]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
Merge remote-tracking branch 'asoc/fix/atmel' into asoc-linus
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION \
70 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
71 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
72 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
73 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT (5*HZ)
80
81 static char version[] =
82 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 "BCM57710/57711/57711E/"
88 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 " Set number of queues (default is as a number of CPUs)");
100
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 "(1 INT#x; 2 MSI)");
109
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121
122 struct workqueue_struct *bnx2x_wq;
123
124 struct bnx2x_mac_vals {
125 u32 xmac_addr;
126 u32 xmac_val;
127 u32 emac_addr;
128 u32 emac_val;
129 u32 umac_addr;
130 u32 umac_val;
131 u32 bmac_addr;
132 u32 bmac_val[2];
133 };
134
135 enum bnx2x_board_type {
136 BCM57710 = 0,
137 BCM57711,
138 BCM57711E,
139 BCM57712,
140 BCM57712_MF,
141 BCM57712_VF,
142 BCM57800,
143 BCM57800_MF,
144 BCM57800_VF,
145 BCM57810,
146 BCM57810_MF,
147 BCM57810_VF,
148 BCM57840_4_10,
149 BCM57840_2_20,
150 BCM57840_MF,
151 BCM57840_VF,
152 BCM57811,
153 BCM57811_MF,
154 BCM57840_O,
155 BCM57840_MFO,
156 BCM57811_VF
157 };
158
159 /* indexed by board_type, above */
160 static struct {
161 char *name;
162 } board_info[] = {
163 [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
248 #endif
249
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 { 0 }
273 };
274
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 u32 addr, dma_addr_t mapping)
287 {
288 REG_WR(bp, addr, U64_LO(mapping));
289 REG_WR(bp, addr + 4, U64_HI(mapping));
290 }
291
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 dma_addr_t mapping, u16 abs_fid)
294 {
295 u32 addr = XSEM_REG_FAST_MEMORY +
296 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297
298 __storm_memset_dma_mapping(bp, addr, mapping);
299 }
300
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 u16 pf_id)
303 {
304 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 pf_id);
306 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 pf_id);
308 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 pf_id);
310 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 pf_id);
312 }
313
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 u8 enable)
316 {
317 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 enable);
319 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 enable);
321 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 enable);
323 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 enable);
325 }
326
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 struct event_ring_data *eq_data,
329 u16 pfid)
330 {
331 size_t size = sizeof(struct event_ring_data);
332
333 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334
335 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 u16 pfid)
340 {
341 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 REG_WR16(bp, addr, eq_prod);
343 }
344
345 /* used only at init
346 * locking is done by mcp
347 */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 PCICFG_VENDOR_ID_OFFSET);
354 }
355
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358 u32 val;
359
360 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 PCICFG_VENDOR_ID_OFFSET);
364
365 return val;
366 }
367
368 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE "dst_addr [none]"
373
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 struct dmae_command *dmae, int msglvl)
376 {
377 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 int i;
379
380 switch (dmae->opcode & DMAE_COMMAND_DST) {
381 case DMAE_CMD_DST_PCI:
382 if (src_type == DMAE_CMD_SRC_PCI)
383 DP(msglvl, "DMAE: opcode 0x%08x\n"
384 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 dmae->comp_addr_hi, dmae->comp_addr_lo,
389 dmae->comp_val);
390 else
391 DP(msglvl, "DMAE: opcode 0x%08x\n"
392 "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 dmae->opcode, dmae->src_addr_lo >> 2,
395 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 dmae->comp_addr_hi, dmae->comp_addr_lo,
397 dmae->comp_val);
398 break;
399 case DMAE_CMD_DST_GRC:
400 if (src_type == DMAE_CMD_SRC_PCI)
401 DP(msglvl, "DMAE: opcode 0x%08x\n"
402 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 dmae->len, dmae->dst_addr_lo >> 2,
406 dmae->comp_addr_hi, dmae->comp_addr_lo,
407 dmae->comp_val);
408 else
409 DP(msglvl, "DMAE: opcode 0x%08x\n"
410 "src [%08x], len [%d*4], dst [%08x]\n"
411 "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 dmae->opcode, dmae->src_addr_lo >> 2,
413 dmae->len, dmae->dst_addr_lo >> 2,
414 dmae->comp_addr_hi, dmae->comp_addr_lo,
415 dmae->comp_val);
416 break;
417 default:
418 if (src_type == DMAE_CMD_SRC_PCI)
419 DP(msglvl, "DMAE: opcode 0x%08x\n"
420 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
421 "comp_addr [%x:%08x] comp_val 0x%08x\n",
422 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 dmae->comp_val);
425 else
426 DP(msglvl, "DMAE: opcode 0x%08x\n"
427 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
428 "comp_addr [%x:%08x] comp_val 0x%08x\n",
429 dmae->opcode, dmae->src_addr_lo >> 2,
430 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 dmae->comp_val);
432 break;
433 }
434
435 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 i, *(((u32 *)dmae) + i));
438 }
439
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443 u32 cmd_offset;
444 int i;
445
446 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449 }
450 REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 DMAE_CMD_C_ENABLE);
457 }
458
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461 return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 bool with_comp, u8 comp_type)
466 {
467 u32 opcode = 0;
468
469 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 (dst_type << DMAE_COMMAND_DST_SHIFT));
471
472 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473
474 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478
479 #ifdef __BIG_ENDIAN
480 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 if (with_comp)
485 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 return opcode;
487 }
488
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 struct dmae_command *dmae,
491 u8 src_type, u8 dst_type)
492 {
493 memset(dmae, 0, sizeof(struct dmae_command));
494
495 /* set the opcode */
496 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 true, DMAE_COMP_PCI);
498
499 /* fill in the completion parameters */
500 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 dmae->comp_val = DMAE_COMP_VAL;
503 }
504
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 int rc = 0;
511
512 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513
514 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 * as long as this code is called both from syscall context and
516 * from ndo_set_rx_mode() flow that may be called from BH.
517 */
518 spin_lock_bh(&bp->dmae_lock);
519
520 /* reset completion */
521 *wb_comp = 0;
522
523 /* post the command on the channel used for initializations */
524 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525
526 /* wait for completion */
527 udelay(5);
528 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529
530 if (!cnt ||
531 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 BNX2X_ERR("DMAE timeout!\n");
534 rc = DMAE_TIMEOUT;
535 goto unlock;
536 }
537 cnt--;
538 udelay(50);
539 }
540 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541 BNX2X_ERR("DMAE PCI error!\n");
542 rc = DMAE_PCI_ERROR;
543 }
544
545 unlock:
546 spin_unlock_bh(&bp->dmae_lock);
547 return rc;
548 }
549
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 u32 len32)
552 {
553 int rc;
554 struct dmae_command dmae;
555
556 if (!bp->dmae_ready) {
557 u32 *data = bnx2x_sp(bp, wb_data[0]);
558
559 if (CHIP_IS_E1(bp))
560 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 else
562 bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 return;
564 }
565
566 /* set opcode and fixed command fields */
567 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568
569 /* fill in addresses and len */
570 dmae.src_addr_lo = U64_LO(dma_addr);
571 dmae.src_addr_hi = U64_HI(dma_addr);
572 dmae.dst_addr_lo = dst_addr >> 2;
573 dmae.dst_addr_hi = 0;
574 dmae.len = len32;
575
576 /* issue the command and wait for completion */
577 rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578 if (rc) {
579 BNX2X_ERR("DMAE returned failure %d\n", rc);
580 bnx2x_panic();
581 }
582 }
583
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586 int rc;
587 struct dmae_command dmae;
588
589 if (!bp->dmae_ready) {
590 u32 *data = bnx2x_sp(bp, wb_data[0]);
591 int i;
592
593 if (CHIP_IS_E1(bp))
594 for (i = 0; i < len32; i++)
595 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596 else
597 for (i = 0; i < len32; i++)
598 data[i] = REG_RD(bp, src_addr + i*4);
599
600 return;
601 }
602
603 /* set opcode and fixed command fields */
604 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605
606 /* fill in addresses and len */
607 dmae.src_addr_lo = src_addr >> 2;
608 dmae.src_addr_hi = 0;
609 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611 dmae.len = len32;
612
613 /* issue the command and wait for completion */
614 rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615 if (rc) {
616 BNX2X_ERR("DMAE returned failure %d\n", rc);
617 bnx2x_panic();
618 }
619 }
620
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622 u32 addr, u32 len)
623 {
624 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625 int offset = 0;
626
627 while (len > dmae_wr_max) {
628 bnx2x_write_dmae(bp, phys_addr + offset,
629 addr + offset, dmae_wr_max);
630 offset += dmae_wr_max * 4;
631 len -= dmae_wr_max;
632 }
633
634 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639 char last_idx;
640 int i, rc = 0;
641 u32 row0, row1, row2, row3;
642
643 /* XSTORM */
644 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645 XSTORM_ASSERT_LIST_INDEX_OFFSET);
646 if (last_idx)
647 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648
649 /* print the asserts */
650 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651
652 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653 XSTORM_ASSERT_LIST_OFFSET(i));
654 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660
661 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 i, row3, row2, row1, row0);
664 rc++;
665 } else {
666 break;
667 }
668 }
669
670 /* TSTORM */
671 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672 TSTORM_ASSERT_LIST_INDEX_OFFSET);
673 if (last_idx)
674 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675
676 /* print the asserts */
677 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678
679 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680 TSTORM_ASSERT_LIST_OFFSET(i));
681 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687
688 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690 i, row3, row2, row1, row0);
691 rc++;
692 } else {
693 break;
694 }
695 }
696
697 /* CSTORM */
698 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699 CSTORM_ASSERT_LIST_INDEX_OFFSET);
700 if (last_idx)
701 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702
703 /* print the asserts */
704 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705
706 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707 CSTORM_ASSERT_LIST_OFFSET(i));
708 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714
715 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717 i, row3, row2, row1, row0);
718 rc++;
719 } else {
720 break;
721 }
722 }
723
724 /* USTORM */
725 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726 USTORM_ASSERT_LIST_INDEX_OFFSET);
727 if (last_idx)
728 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729
730 /* print the asserts */
731 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732
733 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734 USTORM_ASSERT_LIST_OFFSET(i));
735 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736 USTORM_ASSERT_LIST_OFFSET(i) + 4);
737 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 USTORM_ASSERT_LIST_OFFSET(i) + 8);
739 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 USTORM_ASSERT_LIST_OFFSET(i) + 12);
741
742 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744 i, row3, row2, row1, row0);
745 rc++;
746 } else {
747 break;
748 }
749 }
750
751 return rc;
752 }
753
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756 u32 addr, val;
757 u32 mark, offset;
758 __be32 data[9];
759 int word;
760 u32 trace_shmem_base;
761 if (BP_NOMCP(bp)) {
762 BNX2X_ERR("NO MCP - can not dump\n");
763 return;
764 }
765 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766 (bp->common.bc_ver & 0xff0000) >> 16,
767 (bp->common.bc_ver & 0xff00) >> 8,
768 (bp->common.bc_ver & 0xff));
769
770 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773
774 if (BP_PATH(bp) == 0)
775 trace_shmem_base = bp->common.shmem_base;
776 else
777 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778 addr = trace_shmem_base - 0x800;
779
780 /* validate TRCB signature */
781 mark = REG_RD(bp, addr);
782 if (mark != MFW_TRACE_SIGNATURE) {
783 BNX2X_ERR("Trace buffer signature is missing.");
784 return ;
785 }
786
787 /* read cyclic buffer pointer */
788 addr += 4;
789 mark = REG_RD(bp, addr);
790 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791 + ((mark + 0x3) & ~0x3) - 0x08000000;
792 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793
794 printk("%s", lvl);
795
796 /* dump buffer after the mark */
797 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798 for (word = 0; word < 8; word++)
799 data[word] = htonl(REG_RD(bp, offset + 4*word));
800 data[8] = 0x0;
801 pr_cont("%s", (char *)data);
802 }
803
804 /* dump buffer before the mark */
805 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806 for (word = 0; word < 8; word++)
807 data[word] = htonl(REG_RD(bp, offset + 4*word));
808 data[8] = 0x0;
809 pr_cont("%s", (char *)data);
810 }
811 printk("%s" "end of fw dump\n", lvl);
812 }
813
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816 bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821 int port = BP_PORT(bp);
822 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823 u32 val = REG_RD(bp, addr);
824
825 /* in E1 we must use only PCI configuration space to disable
826 * MSI/MSIX capability
827 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828 */
829 if (CHIP_IS_E1(bp)) {
830 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831 * Use mask register to prevent from HC sending interrupts
832 * after we exit the function
833 */
834 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835
836 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837 HC_CONFIG_0_REG_INT_LINE_EN_0 |
838 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839 } else
840 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842 HC_CONFIG_0_REG_INT_LINE_EN_0 |
843 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844
845 DP(NETIF_MSG_IFDOWN,
846 "write %x to HC %d (addr 0x%x)\n",
847 val, port, addr);
848
849 /* flush all outstanding writes */
850 mmiowb();
851
852 REG_WR(bp, addr, val);
853 if (REG_RD(bp, addr) != val)
854 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860
861 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862 IGU_PF_CONF_INT_LINE_EN |
863 IGU_PF_CONF_ATTN_BIT_EN);
864
865 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866
867 /* flush all outstanding writes */
868 mmiowb();
869
870 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877 if (bp->common.int_block == INT_BLOCK_HC)
878 bnx2x_hc_int_disable(bp);
879 else
880 bnx2x_igu_int_disable(bp);
881 }
882
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885 int i;
886 u16 j;
887 struct hc_sp_status_block_data sp_sb_data;
888 int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890 u16 start = 0, end = 0;
891 u8 cos;
892 #endif
893 if (disable_int)
894 bnx2x_int_disable(bp);
895
896 bp->stats_state = STATS_STATE_DISABLED;
897 bp->eth_stats.unrecoverable_error++;
898 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899
900 BNX2X_ERR("begin crash dump -----------------\n");
901
902 /* Indices */
903 /* Common */
904 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905 bp->def_idx, bp->def_att_idx, bp->attn_state,
906 bp->spq_prod_idx, bp->stats_counter);
907 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
908 bp->def_status_blk->atten_status_block.attn_bits,
909 bp->def_status_blk->atten_status_block.attn_bits_ack,
910 bp->def_status_blk->atten_status_block.status_block_id,
911 bp->def_status_blk->atten_status_block.attn_bits_index);
912 BNX2X_ERR(" def (");
913 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914 pr_cont("0x%x%s",
915 bp->def_status_blk->sp_sb.index_values[i],
916 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
917
918 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921 i*sizeof(u32));
922
923 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
924 sp_sb_data.igu_sb_id,
925 sp_sb_data.igu_seg_id,
926 sp_sb_data.p_func.pf_id,
927 sp_sb_data.p_func.vnic_id,
928 sp_sb_data.p_func.vf_id,
929 sp_sb_data.p_func.vf_valid,
930 sp_sb_data.state);
931
932 for_each_eth_queue(bp, i) {
933 struct bnx2x_fastpath *fp = &bp->fp[i];
934 int loop;
935 struct hc_status_block_data_e2 sb_data_e2;
936 struct hc_status_block_data_e1x sb_data_e1x;
937 struct hc_status_block_sm *hc_sm_p =
938 CHIP_IS_E1x(bp) ?
939 sb_data_e1x.common.state_machine :
940 sb_data_e2.common.state_machine;
941 struct hc_index_data *hc_index_p =
942 CHIP_IS_E1x(bp) ?
943 sb_data_e1x.index_data :
944 sb_data_e2.index_data;
945 u8 data_size, cos;
946 u32 *sb_data_p;
947 struct bnx2x_fp_txdata txdata;
948
949 /* Rx */
950 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
951 i, fp->rx_bd_prod, fp->rx_bd_cons,
952 fp->rx_comp_prod,
953 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
955 fp->rx_sge_prod, fp->last_max_sge,
956 le16_to_cpu(fp->fp_hc_idx));
957
958 /* Tx */
959 for_each_cos_in_tx_queue(fp, cos)
960 {
961 txdata = *fp->txdata_ptr[cos];
962 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
963 i, txdata.tx_pkt_prod,
964 txdata.tx_pkt_cons, txdata.tx_bd_prod,
965 txdata.tx_bd_cons,
966 le16_to_cpu(*txdata.tx_cons_sb));
967 }
968
969 loop = CHIP_IS_E1x(bp) ?
970 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971
972 /* host sb data */
973
974 if (IS_FCOE_FP(fp))
975 continue;
976
977 BNX2X_ERR(" run indexes (");
978 for (j = 0; j < HC_SB_MAX_SM; j++)
979 pr_cont("0x%x%s",
980 fp->sb_running_index[j],
981 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982
983 BNX2X_ERR(" indexes (");
984 for (j = 0; j < loop; j++)
985 pr_cont("0x%x%s",
986 fp->sb_index_values[j],
987 (j == loop - 1) ? ")" : " ");
988 /* fw sb data */
989 data_size = CHIP_IS_E1x(bp) ?
990 sizeof(struct hc_status_block_data_e1x) :
991 sizeof(struct hc_status_block_data_e2);
992 data_size /= sizeof(u32);
993 sb_data_p = CHIP_IS_E1x(bp) ?
994 (u32 *)&sb_data_e1x :
995 (u32 *)&sb_data_e2;
996 /* copy sb data in here */
997 for (j = 0; j < data_size; j++)
998 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000 j * sizeof(u32));
1001
1002 if (!CHIP_IS_E1x(bp)) {
1003 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1004 sb_data_e2.common.p_func.pf_id,
1005 sb_data_e2.common.p_func.vf_id,
1006 sb_data_e2.common.p_func.vf_valid,
1007 sb_data_e2.common.p_func.vnic_id,
1008 sb_data_e2.common.same_igu_sb_1b,
1009 sb_data_e2.common.state);
1010 } else {
1011 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1012 sb_data_e1x.common.p_func.pf_id,
1013 sb_data_e1x.common.p_func.vf_id,
1014 sb_data_e1x.common.p_func.vf_valid,
1015 sb_data_e1x.common.p_func.vnic_id,
1016 sb_data_e1x.common.same_igu_sb_1b,
1017 sb_data_e1x.common.state);
1018 }
1019
1020 /* SB_SMs data */
1021 for (j = 0; j < HC_SB_MAX_SM; j++) {
1022 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023 j, hc_sm_p[j].__flags,
1024 hc_sm_p[j].igu_sb_id,
1025 hc_sm_p[j].igu_seg_id,
1026 hc_sm_p[j].time_to_expire,
1027 hc_sm_p[j].timer_value);
1028 }
1029
1030 /* Indices data */
1031 for (j = 0; j < loop; j++) {
1032 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033 hc_index_p[j].flags,
1034 hc_index_p[j].timeout);
1035 }
1036 }
1037
1038 #ifdef BNX2X_STOP_ON_ERROR
1039
1040 /* event queue */
1041 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042 for (i = 0; i < NUM_EQ_DESC; i++) {
1043 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044
1045 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046 i, bp->eq_ring[i].message.opcode,
1047 bp->eq_ring[i].message.error);
1048 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049 }
1050
1051 /* Rings */
1052 /* Rx */
1053 for_each_valid_rx_queue(bp, i) {
1054 struct bnx2x_fastpath *fp = &bp->fp[i];
1055
1056 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058 for (j = start; j != end; j = RX_BD(j + 1)) {
1059 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061
1062 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1063 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064 }
1065
1066 start = RX_SGE(fp->rx_sge_prod);
1067 end = RX_SGE(fp->last_max_sge);
1068 for (j = start; j != end; j = RX_SGE(j + 1)) {
1069 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071
1072 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1073 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074 }
1075
1076 start = RCQ_BD(fp->rx_comp_cons - 10);
1077 end = RCQ_BD(fp->rx_comp_cons + 503);
1078 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080
1081 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083 }
1084 }
1085
1086 /* Tx */
1087 for_each_valid_tx_queue(bp, i) {
1088 struct bnx2x_fastpath *fp = &bp->fp[i];
1089 for_each_cos_in_tx_queue(fp, cos) {
1090 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091
1092 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094 for (j = start; j != end; j = TX_BD(j + 1)) {
1095 struct sw_tx_bd *sw_bd =
1096 &txdata->tx_buf_ring[j];
1097
1098 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099 i, cos, j, sw_bd->skb,
1100 sw_bd->first_bd);
1101 }
1102
1103 start = TX_BD(txdata->tx_bd_cons - 10);
1104 end = TX_BD(txdata->tx_bd_cons + 254);
1105 for (j = start; j != end; j = TX_BD(j + 1)) {
1106 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107
1108 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109 i, cos, j, tx_bd[0], tx_bd[1],
1110 tx_bd[2], tx_bd[3]);
1111 }
1112 }
1113 }
1114 #endif
1115 bnx2x_fw_dump(bp);
1116 bnx2x_mc_assert(bp);
1117 BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119
1120 /*
1121 * FLR Support for E2
1122 *
1123 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124 * initialization.
1125 */
1126 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL 50 /* usec */
1128 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129
1130 struct pbf_pN_buf_regs {
1131 int pN;
1132 u32 init_crd;
1133 u32 crd;
1134 u32 crd_freed;
1135 };
1136
1137 struct pbf_pN_cmd_regs {
1138 int pN;
1139 u32 lines_occup;
1140 u32 lines_freed;
1141 };
1142
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144 struct pbf_pN_buf_regs *regs,
1145 u32 poll_count)
1146 {
1147 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148 u32 cur_cnt = poll_count;
1149
1150 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151 crd = crd_start = REG_RD(bp, regs->crd);
1152 init_crd = REG_RD(bp, regs->init_crd);
1153
1154 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1156 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157
1158 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159 (init_crd - crd_start))) {
1160 if (cur_cnt--) {
1161 udelay(FLR_WAIT_INTERVAL);
1162 crd = REG_RD(bp, regs->crd);
1163 crd_freed = REG_RD(bp, regs->crd_freed);
1164 } else {
1165 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166 regs->pN);
1167 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1168 regs->pN, crd);
1169 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170 regs->pN, crd_freed);
1171 break;
1172 }
1173 }
1174 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179 struct pbf_pN_cmd_regs *regs,
1180 u32 poll_count)
1181 {
1182 u32 occup, to_free, freed, freed_start;
1183 u32 cur_cnt = poll_count;
1184
1185 occup = to_free = REG_RD(bp, regs->lines_occup);
1186 freed = freed_start = REG_RD(bp, regs->lines_freed);
1187
1188 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1189 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190
1191 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192 if (cur_cnt--) {
1193 udelay(FLR_WAIT_INTERVAL);
1194 occup = REG_RD(bp, regs->lines_occup);
1195 freed = REG_RD(bp, regs->lines_freed);
1196 } else {
1197 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198 regs->pN);
1199 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1200 regs->pN, occup);
1201 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202 regs->pN, freed);
1203 break;
1204 }
1205 }
1206 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211 u32 expected, u32 poll_count)
1212 {
1213 u32 cur_cnt = poll_count;
1214 u32 val;
1215
1216 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217 udelay(FLR_WAIT_INTERVAL);
1218
1219 return val;
1220 }
1221
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223 char *msg, u32 poll_cnt)
1224 {
1225 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226 if (val != 0) {
1227 BNX2X_ERR("%s usage count=%d\n", msg, val);
1228 return 1;
1229 }
1230 return 0;
1231 }
1232
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236 /* adjust polling timeout */
1237 if (CHIP_REV_IS_EMUL(bp))
1238 return FLR_POLL_CNT * 2000;
1239
1240 if (CHIP_REV_IS_FPGA(bp))
1241 return FLR_POLL_CNT * 120;
1242
1243 return FLR_POLL_CNT;
1244 }
1245
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248 struct pbf_pN_cmd_regs cmd_regs[] = {
1249 {0, (CHIP_IS_E3B0(bp)) ?
1250 PBF_REG_TQ_OCCUPANCY_Q0 :
1251 PBF_REG_P0_TQ_OCCUPANCY,
1252 (CHIP_IS_E3B0(bp)) ?
1253 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254 PBF_REG_P0_TQ_LINES_FREED_CNT},
1255 {1, (CHIP_IS_E3B0(bp)) ?
1256 PBF_REG_TQ_OCCUPANCY_Q1 :
1257 PBF_REG_P1_TQ_OCCUPANCY,
1258 (CHIP_IS_E3B0(bp)) ?
1259 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260 PBF_REG_P1_TQ_LINES_FREED_CNT},
1261 {4, (CHIP_IS_E3B0(bp)) ?
1262 PBF_REG_TQ_OCCUPANCY_LB_Q :
1263 PBF_REG_P4_TQ_OCCUPANCY,
1264 (CHIP_IS_E3B0(bp)) ?
1265 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266 PBF_REG_P4_TQ_LINES_FREED_CNT}
1267 };
1268
1269 struct pbf_pN_buf_regs buf_regs[] = {
1270 {0, (CHIP_IS_E3B0(bp)) ?
1271 PBF_REG_INIT_CRD_Q0 :
1272 PBF_REG_P0_INIT_CRD ,
1273 (CHIP_IS_E3B0(bp)) ?
1274 PBF_REG_CREDIT_Q0 :
1275 PBF_REG_P0_CREDIT,
1276 (CHIP_IS_E3B0(bp)) ?
1277 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279 {1, (CHIP_IS_E3B0(bp)) ?
1280 PBF_REG_INIT_CRD_Q1 :
1281 PBF_REG_P1_INIT_CRD,
1282 (CHIP_IS_E3B0(bp)) ?
1283 PBF_REG_CREDIT_Q1 :
1284 PBF_REG_P1_CREDIT,
1285 (CHIP_IS_E3B0(bp)) ?
1286 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288 {4, (CHIP_IS_E3B0(bp)) ?
1289 PBF_REG_INIT_CRD_LB_Q :
1290 PBF_REG_P4_INIT_CRD,
1291 (CHIP_IS_E3B0(bp)) ?
1292 PBF_REG_CREDIT_LB_Q :
1293 PBF_REG_P4_CREDIT,
1294 (CHIP_IS_E3B0(bp)) ?
1295 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297 };
1298
1299 int i;
1300
1301 /* Verify the command queues are flushed P0, P1, P4 */
1302 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304
1305 /* Verify the transmission buffers are flushed P0, P1, P4 */
1306 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309
1310 #define OP_GEN_PARAM(param) \
1311 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312
1313 #define OP_GEN_TYPE(type) \
1314 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315
1316 #define OP_GEN_AGG_VECT(index) \
1317 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321 u32 op_gen_command = 0;
1322 u32 comp_addr = BAR_CSTRORM_INTMEM +
1323 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324 int ret = 0;
1325
1326 if (REG_RD(bp, comp_addr)) {
1327 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328 return 1;
1329 }
1330
1331 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335
1336 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338
1339 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340 BNX2X_ERR("FW final cleanup did not succeed\n");
1341 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342 (REG_RD(bp, comp_addr)));
1343 bnx2x_panic();
1344 return 1;
1345 }
1346 /* Zero completion for next FLR */
1347 REG_WR(bp, comp_addr, 0);
1348
1349 return ret;
1350 }
1351
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354 u16 status;
1355
1356 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357 return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366 CFC_REG_NUM_LCIDS_INSIDE_PF,
1367 "CFC PF usage counter timed out",
1368 poll_cnt))
1369 return 1;
1370
1371 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373 DORQ_REG_PF_USAGE_CNT,
1374 "DQ PF usage counter timed out",
1375 poll_cnt))
1376 return 1;
1377
1378 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381 "QM PF usage counter timed out",
1382 poll_cnt))
1383 return 1;
1384
1385 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388 "Timers VNIC usage counter timed out",
1389 poll_cnt))
1390 return 1;
1391 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393 "Timers NUM_SCANS usage counter timed out",
1394 poll_cnt))
1395 return 1;
1396
1397 /* Wait DMAE PF usage counter to zero */
1398 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399 dmae_reg_go_c[INIT_DMAE_C(bp)],
1400 "DMAE command register timed out",
1401 poll_cnt))
1402 return 1;
1403
1404 return 0;
1405 }
1406
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409 u32 val;
1410
1411 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413
1414 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416
1417 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419
1420 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422
1423 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425
1426 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428
1429 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431
1432 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434 val);
1435 }
1436
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440
1441 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442
1443 /* Re-enable PF target read access */
1444 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445
1446 /* Poll HW usage counters */
1447 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449 return -EBUSY;
1450
1451 /* Zero the igu 'trailing edge' and 'leading edge' */
1452
1453 /* Send the FW cleanup command */
1454 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455 return -EBUSY;
1456
1457 /* ATC cleanup */
1458
1459 /* Verify TX hw is flushed */
1460 bnx2x_tx_hw_flushed(bp, poll_cnt);
1461
1462 /* Wait 100ms (not adjusted according to platform) */
1463 msleep(100);
1464
1465 /* Verify no pending pci transactions */
1466 if (bnx2x_is_pcie_pending(bp->pdev))
1467 BNX2X_ERR("PCIE Transactions still pending\n");
1468
1469 /* Debug */
1470 bnx2x_hw_enable_status(bp);
1471
1472 /*
1473 * Master enable - Due to WB DMAE writes performed before this
1474 * register is re-initialized as part of the regular function init
1475 */
1476 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477
1478 return 0;
1479 }
1480
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483 int port = BP_PORT(bp);
1484 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485 u32 val = REG_RD(bp, addr);
1486 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489
1490 if (msix) {
1491 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492 HC_CONFIG_0_REG_INT_LINE_EN_0);
1493 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 if (single_msix)
1496 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497 } else if (msi) {
1498 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502 } else {
1503 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507
1508 if (!CHIP_IS_E1(bp)) {
1509 DP(NETIF_MSG_IFUP,
1510 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511
1512 REG_WR(bp, addr, val);
1513
1514 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515 }
1516 }
1517
1518 if (CHIP_IS_E1(bp))
1519 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520
1521 DP(NETIF_MSG_IFUP,
1522 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524
1525 REG_WR(bp, addr, val);
1526 /*
1527 * Ensure that HC_CONFIG is written before leading/trailing edge config
1528 */
1529 mmiowb();
1530 barrier();
1531
1532 if (!CHIP_IS_E1(bp)) {
1533 /* init leading/trailing edge */
1534 if (IS_MF(bp)) {
1535 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536 if (bp->port.pmf)
1537 /* enable nig and gpio3 attention */
1538 val |= 0x1100;
1539 } else
1540 val = 0xffff;
1541
1542 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544 }
1545
1546 /* Make sure that interrupts are indeed enabled from here on */
1547 mmiowb();
1548 }
1549
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552 u32 val;
1553 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556
1557 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558
1559 if (msix) {
1560 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561 IGU_PF_CONF_SINGLE_ISR_EN);
1562 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563 IGU_PF_CONF_ATTN_BIT_EN);
1564
1565 if (single_msix)
1566 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567 } else if (msi) {
1568 val &= ~IGU_PF_CONF_INT_LINE_EN;
1569 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570 IGU_PF_CONF_ATTN_BIT_EN |
1571 IGU_PF_CONF_SINGLE_ISR_EN);
1572 } else {
1573 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574 val |= (IGU_PF_CONF_INT_LINE_EN |
1575 IGU_PF_CONF_ATTN_BIT_EN |
1576 IGU_PF_CONF_SINGLE_ISR_EN);
1577 }
1578
1579 /* Clean previous status - need to configure igu prior to ack*/
1580 if ((!msix) || single_msix) {
1581 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582 bnx2x_ack_int(bp);
1583 }
1584
1585 val |= IGU_PF_CONF_FUNC_EN;
1586
1587 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1588 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591
1592 if (val & IGU_PF_CONF_INT_LINE_EN)
1593 pci_intx(bp->pdev, true);
1594
1595 barrier();
1596
1597 /* init leading/trailing edge */
1598 if (IS_MF(bp)) {
1599 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 if (bp->port.pmf)
1601 /* enable nig and gpio3 attention */
1602 val |= 0x1100;
1603 } else
1604 val = 0xffff;
1605
1606 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608
1609 /* Make sure that interrupts are indeed enabled from here on */
1610 mmiowb();
1611 }
1612
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615 if (bp->common.int_block == INT_BLOCK_HC)
1616 bnx2x_hc_int_enable(bp);
1617 else
1618 bnx2x_igu_int_enable(bp);
1619 }
1620
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624 int i, offset;
1625
1626 if (disable_hw)
1627 /* prevent the HW from sending interrupts */
1628 bnx2x_int_disable(bp);
1629
1630 /* make sure all ISRs are done */
1631 if (msix) {
1632 synchronize_irq(bp->msix_table[0].vector);
1633 offset = 1;
1634 if (CNIC_SUPPORT(bp))
1635 offset++;
1636 for_each_eth_queue(bp, i)
1637 synchronize_irq(bp->msix_table[offset++].vector);
1638 } else
1639 synchronize_irq(bp->pdev->irq);
1640
1641 /* make sure sp_task is not running */
1642 cancel_delayed_work(&bp->sp_task);
1643 cancel_delayed_work(&bp->period_task);
1644 flush_workqueue(bnx2x_wq);
1645 }
1646
1647 /* fast path */
1648
1649 /*
1650 * General service functions
1651 */
1652
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656 u32 lock_status;
1657 u32 resource_bit = (1 << resource);
1658 int func = BP_FUNC(bp);
1659 u32 hw_lock_control_reg;
1660
1661 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662 "Trying to take a lock on resource %d\n", resource);
1663
1664 /* Validating that the resource is within range */
1665 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669 return false;
1670 }
1671
1672 if (func <= 5)
1673 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674 else
1675 hw_lock_control_reg =
1676 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677
1678 /* Try to acquire the lock */
1679 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680 lock_status = REG_RD(bp, hw_lock_control_reg);
1681 if (lock_status & resource_bit)
1682 return true;
1683
1684 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685 "Failed to get a lock on resource %d\n", resource);
1686 return false;
1687 }
1688
1689 /**
1690 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691 *
1692 * @bp: driver handle
1693 *
1694 * Returns the recovery leader resource id according to the engine this function
1695 * belongs to. Currently only only 2 engines is supported.
1696 */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699 if (BP_PATH(bp))
1700 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701 else
1702 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704
1705 /**
1706 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707 *
1708 * @bp: driver handle
1709 *
1710 * Tries to acquire a leader lock for current engine.
1711 */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722 /* Set the interrupt occurred bit for the sp-task to recognize it
1723 * must ack the interrupt and transition according to the IGU
1724 * state machine.
1725 */
1726 atomic_set(&bp->interrupt_occurred, 1);
1727
1728 /* The sp_task must execute only after this bit
1729 * is set, otherwise we will get out of sync and miss all
1730 * further interrupts. Hence, the barrier.
1731 */
1732 smp_wmb();
1733
1734 /* schedule sp_task to workqueue */
1735 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740 struct bnx2x *bp = fp->bp;
1741 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745
1746 DP(BNX2X_MSG_SP,
1747 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1748 fp->index, cid, command, bp->state,
1749 rr_cqe->ramrod_cqe.ramrod_type);
1750
1751 /* If cid is within VF range, replace the slowpath object with the
1752 * one corresponding to this VF
1753 */
1754 if (cid >= BNX2X_FIRST_VF_CID &&
1755 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757
1758 switch (command) {
1759 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761 drv_cmd = BNX2X_Q_CMD_UPDATE;
1762 break;
1763
1764 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766 drv_cmd = BNX2X_Q_CMD_SETUP;
1767 break;
1768
1769 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772 break;
1773
1774 case (RAMROD_CMD_ID_ETH_HALT):
1775 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776 drv_cmd = BNX2X_Q_CMD_HALT;
1777 break;
1778
1779 case (RAMROD_CMD_ID_ETH_TERMINATE):
1780 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782 break;
1783
1784 case (RAMROD_CMD_ID_ETH_EMPTY):
1785 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786 drv_cmd = BNX2X_Q_CMD_EMPTY;
1787 break;
1788
1789 default:
1790 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791 command, fp->index);
1792 return;
1793 }
1794
1795 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797 /* q_obj->complete_cmd() failure means that this was
1798 * an unexpected completion.
1799 *
1800 * In this case we don't want to increase the bp->spq_left
1801 * because apparently we haven't sent this command the first
1802 * place.
1803 */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805 bnx2x_panic();
1806 #else
1807 return;
1808 #endif
1809 /* SRIOV: reschedule any 'in_progress' operations */
1810 bnx2x_iov_sp_event(bp, cid, true);
1811
1812 smp_mb__before_atomic_inc();
1813 atomic_inc(&bp->cq_spq_left);
1814 /* push the change in bp->spq_left and towards the memory */
1815 smp_mb__after_atomic_inc();
1816
1817 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818
1819 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821 /* if Q update ramrod is completed for last Q in AFEX vif set
1822 * flow, then ACK MCP at the end
1823 *
1824 * mark pending ACK to MCP bit.
1825 * prevent case that both bits are cleared.
1826 * At the end of load/unload driver checks that
1827 * sp_state is cleared, and this order prevents
1828 * races
1829 */
1830 smp_mb__before_clear_bit();
1831 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832 wmb();
1833 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834 smp_mb__after_clear_bit();
1835
1836 /* schedule the sp task as mcp ack is required */
1837 bnx2x_schedule_sp_task(bp);
1838 }
1839
1840 return;
1841 }
1842
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845 struct bnx2x *bp = netdev_priv(dev_instance);
1846 u16 status = bnx2x_ack_int(bp);
1847 u16 mask;
1848 int i;
1849 u8 cos;
1850
1851 /* Return here if interrupt is shared and it's not for us */
1852 if (unlikely(status == 0)) {
1853 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854 return IRQ_NONE;
1855 }
1856 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1857
1858 #ifdef BNX2X_STOP_ON_ERROR
1859 if (unlikely(bp->panic))
1860 return IRQ_HANDLED;
1861 #endif
1862
1863 for_each_eth_queue(bp, i) {
1864 struct bnx2x_fastpath *fp = &bp->fp[i];
1865
1866 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867 if (status & mask) {
1868 /* Handle Rx or Tx according to SB id */
1869 for_each_cos_in_tx_queue(fp, cos)
1870 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871 prefetch(&fp->sb_running_index[SM_RX_ID]);
1872 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873 status &= ~mask;
1874 }
1875 }
1876
1877 if (CNIC_SUPPORT(bp)) {
1878 mask = 0x2;
1879 if (status & (mask | 0x1)) {
1880 struct cnic_ops *c_ops = NULL;
1881
1882 rcu_read_lock();
1883 c_ops = rcu_dereference(bp->cnic_ops);
1884 if (c_ops && (bp->cnic_eth_dev.drv_state &
1885 CNIC_DRV_STATE_HANDLES_IRQ))
1886 c_ops->cnic_handler(bp->cnic_data, NULL);
1887 rcu_read_unlock();
1888
1889 status &= ~mask;
1890 }
1891 }
1892
1893 if (unlikely(status & 0x1)) {
1894
1895 /* schedule sp task to perform default status block work, ack
1896 * attentions and enable interrupts.
1897 */
1898 bnx2x_schedule_sp_task(bp);
1899
1900 status &= ~0x1;
1901 if (!status)
1902 return IRQ_HANDLED;
1903 }
1904
1905 if (unlikely(status))
1906 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907 status);
1908
1909 return IRQ_HANDLED;
1910 }
1911
1912 /* Link */
1913
1914 /*
1915 * General service functions
1916 */
1917
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920 u32 lock_status;
1921 u32 resource_bit = (1 << resource);
1922 int func = BP_FUNC(bp);
1923 u32 hw_lock_control_reg;
1924 int cnt;
1925
1926 /* Validating that the resource is within range */
1927 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930 return -EINVAL;
1931 }
1932
1933 if (func <= 5) {
1934 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935 } else {
1936 hw_lock_control_reg =
1937 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938 }
1939
1940 /* Validating that the resource is not already taken */
1941 lock_status = REG_RD(bp, hw_lock_control_reg);
1942 if (lock_status & resource_bit) {
1943 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
1944 lock_status, resource_bit);
1945 return -EEXIST;
1946 }
1947
1948 /* Try for 5 second every 5ms */
1949 for (cnt = 0; cnt < 1000; cnt++) {
1950 /* Try to acquire the lock */
1951 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952 lock_status = REG_RD(bp, hw_lock_control_reg);
1953 if (lock_status & resource_bit)
1954 return 0;
1955
1956 usleep_range(5000, 10000);
1957 }
1958 BNX2X_ERR("Timeout\n");
1959 return -EAGAIN;
1960 }
1961
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969 u32 lock_status;
1970 u32 resource_bit = (1 << resource);
1971 int func = BP_FUNC(bp);
1972 u32 hw_lock_control_reg;
1973
1974 /* Validating that the resource is within range */
1975 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978 return -EINVAL;
1979 }
1980
1981 if (func <= 5) {
1982 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983 } else {
1984 hw_lock_control_reg =
1985 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986 }
1987
1988 /* Validating that the resource is currently taken */
1989 lock_status = REG_RD(bp, hw_lock_control_reg);
1990 if (!(lock_status & resource_bit)) {
1991 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992 lock_status, resource_bit);
1993 return -EFAULT;
1994 }
1995
1996 REG_WR(bp, hw_lock_control_reg, resource_bit);
1997 return 0;
1998 }
1999
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002 /* The GPIO should be swapped if swap register is set and active */
2003 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005 int gpio_shift = gpio_num +
2006 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007 u32 gpio_mask = (1 << gpio_shift);
2008 u32 gpio_reg;
2009 int value;
2010
2011 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013 return -EINVAL;
2014 }
2015
2016 /* read GPIO value */
2017 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018
2019 /* get the requested pin value */
2020 if ((gpio_reg & gpio_mask) == gpio_mask)
2021 value = 1;
2022 else
2023 value = 0;
2024
2025 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
2026
2027 return value;
2028 }
2029
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032 /* The GPIO should be swapped if swap register is set and active */
2033 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035 int gpio_shift = gpio_num +
2036 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037 u32 gpio_mask = (1 << gpio_shift);
2038 u32 gpio_reg;
2039
2040 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042 return -EINVAL;
2043 }
2044
2045 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046 /* read GPIO and mask except the float bits */
2047 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048
2049 switch (mode) {
2050 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051 DP(NETIF_MSG_LINK,
2052 "Set GPIO %d (shift %d) -> output low\n",
2053 gpio_num, gpio_shift);
2054 /* clear FLOAT and set CLR */
2055 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057 break;
2058
2059 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060 DP(NETIF_MSG_LINK,
2061 "Set GPIO %d (shift %d) -> output high\n",
2062 gpio_num, gpio_shift);
2063 /* clear FLOAT and set SET */
2064 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066 break;
2067
2068 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069 DP(NETIF_MSG_LINK,
2070 "Set GPIO %d (shift %d) -> input\n",
2071 gpio_num, gpio_shift);
2072 /* set FLOAT */
2073 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074 break;
2075
2076 default:
2077 break;
2078 }
2079
2080 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082
2083 return 0;
2084 }
2085
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088 u32 gpio_reg = 0;
2089 int rc = 0;
2090
2091 /* Any port swapping should be handled by caller. */
2092
2093 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094 /* read GPIO and mask except the float bits */
2095 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099
2100 switch (mode) {
2101 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103 /* set CLR */
2104 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105 break;
2106
2107 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109 /* set SET */
2110 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111 break;
2112
2113 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115 /* set FLOAT */
2116 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117 break;
2118
2119 default:
2120 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121 rc = -EINVAL;
2122 break;
2123 }
2124
2125 if (rc == 0)
2126 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127
2128 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129
2130 return rc;
2131 }
2132
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135 /* The GPIO should be swapped if swap register is set and active */
2136 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138 int gpio_shift = gpio_num +
2139 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140 u32 gpio_mask = (1 << gpio_shift);
2141 u32 gpio_reg;
2142
2143 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145 return -EINVAL;
2146 }
2147
2148 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149 /* read GPIO int */
2150 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151
2152 switch (mode) {
2153 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154 DP(NETIF_MSG_LINK,
2155 "Clear GPIO INT %d (shift %d) -> output low\n",
2156 gpio_num, gpio_shift);
2157 /* clear SET and set CLR */
2158 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160 break;
2161
2162 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163 DP(NETIF_MSG_LINK,
2164 "Set GPIO INT %d (shift %d) -> output high\n",
2165 gpio_num, gpio_shift);
2166 /* clear CLR and set SET */
2167 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169 break;
2170
2171 default:
2172 break;
2173 }
2174
2175 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177
2178 return 0;
2179 }
2180
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183 u32 spio_reg;
2184
2185 /* Only 2 SPIOs are configurable */
2186 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188 return -EINVAL;
2189 }
2190
2191 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192 /* read SPIO and mask except the float bits */
2193 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194
2195 switch (mode) {
2196 case MISC_SPIO_OUTPUT_LOW:
2197 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198 /* clear FLOAT and set CLR */
2199 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2201 break;
2202
2203 case MISC_SPIO_OUTPUT_HIGH:
2204 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205 /* clear FLOAT and set SET */
2206 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207 spio_reg |= (spio << MISC_SPIO_SET_POS);
2208 break;
2209
2210 case MISC_SPIO_INPUT_HI_Z:
2211 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212 /* set FLOAT */
2213 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214 break;
2215
2216 default:
2217 break;
2218 }
2219
2220 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222
2223 return 0;
2224 }
2225
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229 switch (bp->link_vars.ieee_fc &
2230 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233 ADVERTISED_Pause);
2234 break;
2235
2236 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238 ADVERTISED_Pause);
2239 break;
2240
2241 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243 break;
2244
2245 default:
2246 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247 ADVERTISED_Pause);
2248 break;
2249 }
2250 }
2251
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254 /* Initialize link parameters structure variables
2255 * It is recommended to turn off RX FC for jumbo frames
2256 * for better performance
2257 */
2258 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260 else
2261 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263
2264 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2265 {
2266 u32 pause_enabled = 0;
2267
2268 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2269 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2270 pause_enabled = 1;
2271
2272 REG_WR(bp, BAR_USTRORM_INTMEM +
2273 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2274 pause_enabled);
2275 }
2276
2277 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2278 pause_enabled ? "enabled" : "disabled");
2279 }
2280
2281 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2282 {
2283 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2284 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2285
2286 if (!BP_NOMCP(bp)) {
2287 bnx2x_set_requested_fc(bp);
2288 bnx2x_acquire_phy_lock(bp);
2289
2290 if (load_mode == LOAD_DIAG) {
2291 struct link_params *lp = &bp->link_params;
2292 lp->loopback_mode = LOOPBACK_XGXS;
2293 /* do PHY loopback at 10G speed, if possible */
2294 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2295 if (lp->speed_cap_mask[cfx_idx] &
2296 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2297 lp->req_line_speed[cfx_idx] =
2298 SPEED_10000;
2299 else
2300 lp->req_line_speed[cfx_idx] =
2301 SPEED_1000;
2302 }
2303 }
2304
2305 if (load_mode == LOAD_LOOPBACK_EXT) {
2306 struct link_params *lp = &bp->link_params;
2307 lp->loopback_mode = LOOPBACK_EXT;
2308 }
2309
2310 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2311
2312 bnx2x_release_phy_lock(bp);
2313
2314 bnx2x_init_dropless_fc(bp);
2315
2316 bnx2x_calc_fc_adv(bp);
2317
2318 if (bp->link_vars.link_up) {
2319 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2320 bnx2x_link_report(bp);
2321 }
2322 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2323 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2324 return rc;
2325 }
2326 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2327 return -EINVAL;
2328 }
2329
2330 void bnx2x_link_set(struct bnx2x *bp)
2331 {
2332 if (!BP_NOMCP(bp)) {
2333 bnx2x_acquire_phy_lock(bp);
2334 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2335 bnx2x_release_phy_lock(bp);
2336
2337 bnx2x_init_dropless_fc(bp);
2338
2339 bnx2x_calc_fc_adv(bp);
2340 } else
2341 BNX2X_ERR("Bootcode is missing - can not set link\n");
2342 }
2343
2344 static void bnx2x__link_reset(struct bnx2x *bp)
2345 {
2346 if (!BP_NOMCP(bp)) {
2347 bnx2x_acquire_phy_lock(bp);
2348 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2349 bnx2x_release_phy_lock(bp);
2350 } else
2351 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2352 }
2353
2354 void bnx2x_force_link_reset(struct bnx2x *bp)
2355 {
2356 bnx2x_acquire_phy_lock(bp);
2357 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2358 bnx2x_release_phy_lock(bp);
2359 }
2360
2361 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2362 {
2363 u8 rc = 0;
2364
2365 if (!BP_NOMCP(bp)) {
2366 bnx2x_acquire_phy_lock(bp);
2367 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2368 is_serdes);
2369 bnx2x_release_phy_lock(bp);
2370 } else
2371 BNX2X_ERR("Bootcode is missing - can not test link\n");
2372
2373 return rc;
2374 }
2375
2376 /* Calculates the sum of vn_min_rates.
2377 It's needed for further normalizing of the min_rates.
2378 Returns:
2379 sum of vn_min_rates.
2380 or
2381 0 - if all the min_rates are 0.
2382 In the later case fairness algorithm should be deactivated.
2383 If not all min_rates are zero then those that are zeroes will be set to 1.
2384 */
2385 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2386 struct cmng_init_input *input)
2387 {
2388 int all_zero = 1;
2389 int vn;
2390
2391 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2392 u32 vn_cfg = bp->mf_config[vn];
2393 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2394 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2395
2396 /* Skip hidden vns */
2397 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2398 vn_min_rate = 0;
2399 /* If min rate is zero - set it to 1 */
2400 else if (!vn_min_rate)
2401 vn_min_rate = DEF_MIN_RATE;
2402 else
2403 all_zero = 0;
2404
2405 input->vnic_min_rate[vn] = vn_min_rate;
2406 }
2407
2408 /* if ETS or all min rates are zeros - disable fairness */
2409 if (BNX2X_IS_ETS_ENABLED(bp)) {
2410 input->flags.cmng_enables &=
2411 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2412 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2413 } else if (all_zero) {
2414 input->flags.cmng_enables &=
2415 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2416 DP(NETIF_MSG_IFUP,
2417 "All MIN values are zeroes fairness will be disabled\n");
2418 } else
2419 input->flags.cmng_enables |=
2420 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2421 }
2422
2423 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2424 struct cmng_init_input *input)
2425 {
2426 u16 vn_max_rate;
2427 u32 vn_cfg = bp->mf_config[vn];
2428
2429 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2430 vn_max_rate = 0;
2431 else {
2432 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2433
2434 if (IS_MF_SI(bp)) {
2435 /* maxCfg in percents of linkspeed */
2436 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2437 } else /* SD modes */
2438 /* maxCfg is absolute in 100Mb units */
2439 vn_max_rate = maxCfg * 100;
2440 }
2441
2442 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2443
2444 input->vnic_max_rate[vn] = vn_max_rate;
2445 }
2446
2447 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2448 {
2449 if (CHIP_REV_IS_SLOW(bp))
2450 return CMNG_FNS_NONE;
2451 if (IS_MF(bp))
2452 return CMNG_FNS_MINMAX;
2453
2454 return CMNG_FNS_NONE;
2455 }
2456
2457 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2458 {
2459 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2460
2461 if (BP_NOMCP(bp))
2462 return; /* what should be the default value in this case */
2463
2464 /* For 2 port configuration the absolute function number formula
2465 * is:
2466 * abs_func = 2 * vn + BP_PORT + BP_PATH
2467 *
2468 * and there are 4 functions per port
2469 *
2470 * For 4 port configuration it is
2471 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2472 *
2473 * and there are 2 functions per port
2474 */
2475 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2476 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2477
2478 if (func >= E1H_FUNC_MAX)
2479 break;
2480
2481 bp->mf_config[vn] =
2482 MF_CFG_RD(bp, func_mf_config[func].config);
2483 }
2484 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2485 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2486 bp->flags |= MF_FUNC_DIS;
2487 } else {
2488 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2489 bp->flags &= ~MF_FUNC_DIS;
2490 }
2491 }
2492
2493 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2494 {
2495 struct cmng_init_input input;
2496 memset(&input, 0, sizeof(struct cmng_init_input));
2497
2498 input.port_rate = bp->link_vars.line_speed;
2499
2500 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2501 int vn;
2502
2503 /* read mf conf from shmem */
2504 if (read_cfg)
2505 bnx2x_read_mf_cfg(bp);
2506
2507 /* vn_weight_sum and enable fairness if not 0 */
2508 bnx2x_calc_vn_min(bp, &input);
2509
2510 /* calculate and set min-max rate for each vn */
2511 if (bp->port.pmf)
2512 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2513 bnx2x_calc_vn_max(bp, vn, &input);
2514
2515 /* always enable rate shaping and fairness */
2516 input.flags.cmng_enables |=
2517 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2518
2519 bnx2x_init_cmng(&input, &bp->cmng);
2520 return;
2521 }
2522
2523 /* rate shaping and fairness are disabled */
2524 DP(NETIF_MSG_IFUP,
2525 "rate shaping and fairness are disabled\n");
2526 }
2527
2528 static void storm_memset_cmng(struct bnx2x *bp,
2529 struct cmng_init *cmng,
2530 u8 port)
2531 {
2532 int vn;
2533 size_t size = sizeof(struct cmng_struct_per_port);
2534
2535 u32 addr = BAR_XSTRORM_INTMEM +
2536 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2537
2538 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2539
2540 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2541 int func = func_by_vn(bp, vn);
2542
2543 addr = BAR_XSTRORM_INTMEM +
2544 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2545 size = sizeof(struct rate_shaping_vars_per_vn);
2546 __storm_memset_struct(bp, addr, size,
2547 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2548
2549 addr = BAR_XSTRORM_INTMEM +
2550 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2551 size = sizeof(struct fairness_vars_per_vn);
2552 __storm_memset_struct(bp, addr, size,
2553 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2554 }
2555 }
2556
2557 /* init cmng mode in HW according to local configuration */
2558 void bnx2x_set_local_cmng(struct bnx2x *bp)
2559 {
2560 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2561
2562 if (cmng_fns != CMNG_FNS_NONE) {
2563 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2564 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2565 } else {
2566 /* rate shaping and fairness are disabled */
2567 DP(NETIF_MSG_IFUP,
2568 "single function mode without fairness\n");
2569 }
2570 }
2571
2572 /* This function is called upon link interrupt */
2573 static void bnx2x_link_attn(struct bnx2x *bp)
2574 {
2575 /* Make sure that we are synced with the current statistics */
2576 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2577
2578 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2579
2580 bnx2x_init_dropless_fc(bp);
2581
2582 if (bp->link_vars.link_up) {
2583
2584 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2585 struct host_port_stats *pstats;
2586
2587 pstats = bnx2x_sp(bp, port_stats);
2588 /* reset old mac stats */
2589 memset(&(pstats->mac_stx[0]), 0,
2590 sizeof(struct mac_stx));
2591 }
2592 if (bp->state == BNX2X_STATE_OPEN)
2593 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2594 }
2595
2596 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2597 bnx2x_set_local_cmng(bp);
2598
2599 __bnx2x_link_report(bp);
2600
2601 if (IS_MF(bp))
2602 bnx2x_link_sync_notify(bp);
2603 }
2604
2605 void bnx2x__link_status_update(struct bnx2x *bp)
2606 {
2607 if (bp->state != BNX2X_STATE_OPEN)
2608 return;
2609
2610 /* read updated dcb configuration */
2611 if (IS_PF(bp)) {
2612 bnx2x_dcbx_pmf_update(bp);
2613 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2614 if (bp->link_vars.link_up)
2615 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2616 else
2617 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2618 /* indicate link status */
2619 bnx2x_link_report(bp);
2620
2621 } else { /* VF */
2622 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2623 SUPPORTED_10baseT_Full |
2624 SUPPORTED_100baseT_Half |
2625 SUPPORTED_100baseT_Full |
2626 SUPPORTED_1000baseT_Full |
2627 SUPPORTED_2500baseX_Full |
2628 SUPPORTED_10000baseT_Full |
2629 SUPPORTED_TP |
2630 SUPPORTED_FIBRE |
2631 SUPPORTED_Autoneg |
2632 SUPPORTED_Pause |
2633 SUPPORTED_Asym_Pause);
2634 bp->port.advertising[0] = bp->port.supported[0];
2635
2636 bp->link_params.bp = bp;
2637 bp->link_params.port = BP_PORT(bp);
2638 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2639 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2640 bp->link_params.req_line_speed[0] = SPEED_10000;
2641 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2642 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2643 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2644 bp->link_vars.line_speed = SPEED_10000;
2645 bp->link_vars.link_status =
2646 (LINK_STATUS_LINK_UP |
2647 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2648 bp->link_vars.link_up = 1;
2649 bp->link_vars.duplex = DUPLEX_FULL;
2650 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2651 __bnx2x_link_report(bp);
2652 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2653 }
2654 }
2655
2656 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2657 u16 vlan_val, u8 allowed_prio)
2658 {
2659 struct bnx2x_func_state_params func_params = {NULL};
2660 struct bnx2x_func_afex_update_params *f_update_params =
2661 &func_params.params.afex_update;
2662
2663 func_params.f_obj = &bp->func_obj;
2664 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2665
2666 /* no need to wait for RAMROD completion, so don't
2667 * set RAMROD_COMP_WAIT flag
2668 */
2669
2670 f_update_params->vif_id = vifid;
2671 f_update_params->afex_default_vlan = vlan_val;
2672 f_update_params->allowed_priorities = allowed_prio;
2673
2674 /* if ramrod can not be sent, response to MCP immediately */
2675 if (bnx2x_func_state_change(bp, &func_params) < 0)
2676 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2677
2678 return 0;
2679 }
2680
2681 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2682 u16 vif_index, u8 func_bit_map)
2683 {
2684 struct bnx2x_func_state_params func_params = {NULL};
2685 struct bnx2x_func_afex_viflists_params *update_params =
2686 &func_params.params.afex_viflists;
2687 int rc;
2688 u32 drv_msg_code;
2689
2690 /* validate only LIST_SET and LIST_GET are received from switch */
2691 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2692 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2693 cmd_type);
2694
2695 func_params.f_obj = &bp->func_obj;
2696 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2697
2698 /* set parameters according to cmd_type */
2699 update_params->afex_vif_list_command = cmd_type;
2700 update_params->vif_list_index = vif_index;
2701 update_params->func_bit_map =
2702 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2703 update_params->func_to_clear = 0;
2704 drv_msg_code =
2705 (cmd_type == VIF_LIST_RULE_GET) ?
2706 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2707 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2708
2709 /* if ramrod can not be sent, respond to MCP immediately for
2710 * SET and GET requests (other are not triggered from MCP)
2711 */
2712 rc = bnx2x_func_state_change(bp, &func_params);
2713 if (rc < 0)
2714 bnx2x_fw_command(bp, drv_msg_code, 0);
2715
2716 return 0;
2717 }
2718
2719 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2720 {
2721 struct afex_stats afex_stats;
2722 u32 func = BP_ABS_FUNC(bp);
2723 u32 mf_config;
2724 u16 vlan_val;
2725 u32 vlan_prio;
2726 u16 vif_id;
2727 u8 allowed_prio;
2728 u8 vlan_mode;
2729 u32 addr_to_write, vifid, addrs, stats_type, i;
2730
2731 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2732 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2733 DP(BNX2X_MSG_MCP,
2734 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2735 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2736 }
2737
2738 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2739 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2740 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2741 DP(BNX2X_MSG_MCP,
2742 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2743 vifid, addrs);
2744 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2745 addrs);
2746 }
2747
2748 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2749 addr_to_write = SHMEM2_RD(bp,
2750 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2751 stats_type = SHMEM2_RD(bp,
2752 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2753
2754 DP(BNX2X_MSG_MCP,
2755 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2756 addr_to_write);
2757
2758 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2759
2760 /* write response to scratchpad, for MCP */
2761 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2762 REG_WR(bp, addr_to_write + i*sizeof(u32),
2763 *(((u32 *)(&afex_stats))+i));
2764
2765 /* send ack message to MCP */
2766 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2767 }
2768
2769 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2770 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2771 bp->mf_config[BP_VN(bp)] = mf_config;
2772 DP(BNX2X_MSG_MCP,
2773 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2774 mf_config);
2775
2776 /* if VIF_SET is "enabled" */
2777 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2778 /* set rate limit directly to internal RAM */
2779 struct cmng_init_input cmng_input;
2780 struct rate_shaping_vars_per_vn m_rs_vn;
2781 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2782 u32 addr = BAR_XSTRORM_INTMEM +
2783 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2784
2785 bp->mf_config[BP_VN(bp)] = mf_config;
2786
2787 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2788 m_rs_vn.vn_counter.rate =
2789 cmng_input.vnic_max_rate[BP_VN(bp)];
2790 m_rs_vn.vn_counter.quota =
2791 (m_rs_vn.vn_counter.rate *
2792 RS_PERIODIC_TIMEOUT_USEC) / 8;
2793
2794 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2795
2796 /* read relevant values from mf_cfg struct in shmem */
2797 vif_id =
2798 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2799 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2800 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2801 vlan_val =
2802 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2803 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2804 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2805 vlan_prio = (mf_config &
2806 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2807 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2808 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2809 vlan_mode =
2810 (MF_CFG_RD(bp,
2811 func_mf_config[func].afex_config) &
2812 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2813 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2814 allowed_prio =
2815 (MF_CFG_RD(bp,
2816 func_mf_config[func].afex_config) &
2817 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2818 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2819
2820 /* send ramrod to FW, return in case of failure */
2821 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2822 allowed_prio))
2823 return;
2824
2825 bp->afex_def_vlan_tag = vlan_val;
2826 bp->afex_vlan_mode = vlan_mode;
2827 } else {
2828 /* notify link down because BP->flags is disabled */
2829 bnx2x_link_report(bp);
2830
2831 /* send INVALID VIF ramrod to FW */
2832 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2833
2834 /* Reset the default afex VLAN */
2835 bp->afex_def_vlan_tag = -1;
2836 }
2837 }
2838 }
2839
2840 static void bnx2x_pmf_update(struct bnx2x *bp)
2841 {
2842 int port = BP_PORT(bp);
2843 u32 val;
2844
2845 bp->port.pmf = 1;
2846 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2847
2848 /*
2849 * We need the mb() to ensure the ordering between the writing to
2850 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2851 */
2852 smp_mb();
2853
2854 /* queue a periodic task */
2855 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2856
2857 bnx2x_dcbx_pmf_update(bp);
2858
2859 /* enable nig attention */
2860 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2861 if (bp->common.int_block == INT_BLOCK_HC) {
2862 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2863 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2864 } else if (!CHIP_IS_E1x(bp)) {
2865 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2866 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2867 }
2868
2869 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2870 }
2871
2872 /* end of Link */
2873
2874 /* slow path */
2875
2876 /*
2877 * General service functions
2878 */
2879
2880 /* send the MCP a request, block until there is a reply */
2881 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2882 {
2883 int mb_idx = BP_FW_MB_IDX(bp);
2884 u32 seq;
2885 u32 rc = 0;
2886 u32 cnt = 1;
2887 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2888
2889 mutex_lock(&bp->fw_mb_mutex);
2890 seq = ++bp->fw_seq;
2891 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2892 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2893
2894 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2895 (command | seq), param);
2896
2897 do {
2898 /* let the FW do it's magic ... */
2899 msleep(delay);
2900
2901 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2902
2903 /* Give the FW up to 5 second (500*10ms) */
2904 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2905
2906 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2907 cnt*delay, rc, seq);
2908
2909 /* is this a reply to our command? */
2910 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2911 rc &= FW_MSG_CODE_MASK;
2912 else {
2913 /* FW BUG! */
2914 BNX2X_ERR("FW failed to respond!\n");
2915 bnx2x_fw_dump(bp);
2916 rc = 0;
2917 }
2918 mutex_unlock(&bp->fw_mb_mutex);
2919
2920 return rc;
2921 }
2922
2923 static void storm_memset_func_cfg(struct bnx2x *bp,
2924 struct tstorm_eth_function_common_config *tcfg,
2925 u16 abs_fid)
2926 {
2927 size_t size = sizeof(struct tstorm_eth_function_common_config);
2928
2929 u32 addr = BAR_TSTRORM_INTMEM +
2930 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2931
2932 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2933 }
2934
2935 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2936 {
2937 if (CHIP_IS_E1x(bp)) {
2938 struct tstorm_eth_function_common_config tcfg = {0};
2939
2940 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2941 }
2942
2943 /* Enable the function in the FW */
2944 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2945 storm_memset_func_en(bp, p->func_id, 1);
2946
2947 /* spq */
2948 if (p->func_flgs & FUNC_FLG_SPQ) {
2949 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2950 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2951 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2952 }
2953 }
2954
2955 /**
2956 * bnx2x_get_common_flags - Return common flags
2957 *
2958 * @bp device handle
2959 * @fp queue handle
2960 * @zero_stats TRUE if statistics zeroing is needed
2961 *
2962 * Return the flags that are common for the Tx-only and not normal connections.
2963 */
2964 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2965 struct bnx2x_fastpath *fp,
2966 bool zero_stats)
2967 {
2968 unsigned long flags = 0;
2969
2970 /* PF driver will always initialize the Queue to an ACTIVE state */
2971 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2972
2973 /* tx only connections collect statistics (on the same index as the
2974 * parent connection). The statistics are zeroed when the parent
2975 * connection is initialized.
2976 */
2977
2978 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2979 if (zero_stats)
2980 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2981
2982 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2983 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2984
2985 #ifdef BNX2X_STOP_ON_ERROR
2986 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2987 #endif
2988
2989 return flags;
2990 }
2991
2992 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2993 struct bnx2x_fastpath *fp,
2994 bool leading)
2995 {
2996 unsigned long flags = 0;
2997
2998 /* calculate other queue flags */
2999 if (IS_MF_SD(bp))
3000 __set_bit(BNX2X_Q_FLG_OV, &flags);
3001
3002 if (IS_FCOE_FP(fp)) {
3003 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3004 /* For FCoE - force usage of default priority (for afex) */
3005 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3006 }
3007
3008 if (!fp->disable_tpa) {
3009 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3010 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3011 if (fp->mode == TPA_MODE_GRO)
3012 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3013 }
3014
3015 if (leading) {
3016 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3017 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3018 }
3019
3020 /* Always set HW VLAN stripping */
3021 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3022
3023 /* configure silent vlan removal */
3024 if (IS_MF_AFEX(bp))
3025 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3026
3027 return flags | bnx2x_get_common_flags(bp, fp, true);
3028 }
3029
3030 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3031 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3032 u8 cos)
3033 {
3034 gen_init->stat_id = bnx2x_stats_id(fp);
3035 gen_init->spcl_id = fp->cl_id;
3036
3037 /* Always use mini-jumbo MTU for FCoE L2 ring */
3038 if (IS_FCOE_FP(fp))
3039 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3040 else
3041 gen_init->mtu = bp->dev->mtu;
3042
3043 gen_init->cos = cos;
3044 }
3045
3046 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3047 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3048 struct bnx2x_rxq_setup_params *rxq_init)
3049 {
3050 u8 max_sge = 0;
3051 u16 sge_sz = 0;
3052 u16 tpa_agg_size = 0;
3053
3054 if (!fp->disable_tpa) {
3055 pause->sge_th_lo = SGE_TH_LO(bp);
3056 pause->sge_th_hi = SGE_TH_HI(bp);
3057
3058 /* validate SGE ring has enough to cross high threshold */
3059 WARN_ON(bp->dropless_fc &&
3060 pause->sge_th_hi + FW_PREFETCH_CNT >
3061 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3062
3063 tpa_agg_size = TPA_AGG_SIZE;
3064 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3065 SGE_PAGE_SHIFT;
3066 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3067 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3068 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3069 }
3070
3071 /* pause - not for e1 */
3072 if (!CHIP_IS_E1(bp)) {
3073 pause->bd_th_lo = BD_TH_LO(bp);
3074 pause->bd_th_hi = BD_TH_HI(bp);
3075
3076 pause->rcq_th_lo = RCQ_TH_LO(bp);
3077 pause->rcq_th_hi = RCQ_TH_HI(bp);
3078 /*
3079 * validate that rings have enough entries to cross
3080 * high thresholds
3081 */
3082 WARN_ON(bp->dropless_fc &&
3083 pause->bd_th_hi + FW_PREFETCH_CNT >
3084 bp->rx_ring_size);
3085 WARN_ON(bp->dropless_fc &&
3086 pause->rcq_th_hi + FW_PREFETCH_CNT >
3087 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3088
3089 pause->pri_map = 1;
3090 }
3091
3092 /* rxq setup */
3093 rxq_init->dscr_map = fp->rx_desc_mapping;
3094 rxq_init->sge_map = fp->rx_sge_mapping;
3095 rxq_init->rcq_map = fp->rx_comp_mapping;
3096 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3097
3098 /* This should be a maximum number of data bytes that may be
3099 * placed on the BD (not including paddings).
3100 */
3101 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3102 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3103
3104 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3105 rxq_init->tpa_agg_sz = tpa_agg_size;
3106 rxq_init->sge_buf_sz = sge_sz;
3107 rxq_init->max_sges_pkt = max_sge;
3108 rxq_init->rss_engine_id = BP_FUNC(bp);
3109 rxq_init->mcast_engine_id = BP_FUNC(bp);
3110
3111 /* Maximum number or simultaneous TPA aggregation for this Queue.
3112 *
3113 * For PF Clients it should be the maximum available number.
3114 * VF driver(s) may want to define it to a smaller value.
3115 */
3116 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3117
3118 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3119 rxq_init->fw_sb_id = fp->fw_sb_id;
3120
3121 if (IS_FCOE_FP(fp))
3122 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3123 else
3124 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3125 /* configure silent vlan removal
3126 * if multi function mode is afex, then mask default vlan
3127 */
3128 if (IS_MF_AFEX(bp)) {
3129 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3130 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3131 }
3132 }
3133
3134 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3135 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3136 u8 cos)
3137 {
3138 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3139 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3140 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3141 txq_init->fw_sb_id = fp->fw_sb_id;
3142
3143 /*
3144 * set the tss leading client id for TX classification ==
3145 * leading RSS client id
3146 */
3147 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3148
3149 if (IS_FCOE_FP(fp)) {
3150 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3151 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3152 }
3153 }
3154
3155 static void bnx2x_pf_init(struct bnx2x *bp)
3156 {
3157 struct bnx2x_func_init_params func_init = {0};
3158 struct event_ring_data eq_data = { {0} };
3159 u16 flags;
3160
3161 if (!CHIP_IS_E1x(bp)) {
3162 /* reset IGU PF statistics: MSIX + ATTN */
3163 /* PF */
3164 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3165 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3166 (CHIP_MODE_IS_4_PORT(bp) ?
3167 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3168 /* ATTN */
3169 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3170 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3171 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3172 (CHIP_MODE_IS_4_PORT(bp) ?
3173 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3174 }
3175
3176 /* function setup flags */
3177 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3178
3179 /* This flag is relevant for E1x only.
3180 * E2 doesn't have a TPA configuration in a function level.
3181 */
3182 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3183
3184 func_init.func_flgs = flags;
3185 func_init.pf_id = BP_FUNC(bp);
3186 func_init.func_id = BP_FUNC(bp);
3187 func_init.spq_map = bp->spq_mapping;
3188 func_init.spq_prod = bp->spq_prod_idx;
3189
3190 bnx2x_func_init(bp, &func_init);
3191
3192 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3193
3194 /*
3195 * Congestion management values depend on the link rate
3196 * There is no active link so initial link rate is set to 10 Gbps.
3197 * When the link comes up The congestion management values are
3198 * re-calculated according to the actual link rate.
3199 */
3200 bp->link_vars.line_speed = SPEED_10000;
3201 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3202
3203 /* Only the PMF sets the HW */
3204 if (bp->port.pmf)
3205 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3206
3207 /* init Event Queue - PCI bus guarantees correct endianity*/
3208 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3209 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3210 eq_data.producer = bp->eq_prod;
3211 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3212 eq_data.sb_id = DEF_SB_ID;
3213 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3214 }
3215
3216 static void bnx2x_e1h_disable(struct bnx2x *bp)
3217 {
3218 int port = BP_PORT(bp);
3219
3220 bnx2x_tx_disable(bp);
3221
3222 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3223 }
3224
3225 static void bnx2x_e1h_enable(struct bnx2x *bp)
3226 {
3227 int port = BP_PORT(bp);
3228
3229 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3230
3231 /* Tx queue should be only re-enabled */
3232 netif_tx_wake_all_queues(bp->dev);
3233
3234 /*
3235 * Should not call netif_carrier_on since it will be called if the link
3236 * is up when checking for link state
3237 */
3238 }
3239
3240 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3241
3242 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3243 {
3244 struct eth_stats_info *ether_stat =
3245 &bp->slowpath->drv_info_to_mcp.ether_stat;
3246 struct bnx2x_vlan_mac_obj *mac_obj =
3247 &bp->sp_objs->mac_obj;
3248 int i;
3249
3250 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3251 ETH_STAT_INFO_VERSION_LEN);
3252
3253 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3254 * mac_local field in ether_stat struct. The base address is offset by 2
3255 * bytes to account for the field being 8 bytes but a mac address is
3256 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3257 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3258 * allocated by the ether_stat struct, so the macs will land in their
3259 * proper positions.
3260 */
3261 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3262 memset(ether_stat->mac_local + i, 0,
3263 sizeof(ether_stat->mac_local[0]));
3264 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3265 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3266 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3267 ETH_ALEN);
3268 ether_stat->mtu_size = bp->dev->mtu;
3269 if (bp->dev->features & NETIF_F_RXCSUM)
3270 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3271 if (bp->dev->features & NETIF_F_TSO)
3272 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3273 ether_stat->feature_flags |= bp->common.boot_mode;
3274
3275 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3276
3277 ether_stat->txq_size = bp->tx_ring_size;
3278 ether_stat->rxq_size = bp->rx_ring_size;
3279 }
3280
3281 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3282 {
3283 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3284 struct fcoe_stats_info *fcoe_stat =
3285 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3286
3287 if (!CNIC_LOADED(bp))
3288 return;
3289
3290 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3291
3292 fcoe_stat->qos_priority =
3293 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3294
3295 /* insert FCoE stats from ramrod response */
3296 if (!NO_FCOE(bp)) {
3297 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3298 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3299 tstorm_queue_statistics;
3300
3301 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3302 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3303 xstorm_queue_statistics;
3304
3305 struct fcoe_statistics_params *fw_fcoe_stat =
3306 &bp->fw_stats_data->fcoe;
3307
3308 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3309 fcoe_stat->rx_bytes_lo,
3310 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3311
3312 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3313 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3314 fcoe_stat->rx_bytes_lo,
3315 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3316
3317 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3318 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3319 fcoe_stat->rx_bytes_lo,
3320 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3321
3322 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3323 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3324 fcoe_stat->rx_bytes_lo,
3325 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3326
3327 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3328 fcoe_stat->rx_frames_lo,
3329 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3330
3331 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3332 fcoe_stat->rx_frames_lo,
3333 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3334
3335 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3336 fcoe_stat->rx_frames_lo,
3337 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3338
3339 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3340 fcoe_stat->rx_frames_lo,
3341 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3342
3343 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3344 fcoe_stat->tx_bytes_lo,
3345 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3346
3347 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3348 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3349 fcoe_stat->tx_bytes_lo,
3350 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3351
3352 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3353 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3354 fcoe_stat->tx_bytes_lo,
3355 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3356
3357 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3358 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3359 fcoe_stat->tx_bytes_lo,
3360 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3361
3362 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3363 fcoe_stat->tx_frames_lo,
3364 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3365
3366 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3367 fcoe_stat->tx_frames_lo,
3368 fcoe_q_xstorm_stats->ucast_pkts_sent);
3369
3370 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3371 fcoe_stat->tx_frames_lo,
3372 fcoe_q_xstorm_stats->bcast_pkts_sent);
3373
3374 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3375 fcoe_stat->tx_frames_lo,
3376 fcoe_q_xstorm_stats->mcast_pkts_sent);
3377 }
3378
3379 /* ask L5 driver to add data to the struct */
3380 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3381 }
3382
3383 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3384 {
3385 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3386 struct iscsi_stats_info *iscsi_stat =
3387 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3388
3389 if (!CNIC_LOADED(bp))
3390 return;
3391
3392 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3393 ETH_ALEN);
3394
3395 iscsi_stat->qos_priority =
3396 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3397
3398 /* ask L5 driver to add data to the struct */
3399 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3400 }
3401
3402 /* called due to MCP event (on pmf):
3403 * reread new bandwidth configuration
3404 * configure FW
3405 * notify others function about the change
3406 */
3407 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3408 {
3409 if (bp->link_vars.link_up) {
3410 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3411 bnx2x_link_sync_notify(bp);
3412 }
3413 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3414 }
3415
3416 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3417 {
3418 bnx2x_config_mf_bw(bp);
3419 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3420 }
3421
3422 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3423 {
3424 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3425 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3426 }
3427
3428 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3429 {
3430 enum drv_info_opcode op_code;
3431 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3432
3433 /* if drv_info version supported by MFW doesn't match - send NACK */
3434 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3435 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3436 return;
3437 }
3438
3439 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3440 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3441
3442 memset(&bp->slowpath->drv_info_to_mcp, 0,
3443 sizeof(union drv_info_to_mcp));
3444
3445 switch (op_code) {
3446 case ETH_STATS_OPCODE:
3447 bnx2x_drv_info_ether_stat(bp);
3448 break;
3449 case FCOE_STATS_OPCODE:
3450 bnx2x_drv_info_fcoe_stat(bp);
3451 break;
3452 case ISCSI_STATS_OPCODE:
3453 bnx2x_drv_info_iscsi_stat(bp);
3454 break;
3455 default:
3456 /* if op code isn't supported - send NACK */
3457 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3458 return;
3459 }
3460
3461 /* if we got drv_info attn from MFW then these fields are defined in
3462 * shmem2 for sure
3463 */
3464 SHMEM2_WR(bp, drv_info_host_addr_lo,
3465 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3466 SHMEM2_WR(bp, drv_info_host_addr_hi,
3467 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3468
3469 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3470 }
3471
3472 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3473 {
3474 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3475
3476 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3477
3478 /*
3479 * This is the only place besides the function initialization
3480 * where the bp->flags can change so it is done without any
3481 * locks
3482 */
3483 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3484 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3485 bp->flags |= MF_FUNC_DIS;
3486
3487 bnx2x_e1h_disable(bp);
3488 } else {
3489 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3490 bp->flags &= ~MF_FUNC_DIS;
3491
3492 bnx2x_e1h_enable(bp);
3493 }
3494 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3495 }
3496 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3497 bnx2x_config_mf_bw(bp);
3498 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3499 }
3500
3501 /* Report results to MCP */
3502 if (dcc_event)
3503 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3504 else
3505 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3506 }
3507
3508 /* must be called under the spq lock */
3509 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3510 {
3511 struct eth_spe *next_spe = bp->spq_prod_bd;
3512
3513 if (bp->spq_prod_bd == bp->spq_last_bd) {
3514 bp->spq_prod_bd = bp->spq;
3515 bp->spq_prod_idx = 0;
3516 DP(BNX2X_MSG_SP, "end of spq\n");
3517 } else {
3518 bp->spq_prod_bd++;
3519 bp->spq_prod_idx++;
3520 }
3521 return next_spe;
3522 }
3523
3524 /* must be called under the spq lock */
3525 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3526 {
3527 int func = BP_FUNC(bp);
3528
3529 /*
3530 * Make sure that BD data is updated before writing the producer:
3531 * BD data is written to the memory, the producer is read from the
3532 * memory, thus we need a full memory barrier to ensure the ordering.
3533 */
3534 mb();
3535
3536 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3537 bp->spq_prod_idx);
3538 mmiowb();
3539 }
3540
3541 /**
3542 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3543 *
3544 * @cmd: command to check
3545 * @cmd_type: command type
3546 */
3547 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3548 {
3549 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3550 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3551 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3552 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3553 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3554 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3555 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3556 return true;
3557 else
3558 return false;
3559 }
3560
3561 /**
3562 * bnx2x_sp_post - place a single command on an SP ring
3563 *
3564 * @bp: driver handle
3565 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3566 * @cid: SW CID the command is related to
3567 * @data_hi: command private data address (high 32 bits)
3568 * @data_lo: command private data address (low 32 bits)
3569 * @cmd_type: command type (e.g. NONE, ETH)
3570 *
3571 * SP data is handled as if it's always an address pair, thus data fields are
3572 * not swapped to little endian in upper functions. Instead this function swaps
3573 * data as if it's two u32 fields.
3574 */
3575 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3576 u32 data_hi, u32 data_lo, int cmd_type)
3577 {
3578 struct eth_spe *spe;
3579 u16 type;
3580 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3581
3582 #ifdef BNX2X_STOP_ON_ERROR
3583 if (unlikely(bp->panic)) {
3584 BNX2X_ERR("Can't post SP when there is panic\n");
3585 return -EIO;
3586 }
3587 #endif
3588
3589 spin_lock_bh(&bp->spq_lock);
3590
3591 if (common) {
3592 if (!atomic_read(&bp->eq_spq_left)) {
3593 BNX2X_ERR("BUG! EQ ring full!\n");
3594 spin_unlock_bh(&bp->spq_lock);
3595 bnx2x_panic();
3596 return -EBUSY;
3597 }
3598 } else if (!atomic_read(&bp->cq_spq_left)) {
3599 BNX2X_ERR("BUG! SPQ ring full!\n");
3600 spin_unlock_bh(&bp->spq_lock);
3601 bnx2x_panic();
3602 return -EBUSY;
3603 }
3604
3605 spe = bnx2x_sp_get_next(bp);
3606
3607 /* CID needs port number to be encoded int it */
3608 spe->hdr.conn_and_cmd_data =
3609 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3610 HW_CID(bp, cid));
3611
3612 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3613
3614 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3615 SPE_HDR_FUNCTION_ID);
3616
3617 spe->hdr.type = cpu_to_le16(type);
3618
3619 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3620 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3621
3622 /*
3623 * It's ok if the actual decrement is issued towards the memory
3624 * somewhere between the spin_lock and spin_unlock. Thus no
3625 * more explicit memory barrier is needed.
3626 */
3627 if (common)
3628 atomic_dec(&bp->eq_spq_left);
3629 else
3630 atomic_dec(&bp->cq_spq_left);
3631
3632 DP(BNX2X_MSG_SP,
3633 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3634 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3635 (u32)(U64_LO(bp->spq_mapping) +
3636 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3637 HW_CID(bp, cid), data_hi, data_lo, type,
3638 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3639
3640 bnx2x_sp_prod_update(bp);
3641 spin_unlock_bh(&bp->spq_lock);
3642 return 0;
3643 }
3644
3645 /* acquire split MCP access lock register */
3646 static int bnx2x_acquire_alr(struct bnx2x *bp)
3647 {
3648 u32 j, val;
3649 int rc = 0;
3650
3651 might_sleep();
3652 for (j = 0; j < 1000; j++) {
3653 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3654 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3655 if (val & MCPR_ACCESS_LOCK_LOCK)
3656 break;
3657
3658 usleep_range(5000, 10000);
3659 }
3660 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3661 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3662 rc = -EBUSY;
3663 }
3664
3665 return rc;
3666 }
3667
3668 /* release split MCP access lock register */
3669 static void bnx2x_release_alr(struct bnx2x *bp)
3670 {
3671 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3672 }
3673
3674 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3675 #define BNX2X_DEF_SB_IDX 0x0002
3676
3677 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3678 {
3679 struct host_sp_status_block *def_sb = bp->def_status_blk;
3680 u16 rc = 0;
3681
3682 barrier(); /* status block is written to by the chip */
3683 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3684 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3685 rc |= BNX2X_DEF_SB_ATT_IDX;
3686 }
3687
3688 if (bp->def_idx != def_sb->sp_sb.running_index) {
3689 bp->def_idx = def_sb->sp_sb.running_index;
3690 rc |= BNX2X_DEF_SB_IDX;
3691 }
3692
3693 /* Do not reorder: indices reading should complete before handling */
3694 barrier();
3695 return rc;
3696 }
3697
3698 /*
3699 * slow path service functions
3700 */
3701
3702 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3703 {
3704 int port = BP_PORT(bp);
3705 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3706 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3707 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3708 NIG_REG_MASK_INTERRUPT_PORT0;
3709 u32 aeu_mask;
3710 u32 nig_mask = 0;
3711 u32 reg_addr;
3712
3713 if (bp->attn_state & asserted)
3714 BNX2X_ERR("IGU ERROR\n");
3715
3716 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3717 aeu_mask = REG_RD(bp, aeu_addr);
3718
3719 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3720 aeu_mask, asserted);
3721 aeu_mask &= ~(asserted & 0x3ff);
3722 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3723
3724 REG_WR(bp, aeu_addr, aeu_mask);
3725 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3726
3727 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3728 bp->attn_state |= asserted;
3729 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3730
3731 if (asserted & ATTN_HARD_WIRED_MASK) {
3732 if (asserted & ATTN_NIG_FOR_FUNC) {
3733
3734 bnx2x_acquire_phy_lock(bp);
3735
3736 /* save nig interrupt mask */
3737 nig_mask = REG_RD(bp, nig_int_mask_addr);
3738
3739 /* If nig_mask is not set, no need to call the update
3740 * function.
3741 */
3742 if (nig_mask) {
3743 REG_WR(bp, nig_int_mask_addr, 0);
3744
3745 bnx2x_link_attn(bp);
3746 }
3747
3748 /* handle unicore attn? */
3749 }
3750 if (asserted & ATTN_SW_TIMER_4_FUNC)
3751 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3752
3753 if (asserted & GPIO_2_FUNC)
3754 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3755
3756 if (asserted & GPIO_3_FUNC)
3757 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3758
3759 if (asserted & GPIO_4_FUNC)
3760 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3761
3762 if (port == 0) {
3763 if (asserted & ATTN_GENERAL_ATTN_1) {
3764 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3765 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3766 }
3767 if (asserted & ATTN_GENERAL_ATTN_2) {
3768 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3769 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3770 }
3771 if (asserted & ATTN_GENERAL_ATTN_3) {
3772 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3773 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3774 }
3775 } else {
3776 if (asserted & ATTN_GENERAL_ATTN_4) {
3777 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3778 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3779 }
3780 if (asserted & ATTN_GENERAL_ATTN_5) {
3781 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3782 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3783 }
3784 if (asserted & ATTN_GENERAL_ATTN_6) {
3785 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3786 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3787 }
3788 }
3789
3790 } /* if hardwired */
3791
3792 if (bp->common.int_block == INT_BLOCK_HC)
3793 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3794 COMMAND_REG_ATTN_BITS_SET);
3795 else
3796 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3797
3798 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3799 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3800 REG_WR(bp, reg_addr, asserted);
3801
3802 /* now set back the mask */
3803 if (asserted & ATTN_NIG_FOR_FUNC) {
3804 /* Verify that IGU ack through BAR was written before restoring
3805 * NIG mask. This loop should exit after 2-3 iterations max.
3806 */
3807 if (bp->common.int_block != INT_BLOCK_HC) {
3808 u32 cnt = 0, igu_acked;
3809 do {
3810 igu_acked = REG_RD(bp,
3811 IGU_REG_ATTENTION_ACK_BITS);
3812 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3813 (++cnt < MAX_IGU_ATTN_ACK_TO));
3814 if (!igu_acked)
3815 DP(NETIF_MSG_HW,
3816 "Failed to verify IGU ack on time\n");
3817 barrier();
3818 }
3819 REG_WR(bp, nig_int_mask_addr, nig_mask);
3820 bnx2x_release_phy_lock(bp);
3821 }
3822 }
3823
3824 static void bnx2x_fan_failure(struct bnx2x *bp)
3825 {
3826 int port = BP_PORT(bp);
3827 u32 ext_phy_config;
3828 /* mark the failure */
3829 ext_phy_config =
3830 SHMEM_RD(bp,
3831 dev_info.port_hw_config[port].external_phy_config);
3832
3833 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3834 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3835 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3836 ext_phy_config);
3837
3838 /* log the failure */
3839 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3840 "Please contact OEM Support for assistance\n");
3841
3842 /* Schedule device reset (unload)
3843 * This is due to some boards consuming sufficient power when driver is
3844 * up to overheat if fan fails.
3845 */
3846 smp_mb__before_clear_bit();
3847 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3848 smp_mb__after_clear_bit();
3849 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3850 }
3851
3852 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3853 {
3854 int port = BP_PORT(bp);
3855 int reg_offset;
3856 u32 val;
3857
3858 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3859 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3860
3861 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3862
3863 val = REG_RD(bp, reg_offset);
3864 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3865 REG_WR(bp, reg_offset, val);
3866
3867 BNX2X_ERR("SPIO5 hw attention\n");
3868
3869 /* Fan failure attention */
3870 bnx2x_hw_reset_phy(&bp->link_params);
3871 bnx2x_fan_failure(bp);
3872 }
3873
3874 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3875 bnx2x_acquire_phy_lock(bp);
3876 bnx2x_handle_module_detect_int(&bp->link_params);
3877 bnx2x_release_phy_lock(bp);
3878 }
3879
3880 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3881
3882 val = REG_RD(bp, reg_offset);
3883 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3884 REG_WR(bp, reg_offset, val);
3885
3886 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3887 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3888 bnx2x_panic();
3889 }
3890 }
3891
3892 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3893 {
3894 u32 val;
3895
3896 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3897
3898 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3899 BNX2X_ERR("DB hw attention 0x%x\n", val);
3900 /* DORQ discard attention */
3901 if (val & 0x2)
3902 BNX2X_ERR("FATAL error from DORQ\n");
3903 }
3904
3905 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3906
3907 int port = BP_PORT(bp);
3908 int reg_offset;
3909
3910 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3911 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3912
3913 val = REG_RD(bp, reg_offset);
3914 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3915 REG_WR(bp, reg_offset, val);
3916
3917 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3918 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3919 bnx2x_panic();
3920 }
3921 }
3922
3923 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3924 {
3925 u32 val;
3926
3927 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3928
3929 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3930 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3931 /* CFC error attention */
3932 if (val & 0x2)
3933 BNX2X_ERR("FATAL error from CFC\n");
3934 }
3935
3936 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3937 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3938 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3939 /* RQ_USDMDP_FIFO_OVERFLOW */
3940 if (val & 0x18000)
3941 BNX2X_ERR("FATAL error from PXP\n");
3942
3943 if (!CHIP_IS_E1x(bp)) {
3944 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3945 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3946 }
3947 }
3948
3949 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3950
3951 int port = BP_PORT(bp);
3952 int reg_offset;
3953
3954 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3955 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3956
3957 val = REG_RD(bp, reg_offset);
3958 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3959 REG_WR(bp, reg_offset, val);
3960
3961 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3962 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3963 bnx2x_panic();
3964 }
3965 }
3966
3967 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3968 {
3969 u32 val;
3970
3971 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3972
3973 if (attn & BNX2X_PMF_LINK_ASSERT) {
3974 int func = BP_FUNC(bp);
3975
3976 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3977 bnx2x_read_mf_cfg(bp);
3978 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3979 func_mf_config[BP_ABS_FUNC(bp)].config);
3980 val = SHMEM_RD(bp,
3981 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3982 if (val & DRV_STATUS_DCC_EVENT_MASK)
3983 bnx2x_dcc_event(bp,
3984 (val & DRV_STATUS_DCC_EVENT_MASK));
3985
3986 if (val & DRV_STATUS_SET_MF_BW)
3987 bnx2x_set_mf_bw(bp);
3988
3989 if (val & DRV_STATUS_DRV_INFO_REQ)
3990 bnx2x_handle_drv_info_req(bp);
3991
3992 if (val & DRV_STATUS_VF_DISABLED)
3993 bnx2x_vf_handle_flr_event(bp);
3994
3995 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3996 bnx2x_pmf_update(bp);
3997
3998 if (bp->port.pmf &&
3999 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4000 bp->dcbx_enabled > 0)
4001 /* start dcbx state machine */
4002 bnx2x_dcbx_set_params(bp,
4003 BNX2X_DCBX_STATE_NEG_RECEIVED);
4004 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4005 bnx2x_handle_afex_cmd(bp,
4006 val & DRV_STATUS_AFEX_EVENT_MASK);
4007 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4008 bnx2x_handle_eee_event(bp);
4009 if (bp->link_vars.periodic_flags &
4010 PERIODIC_FLAGS_LINK_EVENT) {
4011 /* sync with link */
4012 bnx2x_acquire_phy_lock(bp);
4013 bp->link_vars.periodic_flags &=
4014 ~PERIODIC_FLAGS_LINK_EVENT;
4015 bnx2x_release_phy_lock(bp);
4016 if (IS_MF(bp))
4017 bnx2x_link_sync_notify(bp);
4018 bnx2x_link_report(bp);
4019 }
4020 /* Always call it here: bnx2x_link_report() will
4021 * prevent the link indication duplication.
4022 */
4023 bnx2x__link_status_update(bp);
4024 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4025
4026 BNX2X_ERR("MC assert!\n");
4027 bnx2x_mc_assert(bp);
4028 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4029 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4030 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4031 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4032 bnx2x_panic();
4033
4034 } else if (attn & BNX2X_MCP_ASSERT) {
4035
4036 BNX2X_ERR("MCP assert!\n");
4037 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4038 bnx2x_fw_dump(bp);
4039
4040 } else
4041 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4042 }
4043
4044 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4045 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4046 if (attn & BNX2X_GRC_TIMEOUT) {
4047 val = CHIP_IS_E1(bp) ? 0 :
4048 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4049 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4050 }
4051 if (attn & BNX2X_GRC_RSV) {
4052 val = CHIP_IS_E1(bp) ? 0 :
4053 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4054 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4055 }
4056 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4057 }
4058 }
4059
4060 /*
4061 * Bits map:
4062 * 0-7 - Engine0 load counter.
4063 * 8-15 - Engine1 load counter.
4064 * 16 - Engine0 RESET_IN_PROGRESS bit.
4065 * 17 - Engine1 RESET_IN_PROGRESS bit.
4066 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4067 * on the engine
4068 * 19 - Engine1 ONE_IS_LOADED.
4069 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4070 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4071 * just the one belonging to its engine).
4072 *
4073 */
4074 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4075
4076 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4077 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4078 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4079 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4080 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4081 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4082 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4083
4084 /*
4085 * Set the GLOBAL_RESET bit.
4086 *
4087 * Should be run under rtnl lock
4088 */
4089 void bnx2x_set_reset_global(struct bnx2x *bp)
4090 {
4091 u32 val;
4092 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4093 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4094 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4095 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4096 }
4097
4098 /*
4099 * Clear the GLOBAL_RESET bit.
4100 *
4101 * Should be run under rtnl lock
4102 */
4103 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4104 {
4105 u32 val;
4106 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4107 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4108 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4109 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4110 }
4111
4112 /*
4113 * Checks the GLOBAL_RESET bit.
4114 *
4115 * should be run under rtnl lock
4116 */
4117 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4118 {
4119 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4120
4121 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4122 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4123 }
4124
4125 /*
4126 * Clear RESET_IN_PROGRESS bit for the current engine.
4127 *
4128 * Should be run under rtnl lock
4129 */
4130 static void bnx2x_set_reset_done(struct bnx2x *bp)
4131 {
4132 u32 val;
4133 u32 bit = BP_PATH(bp) ?
4134 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4135 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4136 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4137
4138 /* Clear the bit */
4139 val &= ~bit;
4140 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4141
4142 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4143 }
4144
4145 /*
4146 * Set RESET_IN_PROGRESS for the current engine.
4147 *
4148 * should be run under rtnl lock
4149 */
4150 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4151 {
4152 u32 val;
4153 u32 bit = BP_PATH(bp) ?
4154 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4155 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4156 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4157
4158 /* Set the bit */
4159 val |= bit;
4160 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4161 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4162 }
4163
4164 /*
4165 * Checks the RESET_IN_PROGRESS bit for the given engine.
4166 * should be run under rtnl lock
4167 */
4168 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4169 {
4170 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4171 u32 bit = engine ?
4172 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4173
4174 /* return false if bit is set */
4175 return (val & bit) ? false : true;
4176 }
4177
4178 /*
4179 * set pf load for the current pf.
4180 *
4181 * should be run under rtnl lock
4182 */
4183 void bnx2x_set_pf_load(struct bnx2x *bp)
4184 {
4185 u32 val1, val;
4186 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4187 BNX2X_PATH0_LOAD_CNT_MASK;
4188 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4189 BNX2X_PATH0_LOAD_CNT_SHIFT;
4190
4191 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4192 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4193
4194 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4195
4196 /* get the current counter value */
4197 val1 = (val & mask) >> shift;
4198
4199 /* set bit of that PF */
4200 val1 |= (1 << bp->pf_num);
4201
4202 /* clear the old value */
4203 val &= ~mask;
4204
4205 /* set the new one */
4206 val |= ((val1 << shift) & mask);
4207
4208 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4209 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4210 }
4211
4212 /**
4213 * bnx2x_clear_pf_load - clear pf load mark
4214 *
4215 * @bp: driver handle
4216 *
4217 * Should be run under rtnl lock.
4218 * Decrements the load counter for the current engine. Returns
4219 * whether other functions are still loaded
4220 */
4221 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4222 {
4223 u32 val1, val;
4224 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4225 BNX2X_PATH0_LOAD_CNT_MASK;
4226 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4227 BNX2X_PATH0_LOAD_CNT_SHIFT;
4228
4229 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4230 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4231 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4232
4233 /* get the current counter value */
4234 val1 = (val & mask) >> shift;
4235
4236 /* clear bit of that PF */
4237 val1 &= ~(1 << bp->pf_num);
4238
4239 /* clear the old value */
4240 val &= ~mask;
4241
4242 /* set the new one */
4243 val |= ((val1 << shift) & mask);
4244
4245 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4246 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4247 return val1 != 0;
4248 }
4249
4250 /*
4251 * Read the load status for the current engine.
4252 *
4253 * should be run under rtnl lock
4254 */
4255 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4256 {
4257 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4258 BNX2X_PATH0_LOAD_CNT_MASK);
4259 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4260 BNX2X_PATH0_LOAD_CNT_SHIFT);
4261 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4262
4263 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4264
4265 val = (val & mask) >> shift;
4266
4267 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4268 engine, val);
4269
4270 return val != 0;
4271 }
4272
4273 static void _print_parity(struct bnx2x *bp, u32 reg)
4274 {
4275 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4276 }
4277
4278 static void _print_next_block(int idx, const char *blk)
4279 {
4280 pr_cont("%s%s", idx ? ", " : "", blk);
4281 }
4282
4283 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4284 int par_num, bool print)
4285 {
4286 int i = 0;
4287 u32 cur_bit = 0;
4288 for (i = 0; sig; i++) {
4289 cur_bit = ((u32)0x1 << i);
4290 if (sig & cur_bit) {
4291 switch (cur_bit) {
4292 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4293 if (print) {
4294 _print_next_block(par_num++, "BRB");
4295 _print_parity(bp,
4296 BRB1_REG_BRB1_PRTY_STS);
4297 }
4298 break;
4299 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4300 if (print) {
4301 _print_next_block(par_num++, "PARSER");
4302 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4303 }
4304 break;
4305 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4306 if (print) {
4307 _print_next_block(par_num++, "TSDM");
4308 _print_parity(bp,
4309 TSDM_REG_TSDM_PRTY_STS);
4310 }
4311 break;
4312 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4313 if (print) {
4314 _print_next_block(par_num++,
4315 "SEARCHER");
4316 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4317 }
4318 break;
4319 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4320 if (print) {
4321 _print_next_block(par_num++, "TCM");
4322 _print_parity(bp,
4323 TCM_REG_TCM_PRTY_STS);
4324 }
4325 break;
4326 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4327 if (print) {
4328 _print_next_block(par_num++, "TSEMI");
4329 _print_parity(bp,
4330 TSEM_REG_TSEM_PRTY_STS_0);
4331 _print_parity(bp,
4332 TSEM_REG_TSEM_PRTY_STS_1);
4333 }
4334 break;
4335 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4336 if (print) {
4337 _print_next_block(par_num++, "XPB");
4338 _print_parity(bp, GRCBASE_XPB +
4339 PB_REG_PB_PRTY_STS);
4340 }
4341 break;
4342 }
4343
4344 /* Clear the bit */
4345 sig &= ~cur_bit;
4346 }
4347 }
4348
4349 return par_num;
4350 }
4351
4352 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4353 int par_num, bool *global,
4354 bool print)
4355 {
4356 int i = 0;
4357 u32 cur_bit = 0;
4358 for (i = 0; sig; i++) {
4359 cur_bit = ((u32)0x1 << i);
4360 if (sig & cur_bit) {
4361 switch (cur_bit) {
4362 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4363 if (print) {
4364 _print_next_block(par_num++, "PBF");
4365 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4366 }
4367 break;
4368 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4369 if (print) {
4370 _print_next_block(par_num++, "QM");
4371 _print_parity(bp, QM_REG_QM_PRTY_STS);
4372 }
4373 break;
4374 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4375 if (print) {
4376 _print_next_block(par_num++, "TM");
4377 _print_parity(bp, TM_REG_TM_PRTY_STS);
4378 }
4379 break;
4380 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4381 if (print) {
4382 _print_next_block(par_num++, "XSDM");
4383 _print_parity(bp,
4384 XSDM_REG_XSDM_PRTY_STS);
4385 }
4386 break;
4387 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4388 if (print) {
4389 _print_next_block(par_num++, "XCM");
4390 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4391 }
4392 break;
4393 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4394 if (print) {
4395 _print_next_block(par_num++, "XSEMI");
4396 _print_parity(bp,
4397 XSEM_REG_XSEM_PRTY_STS_0);
4398 _print_parity(bp,
4399 XSEM_REG_XSEM_PRTY_STS_1);
4400 }
4401 break;
4402 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4403 if (print) {
4404 _print_next_block(par_num++,
4405 "DOORBELLQ");
4406 _print_parity(bp,
4407 DORQ_REG_DORQ_PRTY_STS);
4408 }
4409 break;
4410 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4411 if (print) {
4412 _print_next_block(par_num++, "NIG");
4413 if (CHIP_IS_E1x(bp)) {
4414 _print_parity(bp,
4415 NIG_REG_NIG_PRTY_STS);
4416 } else {
4417 _print_parity(bp,
4418 NIG_REG_NIG_PRTY_STS_0);
4419 _print_parity(bp,
4420 NIG_REG_NIG_PRTY_STS_1);
4421 }
4422 }
4423 break;
4424 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4425 if (print)
4426 _print_next_block(par_num++,
4427 "VAUX PCI CORE");
4428 *global = true;
4429 break;
4430 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4431 if (print) {
4432 _print_next_block(par_num++, "DEBUG");
4433 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4434 }
4435 break;
4436 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4437 if (print) {
4438 _print_next_block(par_num++, "USDM");
4439 _print_parity(bp,
4440 USDM_REG_USDM_PRTY_STS);
4441 }
4442 break;
4443 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4444 if (print) {
4445 _print_next_block(par_num++, "UCM");
4446 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4447 }
4448 break;
4449 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4450 if (print) {
4451 _print_next_block(par_num++, "USEMI");
4452 _print_parity(bp,
4453 USEM_REG_USEM_PRTY_STS_0);
4454 _print_parity(bp,
4455 USEM_REG_USEM_PRTY_STS_1);
4456 }
4457 break;
4458 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4459 if (print) {
4460 _print_next_block(par_num++, "UPB");
4461 _print_parity(bp, GRCBASE_UPB +
4462 PB_REG_PB_PRTY_STS);
4463 }
4464 break;
4465 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4466 if (print) {
4467 _print_next_block(par_num++, "CSDM");
4468 _print_parity(bp,
4469 CSDM_REG_CSDM_PRTY_STS);
4470 }
4471 break;
4472 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4473 if (print) {
4474 _print_next_block(par_num++, "CCM");
4475 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4476 }
4477 break;
4478 }
4479
4480 /* Clear the bit */
4481 sig &= ~cur_bit;
4482 }
4483 }
4484
4485 return par_num;
4486 }
4487
4488 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4489 int par_num, bool print)
4490 {
4491 int i = 0;
4492 u32 cur_bit = 0;
4493 for (i = 0; sig; i++) {
4494 cur_bit = ((u32)0x1 << i);
4495 if (sig & cur_bit) {
4496 switch (cur_bit) {
4497 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4498 if (print) {
4499 _print_next_block(par_num++, "CSEMI");
4500 _print_parity(bp,
4501 CSEM_REG_CSEM_PRTY_STS_0);
4502 _print_parity(bp,
4503 CSEM_REG_CSEM_PRTY_STS_1);
4504 }
4505 break;
4506 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4507 if (print) {
4508 _print_next_block(par_num++, "PXP");
4509 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4510 _print_parity(bp,
4511 PXP2_REG_PXP2_PRTY_STS_0);
4512 _print_parity(bp,
4513 PXP2_REG_PXP2_PRTY_STS_1);
4514 }
4515 break;
4516 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4517 if (print)
4518 _print_next_block(par_num++,
4519 "PXPPCICLOCKCLIENT");
4520 break;
4521 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4522 if (print) {
4523 _print_next_block(par_num++, "CFC");
4524 _print_parity(bp,
4525 CFC_REG_CFC_PRTY_STS);
4526 }
4527 break;
4528 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4529 if (print) {
4530 _print_next_block(par_num++, "CDU");
4531 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4532 }
4533 break;
4534 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4535 if (print) {
4536 _print_next_block(par_num++, "DMAE");
4537 _print_parity(bp,
4538 DMAE_REG_DMAE_PRTY_STS);
4539 }
4540 break;
4541 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4542 if (print) {
4543 _print_next_block(par_num++, "IGU");
4544 if (CHIP_IS_E1x(bp))
4545 _print_parity(bp,
4546 HC_REG_HC_PRTY_STS);
4547 else
4548 _print_parity(bp,
4549 IGU_REG_IGU_PRTY_STS);
4550 }
4551 break;
4552 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4553 if (print) {
4554 _print_next_block(par_num++, "MISC");
4555 _print_parity(bp,
4556 MISC_REG_MISC_PRTY_STS);
4557 }
4558 break;
4559 }
4560
4561 /* Clear the bit */
4562 sig &= ~cur_bit;
4563 }
4564 }
4565
4566 return par_num;
4567 }
4568
4569 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4570 bool *global, bool print)
4571 {
4572 int i = 0;
4573 u32 cur_bit = 0;
4574 for (i = 0; sig; i++) {
4575 cur_bit = ((u32)0x1 << i);
4576 if (sig & cur_bit) {
4577 switch (cur_bit) {
4578 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4579 if (print)
4580 _print_next_block(par_num++, "MCP ROM");
4581 *global = true;
4582 break;
4583 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4584 if (print)
4585 _print_next_block(par_num++,
4586 "MCP UMP RX");
4587 *global = true;
4588 break;
4589 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4590 if (print)
4591 _print_next_block(par_num++,
4592 "MCP UMP TX");
4593 *global = true;
4594 break;
4595 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4596 if (print)
4597 _print_next_block(par_num++,
4598 "MCP SCPAD");
4599 *global = true;
4600 break;
4601 }
4602
4603 /* Clear the bit */
4604 sig &= ~cur_bit;
4605 }
4606 }
4607
4608 return par_num;
4609 }
4610
4611 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4612 int par_num, bool print)
4613 {
4614 int i = 0;
4615 u32 cur_bit = 0;
4616 for (i = 0; sig; i++) {
4617 cur_bit = ((u32)0x1 << i);
4618 if (sig & cur_bit) {
4619 switch (cur_bit) {
4620 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4621 if (print) {
4622 _print_next_block(par_num++, "PGLUE_B");
4623 _print_parity(bp,
4624 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4625 }
4626 break;
4627 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4628 if (print) {
4629 _print_next_block(par_num++, "ATC");
4630 _print_parity(bp,
4631 ATC_REG_ATC_PRTY_STS);
4632 }
4633 break;
4634 }
4635
4636 /* Clear the bit */
4637 sig &= ~cur_bit;
4638 }
4639 }
4640
4641 return par_num;
4642 }
4643
4644 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4645 u32 *sig)
4646 {
4647 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4648 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4649 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4650 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4651 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4652 int par_num = 0;
4653 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4654 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4655 sig[0] & HW_PRTY_ASSERT_SET_0,
4656 sig[1] & HW_PRTY_ASSERT_SET_1,
4657 sig[2] & HW_PRTY_ASSERT_SET_2,
4658 sig[3] & HW_PRTY_ASSERT_SET_3,
4659 sig[4] & HW_PRTY_ASSERT_SET_4);
4660 if (print)
4661 netdev_err(bp->dev,
4662 "Parity errors detected in blocks: ");
4663 par_num = bnx2x_check_blocks_with_parity0(bp,
4664 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4665 par_num = bnx2x_check_blocks_with_parity1(bp,
4666 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4667 par_num = bnx2x_check_blocks_with_parity2(bp,
4668 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4669 par_num = bnx2x_check_blocks_with_parity3(
4670 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4671 par_num = bnx2x_check_blocks_with_parity4(bp,
4672 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4673
4674 if (print)
4675 pr_cont("\n");
4676
4677 return true;
4678 } else
4679 return false;
4680 }
4681
4682 /**
4683 * bnx2x_chk_parity_attn - checks for parity attentions.
4684 *
4685 * @bp: driver handle
4686 * @global: true if there was a global attention
4687 * @print: show parity attention in syslog
4688 */
4689 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4690 {
4691 struct attn_route attn = { {0} };
4692 int port = BP_PORT(bp);
4693
4694 attn.sig[0] = REG_RD(bp,
4695 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4696 port*4);
4697 attn.sig[1] = REG_RD(bp,
4698 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4699 port*4);
4700 attn.sig[2] = REG_RD(bp,
4701 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4702 port*4);
4703 attn.sig[3] = REG_RD(bp,
4704 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4705 port*4);
4706
4707 if (!CHIP_IS_E1x(bp))
4708 attn.sig[4] = REG_RD(bp,
4709 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4710 port*4);
4711
4712 return bnx2x_parity_attn(bp, global, print, attn.sig);
4713 }
4714
4715 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4716 {
4717 u32 val;
4718 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4719
4720 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4721 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4722 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4723 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4724 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4725 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4726 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4727 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4728 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4729 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4730 if (val &
4731 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4732 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4733 if (val &
4734 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4735 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4736 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4737 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4738 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4739 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4740 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4741 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4742 }
4743 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4744 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4745 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4746 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4747 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4748 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4749 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4750 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4751 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4752 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4753 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4754 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4755 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4756 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4757 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4758 }
4759
4760 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4761 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4762 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4763 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4764 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4765 }
4766 }
4767
4768 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4769 {
4770 struct attn_route attn, *group_mask;
4771 int port = BP_PORT(bp);
4772 int index;
4773 u32 reg_addr;
4774 u32 val;
4775 u32 aeu_mask;
4776 bool global = false;
4777
4778 /* need to take HW lock because MCP or other port might also
4779 try to handle this event */
4780 bnx2x_acquire_alr(bp);
4781
4782 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4783 #ifndef BNX2X_STOP_ON_ERROR
4784 bp->recovery_state = BNX2X_RECOVERY_INIT;
4785 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4786 /* Disable HW interrupts */
4787 bnx2x_int_disable(bp);
4788 /* In case of parity errors don't handle attentions so that
4789 * other function would "see" parity errors.
4790 */
4791 #else
4792 bnx2x_panic();
4793 #endif
4794 bnx2x_release_alr(bp);
4795 return;
4796 }
4797
4798 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4799 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4800 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4801 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4802 if (!CHIP_IS_E1x(bp))
4803 attn.sig[4] =
4804 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4805 else
4806 attn.sig[4] = 0;
4807
4808 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4809 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4810
4811 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4812 if (deasserted & (1 << index)) {
4813 group_mask = &bp->attn_group[index];
4814
4815 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4816 index,
4817 group_mask->sig[0], group_mask->sig[1],
4818 group_mask->sig[2], group_mask->sig[3],
4819 group_mask->sig[4]);
4820
4821 bnx2x_attn_int_deasserted4(bp,
4822 attn.sig[4] & group_mask->sig[4]);
4823 bnx2x_attn_int_deasserted3(bp,
4824 attn.sig[3] & group_mask->sig[3]);
4825 bnx2x_attn_int_deasserted1(bp,
4826 attn.sig[1] & group_mask->sig[1]);
4827 bnx2x_attn_int_deasserted2(bp,
4828 attn.sig[2] & group_mask->sig[2]);
4829 bnx2x_attn_int_deasserted0(bp,
4830 attn.sig[0] & group_mask->sig[0]);
4831 }
4832 }
4833
4834 bnx2x_release_alr(bp);
4835
4836 if (bp->common.int_block == INT_BLOCK_HC)
4837 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4838 COMMAND_REG_ATTN_BITS_CLR);
4839 else
4840 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4841
4842 val = ~deasserted;
4843 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4844 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4845 REG_WR(bp, reg_addr, val);
4846
4847 if (~bp->attn_state & deasserted)
4848 BNX2X_ERR("IGU ERROR\n");
4849
4850 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4851 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4852
4853 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4854 aeu_mask = REG_RD(bp, reg_addr);
4855
4856 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4857 aeu_mask, deasserted);
4858 aeu_mask |= (deasserted & 0x3ff);
4859 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4860
4861 REG_WR(bp, reg_addr, aeu_mask);
4862 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4863
4864 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4865 bp->attn_state &= ~deasserted;
4866 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4867 }
4868
4869 static void bnx2x_attn_int(struct bnx2x *bp)
4870 {
4871 /* read local copy of bits */
4872 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4873 attn_bits);
4874 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4875 attn_bits_ack);
4876 u32 attn_state = bp->attn_state;
4877
4878 /* look for changed bits */
4879 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4880 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4881
4882 DP(NETIF_MSG_HW,
4883 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4884 attn_bits, attn_ack, asserted, deasserted);
4885
4886 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4887 BNX2X_ERR("BAD attention state\n");
4888
4889 /* handle bits that were raised */
4890 if (asserted)
4891 bnx2x_attn_int_asserted(bp, asserted);
4892
4893 if (deasserted)
4894 bnx2x_attn_int_deasserted(bp, deasserted);
4895 }
4896
4897 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4898 u16 index, u8 op, u8 update)
4899 {
4900 u32 igu_addr = bp->igu_base_addr;
4901 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4902 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4903 igu_addr);
4904 }
4905
4906 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4907 {
4908 /* No memory barriers */
4909 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4910 mmiowb(); /* keep prod updates ordered */
4911 }
4912
4913 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4914 union event_ring_elem *elem)
4915 {
4916 u8 err = elem->message.error;
4917
4918 if (!bp->cnic_eth_dev.starting_cid ||
4919 (cid < bp->cnic_eth_dev.starting_cid &&
4920 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4921 return 1;
4922
4923 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4924
4925 if (unlikely(err)) {
4926
4927 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4928 cid);
4929 bnx2x_panic_dump(bp, false);
4930 }
4931 bnx2x_cnic_cfc_comp(bp, cid, err);
4932 return 0;
4933 }
4934
4935 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4936 {
4937 struct bnx2x_mcast_ramrod_params rparam;
4938 int rc;
4939
4940 memset(&rparam, 0, sizeof(rparam));
4941
4942 rparam.mcast_obj = &bp->mcast_obj;
4943
4944 netif_addr_lock_bh(bp->dev);
4945
4946 /* Clear pending state for the last command */
4947 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4948
4949 /* If there are pending mcast commands - send them */
4950 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4951 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4952 if (rc < 0)
4953 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4954 rc);
4955 }
4956
4957 netif_addr_unlock_bh(bp->dev);
4958 }
4959
4960 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4961 union event_ring_elem *elem)
4962 {
4963 unsigned long ramrod_flags = 0;
4964 int rc = 0;
4965 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4966 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4967
4968 /* Always push next commands out, don't wait here */
4969 __set_bit(RAMROD_CONT, &ramrod_flags);
4970
4971 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4972 >> BNX2X_SWCID_SHIFT) {
4973 case BNX2X_FILTER_MAC_PENDING:
4974 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4975 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4976 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4977 else
4978 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4979
4980 break;
4981 case BNX2X_FILTER_MCAST_PENDING:
4982 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4983 /* This is only relevant for 57710 where multicast MACs are
4984 * configured as unicast MACs using the same ramrod.
4985 */
4986 bnx2x_handle_mcast_eqe(bp);
4987 return;
4988 default:
4989 BNX2X_ERR("Unsupported classification command: %d\n",
4990 elem->message.data.eth_event.echo);
4991 return;
4992 }
4993
4994 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4995
4996 if (rc < 0)
4997 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4998 else if (rc > 0)
4999 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5000 }
5001
5002 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5003
5004 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5005 {
5006 netif_addr_lock_bh(bp->dev);
5007
5008 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5009
5010 /* Send rx_mode command again if was requested */
5011 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5012 bnx2x_set_storm_rx_mode(bp);
5013 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5014 &bp->sp_state))
5015 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5016 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5017 &bp->sp_state))
5018 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5019
5020 netif_addr_unlock_bh(bp->dev);
5021 }
5022
5023 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5024 union event_ring_elem *elem)
5025 {
5026 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5027 DP(BNX2X_MSG_SP,
5028 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5029 elem->message.data.vif_list_event.func_bit_map);
5030 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5031 elem->message.data.vif_list_event.func_bit_map);
5032 } else if (elem->message.data.vif_list_event.echo ==
5033 VIF_LIST_RULE_SET) {
5034 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5035 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5036 }
5037 }
5038
5039 /* called with rtnl_lock */
5040 static void bnx2x_after_function_update(struct bnx2x *bp)
5041 {
5042 int q, rc;
5043 struct bnx2x_fastpath *fp;
5044 struct bnx2x_queue_state_params queue_params = {NULL};
5045 struct bnx2x_queue_update_params *q_update_params =
5046 &queue_params.params.update;
5047
5048 /* Send Q update command with afex vlan removal values for all Qs */
5049 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5050
5051 /* set silent vlan removal values according to vlan mode */
5052 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5053 &q_update_params->update_flags);
5054 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5055 &q_update_params->update_flags);
5056 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5057
5058 /* in access mode mark mask and value are 0 to strip all vlans */
5059 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5060 q_update_params->silent_removal_value = 0;
5061 q_update_params->silent_removal_mask = 0;
5062 } else {
5063 q_update_params->silent_removal_value =
5064 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5065 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5066 }
5067
5068 for_each_eth_queue(bp, q) {
5069 /* Set the appropriate Queue object */
5070 fp = &bp->fp[q];
5071 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5072
5073 /* send the ramrod */
5074 rc = bnx2x_queue_state_change(bp, &queue_params);
5075 if (rc < 0)
5076 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5077 q);
5078 }
5079
5080 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5081 fp = &bp->fp[FCOE_IDX(bp)];
5082 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5083
5084 /* clear pending completion bit */
5085 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5086
5087 /* mark latest Q bit */
5088 smp_mb__before_clear_bit();
5089 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5090 smp_mb__after_clear_bit();
5091
5092 /* send Q update ramrod for FCoE Q */
5093 rc = bnx2x_queue_state_change(bp, &queue_params);
5094 if (rc < 0)
5095 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5096 q);
5097 } else {
5098 /* If no FCoE ring - ACK MCP now */
5099 bnx2x_link_report(bp);
5100 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5101 }
5102 }
5103
5104 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5105 struct bnx2x *bp, u32 cid)
5106 {
5107 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5108
5109 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5110 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5111 else
5112 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5113 }
5114
5115 static void bnx2x_eq_int(struct bnx2x *bp)
5116 {
5117 u16 hw_cons, sw_cons, sw_prod;
5118 union event_ring_elem *elem;
5119 u8 echo;
5120 u32 cid;
5121 u8 opcode;
5122 int rc, spqe_cnt = 0;
5123 struct bnx2x_queue_sp_obj *q_obj;
5124 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5125 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5126
5127 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5128
5129 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5130 * when we get the next-page we need to adjust so the loop
5131 * condition below will be met. The next element is the size of a
5132 * regular element and hence incrementing by 1
5133 */
5134 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5135 hw_cons++;
5136
5137 /* This function may never run in parallel with itself for a
5138 * specific bp, thus there is no need in "paired" read memory
5139 * barrier here.
5140 */
5141 sw_cons = bp->eq_cons;
5142 sw_prod = bp->eq_prod;
5143
5144 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5145 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5146
5147 for (; sw_cons != hw_cons;
5148 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5149
5150 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5151
5152 rc = bnx2x_iov_eq_sp_event(bp, elem);
5153 if (!rc) {
5154 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5155 rc);
5156 goto next_spqe;
5157 }
5158
5159 /* elem CID originates from FW; actually LE */
5160 cid = SW_CID((__force __le32)
5161 elem->message.data.cfc_del_event.cid);
5162 opcode = elem->message.opcode;
5163
5164 /* handle eq element */
5165 switch (opcode) {
5166 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5167 DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5168 bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5169 continue;
5170
5171 case EVENT_RING_OPCODE_STAT_QUERY:
5172 DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5173 "got statistics comp event %d\n",
5174 bp->stats_comp++);
5175 /* nothing to do with stats comp */
5176 goto next_spqe;
5177
5178 case EVENT_RING_OPCODE_CFC_DEL:
5179 /* handle according to cid range */
5180 /*
5181 * we may want to verify here that the bp state is
5182 * HALTING
5183 */
5184 DP(BNX2X_MSG_SP,
5185 "got delete ramrod for MULTI[%d]\n", cid);
5186
5187 if (CNIC_LOADED(bp) &&
5188 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5189 goto next_spqe;
5190
5191 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5192
5193 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5194 break;
5195
5196 goto next_spqe;
5197
5198 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5199 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5200 if (f_obj->complete_cmd(bp, f_obj,
5201 BNX2X_F_CMD_TX_STOP))
5202 break;
5203 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5204 goto next_spqe;
5205
5206 case EVENT_RING_OPCODE_START_TRAFFIC:
5207 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5208 if (f_obj->complete_cmd(bp, f_obj,
5209 BNX2X_F_CMD_TX_START))
5210 break;
5211 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5212 goto next_spqe;
5213
5214 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5215 echo = elem->message.data.function_update_event.echo;
5216 if (echo == SWITCH_UPDATE) {
5217 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5218 "got FUNC_SWITCH_UPDATE ramrod\n");
5219 if (f_obj->complete_cmd(
5220 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5221 break;
5222
5223 } else {
5224 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5225 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5226 f_obj->complete_cmd(bp, f_obj,
5227 BNX2X_F_CMD_AFEX_UPDATE);
5228
5229 /* We will perform the Queues update from
5230 * sp_rtnl task as all Queue SP operations
5231 * should run under rtnl_lock.
5232 */
5233 smp_mb__before_clear_bit();
5234 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5235 &bp->sp_rtnl_state);
5236 smp_mb__after_clear_bit();
5237
5238 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5239 }
5240
5241 goto next_spqe;
5242
5243 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5244 f_obj->complete_cmd(bp, f_obj,
5245 BNX2X_F_CMD_AFEX_VIFLISTS);
5246 bnx2x_after_afex_vif_lists(bp, elem);
5247 goto next_spqe;
5248 case EVENT_RING_OPCODE_FUNCTION_START:
5249 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5250 "got FUNC_START ramrod\n");
5251 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5252 break;
5253
5254 goto next_spqe;
5255
5256 case EVENT_RING_OPCODE_FUNCTION_STOP:
5257 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5258 "got FUNC_STOP ramrod\n");
5259 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5260 break;
5261
5262 goto next_spqe;
5263 }
5264
5265 switch (opcode | bp->state) {
5266 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5267 BNX2X_STATE_OPEN):
5268 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5269 BNX2X_STATE_OPENING_WAIT4_PORT):
5270 cid = elem->message.data.eth_event.echo &
5271 BNX2X_SWCID_MASK;
5272 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5273 cid);
5274 rss_raw->clear_pending(rss_raw);
5275 break;
5276
5277 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5278 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5279 case (EVENT_RING_OPCODE_SET_MAC |
5280 BNX2X_STATE_CLOSING_WAIT4_HALT):
5281 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5282 BNX2X_STATE_OPEN):
5283 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5284 BNX2X_STATE_DIAG):
5285 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5286 BNX2X_STATE_CLOSING_WAIT4_HALT):
5287 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5288 bnx2x_handle_classification_eqe(bp, elem);
5289 break;
5290
5291 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5292 BNX2X_STATE_OPEN):
5293 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5294 BNX2X_STATE_DIAG):
5295 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5296 BNX2X_STATE_CLOSING_WAIT4_HALT):
5297 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5298 bnx2x_handle_mcast_eqe(bp);
5299 break;
5300
5301 case (EVENT_RING_OPCODE_FILTERS_RULES |
5302 BNX2X_STATE_OPEN):
5303 case (EVENT_RING_OPCODE_FILTERS_RULES |
5304 BNX2X_STATE_DIAG):
5305 case (EVENT_RING_OPCODE_FILTERS_RULES |
5306 BNX2X_STATE_CLOSING_WAIT4_HALT):
5307 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5308 bnx2x_handle_rx_mode_eqe(bp);
5309 break;
5310 default:
5311 /* unknown event log error and continue */
5312 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5313 elem->message.opcode, bp->state);
5314 }
5315 next_spqe:
5316 spqe_cnt++;
5317 } /* for */
5318
5319 smp_mb__before_atomic_inc();
5320 atomic_add(spqe_cnt, &bp->eq_spq_left);
5321
5322 bp->eq_cons = sw_cons;
5323 bp->eq_prod = sw_prod;
5324 /* Make sure that above mem writes were issued towards the memory */
5325 smp_wmb();
5326
5327 /* update producer */
5328 bnx2x_update_eq_prod(bp, bp->eq_prod);
5329 }
5330
5331 static void bnx2x_sp_task(struct work_struct *work)
5332 {
5333 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5334
5335 DP(BNX2X_MSG_SP, "sp task invoked\n");
5336
5337 /* make sure the atomic interrupt_occurred has been written */
5338 smp_rmb();
5339 if (atomic_read(&bp->interrupt_occurred)) {
5340
5341 /* what work needs to be performed? */
5342 u16 status = bnx2x_update_dsb_idx(bp);
5343
5344 DP(BNX2X_MSG_SP, "status %x\n", status);
5345 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5346 atomic_set(&bp->interrupt_occurred, 0);
5347
5348 /* HW attentions */
5349 if (status & BNX2X_DEF_SB_ATT_IDX) {
5350 bnx2x_attn_int(bp);
5351 status &= ~BNX2X_DEF_SB_ATT_IDX;
5352 }
5353
5354 /* SP events: STAT_QUERY and others */
5355 if (status & BNX2X_DEF_SB_IDX) {
5356 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5357
5358 if (FCOE_INIT(bp) &&
5359 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5360 /* Prevent local bottom-halves from running as
5361 * we are going to change the local NAPI list.
5362 */
5363 local_bh_disable();
5364 napi_schedule(&bnx2x_fcoe(bp, napi));
5365 local_bh_enable();
5366 }
5367
5368 /* Handle EQ completions */
5369 bnx2x_eq_int(bp);
5370 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5371 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5372
5373 status &= ~BNX2X_DEF_SB_IDX;
5374 }
5375
5376 /* if status is non zero then perhaps something went wrong */
5377 if (unlikely(status))
5378 DP(BNX2X_MSG_SP,
5379 "got an unknown interrupt! (status 0x%x)\n", status);
5380
5381 /* ack status block only if something was actually handled */
5382 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5383 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5384 }
5385
5386 /* must be called after the EQ processing (since eq leads to sriov
5387 * ramrod completion flows).
5388 * This flow may have been scheduled by the arrival of a ramrod
5389 * completion, or by the sriov code rescheduling itself.
5390 */
5391 bnx2x_iov_sp_task(bp);
5392
5393 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5394 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5395 &bp->sp_state)) {
5396 bnx2x_link_report(bp);
5397 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5398 }
5399 }
5400
5401 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5402 {
5403 struct net_device *dev = dev_instance;
5404 struct bnx2x *bp = netdev_priv(dev);
5405
5406 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5407 IGU_INT_DISABLE, 0);
5408
5409 #ifdef BNX2X_STOP_ON_ERROR
5410 if (unlikely(bp->panic))
5411 return IRQ_HANDLED;
5412 #endif
5413
5414 if (CNIC_LOADED(bp)) {
5415 struct cnic_ops *c_ops;
5416
5417 rcu_read_lock();
5418 c_ops = rcu_dereference(bp->cnic_ops);
5419 if (c_ops)
5420 c_ops->cnic_handler(bp->cnic_data, NULL);
5421 rcu_read_unlock();
5422 }
5423
5424 /* schedule sp task to perform default status block work, ack
5425 * attentions and enable interrupts.
5426 */
5427 bnx2x_schedule_sp_task(bp);
5428
5429 return IRQ_HANDLED;
5430 }
5431
5432 /* end of slow path */
5433
5434 void bnx2x_drv_pulse(struct bnx2x *bp)
5435 {
5436 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5437 bp->fw_drv_pulse_wr_seq);
5438 }
5439
5440 static void bnx2x_timer(unsigned long data)
5441 {
5442 struct bnx2x *bp = (struct bnx2x *) data;
5443
5444 if (!netif_running(bp->dev))
5445 return;
5446
5447 if (IS_PF(bp) &&
5448 !BP_NOMCP(bp)) {
5449 int mb_idx = BP_FW_MB_IDX(bp);
5450 u32 drv_pulse;
5451 u32 mcp_pulse;
5452
5453 ++bp->fw_drv_pulse_wr_seq;
5454 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5455 /* TBD - add SYSTEM_TIME */
5456 drv_pulse = bp->fw_drv_pulse_wr_seq;
5457 bnx2x_drv_pulse(bp);
5458
5459 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5460 MCP_PULSE_SEQ_MASK);
5461 /* The delta between driver pulse and mcp response
5462 * should be 1 (before mcp response) or 0 (after mcp response)
5463 */
5464 if ((drv_pulse != mcp_pulse) &&
5465 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5466 /* someone lost a heartbeat... */
5467 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5468 drv_pulse, mcp_pulse);
5469 }
5470 }
5471
5472 if (bp->state == BNX2X_STATE_OPEN)
5473 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5474
5475 /* sample pf vf bulletin board for new posts from pf */
5476 if (IS_VF(bp))
5477 bnx2x_timer_sriov(bp);
5478
5479 mod_timer(&bp->timer, jiffies + bp->current_interval);
5480 }
5481
5482 /* end of Statistics */
5483
5484 /* nic init */
5485
5486 /*
5487 * nic init service functions
5488 */
5489
5490 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5491 {
5492 u32 i;
5493 if (!(len%4) && !(addr%4))
5494 for (i = 0; i < len; i += 4)
5495 REG_WR(bp, addr + i, fill);
5496 else
5497 for (i = 0; i < len; i++)
5498 REG_WR8(bp, addr + i, fill);
5499 }
5500
5501 /* helper: writes FP SP data to FW - data_size in dwords */
5502 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5503 int fw_sb_id,
5504 u32 *sb_data_p,
5505 u32 data_size)
5506 {
5507 int index;
5508 for (index = 0; index < data_size; index++)
5509 REG_WR(bp, BAR_CSTRORM_INTMEM +
5510 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5511 sizeof(u32)*index,
5512 *(sb_data_p + index));
5513 }
5514
5515 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5516 {
5517 u32 *sb_data_p;
5518 u32 data_size = 0;
5519 struct hc_status_block_data_e2 sb_data_e2;
5520 struct hc_status_block_data_e1x sb_data_e1x;
5521
5522 /* disable the function first */
5523 if (!CHIP_IS_E1x(bp)) {
5524 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5525 sb_data_e2.common.state = SB_DISABLED;
5526 sb_data_e2.common.p_func.vf_valid = false;
5527 sb_data_p = (u32 *)&sb_data_e2;
5528 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5529 } else {
5530 memset(&sb_data_e1x, 0,
5531 sizeof(struct hc_status_block_data_e1x));
5532 sb_data_e1x.common.state = SB_DISABLED;
5533 sb_data_e1x.common.p_func.vf_valid = false;
5534 sb_data_p = (u32 *)&sb_data_e1x;
5535 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5536 }
5537 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5538
5539 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5540 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5541 CSTORM_STATUS_BLOCK_SIZE);
5542 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5543 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5544 CSTORM_SYNC_BLOCK_SIZE);
5545 }
5546
5547 /* helper: writes SP SB data to FW */
5548 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5549 struct hc_sp_status_block_data *sp_sb_data)
5550 {
5551 int func = BP_FUNC(bp);
5552 int i;
5553 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5554 REG_WR(bp, BAR_CSTRORM_INTMEM +
5555 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5556 i*sizeof(u32),
5557 *((u32 *)sp_sb_data + i));
5558 }
5559
5560 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5561 {
5562 int func = BP_FUNC(bp);
5563 struct hc_sp_status_block_data sp_sb_data;
5564 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5565
5566 sp_sb_data.state = SB_DISABLED;
5567 sp_sb_data.p_func.vf_valid = false;
5568
5569 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5570
5571 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5572 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5573 CSTORM_SP_STATUS_BLOCK_SIZE);
5574 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5575 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5576 CSTORM_SP_SYNC_BLOCK_SIZE);
5577 }
5578
5579 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5580 int igu_sb_id, int igu_seg_id)
5581 {
5582 hc_sm->igu_sb_id = igu_sb_id;
5583 hc_sm->igu_seg_id = igu_seg_id;
5584 hc_sm->timer_value = 0xFF;
5585 hc_sm->time_to_expire = 0xFFFFFFFF;
5586 }
5587
5588 /* allocates state machine ids. */
5589 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5590 {
5591 /* zero out state machine indices */
5592 /* rx indices */
5593 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5594
5595 /* tx indices */
5596 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5597 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5598 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5599 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5600
5601 /* map indices */
5602 /* rx indices */
5603 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5604 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5605
5606 /* tx indices */
5607 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5608 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5609 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5610 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5611 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5612 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5613 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5614 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5615 }
5616
5617 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5618 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5619 {
5620 int igu_seg_id;
5621
5622 struct hc_status_block_data_e2 sb_data_e2;
5623 struct hc_status_block_data_e1x sb_data_e1x;
5624 struct hc_status_block_sm *hc_sm_p;
5625 int data_size;
5626 u32 *sb_data_p;
5627
5628 if (CHIP_INT_MODE_IS_BC(bp))
5629 igu_seg_id = HC_SEG_ACCESS_NORM;
5630 else
5631 igu_seg_id = IGU_SEG_ACCESS_NORM;
5632
5633 bnx2x_zero_fp_sb(bp, fw_sb_id);
5634
5635 if (!CHIP_IS_E1x(bp)) {
5636 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5637 sb_data_e2.common.state = SB_ENABLED;
5638 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5639 sb_data_e2.common.p_func.vf_id = vfid;
5640 sb_data_e2.common.p_func.vf_valid = vf_valid;
5641 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5642 sb_data_e2.common.same_igu_sb_1b = true;
5643 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5644 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5645 hc_sm_p = sb_data_e2.common.state_machine;
5646 sb_data_p = (u32 *)&sb_data_e2;
5647 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5648 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5649 } else {
5650 memset(&sb_data_e1x, 0,
5651 sizeof(struct hc_status_block_data_e1x));
5652 sb_data_e1x.common.state = SB_ENABLED;
5653 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5654 sb_data_e1x.common.p_func.vf_id = 0xff;
5655 sb_data_e1x.common.p_func.vf_valid = false;
5656 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5657 sb_data_e1x.common.same_igu_sb_1b = true;
5658 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5659 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5660 hc_sm_p = sb_data_e1x.common.state_machine;
5661 sb_data_p = (u32 *)&sb_data_e1x;
5662 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5663 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5664 }
5665
5666 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5667 igu_sb_id, igu_seg_id);
5668 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5669 igu_sb_id, igu_seg_id);
5670
5671 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5672
5673 /* write indices to HW - PCI guarantees endianity of regpairs */
5674 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5675 }
5676
5677 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5678 u16 tx_usec, u16 rx_usec)
5679 {
5680 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5681 false, rx_usec);
5682 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5683 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5684 tx_usec);
5685 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5686 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5687 tx_usec);
5688 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5689 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5690 tx_usec);
5691 }
5692
5693 static void bnx2x_init_def_sb(struct bnx2x *bp)
5694 {
5695 struct host_sp_status_block *def_sb = bp->def_status_blk;
5696 dma_addr_t mapping = bp->def_status_blk_mapping;
5697 int igu_sp_sb_index;
5698 int igu_seg_id;
5699 int port = BP_PORT(bp);
5700 int func = BP_FUNC(bp);
5701 int reg_offset, reg_offset_en5;
5702 u64 section;
5703 int index;
5704 struct hc_sp_status_block_data sp_sb_data;
5705 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5706
5707 if (CHIP_INT_MODE_IS_BC(bp)) {
5708 igu_sp_sb_index = DEF_SB_IGU_ID;
5709 igu_seg_id = HC_SEG_ACCESS_DEF;
5710 } else {
5711 igu_sp_sb_index = bp->igu_dsb_id;
5712 igu_seg_id = IGU_SEG_ACCESS_DEF;
5713 }
5714
5715 /* ATTN */
5716 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5717 atten_status_block);
5718 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5719
5720 bp->attn_state = 0;
5721
5722 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5723 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5724 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5725 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5726 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5727 int sindex;
5728 /* take care of sig[0]..sig[4] */
5729 for (sindex = 0; sindex < 4; sindex++)
5730 bp->attn_group[index].sig[sindex] =
5731 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5732
5733 if (!CHIP_IS_E1x(bp))
5734 /*
5735 * enable5 is separate from the rest of the registers,
5736 * and therefore the address skip is 4
5737 * and not 16 between the different groups
5738 */
5739 bp->attn_group[index].sig[4] = REG_RD(bp,
5740 reg_offset_en5 + 0x4*index);
5741 else
5742 bp->attn_group[index].sig[4] = 0;
5743 }
5744
5745 if (bp->common.int_block == INT_BLOCK_HC) {
5746 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5747 HC_REG_ATTN_MSG0_ADDR_L);
5748
5749 REG_WR(bp, reg_offset, U64_LO(section));
5750 REG_WR(bp, reg_offset + 4, U64_HI(section));
5751 } else if (!CHIP_IS_E1x(bp)) {
5752 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5753 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5754 }
5755
5756 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5757 sp_sb);
5758
5759 bnx2x_zero_sp_sb(bp);
5760
5761 /* PCI guarantees endianity of regpairs */
5762 sp_sb_data.state = SB_ENABLED;
5763 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5764 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5765 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5766 sp_sb_data.igu_seg_id = igu_seg_id;
5767 sp_sb_data.p_func.pf_id = func;
5768 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5769 sp_sb_data.p_func.vf_id = 0xff;
5770
5771 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5772
5773 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5774 }
5775
5776 void bnx2x_update_coalesce(struct bnx2x *bp)
5777 {
5778 int i;
5779
5780 for_each_eth_queue(bp, i)
5781 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5782 bp->tx_ticks, bp->rx_ticks);
5783 }
5784
5785 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5786 {
5787 spin_lock_init(&bp->spq_lock);
5788 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5789
5790 bp->spq_prod_idx = 0;
5791 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5792 bp->spq_prod_bd = bp->spq;
5793 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5794 }
5795
5796 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5797 {
5798 int i;
5799 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5800 union event_ring_elem *elem =
5801 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5802
5803 elem->next_page.addr.hi =
5804 cpu_to_le32(U64_HI(bp->eq_mapping +
5805 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5806 elem->next_page.addr.lo =
5807 cpu_to_le32(U64_LO(bp->eq_mapping +
5808 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5809 }
5810 bp->eq_cons = 0;
5811 bp->eq_prod = NUM_EQ_DESC;
5812 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5813 /* we want a warning message before it gets wrought... */
5814 atomic_set(&bp->eq_spq_left,
5815 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5816 }
5817
5818 /* called with netif_addr_lock_bh() */
5819 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5820 unsigned long rx_mode_flags,
5821 unsigned long rx_accept_flags,
5822 unsigned long tx_accept_flags,
5823 unsigned long ramrod_flags)
5824 {
5825 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5826 int rc;
5827
5828 memset(&ramrod_param, 0, sizeof(ramrod_param));
5829
5830 /* Prepare ramrod parameters */
5831 ramrod_param.cid = 0;
5832 ramrod_param.cl_id = cl_id;
5833 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5834 ramrod_param.func_id = BP_FUNC(bp);
5835
5836 ramrod_param.pstate = &bp->sp_state;
5837 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5838
5839 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5840 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5841
5842 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5843
5844 ramrod_param.ramrod_flags = ramrod_flags;
5845 ramrod_param.rx_mode_flags = rx_mode_flags;
5846
5847 ramrod_param.rx_accept_flags = rx_accept_flags;
5848 ramrod_param.tx_accept_flags = tx_accept_flags;
5849
5850 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5851 if (rc < 0) {
5852 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5853 return rc;
5854 }
5855
5856 return 0;
5857 }
5858
5859 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5860 unsigned long *rx_accept_flags,
5861 unsigned long *tx_accept_flags)
5862 {
5863 /* Clear the flags first */
5864 *rx_accept_flags = 0;
5865 *tx_accept_flags = 0;
5866
5867 switch (rx_mode) {
5868 case BNX2X_RX_MODE_NONE:
5869 /*
5870 * 'drop all' supersedes any accept flags that may have been
5871 * passed to the function.
5872 */
5873 break;
5874 case BNX2X_RX_MODE_NORMAL:
5875 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5876 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5877 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5878
5879 /* internal switching mode */
5880 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5881 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5882 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5883
5884 break;
5885 case BNX2X_RX_MODE_ALLMULTI:
5886 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5887 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5888 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5889
5890 /* internal switching mode */
5891 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5892 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5893 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5894
5895 break;
5896 case BNX2X_RX_MODE_PROMISC:
5897 /* According to definition of SI mode, iface in promisc mode
5898 * should receive matched and unmatched (in resolution of port)
5899 * unicast packets.
5900 */
5901 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5902 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5903 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5904 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5905
5906 /* internal switching mode */
5907 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5908 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5909
5910 if (IS_MF_SI(bp))
5911 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5912 else
5913 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5914
5915 break;
5916 default:
5917 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5918 return -EINVAL;
5919 }
5920
5921 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5922 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5923 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5924 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5925 }
5926
5927 return 0;
5928 }
5929
5930 /* called with netif_addr_lock_bh() */
5931 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5932 {
5933 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5934 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5935 int rc;
5936
5937 if (!NO_FCOE(bp))
5938 /* Configure rx_mode of FCoE Queue */
5939 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5940
5941 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5942 &tx_accept_flags);
5943 if (rc)
5944 return rc;
5945
5946 __set_bit(RAMROD_RX, &ramrod_flags);
5947 __set_bit(RAMROD_TX, &ramrod_flags);
5948
5949 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5950 rx_accept_flags, tx_accept_flags,
5951 ramrod_flags);
5952 }
5953
5954 static void bnx2x_init_internal_common(struct bnx2x *bp)
5955 {
5956 int i;
5957
5958 if (IS_MF_SI(bp))
5959 /*
5960 * In switch independent mode, the TSTORM needs to accept
5961 * packets that failed classification, since approximate match
5962 * mac addresses aren't written to NIG LLH
5963 */
5964 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5965 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5966 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5967 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5968 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5969
5970 /* Zero this manually as its initialization is
5971 currently missing in the initTool */
5972 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5973 REG_WR(bp, BAR_USTRORM_INTMEM +
5974 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5975 if (!CHIP_IS_E1x(bp)) {
5976 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5977 CHIP_INT_MODE_IS_BC(bp) ?
5978 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5979 }
5980 }
5981
5982 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5983 {
5984 switch (load_code) {
5985 case FW_MSG_CODE_DRV_LOAD_COMMON:
5986 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5987 bnx2x_init_internal_common(bp);
5988 /* no break */
5989
5990 case FW_MSG_CODE_DRV_LOAD_PORT:
5991 /* nothing to do */
5992 /* no break */
5993
5994 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5995 /* internal memory per function is
5996 initialized inside bnx2x_pf_init */
5997 break;
5998
5999 default:
6000 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6001 break;
6002 }
6003 }
6004
6005 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6006 {
6007 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6008 }
6009
6010 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6011 {
6012 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6013 }
6014
6015 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6016 {
6017 if (CHIP_IS_E1x(fp->bp))
6018 return BP_L_ID(fp->bp) + fp->index;
6019 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6020 return bnx2x_fp_igu_sb_id(fp);
6021 }
6022
6023 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6024 {
6025 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6026 u8 cos;
6027 unsigned long q_type = 0;
6028 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6029 fp->rx_queue = fp_idx;
6030 fp->cid = fp_idx;
6031 fp->cl_id = bnx2x_fp_cl_id(fp);
6032 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6033 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6034 /* qZone id equals to FW (per path) client id */
6035 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6036
6037 /* init shortcut */
6038 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6039
6040 /* Setup SB indices */
6041 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6042
6043 /* Configure Queue State object */
6044 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6045 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6046
6047 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6048
6049 /* init tx data */
6050 for_each_cos_in_tx_queue(fp, cos) {
6051 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6052 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6053 FP_COS_TO_TXQ(fp, cos, bp),
6054 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6055 cids[cos] = fp->txdata_ptr[cos]->cid;
6056 }
6057
6058 /* nothing more for vf to do here */
6059 if (IS_VF(bp))
6060 return;
6061
6062 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6063 fp->fw_sb_id, fp->igu_sb_id);
6064 bnx2x_update_fpsb_idx(fp);
6065 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6066 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6067 bnx2x_sp_mapping(bp, q_rdata), q_type);
6068
6069 /**
6070 * Configure classification DBs: Always enable Tx switching
6071 */
6072 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6073
6074 DP(NETIF_MSG_IFUP,
6075 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6076 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6077 fp->igu_sb_id);
6078 }
6079
6080 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6081 {
6082 int i;
6083
6084 for (i = 1; i <= NUM_TX_RINGS; i++) {
6085 struct eth_tx_next_bd *tx_next_bd =
6086 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6087
6088 tx_next_bd->addr_hi =
6089 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6090 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6091 tx_next_bd->addr_lo =
6092 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6093 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6094 }
6095
6096 *txdata->tx_cons_sb = cpu_to_le16(0);
6097
6098 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6099 txdata->tx_db.data.zero_fill1 = 0;
6100 txdata->tx_db.data.prod = 0;
6101
6102 txdata->tx_pkt_prod = 0;
6103 txdata->tx_pkt_cons = 0;
6104 txdata->tx_bd_prod = 0;
6105 txdata->tx_bd_cons = 0;
6106 txdata->tx_pkt = 0;
6107 }
6108
6109 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6110 {
6111 int i;
6112
6113 for_each_tx_queue_cnic(bp, i)
6114 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6115 }
6116
6117 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6118 {
6119 int i;
6120 u8 cos;
6121
6122 for_each_eth_queue(bp, i)
6123 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6124 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6125 }
6126
6127 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6128 {
6129 if (!NO_FCOE(bp))
6130 bnx2x_init_fcoe_fp(bp);
6131
6132 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6133 BNX2X_VF_ID_INVALID, false,
6134 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6135
6136 /* ensure status block indices were read */
6137 rmb();
6138 bnx2x_init_rx_rings_cnic(bp);
6139 bnx2x_init_tx_rings_cnic(bp);
6140
6141 /* flush all */
6142 mb();
6143 mmiowb();
6144 }
6145
6146 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6147 {
6148 int i;
6149
6150 /* Setup NIC internals and enable interrupts */
6151 for_each_eth_queue(bp, i)
6152 bnx2x_init_eth_fp(bp, i);
6153
6154 /* ensure status block indices were read */
6155 rmb();
6156 bnx2x_init_rx_rings(bp);
6157 bnx2x_init_tx_rings(bp);
6158
6159 if (IS_PF(bp)) {
6160 /* Initialize MOD_ABS interrupts */
6161 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6162 bp->common.shmem_base,
6163 bp->common.shmem2_base, BP_PORT(bp));
6164
6165 /* initialize the default status block and sp ring */
6166 bnx2x_init_def_sb(bp);
6167 bnx2x_update_dsb_idx(bp);
6168 bnx2x_init_sp_ring(bp);
6169 } else {
6170 bnx2x_memset_stats(bp);
6171 }
6172 }
6173
6174 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6175 {
6176 bnx2x_init_eq_ring(bp);
6177 bnx2x_init_internal(bp, load_code);
6178 bnx2x_pf_init(bp);
6179 bnx2x_stats_init(bp);
6180
6181 /* flush all before enabling interrupts */
6182 mb();
6183 mmiowb();
6184
6185 bnx2x_int_enable(bp);
6186
6187 /* Check for SPIO5 */
6188 bnx2x_attn_int_deasserted0(bp,
6189 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6190 AEU_INPUTS_ATTN_BITS_SPIO5);
6191 }
6192
6193 /* gzip service functions */
6194 static int bnx2x_gunzip_init(struct bnx2x *bp)
6195 {
6196 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6197 &bp->gunzip_mapping, GFP_KERNEL);
6198 if (bp->gunzip_buf == NULL)
6199 goto gunzip_nomem1;
6200
6201 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6202 if (bp->strm == NULL)
6203 goto gunzip_nomem2;
6204
6205 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6206 if (bp->strm->workspace == NULL)
6207 goto gunzip_nomem3;
6208
6209 return 0;
6210
6211 gunzip_nomem3:
6212 kfree(bp->strm);
6213 bp->strm = NULL;
6214
6215 gunzip_nomem2:
6216 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6217 bp->gunzip_mapping);
6218 bp->gunzip_buf = NULL;
6219
6220 gunzip_nomem1:
6221 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6222 return -ENOMEM;
6223 }
6224
6225 static void bnx2x_gunzip_end(struct bnx2x *bp)
6226 {
6227 if (bp->strm) {
6228 vfree(bp->strm->workspace);
6229 kfree(bp->strm);
6230 bp->strm = NULL;
6231 }
6232
6233 if (bp->gunzip_buf) {
6234 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6235 bp->gunzip_mapping);
6236 bp->gunzip_buf = NULL;
6237 }
6238 }
6239
6240 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6241 {
6242 int n, rc;
6243
6244 /* check gzip header */
6245 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6246 BNX2X_ERR("Bad gzip header\n");
6247 return -EINVAL;
6248 }
6249
6250 n = 10;
6251
6252 #define FNAME 0x8
6253
6254 if (zbuf[3] & FNAME)
6255 while ((zbuf[n++] != 0) && (n < len));
6256
6257 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6258 bp->strm->avail_in = len - n;
6259 bp->strm->next_out = bp->gunzip_buf;
6260 bp->strm->avail_out = FW_BUF_SIZE;
6261
6262 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6263 if (rc != Z_OK)
6264 return rc;
6265
6266 rc = zlib_inflate(bp->strm, Z_FINISH);
6267 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6268 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6269 bp->strm->msg);
6270
6271 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6272 if (bp->gunzip_outlen & 0x3)
6273 netdev_err(bp->dev,
6274 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6275 bp->gunzip_outlen);
6276 bp->gunzip_outlen >>= 2;
6277
6278 zlib_inflateEnd(bp->strm);
6279
6280 if (rc == Z_STREAM_END)
6281 return 0;
6282
6283 return rc;
6284 }
6285
6286 /* nic load/unload */
6287
6288 /*
6289 * General service functions
6290 */
6291
6292 /* send a NIG loopback debug packet */
6293 static void bnx2x_lb_pckt(struct bnx2x *bp)
6294 {
6295 u32 wb_write[3];
6296
6297 /* Ethernet source and destination addresses */
6298 wb_write[0] = 0x55555555;
6299 wb_write[1] = 0x55555555;
6300 wb_write[2] = 0x20; /* SOP */
6301 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6302
6303 /* NON-IP protocol */
6304 wb_write[0] = 0x09000000;
6305 wb_write[1] = 0x55555555;
6306 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6307 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6308 }
6309
6310 /* some of the internal memories
6311 * are not directly readable from the driver
6312 * to test them we send debug packets
6313 */
6314 static int bnx2x_int_mem_test(struct bnx2x *bp)
6315 {
6316 int factor;
6317 int count, i;
6318 u32 val = 0;
6319
6320 if (CHIP_REV_IS_FPGA(bp))
6321 factor = 120;
6322 else if (CHIP_REV_IS_EMUL(bp))
6323 factor = 200;
6324 else
6325 factor = 1;
6326
6327 /* Disable inputs of parser neighbor blocks */
6328 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6329 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6330 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6331 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6332
6333 /* Write 0 to parser credits for CFC search request */
6334 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6335
6336 /* send Ethernet packet */
6337 bnx2x_lb_pckt(bp);
6338
6339 /* TODO do i reset NIG statistic? */
6340 /* Wait until NIG register shows 1 packet of size 0x10 */
6341 count = 1000 * factor;
6342 while (count) {
6343
6344 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6345 val = *bnx2x_sp(bp, wb_data[0]);
6346 if (val == 0x10)
6347 break;
6348
6349 usleep_range(10000, 20000);
6350 count--;
6351 }
6352 if (val != 0x10) {
6353 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6354 return -1;
6355 }
6356
6357 /* Wait until PRS register shows 1 packet */
6358 count = 1000 * factor;
6359 while (count) {
6360 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6361 if (val == 1)
6362 break;
6363
6364 usleep_range(10000, 20000);
6365 count--;
6366 }
6367 if (val != 0x1) {
6368 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6369 return -2;
6370 }
6371
6372 /* Reset and init BRB, PRS */
6373 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6374 msleep(50);
6375 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6376 msleep(50);
6377 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6378 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6379
6380 DP(NETIF_MSG_HW, "part2\n");
6381
6382 /* Disable inputs of parser neighbor blocks */
6383 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6384 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6385 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6386 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6387
6388 /* Write 0 to parser credits for CFC search request */
6389 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6390
6391 /* send 10 Ethernet packets */
6392 for (i = 0; i < 10; i++)
6393 bnx2x_lb_pckt(bp);
6394
6395 /* Wait until NIG register shows 10 + 1
6396 packets of size 11*0x10 = 0xb0 */
6397 count = 1000 * factor;
6398 while (count) {
6399
6400 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6401 val = *bnx2x_sp(bp, wb_data[0]);
6402 if (val == 0xb0)
6403 break;
6404
6405 usleep_range(10000, 20000);
6406 count--;
6407 }
6408 if (val != 0xb0) {
6409 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6410 return -3;
6411 }
6412
6413 /* Wait until PRS register shows 2 packets */
6414 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6415 if (val != 2)
6416 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6417
6418 /* Write 1 to parser credits for CFC search request */
6419 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6420
6421 /* Wait until PRS register shows 3 packets */
6422 msleep(10 * factor);
6423 /* Wait until NIG register shows 1 packet of size 0x10 */
6424 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6425 if (val != 3)
6426 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6427
6428 /* clear NIG EOP FIFO */
6429 for (i = 0; i < 11; i++)
6430 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6431 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6432 if (val != 1) {
6433 BNX2X_ERR("clear of NIG failed\n");
6434 return -4;
6435 }
6436
6437 /* Reset and init BRB, PRS, NIG */
6438 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6439 msleep(50);
6440 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6441 msleep(50);
6442 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6443 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6444 if (!CNIC_SUPPORT(bp))
6445 /* set NIC mode */
6446 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6447
6448 /* Enable inputs of parser neighbor blocks */
6449 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6450 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6451 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6452 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6453
6454 DP(NETIF_MSG_HW, "done\n");
6455
6456 return 0; /* OK */
6457 }
6458
6459 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6460 {
6461 u32 val;
6462
6463 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6464 if (!CHIP_IS_E1x(bp))
6465 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6466 else
6467 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6468 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6469 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6470 /*
6471 * mask read length error interrupts in brb for parser
6472 * (parsing unit and 'checksum and crc' unit)
6473 * these errors are legal (PU reads fixed length and CAC can cause
6474 * read length error on truncated packets)
6475 */
6476 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6477 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6478 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6479 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6480 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6481 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6482 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6483 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6484 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6485 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6486 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6487 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6488 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6489 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6490 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6491 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6492 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6493 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6494 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6495
6496 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6497 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6498 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6499 if (!CHIP_IS_E1x(bp))
6500 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6501 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6502 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6503
6504 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6505 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6506 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6507 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6508
6509 if (!CHIP_IS_E1x(bp))
6510 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6511 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6512
6513 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6514 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6515 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6516 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6517 }
6518
6519 static void bnx2x_reset_common(struct bnx2x *bp)
6520 {
6521 u32 val = 0x1400;
6522
6523 /* reset_common */
6524 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6525 0xd3ffff7f);
6526
6527 if (CHIP_IS_E3(bp)) {
6528 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6529 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6530 }
6531
6532 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6533 }
6534
6535 static void bnx2x_setup_dmae(struct bnx2x *bp)
6536 {
6537 bp->dmae_ready = 0;
6538 spin_lock_init(&bp->dmae_lock);
6539 }
6540
6541 static void bnx2x_init_pxp(struct bnx2x *bp)
6542 {
6543 u16 devctl;
6544 int r_order, w_order;
6545
6546 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6547 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6548 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6549 if (bp->mrrs == -1)
6550 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6551 else {
6552 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6553 r_order = bp->mrrs;
6554 }
6555
6556 bnx2x_init_pxp_arb(bp, r_order, w_order);
6557 }
6558
6559 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6560 {
6561 int is_required;
6562 u32 val;
6563 int port;
6564
6565 if (BP_NOMCP(bp))
6566 return;
6567
6568 is_required = 0;
6569 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6570 SHARED_HW_CFG_FAN_FAILURE_MASK;
6571
6572 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6573 is_required = 1;
6574
6575 /*
6576 * The fan failure mechanism is usually related to the PHY type since
6577 * the power consumption of the board is affected by the PHY. Currently,
6578 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6579 */
6580 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6581 for (port = PORT_0; port < PORT_MAX; port++) {
6582 is_required |=
6583 bnx2x_fan_failure_det_req(
6584 bp,
6585 bp->common.shmem_base,
6586 bp->common.shmem2_base,
6587 port);
6588 }
6589
6590 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6591
6592 if (is_required == 0)
6593 return;
6594
6595 /* Fan failure is indicated by SPIO 5 */
6596 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6597
6598 /* set to active low mode */
6599 val = REG_RD(bp, MISC_REG_SPIO_INT);
6600 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6601 REG_WR(bp, MISC_REG_SPIO_INT, val);
6602
6603 /* enable interrupt to signal the IGU */
6604 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6605 val |= MISC_SPIO_SPIO5;
6606 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6607 }
6608
6609 void bnx2x_pf_disable(struct bnx2x *bp)
6610 {
6611 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6612 val &= ~IGU_PF_CONF_FUNC_EN;
6613
6614 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6615 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6616 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6617 }
6618
6619 static void bnx2x__common_init_phy(struct bnx2x *bp)
6620 {
6621 u32 shmem_base[2], shmem2_base[2];
6622 /* Avoid common init in case MFW supports LFA */
6623 if (SHMEM2_RD(bp, size) >
6624 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6625 return;
6626 shmem_base[0] = bp->common.shmem_base;
6627 shmem2_base[0] = bp->common.shmem2_base;
6628 if (!CHIP_IS_E1x(bp)) {
6629 shmem_base[1] =
6630 SHMEM2_RD(bp, other_shmem_base_addr);
6631 shmem2_base[1] =
6632 SHMEM2_RD(bp, other_shmem2_base_addr);
6633 }
6634 bnx2x_acquire_phy_lock(bp);
6635 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6636 bp->common.chip_id);
6637 bnx2x_release_phy_lock(bp);
6638 }
6639
6640 /**
6641 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6642 *
6643 * @bp: driver handle
6644 */
6645 static int bnx2x_init_hw_common(struct bnx2x *bp)
6646 {
6647 u32 val;
6648
6649 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
6650
6651 /*
6652 * take the RESET lock to protect undi_unload flow from accessing
6653 * registers while we're resetting the chip
6654 */
6655 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6656
6657 bnx2x_reset_common(bp);
6658 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6659
6660 val = 0xfffc;
6661 if (CHIP_IS_E3(bp)) {
6662 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6663 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6664 }
6665 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6666
6667 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6668
6669 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6670
6671 if (!CHIP_IS_E1x(bp)) {
6672 u8 abs_func_id;
6673
6674 /**
6675 * 4-port mode or 2-port mode we need to turn of master-enable
6676 * for everyone, after that, turn it back on for self.
6677 * so, we disregard multi-function or not, and always disable
6678 * for all functions on the given path, this means 0,2,4,6 for
6679 * path 0 and 1,3,5,7 for path 1
6680 */
6681 for (abs_func_id = BP_PATH(bp);
6682 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6683 if (abs_func_id == BP_ABS_FUNC(bp)) {
6684 REG_WR(bp,
6685 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6686 1);
6687 continue;
6688 }
6689
6690 bnx2x_pretend_func(bp, abs_func_id);
6691 /* clear pf enable */
6692 bnx2x_pf_disable(bp);
6693 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6694 }
6695 }
6696
6697 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6698 if (CHIP_IS_E1(bp)) {
6699 /* enable HW interrupt from PXP on USDM overflow
6700 bit 16 on INT_MASK_0 */
6701 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6702 }
6703
6704 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6705 bnx2x_init_pxp(bp);
6706
6707 #ifdef __BIG_ENDIAN
6708 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6709 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6710 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6711 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6712 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6713 /* make sure this value is 0 */
6714 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6715
6716 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6717 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6718 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6719 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6720 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6721 #endif
6722
6723 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6724
6725 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6726 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6727
6728 /* let the HW do it's magic ... */
6729 msleep(100);
6730 /* finish PXP init */
6731 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6732 if (val != 1) {
6733 BNX2X_ERR("PXP2 CFG failed\n");
6734 return -EBUSY;
6735 }
6736 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6737 if (val != 1) {
6738 BNX2X_ERR("PXP2 RD_INIT failed\n");
6739 return -EBUSY;
6740 }
6741
6742 /* Timers bug workaround E2 only. We need to set the entire ILT to
6743 * have entries with value "0" and valid bit on.
6744 * This needs to be done by the first PF that is loaded in a path
6745 * (i.e. common phase)
6746 */
6747 if (!CHIP_IS_E1x(bp)) {
6748 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6749 * (i.e. vnic3) to start even if it is marked as "scan-off".
6750 * This occurs when a different function (func2,3) is being marked
6751 * as "scan-off". Real-life scenario for example: if a driver is being
6752 * load-unloaded while func6,7 are down. This will cause the timer to access
6753 * the ilt, translate to a logical address and send a request to read/write.
6754 * Since the ilt for the function that is down is not valid, this will cause
6755 * a translation error which is unrecoverable.
6756 * The Workaround is intended to make sure that when this happens nothing fatal
6757 * will occur. The workaround:
6758 * 1. First PF driver which loads on a path will:
6759 * a. After taking the chip out of reset, by using pretend,
6760 * it will write "0" to the following registers of
6761 * the other vnics.
6762 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6763 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6764 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6765 * And for itself it will write '1' to
6766 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6767 * dmae-operations (writing to pram for example.)
6768 * note: can be done for only function 6,7 but cleaner this
6769 * way.
6770 * b. Write zero+valid to the entire ILT.
6771 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6772 * VNIC3 (of that port). The range allocated will be the
6773 * entire ILT. This is needed to prevent ILT range error.
6774 * 2. Any PF driver load flow:
6775 * a. ILT update with the physical addresses of the allocated
6776 * logical pages.
6777 * b. Wait 20msec. - note that this timeout is needed to make
6778 * sure there are no requests in one of the PXP internal
6779 * queues with "old" ILT addresses.
6780 * c. PF enable in the PGLC.
6781 * d. Clear the was_error of the PF in the PGLC. (could have
6782 * occurred while driver was down)
6783 * e. PF enable in the CFC (WEAK + STRONG)
6784 * f. Timers scan enable
6785 * 3. PF driver unload flow:
6786 * a. Clear the Timers scan_en.
6787 * b. Polling for scan_on=0 for that PF.
6788 * c. Clear the PF enable bit in the PXP.
6789 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6790 * e. Write zero+valid to all ILT entries (The valid bit must
6791 * stay set)
6792 * f. If this is VNIC 3 of a port then also init
6793 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6794 * to the last entry in the ILT.
6795 *
6796 * Notes:
6797 * Currently the PF error in the PGLC is non recoverable.
6798 * In the future the there will be a recovery routine for this error.
6799 * Currently attention is masked.
6800 * Having an MCP lock on the load/unload process does not guarantee that
6801 * there is no Timer disable during Func6/7 enable. This is because the
6802 * Timers scan is currently being cleared by the MCP on FLR.
6803 * Step 2.d can be done only for PF6/7 and the driver can also check if
6804 * there is error before clearing it. But the flow above is simpler and
6805 * more general.
6806 * All ILT entries are written by zero+valid and not just PF6/7
6807 * ILT entries since in the future the ILT entries allocation for
6808 * PF-s might be dynamic.
6809 */
6810 struct ilt_client_info ilt_cli;
6811 struct bnx2x_ilt ilt;
6812 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6813 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6814
6815 /* initialize dummy TM client */
6816 ilt_cli.start = 0;
6817 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6818 ilt_cli.client_num = ILT_CLIENT_TM;
6819
6820 /* Step 1: set zeroes to all ilt page entries with valid bit on
6821 * Step 2: set the timers first/last ilt entry to point
6822 * to the entire range to prevent ILT range error for 3rd/4th
6823 * vnic (this code assumes existence of the vnic)
6824 *
6825 * both steps performed by call to bnx2x_ilt_client_init_op()
6826 * with dummy TM client
6827 *
6828 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6829 * and his brother are split registers
6830 */
6831 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6832 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6833 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6834
6835 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6836 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6837 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6838 }
6839
6840 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6841 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6842
6843 if (!CHIP_IS_E1x(bp)) {
6844 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6845 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6846 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6847
6848 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6849
6850 /* let the HW do it's magic ... */
6851 do {
6852 msleep(200);
6853 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6854 } while (factor-- && (val != 1));
6855
6856 if (val != 1) {
6857 BNX2X_ERR("ATC_INIT failed\n");
6858 return -EBUSY;
6859 }
6860 }
6861
6862 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6863
6864 bnx2x_iov_init_dmae(bp);
6865
6866 /* clean the DMAE memory */
6867 bp->dmae_ready = 1;
6868 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6869
6870 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6871
6872 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6873
6874 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6875
6876 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6877
6878 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6879 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6880 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6881 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6882
6883 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6884
6885 /* QM queues pointers table */
6886 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6887
6888 /* soft reset pulse */
6889 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6890 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6891
6892 if (CNIC_SUPPORT(bp))
6893 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6894
6895 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6896 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6897 if (!CHIP_REV_IS_SLOW(bp))
6898 /* enable hw interrupt from doorbell Q */
6899 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6900
6901 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6902
6903 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6904 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6905
6906 if (!CHIP_IS_E1(bp))
6907 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6908
6909 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6910 if (IS_MF_AFEX(bp)) {
6911 /* configure that VNTag and VLAN headers must be
6912 * received in afex mode
6913 */
6914 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6915 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6916 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6917 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6918 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6919 } else {
6920 /* Bit-map indicating which L2 hdrs may appear
6921 * after the basic Ethernet header
6922 */
6923 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6924 bp->path_has_ovlan ? 7 : 6);
6925 }
6926 }
6927
6928 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6929 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6930 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6931 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6932
6933 if (!CHIP_IS_E1x(bp)) {
6934 /* reset VFC memories */
6935 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6936 VFC_MEMORIES_RST_REG_CAM_RST |
6937 VFC_MEMORIES_RST_REG_RAM_RST);
6938 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6939 VFC_MEMORIES_RST_REG_CAM_RST |
6940 VFC_MEMORIES_RST_REG_RAM_RST);
6941
6942 msleep(20);
6943 }
6944
6945 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6946 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6947 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6948 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6949
6950 /* sync semi rtc */
6951 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6952 0x80000000);
6953 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6954 0x80000000);
6955
6956 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6957 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6958 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6959
6960 if (!CHIP_IS_E1x(bp)) {
6961 if (IS_MF_AFEX(bp)) {
6962 /* configure that VNTag and VLAN headers must be
6963 * sent in afex mode
6964 */
6965 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6966 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6967 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6968 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6969 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6970 } else {
6971 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6972 bp->path_has_ovlan ? 7 : 6);
6973 }
6974 }
6975
6976 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6977
6978 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6979
6980 if (CNIC_SUPPORT(bp)) {
6981 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6982 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6983 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6984 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6985 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6986 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6987 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6988 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6989 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6990 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6991 }
6992 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6993
6994 if (sizeof(union cdu_context) != 1024)
6995 /* we currently assume that a context is 1024 bytes */
6996 dev_alert(&bp->pdev->dev,
6997 "please adjust the size of cdu_context(%ld)\n",
6998 (long)sizeof(union cdu_context));
6999
7000 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7001 val = (4 << 24) + (0 << 12) + 1024;
7002 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7003
7004 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7005 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7006 /* enable context validation interrupt from CFC */
7007 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7008
7009 /* set the thresholds to prevent CFC/CDU race */
7010 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7011
7012 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7013
7014 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7015 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7016
7017 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7018 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7019
7020 /* Reset PCIE errors for debug */
7021 REG_WR(bp, 0x2814, 0xffffffff);
7022 REG_WR(bp, 0x3820, 0xffffffff);
7023
7024 if (!CHIP_IS_E1x(bp)) {
7025 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7026 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7027 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7028 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7029 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7030 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7031 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7032 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7033 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7034 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7035 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7036 }
7037
7038 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7039 if (!CHIP_IS_E1(bp)) {
7040 /* in E3 this done in per-port section */
7041 if (!CHIP_IS_E3(bp))
7042 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7043 }
7044 if (CHIP_IS_E1H(bp))
7045 /* not applicable for E2 (and above ...) */
7046 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7047
7048 if (CHIP_REV_IS_SLOW(bp))
7049 msleep(200);
7050
7051 /* finish CFC init */
7052 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7053 if (val != 1) {
7054 BNX2X_ERR("CFC LL_INIT failed\n");
7055 return -EBUSY;
7056 }
7057 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7058 if (val != 1) {
7059 BNX2X_ERR("CFC AC_INIT failed\n");
7060 return -EBUSY;
7061 }
7062 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7063 if (val != 1) {
7064 BNX2X_ERR("CFC CAM_INIT failed\n");
7065 return -EBUSY;
7066 }
7067 REG_WR(bp, CFC_REG_DEBUG0, 0);
7068
7069 if (CHIP_IS_E1(bp)) {
7070 /* read NIG statistic
7071 to see if this is our first up since powerup */
7072 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7073 val = *bnx2x_sp(bp, wb_data[0]);
7074
7075 /* do internal memory self test */
7076 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7077 BNX2X_ERR("internal mem self test failed\n");
7078 return -EBUSY;
7079 }
7080 }
7081
7082 bnx2x_setup_fan_failure_detection(bp);
7083
7084 /* clear PXP2 attentions */
7085 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7086
7087 bnx2x_enable_blocks_attention(bp);
7088 bnx2x_enable_blocks_parity(bp);
7089
7090 if (!BP_NOMCP(bp)) {
7091 if (CHIP_IS_E1x(bp))
7092 bnx2x__common_init_phy(bp);
7093 } else
7094 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7095
7096 return 0;
7097 }
7098
7099 /**
7100 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7101 *
7102 * @bp: driver handle
7103 */
7104 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7105 {
7106 int rc = bnx2x_init_hw_common(bp);
7107
7108 if (rc)
7109 return rc;
7110
7111 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7112 if (!BP_NOMCP(bp))
7113 bnx2x__common_init_phy(bp);
7114
7115 return 0;
7116 }
7117
7118 static int bnx2x_init_hw_port(struct bnx2x *bp)
7119 {
7120 int port = BP_PORT(bp);
7121 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7122 u32 low, high;
7123 u32 val;
7124
7125 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7126
7127 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7128
7129 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7130 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7131 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7132
7133 /* Timers bug workaround: disables the pf_master bit in pglue at
7134 * common phase, we need to enable it here before any dmae access are
7135 * attempted. Therefore we manually added the enable-master to the
7136 * port phase (it also happens in the function phase)
7137 */
7138 if (!CHIP_IS_E1x(bp))
7139 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7140
7141 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7142 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7143 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7144 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7145
7146 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7147 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7148 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7149 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7150
7151 /* QM cid (connection) count */
7152 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7153
7154 if (CNIC_SUPPORT(bp)) {
7155 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7156 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7157 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7158 }
7159
7160 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7161
7162 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7163
7164 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7165
7166 if (IS_MF(bp))
7167 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7168 else if (bp->dev->mtu > 4096) {
7169 if (bp->flags & ONE_PORT_FLAG)
7170 low = 160;
7171 else {
7172 val = bp->dev->mtu;
7173 /* (24*1024 + val*4)/256 */
7174 low = 96 + (val/64) +
7175 ((val % 64) ? 1 : 0);
7176 }
7177 } else
7178 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7179 high = low + 56; /* 14*1024/256 */
7180 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7181 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7182 }
7183
7184 if (CHIP_MODE_IS_4_PORT(bp))
7185 REG_WR(bp, (BP_PORT(bp) ?
7186 BRB1_REG_MAC_GUARANTIED_1 :
7187 BRB1_REG_MAC_GUARANTIED_0), 40);
7188
7189 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7190 if (CHIP_IS_E3B0(bp)) {
7191 if (IS_MF_AFEX(bp)) {
7192 /* configure headers for AFEX mode */
7193 REG_WR(bp, BP_PORT(bp) ?
7194 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7195 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7196 REG_WR(bp, BP_PORT(bp) ?
7197 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7198 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7199 REG_WR(bp, BP_PORT(bp) ?
7200 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7201 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7202 } else {
7203 /* Ovlan exists only if we are in multi-function +
7204 * switch-dependent mode, in switch-independent there
7205 * is no ovlan headers
7206 */
7207 REG_WR(bp, BP_PORT(bp) ?
7208 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7209 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7210 (bp->path_has_ovlan ? 7 : 6));
7211 }
7212 }
7213
7214 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7215 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7216 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7217 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7218
7219 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7220 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7221 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7222 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7223
7224 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7225 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7226
7227 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7228
7229 if (CHIP_IS_E1x(bp)) {
7230 /* configure PBF to work without PAUSE mtu 9000 */
7231 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7232
7233 /* update threshold */
7234 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7235 /* update init credit */
7236 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7237
7238 /* probe changes */
7239 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7240 udelay(50);
7241 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7242 }
7243
7244 if (CNIC_SUPPORT(bp))
7245 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7246
7247 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7248 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7249
7250 if (CHIP_IS_E1(bp)) {
7251 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7252 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7253 }
7254 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7255
7256 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7257
7258 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7259 /* init aeu_mask_attn_func_0/1:
7260 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7261 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7262 * bits 4-7 are used for "per vn group attention" */
7263 val = IS_MF(bp) ? 0xF7 : 0x7;
7264 /* Enable DCBX attention for all but E1 */
7265 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7266 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7267
7268 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7269
7270 if (!CHIP_IS_E1x(bp)) {
7271 /* Bit-map indicating which L2 hdrs may appear after the
7272 * basic Ethernet header
7273 */
7274 if (IS_MF_AFEX(bp))
7275 REG_WR(bp, BP_PORT(bp) ?
7276 NIG_REG_P1_HDRS_AFTER_BASIC :
7277 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7278 else
7279 REG_WR(bp, BP_PORT(bp) ?
7280 NIG_REG_P1_HDRS_AFTER_BASIC :
7281 NIG_REG_P0_HDRS_AFTER_BASIC,
7282 IS_MF_SD(bp) ? 7 : 6);
7283
7284 if (CHIP_IS_E3(bp))
7285 REG_WR(bp, BP_PORT(bp) ?
7286 NIG_REG_LLH1_MF_MODE :
7287 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7288 }
7289 if (!CHIP_IS_E3(bp))
7290 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7291
7292 if (!CHIP_IS_E1(bp)) {
7293 /* 0x2 disable mf_ov, 0x1 enable */
7294 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7295 (IS_MF_SD(bp) ? 0x1 : 0x2));
7296
7297 if (!CHIP_IS_E1x(bp)) {
7298 val = 0;
7299 switch (bp->mf_mode) {
7300 case MULTI_FUNCTION_SD:
7301 val = 1;
7302 break;
7303 case MULTI_FUNCTION_SI:
7304 case MULTI_FUNCTION_AFEX:
7305 val = 2;
7306 break;
7307 }
7308
7309 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7310 NIG_REG_LLH0_CLS_TYPE), val);
7311 }
7312 {
7313 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7314 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7315 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7316 }
7317 }
7318
7319 /* If SPIO5 is set to generate interrupts, enable it for this port */
7320 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7321 if (val & MISC_SPIO_SPIO5) {
7322 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7323 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7324 val = REG_RD(bp, reg_addr);
7325 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7326 REG_WR(bp, reg_addr, val);
7327 }
7328
7329 return 0;
7330 }
7331
7332 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7333 {
7334 int reg;
7335 u32 wb_write[2];
7336
7337 if (CHIP_IS_E1(bp))
7338 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7339 else
7340 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7341
7342 wb_write[0] = ONCHIP_ADDR1(addr);
7343 wb_write[1] = ONCHIP_ADDR2(addr);
7344 REG_WR_DMAE(bp, reg, wb_write, 2);
7345 }
7346
7347 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7348 {
7349 u32 data, ctl, cnt = 100;
7350 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7351 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7352 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7353 u32 sb_bit = 1 << (idu_sb_id%32);
7354 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7355 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7356
7357 /* Not supported in BC mode */
7358 if (CHIP_INT_MODE_IS_BC(bp))
7359 return;
7360
7361 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7362 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7363 IGU_REGULAR_CLEANUP_SET |
7364 IGU_REGULAR_BCLEANUP;
7365
7366 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7367 func_encode << IGU_CTRL_REG_FID_SHIFT |
7368 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7369
7370 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7371 data, igu_addr_data);
7372 REG_WR(bp, igu_addr_data, data);
7373 mmiowb();
7374 barrier();
7375 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7376 ctl, igu_addr_ctl);
7377 REG_WR(bp, igu_addr_ctl, ctl);
7378 mmiowb();
7379 barrier();
7380
7381 /* wait for clean up to finish */
7382 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7383 msleep(20);
7384
7385 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7386 DP(NETIF_MSG_HW,
7387 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7388 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7389 }
7390 }
7391
7392 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7393 {
7394 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7395 }
7396
7397 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7398 {
7399 u32 i, base = FUNC_ILT_BASE(func);
7400 for (i = base; i < base + ILT_PER_FUNC; i++)
7401 bnx2x_ilt_wr(bp, i, 0);
7402 }
7403
7404 static void bnx2x_init_searcher(struct bnx2x *bp)
7405 {
7406 int port = BP_PORT(bp);
7407 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7408 /* T1 hash bits value determines the T1 number of entries */
7409 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7410 }
7411
7412 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7413 {
7414 int rc;
7415 struct bnx2x_func_state_params func_params = {NULL};
7416 struct bnx2x_func_switch_update_params *switch_update_params =
7417 &func_params.params.switch_update;
7418
7419 /* Prepare parameters for function state transitions */
7420 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7421 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7422
7423 func_params.f_obj = &bp->func_obj;
7424 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7425
7426 /* Function parameters */
7427 switch_update_params->suspend = suspend;
7428
7429 rc = bnx2x_func_state_change(bp, &func_params);
7430
7431 return rc;
7432 }
7433
7434 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7435 {
7436 int rc, i, port = BP_PORT(bp);
7437 int vlan_en = 0, mac_en[NUM_MACS];
7438
7439 /* Close input from network */
7440 if (bp->mf_mode == SINGLE_FUNCTION) {
7441 bnx2x_set_rx_filter(&bp->link_params, 0);
7442 } else {
7443 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7444 NIG_REG_LLH0_FUNC_EN);
7445 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7446 NIG_REG_LLH0_FUNC_EN, 0);
7447 for (i = 0; i < NUM_MACS; i++) {
7448 mac_en[i] = REG_RD(bp, port ?
7449 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7450 4 * i) :
7451 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7452 4 * i));
7453 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7454 4 * i) :
7455 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7456 }
7457 }
7458
7459 /* Close BMC to host */
7460 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7461 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7462
7463 /* Suspend Tx switching to the PF. Completion of this ramrod
7464 * further guarantees that all the packets of that PF / child
7465 * VFs in BRB were processed by the Parser, so it is safe to
7466 * change the NIC_MODE register.
7467 */
7468 rc = bnx2x_func_switch_update(bp, 1);
7469 if (rc) {
7470 BNX2X_ERR("Can't suspend tx-switching!\n");
7471 return rc;
7472 }
7473
7474 /* Change NIC_MODE register */
7475 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7476
7477 /* Open input from network */
7478 if (bp->mf_mode == SINGLE_FUNCTION) {
7479 bnx2x_set_rx_filter(&bp->link_params, 1);
7480 } else {
7481 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7482 NIG_REG_LLH0_FUNC_EN, vlan_en);
7483 for (i = 0; i < NUM_MACS; i++) {
7484 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7485 4 * i) :
7486 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7487 mac_en[i]);
7488 }
7489 }
7490
7491 /* Enable BMC to host */
7492 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7493 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7494
7495 /* Resume Tx switching to the PF */
7496 rc = bnx2x_func_switch_update(bp, 0);
7497 if (rc) {
7498 BNX2X_ERR("Can't resume tx-switching!\n");
7499 return rc;
7500 }
7501
7502 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7503 return 0;
7504 }
7505
7506 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7507 {
7508 int rc;
7509
7510 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7511
7512 if (CONFIGURE_NIC_MODE(bp)) {
7513 /* Configure searcher as part of function hw init */
7514 bnx2x_init_searcher(bp);
7515
7516 /* Reset NIC mode */
7517 rc = bnx2x_reset_nic_mode(bp);
7518 if (rc)
7519 BNX2X_ERR("Can't change NIC mode!\n");
7520 return rc;
7521 }
7522
7523 return 0;
7524 }
7525
7526 static int bnx2x_init_hw_func(struct bnx2x *bp)
7527 {
7528 int port = BP_PORT(bp);
7529 int func = BP_FUNC(bp);
7530 int init_phase = PHASE_PF0 + func;
7531 struct bnx2x_ilt *ilt = BP_ILT(bp);
7532 u16 cdu_ilt_start;
7533 u32 addr, val;
7534 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7535 int i, main_mem_width, rc;
7536
7537 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7538
7539 /* FLR cleanup - hmmm */
7540 if (!CHIP_IS_E1x(bp)) {
7541 rc = bnx2x_pf_flr_clnup(bp);
7542 if (rc) {
7543 bnx2x_fw_dump(bp);
7544 return rc;
7545 }
7546 }
7547
7548 /* set MSI reconfigure capability */
7549 if (bp->common.int_block == INT_BLOCK_HC) {
7550 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7551 val = REG_RD(bp, addr);
7552 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7553 REG_WR(bp, addr, val);
7554 }
7555
7556 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7557 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7558
7559 ilt = BP_ILT(bp);
7560 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7561
7562 if (IS_SRIOV(bp))
7563 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7564 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7565
7566 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7567 * those of the VFs, so start line should be reset
7568 */
7569 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7570 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7571 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7572 ilt->lines[cdu_ilt_start + i].page_mapping =
7573 bp->context[i].cxt_mapping;
7574 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7575 }
7576
7577 bnx2x_ilt_init_op(bp, INITOP_SET);
7578
7579 if (!CONFIGURE_NIC_MODE(bp)) {
7580 bnx2x_init_searcher(bp);
7581 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7582 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7583 } else {
7584 /* Set NIC mode */
7585 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7586 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7587 }
7588
7589 if (!CHIP_IS_E1x(bp)) {
7590 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7591
7592 /* Turn on a single ISR mode in IGU if driver is going to use
7593 * INT#x or MSI
7594 */
7595 if (!(bp->flags & USING_MSIX_FLAG))
7596 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7597 /*
7598 * Timers workaround bug: function init part.
7599 * Need to wait 20msec after initializing ILT,
7600 * needed to make sure there are no requests in
7601 * one of the PXP internal queues with "old" ILT addresses
7602 */
7603 msleep(20);
7604 /*
7605 * Master enable - Due to WB DMAE writes performed before this
7606 * register is re-initialized as part of the regular function
7607 * init
7608 */
7609 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7610 /* Enable the function in IGU */
7611 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7612 }
7613
7614 bp->dmae_ready = 1;
7615
7616 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7617
7618 if (!CHIP_IS_E1x(bp))
7619 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7620
7621 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7622 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7623 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7624 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7625 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7626 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7627 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7628 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7629 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7630 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7631 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7632 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7633 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7634
7635 if (!CHIP_IS_E1x(bp))
7636 REG_WR(bp, QM_REG_PF_EN, 1);
7637
7638 if (!CHIP_IS_E1x(bp)) {
7639 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7640 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7641 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7642 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7643 }
7644 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7645
7646 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7647 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7648
7649 bnx2x_iov_init_dq(bp);
7650
7651 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7652 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7653 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7654 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7655 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7656 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7657 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7658 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7659 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7660 if (!CHIP_IS_E1x(bp))
7661 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7662
7663 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7664
7665 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7666
7667 if (!CHIP_IS_E1x(bp))
7668 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7669
7670 if (IS_MF(bp)) {
7671 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7672 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7673 }
7674
7675 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7676
7677 /* HC init per function */
7678 if (bp->common.int_block == INT_BLOCK_HC) {
7679 if (CHIP_IS_E1H(bp)) {
7680 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7681
7682 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7683 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7684 }
7685 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7686
7687 } else {
7688 int num_segs, sb_idx, prod_offset;
7689
7690 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7691
7692 if (!CHIP_IS_E1x(bp)) {
7693 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7694 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7695 }
7696
7697 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7698
7699 if (!CHIP_IS_E1x(bp)) {
7700 int dsb_idx = 0;
7701 /**
7702 * Producer memory:
7703 * E2 mode: address 0-135 match to the mapping memory;
7704 * 136 - PF0 default prod; 137 - PF1 default prod;
7705 * 138 - PF2 default prod; 139 - PF3 default prod;
7706 * 140 - PF0 attn prod; 141 - PF1 attn prod;
7707 * 142 - PF2 attn prod; 143 - PF3 attn prod;
7708 * 144-147 reserved.
7709 *
7710 * E1.5 mode - In backward compatible mode;
7711 * for non default SB; each even line in the memory
7712 * holds the U producer and each odd line hold
7713 * the C producer. The first 128 producers are for
7714 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7715 * producers are for the DSB for each PF.
7716 * Each PF has five segments: (the order inside each
7717 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7718 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7719 * 144-147 attn prods;
7720 */
7721 /* non-default-status-blocks */
7722 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7723 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7724 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7725 prod_offset = (bp->igu_base_sb + sb_idx) *
7726 num_segs;
7727
7728 for (i = 0; i < num_segs; i++) {
7729 addr = IGU_REG_PROD_CONS_MEMORY +
7730 (prod_offset + i) * 4;
7731 REG_WR(bp, addr, 0);
7732 }
7733 /* send consumer update with value 0 */
7734 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7735 USTORM_ID, 0, IGU_INT_NOP, 1);
7736 bnx2x_igu_clear_sb(bp,
7737 bp->igu_base_sb + sb_idx);
7738 }
7739
7740 /* default-status-blocks */
7741 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7742 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7743
7744 if (CHIP_MODE_IS_4_PORT(bp))
7745 dsb_idx = BP_FUNC(bp);
7746 else
7747 dsb_idx = BP_VN(bp);
7748
7749 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7750 IGU_BC_BASE_DSB_PROD + dsb_idx :
7751 IGU_NORM_BASE_DSB_PROD + dsb_idx);
7752
7753 /*
7754 * igu prods come in chunks of E1HVN_MAX (4) -
7755 * does not matters what is the current chip mode
7756 */
7757 for (i = 0; i < (num_segs * E1HVN_MAX);
7758 i += E1HVN_MAX) {
7759 addr = IGU_REG_PROD_CONS_MEMORY +
7760 (prod_offset + i)*4;
7761 REG_WR(bp, addr, 0);
7762 }
7763 /* send consumer update with 0 */
7764 if (CHIP_INT_MODE_IS_BC(bp)) {
7765 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7766 USTORM_ID, 0, IGU_INT_NOP, 1);
7767 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7768 CSTORM_ID, 0, IGU_INT_NOP, 1);
7769 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7770 XSTORM_ID, 0, IGU_INT_NOP, 1);
7771 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7772 TSTORM_ID, 0, IGU_INT_NOP, 1);
7773 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7774 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7775 } else {
7776 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7777 USTORM_ID, 0, IGU_INT_NOP, 1);
7778 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7779 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7780 }
7781 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7782
7783 /* !!! These should become driver const once
7784 rf-tool supports split-68 const */
7785 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7786 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7787 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7788 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7789 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7790 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7791 }
7792 }
7793
7794 /* Reset PCIE errors for debug */
7795 REG_WR(bp, 0x2114, 0xffffffff);
7796 REG_WR(bp, 0x2120, 0xffffffff);
7797
7798 if (CHIP_IS_E1x(bp)) {
7799 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7800 main_mem_base = HC_REG_MAIN_MEMORY +
7801 BP_PORT(bp) * (main_mem_size * 4);
7802 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7803 main_mem_width = 8;
7804
7805 val = REG_RD(bp, main_mem_prty_clr);
7806 if (val)
7807 DP(NETIF_MSG_HW,
7808 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7809 val);
7810
7811 /* Clear "false" parity errors in MSI-X table */
7812 for (i = main_mem_base;
7813 i < main_mem_base + main_mem_size * 4;
7814 i += main_mem_width) {
7815 bnx2x_read_dmae(bp, i, main_mem_width / 4);
7816 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7817 i, main_mem_width / 4);
7818 }
7819 /* Clear HC parity attention */
7820 REG_RD(bp, main_mem_prty_clr);
7821 }
7822
7823 #ifdef BNX2X_STOP_ON_ERROR
7824 /* Enable STORMs SP logging */
7825 REG_WR8(bp, BAR_USTRORM_INTMEM +
7826 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7827 REG_WR8(bp, BAR_TSTRORM_INTMEM +
7828 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7829 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7830 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7831 REG_WR8(bp, BAR_XSTRORM_INTMEM +
7832 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7833 #endif
7834
7835 bnx2x_phy_probe(&bp->link_params);
7836
7837 return 0;
7838 }
7839
7840 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7841 {
7842 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7843
7844 if (!CHIP_IS_E1x(bp))
7845 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7846 sizeof(struct host_hc_status_block_e2));
7847 else
7848 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7849 sizeof(struct host_hc_status_block_e1x));
7850
7851 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7852 }
7853
7854 void bnx2x_free_mem(struct bnx2x *bp)
7855 {
7856 int i;
7857
7858 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7859 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7860
7861 if (IS_VF(bp))
7862 return;
7863
7864 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7865 sizeof(struct host_sp_status_block));
7866
7867 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7868 sizeof(struct bnx2x_slowpath));
7869
7870 for (i = 0; i < L2_ILT_LINES(bp); i++)
7871 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7872 bp->context[i].size);
7873 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7874
7875 BNX2X_FREE(bp->ilt->lines);
7876
7877 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7878
7879 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7880 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7881
7882 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7883
7884 bnx2x_iov_free_mem(bp);
7885 }
7886
7887 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7888 {
7889 if (!CHIP_IS_E1x(bp))
7890 /* size = the status block + ramrod buffers */
7891 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7892 sizeof(struct host_hc_status_block_e2));
7893 else
7894 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7895 &bp->cnic_sb_mapping,
7896 sizeof(struct
7897 host_hc_status_block_e1x));
7898
7899 if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7900 /* allocate searcher T2 table, as it wasn't allocated before */
7901 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7902
7903 /* write address to which L5 should insert its values */
7904 bp->cnic_eth_dev.addr_drv_info_to_mcp =
7905 &bp->slowpath->drv_info_to_mcp;
7906
7907 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7908 goto alloc_mem_err;
7909
7910 return 0;
7911
7912 alloc_mem_err:
7913 bnx2x_free_mem_cnic(bp);
7914 BNX2X_ERR("Can't allocate memory\n");
7915 return -ENOMEM;
7916 }
7917
7918 int bnx2x_alloc_mem(struct bnx2x *bp)
7919 {
7920 int i, allocated, context_size;
7921
7922 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7923 /* allocate searcher T2 table */
7924 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7925
7926 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7927 sizeof(struct host_sp_status_block));
7928
7929 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7930 sizeof(struct bnx2x_slowpath));
7931
7932 /* Allocate memory for CDU context:
7933 * This memory is allocated separately and not in the generic ILT
7934 * functions because CDU differs in few aspects:
7935 * 1. There are multiple entities allocating memory for context -
7936 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7937 * its own ILT lines.
7938 * 2. Since CDU page-size is not a single 4KB page (which is the case
7939 * for the other ILT clients), to be efficient we want to support
7940 * allocation of sub-page-size in the last entry.
7941 * 3. Context pointers are used by the driver to pass to FW / update
7942 * the context (for the other ILT clients the pointers are used just to
7943 * free the memory during unload).
7944 */
7945 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7946
7947 for (i = 0, allocated = 0; allocated < context_size; i++) {
7948 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7949 (context_size - allocated));
7950 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7951 &bp->context[i].cxt_mapping,
7952 bp->context[i].size);
7953 allocated += bp->context[i].size;
7954 }
7955 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7956
7957 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7958 goto alloc_mem_err;
7959
7960 if (bnx2x_iov_alloc_mem(bp))
7961 goto alloc_mem_err;
7962
7963 /* Slow path ring */
7964 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7965
7966 /* EQ */
7967 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7968 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7969
7970 return 0;
7971
7972 alloc_mem_err:
7973 bnx2x_free_mem(bp);
7974 BNX2X_ERR("Can't allocate memory\n");
7975 return -ENOMEM;
7976 }
7977
7978 /*
7979 * Init service functions
7980 */
7981
7982 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7983 struct bnx2x_vlan_mac_obj *obj, bool set,
7984 int mac_type, unsigned long *ramrod_flags)
7985 {
7986 int rc;
7987 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7988
7989 memset(&ramrod_param, 0, sizeof(ramrod_param));
7990
7991 /* Fill general parameters */
7992 ramrod_param.vlan_mac_obj = obj;
7993 ramrod_param.ramrod_flags = *ramrod_flags;
7994
7995 /* Fill a user request section if needed */
7996 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7997 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7998
7999 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8000
8001 /* Set the command: ADD or DEL */
8002 if (set)
8003 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8004 else
8005 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8006 }
8007
8008 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8009
8010 if (rc == -EEXIST) {
8011 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8012 /* do not treat adding same MAC as error */
8013 rc = 0;
8014 } else if (rc < 0)
8015 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8016
8017 return rc;
8018 }
8019
8020 int bnx2x_del_all_macs(struct bnx2x *bp,
8021 struct bnx2x_vlan_mac_obj *mac_obj,
8022 int mac_type, bool wait_for_comp)
8023 {
8024 int rc;
8025 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8026
8027 /* Wait for completion of requested */
8028 if (wait_for_comp)
8029 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8030
8031 /* Set the mac type of addresses we want to clear */
8032 __set_bit(mac_type, &vlan_mac_flags);
8033
8034 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8035 if (rc < 0)
8036 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8037
8038 return rc;
8039 }
8040
8041 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8042 {
8043 if (is_zero_ether_addr(bp->dev->dev_addr) &&
8044 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8045 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8046 "Ignoring Zero MAC for STORAGE SD mode\n");
8047 return 0;
8048 }
8049
8050 if (IS_PF(bp)) {
8051 unsigned long ramrod_flags = 0;
8052
8053 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8054 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8055 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8056 &bp->sp_objs->mac_obj, set,
8057 BNX2X_ETH_MAC, &ramrod_flags);
8058 } else { /* vf */
8059 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8060 bp->fp->index, true);
8061 }
8062 }
8063
8064 int bnx2x_setup_leading(struct bnx2x *bp)
8065 {
8066 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
8067 }
8068
8069 /**
8070 * bnx2x_set_int_mode - configure interrupt mode
8071 *
8072 * @bp: driver handle
8073 *
8074 * In case of MSI-X it will also try to enable MSI-X.
8075 */
8076 int bnx2x_set_int_mode(struct bnx2x *bp)
8077 {
8078 int rc = 0;
8079
8080 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
8081 return -EINVAL;
8082
8083 switch (int_mode) {
8084 case BNX2X_INT_MODE_MSIX:
8085 /* attempt to enable msix */
8086 rc = bnx2x_enable_msix(bp);
8087
8088 /* msix attained */
8089 if (!rc)
8090 return 0;
8091
8092 /* vfs use only msix */
8093 if (rc && IS_VF(bp))
8094 return rc;
8095
8096 /* failed to enable multiple MSI-X */
8097 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8098 bp->num_queues,
8099 1 + bp->num_cnic_queues);
8100
8101 /* falling through... */
8102 case BNX2X_INT_MODE_MSI:
8103 bnx2x_enable_msi(bp);
8104
8105 /* falling through... */
8106 case BNX2X_INT_MODE_INTX:
8107 bp->num_ethernet_queues = 1;
8108 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8109 BNX2X_DEV_INFO("set number of queues to 1\n");
8110 break;
8111 default:
8112 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8113 return -EINVAL;
8114 }
8115 return 0;
8116 }
8117
8118 /* must be called prior to any HW initializations */
8119 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8120 {
8121 if (IS_SRIOV(bp))
8122 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8123 return L2_ILT_LINES(bp);
8124 }
8125
8126 void bnx2x_ilt_set_info(struct bnx2x *bp)
8127 {
8128 struct ilt_client_info *ilt_client;
8129 struct bnx2x_ilt *ilt = BP_ILT(bp);
8130 u16 line = 0;
8131
8132 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8133 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8134
8135 /* CDU */
8136 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8137 ilt_client->client_num = ILT_CLIENT_CDU;
8138 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8139 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8140 ilt_client->start = line;
8141 line += bnx2x_cid_ilt_lines(bp);
8142
8143 if (CNIC_SUPPORT(bp))
8144 line += CNIC_ILT_LINES;
8145 ilt_client->end = line - 1;
8146
8147 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8148 ilt_client->start,
8149 ilt_client->end,
8150 ilt_client->page_size,
8151 ilt_client->flags,
8152 ilog2(ilt_client->page_size >> 12));
8153
8154 /* QM */
8155 if (QM_INIT(bp->qm_cid_count)) {
8156 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8157 ilt_client->client_num = ILT_CLIENT_QM;
8158 ilt_client->page_size = QM_ILT_PAGE_SZ;
8159 ilt_client->flags = 0;
8160 ilt_client->start = line;
8161
8162 /* 4 bytes for each cid */
8163 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8164 QM_ILT_PAGE_SZ);
8165
8166 ilt_client->end = line - 1;
8167
8168 DP(NETIF_MSG_IFUP,
8169 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8170 ilt_client->start,
8171 ilt_client->end,
8172 ilt_client->page_size,
8173 ilt_client->flags,
8174 ilog2(ilt_client->page_size >> 12));
8175 }
8176
8177 if (CNIC_SUPPORT(bp)) {
8178 /* SRC */
8179 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8180 ilt_client->client_num = ILT_CLIENT_SRC;
8181 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8182 ilt_client->flags = 0;
8183 ilt_client->start = line;
8184 line += SRC_ILT_LINES;
8185 ilt_client->end = line - 1;
8186
8187 DP(NETIF_MSG_IFUP,
8188 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8189 ilt_client->start,
8190 ilt_client->end,
8191 ilt_client->page_size,
8192 ilt_client->flags,
8193 ilog2(ilt_client->page_size >> 12));
8194
8195 /* TM */
8196 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8197 ilt_client->client_num = ILT_CLIENT_TM;
8198 ilt_client->page_size = TM_ILT_PAGE_SZ;
8199 ilt_client->flags = 0;
8200 ilt_client->start = line;
8201 line += TM_ILT_LINES;
8202 ilt_client->end = line - 1;
8203
8204 DP(NETIF_MSG_IFUP,
8205 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8206 ilt_client->start,
8207 ilt_client->end,
8208 ilt_client->page_size,
8209 ilt_client->flags,
8210 ilog2(ilt_client->page_size >> 12));
8211 }
8212
8213 BUG_ON(line > ILT_MAX_LINES);
8214 }
8215
8216 /**
8217 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8218 *
8219 * @bp: driver handle
8220 * @fp: pointer to fastpath
8221 * @init_params: pointer to parameters structure
8222 *
8223 * parameters configured:
8224 * - HC configuration
8225 * - Queue's CDU context
8226 */
8227 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8228 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8229 {
8230 u8 cos;
8231 int cxt_index, cxt_offset;
8232
8233 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8234 if (!IS_FCOE_FP(fp)) {
8235 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8236 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8237
8238 /* If HC is supported, enable host coalescing in the transition
8239 * to INIT state.
8240 */
8241 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8242 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8243
8244 /* HC rate */
8245 init_params->rx.hc_rate = bp->rx_ticks ?
8246 (1000000 / bp->rx_ticks) : 0;
8247 init_params->tx.hc_rate = bp->tx_ticks ?
8248 (1000000 / bp->tx_ticks) : 0;
8249
8250 /* FW SB ID */
8251 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8252 fp->fw_sb_id;
8253
8254 /*
8255 * CQ index among the SB indices: FCoE clients uses the default
8256 * SB, therefore it's different.
8257 */
8258 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8259 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8260 }
8261
8262 /* set maximum number of COSs supported by this queue */
8263 init_params->max_cos = fp->max_cos;
8264
8265 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8266 fp->index, init_params->max_cos);
8267
8268 /* set the context pointers queue object */
8269 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8270 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8271 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8272 ILT_PAGE_CIDS);
8273 init_params->cxts[cos] =
8274 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8275 }
8276 }
8277
8278 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8279 struct bnx2x_queue_state_params *q_params,
8280 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8281 int tx_index, bool leading)
8282 {
8283 memset(tx_only_params, 0, sizeof(*tx_only_params));
8284
8285 /* Set the command */
8286 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8287
8288 /* Set tx-only QUEUE flags: don't zero statistics */
8289 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8290
8291 /* choose the index of the cid to send the slow path on */
8292 tx_only_params->cid_index = tx_index;
8293
8294 /* Set general TX_ONLY_SETUP parameters */
8295 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8296
8297 /* Set Tx TX_ONLY_SETUP parameters */
8298 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8299
8300 DP(NETIF_MSG_IFUP,
8301 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8302 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8303 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8304 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8305
8306 /* send the ramrod */
8307 return bnx2x_queue_state_change(bp, q_params);
8308 }
8309
8310 /**
8311 * bnx2x_setup_queue - setup queue
8312 *
8313 * @bp: driver handle
8314 * @fp: pointer to fastpath
8315 * @leading: is leading
8316 *
8317 * This function performs 2 steps in a Queue state machine
8318 * actually: 1) RESET->INIT 2) INIT->SETUP
8319 */
8320
8321 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8322 bool leading)
8323 {
8324 struct bnx2x_queue_state_params q_params = {NULL};
8325 struct bnx2x_queue_setup_params *setup_params =
8326 &q_params.params.setup;
8327 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8328 &q_params.params.tx_only;
8329 int rc;
8330 u8 tx_index;
8331
8332 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8333
8334 /* reset IGU state skip FCoE L2 queue */
8335 if (!IS_FCOE_FP(fp))
8336 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8337 IGU_INT_ENABLE, 0);
8338
8339 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8340 /* We want to wait for completion in this context */
8341 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8342
8343 /* Prepare the INIT parameters */
8344 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8345
8346 /* Set the command */
8347 q_params.cmd = BNX2X_Q_CMD_INIT;
8348
8349 /* Change the state to INIT */
8350 rc = bnx2x_queue_state_change(bp, &q_params);
8351 if (rc) {
8352 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8353 return rc;
8354 }
8355
8356 DP(NETIF_MSG_IFUP, "init complete\n");
8357
8358 /* Now move the Queue to the SETUP state... */
8359 memset(setup_params, 0, sizeof(*setup_params));
8360
8361 /* Set QUEUE flags */
8362 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8363
8364 /* Set general SETUP parameters */
8365 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8366 FIRST_TX_COS_INDEX);
8367
8368 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8369 &setup_params->rxq_params);
8370
8371 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8372 FIRST_TX_COS_INDEX);
8373
8374 /* Set the command */
8375 q_params.cmd = BNX2X_Q_CMD_SETUP;
8376
8377 if (IS_FCOE_FP(fp))
8378 bp->fcoe_init = true;
8379
8380 /* Change the state to SETUP */
8381 rc = bnx2x_queue_state_change(bp, &q_params);
8382 if (rc) {
8383 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8384 return rc;
8385 }
8386
8387 /* loop through the relevant tx-only indices */
8388 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8389 tx_index < fp->max_cos;
8390 tx_index++) {
8391
8392 /* prepare and send tx-only ramrod*/
8393 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8394 tx_only_params, tx_index, leading);
8395 if (rc) {
8396 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8397 fp->index, tx_index);
8398 return rc;
8399 }
8400 }
8401
8402 return rc;
8403 }
8404
8405 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8406 {
8407 struct bnx2x_fastpath *fp = &bp->fp[index];
8408 struct bnx2x_fp_txdata *txdata;
8409 struct bnx2x_queue_state_params q_params = {NULL};
8410 int rc, tx_index;
8411
8412 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8413
8414 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8415 /* We want to wait for completion in this context */
8416 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8417
8418 /* close tx-only connections */
8419 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8420 tx_index < fp->max_cos;
8421 tx_index++){
8422
8423 /* ascertain this is a normal queue*/
8424 txdata = fp->txdata_ptr[tx_index];
8425
8426 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8427 txdata->txq_index);
8428
8429 /* send halt terminate on tx-only connection */
8430 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8431 memset(&q_params.params.terminate, 0,
8432 sizeof(q_params.params.terminate));
8433 q_params.params.terminate.cid_index = tx_index;
8434
8435 rc = bnx2x_queue_state_change(bp, &q_params);
8436 if (rc)
8437 return rc;
8438
8439 /* send halt terminate on tx-only connection */
8440 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8441 memset(&q_params.params.cfc_del, 0,
8442 sizeof(q_params.params.cfc_del));
8443 q_params.params.cfc_del.cid_index = tx_index;
8444 rc = bnx2x_queue_state_change(bp, &q_params);
8445 if (rc)
8446 return rc;
8447 }
8448 /* Stop the primary connection: */
8449 /* ...halt the connection */
8450 q_params.cmd = BNX2X_Q_CMD_HALT;
8451 rc = bnx2x_queue_state_change(bp, &q_params);
8452 if (rc)
8453 return rc;
8454
8455 /* ...terminate the connection */
8456 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8457 memset(&q_params.params.terminate, 0,
8458 sizeof(q_params.params.terminate));
8459 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8460 rc = bnx2x_queue_state_change(bp, &q_params);
8461 if (rc)
8462 return rc;
8463 /* ...delete cfc entry */
8464 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8465 memset(&q_params.params.cfc_del, 0,
8466 sizeof(q_params.params.cfc_del));
8467 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8468 return bnx2x_queue_state_change(bp, &q_params);
8469 }
8470
8471 static void bnx2x_reset_func(struct bnx2x *bp)
8472 {
8473 int port = BP_PORT(bp);
8474 int func = BP_FUNC(bp);
8475 int i;
8476
8477 /* Disable the function in the FW */
8478 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8479 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8480 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8481 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8482
8483 /* FP SBs */
8484 for_each_eth_queue(bp, i) {
8485 struct bnx2x_fastpath *fp = &bp->fp[i];
8486 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8487 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8488 SB_DISABLED);
8489 }
8490
8491 if (CNIC_LOADED(bp))
8492 /* CNIC SB */
8493 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8494 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8495 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8496
8497 /* SP SB */
8498 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8499 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8500 SB_DISABLED);
8501
8502 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8503 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8504 0);
8505
8506 /* Configure IGU */
8507 if (bp->common.int_block == INT_BLOCK_HC) {
8508 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8509 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8510 } else {
8511 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8512 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8513 }
8514
8515 if (CNIC_LOADED(bp)) {
8516 /* Disable Timer scan */
8517 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8518 /*
8519 * Wait for at least 10ms and up to 2 second for the timers
8520 * scan to complete
8521 */
8522 for (i = 0; i < 200; i++) {
8523 usleep_range(10000, 20000);
8524 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8525 break;
8526 }
8527 }
8528 /* Clear ILT */
8529 bnx2x_clear_func_ilt(bp, func);
8530
8531 /* Timers workaround bug for E2: if this is vnic-3,
8532 * we need to set the entire ilt range for this timers.
8533 */
8534 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8535 struct ilt_client_info ilt_cli;
8536 /* use dummy TM client */
8537 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8538 ilt_cli.start = 0;
8539 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8540 ilt_cli.client_num = ILT_CLIENT_TM;
8541
8542 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8543 }
8544
8545 /* this assumes that reset_port() called before reset_func()*/
8546 if (!CHIP_IS_E1x(bp))
8547 bnx2x_pf_disable(bp);
8548
8549 bp->dmae_ready = 0;
8550 }
8551
8552 static void bnx2x_reset_port(struct bnx2x *bp)
8553 {
8554 int port = BP_PORT(bp);
8555 u32 val;
8556
8557 /* Reset physical Link */
8558 bnx2x__link_reset(bp);
8559
8560 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8561
8562 /* Do not rcv packets to BRB */
8563 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8564 /* Do not direct rcv packets that are not for MCP to the BRB */
8565 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8566 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8567
8568 /* Configure AEU */
8569 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8570
8571 msleep(100);
8572 /* Check for BRB port occupancy */
8573 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8574 if (val)
8575 DP(NETIF_MSG_IFDOWN,
8576 "BRB1 is not empty %d blocks are occupied\n", val);
8577
8578 /* TODO: Close Doorbell port? */
8579 }
8580
8581 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8582 {
8583 struct bnx2x_func_state_params func_params = {NULL};
8584
8585 /* Prepare parameters for function state transitions */
8586 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8587
8588 func_params.f_obj = &bp->func_obj;
8589 func_params.cmd = BNX2X_F_CMD_HW_RESET;
8590
8591 func_params.params.hw_init.load_phase = load_code;
8592
8593 return bnx2x_func_state_change(bp, &func_params);
8594 }
8595
8596 static int bnx2x_func_stop(struct bnx2x *bp)
8597 {
8598 struct bnx2x_func_state_params func_params = {NULL};
8599 int rc;
8600
8601 /* Prepare parameters for function state transitions */
8602 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8603 func_params.f_obj = &bp->func_obj;
8604 func_params.cmd = BNX2X_F_CMD_STOP;
8605
8606 /*
8607 * Try to stop the function the 'good way'. If fails (in case
8608 * of a parity error during bnx2x_chip_cleanup()) and we are
8609 * not in a debug mode, perform a state transaction in order to
8610 * enable further HW_RESET transaction.
8611 */
8612 rc = bnx2x_func_state_change(bp, &func_params);
8613 if (rc) {
8614 #ifdef BNX2X_STOP_ON_ERROR
8615 return rc;
8616 #else
8617 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8618 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8619 return bnx2x_func_state_change(bp, &func_params);
8620 #endif
8621 }
8622
8623 return 0;
8624 }
8625
8626 /**
8627 * bnx2x_send_unload_req - request unload mode from the MCP.
8628 *
8629 * @bp: driver handle
8630 * @unload_mode: requested function's unload mode
8631 *
8632 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8633 */
8634 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8635 {
8636 u32 reset_code = 0;
8637 int port = BP_PORT(bp);
8638
8639 /* Select the UNLOAD request mode */
8640 if (unload_mode == UNLOAD_NORMAL)
8641 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8642
8643 else if (bp->flags & NO_WOL_FLAG)
8644 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8645
8646 else if (bp->wol) {
8647 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8648 u8 *mac_addr = bp->dev->dev_addr;
8649 u32 val;
8650 u16 pmc;
8651
8652 /* The mac address is written to entries 1-4 to
8653 * preserve entry 0 which is used by the PMF
8654 */
8655 u8 entry = (BP_VN(bp) + 1)*8;
8656
8657 val = (mac_addr[0] << 8) | mac_addr[1];
8658 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8659
8660 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8661 (mac_addr[4] << 8) | mac_addr[5];
8662 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8663
8664 /* Enable the PME and clear the status */
8665 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8666 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8667 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8668
8669 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8670
8671 } else
8672 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8673
8674 /* Send the request to the MCP */
8675 if (!BP_NOMCP(bp))
8676 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8677 else {
8678 int path = BP_PATH(bp);
8679
8680 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
8681 path, load_count[path][0], load_count[path][1],
8682 load_count[path][2]);
8683 load_count[path][0]--;
8684 load_count[path][1 + port]--;
8685 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
8686 path, load_count[path][0], load_count[path][1],
8687 load_count[path][2]);
8688 if (load_count[path][0] == 0)
8689 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8690 else if (load_count[path][1 + port] == 0)
8691 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8692 else
8693 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8694 }
8695
8696 return reset_code;
8697 }
8698
8699 /**
8700 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8701 *
8702 * @bp: driver handle
8703 * @keep_link: true iff link should be kept up
8704 */
8705 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8706 {
8707 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8708
8709 /* Report UNLOAD_DONE to MCP */
8710 if (!BP_NOMCP(bp))
8711 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8712 }
8713
8714 static int bnx2x_func_wait_started(struct bnx2x *bp)
8715 {
8716 int tout = 50;
8717 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8718
8719 if (!bp->port.pmf)
8720 return 0;
8721
8722 /*
8723 * (assumption: No Attention from MCP at this stage)
8724 * PMF probably in the middle of TX disable/enable transaction
8725 * 1. Sync IRS for default SB
8726 * 2. Sync SP queue - this guarantees us that attention handling started
8727 * 3. Wait, that TX disable/enable transaction completes
8728 *
8729 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8730 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8731 * received completion for the transaction the state is TX_STOPPED.
8732 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8733 * transaction.
8734 */
8735
8736 /* make sure default SB ISR is done */
8737 if (msix)
8738 synchronize_irq(bp->msix_table[0].vector);
8739 else
8740 synchronize_irq(bp->pdev->irq);
8741
8742 flush_workqueue(bnx2x_wq);
8743
8744 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8745 BNX2X_F_STATE_STARTED && tout--)
8746 msleep(20);
8747
8748 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8749 BNX2X_F_STATE_STARTED) {
8750 #ifdef BNX2X_STOP_ON_ERROR
8751 BNX2X_ERR("Wrong function state\n");
8752 return -EBUSY;
8753 #else
8754 /*
8755 * Failed to complete the transaction in a "good way"
8756 * Force both transactions with CLR bit
8757 */
8758 struct bnx2x_func_state_params func_params = {NULL};
8759
8760 DP(NETIF_MSG_IFDOWN,
8761 "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8762
8763 func_params.f_obj = &bp->func_obj;
8764 __set_bit(RAMROD_DRV_CLR_ONLY,
8765 &func_params.ramrod_flags);
8766
8767 /* STARTED-->TX_ST0PPED */
8768 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8769 bnx2x_func_state_change(bp, &func_params);
8770
8771 /* TX_ST0PPED-->STARTED */
8772 func_params.cmd = BNX2X_F_CMD_TX_START;
8773 return bnx2x_func_state_change(bp, &func_params);
8774 #endif
8775 }
8776
8777 return 0;
8778 }
8779
8780 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8781 {
8782 int port = BP_PORT(bp);
8783 int i, rc = 0;
8784 u8 cos;
8785 struct bnx2x_mcast_ramrod_params rparam = {NULL};
8786 u32 reset_code;
8787
8788 /* Wait until tx fastpath tasks complete */
8789 for_each_tx_queue(bp, i) {
8790 struct bnx2x_fastpath *fp = &bp->fp[i];
8791
8792 for_each_cos_in_tx_queue(fp, cos)
8793 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8794 #ifdef BNX2X_STOP_ON_ERROR
8795 if (rc)
8796 return;
8797 #endif
8798 }
8799
8800 /* Give HW time to discard old tx messages */
8801 usleep_range(1000, 2000);
8802
8803 /* Clean all ETH MACs */
8804 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8805 false);
8806 if (rc < 0)
8807 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8808
8809 /* Clean up UC list */
8810 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8811 true);
8812 if (rc < 0)
8813 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8814 rc);
8815
8816 /* Disable LLH */
8817 if (!CHIP_IS_E1(bp))
8818 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8819
8820 /* Set "drop all" (stop Rx).
8821 * We need to take a netif_addr_lock() here in order to prevent
8822 * a race between the completion code and this code.
8823 */
8824 netif_addr_lock_bh(bp->dev);
8825 /* Schedule the rx_mode command */
8826 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8827 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8828 else
8829 bnx2x_set_storm_rx_mode(bp);
8830
8831 /* Cleanup multicast configuration */
8832 rparam.mcast_obj = &bp->mcast_obj;
8833 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8834 if (rc < 0)
8835 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8836
8837 netif_addr_unlock_bh(bp->dev);
8838
8839 bnx2x_iov_chip_cleanup(bp);
8840
8841 /*
8842 * Send the UNLOAD_REQUEST to the MCP. This will return if
8843 * this function should perform FUNC, PORT or COMMON HW
8844 * reset.
8845 */
8846 reset_code = bnx2x_send_unload_req(bp, unload_mode);
8847
8848 /*
8849 * (assumption: No Attention from MCP at this stage)
8850 * PMF probably in the middle of TX disable/enable transaction
8851 */
8852 rc = bnx2x_func_wait_started(bp);
8853 if (rc) {
8854 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8855 #ifdef BNX2X_STOP_ON_ERROR
8856 return;
8857 #endif
8858 }
8859
8860 /* Close multi and leading connections
8861 * Completions for ramrods are collected in a synchronous way
8862 */
8863 for_each_eth_queue(bp, i)
8864 if (bnx2x_stop_queue(bp, i))
8865 #ifdef BNX2X_STOP_ON_ERROR
8866 return;
8867 #else
8868 goto unload_error;
8869 #endif
8870
8871 if (CNIC_LOADED(bp)) {
8872 for_each_cnic_queue(bp, i)
8873 if (bnx2x_stop_queue(bp, i))
8874 #ifdef BNX2X_STOP_ON_ERROR
8875 return;
8876 #else
8877 goto unload_error;
8878 #endif
8879 }
8880
8881 /* If SP settings didn't get completed so far - something
8882 * very wrong has happen.
8883 */
8884 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8885 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8886
8887 #ifndef BNX2X_STOP_ON_ERROR
8888 unload_error:
8889 #endif
8890 rc = bnx2x_func_stop(bp);
8891 if (rc) {
8892 BNX2X_ERR("Function stop failed!\n");
8893 #ifdef BNX2X_STOP_ON_ERROR
8894 return;
8895 #endif
8896 }
8897
8898 /* Disable HW interrupts, NAPI */
8899 bnx2x_netif_stop(bp, 1);
8900 /* Delete all NAPI objects */
8901 bnx2x_del_all_napi(bp);
8902 if (CNIC_LOADED(bp))
8903 bnx2x_del_all_napi_cnic(bp);
8904
8905 /* Release IRQs */
8906 bnx2x_free_irq(bp);
8907
8908 /* Reset the chip */
8909 rc = bnx2x_reset_hw(bp, reset_code);
8910 if (rc)
8911 BNX2X_ERR("HW_RESET failed\n");
8912
8913 /* Report UNLOAD_DONE to MCP */
8914 bnx2x_send_unload_done(bp, keep_link);
8915 }
8916
8917 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8918 {
8919 u32 val;
8920
8921 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8922
8923 if (CHIP_IS_E1(bp)) {
8924 int port = BP_PORT(bp);
8925 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8926 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8927
8928 val = REG_RD(bp, addr);
8929 val &= ~(0x300);
8930 REG_WR(bp, addr, val);
8931 } else {
8932 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8933 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8934 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8935 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8936 }
8937 }
8938
8939 /* Close gates #2, #3 and #4: */
8940 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8941 {
8942 u32 val;
8943
8944 /* Gates #2 and #4a are closed/opened for "not E1" only */
8945 if (!CHIP_IS_E1(bp)) {
8946 /* #4 */
8947 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8948 /* #2 */
8949 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8950 }
8951
8952 /* #3 */
8953 if (CHIP_IS_E1x(bp)) {
8954 /* Prevent interrupts from HC on both ports */
8955 val = REG_RD(bp, HC_REG_CONFIG_1);
8956 REG_WR(bp, HC_REG_CONFIG_1,
8957 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8958 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8959
8960 val = REG_RD(bp, HC_REG_CONFIG_0);
8961 REG_WR(bp, HC_REG_CONFIG_0,
8962 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8963 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8964 } else {
8965 /* Prevent incoming interrupts in IGU */
8966 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8967
8968 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8969 (!close) ?
8970 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8971 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8972 }
8973
8974 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8975 close ? "closing" : "opening");
8976 mmiowb();
8977 }
8978
8979 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8980
8981 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8982 {
8983 /* Do some magic... */
8984 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8985 *magic_val = val & SHARED_MF_CLP_MAGIC;
8986 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8987 }
8988
8989 /**
8990 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8991 *
8992 * @bp: driver handle
8993 * @magic_val: old value of the `magic' bit.
8994 */
8995 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8996 {
8997 /* Restore the `magic' bit value... */
8998 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8999 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9000 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9001 }
9002
9003 /**
9004 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9005 *
9006 * @bp: driver handle
9007 * @magic_val: old value of 'magic' bit.
9008 *
9009 * Takes care of CLP configurations.
9010 */
9011 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9012 {
9013 u32 shmem;
9014 u32 validity_offset;
9015
9016 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9017
9018 /* Set `magic' bit in order to save MF config */
9019 if (!CHIP_IS_E1(bp))
9020 bnx2x_clp_reset_prep(bp, magic_val);
9021
9022 /* Get shmem offset */
9023 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9024 validity_offset =
9025 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9026
9027 /* Clear validity map flags */
9028 if (shmem > 0)
9029 REG_WR(bp, shmem + validity_offset, 0);
9030 }
9031
9032 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9033 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9034
9035 /**
9036 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9037 *
9038 * @bp: driver handle
9039 */
9040 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9041 {
9042 /* special handling for emulation and FPGA,
9043 wait 10 times longer */
9044 if (CHIP_REV_IS_SLOW(bp))
9045 msleep(MCP_ONE_TIMEOUT*10);
9046 else
9047 msleep(MCP_ONE_TIMEOUT);
9048 }
9049
9050 /*
9051 * initializes bp->common.shmem_base and waits for validity signature to appear
9052 */
9053 static int bnx2x_init_shmem(struct bnx2x *bp)
9054 {
9055 int cnt = 0;
9056 u32 val = 0;
9057
9058 do {
9059 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9060 if (bp->common.shmem_base) {
9061 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9062 if (val & SHR_MEM_VALIDITY_MB)
9063 return 0;
9064 }
9065
9066 bnx2x_mcp_wait_one(bp);
9067
9068 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9069
9070 BNX2X_ERR("BAD MCP validity signature\n");
9071
9072 return -ENODEV;
9073 }
9074
9075 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9076 {
9077 int rc = bnx2x_init_shmem(bp);
9078
9079 /* Restore the `magic' bit value */
9080 if (!CHIP_IS_E1(bp))
9081 bnx2x_clp_reset_done(bp, magic_val);
9082
9083 return rc;
9084 }
9085
9086 static void bnx2x_pxp_prep(struct bnx2x *bp)
9087 {
9088 if (!CHIP_IS_E1(bp)) {
9089 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9090 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9091 mmiowb();
9092 }
9093 }
9094
9095 /*
9096 * Reset the whole chip except for:
9097 * - PCIE core
9098 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9099 * one reset bit)
9100 * - IGU
9101 * - MISC (including AEU)
9102 * - GRC
9103 * - RBCN, RBCP
9104 */
9105 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9106 {
9107 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9108 u32 global_bits2, stay_reset2;
9109
9110 /*
9111 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9112 * (per chip) blocks.
9113 */
9114 global_bits2 =
9115 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9116 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9117
9118 /* Don't reset the following blocks.
9119 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9120 * reset, as in 4 port device they might still be owned
9121 * by the MCP (there is only one leader per path).
9122 */
9123 not_reset_mask1 =
9124 MISC_REGISTERS_RESET_REG_1_RST_HC |
9125 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9126 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9127
9128 not_reset_mask2 =
9129 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9130 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9131 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9132 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9133 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9134 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9135 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9136 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9137 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9138 MISC_REGISTERS_RESET_REG_2_PGLC |
9139 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9140 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9141 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9142 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9143 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9144 MISC_REGISTERS_RESET_REG_2_UMAC1;
9145
9146 /*
9147 * Keep the following blocks in reset:
9148 * - all xxMACs are handled by the bnx2x_link code.
9149 */
9150 stay_reset2 =
9151 MISC_REGISTERS_RESET_REG_2_XMAC |
9152 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9153
9154 /* Full reset masks according to the chip */
9155 reset_mask1 = 0xffffffff;
9156
9157 if (CHIP_IS_E1(bp))
9158 reset_mask2 = 0xffff;
9159 else if (CHIP_IS_E1H(bp))
9160 reset_mask2 = 0x1ffff;
9161 else if (CHIP_IS_E2(bp))
9162 reset_mask2 = 0xfffff;
9163 else /* CHIP_IS_E3 */
9164 reset_mask2 = 0x3ffffff;
9165
9166 /* Don't reset global blocks unless we need to */
9167 if (!global)
9168 reset_mask2 &= ~global_bits2;
9169
9170 /*
9171 * In case of attention in the QM, we need to reset PXP
9172 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9173 * because otherwise QM reset would release 'close the gates' shortly
9174 * before resetting the PXP, then the PSWRQ would send a write
9175 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9176 * read the payload data from PSWWR, but PSWWR would not
9177 * respond. The write queue in PGLUE would stuck, dmae commands
9178 * would not return. Therefore it's important to reset the second
9179 * reset register (containing the
9180 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9181 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9182 * bit).
9183 */
9184 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9185 reset_mask2 & (~not_reset_mask2));
9186
9187 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9188 reset_mask1 & (~not_reset_mask1));
9189
9190 barrier();
9191 mmiowb();
9192
9193 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9194 reset_mask2 & (~stay_reset2));
9195
9196 barrier();
9197 mmiowb();
9198
9199 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9200 mmiowb();
9201 }
9202
9203 /**
9204 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9205 * It should get cleared in no more than 1s.
9206 *
9207 * @bp: driver handle
9208 *
9209 * It should get cleared in no more than 1s. Returns 0 if
9210 * pending writes bit gets cleared.
9211 */
9212 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9213 {
9214 u32 cnt = 1000;
9215 u32 pend_bits = 0;
9216
9217 do {
9218 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9219
9220 if (pend_bits == 0)
9221 break;
9222
9223 usleep_range(1000, 2000);
9224 } while (cnt-- > 0);
9225
9226 if (cnt <= 0) {
9227 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9228 pend_bits);
9229 return -EBUSY;
9230 }
9231
9232 return 0;
9233 }
9234
9235 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9236 {
9237 int cnt = 1000;
9238 u32 val = 0;
9239 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9240 u32 tags_63_32 = 0;
9241
9242 /* Empty the Tetris buffer, wait for 1s */
9243 do {
9244 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9245 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9246 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9247 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9248 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9249 if (CHIP_IS_E3(bp))
9250 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9251
9252 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9253 ((port_is_idle_0 & 0x1) == 0x1) &&
9254 ((port_is_idle_1 & 0x1) == 0x1) &&
9255 (pgl_exp_rom2 == 0xffffffff) &&
9256 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9257 break;
9258 usleep_range(1000, 2000);
9259 } while (cnt-- > 0);
9260
9261 if (cnt <= 0) {
9262 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9263 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9264 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9265 pgl_exp_rom2);
9266 return -EAGAIN;
9267 }
9268
9269 barrier();
9270
9271 /* Close gates #2, #3 and #4 */
9272 bnx2x_set_234_gates(bp, true);
9273
9274 /* Poll for IGU VQs for 57712 and newer chips */
9275 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9276 return -EAGAIN;
9277
9278 /* TBD: Indicate that "process kill" is in progress to MCP */
9279
9280 /* Clear "unprepared" bit */
9281 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9282 barrier();
9283
9284 /* Make sure all is written to the chip before the reset */
9285 mmiowb();
9286
9287 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9288 * PSWHST, GRC and PSWRD Tetris buffer.
9289 */
9290 usleep_range(1000, 2000);
9291
9292 /* Prepare to chip reset: */
9293 /* MCP */
9294 if (global)
9295 bnx2x_reset_mcp_prep(bp, &val);
9296
9297 /* PXP */
9298 bnx2x_pxp_prep(bp);
9299 barrier();
9300
9301 /* reset the chip */
9302 bnx2x_process_kill_chip_reset(bp, global);
9303 barrier();
9304
9305 /* Recover after reset: */
9306 /* MCP */
9307 if (global && bnx2x_reset_mcp_comp(bp, val))
9308 return -EAGAIN;
9309
9310 /* TBD: Add resetting the NO_MCP mode DB here */
9311
9312 /* Open the gates #2, #3 and #4 */
9313 bnx2x_set_234_gates(bp, false);
9314
9315 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9316 * reset state, re-enable attentions. */
9317
9318 return 0;
9319 }
9320
9321 static int bnx2x_leader_reset(struct bnx2x *bp)
9322 {
9323 int rc = 0;
9324 bool global = bnx2x_reset_is_global(bp);
9325 u32 load_code;
9326
9327 /* if not going to reset MCP - load "fake" driver to reset HW while
9328 * driver is owner of the HW
9329 */
9330 if (!global && !BP_NOMCP(bp)) {
9331 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9332 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9333 if (!load_code) {
9334 BNX2X_ERR("MCP response failure, aborting\n");
9335 rc = -EAGAIN;
9336 goto exit_leader_reset;
9337 }
9338 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9339 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9340 BNX2X_ERR("MCP unexpected resp, aborting\n");
9341 rc = -EAGAIN;
9342 goto exit_leader_reset2;
9343 }
9344 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9345 if (!load_code) {
9346 BNX2X_ERR("MCP response failure, aborting\n");
9347 rc = -EAGAIN;
9348 goto exit_leader_reset2;
9349 }
9350 }
9351
9352 /* Try to recover after the failure */
9353 if (bnx2x_process_kill(bp, global)) {
9354 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9355 BP_PATH(bp));
9356 rc = -EAGAIN;
9357 goto exit_leader_reset2;
9358 }
9359
9360 /*
9361 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9362 * state.
9363 */
9364 bnx2x_set_reset_done(bp);
9365 if (global)
9366 bnx2x_clear_reset_global(bp);
9367
9368 exit_leader_reset2:
9369 /* unload "fake driver" if it was loaded */
9370 if (!global && !BP_NOMCP(bp)) {
9371 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9372 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9373 }
9374 exit_leader_reset:
9375 bp->is_leader = 0;
9376 bnx2x_release_leader_lock(bp);
9377 smp_mb();
9378 return rc;
9379 }
9380
9381 static void bnx2x_recovery_failed(struct bnx2x *bp)
9382 {
9383 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9384
9385 /* Disconnect this device */
9386 netif_device_detach(bp->dev);
9387
9388 /*
9389 * Block ifup for all function on this engine until "process kill"
9390 * or power cycle.
9391 */
9392 bnx2x_set_reset_in_progress(bp);
9393
9394 /* Shut down the power */
9395 bnx2x_set_power_state(bp, PCI_D3hot);
9396
9397 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9398
9399 smp_mb();
9400 }
9401
9402 /*
9403 * Assumption: runs under rtnl lock. This together with the fact
9404 * that it's called only from bnx2x_sp_rtnl() ensure that it
9405 * will never be called when netif_running(bp->dev) is false.
9406 */
9407 static void bnx2x_parity_recover(struct bnx2x *bp)
9408 {
9409 bool global = false;
9410 u32 error_recovered, error_unrecovered;
9411 bool is_parity;
9412
9413 DP(NETIF_MSG_HW, "Handling parity\n");
9414 while (1) {
9415 switch (bp->recovery_state) {
9416 case BNX2X_RECOVERY_INIT:
9417 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9418 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9419 WARN_ON(!is_parity);
9420
9421 /* Try to get a LEADER_LOCK HW lock */
9422 if (bnx2x_trylock_leader_lock(bp)) {
9423 bnx2x_set_reset_in_progress(bp);
9424 /*
9425 * Check if there is a global attention and if
9426 * there was a global attention, set the global
9427 * reset bit.
9428 */
9429
9430 if (global)
9431 bnx2x_set_reset_global(bp);
9432
9433 bp->is_leader = 1;
9434 }
9435
9436 /* Stop the driver */
9437 /* If interface has been removed - break */
9438 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9439 return;
9440
9441 bp->recovery_state = BNX2X_RECOVERY_WAIT;
9442
9443 /* Ensure "is_leader", MCP command sequence and
9444 * "recovery_state" update values are seen on other
9445 * CPUs.
9446 */
9447 smp_mb();
9448 break;
9449
9450 case BNX2X_RECOVERY_WAIT:
9451 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9452 if (bp->is_leader) {
9453 int other_engine = BP_PATH(bp) ? 0 : 1;
9454 bool other_load_status =
9455 bnx2x_get_load_status(bp, other_engine);
9456 bool load_status =
9457 bnx2x_get_load_status(bp, BP_PATH(bp));
9458 global = bnx2x_reset_is_global(bp);
9459
9460 /*
9461 * In case of a parity in a global block, let
9462 * the first leader that performs a
9463 * leader_reset() reset the global blocks in
9464 * order to clear global attentions. Otherwise
9465 * the gates will remain closed for that
9466 * engine.
9467 */
9468 if (load_status ||
9469 (global && other_load_status)) {
9470 /* Wait until all other functions get
9471 * down.
9472 */
9473 schedule_delayed_work(&bp->sp_rtnl_task,
9474 HZ/10);
9475 return;
9476 } else {
9477 /* If all other functions got down -
9478 * try to bring the chip back to
9479 * normal. In any case it's an exit
9480 * point for a leader.
9481 */
9482 if (bnx2x_leader_reset(bp)) {
9483 bnx2x_recovery_failed(bp);
9484 return;
9485 }
9486
9487 /* If we are here, means that the
9488 * leader has succeeded and doesn't
9489 * want to be a leader any more. Try
9490 * to continue as a none-leader.
9491 */
9492 break;
9493 }
9494 } else { /* non-leader */
9495 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9496 /* Try to get a LEADER_LOCK HW lock as
9497 * long as a former leader may have
9498 * been unloaded by the user or
9499 * released a leadership by another
9500 * reason.
9501 */
9502 if (bnx2x_trylock_leader_lock(bp)) {
9503 /* I'm a leader now! Restart a
9504 * switch case.
9505 */
9506 bp->is_leader = 1;
9507 break;
9508 }
9509
9510 schedule_delayed_work(&bp->sp_rtnl_task,
9511 HZ/10);
9512 return;
9513
9514 } else {
9515 /*
9516 * If there was a global attention, wait
9517 * for it to be cleared.
9518 */
9519 if (bnx2x_reset_is_global(bp)) {
9520 schedule_delayed_work(
9521 &bp->sp_rtnl_task,
9522 HZ/10);
9523 return;
9524 }
9525
9526 error_recovered =
9527 bp->eth_stats.recoverable_error;
9528 error_unrecovered =
9529 bp->eth_stats.unrecoverable_error;
9530 bp->recovery_state =
9531 BNX2X_RECOVERY_NIC_LOADING;
9532 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9533 error_unrecovered++;
9534 netdev_err(bp->dev,
9535 "Recovery failed. Power cycle needed\n");
9536 /* Disconnect this device */
9537 netif_device_detach(bp->dev);
9538 /* Shut down the power */
9539 bnx2x_set_power_state(
9540 bp, PCI_D3hot);
9541 smp_mb();
9542 } else {
9543 bp->recovery_state =
9544 BNX2X_RECOVERY_DONE;
9545 error_recovered++;
9546 smp_mb();
9547 }
9548 bp->eth_stats.recoverable_error =
9549 error_recovered;
9550 bp->eth_stats.unrecoverable_error =
9551 error_unrecovered;
9552
9553 return;
9554 }
9555 }
9556 default:
9557 return;
9558 }
9559 }
9560 }
9561
9562 static int bnx2x_close(struct net_device *dev);
9563
9564 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9565 * scheduled on a general queue in order to prevent a dead lock.
9566 */
9567 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9568 {
9569 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9570
9571 rtnl_lock();
9572
9573 if (!netif_running(bp->dev)) {
9574 rtnl_unlock();
9575 return;
9576 }
9577
9578 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9579 #ifdef BNX2X_STOP_ON_ERROR
9580 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9581 "you will need to reboot when done\n");
9582 goto sp_rtnl_not_reset;
9583 #endif
9584 /*
9585 * Clear all pending SP commands as we are going to reset the
9586 * function anyway.
9587 */
9588 bp->sp_rtnl_state = 0;
9589 smp_mb();
9590
9591 bnx2x_parity_recover(bp);
9592
9593 rtnl_unlock();
9594 return;
9595 }
9596
9597 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9598 #ifdef BNX2X_STOP_ON_ERROR
9599 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9600 "you will need to reboot when done\n");
9601 goto sp_rtnl_not_reset;
9602 #endif
9603
9604 /*
9605 * Clear all pending SP commands as we are going to reset the
9606 * function anyway.
9607 */
9608 bp->sp_rtnl_state = 0;
9609 smp_mb();
9610
9611 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9612 bnx2x_nic_load(bp, LOAD_NORMAL);
9613
9614 rtnl_unlock();
9615 return;
9616 }
9617 #ifdef BNX2X_STOP_ON_ERROR
9618 sp_rtnl_not_reset:
9619 #endif
9620 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9621 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9622 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9623 bnx2x_after_function_update(bp);
9624 /*
9625 * in case of fan failure we need to reset id if the "stop on error"
9626 * debug flag is set, since we trying to prevent permanent overheating
9627 * damage
9628 */
9629 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9630 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9631 netif_device_detach(bp->dev);
9632 bnx2x_close(bp->dev);
9633 rtnl_unlock();
9634 return;
9635 }
9636
9637 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9638 DP(BNX2X_MSG_SP,
9639 "sending set mcast vf pf channel message from rtnl sp-task\n");
9640 bnx2x_vfpf_set_mcast(bp->dev);
9641 }
9642 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9643 &bp->sp_rtnl_state)){
9644 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9645 bnx2x_tx_disable(bp);
9646 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9647 }
9648 }
9649
9650 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9651 &bp->sp_rtnl_state)) {
9652 DP(BNX2X_MSG_SP,
9653 "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9654 bnx2x_vfpf_storm_rx_mode(bp);
9655 }
9656
9657 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9658 &bp->sp_rtnl_state))
9659 bnx2x_pf_set_vfs_vlan(bp);
9660
9661 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state))
9662 bnx2x_dcbx_stop_hw_tx(bp);
9663
9664 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state))
9665 bnx2x_dcbx_resume_hw_tx(bp);
9666
9667 /* work which needs rtnl lock not-taken (as it takes the lock itself and
9668 * can be called from other contexts as well)
9669 */
9670 rtnl_unlock();
9671
9672 /* enable SR-IOV if applicable */
9673 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9674 &bp->sp_rtnl_state)) {
9675 bnx2x_disable_sriov(bp);
9676 bnx2x_enable_sriov(bp);
9677 }
9678 }
9679
9680 static void bnx2x_period_task(struct work_struct *work)
9681 {
9682 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9683
9684 if (!netif_running(bp->dev))
9685 goto period_task_exit;
9686
9687 if (CHIP_REV_IS_SLOW(bp)) {
9688 BNX2X_ERR("period task called on emulation, ignoring\n");
9689 goto period_task_exit;
9690 }
9691
9692 bnx2x_acquire_phy_lock(bp);
9693 /*
9694 * The barrier is needed to ensure the ordering between the writing to
9695 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9696 * the reading here.
9697 */
9698 smp_mb();
9699 if (bp->port.pmf) {
9700 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9701
9702 /* Re-queue task in 1 sec */
9703 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9704 }
9705
9706 bnx2x_release_phy_lock(bp);
9707 period_task_exit:
9708 return;
9709 }
9710
9711 /*
9712 * Init service functions
9713 */
9714
9715 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9716 {
9717 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9718 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9719 return base + (BP_ABS_FUNC(bp)) * stride;
9720 }
9721
9722 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9723 struct bnx2x_mac_vals *vals)
9724 {
9725 u32 val, base_addr, offset, mask, reset_reg;
9726 bool mac_stopped = false;
9727 u8 port = BP_PORT(bp);
9728
9729 /* reset addresses as they also mark which values were changed */
9730 vals->bmac_addr = 0;
9731 vals->umac_addr = 0;
9732 vals->xmac_addr = 0;
9733 vals->emac_addr = 0;
9734
9735 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9736
9737 if (!CHIP_IS_E3(bp)) {
9738 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9739 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9740 if ((mask & reset_reg) && val) {
9741 u32 wb_data[2];
9742 BNX2X_DEV_INFO("Disable bmac Rx\n");
9743 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9744 : NIG_REG_INGRESS_BMAC0_MEM;
9745 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9746 : BIGMAC_REGISTER_BMAC_CONTROL;
9747
9748 /*
9749 * use rd/wr since we cannot use dmae. This is safe
9750 * since MCP won't access the bus due to the request
9751 * to unload, and no function on the path can be
9752 * loaded at this time.
9753 */
9754 wb_data[0] = REG_RD(bp, base_addr + offset);
9755 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9756 vals->bmac_addr = base_addr + offset;
9757 vals->bmac_val[0] = wb_data[0];
9758 vals->bmac_val[1] = wb_data[1];
9759 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9760 REG_WR(bp, vals->bmac_addr, wb_data[0]);
9761 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9762 }
9763 BNX2X_DEV_INFO("Disable emac Rx\n");
9764 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9765 vals->emac_val = REG_RD(bp, vals->emac_addr);
9766 REG_WR(bp, vals->emac_addr, 0);
9767 mac_stopped = true;
9768 } else {
9769 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9770 BNX2X_DEV_INFO("Disable xmac Rx\n");
9771 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9772 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9773 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9774 val & ~(1 << 1));
9775 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9776 val | (1 << 1));
9777 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9778 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9779 REG_WR(bp, vals->xmac_addr, 0);
9780 mac_stopped = true;
9781 }
9782 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9783 if (mask & reset_reg) {
9784 BNX2X_DEV_INFO("Disable umac Rx\n");
9785 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9786 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9787 vals->umac_val = REG_RD(bp, vals->umac_addr);
9788 REG_WR(bp, vals->umac_addr, 0);
9789 mac_stopped = true;
9790 }
9791 }
9792
9793 if (mac_stopped)
9794 msleep(20);
9795 }
9796
9797 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9798 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
9799 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
9800 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9801
9802 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9803 {
9804 u16 rcq, bd;
9805 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9806
9807 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9808 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9809
9810 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9811 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9812
9813 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9814 port, bd, rcq);
9815 }
9816
9817 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9818 {
9819 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9820 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9821 if (!rc) {
9822 BNX2X_ERR("MCP response failure, aborting\n");
9823 return -EBUSY;
9824 }
9825
9826 return 0;
9827 }
9828
9829 static struct bnx2x_prev_path_list *
9830 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9831 {
9832 struct bnx2x_prev_path_list *tmp_list;
9833
9834 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9835 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9836 bp->pdev->bus->number == tmp_list->bus &&
9837 BP_PATH(bp) == tmp_list->path)
9838 return tmp_list;
9839
9840 return NULL;
9841 }
9842
9843 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9844 {
9845 struct bnx2x_prev_path_list *tmp_list;
9846 int rc;
9847
9848 rc = down_interruptible(&bnx2x_prev_sem);
9849 if (rc) {
9850 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9851 return rc;
9852 }
9853
9854 tmp_list = bnx2x_prev_path_get_entry(bp);
9855 if (tmp_list) {
9856 tmp_list->aer = 1;
9857 rc = 0;
9858 } else {
9859 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9860 BP_PATH(bp));
9861 }
9862
9863 up(&bnx2x_prev_sem);
9864
9865 return rc;
9866 }
9867
9868 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9869 {
9870 struct bnx2x_prev_path_list *tmp_list;
9871 int rc = false;
9872
9873 if (down_trylock(&bnx2x_prev_sem))
9874 return false;
9875
9876 tmp_list = bnx2x_prev_path_get_entry(bp);
9877 if (tmp_list) {
9878 if (tmp_list->aer) {
9879 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9880 BP_PATH(bp));
9881 } else {
9882 rc = true;
9883 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9884 BP_PATH(bp));
9885 }
9886 }
9887
9888 up(&bnx2x_prev_sem);
9889
9890 return rc;
9891 }
9892
9893 bool bnx2x_port_after_undi(struct bnx2x *bp)
9894 {
9895 struct bnx2x_prev_path_list *entry;
9896 bool val;
9897
9898 down(&bnx2x_prev_sem);
9899
9900 entry = bnx2x_prev_path_get_entry(bp);
9901 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9902
9903 up(&bnx2x_prev_sem);
9904
9905 return val;
9906 }
9907
9908 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9909 {
9910 struct bnx2x_prev_path_list *tmp_list;
9911 int rc;
9912
9913 rc = down_interruptible(&bnx2x_prev_sem);
9914 if (rc) {
9915 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9916 return rc;
9917 }
9918
9919 /* Check whether the entry for this path already exists */
9920 tmp_list = bnx2x_prev_path_get_entry(bp);
9921 if (tmp_list) {
9922 if (!tmp_list->aer) {
9923 BNX2X_ERR("Re-Marking the path.\n");
9924 } else {
9925 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9926 BP_PATH(bp));
9927 tmp_list->aer = 0;
9928 }
9929 up(&bnx2x_prev_sem);
9930 return 0;
9931 }
9932 up(&bnx2x_prev_sem);
9933
9934 /* Create an entry for this path and add it */
9935 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9936 if (!tmp_list) {
9937 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9938 return -ENOMEM;
9939 }
9940
9941 tmp_list->bus = bp->pdev->bus->number;
9942 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9943 tmp_list->path = BP_PATH(bp);
9944 tmp_list->aer = 0;
9945 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9946
9947 rc = down_interruptible(&bnx2x_prev_sem);
9948 if (rc) {
9949 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9950 kfree(tmp_list);
9951 } else {
9952 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9953 BP_PATH(bp));
9954 list_add(&tmp_list->list, &bnx2x_prev_list);
9955 up(&bnx2x_prev_sem);
9956 }
9957
9958 return rc;
9959 }
9960
9961 static int bnx2x_do_flr(struct bnx2x *bp)
9962 {
9963 int i;
9964 u16 status;
9965 struct pci_dev *dev = bp->pdev;
9966
9967 if (CHIP_IS_E1x(bp)) {
9968 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9969 return -EINVAL;
9970 }
9971
9972 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9973 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9974 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9975 bp->common.bc_ver);
9976 return -EINVAL;
9977 }
9978
9979 /* Wait for Transaction Pending bit clean */
9980 for (i = 0; i < 4; i++) {
9981 if (i)
9982 msleep((1 << (i - 1)) * 100);
9983
9984 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9985 if (!(status & PCI_EXP_DEVSTA_TRPND))
9986 goto clear;
9987 }
9988
9989 dev_err(&dev->dev,
9990 "transaction is not cleared; proceeding with reset anyway\n");
9991
9992 clear:
9993
9994 BNX2X_DEV_INFO("Initiating FLR\n");
9995 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9996
9997 return 0;
9998 }
9999
10000 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10001 {
10002 int rc;
10003
10004 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10005
10006 /* Test if previous unload process was already finished for this path */
10007 if (bnx2x_prev_is_path_marked(bp))
10008 return bnx2x_prev_mcp_done(bp);
10009
10010 BNX2X_DEV_INFO("Path is unmarked\n");
10011
10012 /* If function has FLR capabilities, and existing FW version matches
10013 * the one required, then FLR will be sufficient to clean any residue
10014 * left by previous driver
10015 */
10016 rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10017
10018 if (!rc) {
10019 /* fw version is good */
10020 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10021 rc = bnx2x_do_flr(bp);
10022 }
10023
10024 if (!rc) {
10025 /* FLR was performed */
10026 BNX2X_DEV_INFO("FLR successful\n");
10027 return 0;
10028 }
10029
10030 BNX2X_DEV_INFO("Could not FLR\n");
10031
10032 /* Close the MCP request, return failure*/
10033 rc = bnx2x_prev_mcp_done(bp);
10034 if (!rc)
10035 rc = BNX2X_PREV_WAIT_NEEDED;
10036
10037 return rc;
10038 }
10039
10040 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10041 {
10042 u32 reset_reg, tmp_reg = 0, rc;
10043 bool prev_undi = false;
10044 struct bnx2x_mac_vals mac_vals;
10045
10046 /* It is possible a previous function received 'common' answer,
10047 * but hasn't loaded yet, therefore creating a scenario of
10048 * multiple functions receiving 'common' on the same path.
10049 */
10050 BNX2X_DEV_INFO("Common unload Flow\n");
10051
10052 memset(&mac_vals, 0, sizeof(mac_vals));
10053
10054 if (bnx2x_prev_is_path_marked(bp))
10055 return bnx2x_prev_mcp_done(bp);
10056
10057 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10058
10059 /* Reset should be performed after BRB is emptied */
10060 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10061 u32 timer_count = 1000;
10062
10063 /* Close the MAC Rx to prevent BRB from filling up */
10064 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10065
10066 /* close LLH filters towards the BRB */
10067 bnx2x_set_rx_filter(&bp->link_params, 0);
10068
10069 /* Check if the UNDI driver was previously loaded
10070 * UNDI driver initializes CID offset for normal bell to 0x7
10071 */
10072 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10073 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10074 if (tmp_reg == 0x7) {
10075 BNX2X_DEV_INFO("UNDI previously loaded\n");
10076 prev_undi = true;
10077 /* clear the UNDI indication */
10078 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10079 /* clear possible idle check errors */
10080 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10081 }
10082 }
10083 if (!CHIP_IS_E1x(bp))
10084 /* block FW from writing to host */
10085 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10086
10087 /* wait until BRB is empty */
10088 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10089 while (timer_count) {
10090 u32 prev_brb = tmp_reg;
10091
10092 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10093 if (!tmp_reg)
10094 break;
10095
10096 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10097
10098 /* reset timer as long as BRB actually gets emptied */
10099 if (prev_brb > tmp_reg)
10100 timer_count = 1000;
10101 else
10102 timer_count--;
10103
10104 /* If UNDI resides in memory, manually increment it */
10105 if (prev_undi)
10106 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10107
10108 udelay(10);
10109 }
10110
10111 if (!timer_count)
10112 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10113 }
10114
10115 /* No packets are in the pipeline, path is ready for reset */
10116 bnx2x_reset_common(bp);
10117
10118 if (mac_vals.xmac_addr)
10119 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10120 if (mac_vals.umac_addr)
10121 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10122 if (mac_vals.emac_addr)
10123 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10124 if (mac_vals.bmac_addr) {
10125 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10126 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10127 }
10128
10129 rc = bnx2x_prev_mark_path(bp, prev_undi);
10130 if (rc) {
10131 bnx2x_prev_mcp_done(bp);
10132 return rc;
10133 }
10134
10135 return bnx2x_prev_mcp_done(bp);
10136 }
10137
10138 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10139 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10140 * the addresses of the transaction, resulting in was-error bit set in the pci
10141 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10142 * to clear the interrupt which detected this from the pglueb and the was done
10143 * bit
10144 */
10145 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10146 {
10147 if (!CHIP_IS_E1x(bp)) {
10148 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10149 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10150 DP(BNX2X_MSG_SP,
10151 "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10152 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10153 1 << BP_FUNC(bp));
10154 }
10155 }
10156 }
10157
10158 static int bnx2x_prev_unload(struct bnx2x *bp)
10159 {
10160 int time_counter = 10;
10161 u32 rc, fw, hw_lock_reg, hw_lock_val;
10162 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10163
10164 /* clear hw from errors which may have resulted from an interrupted
10165 * dmae transaction.
10166 */
10167 bnx2x_prev_interrupted_dmae(bp);
10168
10169 /* Release previously held locks */
10170 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10171 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10172 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10173
10174 hw_lock_val = REG_RD(bp, hw_lock_reg);
10175 if (hw_lock_val) {
10176 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10177 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10178 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10179 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10180 }
10181
10182 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10183 REG_WR(bp, hw_lock_reg, 0xffffffff);
10184 } else
10185 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10186
10187 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10188 BNX2X_DEV_INFO("Release previously held alr\n");
10189 bnx2x_release_alr(bp);
10190 }
10191
10192 do {
10193 int aer = 0;
10194 /* Lock MCP using an unload request */
10195 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10196 if (!fw) {
10197 BNX2X_ERR("MCP response failure, aborting\n");
10198 rc = -EBUSY;
10199 break;
10200 }
10201
10202 rc = down_interruptible(&bnx2x_prev_sem);
10203 if (rc) {
10204 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10205 rc);
10206 } else {
10207 /* If Path is marked by EEH, ignore unload status */
10208 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10209 bnx2x_prev_path_get_entry(bp)->aer);
10210 up(&bnx2x_prev_sem);
10211 }
10212
10213 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10214 rc = bnx2x_prev_unload_common(bp);
10215 break;
10216 }
10217
10218 /* non-common reply from MCP might require looping */
10219 rc = bnx2x_prev_unload_uncommon(bp);
10220 if (rc != BNX2X_PREV_WAIT_NEEDED)
10221 break;
10222
10223 msleep(20);
10224 } while (--time_counter);
10225
10226 if (!time_counter || rc) {
10227 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10228 rc = -EBUSY;
10229 }
10230
10231 /* Mark function if its port was used to boot from SAN */
10232 if (bnx2x_port_after_undi(bp))
10233 bp->link_params.feature_config_flags |=
10234 FEATURE_CONFIG_BOOT_FROM_SAN;
10235
10236 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10237
10238 return rc;
10239 }
10240
10241 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10242 {
10243 u32 val, val2, val3, val4, id, boot_mode;
10244 u16 pmc;
10245
10246 /* Get the chip revision id and number. */
10247 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10248 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10249 id = ((val & 0xffff) << 16);
10250 val = REG_RD(bp, MISC_REG_CHIP_REV);
10251 id |= ((val & 0xf) << 12);
10252
10253 /* Metal is read from PCI regs, but we can't access >=0x400 from
10254 * the configuration space (so we need to reg_rd)
10255 */
10256 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10257 id |= (((val >> 24) & 0xf) << 4);
10258 val = REG_RD(bp, MISC_REG_BOND_ID);
10259 id |= (val & 0xf);
10260 bp->common.chip_id = id;
10261
10262 /* force 57811 according to MISC register */
10263 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10264 if (CHIP_IS_57810(bp))
10265 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10266 (bp->common.chip_id & 0x0000FFFF);
10267 else if (CHIP_IS_57810_MF(bp))
10268 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10269 (bp->common.chip_id & 0x0000FFFF);
10270 bp->common.chip_id |= 0x1;
10271 }
10272
10273 /* Set doorbell size */
10274 bp->db_size = (1 << BNX2X_DB_SHIFT);
10275
10276 if (!CHIP_IS_E1x(bp)) {
10277 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10278 if ((val & 1) == 0)
10279 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10280 else
10281 val = (val >> 1) & 1;
10282 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10283 "2_PORT_MODE");
10284 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10285 CHIP_2_PORT_MODE;
10286
10287 if (CHIP_MODE_IS_4_PORT(bp))
10288 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10289 else
10290 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10291 } else {
10292 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10293 bp->pfid = bp->pf_num; /* 0..7 */
10294 }
10295
10296 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10297
10298 bp->link_params.chip_id = bp->common.chip_id;
10299 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10300
10301 val = (REG_RD(bp, 0x2874) & 0x55);
10302 if ((bp->common.chip_id & 0x1) ||
10303 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10304 bp->flags |= ONE_PORT_FLAG;
10305 BNX2X_DEV_INFO("single port device\n");
10306 }
10307
10308 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10309 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10310 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10311 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10312 bp->common.flash_size, bp->common.flash_size);
10313
10314 bnx2x_init_shmem(bp);
10315
10316 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10317 MISC_REG_GENERIC_CR_1 :
10318 MISC_REG_GENERIC_CR_0));
10319
10320 bp->link_params.shmem_base = bp->common.shmem_base;
10321 bp->link_params.shmem2_base = bp->common.shmem2_base;
10322 if (SHMEM2_RD(bp, size) >
10323 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10324 bp->link_params.lfa_base =
10325 REG_RD(bp, bp->common.shmem2_base +
10326 (u32)offsetof(struct shmem2_region,
10327 lfa_host_addr[BP_PORT(bp)]));
10328 else
10329 bp->link_params.lfa_base = 0;
10330 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
10331 bp->common.shmem_base, bp->common.shmem2_base);
10332
10333 if (!bp->common.shmem_base) {
10334 BNX2X_DEV_INFO("MCP not active\n");
10335 bp->flags |= NO_MCP_FLAG;
10336 return;
10337 }
10338
10339 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10340 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10341
10342 bp->link_params.hw_led_mode = ((bp->common.hw_config &
10343 SHARED_HW_CFG_LED_MODE_MASK) >>
10344 SHARED_HW_CFG_LED_MODE_SHIFT);
10345
10346 bp->link_params.feature_config_flags = 0;
10347 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10348 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10349 bp->link_params.feature_config_flags |=
10350 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10351 else
10352 bp->link_params.feature_config_flags &=
10353 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10354
10355 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10356 bp->common.bc_ver = val;
10357 BNX2X_DEV_INFO("bc_ver %X\n", val);
10358 if (val < BNX2X_BC_VER) {
10359 /* for now only warn
10360 * later we might need to enforce this */
10361 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10362 BNX2X_BC_VER, val);
10363 }
10364 bp->link_params.feature_config_flags |=
10365 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10366 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10367
10368 bp->link_params.feature_config_flags |=
10369 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10370 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10371 bp->link_params.feature_config_flags |=
10372 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10373 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10374 bp->link_params.feature_config_flags |=
10375 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10376 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10377
10378 bp->link_params.feature_config_flags |=
10379 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10380 FEATURE_CONFIG_MT_SUPPORT : 0;
10381
10382 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10383 BC_SUPPORTS_PFC_STATS : 0;
10384
10385 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10386 BC_SUPPORTS_FCOE_FEATURES : 0;
10387
10388 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10389 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10390
10391 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10392 BC_SUPPORTS_RMMOD_CMD : 0;
10393
10394 boot_mode = SHMEM_RD(bp,
10395 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10396 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10397 switch (boot_mode) {
10398 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10399 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10400 break;
10401 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10402 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10403 break;
10404 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10405 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10406 break;
10407 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10408 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10409 break;
10410 }
10411
10412 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10413 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10414
10415 BNX2X_DEV_INFO("%sWoL capable\n",
10416 (bp->flags & NO_WOL_FLAG) ? "not " : "");
10417
10418 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10419 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10420 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10421 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10422
10423 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10424 val, val2, val3, val4);
10425 }
10426
10427 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10428 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10429
10430 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10431 {
10432 int pfid = BP_FUNC(bp);
10433 int igu_sb_id;
10434 u32 val;
10435 u8 fid, igu_sb_cnt = 0;
10436
10437 bp->igu_base_sb = 0xff;
10438 if (CHIP_INT_MODE_IS_BC(bp)) {
10439 int vn = BP_VN(bp);
10440 igu_sb_cnt = bp->igu_sb_cnt;
10441 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10442 FP_SB_MAX_E1x;
10443
10444 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
10445 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10446
10447 return 0;
10448 }
10449
10450 /* IGU in normal mode - read CAM */
10451 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10452 igu_sb_id++) {
10453 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10454 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10455 continue;
10456 fid = IGU_FID(val);
10457 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10458 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10459 continue;
10460 if (IGU_VEC(val) == 0)
10461 /* default status block */
10462 bp->igu_dsb_id = igu_sb_id;
10463 else {
10464 if (bp->igu_base_sb == 0xff)
10465 bp->igu_base_sb = igu_sb_id;
10466 igu_sb_cnt++;
10467 }
10468 }
10469 }
10470
10471 #ifdef CONFIG_PCI_MSI
10472 /* Due to new PF resource allocation by MFW T7.4 and above, it's
10473 * optional that number of CAM entries will not be equal to the value
10474 * advertised in PCI.
10475 * Driver should use the minimal value of both as the actual status
10476 * block count
10477 */
10478 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10479 #endif
10480
10481 if (igu_sb_cnt == 0) {
10482 BNX2X_ERR("CAM configuration error\n");
10483 return -EINVAL;
10484 }
10485
10486 return 0;
10487 }
10488
10489 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10490 {
10491 int cfg_size = 0, idx, port = BP_PORT(bp);
10492
10493 /* Aggregation of supported attributes of all external phys */
10494 bp->port.supported[0] = 0;
10495 bp->port.supported[1] = 0;
10496 switch (bp->link_params.num_phys) {
10497 case 1:
10498 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10499 cfg_size = 1;
10500 break;
10501 case 2:
10502 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10503 cfg_size = 1;
10504 break;
10505 case 3:
10506 if (bp->link_params.multi_phy_config &
10507 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10508 bp->port.supported[1] =
10509 bp->link_params.phy[EXT_PHY1].supported;
10510 bp->port.supported[0] =
10511 bp->link_params.phy[EXT_PHY2].supported;
10512 } else {
10513 bp->port.supported[0] =
10514 bp->link_params.phy[EXT_PHY1].supported;
10515 bp->port.supported[1] =
10516 bp->link_params.phy[EXT_PHY2].supported;
10517 }
10518 cfg_size = 2;
10519 break;
10520 }
10521
10522 if (!(bp->port.supported[0] || bp->port.supported[1])) {
10523 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10524 SHMEM_RD(bp,
10525 dev_info.port_hw_config[port].external_phy_config),
10526 SHMEM_RD(bp,
10527 dev_info.port_hw_config[port].external_phy_config2));
10528 return;
10529 }
10530
10531 if (CHIP_IS_E3(bp))
10532 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10533 else {
10534 switch (switch_cfg) {
10535 case SWITCH_CFG_1G:
10536 bp->port.phy_addr = REG_RD(
10537 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10538 break;
10539 case SWITCH_CFG_10G:
10540 bp->port.phy_addr = REG_RD(
10541 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10542 break;
10543 default:
10544 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10545 bp->port.link_config[0]);
10546 return;
10547 }
10548 }
10549 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10550 /* mask what we support according to speed_cap_mask per configuration */
10551 for (idx = 0; idx < cfg_size; idx++) {
10552 if (!(bp->link_params.speed_cap_mask[idx] &
10553 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10554 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10555
10556 if (!(bp->link_params.speed_cap_mask[idx] &
10557 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10558 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10559
10560 if (!(bp->link_params.speed_cap_mask[idx] &
10561 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10562 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10563
10564 if (!(bp->link_params.speed_cap_mask[idx] &
10565 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10566 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10567
10568 if (!(bp->link_params.speed_cap_mask[idx] &
10569 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10570 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10571 SUPPORTED_1000baseT_Full);
10572
10573 if (!(bp->link_params.speed_cap_mask[idx] &
10574 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10575 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10576
10577 if (!(bp->link_params.speed_cap_mask[idx] &
10578 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10579 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10580
10581 if (!(bp->link_params.speed_cap_mask[idx] &
10582 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10583 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10584 }
10585
10586 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10587 bp->port.supported[1]);
10588 }
10589
10590 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10591 {
10592 u32 link_config, idx, cfg_size = 0;
10593 bp->port.advertising[0] = 0;
10594 bp->port.advertising[1] = 0;
10595 switch (bp->link_params.num_phys) {
10596 case 1:
10597 case 2:
10598 cfg_size = 1;
10599 break;
10600 case 3:
10601 cfg_size = 2;
10602 break;
10603 }
10604 for (idx = 0; idx < cfg_size; idx++) {
10605 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10606 link_config = bp->port.link_config[idx];
10607 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10608 case PORT_FEATURE_LINK_SPEED_AUTO:
10609 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10610 bp->link_params.req_line_speed[idx] =
10611 SPEED_AUTO_NEG;
10612 bp->port.advertising[idx] |=
10613 bp->port.supported[idx];
10614 if (bp->link_params.phy[EXT_PHY1].type ==
10615 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10616 bp->port.advertising[idx] |=
10617 (SUPPORTED_100baseT_Half |
10618 SUPPORTED_100baseT_Full);
10619 } else {
10620 /* force 10G, no AN */
10621 bp->link_params.req_line_speed[idx] =
10622 SPEED_10000;
10623 bp->port.advertising[idx] |=
10624 (ADVERTISED_10000baseT_Full |
10625 ADVERTISED_FIBRE);
10626 continue;
10627 }
10628 break;
10629
10630 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10631 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10632 bp->link_params.req_line_speed[idx] =
10633 SPEED_10;
10634 bp->port.advertising[idx] |=
10635 (ADVERTISED_10baseT_Full |
10636 ADVERTISED_TP);
10637 } else {
10638 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10639 link_config,
10640 bp->link_params.speed_cap_mask[idx]);
10641 return;
10642 }
10643 break;
10644
10645 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10646 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10647 bp->link_params.req_line_speed[idx] =
10648 SPEED_10;
10649 bp->link_params.req_duplex[idx] =
10650 DUPLEX_HALF;
10651 bp->port.advertising[idx] |=
10652 (ADVERTISED_10baseT_Half |
10653 ADVERTISED_TP);
10654 } else {
10655 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10656 link_config,
10657 bp->link_params.speed_cap_mask[idx]);
10658 return;
10659 }
10660 break;
10661
10662 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10663 if (bp->port.supported[idx] &
10664 SUPPORTED_100baseT_Full) {
10665 bp->link_params.req_line_speed[idx] =
10666 SPEED_100;
10667 bp->port.advertising[idx] |=
10668 (ADVERTISED_100baseT_Full |
10669 ADVERTISED_TP);
10670 } else {
10671 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10672 link_config,
10673 bp->link_params.speed_cap_mask[idx]);
10674 return;
10675 }
10676 break;
10677
10678 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10679 if (bp->port.supported[idx] &
10680 SUPPORTED_100baseT_Half) {
10681 bp->link_params.req_line_speed[idx] =
10682 SPEED_100;
10683 bp->link_params.req_duplex[idx] =
10684 DUPLEX_HALF;
10685 bp->port.advertising[idx] |=
10686 (ADVERTISED_100baseT_Half |
10687 ADVERTISED_TP);
10688 } else {
10689 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10690 link_config,
10691 bp->link_params.speed_cap_mask[idx]);
10692 return;
10693 }
10694 break;
10695
10696 case PORT_FEATURE_LINK_SPEED_1G:
10697 if (bp->port.supported[idx] &
10698 SUPPORTED_1000baseT_Full) {
10699 bp->link_params.req_line_speed[idx] =
10700 SPEED_1000;
10701 bp->port.advertising[idx] |=
10702 (ADVERTISED_1000baseT_Full |
10703 ADVERTISED_TP);
10704 } else {
10705 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10706 link_config,
10707 bp->link_params.speed_cap_mask[idx]);
10708 return;
10709 }
10710 break;
10711
10712 case PORT_FEATURE_LINK_SPEED_2_5G:
10713 if (bp->port.supported[idx] &
10714 SUPPORTED_2500baseX_Full) {
10715 bp->link_params.req_line_speed[idx] =
10716 SPEED_2500;
10717 bp->port.advertising[idx] |=
10718 (ADVERTISED_2500baseX_Full |
10719 ADVERTISED_TP);
10720 } else {
10721 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10722 link_config,
10723 bp->link_params.speed_cap_mask[idx]);
10724 return;
10725 }
10726 break;
10727
10728 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10729 if (bp->port.supported[idx] &
10730 SUPPORTED_10000baseT_Full) {
10731 bp->link_params.req_line_speed[idx] =
10732 SPEED_10000;
10733 bp->port.advertising[idx] |=
10734 (ADVERTISED_10000baseT_Full |
10735 ADVERTISED_FIBRE);
10736 } else {
10737 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10738 link_config,
10739 bp->link_params.speed_cap_mask[idx]);
10740 return;
10741 }
10742 break;
10743 case PORT_FEATURE_LINK_SPEED_20G:
10744 bp->link_params.req_line_speed[idx] = SPEED_20000;
10745
10746 break;
10747 default:
10748 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10749 link_config);
10750 bp->link_params.req_line_speed[idx] =
10751 SPEED_AUTO_NEG;
10752 bp->port.advertising[idx] =
10753 bp->port.supported[idx];
10754 break;
10755 }
10756
10757 bp->link_params.req_flow_ctrl[idx] = (link_config &
10758 PORT_FEATURE_FLOW_CONTROL_MASK);
10759 if (bp->link_params.req_flow_ctrl[idx] ==
10760 BNX2X_FLOW_CTRL_AUTO) {
10761 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10762 bp->link_params.req_flow_ctrl[idx] =
10763 BNX2X_FLOW_CTRL_NONE;
10764 else
10765 bnx2x_set_requested_fc(bp);
10766 }
10767
10768 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10769 bp->link_params.req_line_speed[idx],
10770 bp->link_params.req_duplex[idx],
10771 bp->link_params.req_flow_ctrl[idx],
10772 bp->port.advertising[idx]);
10773 }
10774 }
10775
10776 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10777 {
10778 __be16 mac_hi_be = cpu_to_be16(mac_hi);
10779 __be32 mac_lo_be = cpu_to_be32(mac_lo);
10780 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10781 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10782 }
10783
10784 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10785 {
10786 int port = BP_PORT(bp);
10787 u32 config;
10788 u32 ext_phy_type, ext_phy_config, eee_mode;
10789
10790 bp->link_params.bp = bp;
10791 bp->link_params.port = port;
10792
10793 bp->link_params.lane_config =
10794 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10795
10796 bp->link_params.speed_cap_mask[0] =
10797 SHMEM_RD(bp,
10798 dev_info.port_hw_config[port].speed_capability_mask) &
10799 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10800 bp->link_params.speed_cap_mask[1] =
10801 SHMEM_RD(bp,
10802 dev_info.port_hw_config[port].speed_capability_mask2) &
10803 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10804 bp->port.link_config[0] =
10805 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10806
10807 bp->port.link_config[1] =
10808 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10809
10810 bp->link_params.multi_phy_config =
10811 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10812 /* If the device is capable of WoL, set the default state according
10813 * to the HW
10814 */
10815 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10816 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10817 (config & PORT_FEATURE_WOL_ENABLED));
10818
10819 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10820 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10821 bp->flags |= NO_ISCSI_FLAG;
10822 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10823 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10824 bp->flags |= NO_FCOE_FLAG;
10825
10826 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
10827 bp->link_params.lane_config,
10828 bp->link_params.speed_cap_mask[0],
10829 bp->port.link_config[0]);
10830
10831 bp->link_params.switch_cfg = (bp->port.link_config[0] &
10832 PORT_FEATURE_CONNECTED_SWITCH_MASK);
10833 bnx2x_phy_probe(&bp->link_params);
10834 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10835
10836 bnx2x_link_settings_requested(bp);
10837
10838 /*
10839 * If connected directly, work with the internal PHY, otherwise, work
10840 * with the external PHY
10841 */
10842 ext_phy_config =
10843 SHMEM_RD(bp,
10844 dev_info.port_hw_config[port].external_phy_config);
10845 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10846 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10847 bp->mdio.prtad = bp->port.phy_addr;
10848
10849 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10850 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10851 bp->mdio.prtad =
10852 XGXS_EXT_PHY_ADDR(ext_phy_config);
10853
10854 /* Configure link feature according to nvram value */
10855 eee_mode = (((SHMEM_RD(bp, dev_info.
10856 port_feature_config[port].eee_power_mode)) &
10857 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10858 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10859 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10860 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10861 EEE_MODE_ENABLE_LPI |
10862 EEE_MODE_OUTPUT_TIME;
10863 } else {
10864 bp->link_params.eee_mode = 0;
10865 }
10866 }
10867
10868 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10869 {
10870 u32 no_flags = NO_ISCSI_FLAG;
10871 int port = BP_PORT(bp);
10872 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10873 drv_lic_key[port].max_iscsi_conn);
10874
10875 if (!CNIC_SUPPORT(bp)) {
10876 bp->flags |= no_flags;
10877 return;
10878 }
10879
10880 /* Get the number of maximum allowed iSCSI connections */
10881 bp->cnic_eth_dev.max_iscsi_conn =
10882 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10883 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10884
10885 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10886 bp->cnic_eth_dev.max_iscsi_conn);
10887
10888 /*
10889 * If maximum allowed number of connections is zero -
10890 * disable the feature.
10891 */
10892 if (!bp->cnic_eth_dev.max_iscsi_conn)
10893 bp->flags |= no_flags;
10894 }
10895
10896 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10897 {
10898 /* Port info */
10899 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10900 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10901 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10902 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10903
10904 /* Node info */
10905 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10906 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10907 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10908 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10909 }
10910
10911 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10912 {
10913 u8 count = 0;
10914
10915 if (IS_MF(bp)) {
10916 u8 fid;
10917
10918 /* iterate over absolute function ids for this path: */
10919 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10920 if (IS_MF_SD(bp)) {
10921 u32 cfg = MF_CFG_RD(bp,
10922 func_mf_config[fid].config);
10923
10924 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10925 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10926 FUNC_MF_CFG_PROTOCOL_FCOE))
10927 count++;
10928 } else {
10929 u32 cfg = MF_CFG_RD(bp,
10930 func_ext_config[fid].
10931 func_cfg);
10932
10933 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10934 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10935 count++;
10936 }
10937 }
10938 } else { /* SF */
10939 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10940
10941 for (port = 0; port < port_cnt; port++) {
10942 u32 lic = SHMEM_RD(bp,
10943 drv_lic_key[port].max_fcoe_conn) ^
10944 FW_ENCODE_32BIT_PATTERN;
10945 if (lic)
10946 count++;
10947 }
10948 }
10949
10950 return count;
10951 }
10952
10953 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10954 {
10955 int port = BP_PORT(bp);
10956 int func = BP_ABS_FUNC(bp);
10957 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10958 drv_lic_key[port].max_fcoe_conn);
10959 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10960
10961 if (!CNIC_SUPPORT(bp)) {
10962 bp->flags |= NO_FCOE_FLAG;
10963 return;
10964 }
10965
10966 /* Get the number of maximum allowed FCoE connections */
10967 bp->cnic_eth_dev.max_fcoe_conn =
10968 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10969 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10970
10971 /* Calculate the number of maximum allowed FCoE tasks */
10972 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10973
10974 /* check if FCoE resources must be shared between different functions */
10975 if (num_fcoe_func)
10976 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10977
10978 /* Read the WWN: */
10979 if (!IS_MF(bp)) {
10980 /* Port info */
10981 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10982 SHMEM_RD(bp,
10983 dev_info.port_hw_config[port].
10984 fcoe_wwn_port_name_upper);
10985 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10986 SHMEM_RD(bp,
10987 dev_info.port_hw_config[port].
10988 fcoe_wwn_port_name_lower);
10989
10990 /* Node info */
10991 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10992 SHMEM_RD(bp,
10993 dev_info.port_hw_config[port].
10994 fcoe_wwn_node_name_upper);
10995 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10996 SHMEM_RD(bp,
10997 dev_info.port_hw_config[port].
10998 fcoe_wwn_node_name_lower);
10999 } else if (!IS_MF_SD(bp)) {
11000 /*
11001 * Read the WWN info only if the FCoE feature is enabled for
11002 * this function.
11003 */
11004 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11005 bnx2x_get_ext_wwn_info(bp, func);
11006
11007 } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11008 bnx2x_get_ext_wwn_info(bp, func);
11009 }
11010
11011 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11012
11013 /*
11014 * If maximum allowed number of connections is zero -
11015 * disable the feature.
11016 */
11017 if (!bp->cnic_eth_dev.max_fcoe_conn)
11018 bp->flags |= NO_FCOE_FLAG;
11019 }
11020
11021 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11022 {
11023 /*
11024 * iSCSI may be dynamically disabled but reading
11025 * info here we will decrease memory usage by driver
11026 * if the feature is disabled for good
11027 */
11028 bnx2x_get_iscsi_info(bp);
11029 bnx2x_get_fcoe_info(bp);
11030 }
11031
11032 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11033 {
11034 u32 val, val2;
11035 int func = BP_ABS_FUNC(bp);
11036 int port = BP_PORT(bp);
11037 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11038 u8 *fip_mac = bp->fip_mac;
11039
11040 if (IS_MF(bp)) {
11041 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11042 * FCoE MAC then the appropriate feature should be disabled.
11043 * In non SD mode features configuration comes from struct
11044 * func_ext_config.
11045 */
11046 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11047 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11048 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11049 val2 = MF_CFG_RD(bp, func_ext_config[func].
11050 iscsi_mac_addr_upper);
11051 val = MF_CFG_RD(bp, func_ext_config[func].
11052 iscsi_mac_addr_lower);
11053 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11054 BNX2X_DEV_INFO
11055 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11056 } else {
11057 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11058 }
11059
11060 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11061 val2 = MF_CFG_RD(bp, func_ext_config[func].
11062 fcoe_mac_addr_upper);
11063 val = MF_CFG_RD(bp, func_ext_config[func].
11064 fcoe_mac_addr_lower);
11065 bnx2x_set_mac_buf(fip_mac, val, val2);
11066 BNX2X_DEV_INFO
11067 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11068 } else {
11069 bp->flags |= NO_FCOE_FLAG;
11070 }
11071
11072 bp->mf_ext_config = cfg;
11073
11074 } else { /* SD MODE */
11075 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11076 /* use primary mac as iscsi mac */
11077 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11078
11079 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11080 BNX2X_DEV_INFO
11081 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11082 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11083 /* use primary mac as fip mac */
11084 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11085 BNX2X_DEV_INFO("SD FCoE MODE\n");
11086 BNX2X_DEV_INFO
11087 ("Read FIP MAC: %pM\n", fip_mac);
11088 }
11089 }
11090
11091 /* If this is a storage-only interface, use SAN mac as
11092 * primary MAC. Notice that for SD this is already the case,
11093 * as the SAN mac was copied from the primary MAC.
11094 */
11095 if (IS_MF_FCOE_AFEX(bp))
11096 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11097 } else {
11098 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11099 iscsi_mac_upper);
11100 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11101 iscsi_mac_lower);
11102 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11103
11104 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11105 fcoe_fip_mac_upper);
11106 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11107 fcoe_fip_mac_lower);
11108 bnx2x_set_mac_buf(fip_mac, val, val2);
11109 }
11110
11111 /* Disable iSCSI OOO if MAC configuration is invalid. */
11112 if (!is_valid_ether_addr(iscsi_mac)) {
11113 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11114 memset(iscsi_mac, 0, ETH_ALEN);
11115 }
11116
11117 /* Disable FCoE if MAC configuration is invalid. */
11118 if (!is_valid_ether_addr(fip_mac)) {
11119 bp->flags |= NO_FCOE_FLAG;
11120 memset(bp->fip_mac, 0, ETH_ALEN);
11121 }
11122 }
11123
11124 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11125 {
11126 u32 val, val2;
11127 int func = BP_ABS_FUNC(bp);
11128 int port = BP_PORT(bp);
11129
11130 /* Zero primary MAC configuration */
11131 memset(bp->dev->dev_addr, 0, ETH_ALEN);
11132
11133 if (BP_NOMCP(bp)) {
11134 BNX2X_ERROR("warning: random MAC workaround active\n");
11135 eth_hw_addr_random(bp->dev);
11136 } else if (IS_MF(bp)) {
11137 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11138 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11139 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11140 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11141 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11142
11143 if (CNIC_SUPPORT(bp))
11144 bnx2x_get_cnic_mac_hwinfo(bp);
11145 } else {
11146 /* in SF read MACs from port configuration */
11147 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11148 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11149 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11150
11151 if (CNIC_SUPPORT(bp))
11152 bnx2x_get_cnic_mac_hwinfo(bp);
11153 }
11154
11155 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11156
11157 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11158 dev_err(&bp->pdev->dev,
11159 "bad Ethernet MAC address configuration: %pM\n"
11160 "change it manually before bringing up the appropriate network interface\n",
11161 bp->dev->dev_addr);
11162 }
11163
11164 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11165 {
11166 int tmp;
11167 u32 cfg;
11168
11169 if (IS_VF(bp))
11170 return 0;
11171
11172 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11173 /* Take function: tmp = func */
11174 tmp = BP_ABS_FUNC(bp);
11175 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11176 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11177 } else {
11178 /* Take port: tmp = port */
11179 tmp = BP_PORT(bp);
11180 cfg = SHMEM_RD(bp,
11181 dev_info.port_hw_config[tmp].generic_features);
11182 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11183 }
11184 return cfg;
11185 }
11186
11187 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11188 {
11189 int /*abs*/func = BP_ABS_FUNC(bp);
11190 int vn;
11191 u32 val = 0;
11192 int rc = 0;
11193
11194 bnx2x_get_common_hwinfo(bp);
11195
11196 /*
11197 * initialize IGU parameters
11198 */
11199 if (CHIP_IS_E1x(bp)) {
11200 bp->common.int_block = INT_BLOCK_HC;
11201
11202 bp->igu_dsb_id = DEF_SB_IGU_ID;
11203 bp->igu_base_sb = 0;
11204 } else {
11205 bp->common.int_block = INT_BLOCK_IGU;
11206
11207 /* do not allow device reset during IGU info processing */
11208 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11209
11210 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11211
11212 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11213 int tout = 5000;
11214
11215 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11216
11217 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11218 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11219 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11220
11221 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11222 tout--;
11223 usleep_range(1000, 2000);
11224 }
11225
11226 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11227 dev_err(&bp->pdev->dev,
11228 "FORCING Normal Mode failed!!!\n");
11229 bnx2x_release_hw_lock(bp,
11230 HW_LOCK_RESOURCE_RESET);
11231 return -EPERM;
11232 }
11233 }
11234
11235 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11236 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11237 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11238 } else
11239 BNX2X_DEV_INFO("IGU Normal Mode\n");
11240
11241 rc = bnx2x_get_igu_cam_info(bp);
11242 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11243 if (rc)
11244 return rc;
11245 }
11246
11247 /*
11248 * set base FW non-default (fast path) status block id, this value is
11249 * used to initialize the fw_sb_id saved on the fp/queue structure to
11250 * determine the id used by the FW.
11251 */
11252 if (CHIP_IS_E1x(bp))
11253 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11254 else /*
11255 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11256 * the same queue are indicated on the same IGU SB). So we prefer
11257 * FW and IGU SBs to be the same value.
11258 */
11259 bp->base_fw_ndsb = bp->igu_base_sb;
11260
11261 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11262 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11263 bp->igu_sb_cnt, bp->base_fw_ndsb);
11264
11265 /*
11266 * Initialize MF configuration
11267 */
11268
11269 bp->mf_ov = 0;
11270 bp->mf_mode = 0;
11271 vn = BP_VN(bp);
11272
11273 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11274 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11275 bp->common.shmem2_base, SHMEM2_RD(bp, size),
11276 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11277
11278 if (SHMEM2_HAS(bp, mf_cfg_addr))
11279 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11280 else
11281 bp->common.mf_cfg_base = bp->common.shmem_base +
11282 offsetof(struct shmem_region, func_mb) +
11283 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11284 /*
11285 * get mf configuration:
11286 * 1. Existence of MF configuration
11287 * 2. MAC address must be legal (check only upper bytes)
11288 * for Switch-Independent mode;
11289 * OVLAN must be legal for Switch-Dependent mode
11290 * 3. SF_MODE configures specific MF mode
11291 */
11292 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11293 /* get mf configuration */
11294 val = SHMEM_RD(bp,
11295 dev_info.shared_feature_config.config);
11296 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11297
11298 switch (val) {
11299 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11300 val = MF_CFG_RD(bp, func_mf_config[func].
11301 mac_upper);
11302 /* check for legal mac (upper bytes)*/
11303 if (val != 0xffff) {
11304 bp->mf_mode = MULTI_FUNCTION_SI;
11305 bp->mf_config[vn] = MF_CFG_RD(bp,
11306 func_mf_config[func].config);
11307 } else
11308 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11309 break;
11310 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11311 if ((!CHIP_IS_E1x(bp)) &&
11312 (MF_CFG_RD(bp, func_mf_config[func].
11313 mac_upper) != 0xffff) &&
11314 (SHMEM2_HAS(bp,
11315 afex_driver_support))) {
11316 bp->mf_mode = MULTI_FUNCTION_AFEX;
11317 bp->mf_config[vn] = MF_CFG_RD(bp,
11318 func_mf_config[func].config);
11319 } else {
11320 BNX2X_DEV_INFO("can not configure afex mode\n");
11321 }
11322 break;
11323 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11324 /* get OV configuration */
11325 val = MF_CFG_RD(bp,
11326 func_mf_config[FUNC_0].e1hov_tag);
11327 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11328
11329 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11330 bp->mf_mode = MULTI_FUNCTION_SD;
11331 bp->mf_config[vn] = MF_CFG_RD(bp,
11332 func_mf_config[func].config);
11333 } else
11334 BNX2X_DEV_INFO("illegal OV for SD\n");
11335 break;
11336 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11337 bp->mf_config[vn] = 0;
11338 break;
11339 default:
11340 /* Unknown configuration: reset mf_config */
11341 bp->mf_config[vn] = 0;
11342 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11343 }
11344 }
11345
11346 BNX2X_DEV_INFO("%s function mode\n",
11347 IS_MF(bp) ? "multi" : "single");
11348
11349 switch (bp->mf_mode) {
11350 case MULTI_FUNCTION_SD:
11351 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11352 FUNC_MF_CFG_E1HOV_TAG_MASK;
11353 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11354 bp->mf_ov = val;
11355 bp->path_has_ovlan = true;
11356
11357 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11358 func, bp->mf_ov, bp->mf_ov);
11359 } else {
11360 dev_err(&bp->pdev->dev,
11361 "No valid MF OV for func %d, aborting\n",
11362 func);
11363 return -EPERM;
11364 }
11365 break;
11366 case MULTI_FUNCTION_AFEX:
11367 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11368 break;
11369 case MULTI_FUNCTION_SI:
11370 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11371 func);
11372 break;
11373 default:
11374 if (vn) {
11375 dev_err(&bp->pdev->dev,
11376 "VN %d is in a single function mode, aborting\n",
11377 vn);
11378 return -EPERM;
11379 }
11380 break;
11381 }
11382
11383 /* check if other port on the path needs ovlan:
11384 * Since MF configuration is shared between ports
11385 * Possible mixed modes are only
11386 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11387 */
11388 if (CHIP_MODE_IS_4_PORT(bp) &&
11389 !bp->path_has_ovlan &&
11390 !IS_MF(bp) &&
11391 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11392 u8 other_port = !BP_PORT(bp);
11393 u8 other_func = BP_PATH(bp) + 2*other_port;
11394 val = MF_CFG_RD(bp,
11395 func_mf_config[other_func].e1hov_tag);
11396 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11397 bp->path_has_ovlan = true;
11398 }
11399 }
11400
11401 /* adjust igu_sb_cnt to MF for E1x */
11402 if (CHIP_IS_E1x(bp) && IS_MF(bp))
11403 bp->igu_sb_cnt /= E1HVN_MAX;
11404
11405 /* port info */
11406 bnx2x_get_port_hwinfo(bp);
11407
11408 /* Get MAC addresses */
11409 bnx2x_get_mac_hwinfo(bp);
11410
11411 bnx2x_get_cnic_info(bp);
11412
11413 return rc;
11414 }
11415
11416 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11417 {
11418 int cnt, i, block_end, rodi;
11419 char vpd_start[BNX2X_VPD_LEN+1];
11420 char str_id_reg[VENDOR_ID_LEN+1];
11421 char str_id_cap[VENDOR_ID_LEN+1];
11422 char *vpd_data;
11423 char *vpd_extended_data = NULL;
11424 u8 len;
11425
11426 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11427 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11428
11429 if (cnt < BNX2X_VPD_LEN)
11430 goto out_not_found;
11431
11432 /* VPD RO tag should be first tag after identifier string, hence
11433 * we should be able to find it in first BNX2X_VPD_LEN chars
11434 */
11435 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11436 PCI_VPD_LRDT_RO_DATA);
11437 if (i < 0)
11438 goto out_not_found;
11439
11440 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11441 pci_vpd_lrdt_size(&vpd_start[i]);
11442
11443 i += PCI_VPD_LRDT_TAG_SIZE;
11444
11445 if (block_end > BNX2X_VPD_LEN) {
11446 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11447 if (vpd_extended_data == NULL)
11448 goto out_not_found;
11449
11450 /* read rest of vpd image into vpd_extended_data */
11451 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11452 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11453 block_end - BNX2X_VPD_LEN,
11454 vpd_extended_data + BNX2X_VPD_LEN);
11455 if (cnt < (block_end - BNX2X_VPD_LEN))
11456 goto out_not_found;
11457 vpd_data = vpd_extended_data;
11458 } else
11459 vpd_data = vpd_start;
11460
11461 /* now vpd_data holds full vpd content in both cases */
11462
11463 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11464 PCI_VPD_RO_KEYWORD_MFR_ID);
11465 if (rodi < 0)
11466 goto out_not_found;
11467
11468 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11469
11470 if (len != VENDOR_ID_LEN)
11471 goto out_not_found;
11472
11473 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11474
11475 /* vendor specific info */
11476 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11477 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11478 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11479 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11480
11481 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11482 PCI_VPD_RO_KEYWORD_VENDOR0);
11483 if (rodi >= 0) {
11484 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11485
11486 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11487
11488 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11489 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11490 bp->fw_ver[len] = ' ';
11491 }
11492 }
11493 kfree(vpd_extended_data);
11494 return;
11495 }
11496 out_not_found:
11497 kfree(vpd_extended_data);
11498 return;
11499 }
11500
11501 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11502 {
11503 u32 flags = 0;
11504
11505 if (CHIP_REV_IS_FPGA(bp))
11506 SET_FLAGS(flags, MODE_FPGA);
11507 else if (CHIP_REV_IS_EMUL(bp))
11508 SET_FLAGS(flags, MODE_EMUL);
11509 else
11510 SET_FLAGS(flags, MODE_ASIC);
11511
11512 if (CHIP_MODE_IS_4_PORT(bp))
11513 SET_FLAGS(flags, MODE_PORT4);
11514 else
11515 SET_FLAGS(flags, MODE_PORT2);
11516
11517 if (CHIP_IS_E2(bp))
11518 SET_FLAGS(flags, MODE_E2);
11519 else if (CHIP_IS_E3(bp)) {
11520 SET_FLAGS(flags, MODE_E3);
11521 if (CHIP_REV(bp) == CHIP_REV_Ax)
11522 SET_FLAGS(flags, MODE_E3_A0);
11523 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11524 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11525 }
11526
11527 if (IS_MF(bp)) {
11528 SET_FLAGS(flags, MODE_MF);
11529 switch (bp->mf_mode) {
11530 case MULTI_FUNCTION_SD:
11531 SET_FLAGS(flags, MODE_MF_SD);
11532 break;
11533 case MULTI_FUNCTION_SI:
11534 SET_FLAGS(flags, MODE_MF_SI);
11535 break;
11536 case MULTI_FUNCTION_AFEX:
11537 SET_FLAGS(flags, MODE_MF_AFEX);
11538 break;
11539 }
11540 } else
11541 SET_FLAGS(flags, MODE_SF);
11542
11543 #if defined(__LITTLE_ENDIAN)
11544 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11545 #else /*(__BIG_ENDIAN)*/
11546 SET_FLAGS(flags, MODE_BIG_ENDIAN);
11547 #endif
11548 INIT_MODE_FLAGS(bp) = flags;
11549 }
11550
11551 static int bnx2x_init_bp(struct bnx2x *bp)
11552 {
11553 int func;
11554 int rc;
11555
11556 mutex_init(&bp->port.phy_mutex);
11557 mutex_init(&bp->fw_mb_mutex);
11558 spin_lock_init(&bp->stats_lock);
11559 sema_init(&bp->stats_sema, 1);
11560
11561 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11562 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11563 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11564 if (IS_PF(bp)) {
11565 rc = bnx2x_get_hwinfo(bp);
11566 if (rc)
11567 return rc;
11568 } else {
11569 eth_zero_addr(bp->dev->dev_addr);
11570 }
11571
11572 bnx2x_set_modes_bitmap(bp);
11573
11574 rc = bnx2x_alloc_mem_bp(bp);
11575 if (rc)
11576 return rc;
11577
11578 bnx2x_read_fwinfo(bp);
11579
11580 func = BP_FUNC(bp);
11581
11582 /* need to reset chip if undi was active */
11583 if (IS_PF(bp) && !BP_NOMCP(bp)) {
11584 /* init fw_seq */
11585 bp->fw_seq =
11586 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11587 DRV_MSG_SEQ_NUMBER_MASK;
11588 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11589
11590 bnx2x_prev_unload(bp);
11591 }
11592
11593 if (CHIP_REV_IS_FPGA(bp))
11594 dev_err(&bp->pdev->dev, "FPGA detected\n");
11595
11596 if (BP_NOMCP(bp) && (func == 0))
11597 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11598
11599 bp->disable_tpa = disable_tpa;
11600 bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11601
11602 /* Set TPA flags */
11603 if (bp->disable_tpa) {
11604 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11605 bp->dev->features &= ~NETIF_F_LRO;
11606 } else {
11607 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11608 bp->dev->features |= NETIF_F_LRO;
11609 }
11610
11611 if (CHIP_IS_E1(bp))
11612 bp->dropless_fc = 0;
11613 else
11614 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11615
11616 bp->mrrs = mrrs;
11617
11618 bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11619 if (IS_VF(bp))
11620 bp->rx_ring_size = MAX_RX_AVAIL;
11621
11622 /* make sure that the numbers are in the right granularity */
11623 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11624 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11625
11626 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11627
11628 init_timer(&bp->timer);
11629 bp->timer.expires = jiffies + bp->current_interval;
11630 bp->timer.data = (unsigned long) bp;
11631 bp->timer.function = bnx2x_timer;
11632
11633 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11634 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11635 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11636 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11637 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11638 bnx2x_dcbx_init_params(bp);
11639 } else {
11640 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11641 }
11642
11643 if (CHIP_IS_E1x(bp))
11644 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11645 else
11646 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11647
11648 /* multiple tx priority */
11649 if (IS_VF(bp))
11650 bp->max_cos = 1;
11651 else if (CHIP_IS_E1x(bp))
11652 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11653 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11654 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11655 else if (CHIP_IS_E3B0(bp))
11656 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11657 else
11658 BNX2X_ERR("unknown chip %x revision %x\n",
11659 CHIP_NUM(bp), CHIP_REV(bp));
11660 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11661
11662 /* We need at least one default status block for slow-path events,
11663 * second status block for the L2 queue, and a third status block for
11664 * CNIC if supported.
11665 */
11666 if (CNIC_SUPPORT(bp))
11667 bp->min_msix_vec_cnt = 3;
11668 else
11669 bp->min_msix_vec_cnt = 2;
11670 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11671
11672 bp->dump_preset_idx = 1;
11673
11674 return rc;
11675 }
11676
11677 /****************************************************************************
11678 * General service functions
11679 ****************************************************************************/
11680
11681 /*
11682 * net_device service functions
11683 */
11684
11685 /* called with rtnl_lock */
11686 static int bnx2x_open(struct net_device *dev)
11687 {
11688 struct bnx2x *bp = netdev_priv(dev);
11689 bool global = false;
11690 int other_engine = BP_PATH(bp) ? 0 : 1;
11691 bool other_load_status, load_status;
11692 int rc;
11693
11694 bp->stats_init = true;
11695
11696 netif_carrier_off(dev);
11697
11698 bnx2x_set_power_state(bp, PCI_D0);
11699
11700 /* If parity had happen during the unload, then attentions
11701 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11702 * want the first function loaded on the current engine to
11703 * complete the recovery.
11704 * Parity recovery is only relevant for PF driver.
11705 */
11706 if (IS_PF(bp)) {
11707 other_load_status = bnx2x_get_load_status(bp, other_engine);
11708 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11709 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11710 bnx2x_chk_parity_attn(bp, &global, true)) {
11711 do {
11712 /* If there are attentions and they are in a
11713 * global blocks, set the GLOBAL_RESET bit
11714 * regardless whether it will be this function
11715 * that will complete the recovery or not.
11716 */
11717 if (global)
11718 bnx2x_set_reset_global(bp);
11719
11720 /* Only the first function on the current
11721 * engine should try to recover in open. In case
11722 * of attentions in global blocks only the first
11723 * in the chip should try to recover.
11724 */
11725 if ((!load_status &&
11726 (!global || !other_load_status)) &&
11727 bnx2x_trylock_leader_lock(bp) &&
11728 !bnx2x_leader_reset(bp)) {
11729 netdev_info(bp->dev,
11730 "Recovered in open\n");
11731 break;
11732 }
11733
11734 /* recovery has failed... */
11735 bnx2x_set_power_state(bp, PCI_D3hot);
11736 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11737
11738 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11739 "If you still see this message after a few retries then power cycle is required.\n");
11740
11741 return -EAGAIN;
11742 } while (0);
11743 }
11744 }
11745
11746 bp->recovery_state = BNX2X_RECOVERY_DONE;
11747 rc = bnx2x_nic_load(bp, LOAD_OPEN);
11748 if (rc)
11749 return rc;
11750 return bnx2x_open_epilog(bp);
11751 }
11752
11753 /* called with rtnl_lock */
11754 static int bnx2x_close(struct net_device *dev)
11755 {
11756 struct bnx2x *bp = netdev_priv(dev);
11757
11758 /* Unload the driver, release IRQs */
11759 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11760
11761 return 0;
11762 }
11763
11764 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11765 struct bnx2x_mcast_ramrod_params *p)
11766 {
11767 int mc_count = netdev_mc_count(bp->dev);
11768 struct bnx2x_mcast_list_elem *mc_mac =
11769 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11770 struct netdev_hw_addr *ha;
11771
11772 if (!mc_mac)
11773 return -ENOMEM;
11774
11775 INIT_LIST_HEAD(&p->mcast_list);
11776
11777 netdev_for_each_mc_addr(ha, bp->dev) {
11778 mc_mac->mac = bnx2x_mc_addr(ha);
11779 list_add_tail(&mc_mac->link, &p->mcast_list);
11780 mc_mac++;
11781 }
11782
11783 p->mcast_list_len = mc_count;
11784
11785 return 0;
11786 }
11787
11788 static void bnx2x_free_mcast_macs_list(
11789 struct bnx2x_mcast_ramrod_params *p)
11790 {
11791 struct bnx2x_mcast_list_elem *mc_mac =
11792 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11793 link);
11794
11795 WARN_ON(!mc_mac);
11796 kfree(mc_mac);
11797 }
11798
11799 /**
11800 * bnx2x_set_uc_list - configure a new unicast MACs list.
11801 *
11802 * @bp: driver handle
11803 *
11804 * We will use zero (0) as a MAC type for these MACs.
11805 */
11806 static int bnx2x_set_uc_list(struct bnx2x *bp)
11807 {
11808 int rc;
11809 struct net_device *dev = bp->dev;
11810 struct netdev_hw_addr *ha;
11811 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11812 unsigned long ramrod_flags = 0;
11813
11814 /* First schedule a cleanup up of old configuration */
11815 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11816 if (rc < 0) {
11817 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11818 return rc;
11819 }
11820
11821 netdev_for_each_uc_addr(ha, dev) {
11822 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11823 BNX2X_UC_LIST_MAC, &ramrod_flags);
11824 if (rc == -EEXIST) {
11825 DP(BNX2X_MSG_SP,
11826 "Failed to schedule ADD operations: %d\n", rc);
11827 /* do not treat adding same MAC as error */
11828 rc = 0;
11829
11830 } else if (rc < 0) {
11831
11832 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11833 rc);
11834 return rc;
11835 }
11836 }
11837
11838 /* Execute the pending commands */
11839 __set_bit(RAMROD_CONT, &ramrod_flags);
11840 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11841 BNX2X_UC_LIST_MAC, &ramrod_flags);
11842 }
11843
11844 static int bnx2x_set_mc_list(struct bnx2x *bp)
11845 {
11846 struct net_device *dev = bp->dev;
11847 struct bnx2x_mcast_ramrod_params rparam = {NULL};
11848 int rc = 0;
11849
11850 rparam.mcast_obj = &bp->mcast_obj;
11851
11852 /* first, clear all configured multicast MACs */
11853 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11854 if (rc < 0) {
11855 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11856 return rc;
11857 }
11858
11859 /* then, configure a new MACs list */
11860 if (netdev_mc_count(dev)) {
11861 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11862 if (rc) {
11863 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11864 rc);
11865 return rc;
11866 }
11867
11868 /* Now add the new MACs */
11869 rc = bnx2x_config_mcast(bp, &rparam,
11870 BNX2X_MCAST_CMD_ADD);
11871 if (rc < 0)
11872 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11873 rc);
11874
11875 bnx2x_free_mcast_macs_list(&rparam);
11876 }
11877
11878 return rc;
11879 }
11880
11881 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11882 void bnx2x_set_rx_mode(struct net_device *dev)
11883 {
11884 struct bnx2x *bp = netdev_priv(dev);
11885 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11886
11887 if (bp->state != BNX2X_STATE_OPEN) {
11888 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11889 return;
11890 }
11891
11892 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11893
11894 if (dev->flags & IFF_PROMISC)
11895 rx_mode = BNX2X_RX_MODE_PROMISC;
11896 else if ((dev->flags & IFF_ALLMULTI) ||
11897 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11898 CHIP_IS_E1(bp)))
11899 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11900 else {
11901 if (IS_PF(bp)) {
11902 /* some multicasts */
11903 if (bnx2x_set_mc_list(bp) < 0)
11904 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11905
11906 if (bnx2x_set_uc_list(bp) < 0)
11907 rx_mode = BNX2X_RX_MODE_PROMISC;
11908 } else {
11909 /* configuring mcast to a vf involves sleeping (when we
11910 * wait for the pf's response). Since this function is
11911 * called from non sleepable context we must schedule
11912 * a work item for this purpose
11913 */
11914 smp_mb__before_clear_bit();
11915 set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11916 &bp->sp_rtnl_state);
11917 smp_mb__after_clear_bit();
11918 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11919 }
11920 }
11921
11922 bp->rx_mode = rx_mode;
11923 /* handle ISCSI SD mode */
11924 if (IS_MF_ISCSI_SD(bp))
11925 bp->rx_mode = BNX2X_RX_MODE_NONE;
11926
11927 /* Schedule the rx_mode command */
11928 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11929 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11930 return;
11931 }
11932
11933 if (IS_PF(bp)) {
11934 bnx2x_set_storm_rx_mode(bp);
11935 } else {
11936 /* configuring rx mode to storms in a vf involves sleeping (when
11937 * we wait for the pf's response). Since this function is
11938 * called from non sleepable context we must schedule
11939 * a work item for this purpose
11940 */
11941 smp_mb__before_clear_bit();
11942 set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11943 &bp->sp_rtnl_state);
11944 smp_mb__after_clear_bit();
11945 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11946 }
11947 }
11948
11949 /* called with rtnl_lock */
11950 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11951 int devad, u16 addr)
11952 {
11953 struct bnx2x *bp = netdev_priv(netdev);
11954 u16 value;
11955 int rc;
11956
11957 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11958 prtad, devad, addr);
11959
11960 /* The HW expects different devad if CL22 is used */
11961 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11962
11963 bnx2x_acquire_phy_lock(bp);
11964 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11965 bnx2x_release_phy_lock(bp);
11966 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11967
11968 if (!rc)
11969 rc = value;
11970 return rc;
11971 }
11972
11973 /* called with rtnl_lock */
11974 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11975 u16 addr, u16 value)
11976 {
11977 struct bnx2x *bp = netdev_priv(netdev);
11978 int rc;
11979
11980 DP(NETIF_MSG_LINK,
11981 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11982 prtad, devad, addr, value);
11983
11984 /* The HW expects different devad if CL22 is used */
11985 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11986
11987 bnx2x_acquire_phy_lock(bp);
11988 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11989 bnx2x_release_phy_lock(bp);
11990 return rc;
11991 }
11992
11993 /* called with rtnl_lock */
11994 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11995 {
11996 struct bnx2x *bp = netdev_priv(dev);
11997 struct mii_ioctl_data *mdio = if_mii(ifr);
11998
11999 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12000 mdio->phy_id, mdio->reg_num, mdio->val_in);
12001
12002 if (!netif_running(dev))
12003 return -EAGAIN;
12004
12005 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12006 }
12007
12008 #ifdef CONFIG_NET_POLL_CONTROLLER
12009 static void poll_bnx2x(struct net_device *dev)
12010 {
12011 struct bnx2x *bp = netdev_priv(dev);
12012 int i;
12013
12014 for_each_eth_queue(bp, i) {
12015 struct bnx2x_fastpath *fp = &bp->fp[i];
12016 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12017 }
12018 }
12019 #endif
12020
12021 static int bnx2x_validate_addr(struct net_device *dev)
12022 {
12023 struct bnx2x *bp = netdev_priv(dev);
12024
12025 /* query the bulletin board for mac address configured by the PF */
12026 if (IS_VF(bp))
12027 bnx2x_sample_bulletin(bp);
12028
12029 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12030 BNX2X_ERR("Non-valid Ethernet address\n");
12031 return -EADDRNOTAVAIL;
12032 }
12033 return 0;
12034 }
12035
12036 static const struct net_device_ops bnx2x_netdev_ops = {
12037 .ndo_open = bnx2x_open,
12038 .ndo_stop = bnx2x_close,
12039 .ndo_start_xmit = bnx2x_start_xmit,
12040 .ndo_select_queue = bnx2x_select_queue,
12041 .ndo_set_rx_mode = bnx2x_set_rx_mode,
12042 .ndo_set_mac_address = bnx2x_change_mac_addr,
12043 .ndo_validate_addr = bnx2x_validate_addr,
12044 .ndo_do_ioctl = bnx2x_ioctl,
12045 .ndo_change_mtu = bnx2x_change_mtu,
12046 .ndo_fix_features = bnx2x_fix_features,
12047 .ndo_set_features = bnx2x_set_features,
12048 .ndo_tx_timeout = bnx2x_tx_timeout,
12049 #ifdef CONFIG_NET_POLL_CONTROLLER
12050 .ndo_poll_controller = poll_bnx2x,
12051 #endif
12052 .ndo_setup_tc = bnx2x_setup_tc,
12053 #ifdef CONFIG_BNX2X_SRIOV
12054 .ndo_set_vf_mac = bnx2x_set_vf_mac,
12055 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
12056 .ndo_get_vf_config = bnx2x_get_vf_config,
12057 #endif
12058 #ifdef NETDEV_FCOE_WWNN
12059 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
12060 #endif
12061
12062 #ifdef CONFIG_NET_RX_BUSY_POLL
12063 .ndo_busy_poll = bnx2x_low_latency_recv,
12064 #endif
12065 };
12066
12067 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12068 {
12069 struct device *dev = &bp->pdev->dev;
12070
12071 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12072 bp->flags |= USING_DAC_FLAG;
12073 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12074 dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12075 return -EIO;
12076 }
12077 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12078 dev_err(dev, "System does not support DMA, aborting\n");
12079 return -EIO;
12080 }
12081
12082 return 0;
12083 }
12084
12085 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12086 struct net_device *dev, unsigned long board_type)
12087 {
12088 int rc;
12089 u32 pci_cfg_dword;
12090 bool chip_is_e1x = (board_type == BCM57710 ||
12091 board_type == BCM57711 ||
12092 board_type == BCM57711E);
12093
12094 SET_NETDEV_DEV(dev, &pdev->dev);
12095
12096 bp->dev = dev;
12097 bp->pdev = pdev;
12098
12099 rc = pci_enable_device(pdev);
12100 if (rc) {
12101 dev_err(&bp->pdev->dev,
12102 "Cannot enable PCI device, aborting\n");
12103 goto err_out;
12104 }
12105
12106 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12107 dev_err(&bp->pdev->dev,
12108 "Cannot find PCI device base address, aborting\n");
12109 rc = -ENODEV;
12110 goto err_out_disable;
12111 }
12112
12113 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12114 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12115 rc = -ENODEV;
12116 goto err_out_disable;
12117 }
12118
12119 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12120 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12121 PCICFG_REVESION_ID_ERROR_VAL) {
12122 pr_err("PCI device error, probably due to fan failure, aborting\n");
12123 rc = -ENODEV;
12124 goto err_out_disable;
12125 }
12126
12127 if (atomic_read(&pdev->enable_cnt) == 1) {
12128 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12129 if (rc) {
12130 dev_err(&bp->pdev->dev,
12131 "Cannot obtain PCI resources, aborting\n");
12132 goto err_out_disable;
12133 }
12134
12135 pci_set_master(pdev);
12136 pci_save_state(pdev);
12137 }
12138
12139 if (IS_PF(bp)) {
12140 bp->pm_cap = pdev->pm_cap;
12141 if (bp->pm_cap == 0) {
12142 dev_err(&bp->pdev->dev,
12143 "Cannot find power management capability, aborting\n");
12144 rc = -EIO;
12145 goto err_out_release;
12146 }
12147 }
12148
12149 if (!pci_is_pcie(pdev)) {
12150 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12151 rc = -EIO;
12152 goto err_out_release;
12153 }
12154
12155 rc = bnx2x_set_coherency_mask(bp);
12156 if (rc)
12157 goto err_out_release;
12158
12159 dev->mem_start = pci_resource_start(pdev, 0);
12160 dev->base_addr = dev->mem_start;
12161 dev->mem_end = pci_resource_end(pdev, 0);
12162
12163 dev->irq = pdev->irq;
12164
12165 bp->regview = pci_ioremap_bar(pdev, 0);
12166 if (!bp->regview) {
12167 dev_err(&bp->pdev->dev,
12168 "Cannot map register space, aborting\n");
12169 rc = -ENOMEM;
12170 goto err_out_release;
12171 }
12172
12173 /* In E1/E1H use pci device function given by kernel.
12174 * In E2/E3 read physical function from ME register since these chips
12175 * support Physical Device Assignment where kernel BDF maybe arbitrary
12176 * (depending on hypervisor).
12177 */
12178 if (chip_is_e1x) {
12179 bp->pf_num = PCI_FUNC(pdev->devfn);
12180 } else {
12181 /* chip is E2/3*/
12182 pci_read_config_dword(bp->pdev,
12183 PCICFG_ME_REGISTER, &pci_cfg_dword);
12184 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12185 ME_REG_ABS_PF_NUM_SHIFT);
12186 }
12187 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12188
12189 /* clean indirect addresses */
12190 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12191 PCICFG_VENDOR_ID_OFFSET);
12192 /*
12193 * Clean the following indirect addresses for all functions since it
12194 * is not used by the driver.
12195 */
12196 if (IS_PF(bp)) {
12197 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12198 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12199 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12200 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12201
12202 if (chip_is_e1x) {
12203 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12204 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12205 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12206 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12207 }
12208
12209 /* Enable internal target-read (in case we are probed after PF
12210 * FLR). Must be done prior to any BAR read access. Only for
12211 * 57712 and up
12212 */
12213 if (!chip_is_e1x)
12214 REG_WR(bp,
12215 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12216 }
12217
12218 dev->watchdog_timeo = TX_TIMEOUT;
12219
12220 dev->netdev_ops = &bnx2x_netdev_ops;
12221 bnx2x_set_ethtool_ops(bp, dev);
12222
12223 dev->priv_flags |= IFF_UNICAST_FLT;
12224
12225 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12226 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12227 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12228 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12229 if (!CHIP_IS_E1x(bp)) {
12230 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12231 dev->hw_enc_features =
12232 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12233 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12234 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12235 }
12236
12237 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12238 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12239
12240 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12241 if (bp->flags & USING_DAC_FLAG)
12242 dev->features |= NETIF_F_HIGHDMA;
12243
12244 /* Add Loopback capability to the device */
12245 dev->hw_features |= NETIF_F_LOOPBACK;
12246
12247 #ifdef BCM_DCBNL
12248 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12249 #endif
12250
12251 /* get_port_hwinfo() will set prtad and mmds properly */
12252 bp->mdio.prtad = MDIO_PRTAD_NONE;
12253 bp->mdio.mmds = 0;
12254 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12255 bp->mdio.dev = dev;
12256 bp->mdio.mdio_read = bnx2x_mdio_read;
12257 bp->mdio.mdio_write = bnx2x_mdio_write;
12258
12259 return 0;
12260
12261 err_out_release:
12262 if (atomic_read(&pdev->enable_cnt) == 1)
12263 pci_release_regions(pdev);
12264
12265 err_out_disable:
12266 pci_disable_device(pdev);
12267 pci_set_drvdata(pdev, NULL);
12268
12269 err_out:
12270 return rc;
12271 }
12272
12273 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12274 enum bnx2x_pci_bus_speed *speed)
12275 {
12276 u32 link_speed, val = 0;
12277
12278 pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12279 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12280
12281 link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12282
12283 switch (link_speed) {
12284 case 3:
12285 *speed = BNX2X_PCI_LINK_SPEED_8000;
12286 break;
12287 case 2:
12288 *speed = BNX2X_PCI_LINK_SPEED_5000;
12289 break;
12290 default:
12291 *speed = BNX2X_PCI_LINK_SPEED_2500;
12292 }
12293 }
12294
12295 static int bnx2x_check_firmware(struct bnx2x *bp)
12296 {
12297 const struct firmware *firmware = bp->firmware;
12298 struct bnx2x_fw_file_hdr *fw_hdr;
12299 struct bnx2x_fw_file_section *sections;
12300 u32 offset, len, num_ops;
12301 __be16 *ops_offsets;
12302 int i;
12303 const u8 *fw_ver;
12304
12305 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12306 BNX2X_ERR("Wrong FW size\n");
12307 return -EINVAL;
12308 }
12309
12310 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12311 sections = (struct bnx2x_fw_file_section *)fw_hdr;
12312
12313 /* Make sure none of the offsets and sizes make us read beyond
12314 * the end of the firmware data */
12315 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12316 offset = be32_to_cpu(sections[i].offset);
12317 len = be32_to_cpu(sections[i].len);
12318 if (offset + len > firmware->size) {
12319 BNX2X_ERR("Section %d length is out of bounds\n", i);
12320 return -EINVAL;
12321 }
12322 }
12323
12324 /* Likewise for the init_ops offsets */
12325 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12326 ops_offsets = (__force __be16 *)(firmware->data + offset);
12327 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12328
12329 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12330 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12331 BNX2X_ERR("Section offset %d is out of bounds\n", i);
12332 return -EINVAL;
12333 }
12334 }
12335
12336 /* Check FW version */
12337 offset = be32_to_cpu(fw_hdr->fw_version.offset);
12338 fw_ver = firmware->data + offset;
12339 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12340 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12341 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12342 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12343 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12344 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12345 BCM_5710_FW_MAJOR_VERSION,
12346 BCM_5710_FW_MINOR_VERSION,
12347 BCM_5710_FW_REVISION_VERSION,
12348 BCM_5710_FW_ENGINEERING_VERSION);
12349 return -EINVAL;
12350 }
12351
12352 return 0;
12353 }
12354
12355 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12356 {
12357 const __be32 *source = (const __be32 *)_source;
12358 u32 *target = (u32 *)_target;
12359 u32 i;
12360
12361 for (i = 0; i < n/4; i++)
12362 target[i] = be32_to_cpu(source[i]);
12363 }
12364
12365 /*
12366 Ops array is stored in the following format:
12367 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12368 */
12369 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12370 {
12371 const __be32 *source = (const __be32 *)_source;
12372 struct raw_op *target = (struct raw_op *)_target;
12373 u32 i, j, tmp;
12374
12375 for (i = 0, j = 0; i < n/8; i++, j += 2) {
12376 tmp = be32_to_cpu(source[j]);
12377 target[i].op = (tmp >> 24) & 0xff;
12378 target[i].offset = tmp & 0xffffff;
12379 target[i].raw_data = be32_to_cpu(source[j + 1]);
12380 }
12381 }
12382
12383 /* IRO array is stored in the following format:
12384 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12385 */
12386 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12387 {
12388 const __be32 *source = (const __be32 *)_source;
12389 struct iro *target = (struct iro *)_target;
12390 u32 i, j, tmp;
12391
12392 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12393 target[i].base = be32_to_cpu(source[j]);
12394 j++;
12395 tmp = be32_to_cpu(source[j]);
12396 target[i].m1 = (tmp >> 16) & 0xffff;
12397 target[i].m2 = tmp & 0xffff;
12398 j++;
12399 tmp = be32_to_cpu(source[j]);
12400 target[i].m3 = (tmp >> 16) & 0xffff;
12401 target[i].size = tmp & 0xffff;
12402 j++;
12403 }
12404 }
12405
12406 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12407 {
12408 const __be16 *source = (const __be16 *)_source;
12409 u16 *target = (u16 *)_target;
12410 u32 i;
12411
12412 for (i = 0; i < n/2; i++)
12413 target[i] = be16_to_cpu(source[i]);
12414 }
12415
12416 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
12417 do { \
12418 u32 len = be32_to_cpu(fw_hdr->arr.len); \
12419 bp->arr = kmalloc(len, GFP_KERNEL); \
12420 if (!bp->arr) \
12421 goto lbl; \
12422 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
12423 (u8 *)bp->arr, len); \
12424 } while (0)
12425
12426 static int bnx2x_init_firmware(struct bnx2x *bp)
12427 {
12428 const char *fw_file_name;
12429 struct bnx2x_fw_file_hdr *fw_hdr;
12430 int rc;
12431
12432 if (bp->firmware)
12433 return 0;
12434
12435 if (CHIP_IS_E1(bp))
12436 fw_file_name = FW_FILE_NAME_E1;
12437 else if (CHIP_IS_E1H(bp))
12438 fw_file_name = FW_FILE_NAME_E1H;
12439 else if (!CHIP_IS_E1x(bp))
12440 fw_file_name = FW_FILE_NAME_E2;
12441 else {
12442 BNX2X_ERR("Unsupported chip revision\n");
12443 return -EINVAL;
12444 }
12445 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12446
12447 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12448 if (rc) {
12449 BNX2X_ERR("Can't load firmware file %s\n",
12450 fw_file_name);
12451 goto request_firmware_exit;
12452 }
12453
12454 rc = bnx2x_check_firmware(bp);
12455 if (rc) {
12456 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12457 goto request_firmware_exit;
12458 }
12459
12460 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12461
12462 /* Initialize the pointers to the init arrays */
12463 /* Blob */
12464 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12465
12466 /* Opcodes */
12467 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12468
12469 /* Offsets */
12470 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12471 be16_to_cpu_n);
12472
12473 /* STORMs firmware */
12474 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12475 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12476 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
12477 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12478 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12479 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12480 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
12481 be32_to_cpu(fw_hdr->usem_pram_data.offset);
12482 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12483 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12484 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
12485 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12486 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12487 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12488 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
12489 be32_to_cpu(fw_hdr->csem_pram_data.offset);
12490 /* IRO */
12491 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12492
12493 return 0;
12494
12495 iro_alloc_err:
12496 kfree(bp->init_ops_offsets);
12497 init_offsets_alloc_err:
12498 kfree(bp->init_ops);
12499 init_ops_alloc_err:
12500 kfree(bp->init_data);
12501 request_firmware_exit:
12502 release_firmware(bp->firmware);
12503 bp->firmware = NULL;
12504
12505 return rc;
12506 }
12507
12508 static void bnx2x_release_firmware(struct bnx2x *bp)
12509 {
12510 kfree(bp->init_ops_offsets);
12511 kfree(bp->init_ops);
12512 kfree(bp->init_data);
12513 release_firmware(bp->firmware);
12514 bp->firmware = NULL;
12515 }
12516
12517 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12518 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12519 .init_hw_cmn = bnx2x_init_hw_common,
12520 .init_hw_port = bnx2x_init_hw_port,
12521 .init_hw_func = bnx2x_init_hw_func,
12522
12523 .reset_hw_cmn = bnx2x_reset_common,
12524 .reset_hw_port = bnx2x_reset_port,
12525 .reset_hw_func = bnx2x_reset_func,
12526
12527 .gunzip_init = bnx2x_gunzip_init,
12528 .gunzip_end = bnx2x_gunzip_end,
12529
12530 .init_fw = bnx2x_init_firmware,
12531 .release_fw = bnx2x_release_firmware,
12532 };
12533
12534 void bnx2x__init_func_obj(struct bnx2x *bp)
12535 {
12536 /* Prepare DMAE related driver resources */
12537 bnx2x_setup_dmae(bp);
12538
12539 bnx2x_init_func_obj(bp, &bp->func_obj,
12540 bnx2x_sp(bp, func_rdata),
12541 bnx2x_sp_mapping(bp, func_rdata),
12542 bnx2x_sp(bp, func_afex_rdata),
12543 bnx2x_sp_mapping(bp, func_afex_rdata),
12544 &bnx2x_func_sp_drv);
12545 }
12546
12547 /* must be called after sriov-enable */
12548 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12549 {
12550 int cid_count = BNX2X_L2_MAX_CID(bp);
12551
12552 if (IS_SRIOV(bp))
12553 cid_count += BNX2X_VF_CIDS;
12554
12555 if (CNIC_SUPPORT(bp))
12556 cid_count += CNIC_CID_MAX;
12557
12558 return roundup(cid_count, QM_CID_ROUND);
12559 }
12560
12561 /**
12562 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12563 *
12564 * @dev: pci device
12565 *
12566 */
12567 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12568 int cnic_cnt, bool is_vf)
12569 {
12570 int pos, index;
12571 u16 control = 0;
12572
12573 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12574
12575 /*
12576 * If MSI-X is not supported - return number of SBs needed to support
12577 * one fast path queue: one FP queue + SB for CNIC
12578 */
12579 if (!pos) {
12580 dev_info(&pdev->dev, "no msix capability found\n");
12581 return 1 + cnic_cnt;
12582 }
12583 dev_info(&pdev->dev, "msix capability found\n");
12584
12585 /*
12586 * The value in the PCI configuration space is the index of the last
12587 * entry, namely one less than the actual size of the table, which is
12588 * exactly what we want to return from this function: number of all SBs
12589 * without the default SB.
12590 * For VFs there is no default SB, then we return (index+1).
12591 */
12592 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
12593
12594 index = control & PCI_MSIX_FLAGS_QSIZE;
12595
12596 return is_vf ? index + 1 : index;
12597 }
12598
12599 static int set_max_cos_est(int chip_id)
12600 {
12601 switch (chip_id) {
12602 case BCM57710:
12603 case BCM57711:
12604 case BCM57711E:
12605 return BNX2X_MULTI_TX_COS_E1X;
12606 case BCM57712:
12607 case BCM57712_MF:
12608 case BCM57712_VF:
12609 return BNX2X_MULTI_TX_COS_E2_E3A0;
12610 case BCM57800:
12611 case BCM57800_MF:
12612 case BCM57800_VF:
12613 case BCM57810:
12614 case BCM57810_MF:
12615 case BCM57840_4_10:
12616 case BCM57840_2_20:
12617 case BCM57840_O:
12618 case BCM57840_MFO:
12619 case BCM57810_VF:
12620 case BCM57840_MF:
12621 case BCM57840_VF:
12622 case BCM57811:
12623 case BCM57811_MF:
12624 case BCM57811_VF:
12625 return BNX2X_MULTI_TX_COS_E3B0;
12626 return 1;
12627 default:
12628 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12629 return -ENODEV;
12630 }
12631 }
12632
12633 static int set_is_vf(int chip_id)
12634 {
12635 switch (chip_id) {
12636 case BCM57712_VF:
12637 case BCM57800_VF:
12638 case BCM57810_VF:
12639 case BCM57840_VF:
12640 case BCM57811_VF:
12641 return true;
12642 default:
12643 return false;
12644 }
12645 }
12646
12647 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12648
12649 static int bnx2x_init_one(struct pci_dev *pdev,
12650 const struct pci_device_id *ent)
12651 {
12652 struct net_device *dev = NULL;
12653 struct bnx2x *bp;
12654 int pcie_width;
12655 enum bnx2x_pci_bus_speed pcie_speed;
12656 int rc, max_non_def_sbs;
12657 int rx_count, tx_count, rss_count, doorbell_size;
12658 int max_cos_est;
12659 bool is_vf;
12660 int cnic_cnt;
12661
12662 /* An estimated maximum supported CoS number according to the chip
12663 * version.
12664 * We will try to roughly estimate the maximum number of CoSes this chip
12665 * may support in order to minimize the memory allocated for Tx
12666 * netdev_queue's. This number will be accurately calculated during the
12667 * initialization of bp->max_cos based on the chip versions AND chip
12668 * revision in the bnx2x_init_bp().
12669 */
12670 max_cos_est = set_max_cos_est(ent->driver_data);
12671 if (max_cos_est < 0)
12672 return max_cos_est;
12673 is_vf = set_is_vf(ent->driver_data);
12674 cnic_cnt = is_vf ? 0 : 1;
12675
12676 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12677
12678 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12679 rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12680
12681 if (rss_count < 1)
12682 return -EINVAL;
12683
12684 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12685 rx_count = rss_count + cnic_cnt;
12686
12687 /* Maximum number of netdev Tx queues:
12688 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
12689 */
12690 tx_count = rss_count * max_cos_est + cnic_cnt;
12691
12692 /* dev zeroed in init_etherdev */
12693 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12694 if (!dev)
12695 return -ENOMEM;
12696
12697 bp = netdev_priv(dev);
12698
12699 bp->flags = 0;
12700 if (is_vf)
12701 bp->flags |= IS_VF_FLAG;
12702
12703 bp->igu_sb_cnt = max_non_def_sbs;
12704 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12705 bp->msg_enable = debug;
12706 bp->cnic_support = cnic_cnt;
12707 bp->cnic_probe = bnx2x_cnic_probe;
12708
12709 pci_set_drvdata(pdev, dev);
12710
12711 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12712 if (rc < 0) {
12713 free_netdev(dev);
12714 return rc;
12715 }
12716
12717 BNX2X_DEV_INFO("This is a %s function\n",
12718 IS_PF(bp) ? "physical" : "virtual");
12719 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12720 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12721 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12722 tx_count, rx_count);
12723
12724 rc = bnx2x_init_bp(bp);
12725 if (rc)
12726 goto init_one_exit;
12727
12728 /* Map doorbells here as we need the real value of bp->max_cos which
12729 * is initialized in bnx2x_init_bp() to determine the number of
12730 * l2 connections.
12731 */
12732 if (IS_VF(bp)) {
12733 bp->doorbells = bnx2x_vf_doorbells(bp);
12734 rc = bnx2x_vf_pci_alloc(bp);
12735 if (rc)
12736 goto init_one_exit;
12737 } else {
12738 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12739 if (doorbell_size > pci_resource_len(pdev, 2)) {
12740 dev_err(&bp->pdev->dev,
12741 "Cannot map doorbells, bar size too small, aborting\n");
12742 rc = -ENOMEM;
12743 goto init_one_exit;
12744 }
12745 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12746 doorbell_size);
12747 }
12748 if (!bp->doorbells) {
12749 dev_err(&bp->pdev->dev,
12750 "Cannot map doorbell space, aborting\n");
12751 rc = -ENOMEM;
12752 goto init_one_exit;
12753 }
12754
12755 if (IS_VF(bp)) {
12756 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12757 if (rc)
12758 goto init_one_exit;
12759 }
12760
12761 /* Enable SRIOV if capability found in configuration space */
12762 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12763 if (rc)
12764 goto init_one_exit;
12765
12766 /* calc qm_cid_count */
12767 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12768 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12769
12770 /* disable FCOE L2 queue for E1x*/
12771 if (CHIP_IS_E1x(bp))
12772 bp->flags |= NO_FCOE_FLAG;
12773
12774 /* Set bp->num_queues for MSI-X mode*/
12775 bnx2x_set_num_queues(bp);
12776
12777 /* Configure interrupt mode: try to enable MSI-X/MSI if
12778 * needed.
12779 */
12780 rc = bnx2x_set_int_mode(bp);
12781 if (rc) {
12782 dev_err(&pdev->dev, "Cannot set interrupts\n");
12783 goto init_one_exit;
12784 }
12785 BNX2X_DEV_INFO("set interrupts successfully\n");
12786
12787 /* register the net device */
12788 rc = register_netdev(dev);
12789 if (rc) {
12790 dev_err(&pdev->dev, "Cannot register net device\n");
12791 goto init_one_exit;
12792 }
12793 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12794
12795 if (!NO_FCOE(bp)) {
12796 /* Add storage MAC address */
12797 rtnl_lock();
12798 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12799 rtnl_unlock();
12800 }
12801
12802 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12803 BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12804 pcie_width, pcie_speed);
12805
12806 BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12807 board_info[ent->driver_data].name,
12808 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12809 pcie_width,
12810 pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12811 pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12812 pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12813 "Unknown",
12814 dev->base_addr, bp->pdev->irq, dev->dev_addr);
12815
12816 return 0;
12817
12818 init_one_exit:
12819 if (bp->regview)
12820 iounmap(bp->regview);
12821
12822 if (IS_PF(bp) && bp->doorbells)
12823 iounmap(bp->doorbells);
12824
12825 free_netdev(dev);
12826
12827 if (atomic_read(&pdev->enable_cnt) == 1)
12828 pci_release_regions(pdev);
12829
12830 pci_disable_device(pdev);
12831 pci_set_drvdata(pdev, NULL);
12832
12833 return rc;
12834 }
12835
12836 static void __bnx2x_remove(struct pci_dev *pdev,
12837 struct net_device *dev,
12838 struct bnx2x *bp,
12839 bool remove_netdev)
12840 {
12841 /* Delete storage MAC address */
12842 if (!NO_FCOE(bp)) {
12843 rtnl_lock();
12844 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12845 rtnl_unlock();
12846 }
12847
12848 #ifdef BCM_DCBNL
12849 /* Delete app tlvs from dcbnl */
12850 bnx2x_dcbnl_update_applist(bp, true);
12851 #endif
12852
12853 if (IS_PF(bp) &&
12854 !BP_NOMCP(bp) &&
12855 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12856 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12857
12858 /* Close the interface - either directly or implicitly */
12859 if (remove_netdev) {
12860 unregister_netdev(dev);
12861 } else {
12862 rtnl_lock();
12863 dev_close(dev);
12864 rtnl_unlock();
12865 }
12866
12867 bnx2x_iov_remove_one(bp);
12868
12869 /* Power on: we can't let PCI layer write to us while we are in D3 */
12870 if (IS_PF(bp))
12871 bnx2x_set_power_state(bp, PCI_D0);
12872
12873 /* Disable MSI/MSI-X */
12874 bnx2x_disable_msi(bp);
12875
12876 /* Power off */
12877 if (IS_PF(bp))
12878 bnx2x_set_power_state(bp, PCI_D3hot);
12879
12880 /* Make sure RESET task is not scheduled before continuing */
12881 cancel_delayed_work_sync(&bp->sp_rtnl_task);
12882
12883 /* send message via vfpf channel to release the resources of this vf */
12884 if (IS_VF(bp))
12885 bnx2x_vfpf_release(bp);
12886
12887 /* Assumes no further PCIe PM changes will occur */
12888 if (system_state == SYSTEM_POWER_OFF) {
12889 pci_wake_from_d3(pdev, bp->wol);
12890 pci_set_power_state(pdev, PCI_D3hot);
12891 }
12892
12893 if (bp->regview)
12894 iounmap(bp->regview);
12895
12896 /* for vf doorbells are part of the regview and were unmapped along with
12897 * it. FW is only loaded by PF.
12898 */
12899 if (IS_PF(bp)) {
12900 if (bp->doorbells)
12901 iounmap(bp->doorbells);
12902
12903 bnx2x_release_firmware(bp);
12904 }
12905 bnx2x_free_mem_bp(bp);
12906
12907 if (remove_netdev)
12908 free_netdev(dev);
12909
12910 if (atomic_read(&pdev->enable_cnt) == 1)
12911 pci_release_regions(pdev);
12912
12913 pci_disable_device(pdev);
12914 pci_set_drvdata(pdev, NULL);
12915 }
12916
12917 static void bnx2x_remove_one(struct pci_dev *pdev)
12918 {
12919 struct net_device *dev = pci_get_drvdata(pdev);
12920 struct bnx2x *bp;
12921
12922 if (!dev) {
12923 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12924 return;
12925 }
12926 bp = netdev_priv(dev);
12927
12928 __bnx2x_remove(pdev, dev, bp, true);
12929 }
12930
12931 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12932 {
12933 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12934
12935 bp->rx_mode = BNX2X_RX_MODE_NONE;
12936
12937 if (CNIC_LOADED(bp))
12938 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12939
12940 /* Stop Tx */
12941 bnx2x_tx_disable(bp);
12942 /* Delete all NAPI objects */
12943 bnx2x_del_all_napi(bp);
12944 if (CNIC_LOADED(bp))
12945 bnx2x_del_all_napi_cnic(bp);
12946 netdev_reset_tc(bp->dev);
12947
12948 del_timer_sync(&bp->timer);
12949 cancel_delayed_work(&bp->sp_task);
12950 cancel_delayed_work(&bp->period_task);
12951
12952 spin_lock_bh(&bp->stats_lock);
12953 bp->stats_state = STATS_STATE_DISABLED;
12954 spin_unlock_bh(&bp->stats_lock);
12955
12956 bnx2x_save_statistics(bp);
12957
12958 netif_carrier_off(bp->dev);
12959
12960 return 0;
12961 }
12962
12963 /**
12964 * bnx2x_io_error_detected - called when PCI error is detected
12965 * @pdev: Pointer to PCI device
12966 * @state: The current pci connection state
12967 *
12968 * This function is called after a PCI bus error affecting
12969 * this device has been detected.
12970 */
12971 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12972 pci_channel_state_t state)
12973 {
12974 struct net_device *dev = pci_get_drvdata(pdev);
12975 struct bnx2x *bp = netdev_priv(dev);
12976
12977 rtnl_lock();
12978
12979 BNX2X_ERR("IO error detected\n");
12980
12981 netif_device_detach(dev);
12982
12983 if (state == pci_channel_io_perm_failure) {
12984 rtnl_unlock();
12985 return PCI_ERS_RESULT_DISCONNECT;
12986 }
12987
12988 if (netif_running(dev))
12989 bnx2x_eeh_nic_unload(bp);
12990
12991 bnx2x_prev_path_mark_eeh(bp);
12992
12993 pci_disable_device(pdev);
12994
12995 rtnl_unlock();
12996
12997 /* Request a slot reset */
12998 return PCI_ERS_RESULT_NEED_RESET;
12999 }
13000
13001 /**
13002 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13003 * @pdev: Pointer to PCI device
13004 *
13005 * Restart the card from scratch, as if from a cold-boot.
13006 */
13007 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13008 {
13009 struct net_device *dev = pci_get_drvdata(pdev);
13010 struct bnx2x *bp = netdev_priv(dev);
13011 int i;
13012
13013 rtnl_lock();
13014 BNX2X_ERR("IO slot reset initializing...\n");
13015 if (pci_enable_device(pdev)) {
13016 dev_err(&pdev->dev,
13017 "Cannot re-enable PCI device after reset\n");
13018 rtnl_unlock();
13019 return PCI_ERS_RESULT_DISCONNECT;
13020 }
13021
13022 pci_set_master(pdev);
13023 pci_restore_state(pdev);
13024 pci_save_state(pdev);
13025
13026 if (netif_running(dev))
13027 bnx2x_set_power_state(bp, PCI_D0);
13028
13029 if (netif_running(dev)) {
13030 BNX2X_ERR("IO slot reset --> driver unload\n");
13031
13032 /* MCP should have been reset; Need to wait for validity */
13033 bnx2x_init_shmem(bp);
13034
13035 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13036 u32 v;
13037
13038 v = SHMEM2_RD(bp,
13039 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13040 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13041 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13042 }
13043 bnx2x_drain_tx_queues(bp);
13044 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13045 bnx2x_netif_stop(bp, 1);
13046 bnx2x_free_irq(bp);
13047
13048 /* Report UNLOAD_DONE to MCP */
13049 bnx2x_send_unload_done(bp, true);
13050
13051 bp->sp_state = 0;
13052 bp->port.pmf = 0;
13053
13054 bnx2x_prev_unload(bp);
13055
13056 /* We should have reseted the engine, so It's fair to
13057 * assume the FW will no longer write to the bnx2x driver.
13058 */
13059 bnx2x_squeeze_objects(bp);
13060 bnx2x_free_skbs(bp);
13061 for_each_rx_queue(bp, i)
13062 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13063 bnx2x_free_fp_mem(bp);
13064 bnx2x_free_mem(bp);
13065
13066 bp->state = BNX2X_STATE_CLOSED;
13067 }
13068
13069 rtnl_unlock();
13070
13071 return PCI_ERS_RESULT_RECOVERED;
13072 }
13073
13074 /**
13075 * bnx2x_io_resume - called when traffic can start flowing again
13076 * @pdev: Pointer to PCI device
13077 *
13078 * This callback is called when the error recovery driver tells us that
13079 * its OK to resume normal operation.
13080 */
13081 static void bnx2x_io_resume(struct pci_dev *pdev)
13082 {
13083 struct net_device *dev = pci_get_drvdata(pdev);
13084 struct bnx2x *bp = netdev_priv(dev);
13085
13086 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13087 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13088 return;
13089 }
13090
13091 rtnl_lock();
13092
13093 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13094 DRV_MSG_SEQ_NUMBER_MASK;
13095
13096 if (netif_running(dev))
13097 bnx2x_nic_load(bp, LOAD_NORMAL);
13098
13099 netif_device_attach(dev);
13100
13101 rtnl_unlock();
13102 }
13103
13104 static const struct pci_error_handlers bnx2x_err_handler = {
13105 .error_detected = bnx2x_io_error_detected,
13106 .slot_reset = bnx2x_io_slot_reset,
13107 .resume = bnx2x_io_resume,
13108 };
13109
13110 static void bnx2x_shutdown(struct pci_dev *pdev)
13111 {
13112 struct net_device *dev = pci_get_drvdata(pdev);
13113 struct bnx2x *bp;
13114
13115 if (!dev)
13116 return;
13117
13118 bp = netdev_priv(dev);
13119 if (!bp)
13120 return;
13121
13122 rtnl_lock();
13123 netif_device_detach(dev);
13124 rtnl_unlock();
13125
13126 /* Don't remove the netdevice, as there are scenarios which will cause
13127 * the kernel to hang, e.g., when trying to remove bnx2i while the
13128 * rootfs is mounted from SAN.
13129 */
13130 __bnx2x_remove(pdev, dev, bp, false);
13131 }
13132
13133 static struct pci_driver bnx2x_pci_driver = {
13134 .name = DRV_MODULE_NAME,
13135 .id_table = bnx2x_pci_tbl,
13136 .probe = bnx2x_init_one,
13137 .remove = bnx2x_remove_one,
13138 .suspend = bnx2x_suspend,
13139 .resume = bnx2x_resume,
13140 .err_handler = &bnx2x_err_handler,
13141 #ifdef CONFIG_BNX2X_SRIOV
13142 .sriov_configure = bnx2x_sriov_configure,
13143 #endif
13144 .shutdown = bnx2x_shutdown,
13145 };
13146
13147 static int __init bnx2x_init(void)
13148 {
13149 int ret;
13150
13151 pr_info("%s", version);
13152
13153 bnx2x_wq = create_singlethread_workqueue("bnx2x");
13154 if (bnx2x_wq == NULL) {
13155 pr_err("Cannot create workqueue\n");
13156 return -ENOMEM;
13157 }
13158
13159 ret = pci_register_driver(&bnx2x_pci_driver);
13160 if (ret) {
13161 pr_err("Cannot register driver\n");
13162 destroy_workqueue(bnx2x_wq);
13163 }
13164 return ret;
13165 }
13166
13167 static void __exit bnx2x_cleanup(void)
13168 {
13169 struct list_head *pos, *q;
13170
13171 pci_unregister_driver(&bnx2x_pci_driver);
13172
13173 destroy_workqueue(bnx2x_wq);
13174
13175 /* Free globally allocated resources */
13176 list_for_each_safe(pos, q, &bnx2x_prev_list) {
13177 struct bnx2x_prev_path_list *tmp =
13178 list_entry(pos, struct bnx2x_prev_path_list, list);
13179 list_del(pos);
13180 kfree(tmp);
13181 }
13182 }
13183
13184 void bnx2x_notify_link_changed(struct bnx2x *bp)
13185 {
13186 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13187 }
13188
13189 module_init(bnx2x_init);
13190 module_exit(bnx2x_cleanup);
13191
13192 /**
13193 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13194 *
13195 * @bp: driver handle
13196 * @set: set or clear the CAM entry
13197 *
13198 * This function will wait until the ramrod completion returns.
13199 * Return 0 if success, -ENODEV if ramrod doesn't return.
13200 */
13201 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13202 {
13203 unsigned long ramrod_flags = 0;
13204
13205 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13206 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13207 &bp->iscsi_l2_mac_obj, true,
13208 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13209 }
13210
13211 /* count denotes the number of new completions we have seen */
13212 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13213 {
13214 struct eth_spe *spe;
13215 int cxt_index, cxt_offset;
13216
13217 #ifdef BNX2X_STOP_ON_ERROR
13218 if (unlikely(bp->panic))
13219 return;
13220 #endif
13221
13222 spin_lock_bh(&bp->spq_lock);
13223 BUG_ON(bp->cnic_spq_pending < count);
13224 bp->cnic_spq_pending -= count;
13225
13226 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13227 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13228 & SPE_HDR_CONN_TYPE) >>
13229 SPE_HDR_CONN_TYPE_SHIFT;
13230 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13231 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13232
13233 /* Set validation for iSCSI L2 client before sending SETUP
13234 * ramrod
13235 */
13236 if (type == ETH_CONNECTION_TYPE) {
13237 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13238 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13239 ILT_PAGE_CIDS;
13240 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13241 (cxt_index * ILT_PAGE_CIDS);
13242 bnx2x_set_ctx_validation(bp,
13243 &bp->context[cxt_index].
13244 vcxt[cxt_offset].eth,
13245 BNX2X_ISCSI_ETH_CID(bp));
13246 }
13247 }
13248
13249 /*
13250 * There may be not more than 8 L2, not more than 8 L5 SPEs
13251 * and in the air. We also check that number of outstanding
13252 * COMMON ramrods is not more than the EQ and SPQ can
13253 * accommodate.
13254 */
13255 if (type == ETH_CONNECTION_TYPE) {
13256 if (!atomic_read(&bp->cq_spq_left))
13257 break;
13258 else
13259 atomic_dec(&bp->cq_spq_left);
13260 } else if (type == NONE_CONNECTION_TYPE) {
13261 if (!atomic_read(&bp->eq_spq_left))
13262 break;
13263 else
13264 atomic_dec(&bp->eq_spq_left);
13265 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13266 (type == FCOE_CONNECTION_TYPE)) {
13267 if (bp->cnic_spq_pending >=
13268 bp->cnic_eth_dev.max_kwqe_pending)
13269 break;
13270 else
13271 bp->cnic_spq_pending++;
13272 } else {
13273 BNX2X_ERR("Unknown SPE type: %d\n", type);
13274 bnx2x_panic();
13275 break;
13276 }
13277
13278 spe = bnx2x_sp_get_next(bp);
13279 *spe = *bp->cnic_kwq_cons;
13280
13281 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13282 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13283
13284 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13285 bp->cnic_kwq_cons = bp->cnic_kwq;
13286 else
13287 bp->cnic_kwq_cons++;
13288 }
13289 bnx2x_sp_prod_update(bp);
13290 spin_unlock_bh(&bp->spq_lock);
13291 }
13292
13293 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13294 struct kwqe_16 *kwqes[], u32 count)
13295 {
13296 struct bnx2x *bp = netdev_priv(dev);
13297 int i;
13298
13299 #ifdef BNX2X_STOP_ON_ERROR
13300 if (unlikely(bp->panic)) {
13301 BNX2X_ERR("Can't post to SP queue while panic\n");
13302 return -EIO;
13303 }
13304 #endif
13305
13306 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13307 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13308 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13309 return -EAGAIN;
13310 }
13311
13312 spin_lock_bh(&bp->spq_lock);
13313
13314 for (i = 0; i < count; i++) {
13315 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13316
13317 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13318 break;
13319
13320 *bp->cnic_kwq_prod = *spe;
13321
13322 bp->cnic_kwq_pending++;
13323
13324 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13325 spe->hdr.conn_and_cmd_data, spe->hdr.type,
13326 spe->data.update_data_addr.hi,
13327 spe->data.update_data_addr.lo,
13328 bp->cnic_kwq_pending);
13329
13330 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13331 bp->cnic_kwq_prod = bp->cnic_kwq;
13332 else
13333 bp->cnic_kwq_prod++;
13334 }
13335
13336 spin_unlock_bh(&bp->spq_lock);
13337
13338 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13339 bnx2x_cnic_sp_post(bp, 0);
13340
13341 return i;
13342 }
13343
13344 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13345 {
13346 struct cnic_ops *c_ops;
13347 int rc = 0;
13348
13349 mutex_lock(&bp->cnic_mutex);
13350 c_ops = rcu_dereference_protected(bp->cnic_ops,
13351 lockdep_is_held(&bp->cnic_mutex));
13352 if (c_ops)
13353 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13354 mutex_unlock(&bp->cnic_mutex);
13355
13356 return rc;
13357 }
13358
13359 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13360 {
13361 struct cnic_ops *c_ops;
13362 int rc = 0;
13363
13364 rcu_read_lock();
13365 c_ops = rcu_dereference(bp->cnic_ops);
13366 if (c_ops)
13367 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13368 rcu_read_unlock();
13369
13370 return rc;
13371 }
13372
13373 /*
13374 * for commands that have no data
13375 */
13376 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13377 {
13378 struct cnic_ctl_info ctl = {0};
13379
13380 ctl.cmd = cmd;
13381
13382 return bnx2x_cnic_ctl_send(bp, &ctl);
13383 }
13384
13385 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13386 {
13387 struct cnic_ctl_info ctl = {0};
13388
13389 /* first we tell CNIC and only then we count this as a completion */
13390 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13391 ctl.data.comp.cid = cid;
13392 ctl.data.comp.error = err;
13393
13394 bnx2x_cnic_ctl_send_bh(bp, &ctl);
13395 bnx2x_cnic_sp_post(bp, 0);
13396 }
13397
13398 /* Called with netif_addr_lock_bh() taken.
13399 * Sets an rx_mode config for an iSCSI ETH client.
13400 * Doesn't block.
13401 * Completion should be checked outside.
13402 */
13403 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13404 {
13405 unsigned long accept_flags = 0, ramrod_flags = 0;
13406 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13407 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13408
13409 if (start) {
13410 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13411 * because it's the only way for UIO Queue to accept
13412 * multicasts (in non-promiscuous mode only one Queue per
13413 * function will receive multicast packets (leading in our
13414 * case).
13415 */
13416 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13417 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13418 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13419 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13420
13421 /* Clear STOP_PENDING bit if START is requested */
13422 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13423
13424 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13425 } else
13426 /* Clear START_PENDING bit if STOP is requested */
13427 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13428
13429 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13430 set_bit(sched_state, &bp->sp_state);
13431 else {
13432 __set_bit(RAMROD_RX, &ramrod_flags);
13433 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13434 ramrod_flags);
13435 }
13436 }
13437
13438 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13439 {
13440 struct bnx2x *bp = netdev_priv(dev);
13441 int rc = 0;
13442
13443 switch (ctl->cmd) {
13444 case DRV_CTL_CTXTBL_WR_CMD: {
13445 u32 index = ctl->data.io.offset;
13446 dma_addr_t addr = ctl->data.io.dma_addr;
13447
13448 bnx2x_ilt_wr(bp, index, addr);
13449 break;
13450 }
13451
13452 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13453 int count = ctl->data.credit.credit_count;
13454
13455 bnx2x_cnic_sp_post(bp, count);
13456 break;
13457 }
13458
13459 /* rtnl_lock is held. */
13460 case DRV_CTL_START_L2_CMD: {
13461 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13462 unsigned long sp_bits = 0;
13463
13464 /* Configure the iSCSI classification object */
13465 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13466 cp->iscsi_l2_client_id,
13467 cp->iscsi_l2_cid, BP_FUNC(bp),
13468 bnx2x_sp(bp, mac_rdata),
13469 bnx2x_sp_mapping(bp, mac_rdata),
13470 BNX2X_FILTER_MAC_PENDING,
13471 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13472 &bp->macs_pool);
13473
13474 /* Set iSCSI MAC address */
13475 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13476 if (rc)
13477 break;
13478
13479 mmiowb();
13480 barrier();
13481
13482 /* Start accepting on iSCSI L2 ring */
13483
13484 netif_addr_lock_bh(dev);
13485 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13486 netif_addr_unlock_bh(dev);
13487
13488 /* bits to wait on */
13489 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13490 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13491
13492 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13493 BNX2X_ERR("rx_mode completion timed out!\n");
13494
13495 break;
13496 }
13497
13498 /* rtnl_lock is held. */
13499 case DRV_CTL_STOP_L2_CMD: {
13500 unsigned long sp_bits = 0;
13501
13502 /* Stop accepting on iSCSI L2 ring */
13503 netif_addr_lock_bh(dev);
13504 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13505 netif_addr_unlock_bh(dev);
13506
13507 /* bits to wait on */
13508 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13509 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13510
13511 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13512 BNX2X_ERR("rx_mode completion timed out!\n");
13513
13514 mmiowb();
13515 barrier();
13516
13517 /* Unset iSCSI L2 MAC */
13518 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13519 BNX2X_ISCSI_ETH_MAC, true);
13520 break;
13521 }
13522 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13523 int count = ctl->data.credit.credit_count;
13524
13525 smp_mb__before_atomic_inc();
13526 atomic_add(count, &bp->cq_spq_left);
13527 smp_mb__after_atomic_inc();
13528 break;
13529 }
13530 case DRV_CTL_ULP_REGISTER_CMD: {
13531 int ulp_type = ctl->data.register_data.ulp_type;
13532
13533 if (CHIP_IS_E3(bp)) {
13534 int idx = BP_FW_MB_IDX(bp);
13535 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13536 int path = BP_PATH(bp);
13537 int port = BP_PORT(bp);
13538 int i;
13539 u32 scratch_offset;
13540 u32 *host_addr;
13541
13542 /* first write capability to shmem2 */
13543 if (ulp_type == CNIC_ULP_ISCSI)
13544 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13545 else if (ulp_type == CNIC_ULP_FCOE)
13546 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13547 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13548
13549 if ((ulp_type != CNIC_ULP_FCOE) ||
13550 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13551 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
13552 break;
13553
13554 /* if reached here - should write fcoe capabilities */
13555 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13556 if (!scratch_offset)
13557 break;
13558 scratch_offset += offsetof(struct glob_ncsi_oem_data,
13559 fcoe_features[path][port]);
13560 host_addr = (u32 *) &(ctl->data.register_data.
13561 fcoe_features);
13562 for (i = 0; i < sizeof(struct fcoe_capabilities);
13563 i += 4)
13564 REG_WR(bp, scratch_offset + i,
13565 *(host_addr + i/4));
13566 }
13567 break;
13568 }
13569
13570 case DRV_CTL_ULP_UNREGISTER_CMD: {
13571 int ulp_type = ctl->data.ulp_type;
13572
13573 if (CHIP_IS_E3(bp)) {
13574 int idx = BP_FW_MB_IDX(bp);
13575 u32 cap;
13576
13577 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13578 if (ulp_type == CNIC_ULP_ISCSI)
13579 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13580 else if (ulp_type == CNIC_ULP_FCOE)
13581 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13582 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13583 }
13584 break;
13585 }
13586
13587 default:
13588 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13589 rc = -EINVAL;
13590 }
13591
13592 return rc;
13593 }
13594
13595 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13596 {
13597 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13598
13599 if (bp->flags & USING_MSIX_FLAG) {
13600 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13601 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13602 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13603 } else {
13604 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13605 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13606 }
13607 if (!CHIP_IS_E1x(bp))
13608 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13609 else
13610 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13611
13612 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
13613 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13614 cp->irq_arr[1].status_blk = bp->def_status_blk;
13615 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13616 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13617
13618 cp->num_irq = 2;
13619 }
13620
13621 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13622 {
13623 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13624
13625 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13626 bnx2x_cid_ilt_lines(bp);
13627 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13628 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13629 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13630
13631 if (NO_ISCSI_OOO(bp))
13632 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13633 }
13634
13635 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13636 void *data)
13637 {
13638 struct bnx2x *bp = netdev_priv(dev);
13639 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13640 int rc;
13641
13642 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13643
13644 if (ops == NULL) {
13645 BNX2X_ERR("NULL ops received\n");
13646 return -EINVAL;
13647 }
13648
13649 if (!CNIC_SUPPORT(bp)) {
13650 BNX2X_ERR("Can't register CNIC when not supported\n");
13651 return -EOPNOTSUPP;
13652 }
13653
13654 if (!CNIC_LOADED(bp)) {
13655 rc = bnx2x_load_cnic(bp);
13656 if (rc) {
13657 BNX2X_ERR("CNIC-related load failed\n");
13658 return rc;
13659 }
13660 }
13661
13662 bp->cnic_enabled = true;
13663
13664 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13665 if (!bp->cnic_kwq)
13666 return -ENOMEM;
13667
13668 bp->cnic_kwq_cons = bp->cnic_kwq;
13669 bp->cnic_kwq_prod = bp->cnic_kwq;
13670 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13671
13672 bp->cnic_spq_pending = 0;
13673 bp->cnic_kwq_pending = 0;
13674
13675 bp->cnic_data = data;
13676
13677 cp->num_irq = 0;
13678 cp->drv_state |= CNIC_DRV_STATE_REGD;
13679 cp->iro_arr = bp->iro_arr;
13680
13681 bnx2x_setup_cnic_irq_info(bp);
13682
13683 rcu_assign_pointer(bp->cnic_ops, ops);
13684
13685 return 0;
13686 }
13687
13688 static int bnx2x_unregister_cnic(struct net_device *dev)
13689 {
13690 struct bnx2x *bp = netdev_priv(dev);
13691 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13692
13693 mutex_lock(&bp->cnic_mutex);
13694 cp->drv_state = 0;
13695 RCU_INIT_POINTER(bp->cnic_ops, NULL);
13696 mutex_unlock(&bp->cnic_mutex);
13697 synchronize_rcu();
13698 bp->cnic_enabled = false;
13699 kfree(bp->cnic_kwq);
13700 bp->cnic_kwq = NULL;
13701
13702 return 0;
13703 }
13704
13705 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13706 {
13707 struct bnx2x *bp = netdev_priv(dev);
13708 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13709
13710 /* If both iSCSI and FCoE are disabled - return NULL in
13711 * order to indicate CNIC that it should not try to work
13712 * with this device.
13713 */
13714 if (NO_ISCSI(bp) && NO_FCOE(bp))
13715 return NULL;
13716
13717 cp->drv_owner = THIS_MODULE;
13718 cp->chip_id = CHIP_ID(bp);
13719 cp->pdev = bp->pdev;
13720 cp->io_base = bp->regview;
13721 cp->io_base2 = bp->doorbells;
13722 cp->max_kwqe_pending = 8;
13723 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13724 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13725 bnx2x_cid_ilt_lines(bp);
13726 cp->ctx_tbl_len = CNIC_ILT_LINES;
13727 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13728 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13729 cp->drv_ctl = bnx2x_drv_ctl;
13730 cp->drv_register_cnic = bnx2x_register_cnic;
13731 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13732 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13733 cp->iscsi_l2_client_id =
13734 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13735 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13736
13737 if (NO_ISCSI_OOO(bp))
13738 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13739
13740 if (NO_ISCSI(bp))
13741 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13742
13743 if (NO_FCOE(bp))
13744 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13745
13746 BNX2X_DEV_INFO(
13747 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13748 cp->ctx_blk_size,
13749 cp->ctx_tbl_offset,
13750 cp->ctx_tbl_len,
13751 cp->starting_cid);
13752 return cp;
13753 }
13754
13755 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13756 {
13757 struct bnx2x *bp = fp->bp;
13758 u32 offset = BAR_USTRORM_INTMEM;
13759
13760 if (IS_VF(bp))
13761 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13762 else if (!CHIP_IS_E1x(bp))
13763 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13764 else
13765 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13766
13767 return offset;
13768 }
13769
13770 /* called only on E1H or E2.
13771 * When pretending to be PF, the pretend value is the function number 0...7
13772 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13773 * combination
13774 */
13775 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13776 {
13777 u32 pretend_reg;
13778
13779 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13780 return -1;
13781
13782 /* get my own pretend register */
13783 pretend_reg = bnx2x_get_pretend_reg(bp);
13784 REG_WR(bp, pretend_reg, pretend_func_val);
13785 REG_RD(bp, pretend_reg);
13786 return 0;
13787 }