]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_sp.c
Merge tag 'fbdev-updates-for-3.6' of git://github.com/schandinat/linux-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_sp.c
1 /* bnx2x_sp.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2011-2012 Broadcom Corporation
4 *
5 * Unless you and Broadcom execute a separate written software license
6 * agreement governing use of this software, this software is licensed to you
7 * under the terms of the GNU General Public License version 2, available
8 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9 *
10 * Notwithstanding the above, under no circumstances may you combine this
11 * software in any way with any other Broadcom software provided under a
12 * license other than the GPL, without Broadcom's express prior written
13 * consent.
14 *
15 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
16 * Written by: Vladislav Zolotarov
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/crc32.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/crc32c.h>
27 #include "bnx2x.h"
28 #include "bnx2x_cmn.h"
29 #include "bnx2x_sp.h"
30
31 #define BNX2X_MAX_EMUL_MULTI 16
32
33 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
34
35 /**** Exe Queue interfaces ****/
36
37 /**
38 * bnx2x_exe_queue_init - init the Exe Queue object
39 *
40 * @o: poiter to the object
41 * @exe_len: length
42 * @owner: poiter to the owner
43 * @validate: validate function pointer
44 * @optimize: optimize function pointer
45 * @exec: execute function pointer
46 * @get: get function pointer
47 */
48 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
49 struct bnx2x_exe_queue_obj *o,
50 int exe_len,
51 union bnx2x_qable_obj *owner,
52 exe_q_validate validate,
53 exe_q_remove remove,
54 exe_q_optimize optimize,
55 exe_q_execute exec,
56 exe_q_get get)
57 {
58 memset(o, 0, sizeof(*o));
59
60 INIT_LIST_HEAD(&o->exe_queue);
61 INIT_LIST_HEAD(&o->pending_comp);
62
63 spin_lock_init(&o->lock);
64
65 o->exe_chunk_len = exe_len;
66 o->owner = owner;
67
68 /* Owner specific callbacks */
69 o->validate = validate;
70 o->remove = remove;
71 o->optimize = optimize;
72 o->execute = exec;
73 o->get = get;
74
75 DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
76 exe_len);
77 }
78
79 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
80 struct bnx2x_exeq_elem *elem)
81 {
82 DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
83 kfree(elem);
84 }
85
86 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
87 {
88 struct bnx2x_exeq_elem *elem;
89 int cnt = 0;
90
91 spin_lock_bh(&o->lock);
92
93 list_for_each_entry(elem, &o->exe_queue, link)
94 cnt++;
95
96 spin_unlock_bh(&o->lock);
97
98 return cnt;
99 }
100
101 /**
102 * bnx2x_exe_queue_add - add a new element to the execution queue
103 *
104 * @bp: driver handle
105 * @o: queue
106 * @cmd: new command to add
107 * @restore: true - do not optimize the command
108 *
109 * If the element is optimized or is illegal, frees it.
110 */
111 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
112 struct bnx2x_exe_queue_obj *o,
113 struct bnx2x_exeq_elem *elem,
114 bool restore)
115 {
116 int rc;
117
118 spin_lock_bh(&o->lock);
119
120 if (!restore) {
121 /* Try to cancel this element queue */
122 rc = o->optimize(bp, o->owner, elem);
123 if (rc)
124 goto free_and_exit;
125
126 /* Check if this request is ok */
127 rc = o->validate(bp, o->owner, elem);
128 if (rc) {
129 BNX2X_ERR("Preamble failed: %d\n", rc);
130 goto free_and_exit;
131 }
132 }
133
134 /* If so, add it to the execution queue */
135 list_add_tail(&elem->link, &o->exe_queue);
136
137 spin_unlock_bh(&o->lock);
138
139 return 0;
140
141 free_and_exit:
142 bnx2x_exe_queue_free_elem(bp, elem);
143
144 spin_unlock_bh(&o->lock);
145
146 return rc;
147
148 }
149
150 static inline void __bnx2x_exe_queue_reset_pending(
151 struct bnx2x *bp,
152 struct bnx2x_exe_queue_obj *o)
153 {
154 struct bnx2x_exeq_elem *elem;
155
156 while (!list_empty(&o->pending_comp)) {
157 elem = list_first_entry(&o->pending_comp,
158 struct bnx2x_exeq_elem, link);
159
160 list_del(&elem->link);
161 bnx2x_exe_queue_free_elem(bp, elem);
162 }
163 }
164
165 static inline void bnx2x_exe_queue_reset_pending(struct bnx2x *bp,
166 struct bnx2x_exe_queue_obj *o)
167 {
168
169 spin_lock_bh(&o->lock);
170
171 __bnx2x_exe_queue_reset_pending(bp, o);
172
173 spin_unlock_bh(&o->lock);
174
175 }
176
177 /**
178 * bnx2x_exe_queue_step - execute one execution chunk atomically
179 *
180 * @bp: driver handle
181 * @o: queue
182 * @ramrod_flags: flags
183 *
184 * (Atomicy is ensured using the exe_queue->lock).
185 */
186 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
187 struct bnx2x_exe_queue_obj *o,
188 unsigned long *ramrod_flags)
189 {
190 struct bnx2x_exeq_elem *elem, spacer;
191 int cur_len = 0, rc;
192
193 memset(&spacer, 0, sizeof(spacer));
194
195 spin_lock_bh(&o->lock);
196
197 /*
198 * Next step should not be performed until the current is finished,
199 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
200 * properly clear object internals without sending any command to the FW
201 * which also implies there won't be any completion to clear the
202 * 'pending' list.
203 */
204 if (!list_empty(&o->pending_comp)) {
205 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
206 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
207 __bnx2x_exe_queue_reset_pending(bp, o);
208 } else {
209 spin_unlock_bh(&o->lock);
210 return 1;
211 }
212 }
213
214 /*
215 * Run through the pending commands list and create a next
216 * execution chunk.
217 */
218 while (!list_empty(&o->exe_queue)) {
219 elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
220 link);
221 WARN_ON(!elem->cmd_len);
222
223 if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
224 cur_len += elem->cmd_len;
225 /*
226 * Prevent from both lists being empty when moving an
227 * element. This will allow the call of
228 * bnx2x_exe_queue_empty() without locking.
229 */
230 list_add_tail(&spacer.link, &o->pending_comp);
231 mb();
232 list_del(&elem->link);
233 list_add_tail(&elem->link, &o->pending_comp);
234 list_del(&spacer.link);
235 } else
236 break;
237 }
238
239 /* Sanity check */
240 if (!cur_len) {
241 spin_unlock_bh(&o->lock);
242 return 0;
243 }
244
245 rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
246 if (rc < 0)
247 /*
248 * In case of an error return the commands back to the queue
249 * and reset the pending_comp.
250 */
251 list_splice_init(&o->pending_comp, &o->exe_queue);
252 else if (!rc)
253 /*
254 * If zero is returned, means there are no outstanding pending
255 * completions and we may dismiss the pending list.
256 */
257 __bnx2x_exe_queue_reset_pending(bp, o);
258
259 spin_unlock_bh(&o->lock);
260 return rc;
261 }
262
263 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
264 {
265 bool empty = list_empty(&o->exe_queue);
266
267 /* Don't reorder!!! */
268 mb();
269
270 return empty && list_empty(&o->pending_comp);
271 }
272
273 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
274 struct bnx2x *bp)
275 {
276 DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
277 return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
278 }
279
280 /************************ raw_obj functions ***********************************/
281 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
282 {
283 return !!test_bit(o->state, o->pstate);
284 }
285
286 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
287 {
288 smp_mb__before_clear_bit();
289 clear_bit(o->state, o->pstate);
290 smp_mb__after_clear_bit();
291 }
292
293 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
294 {
295 smp_mb__before_clear_bit();
296 set_bit(o->state, o->pstate);
297 smp_mb__after_clear_bit();
298 }
299
300 /**
301 * bnx2x_state_wait - wait until the given bit(state) is cleared
302 *
303 * @bp: device handle
304 * @state: state which is to be cleared
305 * @state_p: state buffer
306 *
307 */
308 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
309 unsigned long *pstate)
310 {
311 /* can take a while if any port is running */
312 int cnt = 5000;
313
314
315 if (CHIP_REV_IS_EMUL(bp))
316 cnt *= 20;
317
318 DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
319
320 might_sleep();
321 while (cnt--) {
322 if (!test_bit(state, pstate)) {
323 #ifdef BNX2X_STOP_ON_ERROR
324 DP(BNX2X_MSG_SP, "exit (cnt %d)\n", 5000 - cnt);
325 #endif
326 return 0;
327 }
328
329 usleep_range(1000, 1000);
330
331 if (bp->panic)
332 return -EIO;
333 }
334
335 /* timeout! */
336 BNX2X_ERR("timeout waiting for state %d\n", state);
337 #ifdef BNX2X_STOP_ON_ERROR
338 bnx2x_panic();
339 #endif
340
341 return -EBUSY;
342 }
343
344 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
345 {
346 return bnx2x_state_wait(bp, raw->state, raw->pstate);
347 }
348
349 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
350 /* credit handling callbacks */
351 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
352 {
353 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
354
355 WARN_ON(!mp);
356
357 return mp->get_entry(mp, offset);
358 }
359
360 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
361 {
362 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
363
364 WARN_ON(!mp);
365
366 return mp->get(mp, 1);
367 }
368
369 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
370 {
371 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
372
373 WARN_ON(!vp);
374
375 return vp->get_entry(vp, offset);
376 }
377
378 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
379 {
380 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
381
382 WARN_ON(!vp);
383
384 return vp->get(vp, 1);
385 }
386
387 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
388 {
389 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
390 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
391
392 if (!mp->get(mp, 1))
393 return false;
394
395 if (!vp->get(vp, 1)) {
396 mp->put(mp, 1);
397 return false;
398 }
399
400 return true;
401 }
402
403 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
404 {
405 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
406
407 return mp->put_entry(mp, offset);
408 }
409
410 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
411 {
412 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
413
414 return mp->put(mp, 1);
415 }
416
417 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
418 {
419 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
420
421 return vp->put_entry(vp, offset);
422 }
423
424 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
425 {
426 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
427
428 return vp->put(vp, 1);
429 }
430
431 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
432 {
433 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
434 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
435
436 if (!mp->put(mp, 1))
437 return false;
438
439 if (!vp->put(vp, 1)) {
440 mp->get(mp, 1);
441 return false;
442 }
443
444 return true;
445 }
446
447 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
448 int n, u8 *buf)
449 {
450 struct bnx2x_vlan_mac_registry_elem *pos;
451 u8 *next = buf;
452 int counter = 0;
453
454 /* traverse list */
455 list_for_each_entry(pos, &o->head, link) {
456 if (counter < n) {
457 /* place leading zeroes in buffer */
458 memset(next, 0, MAC_LEADING_ZERO_CNT);
459
460 /* place mac after leading zeroes*/
461 memcpy(next + MAC_LEADING_ZERO_CNT, pos->u.mac.mac,
462 ETH_ALEN);
463
464 /* calculate address of next element and
465 * advance counter
466 */
467 counter++;
468 next = buf + counter * ALIGN(ETH_ALEN, sizeof(u32));
469
470 DP(BNX2X_MSG_SP, "copied element number %d to address %p element was %pM\n",
471 counter, next, pos->u.mac.mac);
472 }
473 }
474 return counter * ETH_ALEN;
475 }
476
477 /* check_add() callbacks */
478 static int bnx2x_check_mac_add(struct bnx2x *bp,
479 struct bnx2x_vlan_mac_obj *o,
480 union bnx2x_classification_ramrod_data *data)
481 {
482 struct bnx2x_vlan_mac_registry_elem *pos;
483
484 DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
485
486 if (!is_valid_ether_addr(data->mac.mac))
487 return -EINVAL;
488
489 /* Check if a requested MAC already exists */
490 list_for_each_entry(pos, &o->head, link)
491 if (!memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN))
492 return -EEXIST;
493
494 return 0;
495 }
496
497 static int bnx2x_check_vlan_add(struct bnx2x *bp,
498 struct bnx2x_vlan_mac_obj *o,
499 union bnx2x_classification_ramrod_data *data)
500 {
501 struct bnx2x_vlan_mac_registry_elem *pos;
502
503 DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
504
505 list_for_each_entry(pos, &o->head, link)
506 if (data->vlan.vlan == pos->u.vlan.vlan)
507 return -EEXIST;
508
509 return 0;
510 }
511
512 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
513 struct bnx2x_vlan_mac_obj *o,
514 union bnx2x_classification_ramrod_data *data)
515 {
516 struct bnx2x_vlan_mac_registry_elem *pos;
517
518 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
519 data->vlan_mac.mac, data->vlan_mac.vlan);
520
521 list_for_each_entry(pos, &o->head, link)
522 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
523 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
524 ETH_ALEN)))
525 return -EEXIST;
526
527 return 0;
528 }
529
530
531 /* check_del() callbacks */
532 static struct bnx2x_vlan_mac_registry_elem *
533 bnx2x_check_mac_del(struct bnx2x *bp,
534 struct bnx2x_vlan_mac_obj *o,
535 union bnx2x_classification_ramrod_data *data)
536 {
537 struct bnx2x_vlan_mac_registry_elem *pos;
538
539 DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
540
541 list_for_each_entry(pos, &o->head, link)
542 if (!memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN))
543 return pos;
544
545 return NULL;
546 }
547
548 static struct bnx2x_vlan_mac_registry_elem *
549 bnx2x_check_vlan_del(struct bnx2x *bp,
550 struct bnx2x_vlan_mac_obj *o,
551 union bnx2x_classification_ramrod_data *data)
552 {
553 struct bnx2x_vlan_mac_registry_elem *pos;
554
555 DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
556
557 list_for_each_entry(pos, &o->head, link)
558 if (data->vlan.vlan == pos->u.vlan.vlan)
559 return pos;
560
561 return NULL;
562 }
563
564 static struct bnx2x_vlan_mac_registry_elem *
565 bnx2x_check_vlan_mac_del(struct bnx2x *bp,
566 struct bnx2x_vlan_mac_obj *o,
567 union bnx2x_classification_ramrod_data *data)
568 {
569 struct bnx2x_vlan_mac_registry_elem *pos;
570
571 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
572 data->vlan_mac.mac, data->vlan_mac.vlan);
573
574 list_for_each_entry(pos, &o->head, link)
575 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
576 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
577 ETH_ALEN)))
578 return pos;
579
580 return NULL;
581 }
582
583 /* check_move() callback */
584 static bool bnx2x_check_move(struct bnx2x *bp,
585 struct bnx2x_vlan_mac_obj *src_o,
586 struct bnx2x_vlan_mac_obj *dst_o,
587 union bnx2x_classification_ramrod_data *data)
588 {
589 struct bnx2x_vlan_mac_registry_elem *pos;
590 int rc;
591
592 /* Check if we can delete the requested configuration from the first
593 * object.
594 */
595 pos = src_o->check_del(bp, src_o, data);
596
597 /* check if configuration can be added */
598 rc = dst_o->check_add(bp, dst_o, data);
599
600 /* If this classification can not be added (is already set)
601 * or can't be deleted - return an error.
602 */
603 if (rc || !pos)
604 return false;
605
606 return true;
607 }
608
609 static bool bnx2x_check_move_always_err(
610 struct bnx2x *bp,
611 struct bnx2x_vlan_mac_obj *src_o,
612 struct bnx2x_vlan_mac_obj *dst_o,
613 union bnx2x_classification_ramrod_data *data)
614 {
615 return false;
616 }
617
618
619 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
620 {
621 struct bnx2x_raw_obj *raw = &o->raw;
622 u8 rx_tx_flag = 0;
623
624 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
625 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
626 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
627
628 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
629 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
630 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
631
632 return rx_tx_flag;
633 }
634
635
636 void bnx2x_set_mac_in_nig(struct bnx2x *bp,
637 bool add, unsigned char *dev_addr, int index)
638 {
639 u32 wb_data[2];
640 u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
641 NIG_REG_LLH0_FUNC_MEM;
642
643 if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
644 return;
645
646 if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
647 return;
648
649 DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
650 (add ? "ADD" : "DELETE"), index);
651
652 if (add) {
653 /* LLH_FUNC_MEM is a u64 WB register */
654 reg_offset += 8*index;
655
656 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
657 (dev_addr[4] << 8) | dev_addr[5]);
658 wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
659
660 REG_WR_DMAE(bp, reg_offset, wb_data, 2);
661 }
662
663 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
664 NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
665 }
666
667 /**
668 * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
669 *
670 * @bp: device handle
671 * @o: queue for which we want to configure this rule
672 * @add: if true the command is an ADD command, DEL otherwise
673 * @opcode: CLASSIFY_RULE_OPCODE_XXX
674 * @hdr: pointer to a header to setup
675 *
676 */
677 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
678 struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
679 struct eth_classify_cmd_header *hdr)
680 {
681 struct bnx2x_raw_obj *raw = &o->raw;
682
683 hdr->client_id = raw->cl_id;
684 hdr->func_id = raw->func_id;
685
686 /* Rx or/and Tx (internal switching) configuration ? */
687 hdr->cmd_general_data |=
688 bnx2x_vlan_mac_get_rx_tx_flag(o);
689
690 if (add)
691 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
692
693 hdr->cmd_general_data |=
694 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
695 }
696
697 /**
698 * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
699 *
700 * @cid: connection id
701 * @type: BNX2X_FILTER_XXX_PENDING
702 * @hdr: poiter to header to setup
703 * @rule_cnt:
704 *
705 * currently we always configure one rule and echo field to contain a CID and an
706 * opcode type.
707 */
708 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
709 struct eth_classify_header *hdr, int rule_cnt)
710 {
711 hdr->echo = (cid & BNX2X_SWCID_MASK) | (type << BNX2X_SWCID_SHIFT);
712 hdr->rule_cnt = (u8)rule_cnt;
713 }
714
715
716 /* hw_config() callbacks */
717 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
718 struct bnx2x_vlan_mac_obj *o,
719 struct bnx2x_exeq_elem *elem, int rule_idx,
720 int cam_offset)
721 {
722 struct bnx2x_raw_obj *raw = &o->raw;
723 struct eth_classify_rules_ramrod_data *data =
724 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
725 int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
726 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
727 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
728 unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
729 u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
730
731 /*
732 * Set LLH CAM entry: currently only iSCSI and ETH macs are
733 * relevant. In addition, current implementation is tuned for a
734 * single ETH MAC.
735 *
736 * When multiple unicast ETH MACs PF configuration in switch
737 * independent mode is required (NetQ, multiple netdev MACs,
738 * etc.), consider better utilisation of 8 per function MAC
739 * entries in the LLH register. There is also
740 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
741 * total number of CAM entries to 16.
742 *
743 * Currently we won't configure NIG for MACs other than a primary ETH
744 * MAC and iSCSI L2 MAC.
745 *
746 * If this MAC is moving from one Queue to another, no need to change
747 * NIG configuration.
748 */
749 if (cmd != BNX2X_VLAN_MAC_MOVE) {
750 if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
751 bnx2x_set_mac_in_nig(bp, add, mac,
752 BNX2X_LLH_CAM_ISCSI_ETH_LINE);
753 else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
754 bnx2x_set_mac_in_nig(bp, add, mac,
755 BNX2X_LLH_CAM_ETH_LINE);
756 }
757
758 /* Reset the ramrod data buffer for the first rule */
759 if (rule_idx == 0)
760 memset(data, 0, sizeof(*data));
761
762 /* Setup a command header */
763 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
764 &rule_entry->mac.header);
765
766 DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
767 (add ? "add" : "delete"), mac, raw->cl_id);
768
769 /* Set a MAC itself */
770 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
771 &rule_entry->mac.mac_mid,
772 &rule_entry->mac.mac_lsb, mac);
773
774 /* MOVE: Add a rule that will add this MAC to the target Queue */
775 if (cmd == BNX2X_VLAN_MAC_MOVE) {
776 rule_entry++;
777 rule_cnt++;
778
779 /* Setup ramrod data */
780 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
781 elem->cmd_data.vlan_mac.target_obj,
782 true, CLASSIFY_RULE_OPCODE_MAC,
783 &rule_entry->mac.header);
784
785 /* Set a MAC itself */
786 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
787 &rule_entry->mac.mac_mid,
788 &rule_entry->mac.mac_lsb, mac);
789 }
790
791 /* Set the ramrod data header */
792 /* TODO: take this to the higher level in order to prevent multiple
793 writing */
794 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
795 rule_cnt);
796 }
797
798 /**
799 * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
800 *
801 * @bp: device handle
802 * @o: queue
803 * @type:
804 * @cam_offset: offset in cam memory
805 * @hdr: pointer to a header to setup
806 *
807 * E1/E1H
808 */
809 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
810 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
811 struct mac_configuration_hdr *hdr)
812 {
813 struct bnx2x_raw_obj *r = &o->raw;
814
815 hdr->length = 1;
816 hdr->offset = (u8)cam_offset;
817 hdr->client_id = 0xff;
818 hdr->echo = ((r->cid & BNX2X_SWCID_MASK) | (type << BNX2X_SWCID_SHIFT));
819 }
820
821 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
822 struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
823 u16 vlan_id, struct mac_configuration_entry *cfg_entry)
824 {
825 struct bnx2x_raw_obj *r = &o->raw;
826 u32 cl_bit_vec = (1 << r->cl_id);
827
828 cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
829 cfg_entry->pf_id = r->func_id;
830 cfg_entry->vlan_id = cpu_to_le16(vlan_id);
831
832 if (add) {
833 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
834 T_ETH_MAC_COMMAND_SET);
835 SET_FLAG(cfg_entry->flags,
836 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
837
838 /* Set a MAC in a ramrod data */
839 bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
840 &cfg_entry->middle_mac_addr,
841 &cfg_entry->lsb_mac_addr, mac);
842 } else
843 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
844 T_ETH_MAC_COMMAND_INVALIDATE);
845 }
846
847 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
848 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
849 u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
850 {
851 struct mac_configuration_entry *cfg_entry = &config->config_table[0];
852 struct bnx2x_raw_obj *raw = &o->raw;
853
854 bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
855 &config->hdr);
856 bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
857 cfg_entry);
858
859 DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
860 (add ? "setting" : "clearing"),
861 mac, raw->cl_id, cam_offset);
862 }
863
864 /**
865 * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
866 *
867 * @bp: device handle
868 * @o: bnx2x_vlan_mac_obj
869 * @elem: bnx2x_exeq_elem
870 * @rule_idx: rule_idx
871 * @cam_offset: cam_offset
872 */
873 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
874 struct bnx2x_vlan_mac_obj *o,
875 struct bnx2x_exeq_elem *elem, int rule_idx,
876 int cam_offset)
877 {
878 struct bnx2x_raw_obj *raw = &o->raw;
879 struct mac_configuration_cmd *config =
880 (struct mac_configuration_cmd *)(raw->rdata);
881 /*
882 * 57710 and 57711 do not support MOVE command,
883 * so it's either ADD or DEL
884 */
885 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
886 true : false;
887
888 /* Reset the ramrod data buffer */
889 memset(config, 0, sizeof(*config));
890
891 bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
892 cam_offset, add,
893 elem->cmd_data.vlan_mac.u.mac.mac, 0,
894 ETH_VLAN_FILTER_ANY_VLAN, config);
895 }
896
897 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
898 struct bnx2x_vlan_mac_obj *o,
899 struct bnx2x_exeq_elem *elem, int rule_idx,
900 int cam_offset)
901 {
902 struct bnx2x_raw_obj *raw = &o->raw;
903 struct eth_classify_rules_ramrod_data *data =
904 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
905 int rule_cnt = rule_idx + 1;
906 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
907 int cmd = elem->cmd_data.vlan_mac.cmd;
908 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
909 u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
910
911 /* Reset the ramrod data buffer for the first rule */
912 if (rule_idx == 0)
913 memset(data, 0, sizeof(*data));
914
915 /* Set a rule header */
916 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
917 &rule_entry->vlan.header);
918
919 DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
920 vlan);
921
922 /* Set a VLAN itself */
923 rule_entry->vlan.vlan = cpu_to_le16(vlan);
924
925 /* MOVE: Add a rule that will add this MAC to the target Queue */
926 if (cmd == BNX2X_VLAN_MAC_MOVE) {
927 rule_entry++;
928 rule_cnt++;
929
930 /* Setup ramrod data */
931 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
932 elem->cmd_data.vlan_mac.target_obj,
933 true, CLASSIFY_RULE_OPCODE_VLAN,
934 &rule_entry->vlan.header);
935
936 /* Set a VLAN itself */
937 rule_entry->vlan.vlan = cpu_to_le16(vlan);
938 }
939
940 /* Set the ramrod data header */
941 /* TODO: take this to the higher level in order to prevent multiple
942 writing */
943 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
944 rule_cnt);
945 }
946
947 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
948 struct bnx2x_vlan_mac_obj *o,
949 struct bnx2x_exeq_elem *elem,
950 int rule_idx, int cam_offset)
951 {
952 struct bnx2x_raw_obj *raw = &o->raw;
953 struct eth_classify_rules_ramrod_data *data =
954 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
955 int rule_cnt = rule_idx + 1;
956 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
957 int cmd = elem->cmd_data.vlan_mac.cmd;
958 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
959 u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
960 u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
961
962
963 /* Reset the ramrod data buffer for the first rule */
964 if (rule_idx == 0)
965 memset(data, 0, sizeof(*data));
966
967 /* Set a rule header */
968 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
969 &rule_entry->pair.header);
970
971 /* Set VLAN and MAC themselvs */
972 rule_entry->pair.vlan = cpu_to_le16(vlan);
973 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
974 &rule_entry->pair.mac_mid,
975 &rule_entry->pair.mac_lsb, mac);
976
977 /* MOVE: Add a rule that will add this MAC to the target Queue */
978 if (cmd == BNX2X_VLAN_MAC_MOVE) {
979 rule_entry++;
980 rule_cnt++;
981
982 /* Setup ramrod data */
983 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
984 elem->cmd_data.vlan_mac.target_obj,
985 true, CLASSIFY_RULE_OPCODE_PAIR,
986 &rule_entry->pair.header);
987
988 /* Set a VLAN itself */
989 rule_entry->pair.vlan = cpu_to_le16(vlan);
990 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
991 &rule_entry->pair.mac_mid,
992 &rule_entry->pair.mac_lsb, mac);
993 }
994
995 /* Set the ramrod data header */
996 /* TODO: take this to the higher level in order to prevent multiple
997 writing */
998 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
999 rule_cnt);
1000 }
1001
1002 /**
1003 * bnx2x_set_one_vlan_mac_e1h -
1004 *
1005 * @bp: device handle
1006 * @o: bnx2x_vlan_mac_obj
1007 * @elem: bnx2x_exeq_elem
1008 * @rule_idx: rule_idx
1009 * @cam_offset: cam_offset
1010 */
1011 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1012 struct bnx2x_vlan_mac_obj *o,
1013 struct bnx2x_exeq_elem *elem,
1014 int rule_idx, int cam_offset)
1015 {
1016 struct bnx2x_raw_obj *raw = &o->raw;
1017 struct mac_configuration_cmd *config =
1018 (struct mac_configuration_cmd *)(raw->rdata);
1019 /*
1020 * 57710 and 57711 do not support MOVE command,
1021 * so it's either ADD or DEL
1022 */
1023 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1024 true : false;
1025
1026 /* Reset the ramrod data buffer */
1027 memset(config, 0, sizeof(*config));
1028
1029 bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1030 cam_offset, add,
1031 elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1032 elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1033 ETH_VLAN_FILTER_CLASSIFY, config);
1034 }
1035
1036 #define list_next_entry(pos, member) \
1037 list_entry((pos)->member.next, typeof(*(pos)), member)
1038
1039 /**
1040 * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1041 *
1042 * @bp: device handle
1043 * @p: command parameters
1044 * @ppos: pointer to the cooky
1045 *
1046 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1047 * previously configured elements list.
1048 *
1049 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1050 * into an account
1051 *
1052 * pointer to the cooky - that should be given back in the next call to make
1053 * function handle the next element. If *ppos is set to NULL it will restart the
1054 * iterator. If returned *ppos == NULL this means that the last element has been
1055 * handled.
1056 *
1057 */
1058 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1059 struct bnx2x_vlan_mac_ramrod_params *p,
1060 struct bnx2x_vlan_mac_registry_elem **ppos)
1061 {
1062 struct bnx2x_vlan_mac_registry_elem *pos;
1063 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1064
1065 /* If list is empty - there is nothing to do here */
1066 if (list_empty(&o->head)) {
1067 *ppos = NULL;
1068 return 0;
1069 }
1070
1071 /* make a step... */
1072 if (*ppos == NULL)
1073 *ppos = list_first_entry(&o->head,
1074 struct bnx2x_vlan_mac_registry_elem,
1075 link);
1076 else
1077 *ppos = list_next_entry(*ppos, link);
1078
1079 pos = *ppos;
1080
1081 /* If it's the last step - return NULL */
1082 if (list_is_last(&pos->link, &o->head))
1083 *ppos = NULL;
1084
1085 /* Prepare a 'user_req' */
1086 memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1087
1088 /* Set the command */
1089 p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1090
1091 /* Set vlan_mac_flags */
1092 p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1093
1094 /* Set a restore bit */
1095 __set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1096
1097 return bnx2x_config_vlan_mac(bp, p);
1098 }
1099
1100 /*
1101 * bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1102 * pointer to an element with a specific criteria and NULL if such an element
1103 * hasn't been found.
1104 */
1105 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1106 struct bnx2x_exe_queue_obj *o,
1107 struct bnx2x_exeq_elem *elem)
1108 {
1109 struct bnx2x_exeq_elem *pos;
1110 struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1111
1112 /* Check pending for execution commands */
1113 list_for_each_entry(pos, &o->exe_queue, link)
1114 if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1115 sizeof(*data)) &&
1116 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1117 return pos;
1118
1119 return NULL;
1120 }
1121
1122 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1123 struct bnx2x_exe_queue_obj *o,
1124 struct bnx2x_exeq_elem *elem)
1125 {
1126 struct bnx2x_exeq_elem *pos;
1127 struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1128
1129 /* Check pending for execution commands */
1130 list_for_each_entry(pos, &o->exe_queue, link)
1131 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1132 sizeof(*data)) &&
1133 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1134 return pos;
1135
1136 return NULL;
1137 }
1138
1139 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1140 struct bnx2x_exe_queue_obj *o,
1141 struct bnx2x_exeq_elem *elem)
1142 {
1143 struct bnx2x_exeq_elem *pos;
1144 struct bnx2x_vlan_mac_ramrod_data *data =
1145 &elem->cmd_data.vlan_mac.u.vlan_mac;
1146
1147 /* Check pending for execution commands */
1148 list_for_each_entry(pos, &o->exe_queue, link)
1149 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1150 sizeof(*data)) &&
1151 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1152 return pos;
1153
1154 return NULL;
1155 }
1156
1157 /**
1158 * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1159 *
1160 * @bp: device handle
1161 * @qo: bnx2x_qable_obj
1162 * @elem: bnx2x_exeq_elem
1163 *
1164 * Checks that the requested configuration can be added. If yes and if
1165 * requested, consume CAM credit.
1166 *
1167 * The 'validate' is run after the 'optimize'.
1168 *
1169 */
1170 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1171 union bnx2x_qable_obj *qo,
1172 struct bnx2x_exeq_elem *elem)
1173 {
1174 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1175 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1176 int rc;
1177
1178 /* Check the registry */
1179 rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1180 if (rc) {
1181 DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1182 return rc;
1183 }
1184
1185 /*
1186 * Check if there is a pending ADD command for this
1187 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1188 */
1189 if (exeq->get(exeq, elem)) {
1190 DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1191 return -EEXIST;
1192 }
1193
1194 /*
1195 * TODO: Check the pending MOVE from other objects where this
1196 * object is a destination object.
1197 */
1198
1199 /* Consume the credit if not requested not to */
1200 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1201 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1202 o->get_credit(o)))
1203 return -EINVAL;
1204
1205 return 0;
1206 }
1207
1208 /**
1209 * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1210 *
1211 * @bp: device handle
1212 * @qo: quable object to check
1213 * @elem: element that needs to be deleted
1214 *
1215 * Checks that the requested configuration can be deleted. If yes and if
1216 * requested, returns a CAM credit.
1217 *
1218 * The 'validate' is run after the 'optimize'.
1219 */
1220 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1221 union bnx2x_qable_obj *qo,
1222 struct bnx2x_exeq_elem *elem)
1223 {
1224 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1225 struct bnx2x_vlan_mac_registry_elem *pos;
1226 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1227 struct bnx2x_exeq_elem query_elem;
1228
1229 /* If this classification can not be deleted (doesn't exist)
1230 * - return a BNX2X_EXIST.
1231 */
1232 pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1233 if (!pos) {
1234 DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1235 return -EEXIST;
1236 }
1237
1238 /*
1239 * Check if there are pending DEL or MOVE commands for this
1240 * MAC/VLAN/VLAN-MAC. Return an error if so.
1241 */
1242 memcpy(&query_elem, elem, sizeof(query_elem));
1243
1244 /* Check for MOVE commands */
1245 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1246 if (exeq->get(exeq, &query_elem)) {
1247 BNX2X_ERR("There is a pending MOVE command already\n");
1248 return -EINVAL;
1249 }
1250
1251 /* Check for DEL commands */
1252 if (exeq->get(exeq, elem)) {
1253 DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1254 return -EEXIST;
1255 }
1256
1257 /* Return the credit to the credit pool if not requested not to */
1258 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1259 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1260 o->put_credit(o))) {
1261 BNX2X_ERR("Failed to return a credit\n");
1262 return -EINVAL;
1263 }
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1270 *
1271 * @bp: device handle
1272 * @qo: quable object to check (source)
1273 * @elem: element that needs to be moved
1274 *
1275 * Checks that the requested configuration can be moved. If yes and if
1276 * requested, returns a CAM credit.
1277 *
1278 * The 'validate' is run after the 'optimize'.
1279 */
1280 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1281 union bnx2x_qable_obj *qo,
1282 struct bnx2x_exeq_elem *elem)
1283 {
1284 struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1285 struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1286 struct bnx2x_exeq_elem query_elem;
1287 struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1288 struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1289
1290 /*
1291 * Check if we can perform this operation based on the current registry
1292 * state.
1293 */
1294 if (!src_o->check_move(bp, src_o, dest_o,
1295 &elem->cmd_data.vlan_mac.u)) {
1296 DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1297 return -EINVAL;
1298 }
1299
1300 /*
1301 * Check if there is an already pending DEL or MOVE command for the
1302 * source object or ADD command for a destination object. Return an
1303 * error if so.
1304 */
1305 memcpy(&query_elem, elem, sizeof(query_elem));
1306
1307 /* Check DEL on source */
1308 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1309 if (src_exeq->get(src_exeq, &query_elem)) {
1310 BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1311 return -EINVAL;
1312 }
1313
1314 /* Check MOVE on source */
1315 if (src_exeq->get(src_exeq, elem)) {
1316 DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1317 return -EEXIST;
1318 }
1319
1320 /* Check ADD on destination */
1321 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1322 if (dest_exeq->get(dest_exeq, &query_elem)) {
1323 BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1324 return -EINVAL;
1325 }
1326
1327 /* Consume the credit if not requested not to */
1328 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1329 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1330 dest_o->get_credit(dest_o)))
1331 return -EINVAL;
1332
1333 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1334 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1335 src_o->put_credit(src_o))) {
1336 /* return the credit taken from dest... */
1337 dest_o->put_credit(dest_o);
1338 return -EINVAL;
1339 }
1340
1341 return 0;
1342 }
1343
1344 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1345 union bnx2x_qable_obj *qo,
1346 struct bnx2x_exeq_elem *elem)
1347 {
1348 switch (elem->cmd_data.vlan_mac.cmd) {
1349 case BNX2X_VLAN_MAC_ADD:
1350 return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1351 case BNX2X_VLAN_MAC_DEL:
1352 return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1353 case BNX2X_VLAN_MAC_MOVE:
1354 return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1355 default:
1356 return -EINVAL;
1357 }
1358 }
1359
1360 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1361 union bnx2x_qable_obj *qo,
1362 struct bnx2x_exeq_elem *elem)
1363 {
1364 int rc = 0;
1365
1366 /* If consumption wasn't required, nothing to do */
1367 if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1368 &elem->cmd_data.vlan_mac.vlan_mac_flags))
1369 return 0;
1370
1371 switch (elem->cmd_data.vlan_mac.cmd) {
1372 case BNX2X_VLAN_MAC_ADD:
1373 case BNX2X_VLAN_MAC_MOVE:
1374 rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1375 break;
1376 case BNX2X_VLAN_MAC_DEL:
1377 rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1378 break;
1379 default:
1380 return -EINVAL;
1381 }
1382
1383 if (rc != true)
1384 return -EINVAL;
1385
1386 return 0;
1387 }
1388
1389 /**
1390 * bnx2x_wait_vlan_mac - passivly wait for 5 seconds until all work completes.
1391 *
1392 * @bp: device handle
1393 * @o: bnx2x_vlan_mac_obj
1394 *
1395 */
1396 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1397 struct bnx2x_vlan_mac_obj *o)
1398 {
1399 int cnt = 5000, rc;
1400 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1401 struct bnx2x_raw_obj *raw = &o->raw;
1402
1403 while (cnt--) {
1404 /* Wait for the current command to complete */
1405 rc = raw->wait_comp(bp, raw);
1406 if (rc)
1407 return rc;
1408
1409 /* Wait until there are no pending commands */
1410 if (!bnx2x_exe_queue_empty(exeq))
1411 usleep_range(1000, 1000);
1412 else
1413 return 0;
1414 }
1415
1416 return -EBUSY;
1417 }
1418
1419 /**
1420 * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1421 *
1422 * @bp: device handle
1423 * @o: bnx2x_vlan_mac_obj
1424 * @cqe:
1425 * @cont: if true schedule next execution chunk
1426 *
1427 */
1428 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1429 struct bnx2x_vlan_mac_obj *o,
1430 union event_ring_elem *cqe,
1431 unsigned long *ramrod_flags)
1432 {
1433 struct bnx2x_raw_obj *r = &o->raw;
1434 int rc;
1435
1436 /* Reset pending list */
1437 bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1438
1439 /* Clear pending */
1440 r->clear_pending(r);
1441
1442 /* If ramrod failed this is most likely a SW bug */
1443 if (cqe->message.error)
1444 return -EINVAL;
1445
1446 /* Run the next bulk of pending commands if requeted */
1447 if (test_bit(RAMROD_CONT, ramrod_flags)) {
1448 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1449 if (rc < 0)
1450 return rc;
1451 }
1452
1453 /* If there is more work to do return PENDING */
1454 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1455 return 1;
1456
1457 return 0;
1458 }
1459
1460 /**
1461 * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1462 *
1463 * @bp: device handle
1464 * @o: bnx2x_qable_obj
1465 * @elem: bnx2x_exeq_elem
1466 */
1467 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1468 union bnx2x_qable_obj *qo,
1469 struct bnx2x_exeq_elem *elem)
1470 {
1471 struct bnx2x_exeq_elem query, *pos;
1472 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1473 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1474
1475 memcpy(&query, elem, sizeof(query));
1476
1477 switch (elem->cmd_data.vlan_mac.cmd) {
1478 case BNX2X_VLAN_MAC_ADD:
1479 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1480 break;
1481 case BNX2X_VLAN_MAC_DEL:
1482 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1483 break;
1484 default:
1485 /* Don't handle anything other than ADD or DEL */
1486 return 0;
1487 }
1488
1489 /* If we found the appropriate element - delete it */
1490 pos = exeq->get(exeq, &query);
1491 if (pos) {
1492
1493 /* Return the credit of the optimized command */
1494 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1495 &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1496 if ((query.cmd_data.vlan_mac.cmd ==
1497 BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1498 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1499 return -EINVAL;
1500 } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1501 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1502 return -EINVAL;
1503 }
1504 }
1505
1506 DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1507 (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1508 "ADD" : "DEL");
1509
1510 list_del(&pos->link);
1511 bnx2x_exe_queue_free_elem(bp, pos);
1512 return 1;
1513 }
1514
1515 return 0;
1516 }
1517
1518 /**
1519 * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1520 *
1521 * @bp: device handle
1522 * @o:
1523 * @elem:
1524 * @restore:
1525 * @re:
1526 *
1527 * prepare a registry element according to the current command request.
1528 */
1529 static inline int bnx2x_vlan_mac_get_registry_elem(
1530 struct bnx2x *bp,
1531 struct bnx2x_vlan_mac_obj *o,
1532 struct bnx2x_exeq_elem *elem,
1533 bool restore,
1534 struct bnx2x_vlan_mac_registry_elem **re)
1535 {
1536 int cmd = elem->cmd_data.vlan_mac.cmd;
1537 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1538
1539 /* Allocate a new registry element if needed. */
1540 if (!restore &&
1541 ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1542 reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1543 if (!reg_elem)
1544 return -ENOMEM;
1545
1546 /* Get a new CAM offset */
1547 if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1548 /*
1549 * This shell never happen, because we have checked the
1550 * CAM availiability in the 'validate'.
1551 */
1552 WARN_ON(1);
1553 kfree(reg_elem);
1554 return -EINVAL;
1555 }
1556
1557 DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1558
1559 /* Set a VLAN-MAC data */
1560 memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1561 sizeof(reg_elem->u));
1562
1563 /* Copy the flags (needed for DEL and RESTORE flows) */
1564 reg_elem->vlan_mac_flags =
1565 elem->cmd_data.vlan_mac.vlan_mac_flags;
1566 } else /* DEL, RESTORE */
1567 reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1568
1569 *re = reg_elem;
1570 return 0;
1571 }
1572
1573 /**
1574 * bnx2x_execute_vlan_mac - execute vlan mac command
1575 *
1576 * @bp: device handle
1577 * @qo:
1578 * @exe_chunk:
1579 * @ramrod_flags:
1580 *
1581 * go and send a ramrod!
1582 */
1583 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1584 union bnx2x_qable_obj *qo,
1585 struct list_head *exe_chunk,
1586 unsigned long *ramrod_flags)
1587 {
1588 struct bnx2x_exeq_elem *elem;
1589 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1590 struct bnx2x_raw_obj *r = &o->raw;
1591 int rc, idx = 0;
1592 bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1593 bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1594 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1595 int cmd;
1596
1597 /*
1598 * If DRIVER_ONLY execution is requested, cleanup a registry
1599 * and exit. Otherwise send a ramrod to FW.
1600 */
1601 if (!drv_only) {
1602 WARN_ON(r->check_pending(r));
1603
1604 /* Set pending */
1605 r->set_pending(r);
1606
1607 /* Fill tha ramrod data */
1608 list_for_each_entry(elem, exe_chunk, link) {
1609 cmd = elem->cmd_data.vlan_mac.cmd;
1610 /*
1611 * We will add to the target object in MOVE command, so
1612 * change the object for a CAM search.
1613 */
1614 if (cmd == BNX2X_VLAN_MAC_MOVE)
1615 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1616 else
1617 cam_obj = o;
1618
1619 rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1620 elem, restore,
1621 &reg_elem);
1622 if (rc)
1623 goto error_exit;
1624
1625 WARN_ON(!reg_elem);
1626
1627 /* Push a new entry into the registry */
1628 if (!restore &&
1629 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1630 (cmd == BNX2X_VLAN_MAC_MOVE)))
1631 list_add(&reg_elem->link, &cam_obj->head);
1632
1633 /* Configure a single command in a ramrod data buffer */
1634 o->set_one_rule(bp, o, elem, idx,
1635 reg_elem->cam_offset);
1636
1637 /* MOVE command consumes 2 entries in the ramrod data */
1638 if (cmd == BNX2X_VLAN_MAC_MOVE)
1639 idx += 2;
1640 else
1641 idx++;
1642 }
1643
1644 /*
1645 * No need for an explicit memory barrier here as long we would
1646 * need to ensure the ordering of writing to the SPQ element
1647 * and updating of the SPQ producer which involves a memory
1648 * read and we will have to put a full memory barrier there
1649 * (inside bnx2x_sp_post()).
1650 */
1651
1652 rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1653 U64_HI(r->rdata_mapping),
1654 U64_LO(r->rdata_mapping),
1655 ETH_CONNECTION_TYPE);
1656 if (rc)
1657 goto error_exit;
1658 }
1659
1660 /* Now, when we are done with the ramrod - clean up the registry */
1661 list_for_each_entry(elem, exe_chunk, link) {
1662 cmd = elem->cmd_data.vlan_mac.cmd;
1663 if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1664 (cmd == BNX2X_VLAN_MAC_MOVE)) {
1665 reg_elem = o->check_del(bp, o,
1666 &elem->cmd_data.vlan_mac.u);
1667
1668 WARN_ON(!reg_elem);
1669
1670 o->put_cam_offset(o, reg_elem->cam_offset);
1671 list_del(&reg_elem->link);
1672 kfree(reg_elem);
1673 }
1674 }
1675
1676 if (!drv_only)
1677 return 1;
1678 else
1679 return 0;
1680
1681 error_exit:
1682 r->clear_pending(r);
1683
1684 /* Cleanup a registry in case of a failure */
1685 list_for_each_entry(elem, exe_chunk, link) {
1686 cmd = elem->cmd_data.vlan_mac.cmd;
1687
1688 if (cmd == BNX2X_VLAN_MAC_MOVE)
1689 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1690 else
1691 cam_obj = o;
1692
1693 /* Delete all newly added above entries */
1694 if (!restore &&
1695 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1696 (cmd == BNX2X_VLAN_MAC_MOVE))) {
1697 reg_elem = o->check_del(bp, cam_obj,
1698 &elem->cmd_data.vlan_mac.u);
1699 if (reg_elem) {
1700 list_del(&reg_elem->link);
1701 kfree(reg_elem);
1702 }
1703 }
1704 }
1705
1706 return rc;
1707 }
1708
1709 static inline int bnx2x_vlan_mac_push_new_cmd(
1710 struct bnx2x *bp,
1711 struct bnx2x_vlan_mac_ramrod_params *p)
1712 {
1713 struct bnx2x_exeq_elem *elem;
1714 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1715 bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1716
1717 /* Allocate the execution queue element */
1718 elem = bnx2x_exe_queue_alloc_elem(bp);
1719 if (!elem)
1720 return -ENOMEM;
1721
1722 /* Set the command 'length' */
1723 switch (p->user_req.cmd) {
1724 case BNX2X_VLAN_MAC_MOVE:
1725 elem->cmd_len = 2;
1726 break;
1727 default:
1728 elem->cmd_len = 1;
1729 }
1730
1731 /* Fill the object specific info */
1732 memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1733
1734 /* Try to add a new command to the pending list */
1735 return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1736 }
1737
1738 /**
1739 * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1740 *
1741 * @bp: device handle
1742 * @p:
1743 *
1744 */
1745 int bnx2x_config_vlan_mac(
1746 struct bnx2x *bp,
1747 struct bnx2x_vlan_mac_ramrod_params *p)
1748 {
1749 int rc = 0;
1750 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1751 unsigned long *ramrod_flags = &p->ramrod_flags;
1752 bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1753 struct bnx2x_raw_obj *raw = &o->raw;
1754
1755 /*
1756 * Add new elements to the execution list for commands that require it.
1757 */
1758 if (!cont) {
1759 rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1760 if (rc)
1761 return rc;
1762 }
1763
1764 /*
1765 * If nothing will be executed further in this iteration we want to
1766 * return PENDING if there are pending commands
1767 */
1768 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1769 rc = 1;
1770
1771 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
1772 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1773 raw->clear_pending(raw);
1774 }
1775
1776 /* Execute commands if required */
1777 if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1778 test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1779 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1780 if (rc < 0)
1781 return rc;
1782 }
1783
1784 /*
1785 * RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1786 * then user want to wait until the last command is done.
1787 */
1788 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1789 /*
1790 * Wait maximum for the current exe_queue length iterations plus
1791 * one (for the current pending command).
1792 */
1793 int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1794
1795 while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1796 max_iterations--) {
1797
1798 /* Wait for the current command to complete */
1799 rc = raw->wait_comp(bp, raw);
1800 if (rc)
1801 return rc;
1802
1803 /* Make a next step */
1804 rc = bnx2x_exe_queue_step(bp, &o->exe_queue,
1805 ramrod_flags);
1806 if (rc < 0)
1807 return rc;
1808 }
1809
1810 return 0;
1811 }
1812
1813 return rc;
1814 }
1815
1816
1817
1818 /**
1819 * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
1820 *
1821 * @bp: device handle
1822 * @o:
1823 * @vlan_mac_flags:
1824 * @ramrod_flags: execution flags to be used for this deletion
1825 *
1826 * if the last operation has completed successfully and there are no
1827 * moreelements left, positive value if the last operation has completed
1828 * successfully and there are more previously configured elements, negative
1829 * value is current operation has failed.
1830 */
1831 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
1832 struct bnx2x_vlan_mac_obj *o,
1833 unsigned long *vlan_mac_flags,
1834 unsigned long *ramrod_flags)
1835 {
1836 struct bnx2x_vlan_mac_registry_elem *pos = NULL;
1837 int rc = 0;
1838 struct bnx2x_vlan_mac_ramrod_params p;
1839 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1840 struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
1841
1842 /* Clear pending commands first */
1843
1844 spin_lock_bh(&exeq->lock);
1845
1846 list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
1847 if (exeq_pos->cmd_data.vlan_mac.vlan_mac_flags ==
1848 *vlan_mac_flags) {
1849 rc = exeq->remove(bp, exeq->owner, exeq_pos);
1850 if (rc) {
1851 BNX2X_ERR("Failed to remove command\n");
1852 spin_unlock_bh(&exeq->lock);
1853 return rc;
1854 }
1855 list_del(&exeq_pos->link);
1856 }
1857 }
1858
1859 spin_unlock_bh(&exeq->lock);
1860
1861 /* Prepare a command request */
1862 memset(&p, 0, sizeof(p));
1863 p.vlan_mac_obj = o;
1864 p.ramrod_flags = *ramrod_flags;
1865 p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
1866
1867 /*
1868 * Add all but the last VLAN-MAC to the execution queue without actually
1869 * execution anything.
1870 */
1871 __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
1872 __clear_bit(RAMROD_EXEC, &p.ramrod_flags);
1873 __clear_bit(RAMROD_CONT, &p.ramrod_flags);
1874
1875 list_for_each_entry(pos, &o->head, link) {
1876 if (pos->vlan_mac_flags == *vlan_mac_flags) {
1877 p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
1878 memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
1879 rc = bnx2x_config_vlan_mac(bp, &p);
1880 if (rc < 0) {
1881 BNX2X_ERR("Failed to add a new DEL command\n");
1882 return rc;
1883 }
1884 }
1885 }
1886
1887 p.ramrod_flags = *ramrod_flags;
1888 __set_bit(RAMROD_CONT, &p.ramrod_flags);
1889
1890 return bnx2x_config_vlan_mac(bp, &p);
1891 }
1892
1893 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
1894 u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
1895 unsigned long *pstate, bnx2x_obj_type type)
1896 {
1897 raw->func_id = func_id;
1898 raw->cid = cid;
1899 raw->cl_id = cl_id;
1900 raw->rdata = rdata;
1901 raw->rdata_mapping = rdata_mapping;
1902 raw->state = state;
1903 raw->pstate = pstate;
1904 raw->obj_type = type;
1905 raw->check_pending = bnx2x_raw_check_pending;
1906 raw->clear_pending = bnx2x_raw_clear_pending;
1907 raw->set_pending = bnx2x_raw_set_pending;
1908 raw->wait_comp = bnx2x_raw_wait;
1909 }
1910
1911 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
1912 u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
1913 int state, unsigned long *pstate, bnx2x_obj_type type,
1914 struct bnx2x_credit_pool_obj *macs_pool,
1915 struct bnx2x_credit_pool_obj *vlans_pool)
1916 {
1917 INIT_LIST_HEAD(&o->head);
1918
1919 o->macs_pool = macs_pool;
1920 o->vlans_pool = vlans_pool;
1921
1922 o->delete_all = bnx2x_vlan_mac_del_all;
1923 o->restore = bnx2x_vlan_mac_restore;
1924 o->complete = bnx2x_complete_vlan_mac;
1925 o->wait = bnx2x_wait_vlan_mac;
1926
1927 bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
1928 state, pstate, type);
1929 }
1930
1931
1932 void bnx2x_init_mac_obj(struct bnx2x *bp,
1933 struct bnx2x_vlan_mac_obj *mac_obj,
1934 u8 cl_id, u32 cid, u8 func_id, void *rdata,
1935 dma_addr_t rdata_mapping, int state,
1936 unsigned long *pstate, bnx2x_obj_type type,
1937 struct bnx2x_credit_pool_obj *macs_pool)
1938 {
1939 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
1940
1941 bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
1942 rdata_mapping, state, pstate, type,
1943 macs_pool, NULL);
1944
1945 /* CAM credit pool handling */
1946 mac_obj->get_credit = bnx2x_get_credit_mac;
1947 mac_obj->put_credit = bnx2x_put_credit_mac;
1948 mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
1949 mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
1950
1951 if (CHIP_IS_E1x(bp)) {
1952 mac_obj->set_one_rule = bnx2x_set_one_mac_e1x;
1953 mac_obj->check_del = bnx2x_check_mac_del;
1954 mac_obj->check_add = bnx2x_check_mac_add;
1955 mac_obj->check_move = bnx2x_check_move_always_err;
1956 mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
1957
1958 /* Exe Queue */
1959 bnx2x_exe_queue_init(bp,
1960 &mac_obj->exe_queue, 1, qable_obj,
1961 bnx2x_validate_vlan_mac,
1962 bnx2x_remove_vlan_mac,
1963 bnx2x_optimize_vlan_mac,
1964 bnx2x_execute_vlan_mac,
1965 bnx2x_exeq_get_mac);
1966 } else {
1967 mac_obj->set_one_rule = bnx2x_set_one_mac_e2;
1968 mac_obj->check_del = bnx2x_check_mac_del;
1969 mac_obj->check_add = bnx2x_check_mac_add;
1970 mac_obj->check_move = bnx2x_check_move;
1971 mac_obj->ramrod_cmd =
1972 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
1973 mac_obj->get_n_elements = bnx2x_get_n_elements;
1974
1975 /* Exe Queue */
1976 bnx2x_exe_queue_init(bp,
1977 &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
1978 qable_obj, bnx2x_validate_vlan_mac,
1979 bnx2x_remove_vlan_mac,
1980 bnx2x_optimize_vlan_mac,
1981 bnx2x_execute_vlan_mac,
1982 bnx2x_exeq_get_mac);
1983 }
1984 }
1985
1986 void bnx2x_init_vlan_obj(struct bnx2x *bp,
1987 struct bnx2x_vlan_mac_obj *vlan_obj,
1988 u8 cl_id, u32 cid, u8 func_id, void *rdata,
1989 dma_addr_t rdata_mapping, int state,
1990 unsigned long *pstate, bnx2x_obj_type type,
1991 struct bnx2x_credit_pool_obj *vlans_pool)
1992 {
1993 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
1994
1995 bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
1996 rdata_mapping, state, pstate, type, NULL,
1997 vlans_pool);
1998
1999 vlan_obj->get_credit = bnx2x_get_credit_vlan;
2000 vlan_obj->put_credit = bnx2x_put_credit_vlan;
2001 vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2002 vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2003
2004 if (CHIP_IS_E1x(bp)) {
2005 BNX2X_ERR("Do not support chips others than E2 and newer\n");
2006 BUG();
2007 } else {
2008 vlan_obj->set_one_rule = bnx2x_set_one_vlan_e2;
2009 vlan_obj->check_del = bnx2x_check_vlan_del;
2010 vlan_obj->check_add = bnx2x_check_vlan_add;
2011 vlan_obj->check_move = bnx2x_check_move;
2012 vlan_obj->ramrod_cmd =
2013 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2014
2015 /* Exe Queue */
2016 bnx2x_exe_queue_init(bp,
2017 &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2018 qable_obj, bnx2x_validate_vlan_mac,
2019 bnx2x_remove_vlan_mac,
2020 bnx2x_optimize_vlan_mac,
2021 bnx2x_execute_vlan_mac,
2022 bnx2x_exeq_get_vlan);
2023 }
2024 }
2025
2026 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2027 struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2028 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2029 dma_addr_t rdata_mapping, int state,
2030 unsigned long *pstate, bnx2x_obj_type type,
2031 struct bnx2x_credit_pool_obj *macs_pool,
2032 struct bnx2x_credit_pool_obj *vlans_pool)
2033 {
2034 union bnx2x_qable_obj *qable_obj =
2035 (union bnx2x_qable_obj *)vlan_mac_obj;
2036
2037 bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2038 rdata_mapping, state, pstate, type,
2039 macs_pool, vlans_pool);
2040
2041 /* CAM pool handling */
2042 vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2043 vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2044 /*
2045 * CAM offset is relevant for 57710 and 57711 chips only which have a
2046 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2047 * will be taken from MACs' pool object only.
2048 */
2049 vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2050 vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2051
2052 if (CHIP_IS_E1(bp)) {
2053 BNX2X_ERR("Do not support chips others than E2\n");
2054 BUG();
2055 } else if (CHIP_IS_E1H(bp)) {
2056 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e1h;
2057 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2058 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2059 vlan_mac_obj->check_move = bnx2x_check_move_always_err;
2060 vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2061
2062 /* Exe Queue */
2063 bnx2x_exe_queue_init(bp,
2064 &vlan_mac_obj->exe_queue, 1, qable_obj,
2065 bnx2x_validate_vlan_mac,
2066 bnx2x_remove_vlan_mac,
2067 bnx2x_optimize_vlan_mac,
2068 bnx2x_execute_vlan_mac,
2069 bnx2x_exeq_get_vlan_mac);
2070 } else {
2071 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e2;
2072 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2073 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2074 vlan_mac_obj->check_move = bnx2x_check_move;
2075 vlan_mac_obj->ramrod_cmd =
2076 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2077
2078 /* Exe Queue */
2079 bnx2x_exe_queue_init(bp,
2080 &vlan_mac_obj->exe_queue,
2081 CLASSIFY_RULES_COUNT,
2082 qable_obj, bnx2x_validate_vlan_mac,
2083 bnx2x_remove_vlan_mac,
2084 bnx2x_optimize_vlan_mac,
2085 bnx2x_execute_vlan_mac,
2086 bnx2x_exeq_get_vlan_mac);
2087 }
2088
2089 }
2090
2091 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2092 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2093 struct tstorm_eth_mac_filter_config *mac_filters,
2094 u16 pf_id)
2095 {
2096 size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2097
2098 u32 addr = BAR_TSTRORM_INTMEM +
2099 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2100
2101 __storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2102 }
2103
2104 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2105 struct bnx2x_rx_mode_ramrod_params *p)
2106 {
2107 /* update the bp MAC filter structure */
2108 u32 mask = (1 << p->cl_id);
2109
2110 struct tstorm_eth_mac_filter_config *mac_filters =
2111 (struct tstorm_eth_mac_filter_config *)p->rdata;
2112
2113 /* initial seeting is drop-all */
2114 u8 drop_all_ucast = 1, drop_all_mcast = 1;
2115 u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2116 u8 unmatched_unicast = 0;
2117
2118 /* In e1x there we only take into account rx acceot flag since tx switching
2119 * isn't enabled. */
2120 if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2121 /* accept matched ucast */
2122 drop_all_ucast = 0;
2123
2124 if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2125 /* accept matched mcast */
2126 drop_all_mcast = 0;
2127
2128 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2129 /* accept all mcast */
2130 drop_all_ucast = 0;
2131 accp_all_ucast = 1;
2132 }
2133 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2134 /* accept all mcast */
2135 drop_all_mcast = 0;
2136 accp_all_mcast = 1;
2137 }
2138 if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2139 /* accept (all) bcast */
2140 accp_all_bcast = 1;
2141 if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2142 /* accept unmatched unicasts */
2143 unmatched_unicast = 1;
2144
2145 mac_filters->ucast_drop_all = drop_all_ucast ?
2146 mac_filters->ucast_drop_all | mask :
2147 mac_filters->ucast_drop_all & ~mask;
2148
2149 mac_filters->mcast_drop_all = drop_all_mcast ?
2150 mac_filters->mcast_drop_all | mask :
2151 mac_filters->mcast_drop_all & ~mask;
2152
2153 mac_filters->ucast_accept_all = accp_all_ucast ?
2154 mac_filters->ucast_accept_all | mask :
2155 mac_filters->ucast_accept_all & ~mask;
2156
2157 mac_filters->mcast_accept_all = accp_all_mcast ?
2158 mac_filters->mcast_accept_all | mask :
2159 mac_filters->mcast_accept_all & ~mask;
2160
2161 mac_filters->bcast_accept_all = accp_all_bcast ?
2162 mac_filters->bcast_accept_all | mask :
2163 mac_filters->bcast_accept_all & ~mask;
2164
2165 mac_filters->unmatched_unicast = unmatched_unicast ?
2166 mac_filters->unmatched_unicast | mask :
2167 mac_filters->unmatched_unicast & ~mask;
2168
2169 DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2170 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2171 mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2172 mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2173 mac_filters->bcast_accept_all);
2174
2175 /* write the MAC filter structure*/
2176 __storm_memset_mac_filters(bp, mac_filters, p->func_id);
2177
2178 /* The operation is completed */
2179 clear_bit(p->state, p->pstate);
2180 smp_mb__after_clear_bit();
2181
2182 return 0;
2183 }
2184
2185 /* Setup ramrod data */
2186 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2187 struct eth_classify_header *hdr,
2188 u8 rule_cnt)
2189 {
2190 hdr->echo = cid;
2191 hdr->rule_cnt = rule_cnt;
2192 }
2193
2194 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2195 unsigned long accept_flags,
2196 struct eth_filter_rules_cmd *cmd,
2197 bool clear_accept_all)
2198 {
2199 u16 state;
2200
2201 /* start with 'drop-all' */
2202 state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2203 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2204
2205 if (accept_flags) {
2206 if (test_bit(BNX2X_ACCEPT_UNICAST, &accept_flags))
2207 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2208
2209 if (test_bit(BNX2X_ACCEPT_MULTICAST, &accept_flags))
2210 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2211
2212 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &accept_flags)) {
2213 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2214 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2215 }
2216
2217 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags)) {
2218 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2219 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2220 }
2221 if (test_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags))
2222 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2223
2224 if (test_bit(BNX2X_ACCEPT_UNMATCHED, &accept_flags)) {
2225 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2226 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2227 }
2228 if (test_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags))
2229 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2230 }
2231
2232 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2233 if (clear_accept_all) {
2234 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2235 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2236 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2237 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2238 }
2239
2240 cmd->state = cpu_to_le16(state);
2241
2242 }
2243
2244 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2245 struct bnx2x_rx_mode_ramrod_params *p)
2246 {
2247 struct eth_filter_rules_ramrod_data *data = p->rdata;
2248 int rc;
2249 u8 rule_idx = 0;
2250
2251 /* Reset the ramrod data buffer */
2252 memset(data, 0, sizeof(*data));
2253
2254 /* Setup ramrod data */
2255
2256 /* Tx (internal switching) */
2257 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2258 data->rules[rule_idx].client_id = p->cl_id;
2259 data->rules[rule_idx].func_id = p->func_id;
2260
2261 data->rules[rule_idx].cmd_general_data =
2262 ETH_FILTER_RULES_CMD_TX_CMD;
2263
2264 bnx2x_rx_mode_set_cmd_state_e2(bp, p->tx_accept_flags,
2265 &(data->rules[rule_idx++]), false);
2266 }
2267
2268 /* Rx */
2269 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2270 data->rules[rule_idx].client_id = p->cl_id;
2271 data->rules[rule_idx].func_id = p->func_id;
2272
2273 data->rules[rule_idx].cmd_general_data =
2274 ETH_FILTER_RULES_CMD_RX_CMD;
2275
2276 bnx2x_rx_mode_set_cmd_state_e2(bp, p->rx_accept_flags,
2277 &(data->rules[rule_idx++]), false);
2278 }
2279
2280
2281 /*
2282 * If FCoE Queue configuration has been requested configure the Rx and
2283 * internal switching modes for this queue in separate rules.
2284 *
2285 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2286 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2287 */
2288 if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2289 /* Tx (internal switching) */
2290 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2291 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2292 data->rules[rule_idx].func_id = p->func_id;
2293
2294 data->rules[rule_idx].cmd_general_data =
2295 ETH_FILTER_RULES_CMD_TX_CMD;
2296
2297 bnx2x_rx_mode_set_cmd_state_e2(bp, p->tx_accept_flags,
2298 &(data->rules[rule_idx++]),
2299 true);
2300 }
2301
2302 /* Rx */
2303 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2304 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2305 data->rules[rule_idx].func_id = p->func_id;
2306
2307 data->rules[rule_idx].cmd_general_data =
2308 ETH_FILTER_RULES_CMD_RX_CMD;
2309
2310 bnx2x_rx_mode_set_cmd_state_e2(bp, p->rx_accept_flags,
2311 &(data->rules[rule_idx++]),
2312 true);
2313 }
2314 }
2315
2316 /*
2317 * Set the ramrod header (most importantly - number of rules to
2318 * configure).
2319 */
2320 bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2321
2322 DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2323 data->header.rule_cnt, p->rx_accept_flags,
2324 p->tx_accept_flags);
2325
2326 /*
2327 * No need for an explicit memory barrier here as long we would
2328 * need to ensure the ordering of writing to the SPQ element
2329 * and updating of the SPQ producer which involves a memory
2330 * read and we will have to put a full memory barrier there
2331 * (inside bnx2x_sp_post()).
2332 */
2333
2334 /* Send a ramrod */
2335 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2336 U64_HI(p->rdata_mapping),
2337 U64_LO(p->rdata_mapping),
2338 ETH_CONNECTION_TYPE);
2339 if (rc)
2340 return rc;
2341
2342 /* Ramrod completion is pending */
2343 return 1;
2344 }
2345
2346 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2347 struct bnx2x_rx_mode_ramrod_params *p)
2348 {
2349 return bnx2x_state_wait(bp, p->state, p->pstate);
2350 }
2351
2352 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2353 struct bnx2x_rx_mode_ramrod_params *p)
2354 {
2355 /* Do nothing */
2356 return 0;
2357 }
2358
2359 int bnx2x_config_rx_mode(struct bnx2x *bp,
2360 struct bnx2x_rx_mode_ramrod_params *p)
2361 {
2362 int rc;
2363
2364 /* Configure the new classification in the chip */
2365 rc = p->rx_mode_obj->config_rx_mode(bp, p);
2366 if (rc < 0)
2367 return rc;
2368
2369 /* Wait for a ramrod completion if was requested */
2370 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2371 rc = p->rx_mode_obj->wait_comp(bp, p);
2372 if (rc)
2373 return rc;
2374 }
2375
2376 return rc;
2377 }
2378
2379 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2380 struct bnx2x_rx_mode_obj *o)
2381 {
2382 if (CHIP_IS_E1x(bp)) {
2383 o->wait_comp = bnx2x_empty_rx_mode_wait;
2384 o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2385 } else {
2386 o->wait_comp = bnx2x_wait_rx_mode_comp_e2;
2387 o->config_rx_mode = bnx2x_set_rx_mode_e2;
2388 }
2389 }
2390
2391 /********************* Multicast verbs: SET, CLEAR ****************************/
2392 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2393 {
2394 return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2395 }
2396
2397 struct bnx2x_mcast_mac_elem {
2398 struct list_head link;
2399 u8 mac[ETH_ALEN];
2400 u8 pad[2]; /* For a natural alignment of the following buffer */
2401 };
2402
2403 struct bnx2x_pending_mcast_cmd {
2404 struct list_head link;
2405 int type; /* BNX2X_MCAST_CMD_X */
2406 union {
2407 struct list_head macs_head;
2408 u32 macs_num; /* Needed for DEL command */
2409 int next_bin; /* Needed for RESTORE flow with aprox match */
2410 } data;
2411
2412 bool done; /* set to true, when the command has been handled,
2413 * practically used in 57712 handling only, where one pending
2414 * command may be handled in a few operations. As long as for
2415 * other chips every operation handling is completed in a
2416 * single ramrod, there is no need to utilize this field.
2417 */
2418 };
2419
2420 static int bnx2x_mcast_wait(struct bnx2x *bp,
2421 struct bnx2x_mcast_obj *o)
2422 {
2423 if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2424 o->raw.wait_comp(bp, &o->raw))
2425 return -EBUSY;
2426
2427 return 0;
2428 }
2429
2430 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2431 struct bnx2x_mcast_obj *o,
2432 struct bnx2x_mcast_ramrod_params *p,
2433 int cmd)
2434 {
2435 int total_sz;
2436 struct bnx2x_pending_mcast_cmd *new_cmd;
2437 struct bnx2x_mcast_mac_elem *cur_mac = NULL;
2438 struct bnx2x_mcast_list_elem *pos;
2439 int macs_list_len = ((cmd == BNX2X_MCAST_CMD_ADD) ?
2440 p->mcast_list_len : 0);
2441
2442 /* If the command is empty ("handle pending commands only"), break */
2443 if (!p->mcast_list_len)
2444 return 0;
2445
2446 total_sz = sizeof(*new_cmd) +
2447 macs_list_len * sizeof(struct bnx2x_mcast_mac_elem);
2448
2449 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2450 new_cmd = kzalloc(total_sz, GFP_ATOMIC);
2451
2452 if (!new_cmd)
2453 return -ENOMEM;
2454
2455 DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2456 cmd, macs_list_len);
2457
2458 INIT_LIST_HEAD(&new_cmd->data.macs_head);
2459
2460 new_cmd->type = cmd;
2461 new_cmd->done = false;
2462
2463 switch (cmd) {
2464 case BNX2X_MCAST_CMD_ADD:
2465 cur_mac = (struct bnx2x_mcast_mac_elem *)
2466 ((u8 *)new_cmd + sizeof(*new_cmd));
2467
2468 /* Push the MACs of the current command into the pendig command
2469 * MACs list: FIFO
2470 */
2471 list_for_each_entry(pos, &p->mcast_list, link) {
2472 memcpy(cur_mac->mac, pos->mac, ETH_ALEN);
2473 list_add_tail(&cur_mac->link, &new_cmd->data.macs_head);
2474 cur_mac++;
2475 }
2476
2477 break;
2478
2479 case BNX2X_MCAST_CMD_DEL:
2480 new_cmd->data.macs_num = p->mcast_list_len;
2481 break;
2482
2483 case BNX2X_MCAST_CMD_RESTORE:
2484 new_cmd->data.next_bin = 0;
2485 break;
2486
2487 default:
2488 BNX2X_ERR("Unknown command: %d\n", cmd);
2489 return -EINVAL;
2490 }
2491
2492 /* Push the new pending command to the tail of the pending list: FIFO */
2493 list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2494
2495 o->set_sched(o);
2496
2497 return 1;
2498 }
2499
2500 /**
2501 * bnx2x_mcast_get_next_bin - get the next set bin (index)
2502 *
2503 * @o:
2504 * @last: index to start looking from (including)
2505 *
2506 * returns the next found (set) bin or a negative value if none is found.
2507 */
2508 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2509 {
2510 int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2511
2512 for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2513 if (o->registry.aprox_match.vec[i])
2514 for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2515 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2516 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2517 vec, cur_bit)) {
2518 return cur_bit;
2519 }
2520 }
2521 inner_start = 0;
2522 }
2523
2524 /* None found */
2525 return -1;
2526 }
2527
2528 /**
2529 * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2530 *
2531 * @o:
2532 *
2533 * returns the index of the found bin or -1 if none is found
2534 */
2535 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2536 {
2537 int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2538
2539 if (cur_bit >= 0)
2540 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2541
2542 return cur_bit;
2543 }
2544
2545 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2546 {
2547 struct bnx2x_raw_obj *raw = &o->raw;
2548 u8 rx_tx_flag = 0;
2549
2550 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2551 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2552 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2553
2554 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2555 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2556 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2557
2558 return rx_tx_flag;
2559 }
2560
2561 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2562 struct bnx2x_mcast_obj *o, int idx,
2563 union bnx2x_mcast_config_data *cfg_data,
2564 int cmd)
2565 {
2566 struct bnx2x_raw_obj *r = &o->raw;
2567 struct eth_multicast_rules_ramrod_data *data =
2568 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2569 u8 func_id = r->func_id;
2570 u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2571 int bin;
2572
2573 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE))
2574 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2575
2576 data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2577
2578 /* Get a bin and update a bins' vector */
2579 switch (cmd) {
2580 case BNX2X_MCAST_CMD_ADD:
2581 bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2582 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2583 break;
2584
2585 case BNX2X_MCAST_CMD_DEL:
2586 /* If there were no more bins to clear
2587 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2588 * clear any (0xff) bin.
2589 * See bnx2x_mcast_validate_e2() for explanation when it may
2590 * happen.
2591 */
2592 bin = bnx2x_mcast_clear_first_bin(o);
2593 break;
2594
2595 case BNX2X_MCAST_CMD_RESTORE:
2596 bin = cfg_data->bin;
2597 break;
2598
2599 default:
2600 BNX2X_ERR("Unknown command: %d\n", cmd);
2601 return;
2602 }
2603
2604 DP(BNX2X_MSG_SP, "%s bin %d\n",
2605 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2606 "Setting" : "Clearing"), bin);
2607
2608 data->rules[idx].bin_id = (u8)bin;
2609 data->rules[idx].func_id = func_id;
2610 data->rules[idx].engine_id = o->engine_id;
2611 }
2612
2613 /**
2614 * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2615 *
2616 * @bp: device handle
2617 * @o:
2618 * @start_bin: index in the registry to start from (including)
2619 * @rdata_idx: index in the ramrod data to start from
2620 *
2621 * returns last handled bin index or -1 if all bins have been handled
2622 */
2623 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2624 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2625 int *rdata_idx)
2626 {
2627 int cur_bin, cnt = *rdata_idx;
2628 union bnx2x_mcast_config_data cfg_data = {0};
2629
2630 /* go through the registry and configure the bins from it */
2631 for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2632 cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2633
2634 cfg_data.bin = (u8)cur_bin;
2635 o->set_one_rule(bp, o, cnt, &cfg_data,
2636 BNX2X_MCAST_CMD_RESTORE);
2637
2638 cnt++;
2639
2640 DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2641
2642 /* Break if we reached the maximum number
2643 * of rules.
2644 */
2645 if (cnt >= o->max_cmd_len)
2646 break;
2647 }
2648
2649 *rdata_idx = cnt;
2650
2651 return cur_bin;
2652 }
2653
2654 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2655 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2656 int *line_idx)
2657 {
2658 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2659 int cnt = *line_idx;
2660 union bnx2x_mcast_config_data cfg_data = {0};
2661
2662 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2663 link) {
2664
2665 cfg_data.mac = &pmac_pos->mac[0];
2666 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2667
2668 cnt++;
2669
2670 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2671 pmac_pos->mac);
2672
2673 list_del(&pmac_pos->link);
2674
2675 /* Break if we reached the maximum number
2676 * of rules.
2677 */
2678 if (cnt >= o->max_cmd_len)
2679 break;
2680 }
2681
2682 *line_idx = cnt;
2683
2684 /* if no more MACs to configure - we are done */
2685 if (list_empty(&cmd_pos->data.macs_head))
2686 cmd_pos->done = true;
2687 }
2688
2689 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2690 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2691 int *line_idx)
2692 {
2693 int cnt = *line_idx;
2694
2695 while (cmd_pos->data.macs_num) {
2696 o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2697
2698 cnt++;
2699
2700 cmd_pos->data.macs_num--;
2701
2702 DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2703 cmd_pos->data.macs_num, cnt);
2704
2705 /* Break if we reached the maximum
2706 * number of rules.
2707 */
2708 if (cnt >= o->max_cmd_len)
2709 break;
2710 }
2711
2712 *line_idx = cnt;
2713
2714 /* If we cleared all bins - we are done */
2715 if (!cmd_pos->data.macs_num)
2716 cmd_pos->done = true;
2717 }
2718
2719 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
2720 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2721 int *line_idx)
2722 {
2723 cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
2724 line_idx);
2725
2726 if (cmd_pos->data.next_bin < 0)
2727 /* If o->set_restore returned -1 we are done */
2728 cmd_pos->done = true;
2729 else
2730 /* Start from the next bin next time */
2731 cmd_pos->data.next_bin++;
2732 }
2733
2734 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
2735 struct bnx2x_mcast_ramrod_params *p)
2736 {
2737 struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
2738 int cnt = 0;
2739 struct bnx2x_mcast_obj *o = p->mcast_obj;
2740
2741 list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
2742 link) {
2743 switch (cmd_pos->type) {
2744 case BNX2X_MCAST_CMD_ADD:
2745 bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
2746 break;
2747
2748 case BNX2X_MCAST_CMD_DEL:
2749 bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
2750 break;
2751
2752 case BNX2X_MCAST_CMD_RESTORE:
2753 bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
2754 &cnt);
2755 break;
2756
2757 default:
2758 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
2759 return -EINVAL;
2760 }
2761
2762 /* If the command has been completed - remove it from the list
2763 * and free the memory
2764 */
2765 if (cmd_pos->done) {
2766 list_del(&cmd_pos->link);
2767 kfree(cmd_pos);
2768 }
2769
2770 /* Break if we reached the maximum number of rules */
2771 if (cnt >= o->max_cmd_len)
2772 break;
2773 }
2774
2775 return cnt;
2776 }
2777
2778 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
2779 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
2780 int *line_idx)
2781 {
2782 struct bnx2x_mcast_list_elem *mlist_pos;
2783 union bnx2x_mcast_config_data cfg_data = {0};
2784 int cnt = *line_idx;
2785
2786 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
2787 cfg_data.mac = mlist_pos->mac;
2788 o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
2789
2790 cnt++;
2791
2792 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2793 mlist_pos->mac);
2794 }
2795
2796 *line_idx = cnt;
2797 }
2798
2799 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
2800 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
2801 int *line_idx)
2802 {
2803 int cnt = *line_idx, i;
2804
2805 for (i = 0; i < p->mcast_list_len; i++) {
2806 o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
2807
2808 cnt++;
2809
2810 DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
2811 p->mcast_list_len - i - 1);
2812 }
2813
2814 *line_idx = cnt;
2815 }
2816
2817 /**
2818 * bnx2x_mcast_handle_current_cmd -
2819 *
2820 * @bp: device handle
2821 * @p:
2822 * @cmd:
2823 * @start_cnt: first line in the ramrod data that may be used
2824 *
2825 * This function is called iff there is enough place for the current command in
2826 * the ramrod data.
2827 * Returns number of lines filled in the ramrod data in total.
2828 */
2829 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
2830 struct bnx2x_mcast_ramrod_params *p, int cmd,
2831 int start_cnt)
2832 {
2833 struct bnx2x_mcast_obj *o = p->mcast_obj;
2834 int cnt = start_cnt;
2835
2836 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
2837
2838 switch (cmd) {
2839 case BNX2X_MCAST_CMD_ADD:
2840 bnx2x_mcast_hdl_add(bp, o, p, &cnt);
2841 break;
2842
2843 case BNX2X_MCAST_CMD_DEL:
2844 bnx2x_mcast_hdl_del(bp, o, p, &cnt);
2845 break;
2846
2847 case BNX2X_MCAST_CMD_RESTORE:
2848 o->hdl_restore(bp, o, 0, &cnt);
2849 break;
2850
2851 default:
2852 BNX2X_ERR("Unknown command: %d\n", cmd);
2853 return -EINVAL;
2854 }
2855
2856 /* The current command has been handled */
2857 p->mcast_list_len = 0;
2858
2859 return cnt;
2860 }
2861
2862 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
2863 struct bnx2x_mcast_ramrod_params *p,
2864 int cmd)
2865 {
2866 struct bnx2x_mcast_obj *o = p->mcast_obj;
2867 int reg_sz = o->get_registry_size(o);
2868
2869 switch (cmd) {
2870 /* DEL command deletes all currently configured MACs */
2871 case BNX2X_MCAST_CMD_DEL:
2872 o->set_registry_size(o, 0);
2873 /* Don't break */
2874
2875 /* RESTORE command will restore the entire multicast configuration */
2876 case BNX2X_MCAST_CMD_RESTORE:
2877 /* Here we set the approximate amount of work to do, which in
2878 * fact may be only less as some MACs in postponed ADD
2879 * command(s) scheduled before this command may fall into
2880 * the same bin and the actual number of bins set in the
2881 * registry would be less than we estimated here. See
2882 * bnx2x_mcast_set_one_rule_e2() for further details.
2883 */
2884 p->mcast_list_len = reg_sz;
2885 break;
2886
2887 case BNX2X_MCAST_CMD_ADD:
2888 case BNX2X_MCAST_CMD_CONT:
2889 /* Here we assume that all new MACs will fall into new bins.
2890 * However we will correct the real registry size after we
2891 * handle all pending commands.
2892 */
2893 o->set_registry_size(o, reg_sz + p->mcast_list_len);
2894 break;
2895
2896 default:
2897 BNX2X_ERR("Unknown command: %d\n", cmd);
2898 return -EINVAL;
2899
2900 }
2901
2902 /* Increase the total number of MACs pending to be configured */
2903 o->total_pending_num += p->mcast_list_len;
2904
2905 return 0;
2906 }
2907
2908 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
2909 struct bnx2x_mcast_ramrod_params *p,
2910 int old_num_bins)
2911 {
2912 struct bnx2x_mcast_obj *o = p->mcast_obj;
2913
2914 o->set_registry_size(o, old_num_bins);
2915 o->total_pending_num -= p->mcast_list_len;
2916 }
2917
2918 /**
2919 * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
2920 *
2921 * @bp: device handle
2922 * @p:
2923 * @len: number of rules to handle
2924 */
2925 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
2926 struct bnx2x_mcast_ramrod_params *p,
2927 u8 len)
2928 {
2929 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
2930 struct eth_multicast_rules_ramrod_data *data =
2931 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2932
2933 data->header.echo = ((r->cid & BNX2X_SWCID_MASK) |
2934 (BNX2X_FILTER_MCAST_PENDING << BNX2X_SWCID_SHIFT));
2935 data->header.rule_cnt = len;
2936 }
2937
2938 /**
2939 * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
2940 *
2941 * @bp: device handle
2942 * @o:
2943 *
2944 * Recalculate the actual number of set bins in the registry using Brian
2945 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
2946 *
2947 * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
2948 */
2949 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
2950 struct bnx2x_mcast_obj *o)
2951 {
2952 int i, cnt = 0;
2953 u64 elem;
2954
2955 for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
2956 elem = o->registry.aprox_match.vec[i];
2957 for (; elem; cnt++)
2958 elem &= elem - 1;
2959 }
2960
2961 o->set_registry_size(o, cnt);
2962
2963 return 0;
2964 }
2965
2966 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
2967 struct bnx2x_mcast_ramrod_params *p,
2968 int cmd)
2969 {
2970 struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
2971 struct bnx2x_mcast_obj *o = p->mcast_obj;
2972 struct eth_multicast_rules_ramrod_data *data =
2973 (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
2974 int cnt = 0, rc;
2975
2976 /* Reset the ramrod data buffer */
2977 memset(data, 0, sizeof(*data));
2978
2979 cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
2980
2981 /* If there are no more pending commands - clear SCHEDULED state */
2982 if (list_empty(&o->pending_cmds_head))
2983 o->clear_sched(o);
2984
2985 /* The below may be true iff there was enough room in ramrod
2986 * data for all pending commands and for the current
2987 * command. Otherwise the current command would have been added
2988 * to the pending commands and p->mcast_list_len would have been
2989 * zeroed.
2990 */
2991 if (p->mcast_list_len > 0)
2992 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
2993
2994 /* We've pulled out some MACs - update the total number of
2995 * outstanding.
2996 */
2997 o->total_pending_num -= cnt;
2998
2999 /* send a ramrod */
3000 WARN_ON(o->total_pending_num < 0);
3001 WARN_ON(cnt > o->max_cmd_len);
3002
3003 bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3004
3005 /* Update a registry size if there are no more pending operations.
3006 *
3007 * We don't want to change the value of the registry size if there are
3008 * pending operations because we want it to always be equal to the
3009 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3010 * set bins after the last requested operation in order to properly
3011 * evaluate the size of the next DEL/RESTORE operation.
3012 *
3013 * Note that we update the registry itself during command(s) handling
3014 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3015 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3016 * with a limited amount of update commands (per MAC/bin) and we don't
3017 * know in this scope what the actual state of bins configuration is
3018 * going to be after this ramrod.
3019 */
3020 if (!o->total_pending_num)
3021 bnx2x_mcast_refresh_registry_e2(bp, o);
3022
3023 /*
3024 * If CLEAR_ONLY was requested - don't send a ramrod and clear
3025 * RAMROD_PENDING status immediately.
3026 */
3027 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3028 raw->clear_pending(raw);
3029 return 0;
3030 } else {
3031 /*
3032 * No need for an explicit memory barrier here as long we would
3033 * need to ensure the ordering of writing to the SPQ element
3034 * and updating of the SPQ producer which involves a memory
3035 * read and we will have to put a full memory barrier there
3036 * (inside bnx2x_sp_post()).
3037 */
3038
3039 /* Send a ramrod */
3040 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3041 raw->cid, U64_HI(raw->rdata_mapping),
3042 U64_LO(raw->rdata_mapping),
3043 ETH_CONNECTION_TYPE);
3044 if (rc)
3045 return rc;
3046
3047 /* Ramrod completion is pending */
3048 return 1;
3049 }
3050 }
3051
3052 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3053 struct bnx2x_mcast_ramrod_params *p,
3054 int cmd)
3055 {
3056 /* Mark, that there is a work to do */
3057 if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3058 p->mcast_list_len = 1;
3059
3060 return 0;
3061 }
3062
3063 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3064 struct bnx2x_mcast_ramrod_params *p,
3065 int old_num_bins)
3066 {
3067 /* Do nothing */
3068 }
3069
3070 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3071 do { \
3072 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3073 } while (0)
3074
3075 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3076 struct bnx2x_mcast_obj *o,
3077 struct bnx2x_mcast_ramrod_params *p,
3078 u32 *mc_filter)
3079 {
3080 struct bnx2x_mcast_list_elem *mlist_pos;
3081 int bit;
3082
3083 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3084 bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3085 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3086
3087 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3088 mlist_pos->mac, bit);
3089
3090 /* bookkeeping... */
3091 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3092 bit);
3093 }
3094 }
3095
3096 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3097 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3098 u32 *mc_filter)
3099 {
3100 int bit;
3101
3102 for (bit = bnx2x_mcast_get_next_bin(o, 0);
3103 bit >= 0;
3104 bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3105 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3106 DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3107 }
3108 }
3109
3110 /* On 57711 we write the multicast MACs' aproximate match
3111 * table by directly into the TSTORM's internal RAM. So we don't
3112 * really need to handle any tricks to make it work.
3113 */
3114 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3115 struct bnx2x_mcast_ramrod_params *p,
3116 int cmd)
3117 {
3118 int i;
3119 struct bnx2x_mcast_obj *o = p->mcast_obj;
3120 struct bnx2x_raw_obj *r = &o->raw;
3121
3122 /* If CLEAR_ONLY has been requested - clear the registry
3123 * and clear a pending bit.
3124 */
3125 if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3126 u32 mc_filter[MC_HASH_SIZE] = {0};
3127
3128 /* Set the multicast filter bits before writing it into
3129 * the internal memory.
3130 */
3131 switch (cmd) {
3132 case BNX2X_MCAST_CMD_ADD:
3133 bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3134 break;
3135
3136 case BNX2X_MCAST_CMD_DEL:
3137 DP(BNX2X_MSG_SP,
3138 "Invalidating multicast MACs configuration\n");
3139
3140 /* clear the registry */
3141 memset(o->registry.aprox_match.vec, 0,
3142 sizeof(o->registry.aprox_match.vec));
3143 break;
3144
3145 case BNX2X_MCAST_CMD_RESTORE:
3146 bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3147 break;
3148
3149 default:
3150 BNX2X_ERR("Unknown command: %d\n", cmd);
3151 return -EINVAL;
3152 }
3153
3154 /* Set the mcast filter in the internal memory */
3155 for (i = 0; i < MC_HASH_SIZE; i++)
3156 REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3157 } else
3158 /* clear the registry */
3159 memset(o->registry.aprox_match.vec, 0,
3160 sizeof(o->registry.aprox_match.vec));
3161
3162 /* We are done */
3163 r->clear_pending(r);
3164
3165 return 0;
3166 }
3167
3168 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3169 struct bnx2x_mcast_ramrod_params *p,
3170 int cmd)
3171 {
3172 struct bnx2x_mcast_obj *o = p->mcast_obj;
3173 int reg_sz = o->get_registry_size(o);
3174
3175 switch (cmd) {
3176 /* DEL command deletes all currently configured MACs */
3177 case BNX2X_MCAST_CMD_DEL:
3178 o->set_registry_size(o, 0);
3179 /* Don't break */
3180
3181 /* RESTORE command will restore the entire multicast configuration */
3182 case BNX2X_MCAST_CMD_RESTORE:
3183 p->mcast_list_len = reg_sz;
3184 DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3185 cmd, p->mcast_list_len);
3186 break;
3187
3188 case BNX2X_MCAST_CMD_ADD:
3189 case BNX2X_MCAST_CMD_CONT:
3190 /* Multicast MACs on 57710 are configured as unicast MACs and
3191 * there is only a limited number of CAM entries for that
3192 * matter.
3193 */
3194 if (p->mcast_list_len > o->max_cmd_len) {
3195 BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3196 o->max_cmd_len);
3197 return -EINVAL;
3198 }
3199 /* Every configured MAC should be cleared if DEL command is
3200 * called. Only the last ADD command is relevant as long as
3201 * every ADD commands overrides the previous configuration.
3202 */
3203 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3204 if (p->mcast_list_len > 0)
3205 o->set_registry_size(o, p->mcast_list_len);
3206
3207 break;
3208
3209 default:
3210 BNX2X_ERR("Unknown command: %d\n", cmd);
3211 return -EINVAL;
3212
3213 }
3214
3215 /* We want to ensure that commands are executed one by one for 57710.
3216 * Therefore each none-empty command will consume o->max_cmd_len.
3217 */
3218 if (p->mcast_list_len)
3219 o->total_pending_num += o->max_cmd_len;
3220
3221 return 0;
3222 }
3223
3224 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3225 struct bnx2x_mcast_ramrod_params *p,
3226 int old_num_macs)
3227 {
3228 struct bnx2x_mcast_obj *o = p->mcast_obj;
3229
3230 o->set_registry_size(o, old_num_macs);
3231
3232 /* If current command hasn't been handled yet and we are
3233 * here means that it's meant to be dropped and we have to
3234 * update the number of outstandling MACs accordingly.
3235 */
3236 if (p->mcast_list_len)
3237 o->total_pending_num -= o->max_cmd_len;
3238 }
3239
3240 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3241 struct bnx2x_mcast_obj *o, int idx,
3242 union bnx2x_mcast_config_data *cfg_data,
3243 int cmd)
3244 {
3245 struct bnx2x_raw_obj *r = &o->raw;
3246 struct mac_configuration_cmd *data =
3247 (struct mac_configuration_cmd *)(r->rdata);
3248
3249 /* copy mac */
3250 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3251 bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3252 &data->config_table[idx].middle_mac_addr,
3253 &data->config_table[idx].lsb_mac_addr,
3254 cfg_data->mac);
3255
3256 data->config_table[idx].vlan_id = 0;
3257 data->config_table[idx].pf_id = r->func_id;
3258 data->config_table[idx].clients_bit_vector =
3259 cpu_to_le32(1 << r->cl_id);
3260
3261 SET_FLAG(data->config_table[idx].flags,
3262 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3263 T_ETH_MAC_COMMAND_SET);
3264 }
3265 }
3266
3267 /**
3268 * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3269 *
3270 * @bp: device handle
3271 * @p:
3272 * @len: number of rules to handle
3273 */
3274 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3275 struct bnx2x_mcast_ramrod_params *p,
3276 u8 len)
3277 {
3278 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3279 struct mac_configuration_cmd *data =
3280 (struct mac_configuration_cmd *)(r->rdata);
3281
3282 u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3283 BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3284 BNX2X_MAX_MULTICAST*(1 + r->func_id));
3285
3286 data->hdr.offset = offset;
3287 data->hdr.client_id = 0xff;
3288 data->hdr.echo = ((r->cid & BNX2X_SWCID_MASK) |
3289 (BNX2X_FILTER_MCAST_PENDING << BNX2X_SWCID_SHIFT));
3290 data->hdr.length = len;
3291 }
3292
3293 /**
3294 * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3295 *
3296 * @bp: device handle
3297 * @o:
3298 * @start_idx: index in the registry to start from
3299 * @rdata_idx: index in the ramrod data to start from
3300 *
3301 * restore command for 57710 is like all other commands - always a stand alone
3302 * command - start_idx and rdata_idx will always be 0. This function will always
3303 * succeed.
3304 * returns -1 to comply with 57712 variant.
3305 */
3306 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3307 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3308 int *rdata_idx)
3309 {
3310 struct bnx2x_mcast_mac_elem *elem;
3311 int i = 0;
3312 union bnx2x_mcast_config_data cfg_data = {0};
3313
3314 /* go through the registry and configure the MACs from it. */
3315 list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3316 cfg_data.mac = &elem->mac[0];
3317 o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3318
3319 i++;
3320
3321 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3322 cfg_data.mac);
3323 }
3324
3325 *rdata_idx = i;
3326
3327 return -1;
3328 }
3329
3330
3331 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3332 struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3333 {
3334 struct bnx2x_pending_mcast_cmd *cmd_pos;
3335 struct bnx2x_mcast_mac_elem *pmac_pos;
3336 struct bnx2x_mcast_obj *o = p->mcast_obj;
3337 union bnx2x_mcast_config_data cfg_data = {0};
3338 int cnt = 0;
3339
3340
3341 /* If nothing to be done - return */
3342 if (list_empty(&o->pending_cmds_head))
3343 return 0;
3344
3345 /* Handle the first command */
3346 cmd_pos = list_first_entry(&o->pending_cmds_head,
3347 struct bnx2x_pending_mcast_cmd, link);
3348
3349 switch (cmd_pos->type) {
3350 case BNX2X_MCAST_CMD_ADD:
3351 list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3352 cfg_data.mac = &pmac_pos->mac[0];
3353 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3354
3355 cnt++;
3356
3357 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3358 pmac_pos->mac);
3359 }
3360 break;
3361
3362 case BNX2X_MCAST_CMD_DEL:
3363 cnt = cmd_pos->data.macs_num;
3364 DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3365 break;
3366
3367 case BNX2X_MCAST_CMD_RESTORE:
3368 o->hdl_restore(bp, o, 0, &cnt);
3369 break;
3370
3371 default:
3372 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3373 return -EINVAL;
3374 }
3375
3376 list_del(&cmd_pos->link);
3377 kfree(cmd_pos);
3378
3379 return cnt;
3380 }
3381
3382 /**
3383 * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3384 *
3385 * @fw_hi:
3386 * @fw_mid:
3387 * @fw_lo:
3388 * @mac:
3389 */
3390 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3391 __le16 *fw_lo, u8 *mac)
3392 {
3393 mac[1] = ((u8 *)fw_hi)[0];
3394 mac[0] = ((u8 *)fw_hi)[1];
3395 mac[3] = ((u8 *)fw_mid)[0];
3396 mac[2] = ((u8 *)fw_mid)[1];
3397 mac[5] = ((u8 *)fw_lo)[0];
3398 mac[4] = ((u8 *)fw_lo)[1];
3399 }
3400
3401 /**
3402 * bnx2x_mcast_refresh_registry_e1 -
3403 *
3404 * @bp: device handle
3405 * @cnt:
3406 *
3407 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3408 * and update the registry correspondingly: if ADD - allocate a memory and add
3409 * the entries to the registry (list), if DELETE - clear the registry and free
3410 * the memory.
3411 */
3412 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3413 struct bnx2x_mcast_obj *o)
3414 {
3415 struct bnx2x_raw_obj *raw = &o->raw;
3416 struct bnx2x_mcast_mac_elem *elem;
3417 struct mac_configuration_cmd *data =
3418 (struct mac_configuration_cmd *)(raw->rdata);
3419
3420 /* If first entry contains a SET bit - the command was ADD,
3421 * otherwise - DEL_ALL
3422 */
3423 if (GET_FLAG(data->config_table[0].flags,
3424 MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3425 int i, len = data->hdr.length;
3426
3427 /* Break if it was a RESTORE command */
3428 if (!list_empty(&o->registry.exact_match.macs))
3429 return 0;
3430
3431 elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3432 if (!elem) {
3433 BNX2X_ERR("Failed to allocate registry memory\n");
3434 return -ENOMEM;
3435 }
3436
3437 for (i = 0; i < len; i++, elem++) {
3438 bnx2x_get_fw_mac_addr(
3439 &data->config_table[i].msb_mac_addr,
3440 &data->config_table[i].middle_mac_addr,
3441 &data->config_table[i].lsb_mac_addr,
3442 elem->mac);
3443 DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3444 elem->mac);
3445 list_add_tail(&elem->link,
3446 &o->registry.exact_match.macs);
3447 }
3448 } else {
3449 elem = list_first_entry(&o->registry.exact_match.macs,
3450 struct bnx2x_mcast_mac_elem, link);
3451 DP(BNX2X_MSG_SP, "Deleting a registry\n");
3452 kfree(elem);
3453 INIT_LIST_HEAD(&o->registry.exact_match.macs);
3454 }
3455
3456 return 0;
3457 }
3458
3459 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3460 struct bnx2x_mcast_ramrod_params *p,
3461 int cmd)
3462 {
3463 struct bnx2x_mcast_obj *o = p->mcast_obj;
3464 struct bnx2x_raw_obj *raw = &o->raw;
3465 struct mac_configuration_cmd *data =
3466 (struct mac_configuration_cmd *)(raw->rdata);
3467 int cnt = 0, i, rc;
3468
3469 /* Reset the ramrod data buffer */
3470 memset(data, 0, sizeof(*data));
3471
3472 /* First set all entries as invalid */
3473 for (i = 0; i < o->max_cmd_len ; i++)
3474 SET_FLAG(data->config_table[i].flags,
3475 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3476 T_ETH_MAC_COMMAND_INVALIDATE);
3477
3478 /* Handle pending commands first */
3479 cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3480
3481 /* If there are no more pending commands - clear SCHEDULED state */
3482 if (list_empty(&o->pending_cmds_head))
3483 o->clear_sched(o);
3484
3485 /* The below may be true iff there were no pending commands */
3486 if (!cnt)
3487 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3488
3489 /* For 57710 every command has o->max_cmd_len length to ensure that
3490 * commands are done one at a time.
3491 */
3492 o->total_pending_num -= o->max_cmd_len;
3493
3494 /* send a ramrod */
3495
3496 WARN_ON(cnt > o->max_cmd_len);
3497
3498 /* Set ramrod header (in particular, a number of entries to update) */
3499 bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3500
3501 /* update a registry: we need the registry contents to be always up
3502 * to date in order to be able to execute a RESTORE opcode. Here
3503 * we use the fact that for 57710 we sent one command at a time
3504 * hence we may take the registry update out of the command handling
3505 * and do it in a simpler way here.
3506 */
3507 rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3508 if (rc)
3509 return rc;
3510
3511 /*
3512 * If CLEAR_ONLY was requested - don't send a ramrod and clear
3513 * RAMROD_PENDING status immediately.
3514 */
3515 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3516 raw->clear_pending(raw);
3517 return 0;
3518 } else {
3519 /*
3520 * No need for an explicit memory barrier here as long we would
3521 * need to ensure the ordering of writing to the SPQ element
3522 * and updating of the SPQ producer which involves a memory
3523 * read and we will have to put a full memory barrier there
3524 * (inside bnx2x_sp_post()).
3525 */
3526
3527 /* Send a ramrod */
3528 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3529 U64_HI(raw->rdata_mapping),
3530 U64_LO(raw->rdata_mapping),
3531 ETH_CONNECTION_TYPE);
3532 if (rc)
3533 return rc;
3534
3535 /* Ramrod completion is pending */
3536 return 1;
3537 }
3538
3539 }
3540
3541 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3542 {
3543 return o->registry.exact_match.num_macs_set;
3544 }
3545
3546 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3547 {
3548 return o->registry.aprox_match.num_bins_set;
3549 }
3550
3551 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3552 int n)
3553 {
3554 o->registry.exact_match.num_macs_set = n;
3555 }
3556
3557 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3558 int n)
3559 {
3560 o->registry.aprox_match.num_bins_set = n;
3561 }
3562
3563 int bnx2x_config_mcast(struct bnx2x *bp,
3564 struct bnx2x_mcast_ramrod_params *p,
3565 int cmd)
3566 {
3567 struct bnx2x_mcast_obj *o = p->mcast_obj;
3568 struct bnx2x_raw_obj *r = &o->raw;
3569 int rc = 0, old_reg_size;
3570
3571 /* This is needed to recover number of currently configured mcast macs
3572 * in case of failure.
3573 */
3574 old_reg_size = o->get_registry_size(o);
3575
3576 /* Do some calculations and checks */
3577 rc = o->validate(bp, p, cmd);
3578 if (rc)
3579 return rc;
3580
3581 /* Return if there is no work to do */
3582 if ((!p->mcast_list_len) && (!o->check_sched(o)))
3583 return 0;
3584
3585 DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3586 o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
3587
3588 /* Enqueue the current command to the pending list if we can't complete
3589 * it in the current iteration
3590 */
3591 if (r->check_pending(r) ||
3592 ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
3593 rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
3594 if (rc < 0)
3595 goto error_exit1;
3596
3597 /* As long as the current command is in a command list we
3598 * don't need to handle it separately.
3599 */
3600 p->mcast_list_len = 0;
3601 }
3602
3603 if (!r->check_pending(r)) {
3604
3605 /* Set 'pending' state */
3606 r->set_pending(r);
3607
3608 /* Configure the new classification in the chip */
3609 rc = o->config_mcast(bp, p, cmd);
3610 if (rc < 0)
3611 goto error_exit2;
3612
3613 /* Wait for a ramrod completion if was requested */
3614 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
3615 rc = o->wait_comp(bp, o);
3616 }
3617
3618 return rc;
3619
3620 error_exit2:
3621 r->clear_pending(r);
3622
3623 error_exit1:
3624 o->revert(bp, p, old_reg_size);
3625
3626 return rc;
3627 }
3628
3629 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
3630 {
3631 smp_mb__before_clear_bit();
3632 clear_bit(o->sched_state, o->raw.pstate);
3633 smp_mb__after_clear_bit();
3634 }
3635
3636 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
3637 {
3638 smp_mb__before_clear_bit();
3639 set_bit(o->sched_state, o->raw.pstate);
3640 smp_mb__after_clear_bit();
3641 }
3642
3643 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
3644 {
3645 return !!test_bit(o->sched_state, o->raw.pstate);
3646 }
3647
3648 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
3649 {
3650 return o->raw.check_pending(&o->raw) || o->check_sched(o);
3651 }
3652
3653 void bnx2x_init_mcast_obj(struct bnx2x *bp,
3654 struct bnx2x_mcast_obj *mcast_obj,
3655 u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
3656 u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
3657 int state, unsigned long *pstate, bnx2x_obj_type type)
3658 {
3659 memset(mcast_obj, 0, sizeof(*mcast_obj));
3660
3661 bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
3662 rdata, rdata_mapping, state, pstate, type);
3663
3664 mcast_obj->engine_id = engine_id;
3665
3666 INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
3667
3668 mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
3669 mcast_obj->check_sched = bnx2x_mcast_check_sched;
3670 mcast_obj->set_sched = bnx2x_mcast_set_sched;
3671 mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
3672
3673 if (CHIP_IS_E1(bp)) {
3674 mcast_obj->config_mcast = bnx2x_mcast_setup_e1;
3675 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
3676 mcast_obj->hdl_restore =
3677 bnx2x_mcast_handle_restore_cmd_e1;
3678 mcast_obj->check_pending = bnx2x_mcast_check_pending;
3679
3680 if (CHIP_REV_IS_SLOW(bp))
3681 mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
3682 else
3683 mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
3684
3685 mcast_obj->wait_comp = bnx2x_mcast_wait;
3686 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e1;
3687 mcast_obj->validate = bnx2x_mcast_validate_e1;
3688 mcast_obj->revert = bnx2x_mcast_revert_e1;
3689 mcast_obj->get_registry_size =
3690 bnx2x_mcast_get_registry_size_exact;
3691 mcast_obj->set_registry_size =
3692 bnx2x_mcast_set_registry_size_exact;
3693
3694 /* 57710 is the only chip that uses the exact match for mcast
3695 * at the moment.
3696 */
3697 INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
3698
3699 } else if (CHIP_IS_E1H(bp)) {
3700 mcast_obj->config_mcast = bnx2x_mcast_setup_e1h;
3701 mcast_obj->enqueue_cmd = NULL;
3702 mcast_obj->hdl_restore = NULL;
3703 mcast_obj->check_pending = bnx2x_mcast_check_pending;
3704
3705 /* 57711 doesn't send a ramrod, so it has unlimited credit
3706 * for one command.
3707 */
3708 mcast_obj->max_cmd_len = -1;
3709 mcast_obj->wait_comp = bnx2x_mcast_wait;
3710 mcast_obj->set_one_rule = NULL;
3711 mcast_obj->validate = bnx2x_mcast_validate_e1h;
3712 mcast_obj->revert = bnx2x_mcast_revert_e1h;
3713 mcast_obj->get_registry_size =
3714 bnx2x_mcast_get_registry_size_aprox;
3715 mcast_obj->set_registry_size =
3716 bnx2x_mcast_set_registry_size_aprox;
3717 } else {
3718 mcast_obj->config_mcast = bnx2x_mcast_setup_e2;
3719 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
3720 mcast_obj->hdl_restore =
3721 bnx2x_mcast_handle_restore_cmd_e2;
3722 mcast_obj->check_pending = bnx2x_mcast_check_pending;
3723 /* TODO: There should be a proper HSI define for this number!!!
3724 */
3725 mcast_obj->max_cmd_len = 16;
3726 mcast_obj->wait_comp = bnx2x_mcast_wait;
3727 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e2;
3728 mcast_obj->validate = bnx2x_mcast_validate_e2;
3729 mcast_obj->revert = bnx2x_mcast_revert_e2;
3730 mcast_obj->get_registry_size =
3731 bnx2x_mcast_get_registry_size_aprox;
3732 mcast_obj->set_registry_size =
3733 bnx2x_mcast_set_registry_size_aprox;
3734 }
3735 }
3736
3737 /*************************** Credit handling **********************************/
3738
3739 /**
3740 * atomic_add_ifless - add if the result is less than a given value.
3741 *
3742 * @v: pointer of type atomic_t
3743 * @a: the amount to add to v...
3744 * @u: ...if (v + a) is less than u.
3745 *
3746 * returns true if (v + a) was less than u, and false otherwise.
3747 *
3748 */
3749 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
3750 {
3751 int c, old;
3752
3753 c = atomic_read(v);
3754 for (;;) {
3755 if (unlikely(c + a >= u))
3756 return false;
3757
3758 old = atomic_cmpxchg((v), c, c + a);
3759 if (likely(old == c))
3760 break;
3761 c = old;
3762 }
3763
3764 return true;
3765 }
3766
3767 /**
3768 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
3769 *
3770 * @v: pointer of type atomic_t
3771 * @a: the amount to dec from v...
3772 * @u: ...if (v - a) is more or equal than u.
3773 *
3774 * returns true if (v - a) was more or equal than u, and false
3775 * otherwise.
3776 */
3777 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
3778 {
3779 int c, old;
3780
3781 c = atomic_read(v);
3782 for (;;) {
3783 if (unlikely(c - a < u))
3784 return false;
3785
3786 old = atomic_cmpxchg((v), c, c - a);
3787 if (likely(old == c))
3788 break;
3789 c = old;
3790 }
3791
3792 return true;
3793 }
3794
3795 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
3796 {
3797 bool rc;
3798
3799 smp_mb();
3800 rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
3801 smp_mb();
3802
3803 return rc;
3804 }
3805
3806 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
3807 {
3808 bool rc;
3809
3810 smp_mb();
3811
3812 /* Don't let to refill if credit + cnt > pool_sz */
3813 rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
3814
3815 smp_mb();
3816
3817 return rc;
3818 }
3819
3820 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
3821 {
3822 int cur_credit;
3823
3824 smp_mb();
3825 cur_credit = atomic_read(&o->credit);
3826
3827 return cur_credit;
3828 }
3829
3830 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
3831 int cnt)
3832 {
3833 return true;
3834 }
3835
3836
3837 static bool bnx2x_credit_pool_get_entry(
3838 struct bnx2x_credit_pool_obj *o,
3839 int *offset)
3840 {
3841 int idx, vec, i;
3842
3843 *offset = -1;
3844
3845 /* Find "internal cam-offset" then add to base for this object... */
3846 for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
3847
3848 /* Skip the current vector if there are no free entries in it */
3849 if (!o->pool_mirror[vec])
3850 continue;
3851
3852 /* If we've got here we are going to find a free entry */
3853 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
3854 i < BIT_VEC64_ELEM_SZ; idx++, i++)
3855
3856 if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
3857 /* Got one!! */
3858 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
3859 *offset = o->base_pool_offset + idx;
3860 return true;
3861 }
3862 }
3863
3864 return false;
3865 }
3866
3867 static bool bnx2x_credit_pool_put_entry(
3868 struct bnx2x_credit_pool_obj *o,
3869 int offset)
3870 {
3871 if (offset < o->base_pool_offset)
3872 return false;
3873
3874 offset -= o->base_pool_offset;
3875
3876 if (offset >= o->pool_sz)
3877 return false;
3878
3879 /* Return the entry to the pool */
3880 BIT_VEC64_SET_BIT(o->pool_mirror, offset);
3881
3882 return true;
3883 }
3884
3885 static bool bnx2x_credit_pool_put_entry_always_true(
3886 struct bnx2x_credit_pool_obj *o,
3887 int offset)
3888 {
3889 return true;
3890 }
3891
3892 static bool bnx2x_credit_pool_get_entry_always_true(
3893 struct bnx2x_credit_pool_obj *o,
3894 int *offset)
3895 {
3896 *offset = -1;
3897 return true;
3898 }
3899 /**
3900 * bnx2x_init_credit_pool - initialize credit pool internals.
3901 *
3902 * @p:
3903 * @base: Base entry in the CAM to use.
3904 * @credit: pool size.
3905 *
3906 * If base is negative no CAM entries handling will be performed.
3907 * If credit is negative pool operations will always succeed (unlimited pool).
3908 *
3909 */
3910 static inline void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
3911 int base, int credit)
3912 {
3913 /* Zero the object first */
3914 memset(p, 0, sizeof(*p));
3915
3916 /* Set the table to all 1s */
3917 memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
3918
3919 /* Init a pool as full */
3920 atomic_set(&p->credit, credit);
3921
3922 /* The total poll size */
3923 p->pool_sz = credit;
3924
3925 p->base_pool_offset = base;
3926
3927 /* Commit the change */
3928 smp_mb();
3929
3930 p->check = bnx2x_credit_pool_check;
3931
3932 /* if pool credit is negative - disable the checks */
3933 if (credit >= 0) {
3934 p->put = bnx2x_credit_pool_put;
3935 p->get = bnx2x_credit_pool_get;
3936 p->put_entry = bnx2x_credit_pool_put_entry;
3937 p->get_entry = bnx2x_credit_pool_get_entry;
3938 } else {
3939 p->put = bnx2x_credit_pool_always_true;
3940 p->get = bnx2x_credit_pool_always_true;
3941 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
3942 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
3943 }
3944
3945 /* If base is negative - disable entries handling */
3946 if (base < 0) {
3947 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
3948 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
3949 }
3950 }
3951
3952 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
3953 struct bnx2x_credit_pool_obj *p, u8 func_id,
3954 u8 func_num)
3955 {
3956 /* TODO: this will be defined in consts as well... */
3957 #define BNX2X_CAM_SIZE_EMUL 5
3958
3959 int cam_sz;
3960
3961 if (CHIP_IS_E1(bp)) {
3962 /* In E1, Multicast is saved in cam... */
3963 if (!CHIP_REV_IS_SLOW(bp))
3964 cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
3965 else
3966 cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
3967
3968 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
3969
3970 } else if (CHIP_IS_E1H(bp)) {
3971 /* CAM credit is equaly divided between all active functions
3972 * on the PORT!.
3973 */
3974 if ((func_num > 0)) {
3975 if (!CHIP_REV_IS_SLOW(bp))
3976 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
3977 else
3978 cam_sz = BNX2X_CAM_SIZE_EMUL;
3979 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
3980 } else {
3981 /* this should never happen! Block MAC operations. */
3982 bnx2x_init_credit_pool(p, 0, 0);
3983 }
3984
3985 } else {
3986
3987 /*
3988 * CAM credit is equaly divided between all active functions
3989 * on the PATH.
3990 */
3991 if ((func_num > 0)) {
3992 if (!CHIP_REV_IS_SLOW(bp))
3993 cam_sz = (MAX_MAC_CREDIT_E2 / func_num);
3994 else
3995 cam_sz = BNX2X_CAM_SIZE_EMUL;
3996
3997 /*
3998 * No need for CAM entries handling for 57712 and
3999 * newer.
4000 */
4001 bnx2x_init_credit_pool(p, -1, cam_sz);
4002 } else {
4003 /* this should never happen! Block MAC operations. */
4004 bnx2x_init_credit_pool(p, 0, 0);
4005 }
4006
4007 }
4008 }
4009
4010 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4011 struct bnx2x_credit_pool_obj *p,
4012 u8 func_id,
4013 u8 func_num)
4014 {
4015 if (CHIP_IS_E1x(bp)) {
4016 /*
4017 * There is no VLAN credit in HW on 57710 and 57711 only
4018 * MAC / MAC-VLAN can be set
4019 */
4020 bnx2x_init_credit_pool(p, 0, -1);
4021 } else {
4022 /*
4023 * CAM credit is equaly divided between all active functions
4024 * on the PATH.
4025 */
4026 if (func_num > 0) {
4027 int credit = MAX_VLAN_CREDIT_E2 / func_num;
4028 bnx2x_init_credit_pool(p, func_id * credit, credit);
4029 } else
4030 /* this should never happen! Block VLAN operations. */
4031 bnx2x_init_credit_pool(p, 0, 0);
4032 }
4033 }
4034
4035 /****************** RSS Configuration ******************/
4036 /**
4037 * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4038 *
4039 * @bp: driver hanlde
4040 * @p: pointer to rss configuration
4041 *
4042 * Prints it when NETIF_MSG_IFUP debug level is configured.
4043 */
4044 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4045 struct bnx2x_config_rss_params *p)
4046 {
4047 int i;
4048
4049 DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4050 DP(BNX2X_MSG_SP, "0x0000: ");
4051 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4052 DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4053
4054 /* Print 4 bytes in a line */
4055 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4056 (((i + 1) & 0x3) == 0)) {
4057 DP_CONT(BNX2X_MSG_SP, "\n");
4058 DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4059 }
4060 }
4061
4062 DP_CONT(BNX2X_MSG_SP, "\n");
4063 }
4064
4065 /**
4066 * bnx2x_setup_rss - configure RSS
4067 *
4068 * @bp: device handle
4069 * @p: rss configuration
4070 *
4071 * sends on UPDATE ramrod for that matter.
4072 */
4073 static int bnx2x_setup_rss(struct bnx2x *bp,
4074 struct bnx2x_config_rss_params *p)
4075 {
4076 struct bnx2x_rss_config_obj *o = p->rss_obj;
4077 struct bnx2x_raw_obj *r = &o->raw;
4078 struct eth_rss_update_ramrod_data *data =
4079 (struct eth_rss_update_ramrod_data *)(r->rdata);
4080 u8 rss_mode = 0;
4081 int rc;
4082
4083 memset(data, 0, sizeof(*data));
4084
4085 DP(BNX2X_MSG_SP, "Configuring RSS\n");
4086
4087 /* Set an echo field */
4088 data->echo = (r->cid & BNX2X_SWCID_MASK) |
4089 (r->state << BNX2X_SWCID_SHIFT);
4090
4091 /* RSS mode */
4092 if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4093 rss_mode = ETH_RSS_MODE_DISABLED;
4094 else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4095 rss_mode = ETH_RSS_MODE_REGULAR;
4096
4097 data->rss_mode = rss_mode;
4098
4099 DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4100
4101 /* RSS capabilities */
4102 if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4103 data->capabilities |=
4104 ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4105
4106 if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4107 data->capabilities |=
4108 ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4109
4110 if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4111 data->capabilities |=
4112 ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4113
4114 if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4115 data->capabilities |=
4116 ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4117
4118 if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4119 data->capabilities |=
4120 ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4121
4122 if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4123 data->capabilities |=
4124 ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4125
4126 /* Hashing mask */
4127 data->rss_result_mask = p->rss_result_mask;
4128
4129 /* RSS engine ID */
4130 data->rss_engine_id = o->engine_id;
4131
4132 DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4133
4134 /* Indirection table */
4135 memcpy(data->indirection_table, p->ind_table,
4136 T_ETH_INDIRECTION_TABLE_SIZE);
4137
4138 /* Remember the last configuration */
4139 memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4140
4141 /* Print the indirection table */
4142 if (netif_msg_ifup(bp))
4143 bnx2x_debug_print_ind_table(bp, p);
4144
4145 /* RSS keys */
4146 if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4147 memcpy(&data->rss_key[0], &p->rss_key[0],
4148 sizeof(data->rss_key));
4149 data->capabilities |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4150 }
4151
4152 /*
4153 * No need for an explicit memory barrier here as long we would
4154 * need to ensure the ordering of writing to the SPQ element
4155 * and updating of the SPQ producer which involves a memory
4156 * read and we will have to put a full memory barrier there
4157 * (inside bnx2x_sp_post()).
4158 */
4159
4160 /* Send a ramrod */
4161 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4162 U64_HI(r->rdata_mapping),
4163 U64_LO(r->rdata_mapping),
4164 ETH_CONNECTION_TYPE);
4165
4166 if (rc < 0)
4167 return rc;
4168
4169 return 1;
4170 }
4171
4172 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4173 u8 *ind_table)
4174 {
4175 memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4176 }
4177
4178 int bnx2x_config_rss(struct bnx2x *bp,
4179 struct bnx2x_config_rss_params *p)
4180 {
4181 int rc;
4182 struct bnx2x_rss_config_obj *o = p->rss_obj;
4183 struct bnx2x_raw_obj *r = &o->raw;
4184
4185 /* Do nothing if only driver cleanup was requested */
4186 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags))
4187 return 0;
4188
4189 r->set_pending(r);
4190
4191 rc = o->config_rss(bp, p);
4192 if (rc < 0) {
4193 r->clear_pending(r);
4194 return rc;
4195 }
4196
4197 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4198 rc = r->wait_comp(bp, r);
4199
4200 return rc;
4201 }
4202
4203
4204 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4205 struct bnx2x_rss_config_obj *rss_obj,
4206 u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4207 void *rdata, dma_addr_t rdata_mapping,
4208 int state, unsigned long *pstate,
4209 bnx2x_obj_type type)
4210 {
4211 bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4212 rdata_mapping, state, pstate, type);
4213
4214 rss_obj->engine_id = engine_id;
4215 rss_obj->config_rss = bnx2x_setup_rss;
4216 }
4217
4218 /********************** Queue state object ***********************************/
4219
4220 /**
4221 * bnx2x_queue_state_change - perform Queue state change transition
4222 *
4223 * @bp: device handle
4224 * @params: parameters to perform the transition
4225 *
4226 * returns 0 in case of successfully completed transition, negative error
4227 * code in case of failure, positive (EBUSY) value if there is a completion
4228 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4229 * not set in params->ramrod_flags for asynchronous commands).
4230 *
4231 */
4232 int bnx2x_queue_state_change(struct bnx2x *bp,
4233 struct bnx2x_queue_state_params *params)
4234 {
4235 struct bnx2x_queue_sp_obj *o = params->q_obj;
4236 int rc, pending_bit;
4237 unsigned long *pending = &o->pending;
4238
4239 /* Check that the requested transition is legal */
4240 if (o->check_transition(bp, o, params))
4241 return -EINVAL;
4242
4243 /* Set "pending" bit */
4244 pending_bit = o->set_pending(o, params);
4245
4246 /* Don't send a command if only driver cleanup was requested */
4247 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4248 o->complete_cmd(bp, o, pending_bit);
4249 else {
4250 /* Send a ramrod */
4251 rc = o->send_cmd(bp, params);
4252 if (rc) {
4253 o->next_state = BNX2X_Q_STATE_MAX;
4254 clear_bit(pending_bit, pending);
4255 smp_mb__after_clear_bit();
4256 return rc;
4257 }
4258
4259 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4260 rc = o->wait_comp(bp, o, pending_bit);
4261 if (rc)
4262 return rc;
4263
4264 return 0;
4265 }
4266 }
4267
4268 return !!test_bit(pending_bit, pending);
4269 }
4270
4271
4272 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4273 struct bnx2x_queue_state_params *params)
4274 {
4275 enum bnx2x_queue_cmd cmd = params->cmd, bit;
4276
4277 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4278 * UPDATE command.
4279 */
4280 if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4281 (cmd == BNX2X_Q_CMD_DEACTIVATE))
4282 bit = BNX2X_Q_CMD_UPDATE;
4283 else
4284 bit = cmd;
4285
4286 set_bit(bit, &obj->pending);
4287 return bit;
4288 }
4289
4290 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4291 struct bnx2x_queue_sp_obj *o,
4292 enum bnx2x_queue_cmd cmd)
4293 {
4294 return bnx2x_state_wait(bp, cmd, &o->pending);
4295 }
4296
4297 /**
4298 * bnx2x_queue_comp_cmd - complete the state change command.
4299 *
4300 * @bp: device handle
4301 * @o:
4302 * @cmd:
4303 *
4304 * Checks that the arrived completion is expected.
4305 */
4306 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4307 struct bnx2x_queue_sp_obj *o,
4308 enum bnx2x_queue_cmd cmd)
4309 {
4310 unsigned long cur_pending = o->pending;
4311
4312 if (!test_and_clear_bit(cmd, &cur_pending)) {
4313 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4314 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4315 o->state, cur_pending, o->next_state);
4316 return -EINVAL;
4317 }
4318
4319 if (o->next_tx_only >= o->max_cos)
4320 /* >= becuase tx only must always be smaller than cos since the
4321 * primary connection suports COS 0
4322 */
4323 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4324 o->next_tx_only, o->max_cos);
4325
4326 DP(BNX2X_MSG_SP,
4327 "Completing command %d for queue %d, setting state to %d\n",
4328 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4329
4330 if (o->next_tx_only) /* print num tx-only if any exist */
4331 DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4332 o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4333
4334 o->state = o->next_state;
4335 o->num_tx_only = o->next_tx_only;
4336 o->next_state = BNX2X_Q_STATE_MAX;
4337
4338 /* It's important that o->state and o->next_state are
4339 * updated before o->pending.
4340 */
4341 wmb();
4342
4343 clear_bit(cmd, &o->pending);
4344 smp_mb__after_clear_bit();
4345
4346 return 0;
4347 }
4348
4349 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4350 struct bnx2x_queue_state_params *cmd_params,
4351 struct client_init_ramrod_data *data)
4352 {
4353 struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4354
4355 /* Rx data */
4356
4357 /* IPv6 TPA supported for E2 and above only */
4358 data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4359 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4360 }
4361
4362 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4363 struct bnx2x_queue_sp_obj *o,
4364 struct bnx2x_general_setup_params *params,
4365 struct client_init_general_data *gen_data,
4366 unsigned long *flags)
4367 {
4368 gen_data->client_id = o->cl_id;
4369
4370 if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4371 gen_data->statistics_counter_id =
4372 params->stat_id;
4373 gen_data->statistics_en_flg = 1;
4374 gen_data->statistics_zero_flg =
4375 test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4376 } else
4377 gen_data->statistics_counter_id =
4378 DISABLE_STATISTIC_COUNTER_ID_VALUE;
4379
4380 gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4381 gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4382 gen_data->sp_client_id = params->spcl_id;
4383 gen_data->mtu = cpu_to_le16(params->mtu);
4384 gen_data->func_id = o->func_id;
4385
4386
4387 gen_data->cos = params->cos;
4388
4389 gen_data->traffic_type =
4390 test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4391 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4392
4393 DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4394 gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4395 }
4396
4397 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4398 struct bnx2x_txq_setup_params *params,
4399 struct client_init_tx_data *tx_data,
4400 unsigned long *flags)
4401 {
4402 tx_data->enforce_security_flg =
4403 test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4404 tx_data->default_vlan =
4405 cpu_to_le16(params->default_vlan);
4406 tx_data->default_vlan_flg =
4407 test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4408 tx_data->tx_switching_flg =
4409 test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4410 tx_data->anti_spoofing_flg =
4411 test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4412 tx_data->force_default_pri_flg =
4413 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4414
4415 tx_data->tx_status_block_id = params->fw_sb_id;
4416 tx_data->tx_sb_index_number = params->sb_cq_index;
4417 tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4418
4419 tx_data->tx_bd_page_base.lo =
4420 cpu_to_le32(U64_LO(params->dscr_map));
4421 tx_data->tx_bd_page_base.hi =
4422 cpu_to_le32(U64_HI(params->dscr_map));
4423
4424 /* Don't configure any Tx switching mode during queue SETUP */
4425 tx_data->state = 0;
4426 }
4427
4428 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4429 struct rxq_pause_params *params,
4430 struct client_init_rx_data *rx_data)
4431 {
4432 /* flow control data */
4433 rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4434 rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4435 rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4436 rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4437 rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4438 rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4439 rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4440 }
4441
4442 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4443 struct bnx2x_rxq_setup_params *params,
4444 struct client_init_rx_data *rx_data,
4445 unsigned long *flags)
4446 {
4447 rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4448 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4449 rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4450 CLIENT_INIT_RX_DATA_TPA_MODE;
4451 rx_data->vmqueue_mode_en_flg = 0;
4452
4453 rx_data->cache_line_alignment_log_size =
4454 params->cache_line_log;
4455 rx_data->enable_dynamic_hc =
4456 test_bit(BNX2X_Q_FLG_DHC, flags);
4457 rx_data->max_sges_for_packet = params->max_sges_pkt;
4458 rx_data->client_qzone_id = params->cl_qzone_id;
4459 rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4460
4461 /* Always start in DROP_ALL mode */
4462 rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4463 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4464
4465 /* We don't set drop flags */
4466 rx_data->drop_ip_cs_err_flg = 0;
4467 rx_data->drop_tcp_cs_err_flg = 0;
4468 rx_data->drop_ttl0_flg = 0;
4469 rx_data->drop_udp_cs_err_flg = 0;
4470 rx_data->inner_vlan_removal_enable_flg =
4471 test_bit(BNX2X_Q_FLG_VLAN, flags);
4472 rx_data->outer_vlan_removal_enable_flg =
4473 test_bit(BNX2X_Q_FLG_OV, flags);
4474 rx_data->status_block_id = params->fw_sb_id;
4475 rx_data->rx_sb_index_number = params->sb_cq_index;
4476 rx_data->max_tpa_queues = params->max_tpa_queues;
4477 rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4478 rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4479 rx_data->bd_page_base.lo =
4480 cpu_to_le32(U64_LO(params->dscr_map));
4481 rx_data->bd_page_base.hi =
4482 cpu_to_le32(U64_HI(params->dscr_map));
4483 rx_data->sge_page_base.lo =
4484 cpu_to_le32(U64_LO(params->sge_map));
4485 rx_data->sge_page_base.hi =
4486 cpu_to_le32(U64_HI(params->sge_map));
4487 rx_data->cqe_page_base.lo =
4488 cpu_to_le32(U64_LO(params->rcq_map));
4489 rx_data->cqe_page_base.hi =
4490 cpu_to_le32(U64_HI(params->rcq_map));
4491 rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4492
4493 if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4494 rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4495 rx_data->is_approx_mcast = 1;
4496 }
4497
4498 rx_data->rss_engine_id = params->rss_engine_id;
4499
4500 /* silent vlan removal */
4501 rx_data->silent_vlan_removal_flg =
4502 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4503 rx_data->silent_vlan_value =
4504 cpu_to_le16(params->silent_removal_value);
4505 rx_data->silent_vlan_mask =
4506 cpu_to_le16(params->silent_removal_mask);
4507
4508 }
4509
4510 /* initialize the general, tx and rx parts of a queue object */
4511 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4512 struct bnx2x_queue_state_params *cmd_params,
4513 struct client_init_ramrod_data *data)
4514 {
4515 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4516 &cmd_params->params.setup.gen_params,
4517 &data->general,
4518 &cmd_params->params.setup.flags);
4519
4520 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4521 &cmd_params->params.setup.txq_params,
4522 &data->tx,
4523 &cmd_params->params.setup.flags);
4524
4525 bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4526 &cmd_params->params.setup.rxq_params,
4527 &data->rx,
4528 &cmd_params->params.setup.flags);
4529
4530 bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4531 &cmd_params->params.setup.pause_params,
4532 &data->rx);
4533 }
4534
4535 /* initialize the general and tx parts of a tx-only queue object */
4536 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4537 struct bnx2x_queue_state_params *cmd_params,
4538 struct tx_queue_init_ramrod_data *data)
4539 {
4540 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4541 &cmd_params->params.tx_only.gen_params,
4542 &data->general,
4543 &cmd_params->params.tx_only.flags);
4544
4545 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4546 &cmd_params->params.tx_only.txq_params,
4547 &data->tx,
4548 &cmd_params->params.tx_only.flags);
4549
4550 DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4551 cmd_params->q_obj->cids[0],
4552 data->tx.tx_bd_page_base.lo,
4553 data->tx.tx_bd_page_base.hi);
4554 }
4555
4556 /**
4557 * bnx2x_q_init - init HW/FW queue
4558 *
4559 * @bp: device handle
4560 * @params:
4561 *
4562 * HW/FW initial Queue configuration:
4563 * - HC: Rx and Tx
4564 * - CDU context validation
4565 *
4566 */
4567 static inline int bnx2x_q_init(struct bnx2x *bp,
4568 struct bnx2x_queue_state_params *params)
4569 {
4570 struct bnx2x_queue_sp_obj *o = params->q_obj;
4571 struct bnx2x_queue_init_params *init = &params->params.init;
4572 u16 hc_usec;
4573 u8 cos;
4574
4575 /* Tx HC configuration */
4576 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
4577 test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
4578 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
4579
4580 bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
4581 init->tx.sb_cq_index,
4582 !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
4583 hc_usec);
4584 }
4585
4586 /* Rx HC configuration */
4587 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
4588 test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
4589 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
4590
4591 bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
4592 init->rx.sb_cq_index,
4593 !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
4594 hc_usec);
4595 }
4596
4597 /* Set CDU context validation values */
4598 for (cos = 0; cos < o->max_cos; cos++) {
4599 DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
4600 o->cids[cos], cos);
4601 DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
4602 bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
4603 }
4604
4605 /* As no ramrod is sent, complete the command immediately */
4606 o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
4607
4608 mmiowb();
4609 smp_mb();
4610
4611 return 0;
4612 }
4613
4614 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
4615 struct bnx2x_queue_state_params *params)
4616 {
4617 struct bnx2x_queue_sp_obj *o = params->q_obj;
4618 struct client_init_ramrod_data *rdata =
4619 (struct client_init_ramrod_data *)o->rdata;
4620 dma_addr_t data_mapping = o->rdata_mapping;
4621 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4622
4623 /* Clear the ramrod data */
4624 memset(rdata, 0, sizeof(*rdata));
4625
4626 /* Fill the ramrod data */
4627 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4628
4629 /*
4630 * No need for an explicit memory barrier here as long we would
4631 * need to ensure the ordering of writing to the SPQ element
4632 * and updating of the SPQ producer which involves a memory
4633 * read and we will have to put a full memory barrier there
4634 * (inside bnx2x_sp_post()).
4635 */
4636
4637 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4638 U64_HI(data_mapping),
4639 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4640 }
4641
4642 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
4643 struct bnx2x_queue_state_params *params)
4644 {
4645 struct bnx2x_queue_sp_obj *o = params->q_obj;
4646 struct client_init_ramrod_data *rdata =
4647 (struct client_init_ramrod_data *)o->rdata;
4648 dma_addr_t data_mapping = o->rdata_mapping;
4649 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4650
4651 /* Clear the ramrod data */
4652 memset(rdata, 0, sizeof(*rdata));
4653
4654 /* Fill the ramrod data */
4655 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4656 bnx2x_q_fill_setup_data_e2(bp, params, rdata);
4657
4658 /*
4659 * No need for an explicit memory barrier here as long we would
4660 * need to ensure the ordering of writing to the SPQ element
4661 * and updating of the SPQ producer which involves a memory
4662 * read and we will have to put a full memory barrier there
4663 * (inside bnx2x_sp_post()).
4664 */
4665
4666 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4667 U64_HI(data_mapping),
4668 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4669 }
4670
4671 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
4672 struct bnx2x_queue_state_params *params)
4673 {
4674 struct bnx2x_queue_sp_obj *o = params->q_obj;
4675 struct tx_queue_init_ramrod_data *rdata =
4676 (struct tx_queue_init_ramrod_data *)o->rdata;
4677 dma_addr_t data_mapping = o->rdata_mapping;
4678 int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
4679 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
4680 &params->params.tx_only;
4681 u8 cid_index = tx_only_params->cid_index;
4682
4683
4684 if (cid_index >= o->max_cos) {
4685 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4686 o->cl_id, cid_index);
4687 return -EINVAL;
4688 }
4689
4690 DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
4691 tx_only_params->gen_params.cos,
4692 tx_only_params->gen_params.spcl_id);
4693
4694 /* Clear the ramrod data */
4695 memset(rdata, 0, sizeof(*rdata));
4696
4697 /* Fill the ramrod data */
4698 bnx2x_q_fill_setup_tx_only(bp, params, rdata);
4699
4700 DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
4701 o->cids[cid_index], rdata->general.client_id,
4702 rdata->general.sp_client_id, rdata->general.cos);
4703
4704 /*
4705 * No need for an explicit memory barrier here as long we would
4706 * need to ensure the ordering of writing to the SPQ element
4707 * and updating of the SPQ producer which involves a memory
4708 * read and we will have to put a full memory barrier there
4709 * (inside bnx2x_sp_post()).
4710 */
4711
4712 return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
4713 U64_HI(data_mapping),
4714 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4715 }
4716
4717 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
4718 struct bnx2x_queue_sp_obj *obj,
4719 struct bnx2x_queue_update_params *params,
4720 struct client_update_ramrod_data *data)
4721 {
4722 /* Client ID of the client to update */
4723 data->client_id = obj->cl_id;
4724
4725 /* Function ID of the client to update */
4726 data->func_id = obj->func_id;
4727
4728 /* Default VLAN value */
4729 data->default_vlan = cpu_to_le16(params->def_vlan);
4730
4731 /* Inner VLAN stripping */
4732 data->inner_vlan_removal_enable_flg =
4733 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
4734 data->inner_vlan_removal_change_flg =
4735 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
4736 &params->update_flags);
4737
4738 /* Outer VLAN sripping */
4739 data->outer_vlan_removal_enable_flg =
4740 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
4741 data->outer_vlan_removal_change_flg =
4742 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
4743 &params->update_flags);
4744
4745 /* Drop packets that have source MAC that doesn't belong to this
4746 * Queue.
4747 */
4748 data->anti_spoofing_enable_flg =
4749 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
4750 data->anti_spoofing_change_flg =
4751 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
4752
4753 /* Activate/Deactivate */
4754 data->activate_flg =
4755 test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
4756 data->activate_change_flg =
4757 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
4758
4759 /* Enable default VLAN */
4760 data->default_vlan_enable_flg =
4761 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
4762 data->default_vlan_change_flg =
4763 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
4764 &params->update_flags);
4765
4766 /* silent vlan removal */
4767 data->silent_vlan_change_flg =
4768 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4769 &params->update_flags);
4770 data->silent_vlan_removal_flg =
4771 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
4772 data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
4773 data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
4774 }
4775
4776 static inline int bnx2x_q_send_update(struct bnx2x *bp,
4777 struct bnx2x_queue_state_params *params)
4778 {
4779 struct bnx2x_queue_sp_obj *o = params->q_obj;
4780 struct client_update_ramrod_data *rdata =
4781 (struct client_update_ramrod_data *)o->rdata;
4782 dma_addr_t data_mapping = o->rdata_mapping;
4783 struct bnx2x_queue_update_params *update_params =
4784 &params->params.update;
4785 u8 cid_index = update_params->cid_index;
4786
4787 if (cid_index >= o->max_cos) {
4788 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4789 o->cl_id, cid_index);
4790 return -EINVAL;
4791 }
4792
4793
4794 /* Clear the ramrod data */
4795 memset(rdata, 0, sizeof(*rdata));
4796
4797 /* Fill the ramrod data */
4798 bnx2x_q_fill_update_data(bp, o, update_params, rdata);
4799
4800 /*
4801 * No need for an explicit memory barrier here as long we would
4802 * need to ensure the ordering of writing to the SPQ element
4803 * and updating of the SPQ producer which involves a memory
4804 * read and we will have to put a full memory barrier there
4805 * (inside bnx2x_sp_post()).
4806 */
4807
4808 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
4809 o->cids[cid_index], U64_HI(data_mapping),
4810 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4811 }
4812
4813 /**
4814 * bnx2x_q_send_deactivate - send DEACTIVATE command
4815 *
4816 * @bp: device handle
4817 * @params:
4818 *
4819 * implemented using the UPDATE command.
4820 */
4821 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
4822 struct bnx2x_queue_state_params *params)
4823 {
4824 struct bnx2x_queue_update_params *update = &params->params.update;
4825
4826 memset(update, 0, sizeof(*update));
4827
4828 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
4829
4830 return bnx2x_q_send_update(bp, params);
4831 }
4832
4833 /**
4834 * bnx2x_q_send_activate - send ACTIVATE command
4835 *
4836 * @bp: device handle
4837 * @params:
4838 *
4839 * implemented using the UPDATE command.
4840 */
4841 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
4842 struct bnx2x_queue_state_params *params)
4843 {
4844 struct bnx2x_queue_update_params *update = &params->params.update;
4845
4846 memset(update, 0, sizeof(*update));
4847
4848 __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
4849 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
4850
4851 return bnx2x_q_send_update(bp, params);
4852 }
4853
4854 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
4855 struct bnx2x_queue_state_params *params)
4856 {
4857 /* TODO: Not implemented yet. */
4858 return -1;
4859 }
4860
4861 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
4862 struct bnx2x_queue_state_params *params)
4863 {
4864 struct bnx2x_queue_sp_obj *o = params->q_obj;
4865
4866 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
4867 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
4868 ETH_CONNECTION_TYPE);
4869 }
4870
4871 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
4872 struct bnx2x_queue_state_params *params)
4873 {
4874 struct bnx2x_queue_sp_obj *o = params->q_obj;
4875 u8 cid_idx = params->params.cfc_del.cid_index;
4876
4877 if (cid_idx >= o->max_cos) {
4878 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4879 o->cl_id, cid_idx);
4880 return -EINVAL;
4881 }
4882
4883 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
4884 o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
4885 }
4886
4887 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
4888 struct bnx2x_queue_state_params *params)
4889 {
4890 struct bnx2x_queue_sp_obj *o = params->q_obj;
4891 u8 cid_index = params->params.terminate.cid_index;
4892
4893 if (cid_index >= o->max_cos) {
4894 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4895 o->cl_id, cid_index);
4896 return -EINVAL;
4897 }
4898
4899 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
4900 o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
4901 }
4902
4903 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
4904 struct bnx2x_queue_state_params *params)
4905 {
4906 struct bnx2x_queue_sp_obj *o = params->q_obj;
4907
4908 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
4909 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
4910 ETH_CONNECTION_TYPE);
4911 }
4912
4913 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
4914 struct bnx2x_queue_state_params *params)
4915 {
4916 switch (params->cmd) {
4917 case BNX2X_Q_CMD_INIT:
4918 return bnx2x_q_init(bp, params);
4919 case BNX2X_Q_CMD_SETUP_TX_ONLY:
4920 return bnx2x_q_send_setup_tx_only(bp, params);
4921 case BNX2X_Q_CMD_DEACTIVATE:
4922 return bnx2x_q_send_deactivate(bp, params);
4923 case BNX2X_Q_CMD_ACTIVATE:
4924 return bnx2x_q_send_activate(bp, params);
4925 case BNX2X_Q_CMD_UPDATE:
4926 return bnx2x_q_send_update(bp, params);
4927 case BNX2X_Q_CMD_UPDATE_TPA:
4928 return bnx2x_q_send_update_tpa(bp, params);
4929 case BNX2X_Q_CMD_HALT:
4930 return bnx2x_q_send_halt(bp, params);
4931 case BNX2X_Q_CMD_CFC_DEL:
4932 return bnx2x_q_send_cfc_del(bp, params);
4933 case BNX2X_Q_CMD_TERMINATE:
4934 return bnx2x_q_send_terminate(bp, params);
4935 case BNX2X_Q_CMD_EMPTY:
4936 return bnx2x_q_send_empty(bp, params);
4937 default:
4938 BNX2X_ERR("Unknown command: %d\n", params->cmd);
4939 return -EINVAL;
4940 }
4941 }
4942
4943 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
4944 struct bnx2x_queue_state_params *params)
4945 {
4946 switch (params->cmd) {
4947 case BNX2X_Q_CMD_SETUP:
4948 return bnx2x_q_send_setup_e1x(bp, params);
4949 case BNX2X_Q_CMD_INIT:
4950 case BNX2X_Q_CMD_SETUP_TX_ONLY:
4951 case BNX2X_Q_CMD_DEACTIVATE:
4952 case BNX2X_Q_CMD_ACTIVATE:
4953 case BNX2X_Q_CMD_UPDATE:
4954 case BNX2X_Q_CMD_UPDATE_TPA:
4955 case BNX2X_Q_CMD_HALT:
4956 case BNX2X_Q_CMD_CFC_DEL:
4957 case BNX2X_Q_CMD_TERMINATE:
4958 case BNX2X_Q_CMD_EMPTY:
4959 return bnx2x_queue_send_cmd_cmn(bp, params);
4960 default:
4961 BNX2X_ERR("Unknown command: %d\n", params->cmd);
4962 return -EINVAL;
4963 }
4964 }
4965
4966 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
4967 struct bnx2x_queue_state_params *params)
4968 {
4969 switch (params->cmd) {
4970 case BNX2X_Q_CMD_SETUP:
4971 return bnx2x_q_send_setup_e2(bp, params);
4972 case BNX2X_Q_CMD_INIT:
4973 case BNX2X_Q_CMD_SETUP_TX_ONLY:
4974 case BNX2X_Q_CMD_DEACTIVATE:
4975 case BNX2X_Q_CMD_ACTIVATE:
4976 case BNX2X_Q_CMD_UPDATE:
4977 case BNX2X_Q_CMD_UPDATE_TPA:
4978 case BNX2X_Q_CMD_HALT:
4979 case BNX2X_Q_CMD_CFC_DEL:
4980 case BNX2X_Q_CMD_TERMINATE:
4981 case BNX2X_Q_CMD_EMPTY:
4982 return bnx2x_queue_send_cmd_cmn(bp, params);
4983 default:
4984 BNX2X_ERR("Unknown command: %d\n", params->cmd);
4985 return -EINVAL;
4986 }
4987 }
4988
4989 /**
4990 * bnx2x_queue_chk_transition - check state machine of a regular Queue
4991 *
4992 * @bp: device handle
4993 * @o:
4994 * @params:
4995 *
4996 * (not Forwarding)
4997 * It both checks if the requested command is legal in a current
4998 * state and, if it's legal, sets a `next_state' in the object
4999 * that will be used in the completion flow to set the `state'
5000 * of the object.
5001 *
5002 * returns 0 if a requested command is a legal transition,
5003 * -EINVAL otherwise.
5004 */
5005 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5006 struct bnx2x_queue_sp_obj *o,
5007 struct bnx2x_queue_state_params *params)
5008 {
5009 enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5010 enum bnx2x_queue_cmd cmd = params->cmd;
5011 struct bnx2x_queue_update_params *update_params =
5012 &params->params.update;
5013 u8 next_tx_only = o->num_tx_only;
5014
5015 /*
5016 * Forget all pending for completion commands if a driver only state
5017 * transition has been requested.
5018 */
5019 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5020 o->pending = 0;
5021 o->next_state = BNX2X_Q_STATE_MAX;
5022 }
5023
5024 /*
5025 * Don't allow a next state transition if we are in the middle of
5026 * the previous one.
5027 */
5028 if (o->pending)
5029 return -EBUSY;
5030
5031 switch (state) {
5032 case BNX2X_Q_STATE_RESET:
5033 if (cmd == BNX2X_Q_CMD_INIT)
5034 next_state = BNX2X_Q_STATE_INITIALIZED;
5035
5036 break;
5037 case BNX2X_Q_STATE_INITIALIZED:
5038 if (cmd == BNX2X_Q_CMD_SETUP) {
5039 if (test_bit(BNX2X_Q_FLG_ACTIVE,
5040 &params->params.setup.flags))
5041 next_state = BNX2X_Q_STATE_ACTIVE;
5042 else
5043 next_state = BNX2X_Q_STATE_INACTIVE;
5044 }
5045
5046 break;
5047 case BNX2X_Q_STATE_ACTIVE:
5048 if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5049 next_state = BNX2X_Q_STATE_INACTIVE;
5050
5051 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5052 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5053 next_state = BNX2X_Q_STATE_ACTIVE;
5054
5055 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5056 next_state = BNX2X_Q_STATE_MULTI_COS;
5057 next_tx_only = 1;
5058 }
5059
5060 else if (cmd == BNX2X_Q_CMD_HALT)
5061 next_state = BNX2X_Q_STATE_STOPPED;
5062
5063 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5064 /* If "active" state change is requested, update the
5065 * state accordingly.
5066 */
5067 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5068 &update_params->update_flags) &&
5069 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5070 &update_params->update_flags))
5071 next_state = BNX2X_Q_STATE_INACTIVE;
5072 else
5073 next_state = BNX2X_Q_STATE_ACTIVE;
5074 }
5075
5076 break;
5077 case BNX2X_Q_STATE_MULTI_COS:
5078 if (cmd == BNX2X_Q_CMD_TERMINATE)
5079 next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5080
5081 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5082 next_state = BNX2X_Q_STATE_MULTI_COS;
5083 next_tx_only = o->num_tx_only + 1;
5084 }
5085
5086 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5087 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5088 next_state = BNX2X_Q_STATE_MULTI_COS;
5089
5090 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5091 /* If "active" state change is requested, update the
5092 * state accordingly.
5093 */
5094 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5095 &update_params->update_flags) &&
5096 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5097 &update_params->update_flags))
5098 next_state = BNX2X_Q_STATE_INACTIVE;
5099 else
5100 next_state = BNX2X_Q_STATE_MULTI_COS;
5101 }
5102
5103 break;
5104 case BNX2X_Q_STATE_MCOS_TERMINATED:
5105 if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5106 next_tx_only = o->num_tx_only - 1;
5107 if (next_tx_only == 0)
5108 next_state = BNX2X_Q_STATE_ACTIVE;
5109 else
5110 next_state = BNX2X_Q_STATE_MULTI_COS;
5111 }
5112
5113 break;
5114 case BNX2X_Q_STATE_INACTIVE:
5115 if (cmd == BNX2X_Q_CMD_ACTIVATE)
5116 next_state = BNX2X_Q_STATE_ACTIVE;
5117
5118 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5119 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5120 next_state = BNX2X_Q_STATE_INACTIVE;
5121
5122 else if (cmd == BNX2X_Q_CMD_HALT)
5123 next_state = BNX2X_Q_STATE_STOPPED;
5124
5125 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5126 /* If "active" state change is requested, update the
5127 * state accordingly.
5128 */
5129 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5130 &update_params->update_flags) &&
5131 test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5132 &update_params->update_flags)){
5133 if (o->num_tx_only == 0)
5134 next_state = BNX2X_Q_STATE_ACTIVE;
5135 else /* tx only queues exist for this queue */
5136 next_state = BNX2X_Q_STATE_MULTI_COS;
5137 } else
5138 next_state = BNX2X_Q_STATE_INACTIVE;
5139 }
5140
5141 break;
5142 case BNX2X_Q_STATE_STOPPED:
5143 if (cmd == BNX2X_Q_CMD_TERMINATE)
5144 next_state = BNX2X_Q_STATE_TERMINATED;
5145
5146 break;
5147 case BNX2X_Q_STATE_TERMINATED:
5148 if (cmd == BNX2X_Q_CMD_CFC_DEL)
5149 next_state = BNX2X_Q_STATE_RESET;
5150
5151 break;
5152 default:
5153 BNX2X_ERR("Illegal state: %d\n", state);
5154 }
5155
5156 /* Transition is assured */
5157 if (next_state != BNX2X_Q_STATE_MAX) {
5158 DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5159 state, cmd, next_state);
5160 o->next_state = next_state;
5161 o->next_tx_only = next_tx_only;
5162 return 0;
5163 }
5164
5165 DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5166
5167 return -EINVAL;
5168 }
5169
5170 void bnx2x_init_queue_obj(struct bnx2x *bp,
5171 struct bnx2x_queue_sp_obj *obj,
5172 u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5173 void *rdata,
5174 dma_addr_t rdata_mapping, unsigned long type)
5175 {
5176 memset(obj, 0, sizeof(*obj));
5177
5178 /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5179 BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5180
5181 memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5182 obj->max_cos = cid_cnt;
5183 obj->cl_id = cl_id;
5184 obj->func_id = func_id;
5185 obj->rdata = rdata;
5186 obj->rdata_mapping = rdata_mapping;
5187 obj->type = type;
5188 obj->next_state = BNX2X_Q_STATE_MAX;
5189
5190 if (CHIP_IS_E1x(bp))
5191 obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5192 else
5193 obj->send_cmd = bnx2x_queue_send_cmd_e2;
5194
5195 obj->check_transition = bnx2x_queue_chk_transition;
5196
5197 obj->complete_cmd = bnx2x_queue_comp_cmd;
5198 obj->wait_comp = bnx2x_queue_wait_comp;
5199 obj->set_pending = bnx2x_queue_set_pending;
5200 }
5201
5202 /********************** Function state object *********************************/
5203 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5204 struct bnx2x_func_sp_obj *o)
5205 {
5206 /* in the middle of transaction - return INVALID state */
5207 if (o->pending)
5208 return BNX2X_F_STATE_MAX;
5209
5210 /*
5211 * unsure the order of reading of o->pending and o->state
5212 * o->pending should be read first
5213 */
5214 rmb();
5215
5216 return o->state;
5217 }
5218
5219 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5220 struct bnx2x_func_sp_obj *o,
5221 enum bnx2x_func_cmd cmd)
5222 {
5223 return bnx2x_state_wait(bp, cmd, &o->pending);
5224 }
5225
5226 /**
5227 * bnx2x_func_state_change_comp - complete the state machine transition
5228 *
5229 * @bp: device handle
5230 * @o:
5231 * @cmd:
5232 *
5233 * Called on state change transition. Completes the state
5234 * machine transition only - no HW interaction.
5235 */
5236 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5237 struct bnx2x_func_sp_obj *o,
5238 enum bnx2x_func_cmd cmd)
5239 {
5240 unsigned long cur_pending = o->pending;
5241
5242 if (!test_and_clear_bit(cmd, &cur_pending)) {
5243 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5244 cmd, BP_FUNC(bp), o->state,
5245 cur_pending, o->next_state);
5246 return -EINVAL;
5247 }
5248
5249 DP(BNX2X_MSG_SP,
5250 "Completing command %d for func %d, setting state to %d\n",
5251 cmd, BP_FUNC(bp), o->next_state);
5252
5253 o->state = o->next_state;
5254 o->next_state = BNX2X_F_STATE_MAX;
5255
5256 /* It's important that o->state and o->next_state are
5257 * updated before o->pending.
5258 */
5259 wmb();
5260
5261 clear_bit(cmd, &o->pending);
5262 smp_mb__after_clear_bit();
5263
5264 return 0;
5265 }
5266
5267 /**
5268 * bnx2x_func_comp_cmd - complete the state change command
5269 *
5270 * @bp: device handle
5271 * @o:
5272 * @cmd:
5273 *
5274 * Checks that the arrived completion is expected.
5275 */
5276 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5277 struct bnx2x_func_sp_obj *o,
5278 enum bnx2x_func_cmd cmd)
5279 {
5280 /* Complete the state machine part first, check if it's a
5281 * legal completion.
5282 */
5283 int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5284 return rc;
5285 }
5286
5287 /**
5288 * bnx2x_func_chk_transition - perform function state machine transition
5289 *
5290 * @bp: device handle
5291 * @o:
5292 * @params:
5293 *
5294 * It both checks if the requested command is legal in a current
5295 * state and, if it's legal, sets a `next_state' in the object
5296 * that will be used in the completion flow to set the `state'
5297 * of the object.
5298 *
5299 * returns 0 if a requested command is a legal transition,
5300 * -EINVAL otherwise.
5301 */
5302 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5303 struct bnx2x_func_sp_obj *o,
5304 struct bnx2x_func_state_params *params)
5305 {
5306 enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5307 enum bnx2x_func_cmd cmd = params->cmd;
5308
5309 /*
5310 * Forget all pending for completion commands if a driver only state
5311 * transition has been requested.
5312 */
5313 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5314 o->pending = 0;
5315 o->next_state = BNX2X_F_STATE_MAX;
5316 }
5317
5318 /*
5319 * Don't allow a next state transition if we are in the middle of
5320 * the previous one.
5321 */
5322 if (o->pending)
5323 return -EBUSY;
5324
5325 switch (state) {
5326 case BNX2X_F_STATE_RESET:
5327 if (cmd == BNX2X_F_CMD_HW_INIT)
5328 next_state = BNX2X_F_STATE_INITIALIZED;
5329
5330 break;
5331 case BNX2X_F_STATE_INITIALIZED:
5332 if (cmd == BNX2X_F_CMD_START)
5333 next_state = BNX2X_F_STATE_STARTED;
5334
5335 else if (cmd == BNX2X_F_CMD_HW_RESET)
5336 next_state = BNX2X_F_STATE_RESET;
5337
5338 break;
5339 case BNX2X_F_STATE_STARTED:
5340 if (cmd == BNX2X_F_CMD_STOP)
5341 next_state = BNX2X_F_STATE_INITIALIZED;
5342 /* afex ramrods can be sent only in started mode, and only
5343 * if not pending for function_stop ramrod completion
5344 * for these events - next state remained STARTED.
5345 */
5346 else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5347 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5348 next_state = BNX2X_F_STATE_STARTED;
5349
5350 else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5351 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5352 next_state = BNX2X_F_STATE_STARTED;
5353 else if (cmd == BNX2X_F_CMD_TX_STOP)
5354 next_state = BNX2X_F_STATE_TX_STOPPED;
5355
5356 break;
5357 case BNX2X_F_STATE_TX_STOPPED:
5358 if (cmd == BNX2X_F_CMD_TX_START)
5359 next_state = BNX2X_F_STATE_STARTED;
5360
5361 break;
5362 default:
5363 BNX2X_ERR("Unknown state: %d\n", state);
5364 }
5365
5366 /* Transition is assured */
5367 if (next_state != BNX2X_F_STATE_MAX) {
5368 DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5369 state, cmd, next_state);
5370 o->next_state = next_state;
5371 return 0;
5372 }
5373
5374 DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5375 state, cmd);
5376
5377 return -EINVAL;
5378 }
5379
5380 /**
5381 * bnx2x_func_init_func - performs HW init at function stage
5382 *
5383 * @bp: device handle
5384 * @drv:
5385 *
5386 * Init HW when the current phase is
5387 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5388 * HW blocks.
5389 */
5390 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5391 const struct bnx2x_func_sp_drv_ops *drv)
5392 {
5393 return drv->init_hw_func(bp);
5394 }
5395
5396 /**
5397 * bnx2x_func_init_port - performs HW init at port stage
5398 *
5399 * @bp: device handle
5400 * @drv:
5401 *
5402 * Init HW when the current phase is
5403 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5404 * FUNCTION-only HW blocks.
5405 *
5406 */
5407 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5408 const struct bnx2x_func_sp_drv_ops *drv)
5409 {
5410 int rc = drv->init_hw_port(bp);
5411 if (rc)
5412 return rc;
5413
5414 return bnx2x_func_init_func(bp, drv);
5415 }
5416
5417 /**
5418 * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5419 *
5420 * @bp: device handle
5421 * @drv:
5422 *
5423 * Init HW when the current phase is
5424 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5425 * PORT-only and FUNCTION-only HW blocks.
5426 */
5427 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5428 const struct bnx2x_func_sp_drv_ops *drv)
5429 {
5430 int rc = drv->init_hw_cmn_chip(bp);
5431 if (rc)
5432 return rc;
5433
5434 return bnx2x_func_init_port(bp, drv);
5435 }
5436
5437 /**
5438 * bnx2x_func_init_cmn - performs HW init at common stage
5439 *
5440 * @bp: device handle
5441 * @drv:
5442 *
5443 * Init HW when the current phase is
5444 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5445 * PORT-only and FUNCTION-only HW blocks.
5446 */
5447 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5448 const struct bnx2x_func_sp_drv_ops *drv)
5449 {
5450 int rc = drv->init_hw_cmn(bp);
5451 if (rc)
5452 return rc;
5453
5454 return bnx2x_func_init_port(bp, drv);
5455 }
5456
5457 static int bnx2x_func_hw_init(struct bnx2x *bp,
5458 struct bnx2x_func_state_params *params)
5459 {
5460 u32 load_code = params->params.hw_init.load_phase;
5461 struct bnx2x_func_sp_obj *o = params->f_obj;
5462 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5463 int rc = 0;
5464
5465 DP(BNX2X_MSG_SP, "function %d load_code %x\n",
5466 BP_ABS_FUNC(bp), load_code);
5467
5468 /* Prepare buffers for unzipping the FW */
5469 rc = drv->gunzip_init(bp);
5470 if (rc)
5471 return rc;
5472
5473 /* Prepare FW */
5474 rc = drv->init_fw(bp);
5475 if (rc) {
5476 BNX2X_ERR("Error loading firmware\n");
5477 goto init_err;
5478 }
5479
5480 /* Handle the beginning of COMMON_XXX pases separatelly... */
5481 switch (load_code) {
5482 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5483 rc = bnx2x_func_init_cmn_chip(bp, drv);
5484 if (rc)
5485 goto init_err;
5486
5487 break;
5488 case FW_MSG_CODE_DRV_LOAD_COMMON:
5489 rc = bnx2x_func_init_cmn(bp, drv);
5490 if (rc)
5491 goto init_err;
5492
5493 break;
5494 case FW_MSG_CODE_DRV_LOAD_PORT:
5495 rc = bnx2x_func_init_port(bp, drv);
5496 if (rc)
5497 goto init_err;
5498
5499 break;
5500 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5501 rc = bnx2x_func_init_func(bp, drv);
5502 if (rc)
5503 goto init_err;
5504
5505 break;
5506 default:
5507 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5508 rc = -EINVAL;
5509 }
5510
5511 init_err:
5512 drv->gunzip_end(bp);
5513
5514 /* In case of success, complete the comand immediatelly: no ramrods
5515 * have been sent.
5516 */
5517 if (!rc)
5518 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
5519
5520 return rc;
5521 }
5522
5523 /**
5524 * bnx2x_func_reset_func - reset HW at function stage
5525 *
5526 * @bp: device handle
5527 * @drv:
5528 *
5529 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
5530 * FUNCTION-only HW blocks.
5531 */
5532 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
5533 const struct bnx2x_func_sp_drv_ops *drv)
5534 {
5535 drv->reset_hw_func(bp);
5536 }
5537
5538 /**
5539 * bnx2x_func_reset_port - reser HW at port stage
5540 *
5541 * @bp: device handle
5542 * @drv:
5543 *
5544 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
5545 * FUNCTION-only and PORT-only HW blocks.
5546 *
5547 * !!!IMPORTANT!!!
5548 *
5549 * It's important to call reset_port before reset_func() as the last thing
5550 * reset_func does is pf_disable() thus disabling PGLUE_B, which
5551 * makes impossible any DMAE transactions.
5552 */
5553 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
5554 const struct bnx2x_func_sp_drv_ops *drv)
5555 {
5556 drv->reset_hw_port(bp);
5557 bnx2x_func_reset_func(bp, drv);
5558 }
5559
5560 /**
5561 * bnx2x_func_reset_cmn - reser HW at common stage
5562 *
5563 * @bp: device handle
5564 * @drv:
5565 *
5566 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
5567 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
5568 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
5569 */
5570 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
5571 const struct bnx2x_func_sp_drv_ops *drv)
5572 {
5573 bnx2x_func_reset_port(bp, drv);
5574 drv->reset_hw_cmn(bp);
5575 }
5576
5577
5578 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
5579 struct bnx2x_func_state_params *params)
5580 {
5581 u32 reset_phase = params->params.hw_reset.reset_phase;
5582 struct bnx2x_func_sp_obj *o = params->f_obj;
5583 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5584
5585 DP(BNX2X_MSG_SP, "function %d reset_phase %x\n", BP_ABS_FUNC(bp),
5586 reset_phase);
5587
5588 switch (reset_phase) {
5589 case FW_MSG_CODE_DRV_UNLOAD_COMMON:
5590 bnx2x_func_reset_cmn(bp, drv);
5591 break;
5592 case FW_MSG_CODE_DRV_UNLOAD_PORT:
5593 bnx2x_func_reset_port(bp, drv);
5594 break;
5595 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
5596 bnx2x_func_reset_func(bp, drv);
5597 break;
5598 default:
5599 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
5600 reset_phase);
5601 break;
5602 }
5603
5604 /* Complete the comand immediatelly: no ramrods have been sent. */
5605 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
5606
5607 return 0;
5608 }
5609
5610 static inline int bnx2x_func_send_start(struct bnx2x *bp,
5611 struct bnx2x_func_state_params *params)
5612 {
5613 struct bnx2x_func_sp_obj *o = params->f_obj;
5614 struct function_start_data *rdata =
5615 (struct function_start_data *)o->rdata;
5616 dma_addr_t data_mapping = o->rdata_mapping;
5617 struct bnx2x_func_start_params *start_params = &params->params.start;
5618
5619 memset(rdata, 0, sizeof(*rdata));
5620
5621 /* Fill the ramrod data with provided parameters */
5622 rdata->function_mode = cpu_to_le16(start_params->mf_mode);
5623 rdata->sd_vlan_tag = cpu_to_le16(start_params->sd_vlan_tag);
5624 rdata->path_id = BP_PATH(bp);
5625 rdata->network_cos_mode = start_params->network_cos_mode;
5626
5627 /*
5628 * No need for an explicit memory barrier here as long we would
5629 * need to ensure the ordering of writing to the SPQ element
5630 * and updating of the SPQ producer which involves a memory
5631 * read and we will have to put a full memory barrier there
5632 * (inside bnx2x_sp_post()).
5633 */
5634
5635 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
5636 U64_HI(data_mapping),
5637 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5638 }
5639
5640 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
5641 struct bnx2x_func_state_params *params)
5642 {
5643 struct bnx2x_func_sp_obj *o = params->f_obj;
5644 struct function_update_data *rdata =
5645 (struct function_update_data *)o->afex_rdata;
5646 dma_addr_t data_mapping = o->afex_rdata_mapping;
5647 struct bnx2x_func_afex_update_params *afex_update_params =
5648 &params->params.afex_update;
5649
5650 memset(rdata, 0, sizeof(*rdata));
5651
5652 /* Fill the ramrod data with provided parameters */
5653 rdata->vif_id_change_flg = 1;
5654 rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
5655 rdata->afex_default_vlan_change_flg = 1;
5656 rdata->afex_default_vlan =
5657 cpu_to_le16(afex_update_params->afex_default_vlan);
5658 rdata->allowed_priorities_change_flg = 1;
5659 rdata->allowed_priorities = afex_update_params->allowed_priorities;
5660
5661 /* No need for an explicit memory barrier here as long we would
5662 * need to ensure the ordering of writing to the SPQ element
5663 * and updating of the SPQ producer which involves a memory
5664 * read and we will have to put a full memory barrier there
5665 * (inside bnx2x_sp_post()).
5666 */
5667 DP(BNX2X_MSG_SP,
5668 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
5669 rdata->vif_id,
5670 rdata->afex_default_vlan, rdata->allowed_priorities);
5671
5672 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
5673 U64_HI(data_mapping),
5674 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5675 }
5676
5677 static
5678 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
5679 struct bnx2x_func_state_params *params)
5680 {
5681 struct bnx2x_func_sp_obj *o = params->f_obj;
5682 struct afex_vif_list_ramrod_data *rdata =
5683 (struct afex_vif_list_ramrod_data *)o->afex_rdata;
5684 struct bnx2x_func_afex_viflists_params *afex_viflist_params =
5685 &params->params.afex_viflists;
5686 u64 *p_rdata = (u64 *)rdata;
5687
5688 memset(rdata, 0, sizeof(*rdata));
5689
5690 /* Fill the ramrod data with provided parameters */
5691 rdata->vif_list_index = afex_viflist_params->vif_list_index;
5692 rdata->func_bit_map = afex_viflist_params->func_bit_map;
5693 rdata->afex_vif_list_command =
5694 afex_viflist_params->afex_vif_list_command;
5695 rdata->func_to_clear = afex_viflist_params->func_to_clear;
5696
5697 /* send in echo type of sub command */
5698 rdata->echo = afex_viflist_params->afex_vif_list_command;
5699
5700 /* No need for an explicit memory barrier here as long we would
5701 * need to ensure the ordering of writing to the SPQ element
5702 * and updating of the SPQ producer which involves a memory
5703 * read and we will have to put a full memory barrier there
5704 * (inside bnx2x_sp_post()).
5705 */
5706
5707 DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
5708 rdata->afex_vif_list_command, rdata->vif_list_index,
5709 rdata->func_bit_map, rdata->func_to_clear);
5710
5711 /* this ramrod sends data directly and not through DMA mapping */
5712 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
5713 U64_HI(*p_rdata), U64_LO(*p_rdata),
5714 NONE_CONNECTION_TYPE);
5715 }
5716
5717 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
5718 struct bnx2x_func_state_params *params)
5719 {
5720 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
5721 NONE_CONNECTION_TYPE);
5722 }
5723
5724 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
5725 struct bnx2x_func_state_params *params)
5726 {
5727 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
5728 NONE_CONNECTION_TYPE);
5729 }
5730 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
5731 struct bnx2x_func_state_params *params)
5732 {
5733 struct bnx2x_func_sp_obj *o = params->f_obj;
5734 struct flow_control_configuration *rdata =
5735 (struct flow_control_configuration *)o->rdata;
5736 dma_addr_t data_mapping = o->rdata_mapping;
5737 struct bnx2x_func_tx_start_params *tx_start_params =
5738 &params->params.tx_start;
5739 int i;
5740
5741 memset(rdata, 0, sizeof(*rdata));
5742
5743 rdata->dcb_enabled = tx_start_params->dcb_enabled;
5744 rdata->dcb_version = tx_start_params->dcb_version;
5745 rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
5746
5747 for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
5748 rdata->traffic_type_to_priority_cos[i] =
5749 tx_start_params->traffic_type_to_priority_cos[i];
5750
5751 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
5752 U64_HI(data_mapping),
5753 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5754 }
5755
5756 static int bnx2x_func_send_cmd(struct bnx2x *bp,
5757 struct bnx2x_func_state_params *params)
5758 {
5759 switch (params->cmd) {
5760 case BNX2X_F_CMD_HW_INIT:
5761 return bnx2x_func_hw_init(bp, params);
5762 case BNX2X_F_CMD_START:
5763 return bnx2x_func_send_start(bp, params);
5764 case BNX2X_F_CMD_STOP:
5765 return bnx2x_func_send_stop(bp, params);
5766 case BNX2X_F_CMD_HW_RESET:
5767 return bnx2x_func_hw_reset(bp, params);
5768 case BNX2X_F_CMD_AFEX_UPDATE:
5769 return bnx2x_func_send_afex_update(bp, params);
5770 case BNX2X_F_CMD_AFEX_VIFLISTS:
5771 return bnx2x_func_send_afex_viflists(bp, params);
5772 case BNX2X_F_CMD_TX_STOP:
5773 return bnx2x_func_send_tx_stop(bp, params);
5774 case BNX2X_F_CMD_TX_START:
5775 return bnx2x_func_send_tx_start(bp, params);
5776 default:
5777 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5778 return -EINVAL;
5779 }
5780 }
5781
5782 void bnx2x_init_func_obj(struct bnx2x *bp,
5783 struct bnx2x_func_sp_obj *obj,
5784 void *rdata, dma_addr_t rdata_mapping,
5785 void *afex_rdata, dma_addr_t afex_rdata_mapping,
5786 struct bnx2x_func_sp_drv_ops *drv_iface)
5787 {
5788 memset(obj, 0, sizeof(*obj));
5789
5790 mutex_init(&obj->one_pending_mutex);
5791
5792 obj->rdata = rdata;
5793 obj->rdata_mapping = rdata_mapping;
5794 obj->afex_rdata = afex_rdata;
5795 obj->afex_rdata_mapping = afex_rdata_mapping;
5796 obj->send_cmd = bnx2x_func_send_cmd;
5797 obj->check_transition = bnx2x_func_chk_transition;
5798 obj->complete_cmd = bnx2x_func_comp_cmd;
5799 obj->wait_comp = bnx2x_func_wait_comp;
5800
5801 obj->drv = drv_iface;
5802 }
5803
5804 /**
5805 * bnx2x_func_state_change - perform Function state change transition
5806 *
5807 * @bp: device handle
5808 * @params: parameters to perform the transaction
5809 *
5810 * returns 0 in case of successfully completed transition,
5811 * negative error code in case of failure, positive
5812 * (EBUSY) value if there is a completion to that is
5813 * still pending (possible only if RAMROD_COMP_WAIT is
5814 * not set in params->ramrod_flags for asynchronous
5815 * commands).
5816 */
5817 int bnx2x_func_state_change(struct bnx2x *bp,
5818 struct bnx2x_func_state_params *params)
5819 {
5820 struct bnx2x_func_sp_obj *o = params->f_obj;
5821 int rc;
5822 enum bnx2x_func_cmd cmd = params->cmd;
5823 unsigned long *pending = &o->pending;
5824
5825 mutex_lock(&o->one_pending_mutex);
5826
5827 /* Check that the requested transition is legal */
5828 if (o->check_transition(bp, o, params)) {
5829 mutex_unlock(&o->one_pending_mutex);
5830 return -EINVAL;
5831 }
5832
5833 /* Set "pending" bit */
5834 set_bit(cmd, pending);
5835
5836 /* Don't send a command if only driver cleanup was requested */
5837 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5838 bnx2x_func_state_change_comp(bp, o, cmd);
5839 mutex_unlock(&o->one_pending_mutex);
5840 } else {
5841 /* Send a ramrod */
5842 rc = o->send_cmd(bp, params);
5843
5844 mutex_unlock(&o->one_pending_mutex);
5845
5846 if (rc) {
5847 o->next_state = BNX2X_F_STATE_MAX;
5848 clear_bit(cmd, pending);
5849 smp_mb__after_clear_bit();
5850 return rc;
5851 }
5852
5853 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
5854 rc = o->wait_comp(bp, o, cmd);
5855 if (rc)
5856 return rc;
5857
5858 return 0;
5859 }
5860 }
5861
5862 return !!test_bit(cmd, pending);
5863 }