;
11249 vn = BP_VN(bp);
11250
11251 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11252 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11253 bp->common.shmem2_base, SHMEM2_RD(bp, size),
11254 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11255
11256 if (SHMEM2_HAS(bp, mf_cfg_addr))
11257 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11258 else
11259 bp->common.mf_cfg_base = bp->common.shmem_base +
11260 offsetof(struct shmem_region, func_mb) +
11261 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11262 /*
11263 * get mf configuration:
11264 * 1. Existence of MF configuration
11265 * 2. MAC address must be legal (check only upper bytes)
11266 * for Switch-Independent mode;
11267 * OVLAN must be legal for Switch-Dependent mode
11268 * 3. SF_MODE configures specific MF mode
11269 */
11270 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11271 /* get mf configuration */
11272 val = SHMEM_RD(bp,
11273 dev_info.shared_feature_config.config);
11274 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11275
11276 switch (val) {
11277 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11278 val = MF_CFG_RD(bp, func_mf_config[func].
11279 mac_upper);
11280 /* check for legal mac (upper bytes)*/
11281 if (val != 0xffff) {
11282 bp->mf_mode = MULTI_FUNCTION_SI;
11283 bp->mf_config[vn] = MF_CFG_RD(bp,
11284 func_mf_config[func].config);
11285 } else
11286 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11287 break;
11288 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11289 if ((!CHIP_IS_E1x(bp)) &&
11290 (MF_CFG_RD(bp, func_mf_config[func].
11291 mac_upper) != 0xffff) &&
11292 (SHMEM2_HAS(bp,
11293 afex_driver_support))) {
11294 bp->mf_mode = MULTI_FUNCTION_AFEX;
11295 bp->mf_config[vn] = MF_CFG_RD(bp,
11296 func_mf_config[func].config);
11297 } else {
11298 BNX2X_DEV_INFO("can not configure afex mode\n");
11299 }
11300 break;
11301 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11302 /* get OV configuration */
11303 val = MF_CFG_RD(bp,
11304 func_mf_config[FUNC_0].e1hov_tag);
11305 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11306
11307 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11308 bp->mf_mode = MULTI_FUNCTION_SD;
11309 bp->mf_config[vn] = MF_CFG_RD(bp,
11310 func_mf_config[func].config);
11311 } else
11312 BNX2X_DEV_INFO("illegal OV for SD\n");
11313 break;
11314 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11315 bp->mf_config[vn] = 0;
11316 break;
11317 default:
11318 /* Unknown configuration: reset mf_config */
11319 bp->mf_config[vn] = 0;
11320 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11321 }
11322 }
11323
11324 BNX2X_DEV_INFO("%s function mode\n",
11325 IS_MF(bp) ? "multi" : "single");
11326
11327 switch (bp->mf_mode) {
11328 case MULTI_FUNCTION_SD:
11329 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11330 FUNC_MF_CFG_E1HOV_TAG_MASK;
11331 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11332 bp->mf_ov = val;
11333 bp->path_has_ovlan = true;
11334
11335 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11336 func, bp->mf_ov, bp->mf_ov);
11337 } else {
11338 dev_err(&bp->pdev->dev,
11339 "No valid MF OV for func %d, aborting\n",
11340 func);
11341 return -EPERM;
11342 }
11343 break;
11344 case MULTI_FUNCTION_AFEX:
11345 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11346 break;
11347 case MULTI_FUNCTION_SI:
11348 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11349 func);
11350 break;
11351 default:
11352 if (vn) {
11353 dev_err(&bp->pdev->dev,
11354 "VN %d is in a single function mode, aborting\n",
11355 vn);
11356 return -EPERM;
11357 }
11358 break;
11359 }
11360
11361 /* check if other port on the path needs ovlan:
11362 * Since MF configuration is shared between ports
11363 * Possible mixed modes are only
11364 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11365 */
11366 if (CHIP_MODE_IS_4_PORT(bp) &&
11367 !bp->path_has_ovlan &&
11368 !IS_MF(bp) &&
11369 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11370 u8 other_port = !BP_PORT(bp);
11371 u8 other_func = BP_PATH(bp) + 2*other_port;
11372 val = MF_CFG_RD(bp,
11373 func_mf_config[other_func].e1hov_tag);
11374 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11375 bp->path_has_ovlan = true;
11376 }
11377 }
11378
11379 /* adjust igu_sb_cnt to MF for E1x */
11380 if (CHIP_IS_E1x(bp) && IS_MF(bp))
11381 bp->igu_sb_cnt /= E1HVN_MAX;
11382
11383 /* port info */
11384 bnx2x_get_port_hwinfo(bp);
11385
11386 /* Get MAC addresses */
11387 bnx2x_get_mac_hwinfo(bp);
11388
11389 bnx2x_get_cnic_info(bp);
11390
11391 return rc;
11392 }
11393
11394 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11395 {
11396 int cnt, i, block_end, rodi;
11397 char vpd_start[BNX2X_VPD_LEN+1];
11398 char str_id_reg[VENDOR_ID_LEN+1];
11399 char str_id_cap[VENDOR_ID_LEN+1];
11400 char *vpd_data;
11401 char *vpd_extended_data = NULL;
11402 u8 len;
11403
11404 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11405 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11406
11407 if (cnt < BNX2X_VPD_LEN)
11408 goto out_not_found;
11409
11410 /* VPD RO tag should be first tag after identifier string, hence
11411 * we should be able to find it in first BNX2X_VPD_LEN chars
11412 */
11413 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11414 PCI_VPD_LRDT_RO_DATA);
11415 if (i < 0)
11416 goto out_not_found;
11417
11418 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11419 pci_vpd_lrdt_size(&vpd_start[i]);
11420
11421 i += PCI_VPD_LRDT_TAG_SIZE;
11422
11423 if (block_end > BNX2X_VPD_LEN) {
11424 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11425 if (vpd_extended_data == NULL)
11426 goto out_not_found;
11427
11428 /* read rest of vpd image into vpd_extended_data */
11429 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11430 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11431 block_end - BNX2X_VPD_LEN,
11432 vpd_extended_data + BNX2X_VPD_LEN);
11433 if (cnt < (block_end - BNX2X_VPD_LEN))
11434 goto out_not_found;
11435 vpd_data = vpd_extended_data;
11436 } else
11437 vpd_data = vpd_start;
11438
11439 /* now vpd_data holds full vpd content in both cases */
11440
11441 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11442 PCI_VPD_RO_KEYWORD_MFR_ID);
11443 if (rodi < 0)
11444 goto out_not_found;
11445
11446 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11447
11448 if (len != VENDOR_ID_LEN)
11449 goto out_not_found;
11450
11451 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11452
11453 /* vendor specific info */
11454 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11455 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11456 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11457 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11458
11459 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11460 PCI_VPD_RO_KEYWORD_VENDOR0);
11461 if (rodi >= 0) {
11462 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11463
11464 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11465
11466 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11467 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11468 bp->fw_ver[len] = ' ';
11469 }
11470 }
11471 kfree(vpd_extended_data);
11472 return;
11473 }
11474 out_not_found:
11475 kfree(vpd_extended_data);
11476 return;
11477 }
11478
11479 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11480 {
11481 u32 flags = 0;
11482
11483 if (CHIP_REV_IS_FPGA(bp))
11484 SET_FLAGS(flags, MODE_FPGA);
11485 else if (CHIP_REV_IS_EMUL(bp))
11486 SET_FLAGS(flags, MODE_EMUL);
11487 else
11488 SET_FLAGS(flags, MODE_ASIC);
11489
11490 if (CHIP_MODE_IS_4_PORT(bp))
11491 SET_FLAGS(flags, MODE_PORT4);
11492 else
11493 SET_FLAGS(flags, MODE_PORT2);
11494
11495 if (CHIP_IS_E2(bp))
11496 SET_FLAGS(flags, MODE_E2);
11497 else if (CHIP_IS_E3(bp)) {
11498 SET_FLAGS(flags, MODE_E3);
11499 if (CHIP_REV(bp) == CHIP_REV_Ax)
11500 SET_FLAGS(flags, MODE_E3_A0);
11501 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11502 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11503 }
11504
11505 if (IS_MF(bp)) {
11506 SET_FLAGS(flags, MODE_MF);
11507 switch (bp->mf_mode) {
11508 case MULTI_FUNCTION_SD:
11509 SET_FLAGS(flags, MODE_MF_SD);
11510 break;
11511 case MULTI_FUNCTION_SI:
11512 SET_FLAGS(flags, MODE_MF_SI);
11513 break;
11514 case MULTI_FUNCTION_AFEX:
11515 SET_FLAGS(flags, MODE_MF_AFEX);
11516 break;
11517 }
11518 } else
11519 SET_FLAGS(flags, MODE_SF);
11520
11521 #if defined(__LITTLE_ENDIAN)
11522 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11523 #else /*(__BIG_ENDIAN)*/
11524 SET_FLAGS(flags, MODE_BIG_ENDIAN);
11525 #endif
11526 INIT_MODE_FLAGS(bp) = flags;
11527 }
11528
11529 static int bnx2x_init_bp(struct bnx2x *bp)
11530 {
11531 int func;
11532 int rc;
11533
11534 mutex_init(&bp->port.phy_mutex);
11535 mutex_init(&bp->fw_mb_mutex);
11536 spin_lock_init(&bp->stats_lock);
11537
11538 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11539 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11540 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11541 if (IS_PF(bp)) {
11542 rc = bnx2x_get_hwinfo(bp);
11543 if (rc)
11544 return rc;
11545 } else {
11546 eth_zero_addr(bp->dev->dev_addr);
11547 }
11548
11549 bnx2x_set_modes_bitmap(bp);
11550
11551 rc = bnx2x_alloc_mem_bp(bp);
11552 if (rc)
11553 return rc;
11554
11555 bnx2x_read_fwinfo(bp);
11556
11557 func = BP_FUNC(bp);
11558
11559 /* need to reset chip if undi was active */
11560 if (IS_PF(bp) && !BP_NOMCP(bp)) {
11561 /* init fw_seq */
11562 bp->fw_seq =
11563 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11564 DRV_MSG_SEQ_NUMBER_MASK;
11565 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11566
11567 bnx2x_prev_unload(bp);
11568 }
11569
11570 if (CHIP_REV_IS_FPGA(bp))
11571 dev_err(&bp->pdev->dev, "FPGA detected\n");
11572
11573 if (BP_NOMCP(bp) && (func == 0))
11574 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11575
11576 bp->disable_tpa = disable_tpa;
11577 bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11578
11579 /* Set TPA flags */
11580 if (bp->disable_tpa) {
11581 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11582 bp->dev->features &= ~NETIF_F_LRO;
11583 } else {
11584 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11585 bp->dev->features |= NETIF_F_LRO;
11586 }
11587
11588 if (CHIP_IS_E1(bp))
11589 bp->dropless_fc = 0;
11590 else
11591 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11592
11593 bp->mrrs = mrrs;
11594
11595 bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11596 if (IS_VF(bp))
11597 bp->rx_ring_size = MAX_RX_AVAIL;
11598
11599 /* make sure that the numbers are in the right granularity */
11600 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11601 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11602
11603 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11604
11605 init_timer(&bp->timer);
11606 bp->timer.expires = jiffies + bp->current_interval;
11607 bp->timer.data = (unsigned long) bp;
11608 bp->timer.function = bnx2x_timer;
11609
11610 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11611 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11612 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11613 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11614 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11615 bnx2x_dcbx_init_params(bp);
11616 } else {
11617 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11618 }
11619
11620 if (CHIP_IS_E1x(bp))
11621 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11622 else
11623 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11624
11625 /* multiple tx priority */
11626 if (IS_VF(bp))
11627 bp->max_cos = 1;
11628 else if (CHIP_IS_E1x(bp))
11629 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11630 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11631 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11632 else if (CHIP_IS_E3B0(bp))
11633 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11634 else
11635 BNX2X_ERR("unknown chip %x revision %x\n",
11636 CHIP_NUM(bp), CHIP_REV(bp));
11637 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11638
11639 /* We need at least one default status block for slow-path events,
11640 * second status block for the L2 queue, and a third status block for
11641 * CNIC if supported.
11642 */
11643 if (CNIC_SUPPORT(bp))
11644 bp->min_msix_vec_cnt = 3;
11645 else
11646 bp->min_msix_vec_cnt = 2;
11647 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11648
11649 return rc;
11650 }
11651
11652 /****************************************************************************
11653 * General service functions
11654 ****************************************************************************/
11655
11656 /*
11657 * net_device service functions
11658 */
11659
11660 /* called with rtnl_lock */
11661 static int bnx2x_open(struct net_device *dev)
11662 {
11663 struct bnx2x *bp = netdev_priv(dev);
11664 bool global = false;
11665 int other_engine = BP_PATH(bp) ? 0 : 1;
11666 bool other_load_status, load_status;
11667 int rc;
11668
11669 bp->stats_init = true;
11670
11671 netif_carrier_off(dev);
11672
11673 bnx2x_set_power_state(bp, PCI_D0);
11674
11675 /* If parity had happen during the unload, then attentions
11676 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11677 * want the first function loaded on the current engine to
11678 * complete the recovery.
11679 * Parity recovery is only relevant for PF driver.
11680 */
11681 if (IS_PF(bp)) {
11682 other_load_status = bnx2x_get_load_status(bp, other_engine);
11683 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11684 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11685 bnx2x_chk_parity_attn(bp, &global, true)) {
11686 do {
11687 /* If there are attentions and they are in a
11688 * global blocks, set the GLOBAL_RESET bit
11689 * regardless whether it will be this function
11690 * that will complete the recovery or not.
11691 */
11692 if (global)
11693 bnx2x_set_reset_global(bp);
11694
11695 /* Only the first function on the current
11696 * engine should try to recover in open. In case
11697 * of attentions in global blocks only the first
11698 * in the chip should try to recover.
11699 */
11700 if ((!load_status &&
11701 (!global || !other_load_status)) &&
11702 bnx2x_trylock_leader_lock(bp) &&
11703 !bnx2x_leader_reset(bp)) {
11704 netdev_info(bp->dev,
11705 "Recovered in open\n");
11706 break;
11707 }
11708
11709 /* recovery has failed... */
11710 bnx2x_set_power_state(bp, PCI_D3hot);
11711 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11712
11713 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11714 "If you still see this message after a few retries then power cycle is required.\n");
11715
11716 return -EAGAIN;
11717 } while (0);
11718 }
11719 }
11720
11721 bp->recovery_state = BNX2X_RECOVERY_DONE;
11722 rc = bnx2x_nic_load(bp, LOAD_OPEN);
11723 if (rc)
11724 return rc;
11725 return bnx2x_open_epilog(bp);
11726 }
11727
11728 /* called with rtnl_lock */
11729 static int bnx2x_close(struct net_device *dev)
11730 {
11731 struct bnx2x *bp = netdev_priv(dev);
11732
11733 /* Unload the driver, release IRQs */
11734 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11735
11736 return 0;
11737 }
11738
11739 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11740 struct bnx2x_mcast_ramrod_params *p)
11741 {
11742 int mc_count = netdev_mc_count(bp->dev);
11743 struct bnx2x_mcast_list_elem *mc_mac =
11744 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11745 struct netdev_hw_addr *ha;
11746
11747 if (!mc_mac)
11748 return -ENOMEM;
11749
11750 INIT_LIST_HEAD(&p->mcast_list);
11751
11752 netdev_for_each_mc_addr(ha, bp->dev) {
11753 mc_mac->mac = bnx2x_mc_addr(ha);
11754 list_add_tail(&mc_mac->link, &p->mcast_list);
11755 mc_mac++;
11756 }
11757
11758 p->mcast_list_len = mc_count;
11759
11760 return 0;
11761 }
11762
11763 static void bnx2x_free_mcast_macs_list(
11764 struct bnx2x_mcast_ramrod_params *p)
11765 {
11766 struct bnx2x_mcast_list_elem *mc_mac =
11767 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11768 link);
11769
11770 WARN_ON(!mc_mac);
11771 kfree(mc_mac);
11772 }
11773
11774 /**
11775 * bnx2x_set_uc_list - configure a new unicast MACs list.
11776 *
11777 * @bp: driver handle
11778 *
11779 * We will use zero (0) as a MAC type for these MACs.
11780 */
11781 static int bnx2x_set_uc_list(struct bnx2x *bp)
11782 {
11783 int rc;
11784 struct net_device *dev = bp->dev;
11785 struct netdev_hw_addr *ha;
11786 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11787 unsigned long ramrod_flags = 0;
11788
11789 /* First schedule a cleanup up of old configuration */
11790 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11791 if (rc < 0) {
11792 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11793 return rc;
11794 }
11795
11796 netdev_for_each_uc_addr(ha, dev) {
11797 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11798 BNX2X_UC_LIST_MAC, &ramrod_flags);
11799 if (rc == -EEXIST) {
11800 DP(BNX2X_MSG_SP,
11801 "Failed to schedule ADD operations: %d\n", rc);
11802 /* do not treat adding same MAC as error */
11803 rc = 0;
11804
11805 } else if (rc < 0) {
11806
11807 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11808 rc);
11809 return rc;
11810 }
11811 }
11812
11813 /* Execute the pending commands */
11814 __set_bit(RAMROD_CONT, &ramrod_flags);
11815 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11816 BNX2X_UC_LIST_MAC, &ramrod_flags);
11817 }
11818
11819 static int bnx2x_set_mc_list(struct bnx2x *bp)
11820 {
11821 struct net_device *dev = bp->dev;
11822 struct bnx2x_mcast_ramrod_params rparam = {NULL};
11823 int rc = 0;
11824
11825 rparam.mcast_obj = &bp->mcast_obj;
11826
11827 /* first, clear all configured multicast MACs */
11828 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11829 if (rc < 0) {
11830 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11831 return rc;
11832 }
11833
11834 /* then, configure a new MACs list */
11835 if (netdev_mc_count(dev)) {
11836 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11837 if (rc) {
11838 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11839 rc);
11840 return rc;
11841 }
11842
11843 /* Now add the new MACs */
11844 rc = bnx2x_config_mcast(bp, &rparam,
11845 BNX2X_MCAST_CMD_ADD);
11846 if (rc < 0)
11847 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11848 rc);
11849
11850 bnx2x_free_mcast_macs_list(&rparam);
11851 }
11852
11853 return rc;
11854 }
11855
11856 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11857 void bnx2x_set_rx_mode(struct net_device *dev)
11858 {
11859 struct bnx2x *bp = netdev_priv(dev);
11860 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11861
11862 if (bp->state != BNX2X_STATE_OPEN) {
11863 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11864 return;
11865 }
11866
11867 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11868
11869 if (dev->flags & IFF_PROMISC)
11870 rx_mode = BNX2X_RX_MODE_PROMISC;
11871 else if ((dev->flags & IFF_ALLMULTI) ||
11872 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11873 CHIP_IS_E1(bp)))
11874 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11875 else {
11876 if (IS_PF(bp)) {
11877 /* some multicasts */
11878 if (bnx2x_set_mc_list(bp) < 0)
11879 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11880
11881 if (bnx2x_set_uc_list(bp) < 0)
11882 rx_mode = BNX2X_RX_MODE_PROMISC;
11883 } else {
11884 /* configuring mcast to a vf involves sleeping (when we
11885 * wait for the pf's response). Since this function is
11886 * called from non sleepable context we must schedule
11887 * a work item for this purpose
11888 */
11889 smp_mb__before_clear_bit();
11890 set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11891 &bp->sp_rtnl_state);
11892 smp_mb__after_clear_bit();
11893 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11894 }
11895 }
11896
11897 bp->rx_mode = rx_mode;
11898 /* handle ISCSI SD mode */
11899 if (IS_MF_ISCSI_SD(bp))
11900 bp->rx_mode = BNX2X_RX_MODE_NONE;
11901
11902 /* Schedule the rx_mode command */
11903 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11904 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11905 return;
11906 }
11907
11908 if (IS_PF(bp)) {
11909 bnx2x_set_storm_rx_mode(bp);
11910 } else {
11911 /* configuring rx mode to storms in a vf involves sleeping (when
11912 * we wait for the pf's response). Since this function is
11913 * called from non sleepable context we must schedule
11914 * a work item for this purpose
11915 */
11916 smp_mb__before_clear_bit();
11917 set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11918 &bp->sp_rtnl_state);
11919 smp_mb__after_clear_bit();
11920 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11921 }
11922 }
11923
11924 /* called with rtnl_lock */
11925 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11926 int devad, u16 addr)
11927 {
11928 struct bnx2x *bp = netdev_priv(netdev);
11929 u16 value;
11930 int rc;
11931
11932 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11933 prtad, devad, addr);
11934
11935 /* The HW expects different devad if CL22 is used */
11936 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11937
11938 bnx2x_acquire_phy_lock(bp);
11939 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11940 bnx2x_release_phy_lock(bp);
11941 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11942
11943 if (!rc)
11944 rc = value;
11945 return rc;
11946 }
11947
11948 /* called with rtnl_lock */
11949 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11950 u16 addr, u16 value)
11951 {
11952 struct bnx2x *bp = netdev_priv(netdev);
11953 int rc;
11954
11955 DP(NETIF_MSG_LINK,
11956 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11957 prtad, devad, addr, value);
11958
11959 /* The HW expects different devad if CL22 is used */
11960 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11961
11962 bnx2x_acquire_phy_lock(bp);
11963 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11964 bnx2x_release_phy_lock(bp);
11965 return rc;
11966 }
11967
11968 /* called with rtnl_lock */
11969 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11970 {
11971 struct bnx2x *bp = netdev_priv(dev);
11972 struct mii_ioctl_data *mdio = if_mii(ifr);
11973
11974 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11975 mdio->phy_id, mdio->reg_num, mdio->val_in);
11976
11977 if (!netif_running(dev))
11978 return -EAGAIN;
11979
11980 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11981 }
11982
11983 #ifdef CONFIG_NET_POLL_CONTROLLER
11984 static void poll_bnx2x(struct net_device *dev)
11985 {
11986 struct bnx2x *bp = netdev_priv(dev);
11987 int i;
11988
11989 for_each_eth_queue(bp, i) {
11990 struct bnx2x_fastpath *fp = &bp->fp[i];
11991 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11992 }
11993 }
11994 #endif
11995
11996 static int bnx2x_validate_addr(struct net_device *dev)
11997 {
11998 struct bnx2x *bp = netdev_priv(dev);
11999
12000 /* query the bulletin board for mac address configured by the PF */
12001 if (IS_VF(bp))
12002 bnx2x_sample_bulletin(bp);
12003
12004 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12005 BNX2X_ERR("Non-valid Ethernet address\n");
12006 return -EADDRNOTAVAIL;
12007 }
12008 return 0;
12009 }
12010
12011 static const struct net_device_ops bnx2x_netdev_ops = {
12012 .ndo_open = bnx2x_open,
12013 .ndo_stop = bnx2x_close,
12014 .ndo_start_xmit = bnx2x_start_xmit,
12015 .ndo_select_queue = bnx2x_select_queue,
12016 .ndo_set_rx_mode = bnx2x_set_rx_mode,
12017 .ndo_set_mac_address = bnx2x_change_mac_addr,
12018 .ndo_validate_addr = bnx2x_validate_addr,
12019 .ndo_do_ioctl = bnx2x_ioctl,
12020 .ndo_change_mtu = bnx2x_change_mtu,
12021 .ndo_fix_features = bnx2x_fix_features,
12022 .ndo_set_features = bnx2x_set_features,
12023 .ndo_tx_timeout = bnx2x_tx_timeout,
12024 #ifdef CONFIG_NET_POLL_CONTROLLER
12025 .ndo_poll_controller = poll_bnx2x,
12026 #endif
12027 .ndo_setup_tc = bnx2x_setup_tc,
12028 #ifdef CONFIG_BNX2X_SRIOV
12029 .ndo_set_vf_mac = bnx2x_set_vf_mac,
12030 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
12031 .ndo_get_vf_config = bnx2x_get_vf_config,
12032 #endif
12033 #ifdef NETDEV_FCOE_WWNN
12034 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
12035 #endif
12036
12037 #ifdef CONFIG_NET_LL_RX_POLL
12038 .ndo_ll_poll = bnx2x_low_latency_recv,
12039 #endif
12040 };
12041
12042 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12043 {
12044 struct device *dev = &bp->pdev->dev;
12045
12046 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12047 bp->flags |= USING_DAC_FLAG;
12048 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12049 dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12050 return -EIO;
12051 }
12052 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12053 dev_err(dev, "System does not support DMA, aborting\n");
12054 return -EIO;
12055 }
12056
12057 return 0;
12058 }
12059
12060 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12061 struct net_device *dev, unsigned long board_type)
12062 {
12063 int rc;
12064 u32 pci_cfg_dword;
12065 bool chip_is_e1x = (board_type == BCM57710 ||
12066 board_type == BCM57711 ||
12067 board_type == BCM57711E);
12068
12069 SET_NETDEV_DEV(dev, &pdev->dev);
12070
12071 bp->dev = dev;
12072 bp->pdev = pdev;
12073
12074 rc = pci_enable_device(pdev);
12075 if (rc) {
12076 dev_err(&bp->pdev->dev,
12077 "Cannot enable PCI device, aborting\n");
12078 goto err_out;
12079 }
12080
12081 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12082 dev_err(&bp->pdev->dev,
12083 "Cannot find PCI device base address, aborting\n");
12084 rc = -ENODEV;
12085 goto err_out_disable;
12086 }
12087
12088 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12089 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12090 rc = -ENODEV;
12091 goto err_out_disable;
12092 }
12093
12094 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12095 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12096 PCICFG_REVESION_ID_ERROR_VAL) {
12097 pr_err("PCI device error, probably due to fan failure, aborting\n");
12098 rc = -ENODEV;
12099 goto err_out_disable;
12100 }
12101
12102 if (atomic_read(&pdev->enable_cnt) == 1) {
12103 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12104 if (rc) {
12105 dev_err(&bp->pdev->dev,
12106 "Cannot obtain PCI resources, aborting\n");
12107 goto err_out_disable;
12108 }
12109
12110 pci_set_master(pdev);
12111 pci_save_state(pdev);
12112 }
12113
12114 if (IS_PF(bp)) {
12115 bp->pm_cap = pdev->pm_cap;
12116 if (bp->pm_cap == 0) {
12117 dev_err(&bp->pdev->dev,
12118 "Cannot find power management capability, aborting\n");
12119 rc = -EIO;
12120 goto err_out_release;
12121 }
12122 }
12123
12124 if (!pci_is_pcie(pdev)) {
12125 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12126 rc = -EIO;
12127 goto err_out_release;
12128 }
12129
12130 rc = bnx2x_set_coherency_mask(bp);
12131 if (rc)
12132 goto err_out_release;
12133
12134 dev->mem_start = pci_resource_start(pdev, 0);
12135 dev->base_addr = dev->mem_start;
12136 dev->mem_end = pci_resource_end(pdev, 0);
12137
12138 dev->irq = pdev->irq;
12139
12140 bp->regview = pci_ioremap_bar(pdev, 0);
12141 if (!bp->regview) {
12142 dev_err(&bp->pdev->dev,
12143 "Cannot map register space, aborting\n");
12144 rc = -ENOMEM;
12145 goto err_out_release;
12146 }
12147
12148 /* In E1/E1H use pci device function given by kernel.
12149 * In E2/E3 read physical function from ME register since these chips
12150 * support Physical Device Assignment where kernel BDF maybe arbitrary
12151 * (depending on hypervisor).
12152 */
12153 if (chip_is_e1x) {
12154 bp->pf_num = PCI_FUNC(pdev->devfn);
12155 } else {
12156 /* chip is E2/3*/
12157 pci_read_config_dword(bp->pdev,
12158 PCICFG_ME_REGISTER, &pci_cfg_dword);
12159 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12160 ME_REG_ABS_PF_NUM_SHIFT);
12161 }
12162 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12163
12164 /* clean indirect addresses */
12165 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12166 PCICFG_VENDOR_ID_OFFSET);
12167 /*
12168 * Clean the following indirect addresses for all functions since it
12169 * is not used by the driver.
12170 */
12171 if (IS_PF(bp)) {
12172 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12173 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12174 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12175 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12176
12177 if (chip_is_e1x) {
12178 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12179 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12180 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12181 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12182 }
12183
12184 /* Enable internal target-read (in case we are probed after PF
12185 * FLR). Must be done prior to any BAR read access. Only for
12186 * 57712 and up
12187 */
12188 if (!chip_is_e1x)
12189 REG_WR(bp,
12190 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12191 }
12192
12193 dev->watchdog_timeo = TX_TIMEOUT;
12194
12195 dev->netdev_ops = &bnx2x_netdev_ops;
12196 bnx2x_set_ethtool_ops(bp, dev);
12197
12198 dev->priv_flags |= IFF_UNICAST_FLT;
12199
12200 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12201 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12202 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12203 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12204 if (!CHIP_IS_E1x(bp)) {
12205 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12206 dev->hw_enc_features =
12207 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12208 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12209 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12210 }
12211
12212 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12213 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12214
12215 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12216 if (bp->flags & USING_DAC_FLAG)
12217 dev->features |= NETIF_F_HIGHDMA;
12218
12219 /* Add Loopback capability to the device */
12220 dev->hw_features |= NETIF_F_LOOPBACK;
12221
12222 #ifdef BCM_DCBNL
12223 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12224 #endif
12225
12226 /* get_port_hwinfo() will set prtad and mmds properly */
12227 bp->mdio.prtad = MDIO_PRTAD_NONE;
12228 bp->mdio.mmds = 0;
12229 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12230 bp->mdio.dev = dev;
12231 bp->mdio.mdio_read = bnx2x_mdio_read;
12232 bp->mdio.mdio_write = bnx2x_mdio_write;
12233
12234 return 0;
12235
12236 err_out_release:
12237 if (atomic_read(&pdev->enable_cnt) == 1)
12238 pci_release_regions(pdev);
12239
12240 err_out_disable:
12241 pci_disable_device(pdev);
12242 pci_set_drvdata(pdev, NULL);
12243
12244 err_out:
12245 return rc;
12246 }
12247
12248 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12249 enum bnx2x_pci_bus_speed *speed)
12250 {
12251 u32 link_speed, val = 0;
12252
12253 pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12254 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12255
12256 link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12257
12258 switch (link_speed) {
12259 case 3:
12260 *speed = BNX2X_PCI_LINK_SPEED_8000;
12261 break;
12262 case 2:
12263 *speed = BNX2X_PCI_LINK_SPEED_5000;
12264 break;
12265 default:
12266 *speed = BNX2X_PCI_LINK_SPEED_2500;
12267 }
12268 }
12269
12270 static int bnx2x_check_firmware(struct bnx2x *bp)
12271 {
12272 const struct firmware *firmware = bp->firmware;
12273 struct bnx2x_fw_file_hdr *fw_hdr;
12274 struct bnx2x_fw_file_section *sections;
12275 u32 offset, len, num_ops;
12276 __be16 *ops_offsets;
12277 int i;
12278 const u8 *fw_ver;
12279
12280 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12281 BNX2X_ERR("Wrong FW size\n");
12282 return -EINVAL;
12283 }
12284
12285 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12286 sections = (struct bnx2x_fw_file_section *)fw_hdr;
12287
12288 /* Make sure none of the offsets and sizes make us read beyond
12289 * the end of the firmware data */
12290 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12291 offset = be32_to_cpu(sections[i].offset);
12292 len = be32_to_cpu(sections[i].len);
12293 if (offset + len > firmware->size) {
12294 BNX2X_ERR("Section %d length is out of bounds\n", i);
12295 return -EINVAL;
12296 }
12297 }
12298
12299 /* Likewise for the init_ops offsets */
12300 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12301 ops_offsets = (__force __be16 *)(firmware->data + offset);
12302 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12303
12304 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12305 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12306 BNX2X_ERR("Section offset %d is out of bounds\n", i);
12307 return -EINVAL;
12308 }
12309 }
12310
12311 /* Check FW version */
12312 offset = be32_to_cpu(fw_hdr->fw_version.offset);
12313 fw_ver = firmware->data + offset;
12314 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12315 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12316 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12317 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12318 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12319 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12320 BCM_5710_FW_MAJOR_VERSION,
12321 BCM_5710_FW_MINOR_VERSION,
12322 BCM_5710_FW_REVISION_VERSION,
12323 BCM_5710_FW_ENGINEERING_VERSION);
12324 return -EINVAL;
12325 }
12326
12327 return 0;
12328 }
12329
12330 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12331 {
12332 const __be32 *source = (const __be32 *)_source;
12333 u32 *target = (u32 *)_target;
12334 u32 i;
12335
12336 for (i = 0; i < n/4; i++)
12337 target[i] = be32_to_cpu(source[i]);
12338 }
12339
12340 /*
12341 Ops array is stored in the following format:
12342 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12343 */
12344 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12345 {
12346 const __be32 *source = (const __be32 *)_source;
12347 struct raw_op *target = (struct raw_op *)_target;
12348 u32 i, j, tmp;
12349
12350 for (i = 0, j = 0; i < n/8; i++, j += 2) {
12351 tmp = be32_to_cpu(source[j]);
12352 target[i].op = (tmp >> 24) & 0xff;
12353 target[i].offset = tmp & 0xffffff;
12354 target[i].raw_data = be32_to_cpu(source[j + 1]);
12355 }
12356 }
12357
12358 /* IRO array is stored in the following format:
12359 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12360 */
12361 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12362 {
12363 const __be32 *source = (const __be32 *)_source;
12364 struct iro *target = (struct iro *)_target;
12365 u32 i, j, tmp;
12366
12367 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12368 target[i].base = be32_to_cpu(source[j]);
12369 j++;
12370 tmp = be32_to_cpu(source[j]);
12371 target[i].m1 = (tmp >> 16) & 0xffff;
12372 target[i].m2 = tmp & 0xffff;
12373 j++;
12374 tmp = be32_to_cpu(source[j]);
12375 target[i].m3 = (tmp >> 16) & 0xffff;
12376 target[i].size = tmp & 0xffff;
12377 j++;
12378 }
12379 }
12380
12381 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12382 {
12383 const __be16 *source = (const __be16 *)_source;
12384 u16 *target = (u16 *)_target;
12385 u32 i;
12386
12387 for (i = 0; i < n/2; i++)
12388 target[i] = be16_to_cpu(source[i]);
12389 }
12390
12391 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
12392 do { \
12393 u32 len = be32_to_cpu(fw_hdr->arr.len); \
12394 bp->arr = kmalloc(len, GFP_KERNEL); \
12395 if (!bp->arr) \
12396 goto lbl; \
12397 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
12398 (u8 *)bp->arr, len); \
12399 } while (0)
12400
12401 static int bnx2x_init_firmware(struct bnx2x *bp)
12402 {
12403 const char *fw_file_name;
12404 struct bnx2x_fw_file_hdr *fw_hdr;
12405 int rc;
12406
12407 if (bp->firmware)
12408 return 0;
12409
12410 if (CHIP_IS_E1(bp))
12411 fw_file_name = FW_FILE_NAME_E1;
12412 else if (CHIP_IS_E1H(bp))
12413 fw_file_name = FW_FILE_NAME_E1H;
12414 else if (!CHIP_IS_E1x(bp))
12415 fw_file_name = FW_FILE_NAME_E2;
12416 else {
12417 BNX2X_ERR("Unsupported chip revision\n");
12418 return -EINVAL;
12419 }
12420 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12421
12422 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12423 if (rc) {
12424 BNX2X_ERR("Can't load firmware file %s\n",
12425 fw_file_name);
12426 goto request_firmware_exit;
12427 }
12428
12429 rc = bnx2x_check_firmware(bp);
12430 if (rc) {
12431 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12432 goto request_firmware_exit;
12433 }
12434
12435 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12436
12437 /* Initialize the pointers to the init arrays */
12438 /* Blob */
12439 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12440
12441 /* Opcodes */
12442 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12443
12444 /* Offsets */
12445 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12446 be16_to_cpu_n);
12447
12448 /* STORMs firmware */
12449 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12450 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12451 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
12452 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12453 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12454 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12455 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
12456 be32_to_cpu(fw_hdr->usem_pram_data.offset);
12457 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12458 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12459 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
12460 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12461 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12462 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12463 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
12464 be32_to_cpu(fw_hdr->csem_pram_data.offset);
12465 /* IRO */
12466 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12467
12468 return 0;
12469
12470 iro_alloc_err:
12471 kfree(bp->init_ops_offsets);
12472 init_offsets_alloc_err:
12473 kfree(bp->init_ops);
12474 init_ops_alloc_err:
12475 kfree(bp->init_data);
12476 request_firmware_exit:
12477 release_firmware(bp->firmware);
12478 bp->firmware = NULL;
12479
12480 return rc;
12481 }
12482
12483 static void bnx2x_release_firmware(struct bnx2x *bp)
12484 {
12485 kfree(bp->init_ops_offsets);
12486 kfree(bp->init_ops);
12487 kfree(bp->init_data);
12488 release_firmware(bp->firmware);
12489 bp->firmware = NULL;
12490 }
12491
12492 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12493 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12494 .init_hw_cmn = bnx2x_init_hw_common,
12495 .init_hw_port = bnx2x_init_hw_port,
12496 .init_hw_func = bnx2x_init_hw_func,
12497
12498 .reset_hw_cmn = bnx2x_reset_common,
12499 .reset_hw_port = bnx2x_reset_port,
12500 .reset_hw_func = bnx2x_reset_func,
12501
12502 .gunzip_init = bnx2x_gunzip_init,
12503 .gunzip_end = bnx2x_gunzip_end,
12504
12505 .init_fw = bnx2x_init_firmware,
12506 .release_fw = bnx2x_release_firmware,
12507 };
12508
12509 void bnx2x__init_func_obj(struct bnx2x *bp)
12510 {
12511 /* Prepare DMAE related driver resources */
12512 bnx2x_setup_dmae(bp);
12513
12514 bnx2x_init_func_obj(bp, &bp->func_obj,
12515 bnx2x_sp(bp, func_rdata),
12516 bnx2x_sp_mapping(bp, func_rdata),
12517 bnx2x_sp(bp, func_afex_rdata),
12518 bnx2x_sp_mapping(bp, func_afex_rdata),
12519 &bnx2x_func_sp_drv);
12520 }
12521
12522 /* must be called after sriov-enable */
12523 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12524 {
12525 int cid_count = BNX2X_L2_MAX_CID(bp);
12526
12527 if (IS_SRIOV(bp))
12528 cid_count += BNX2X_VF_CIDS;
12529
12530 if (CNIC_SUPPORT(bp))
12531 cid_count += CNIC_CID_MAX;
12532
12533 return roundup(cid_count, QM_CID_ROUND);
12534 }
12535
12536 /**
12537 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12538 *
12539 * @dev: pci device
12540 *
12541 */
12542 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12543 int cnic_cnt, bool is_vf)
12544 {
12545 int pos, index;
12546 u16 control = 0;
12547
12548 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12549
12550 /*
12551 * If MSI-X is not supported - return number of SBs needed to support
12552 * one fast path queue: one FP queue + SB for CNIC
12553 */
12554 if (!pos) {
12555 dev_info(&pdev->dev, "no msix capability found\n");
12556 return 1 + cnic_cnt;
12557 }
12558 dev_info(&pdev->dev, "msix capability found\n");
12559
12560 /*
12561 * The value in the PCI configuration space is the index of the last
12562 * entry, namely one less than the actual size of the table, which is
12563 * exactly what we want to return from this function: number of all SBs
12564 * without the default SB.
12565 * For VFs there is no default SB, then we return (index+1).
12566 */
12567 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
12568
12569 index = control & PCI_MSIX_FLAGS_QSIZE;
12570
12571 return is_vf ? index + 1 : index;
12572 }
12573
12574 static int set_max_cos_est(int chip_id)
12575 {
12576 switch (chip_id) {
12577 case BCM57710:
12578 case BCM57711:
12579 case BCM57711E:
12580 return BNX2X_MULTI_TX_COS_E1X;
12581 case BCM57712:
12582 case BCM57712_MF:
12583 case BCM57712_VF:
12584 return BNX2X_MULTI_TX_COS_E2_E3A0;
12585 case BCM57800:
12586 case BCM57800_MF:
12587 case BCM57800_VF:
12588 case BCM57810:
12589 case BCM57810_MF:
12590 case BCM57840_4_10:
12591 case BCM57840_2_20:
12592 case BCM57840_O:
12593 case BCM57840_MFO:
12594 case BCM57810_VF:
12595 case BCM57840_MF:
12596 case BCM57840_VF:
12597 case BCM57811:
12598 case BCM57811_MF:
12599 case BCM57811_VF:
12600 return BNX2X_MULTI_TX_COS_E3B0;
12601 return 1;
12602 default:
12603 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12604 return -ENODEV;
12605 }
12606 }
12607
12608 static int set_is_vf(int chip_id)
12609 {
12610 switch (chip_id) {
12611 case BCM57712_VF:
12612 case BCM57800_VF:
12613 case BCM57810_VF:
12614 case BCM57840_VF:
12615 case BCM57811_VF:
12616 return true;
12617 default:
12618 return false;
12619 }
12620 }
12621
12622 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12623
12624 static int bnx2x_init_one(struct pci_dev *pdev,
12625 const struct pci_device_id *ent)
12626 {
12627 struct net_device *dev = NULL;
12628 struct bnx2x *bp;
12629 int pcie_width;
12630 enum bnx2x_pci_bus_speed pcie_speed;
12631 int rc, max_non_def_sbs;
12632 int rx_count, tx_count, rss_count, doorbell_size;
12633 int max_cos_est;
12634 bool is_vf;
12635 int cnic_cnt;
12636
12637 /* An estimated maximum supported CoS number according to the chip
12638 * version.
12639 * We will try to roughly estimate the maximum number of CoSes this chip
12640 * may support in order to minimize the memory allocated for Tx
12641 * netdev_queue's. This number will be accurately calculated during the
12642 * initialization of bp->max_cos based on the chip versions AND chip
12643 * revision in the bnx2x_init_bp().
12644 */
12645 max_cos_est = set_max_cos_est(ent->driver_data);
12646 if (max_cos_est < 0)
12647 return max_cos_est;
12648 is_vf = set_is_vf(ent->driver_data);
12649 cnic_cnt = is_vf ? 0 : 1;
12650
12651 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12652
12653 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12654 rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12655
12656 if (rss_count < 1)
12657 return -EINVAL;
12658
12659 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12660 rx_count = rss_count + cnic_cnt;
12661
12662 /* Maximum number of netdev Tx queues:
12663 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
12664 */
12665 tx_count = rss_count * max_cos_est + cnic_cnt;
12666
12667 /* dev zeroed in init_etherdev */
12668 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12669 if (!dev)
12670 return -ENOMEM;
12671
12672 bp = netdev_priv(dev);
12673
12674 bp->flags = 0;
12675 if (is_vf)
12676 bp->flags |= IS_VF_FLAG;
12677
12678 bp->igu_sb_cnt = max_non_def_sbs;
12679 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12680 bp->msg_enable = debug;
12681 bp->cnic_support = cnic_cnt;
12682 bp->cnic_probe = bnx2x_cnic_probe;
12683
12684 pci_set_drvdata(pdev, dev);
12685
12686 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12687 if (rc < 0) {
12688 free_netdev(dev);
12689 return rc;
12690 }
12691
12692 BNX2X_DEV_INFO("This is a %s function\n",
12693 IS_PF(bp) ? "physical" : "virtual");
12694 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12695 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12696 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12697 tx_count, rx_count);
12698
12699 rc = bnx2x_init_bp(bp);
12700 if (rc)
12701 goto init_one_exit;
12702
12703 /* Map doorbells here as we need the real value of bp->max_cos which
12704 * is initialized in bnx2x_init_bp() to determine the number of
12705 * l2 connections.
12706 */
12707 if (IS_VF(bp)) {
12708 bp->doorbells = bnx2x_vf_doorbells(bp);
12709 rc = bnx2x_vf_pci_alloc(bp);
12710 if (rc)
12711 goto init_one_exit;
12712 } else {
12713 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12714 if (doorbell_size > pci_resource_len(pdev, 2)) {
12715 dev_err(&bp->pdev->dev,
12716 "Cannot map doorbells, bar size too small, aborting\n");
12717 rc = -ENOMEM;
12718 goto init_one_exit;
12719 }
12720 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12721 doorbell_size);
12722 }
12723 if (!bp->doorbells) {
12724 dev_err(&bp->pdev->dev,
12725 "Cannot map doorbell space, aborting\n");
12726 rc = -ENOMEM;
12727 goto init_one_exit;
12728 }
12729
12730 if (IS_VF(bp)) {
12731 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12732 if (rc)
12733 goto init_one_exit;
12734 }
12735
12736 /* Enable SRIOV if capability found in configuration space */
12737 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12738 if (rc)
12739 goto init_one_exit;
12740
12741 /* calc qm_cid_count */
12742 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12743 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12744
12745 /* disable FCOE L2 queue for E1x*/
12746 if (CHIP_IS_E1x(bp))
12747 bp->flags |= NO_FCOE_FLAG;
12748
12749 /* Set bp->num_queues for MSI-X mode*/
12750 bnx2x_set_num_queues(bp);
12751
12752 /* Configure interrupt mode: try to enable MSI-X/MSI if
12753 * needed.
12754 */
12755 rc = bnx2x_set_int_mode(bp);
12756 if (rc) {
12757 dev_err(&pdev->dev, "Cannot set interrupts\n");
12758 goto init_one_exit;
12759 }
12760 BNX2X_DEV_INFO("set interrupts successfully\n");
12761
12762 /* register the net device */
12763 rc = register_netdev(dev);
12764 if (rc) {
12765 dev_err(&pdev->dev, "Cannot register net device\n");
12766 goto init_one_exit;
12767 }
12768 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12769
12770 if (!NO_FCOE(bp)) {
12771 /* Add storage MAC address */
12772 rtnl_lock();
12773 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12774 rtnl_unlock();
12775 }
12776
12777 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12778 BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12779 pcie_width, pcie_speed);
12780
12781 BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12782 board_info[ent->driver_data].name,
12783 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12784 pcie_width,
12785 pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12786 pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12787 pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12788 "Unknown",
12789 dev->base_addr, bp->pdev->irq, dev->dev_addr);
12790
12791 return 0;
12792
12793 init_one_exit:
12794 if (bp->regview)
12795 iounmap(bp->regview);
12796
12797 if (IS_PF(bp) && bp->doorbells)
12798 iounmap(bp->doorbells);
12799
12800 free_netdev(dev);
12801
12802 if (atomic_read(&pdev->enable_cnt) == 1)
12803 pci_release_regions(pdev);
12804
12805 pci_disable_device(pdev);
12806 pci_set_drvdata(pdev, NULL);
12807
12808 return rc;
12809 }
12810
12811 static void __bnx2x_remove(struct pci_dev *pdev,
12812 struct net_device *dev,
12813 struct bnx2x *bp,
12814 bool remove_netdev)
12815 {
12816 /* Delete storage MAC address */
12817 if (!NO_FCOE(bp)) {
12818 rtnl_lock();
12819 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12820 rtnl_unlock();
12821 }
12822
12823 #ifdef BCM_DCBNL
12824 /* Delete app tlvs from dcbnl */
12825 bnx2x_dcbnl_update_applist(bp, true);
12826 #endif
12827
12828 /* Close the interface - either directly or implicitly */
12829 if (remove_netdev) {
12830 unregister_netdev(dev);
12831 } else {
12832 rtnl_lock();
12833 if (netif_running(dev))
12834 bnx2x_close(dev);
12835 rtnl_unlock();
12836 }
12837
12838 bnx2x_iov_remove_one(bp);
12839
12840 /* Power on: we can't let PCI layer write to us while we are in D3 */
12841 if (IS_PF(bp))
12842 bnx2x_set_power_state(bp, PCI_D0);
12843
12844 /* Disable MSI/MSI-X */
12845 bnx2x_disable_msi(bp);
12846
12847 /* Power off */
12848 if (IS_PF(bp))
12849 bnx2x_set_power_state(bp, PCI_D3hot);
12850
12851 /* Make sure RESET task is not scheduled before continuing */
12852 cancel_delayed_work_sync(&bp->sp_rtnl_task);
12853
12854 /* send message via vfpf channel to release the resources of this vf */
12855 if (IS_VF(bp))
12856 bnx2x_vfpf_release(bp);
12857
12858 /* Assumes no further PCIe PM changes will occur */
12859 if (system_state == SYSTEM_POWER_OFF) {
12860 pci_wake_from_d3(pdev, bp->wol);
12861 pci_set_power_state(pdev, PCI_D3hot);
12862 }
12863
12864 if (bp->regview)
12865 iounmap(bp->regview);
12866
12867 /* for vf doorbells are part of the regview and were unmapped along with
12868 * it. FW is only loaded by PF.
12869 */
12870 if (IS_PF(bp)) {
12871 if (bp->doorbells)
12872 iounmap(bp->doorbells);
12873
12874 bnx2x_release_firmware(bp);
12875 }
12876 bnx2x_free_mem_bp(bp);
12877
12878 if (remove_netdev)
12879 free_netdev(dev);
12880
12881 if (atomic_read(&pdev->enable_cnt) == 1)
12882 pci_release_regions(pdev);
12883
12884 pci_disable_device(pdev);
12885 pci_set_drvdata(pdev, NULL);
12886 }
12887
12888 static void bnx2x_remove_one(struct pci_dev *pdev)
12889 {
12890 struct net_device *dev = pci_get_drvdata(pdev);
12891 struct bnx2x *bp;
12892
12893 if (!dev) {
12894 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12895 return;
12896 }
12897 bp = netdev_priv(dev);
12898
12899 __bnx2x_remove(pdev, dev, bp, true);
12900 }
12901
12902 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12903 {
12904 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12905
12906 bp->rx_mode = BNX2X_RX_MODE_NONE;
12907
12908 if (CNIC_LOADED(bp))
12909 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12910
12911 /* Stop Tx */
12912 bnx2x_tx_disable(bp);
12913 /* Delete all NAPI objects */
12914 bnx2x_del_all_napi(bp);
12915 if (CNIC_LOADED(bp))
12916 bnx2x_del_all_napi_cnic(bp);
12917 netdev_reset_tc(bp->dev);
12918
12919 del_timer_sync(&bp->timer);
12920 cancel_delayed_work(&bp->sp_task);
12921 cancel_delayed_work(&bp->period_task);
12922
12923 spin_lock_bh(&bp->stats_lock);
12924 bp->stats_state = STATS_STATE_DISABLED;
12925 spin_unlock_bh(&bp->stats_lock);
12926
12927 bnx2x_save_statistics(bp);
12928
12929 netif_carrier_off(bp->dev);
12930
12931 return 0;
12932 }
12933
12934 /**
12935 * bnx2x_io_error_detected - called when PCI error is detected
12936 * @pdev: Pointer to PCI device
12937 * @state: The current pci connection state
12938 *
12939 * This function is called after a PCI bus error affecting
12940 * this device has been detected.
12941 */
12942 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12943 pci_channel_state_t state)
12944 {
12945 struct net_device *dev = pci_get_drvdata(pdev);
12946 struct bnx2x *bp = netdev_priv(dev);
12947
12948 rtnl_lock();
12949
12950 BNX2X_ERR("IO error detected\n");
12951
12952 netif_device_detach(dev);
12953
12954 if (state == pci_channel_io_perm_failure) {
12955 rtnl_unlock();
12956 return PCI_ERS_RESULT_DISCONNECT;
12957 }
12958
12959 if (netif_running(dev))
12960 bnx2x_eeh_nic_unload(bp);
12961
12962 bnx2x_prev_path_mark_eeh(bp);
12963
12964 pci_disable_device(pdev);
12965
12966 rtnl_unlock();
12967
12968 /* Request a slot reset */
12969 return PCI_ERS_RESULT_NEED_RESET;
12970 }
12971
12972 /**
12973 * bnx2x_io_slot_reset - called after the PCI bus has been reset
12974 * @pdev: Pointer to PCI device
12975 *
12976 * Restart the card from scratch, as if from a cold-boot.
12977 */
12978 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12979 {
12980 struct net_device *dev = pci_get_drvdata(pdev);
12981 struct bnx2x *bp = netdev_priv(dev);
12982 int i;
12983
12984 rtnl_lock();
12985 BNX2X_ERR("IO slot reset initializing...\n");
12986 if (pci_enable_device(pdev)) {
12987 dev_err(&pdev->dev,
12988 "Cannot re-enable PCI device after reset\n");
12989 rtnl_unlock();
12990 return PCI_ERS_RESULT_DISCONNECT;
12991 }
12992
12993 pci_set_master(pdev);
12994 pci_restore_state(pdev);
12995 pci_save_state(pdev);
12996
12997 if (netif_running(dev))
12998 bnx2x_set_power_state(bp, PCI_D0);
12999
13000 if (netif_running(dev)) {
13001 BNX2X_ERR("IO slot reset --> driver unload\n");
13002
13003 /* MCP should have been reset; Need to wait for validity */
13004 bnx2x_init_shmem(bp);
13005
13006 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13007 u32 v;
13008
13009 v = SHMEM2_RD(bp,
13010 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13011 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13012 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13013 }
13014 bnx2x_drain_tx_queues(bp);
13015 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13016 bnx2x_netif_stop(bp, 1);
13017 bnx2x_free_irq(bp);
13018
13019 /* Report UNLOAD_DONE to MCP */
13020 bnx2x_send_unload_done(bp, true);
13021
13022 bp->sp_state = 0;
13023 bp->port.pmf = 0;
13024
13025 bnx2x_prev_unload(bp);
13026
13027 /* We should have reseted the engine, so It's fair to
13028 * assume the FW will no longer write to the bnx2x driver.
13029 */
13030 bnx2x_squeeze_objects(bp);
13031 bnx2x_free_skbs(bp);
13032 for_each_rx_queue(bp, i)
13033 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13034 bnx2x_free_fp_mem(bp);
13035 bnx2x_free_mem(bp);
13036
13037 bp->state = BNX2X_STATE_CLOSED;
13038 }
13039
13040 rtnl_unlock();
13041
13042 return PCI_ERS_RESULT_RECOVERED;
13043 }
13044
13045 /**
13046 * bnx2x_io_resume - called when traffic can start flowing again
13047 * @pdev: Pointer to PCI device
13048 *
13049 * This callback is called when the error recovery driver tells us that
13050 * its OK to resume normal operation.
13051 */
13052 static void bnx2x_io_resume(struct pci_dev *pdev)
13053 {
13054 struct net_device *dev = pci_get_drvdata(pdev);
13055 struct bnx2x *bp = netdev_priv(dev);
13056
13057 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13058 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13059 return;
13060 }
13061
13062 rtnl_lock();
13063
13064 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13065 DRV_MSG_SEQ_NUMBER_MASK;
13066
13067 if (netif_running(dev))
13068 bnx2x_nic_load(bp, LOAD_NORMAL);
13069
13070 netif_device_attach(dev);
13071
13072 rtnl_unlock();
13073 }
13074
13075 static const struct pci_error_handlers bnx2x_err_handler = {
13076 .error_detected = bnx2x_io_error_detected,
13077 .slot_reset = bnx2x_io_slot_reset,
13078 .resume = bnx2x_io_resume,
13079 };
13080
13081 static void bnx2x_shutdown(struct pci_dev *pdev)
13082 {
13083 struct net_device *dev = pci_get_drvdata(pdev);
13084 struct bnx2x *bp;
13085
13086 if (!dev)
13087 return;
13088
13089 bp = netdev_priv(dev);
13090 if (!bp)
13091 return;
13092
13093 rtnl_lock();
13094 netif_device_detach(dev);
13095 rtnl_unlock();
13096
13097 /* Don't remove the netdevice, as there are scenarios which will cause
13098 * the kernel to hang, e.g., when trying to remove bnx2i while the
13099 * rootfs is mounted from SAN.
13100 */
13101 __bnx2x_remove(pdev, dev, bp, false);
13102 }
13103
13104 static struct pci_driver bnx2x_pci_driver = {
13105 .name = DRV_MODULE_NAME,
13106 .id_table = bnx2x_pci_tbl,
13107 .probe = bnx2x_init_one,
13108 .remove = bnx2x_remove_one,
13109 .suspend = bnx2x_suspend,
13110 .resume = bnx2x_resume,
13111 .err_handler = &bnx2x_err_handler,
13112 #ifdef CONFIG_BNX2X_SRIOV
13113 .sriov_configure = bnx2x_sriov_configure,
13114 #endif
13115 .shutdown = bnx2x_shutdown,
13116 };
13117
13118 static int __init bnx2x_init(void)
13119 {
13120 int ret;
13121
13122 pr_info("%s", version);
13123
13124 bnx2x_wq = create_singlethread_workqueue("bnx2x");
13125 if (bnx2x_wq == NULL) {
13126 pr_err("Cannot create workqueue\n");
13127 return -ENOMEM;
13128 }
13129
13130 ret = pci_register_driver(&bnx2x_pci_driver);
13131 if (ret) {
13132 pr_err("Cannot register driver\n");
13133 destroy_workqueue(bnx2x_wq);
13134 }
13135 return ret;
13136 }
13137
13138 static void __exit bnx2x_cleanup(void)
13139 {
13140 struct list_head *pos, *q;
13141
13142 pci_unregister_driver(&bnx2x_pci_driver);
13143
13144 destroy_workqueue(bnx2x_wq);
13145
13146 /* Free globally allocated resources */
13147 list_for_each_safe(pos, q, &bnx2x_prev_list) {
13148 struct bnx2x_prev_path_list *tmp =
13149 list_entry(pos, struct bnx2x_prev_path_list, list);
13150 list_del(pos);
13151 kfree(tmp);
13152 }
13153 }
13154
13155 void bnx2x_notify_link_changed(struct bnx2x *bp)
13156 {
13157 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13158 }
13159
13160 module_init(bnx2x_init);
13161 module_exit(bnx2x_cleanup);
13162
13163 /**
13164 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13165 *
13166 * @bp: driver handle
13167 * @set: set or clear the CAM entry
13168 *
13169 * This function will wait until the ramrod completion returns.
13170 * Return 0 if success, -ENODEV if ramrod doesn't return.
13171 */
13172 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13173 {
13174 unsigned long ramrod_flags = 0;
13175
13176 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13177 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13178 &bp->iscsi_l2_mac_obj, true,
13179 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13180 }
13181
13182 /* count denotes the number of new completions we have seen */
13183 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13184 {
13185 struct eth_spe *spe;
13186 int cxt_index, cxt_offset;
13187
13188 #ifdef BNX2X_STOP_ON_ERROR
13189 if (unlikely(bp->panic))
13190 return;
13191 #endif
13192
13193 spin_lock_bh(&bp->spq_lock);
13194 BUG_ON(bp->cnic_spq_pending < count);
13195 bp->cnic_spq_pending -= count;
13196
13197 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13198 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13199 & SPE_HDR_CONN_TYPE) >>
13200 SPE_HDR_CONN_TYPE_SHIFT;
13201 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13202 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13203
13204 /* Set validation for iSCSI L2 client before sending SETUP
13205 * ramrod
13206 */
13207 if (type == ETH_CONNECTION_TYPE) {
13208 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13209 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13210 ILT_PAGE_CIDS;
13211 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13212 (cxt_index * ILT_PAGE_CIDS);
13213 bnx2x_set_ctx_validation(bp,
13214 &bp->context[cxt_index].
13215 vcxt[cxt_offset].eth,
13216 BNX2X_ISCSI_ETH_CID(bp));
13217 }
13218 }
13219
13220 /*
13221 * There may be not more than 8 L2, not more than 8 L5 SPEs
13222 * and in the air. We also check that number of outstanding
13223 * COMMON ramrods is not more than the EQ and SPQ can
13224 * accommodate.
13225 */
13226 if (type == ETH_CONNECTION_TYPE) {
13227 if (!atomic_read(&bp->cq_spq_left))
13228 break;
13229 else
13230 atomic_dec(&bp->cq_spq_left);
13231 } else if (type == NONE_CONNECTION_TYPE) {
13232 if (!atomic_read(&bp->eq_spq_left))
13233 break;
13234 else
13235 atomic_dec(&bp->eq_spq_left);
13236 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13237 (type == FCOE_CONNECTION_TYPE)) {
13238 if (bp->cnic_spq_pending >=
13239 bp->cnic_eth_dev.max_kwqe_pending)
13240 break;
13241 else
13242 bp->cnic_spq_pending++;
13243 } else {
13244 BNX2X_ERR("Unknown SPE type: %d\n", type);
13245 bnx2x_panic();
13246 break;
13247 }
13248
13249 spe = bnx2x_sp_get_next(bp);
13250 *spe = *bp->cnic_kwq_cons;
13251
13252 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13253 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13254
13255 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13256 bp->cnic_kwq_cons = bp->cnic_kwq;
13257 else
13258 bp->cnic_kwq_cons++;
13259 }
13260 bnx2x_sp_prod_update(bp);
13261 spin_unlock_bh(&bp->spq_lock);
13262 }
13263
13264 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13265 struct kwqe_16 *kwqes[], u32 count)
13266 {
13267 struct bnx2x *bp = netdev_priv(dev);
13268 int i;
13269
13270 #ifdef BNX2X_STOP_ON_ERROR
13271 if (unlikely(bp->panic)) {
13272 BNX2X_ERR("Can't post to SP queue while panic\n");
13273 return -EIO;
13274 }
13275 #endif
13276
13277 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13278 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13279 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13280 return -EAGAIN;
13281 }
13282
13283 spin_lock_bh(&bp->spq_lock);
13284
13285 for (i = 0; i < count; i++) {
13286 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13287
13288 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13289 break;
13290
13291 *bp->cnic_kwq_prod = *spe;
13292
13293 bp->cnic_kwq_pending++;
13294
13295 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13296 spe->hdr.conn_and_cmd_data, spe->hdr.type,
13297 spe->data.update_data_addr.hi,
13298 spe->data.update_data_addr.lo,
13299 bp->cnic_kwq_pending);
13300
13301 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13302 bp->cnic_kwq_prod = bp->cnic_kwq;
13303 else
13304 bp->cnic_kwq_prod++;
13305 }
13306
13307 spin_unlock_bh(&bp->spq_lock);
13308
13309 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13310 bnx2x_cnic_sp_post(bp, 0);
13311
13312 return i;
13313 }
13314
13315 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13316 {
13317 struct cnic_ops *c_ops;
13318 int rc = 0;
13319
13320 mutex_lock(&bp->cnic_mutex);
13321 c_ops = rcu_dereference_protected(bp->cnic_ops,
13322 lockdep_is_held(&bp->cnic_mutex));
13323 if (c_ops)
13324 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13325 mutex_unlock(&bp->cnic_mutex);
13326
13327 return rc;
13328 }
13329
13330 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13331 {
13332 struct cnic_ops *c_ops;
13333 int rc = 0;
13334
13335 rcu_read_lock();
13336 c_ops = rcu_dereference(bp->cnic_ops);
13337 if (c_ops)
13338 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13339 rcu_read_unlock();
13340
13341 return rc;
13342 }
13343
13344 /*
13345 * for commands that have no data
13346 */
13347 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13348 {
13349 struct cnic_ctl_info ctl = {0};
13350
13351 ctl.cmd = cmd;
13352
13353 return bnx2x_cnic_ctl_send(bp, &ctl);
13354 }
13355
13356 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13357 {
13358 struct cnic_ctl_info ctl = {0};
13359
13360 /* first we tell CNIC and only then we count this as a completion */
13361 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13362 ctl.data.comp.cid = cid;
13363 ctl.data.comp.error = err;
13364
13365 bnx2x_cnic_ctl_send_bh(bp, &ctl);
13366 bnx2x_cnic_sp_post(bp, 0);
13367 }
13368
13369 /* Called with netif_addr_lock_bh() taken.
13370 * Sets an rx_mode config for an iSCSI ETH client.
13371 * Doesn't block.
13372 * Completion should be checked outside.
13373 */
13374 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13375 {
13376 unsigned long accept_flags = 0, ramrod_flags = 0;
13377 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13378 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13379
13380 if (start) {
13381 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13382 * because it's the only way for UIO Queue to accept
13383 * multicasts (in non-promiscuous mode only one Queue per
13384 * function will receive multicast packets (leading in our
13385 * case).
13386 */
13387 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13388 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13389 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13390 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13391
13392 /* Clear STOP_PENDING bit if START is requested */
13393 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13394
13395 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13396 } else
13397 /* Clear START_PENDING bit if STOP is requested */
13398 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13399
13400 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13401 set_bit(sched_state, &bp->sp_state);
13402 else {
13403 __set_bit(RAMROD_RX, &ramrod_flags);
13404 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13405 ramrod_flags);
13406 }
13407 }
13408
13409 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13410 {
13411 struct bnx2x *bp = netdev_priv(dev);
13412 int rc = 0;
13413
13414 switch (ctl->cmd) {
13415 case DRV_CTL_CTXTBL_WR_CMD: {
13416 u32 index = ctl->data.io.offset;
13417 dma_addr_t addr = ctl->data.io.dma_addr;
13418
13419 bnx2x_ilt_wr(bp, index, addr);
13420 break;
13421 }
13422
13423 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13424 int count = ctl->data.credit.credit_count;
13425
13426 bnx2x_cnic_sp_post(bp, count);
13427 break;
13428 }
13429
13430 /* rtnl_lock is held. */
13431 case DRV_CTL_START_L2_CMD: {
13432 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13433 unsigned long sp_bits = 0;
13434
13435 /* Configure the iSCSI classification object */
13436 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13437 cp->iscsi_l2_client_id,
13438 cp->iscsi_l2_cid, BP_FUNC(bp),
13439 bnx2x_sp(bp, mac_rdata),
13440 bnx2x_sp_mapping(bp, mac_rdata),
13441 BNX2X_FILTER_MAC_PENDING,
13442 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13443 &bp->macs_pool);
13444
13445 /* Set iSCSI MAC address */
13446 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13447 if (rc)
13448 break;
13449
13450 mmiowb();
13451 barrier();
13452
13453 /* Start accepting on iSCSI L2 ring */
13454
13455 netif_addr_lock_bh(dev);
13456 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13457 netif_addr_unlock_bh(dev);
13458
13459 /* bits to wait on */
13460 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13461 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13462
13463 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13464 BNX2X_ERR("rx_mode completion timed out!\n");
13465
13466 break;
13467 }
13468
13469 /* rtnl_lock is held. */
13470 case DRV_CTL_STOP_L2_CMD: {
13471 unsigned long sp_bits = 0;
13472
13473 /* Stop accepting on iSCSI L2 ring */
13474 netif_addr_lock_bh(dev);
13475 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13476 netif_addr_unlock_bh(dev);
13477
13478 /* bits to wait on */
13479 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13480 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13481
13482 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13483 BNX2X_ERR("rx_mode completion timed out!\n");
13484
13485 mmiowb();
13486 barrier();
13487
13488 /* Unset iSCSI L2 MAC */
13489 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13490 BNX2X_ISCSI_ETH_MAC, true);
13491 break;
13492 }
13493 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13494 int count = ctl->data.credit.credit_count;
13495
13496 smp_mb__before_atomic_inc();
13497 atomic_add(count, &bp->cq_spq_left);
13498 smp_mb__after_atomic_inc();
13499 break;
13500 }
13501 case DRV_CTL_ULP_REGISTER_CMD: {
13502 int ulp_type = ctl->data.register_data.ulp_type;
13503
13504 if (CHIP_IS_E3(bp)) {
13505 int idx = BP_FW_MB_IDX(bp);
13506 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13507 int path = BP_PATH(bp);
13508 int port = BP_PORT(bp);
13509 int i;
13510 u32 scratch_offset;
13511 u32 *host_addr;
13512
13513 /* first write capability to shmem2 */
13514 if (ulp_type == CNIC_ULP_ISCSI)
13515 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13516 else if (ulp_type == CNIC_ULP_FCOE)
13517 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13518 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13519
13520 if ((ulp_type != CNIC_ULP_FCOE) ||
13521 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13522 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
13523 break;
13524
13525 /* if reached here - should write fcoe capabilities */
13526 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13527 if (!scratch_offset)
13528 break;
13529 scratch_offset += offsetof(struct glob_ncsi_oem_data,
13530 fcoe_features[path][port]);
13531 host_addr = (u32 *) &(ctl->data.register_data.
13532 fcoe_features);
13533 for (i = 0; i < sizeof(struct fcoe_capabilities);
13534 i += 4)
13535 REG_WR(bp, scratch_offset + i,
13536 *(host_addr + i/4));
13537 }
13538 break;
13539 }
13540
13541 case DRV_CTL_ULP_UNREGISTER_CMD: {
13542 int ulp_type = ctl->data.ulp_type;
13543
13544 if (CHIP_IS_E3(bp)) {
13545 int idx = BP_FW_MB_IDX(bp);
13546 u32 cap;
13547
13548 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13549 if (ulp_type == CNIC_ULP_ISCSI)
13550 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13551 else if (ulp_type == CNIC_ULP_FCOE)
13552 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13553 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13554 }
13555 break;
13556 }
13557
13558 default:
13559 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13560 rc = -EINVAL;
13561 }
13562
13563 return rc;
13564 }
13565
13566 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13567 {
13568 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13569
13570 if (bp->flags & USING_MSIX_FLAG) {
13571 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13572 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13573 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13574 } else {
13575 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13576 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13577 }
13578 if (!CHIP_IS_E1x(bp))
13579 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13580 else
13581 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13582
13583 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
13584 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13585 cp->irq_arr[1].status_blk = bp->def_status_blk;
13586 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13587 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13588
13589 cp->num_irq = 2;
13590 }
13591
13592 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13593 {
13594 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13595
13596 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13597 bnx2x_cid_ilt_lines(bp);
13598 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13599 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13600 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13601
13602 if (NO_ISCSI_OOO(bp))
13603 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13604 }
13605
13606 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13607 void *data)
13608 {
13609 struct bnx2x *bp = netdev_priv(dev);
13610 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13611 int rc;
13612
13613 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13614
13615 if (ops == NULL) {
13616 BNX2X_ERR("NULL ops received\n");
13617 return -EINVAL;
13618 }
13619
13620 if (!CNIC_SUPPORT(bp)) {
13621 BNX2X_ERR("Can't register CNIC when not supported\n");
13622 return -EOPNOTSUPP;
13623 }
13624
13625 if (!CNIC_LOADED(bp)) {
13626 rc = bnx2x_load_cnic(bp);
13627 if (rc) {
13628 BNX2X_ERR("CNIC-related load failed\n");
13629 return rc;
13630 }
13631 }
13632
13633 bp->cnic_enabled = true;
13634
13635 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13636 if (!bp->cnic_kwq)
13637 return -ENOMEM;
13638
13639 bp->cnic_kwq_cons = bp->cnic_kwq;
13640 bp->cnic_kwq_prod = bp->cnic_kwq;
13641 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13642
13643 bp->cnic_spq_pending = 0;
13644 bp->cnic_kwq_pending = 0;
13645
13646 bp->cnic_data = data;
13647
13648 cp->num_irq = 0;
13649 cp->drv_state |= CNIC_DRV_STATE_REGD;
13650 cp->iro_arr = bp->iro_arr;
13651
13652 bnx2x_setup_cnic_irq_info(bp);
13653
13654 rcu_assign_pointer(bp->cnic_ops, ops);
13655
13656 return 0;
13657 }
13658
13659 static int bnx2x_unregister_cnic(struct net_device *dev)
13660 {
13661 struct bnx2x *bp = netdev_priv(dev);
13662 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13663
13664 mutex_lock(&bp->cnic_mutex);
13665 cp->drv_state = 0;
13666 RCU_INIT_POINTER(bp->cnic_ops, NULL);
13667 mutex_unlock(&bp->cnic_mutex);
13668 synchronize_rcu();
13669 bp->cnic_enabled = false;
13670 kfree(bp->cnic_kwq);
13671 bp->cnic_kwq = NULL;
13672
13673 return 0;
13674 }
13675
13676 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13677 {
13678 struct bnx2x *bp = netdev_priv(dev);
13679 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13680
13681 /* If both iSCSI and FCoE are disabled - return NULL in
13682 * order to indicate CNIC that it should not try to work
13683 * with this device.
13684 */
13685 if (NO_ISCSI(bp) && NO_FCOE(bp))
13686 return NULL;
13687
13688 cp->drv_owner = THIS_MODULE;
13689 cp->chip_id = CHIP_ID(bp);
13690 cp->pdev = bp->pdev;
13691 cp->io_base = bp->regview;
13692 cp->io_base2 = bp->doorbells;
13693 cp->max_kwqe_pending = 8;
13694 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13695 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13696 bnx2x_cid_ilt_lines(bp);
13697 cp->ctx_tbl_len = CNIC_ILT_LINES;
13698 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13699 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13700 cp->drv_ctl = bnx2x_drv_ctl;
13701 cp->drv_register_cnic = bnx2x_register_cnic;
13702 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13703 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13704 cp->iscsi_l2_client_id =
13705 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13706 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13707
13708 if (NO_ISCSI_OOO(bp))
13709 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13710
13711 if (NO_ISCSI(bp))
13712 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13713
13714 if (NO_FCOE(bp))
13715 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13716
13717 BNX2X_DEV_INFO(
13718 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13719 cp->ctx_blk_size,
13720 cp->ctx_tbl_offset,
13721 cp->ctx_tbl_len,
13722 cp->starting_cid);
13723 return cp;
13724 }
13725
13726 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13727 {
13728 struct bnx2x *bp = fp->bp;
13729 u32 offset = BAR_USTRORM_INTMEM;
13730
13731 if (IS_VF(bp))
13732 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13733 else if (!CHIP_IS_E1x(bp))
13734 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13735 else
13736 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13737
13738 return offset;
13739 }
13740
13741 /* called only on E1H or E2.
13742 * When pretending to be PF, the pretend value is the function number 0...7
13743 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13744 * combination
13745 */
13746 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13747 {
13748 u32 pretend_reg;
13749
13750 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13751 return -1;
13752
13753 /* get my own pretend register */
13754 pretend_reg = bnx2x_get_pretend_reg(bp);
13755 REG_WR(bp, pretend_reg, pretend_func_val);
13756 REG_RD(bp, pretend_reg);
13757 return 0;
13758 }