]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_sriov.c
Merge tag 'stable/for-linus-3.15-tag2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_sriov.c
1 /* bnx2x_sriov.c: Broadcom Everest network driver.
2 *
3 * Copyright 2009-2013 Broadcom Corporation
4 *
5 * Unless you and Broadcom execute a separate written software license
6 * agreement governing use of this software, this software is licensed to you
7 * under the terms of the GNU General Public License version 2, available
8 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9 *
10 * Notwithstanding the above, under no circumstances may you combine this
11 * software in any way with any other Broadcom software provided under a
12 * license other than the GPL, without Broadcom's express prior written
13 * consent.
14 *
15 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
16 * Written by: Shmulik Ravid <shmulikr@broadcom.com>
17 * Ariel Elior <ariele@broadcom.com>
18 *
19 */
20 #include "bnx2x.h"
21 #include "bnx2x_init.h"
22 #include "bnx2x_cmn.h"
23 #include "bnx2x_sp.h"
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26
27 /* General service functions */
28 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
29 u16 pf_id)
30 {
31 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
32 pf_id);
33 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
34 pf_id);
35 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
36 pf_id);
37 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
38 pf_id);
39 }
40
41 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
42 u8 enable)
43 {
44 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
45 enable);
46 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
47 enable);
48 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
49 enable);
50 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
51 enable);
52 }
53
54 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
55 {
56 int idx;
57
58 for_each_vf(bp, idx)
59 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
60 break;
61 return idx;
62 }
63
64 static
65 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
66 {
67 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
68 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
69 }
70
71 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
72 u8 igu_sb_id, u8 segment, u16 index, u8 op,
73 u8 update)
74 {
75 /* acking a VF sb through the PF - use the GRC */
76 u32 ctl;
77 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
78 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
79 u32 func_encode = vf->abs_vfid;
80 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
81 struct igu_regular cmd_data = {0};
82
83 cmd_data.sb_id_and_flags =
84 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
85 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
86 (update << IGU_REGULAR_BUPDATE_SHIFT) |
87 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
88
89 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
90 func_encode << IGU_CTRL_REG_FID_SHIFT |
91 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
92
93 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
94 cmd_data.sb_id_and_flags, igu_addr_data);
95 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
96 mmiowb();
97 barrier();
98
99 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
100 ctl, igu_addr_ctl);
101 REG_WR(bp, igu_addr_ctl, ctl);
102 mmiowb();
103 barrier();
104 }
105
106 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
107 struct bnx2x_virtf *vf,
108 bool print_err)
109 {
110 if (!bnx2x_leading_vfq(vf, sp_initialized)) {
111 if (print_err)
112 BNX2X_ERR("Slowpath objects not yet initialized!\n");
113 else
114 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
115 return false;
116 }
117 return true;
118 }
119
120 /* VFOP operations states */
121 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
122 struct bnx2x_queue_init_params *init_params,
123 struct bnx2x_queue_setup_params *setup_params,
124 u16 q_idx, u16 sb_idx)
125 {
126 DP(BNX2X_MSG_IOV,
127 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
128 vf->abs_vfid,
129 q_idx,
130 sb_idx,
131 init_params->tx.sb_cq_index,
132 init_params->tx.hc_rate,
133 setup_params->flags,
134 setup_params->txq_params.traffic_type);
135 }
136
137 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
138 struct bnx2x_queue_init_params *init_params,
139 struct bnx2x_queue_setup_params *setup_params,
140 u16 q_idx, u16 sb_idx)
141 {
142 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
143
144 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
145 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
146 vf->abs_vfid,
147 q_idx,
148 sb_idx,
149 init_params->rx.sb_cq_index,
150 init_params->rx.hc_rate,
151 setup_params->gen_params.mtu,
152 rxq_params->buf_sz,
153 rxq_params->sge_buf_sz,
154 rxq_params->max_sges_pkt,
155 rxq_params->tpa_agg_sz,
156 setup_params->flags,
157 rxq_params->drop_flags,
158 rxq_params->cache_line_log);
159 }
160
161 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
162 struct bnx2x_virtf *vf,
163 struct bnx2x_vf_queue *q,
164 struct bnx2x_vf_queue_construct_params *p,
165 unsigned long q_type)
166 {
167 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
168 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
169
170 /* INIT */
171
172 /* Enable host coalescing in the transition to INIT state */
173 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
174 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
175
176 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
177 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
178
179 /* FW SB ID */
180 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
181 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
182
183 /* context */
184 init_p->cxts[0] = q->cxt;
185
186 /* SETUP */
187
188 /* Setup-op general parameters */
189 setup_p->gen_params.spcl_id = vf->sp_cl_id;
190 setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
191
192 /* Setup-op pause params:
193 * Nothing to do, the pause thresholds are set by default to 0 which
194 * effectively turns off the feature for this queue. We don't want
195 * one queue (VF) to interfering with another queue (another VF)
196 */
197 if (vf->cfg_flags & VF_CFG_FW_FC)
198 BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
199 vf->abs_vfid);
200 /* Setup-op flags:
201 * collect statistics, zero statistics, local-switching, security,
202 * OV for Flex10, RSS and MCAST for leading
203 */
204 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206
207 /* for VFs, enable tx switching, bd coherency, and mac address
208 * anti-spoofing
209 */
210 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213
214 /* Setup-op rx parameters */
215 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217
218 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221
222 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 }
225
226 /* Setup-op tx parameters */
227 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 }
231 }
232
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 struct bnx2x_virtf *vf, int qid,
235 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 struct bnx2x_queue_state_params *q_params;
238 int rc = 0;
239
240 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241
242 /* Prepare ramrod information */
243 q_params = &qctor->qstate;
244 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246
247 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 goto out;
251 }
252
253 /* Run Queue 'construction' ramrods */
254 q_params->cmd = BNX2X_Q_CMD_INIT;
255 rc = bnx2x_queue_state_change(bp, q_params);
256 if (rc)
257 goto out;
258
259 memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 sizeof(struct bnx2x_queue_setup_params));
261 q_params->cmd = BNX2X_Q_CMD_SETUP;
262 rc = bnx2x_queue_state_change(bp, q_params);
263 if (rc)
264 goto out;
265
266 /* enable interrupts */
267 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 return rc;
271 }
272
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 int qid)
275 {
276 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 BNX2X_Q_CMD_TERMINATE,
278 BNX2X_Q_CMD_CFC_DEL};
279 struct bnx2x_queue_state_params q_params;
280 int rc, i;
281
282 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283
284 /* Prepare ramrod information */
285 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288
289 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 goto out;
293 }
294
295 /* Run Queue 'destruction' ramrods */
296 for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 q_params.cmd = cmds[i];
298 rc = bnx2x_queue_state_change(bp, &q_params);
299 if (rc) {
300 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 return rc;
302 }
303 }
304 out:
305 /* Clean Context */
306 if (bnx2x_vfq(vf, qid, cxt)) {
307 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 }
310
311 return 0;
312 }
313
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 if (vf) {
319 /* the first igu entry belonging to VFs of this PF */
320 if (!BP_VFDB(bp)->first_vf_igu_entry)
321 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322
323 /* the first igu entry belonging to this VF */
324 if (!vf_sb_count(vf))
325 vf->igu_base_id = igu_sb_id;
326
327 ++vf_sb_count(vf);
328 ++vf->sb_count;
329 }
330 BP_VFDB(bp)->vf_sbs_pool++;
331 }
332
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 struct bnx2x_vlan_mac_obj *obj,
335 atomic_t *counter)
336 {
337 struct list_head *pos;
338 int read_lock;
339 int cnt = 0;
340
341 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 if (read_lock)
343 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344
345 list_for_each(pos, &obj->head)
346 cnt++;
347
348 if (!read_lock)
349 bnx2x_vlan_mac_h_read_unlock(bp, obj);
350
351 atomic_set(counter, cnt);
352 }
353
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 int qid, bool drv_only, bool mac)
356 {
357 struct bnx2x_vlan_mac_ramrod_params ramrod;
358 int rc;
359
360 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 mac ? "MACs" : "VLANs");
362
363 /* Prepare ramrod params */
364 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
365 if (mac) {
366 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
367 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
368 } else {
369 set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
370 &ramrod.user_req.vlan_mac_flags);
371 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
372 }
373 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
374
375 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
376 if (drv_only)
377 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
378 else
379 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
380
381 /* Start deleting */
382 rc = ramrod.vlan_mac_obj->delete_all(bp,
383 ramrod.vlan_mac_obj,
384 &ramrod.user_req.vlan_mac_flags,
385 &ramrod.ramrod_flags);
386 if (rc) {
387 BNX2X_ERR("Failed to delete all %s\n",
388 mac ? "MACs" : "VLANs");
389 return rc;
390 }
391
392 /* Clear the vlan counters */
393 if (!mac)
394 atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
395
396 return 0;
397 }
398
399 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
400 struct bnx2x_virtf *vf, int qid,
401 struct bnx2x_vf_mac_vlan_filter *filter,
402 bool drv_only)
403 {
404 struct bnx2x_vlan_mac_ramrod_params ramrod;
405 int rc;
406
407 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
408 vf->abs_vfid, filter->add ? "Adding" : "Deleting",
409 filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
410
411 /* Prepare ramrod params */
412 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 if (filter->type == BNX2X_VF_FILTER_VLAN) {
414 set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
415 &ramrod.user_req.vlan_mac_flags);
416 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
417 ramrod.user_req.u.vlan.vlan = filter->vid;
418 } else {
419 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
420 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
421 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
422 }
423 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
424 BNX2X_VLAN_MAC_DEL;
425
426 /* Verify there are available vlan credits */
427 if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
428 (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
429 vf_vlan_rules_cnt(vf))) {
430 BNX2X_ERR("No credits for vlan\n");
431 return -ENOMEM;
432 }
433
434 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
435 if (drv_only)
436 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
437 else
438 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
439
440 /* Add/Remove the filter */
441 rc = bnx2x_config_vlan_mac(bp, &ramrod);
442 if (rc && rc != -EEXIST) {
443 BNX2X_ERR("Failed to %s %s\n",
444 filter->add ? "add" : "delete",
445 filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
446 "VLAN");
447 return rc;
448 }
449
450 /* Update the vlan counters */
451 if (filter->type == BNX2X_VF_FILTER_VLAN)
452 bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
453 &bnx2x_vfq(vf, qid, vlan_count));
454
455 return 0;
456 }
457
458 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
459 struct bnx2x_vf_mac_vlan_filters *filters,
460 int qid, bool drv_only)
461 {
462 int rc = 0, i;
463
464 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
465
466 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
467 return -EINVAL;
468
469 /* Prepare ramrod params */
470 for (i = 0; i < filters->count; i++) {
471 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
472 &filters->filters[i], drv_only);
473 if (rc)
474 break;
475 }
476
477 /* Rollback if needed */
478 if (i != filters->count) {
479 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
480 i, filters->count + 1);
481 while (--i >= 0) {
482 filters->filters[i].add = !filters->filters[i].add;
483 bnx2x_vf_mac_vlan_config(bp, vf, qid,
484 &filters->filters[i],
485 drv_only);
486 }
487 }
488
489 /* It's our responsibility to free the filters */
490 kfree(filters);
491
492 return rc;
493 }
494
495 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
496 struct bnx2x_vf_queue_construct_params *qctor)
497 {
498 int rc;
499
500 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
501
502 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
503 if (rc)
504 goto op_err;
505
506 /* Configure vlan0 for leading queue */
507 if (!qid) {
508 struct bnx2x_vf_mac_vlan_filter filter;
509
510 memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
511 filter.type = BNX2X_VF_FILTER_VLAN;
512 filter.add = true;
513 filter.vid = 0;
514 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
515 if (rc)
516 goto op_err;
517 }
518
519 /* Schedule the configuration of any pending vlan filters */
520 vf->cfg_flags |= VF_CFG_VLAN;
521 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
522 BNX2X_MSG_IOV);
523 return 0;
524 op_err:
525 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
526 return rc;
527 }
528
529 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
530 int qid)
531 {
532 int rc;
533
534 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
535
536 /* If needed, clean the filtering data base */
537 if ((qid == LEADING_IDX) &&
538 bnx2x_validate_vf_sp_objs(bp, vf, false)) {
539 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
540 if (rc)
541 goto op_err;
542 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
543 if (rc)
544 goto op_err;
545 }
546
547 /* Terminate queue */
548 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
549 struct bnx2x_queue_state_params qstate;
550
551 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
552 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
553 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
554 qstate.cmd = BNX2X_Q_CMD_TERMINATE;
555 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
556 rc = bnx2x_queue_state_change(bp, &qstate);
557 if (rc)
558 goto op_err;
559 }
560
561 return 0;
562 op_err:
563 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
564 return rc;
565 }
566
567 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
568 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
569 {
570 struct bnx2x_mcast_list_elem *mc = NULL;
571 struct bnx2x_mcast_ramrod_params mcast;
572 int rc, i;
573
574 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
575
576 /* Prepare Multicast command */
577 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
578 mcast.mcast_obj = &vf->mcast_obj;
579 if (drv_only)
580 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
581 else
582 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
583 if (mc_num) {
584 mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
585 GFP_KERNEL);
586 if (!mc) {
587 BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
588 return -ENOMEM;
589 }
590 }
591
592 /* clear existing mcasts */
593 mcast.mcast_list_len = vf->mcast_list_len;
594 vf->mcast_list_len = mc_num;
595 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
596 if (rc) {
597 BNX2X_ERR("Failed to remove multicasts\n");
598 if (mc)
599 kfree(mc);
600 return rc;
601 }
602
603 /* update mcast list on the ramrod params */
604 if (mc_num) {
605 INIT_LIST_HEAD(&mcast.mcast_list);
606 for (i = 0; i < mc_num; i++) {
607 mc[i].mac = mcasts[i];
608 list_add_tail(&mc[i].link,
609 &mcast.mcast_list);
610 }
611
612 /* add new mcasts */
613 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
614 if (rc)
615 BNX2X_ERR("Faled to add multicasts\n");
616 kfree(mc);
617 }
618
619 return rc;
620 }
621
622 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
623 struct bnx2x_rx_mode_ramrod_params *ramrod,
624 struct bnx2x_virtf *vf,
625 unsigned long accept_flags)
626 {
627 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
628
629 memset(ramrod, 0, sizeof(*ramrod));
630 ramrod->cid = vfq->cid;
631 ramrod->cl_id = vfq_cl_id(vf, vfq);
632 ramrod->rx_mode_obj = &bp->rx_mode_obj;
633 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
634 ramrod->rx_accept_flags = accept_flags;
635 ramrod->tx_accept_flags = accept_flags;
636 ramrod->pstate = &vf->filter_state;
637 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
638
639 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
640 set_bit(RAMROD_RX, &ramrod->ramrod_flags);
641 set_bit(RAMROD_TX, &ramrod->ramrod_flags);
642
643 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
644 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
645 }
646
647 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
648 int qid, unsigned long accept_flags)
649 {
650 struct bnx2x_rx_mode_ramrod_params ramrod;
651
652 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
653
654 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
655 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
656 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
657 return bnx2x_config_rx_mode(bp, &ramrod);
658 }
659
660 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
661 {
662 int rc;
663
664 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
665
666 /* Remove all classification configuration for leading queue */
667 if (qid == LEADING_IDX) {
668 rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
669 if (rc)
670 goto op_err;
671
672 /* Remove filtering if feasible */
673 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
674 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
675 false, false);
676 if (rc)
677 goto op_err;
678 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
679 false, true);
680 if (rc)
681 goto op_err;
682 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
683 if (rc)
684 goto op_err;
685 }
686 }
687
688 /* Destroy queue */
689 rc = bnx2x_vf_queue_destroy(bp, vf, qid);
690 if (rc)
691 goto op_err;
692 return rc;
693 op_err:
694 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
695 vf->abs_vfid, qid, rc);
696 return rc;
697 }
698
699 /* VF enable primitives
700 * when pretend is required the caller is responsible
701 * for calling pretend prior to calling these routines
702 */
703
704 /* internal vf enable - until vf is enabled internally all transactions
705 * are blocked. This routine should always be called last with pretend.
706 */
707 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
708 {
709 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
710 }
711
712 /* clears vf error in all semi blocks */
713 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
714 {
715 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
716 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
717 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
718 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
719 }
720
721 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
722 {
723 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
724 u32 was_err_reg = 0;
725
726 switch (was_err_group) {
727 case 0:
728 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
729 break;
730 case 1:
731 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
732 break;
733 case 2:
734 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
735 break;
736 case 3:
737 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
738 break;
739 }
740 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
741 }
742
743 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
744 {
745 int i;
746 u32 val;
747
748 /* Set VF masks and configuration - pretend */
749 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
750
751 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
752 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
753 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
754 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
755 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
756 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
757
758 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
759 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
760 if (vf->cfg_flags & VF_CFG_INT_SIMD)
761 val |= IGU_VF_CONF_SINGLE_ISR_EN;
762 val &= ~IGU_VF_CONF_PARENT_MASK;
763 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
764 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
765
766 DP(BNX2X_MSG_IOV,
767 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
768 vf->abs_vfid, val);
769
770 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
771
772 /* iterate over all queues, clear sb consumer */
773 for (i = 0; i < vf_sb_count(vf); i++) {
774 u8 igu_sb_id = vf_igu_sb(vf, i);
775
776 /* zero prod memory */
777 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
778
779 /* clear sb state machine */
780 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
781 false /* VF */);
782
783 /* disable + update */
784 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
785 IGU_INT_DISABLE, 1);
786 }
787 }
788
789 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
790 {
791 /* set the VF-PF association in the FW */
792 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
793 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
794
795 /* clear vf errors*/
796 bnx2x_vf_semi_clear_err(bp, abs_vfid);
797 bnx2x_vf_pglue_clear_err(bp, abs_vfid);
798
799 /* internal vf-enable - pretend */
800 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
801 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
802 bnx2x_vf_enable_internal(bp, true);
803 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
804 }
805
806 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
807 {
808 /* Reset vf in IGU interrupts are still disabled */
809 bnx2x_vf_igu_reset(bp, vf);
810
811 /* pretend to enable the vf with the PBF */
812 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
813 REG_WR(bp, PBF_REG_DISABLE_VF, 0);
814 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
815 }
816
817 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
818 {
819 struct pci_dev *dev;
820 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
821
822 if (!vf)
823 return false;
824
825 dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
826 if (dev)
827 return bnx2x_is_pcie_pending(dev);
828 return false;
829 }
830
831 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
832 {
833 /* Verify no pending pci transactions */
834 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
835 BNX2X_ERR("PCIE Transactions still pending\n");
836
837 return 0;
838 }
839
840 /* must be called after the number of PF queues and the number of VFs are
841 * both known
842 */
843 static void
844 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
845 {
846 struct vf_pf_resc_request *resc = &vf->alloc_resc;
847 u16 vlan_count = 0;
848
849 /* will be set only during VF-ACQUIRE */
850 resc->num_rxqs = 0;
851 resc->num_txqs = 0;
852
853 /* no credit calculations for macs (just yet) */
854 resc->num_mac_filters = 1;
855
856 /* divvy up vlan rules */
857 vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
858 vlan_count = 1 << ilog2(vlan_count);
859 resc->num_vlan_filters = vlan_count / BNX2X_NR_VIRTFN(bp);
860
861 /* no real limitation */
862 resc->num_mc_filters = 0;
863
864 /* num_sbs already set */
865 resc->num_sbs = vf->sb_count;
866 }
867
868 /* FLR routines: */
869 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
870 {
871 /* reset the state variables */
872 bnx2x_iov_static_resc(bp, vf);
873 vf->state = VF_FREE;
874 }
875
876 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
877 {
878 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
879
880 /* DQ usage counter */
881 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
882 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
883 "DQ VF usage counter timed out",
884 poll_cnt);
885 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
886
887 /* FW cleanup command - poll for the results */
888 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
889 poll_cnt))
890 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
891
892 /* verify TX hw is flushed */
893 bnx2x_tx_hw_flushed(bp, poll_cnt);
894 }
895
896 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
897 {
898 int rc, i;
899
900 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
901
902 /* the cleanup operations are valid if and only if the VF
903 * was first acquired.
904 */
905 for (i = 0; i < vf_rxq_count(vf); i++) {
906 rc = bnx2x_vf_queue_flr(bp, vf, i);
907 if (rc)
908 goto out;
909 }
910
911 /* remove multicasts */
912 bnx2x_vf_mcast(bp, vf, NULL, 0, true);
913
914 /* dispatch final cleanup and wait for HW queues to flush */
915 bnx2x_vf_flr_clnup_hw(bp, vf);
916
917 /* release VF resources */
918 bnx2x_vf_free_resc(bp, vf);
919
920 /* re-open the mailbox */
921 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
922 return;
923 out:
924 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
925 vf->abs_vfid, i, rc);
926 }
927
928 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
929 {
930 struct bnx2x_virtf *vf;
931 int i;
932
933 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
934 /* VF should be RESET & in FLR cleanup states */
935 if (bnx2x_vf(bp, i, state) != VF_RESET ||
936 !bnx2x_vf(bp, i, flr_clnup_stage))
937 continue;
938
939 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
940 i, BNX2X_NR_VIRTFN(bp));
941
942 vf = BP_VF(bp, i);
943
944 /* lock the vf pf channel */
945 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
946
947 /* invoke the VF FLR SM */
948 bnx2x_vf_flr(bp, vf);
949
950 /* mark the VF to be ACKED and continue */
951 vf->flr_clnup_stage = false;
952 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
953 }
954
955 /* Acknowledge the handled VFs.
956 * we are acknowledge all the vfs which an flr was requested for, even
957 * if amongst them there are such that we never opened, since the mcp
958 * will interrupt us immediately again if we only ack some of the bits,
959 * resulting in an endless loop. This can happen for example in KVM
960 * where an 'all ones' flr request is sometimes given by hyper visor
961 */
962 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
963 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
964 for (i = 0; i < FLRD_VFS_DWORDS; i++)
965 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
966 bp->vfdb->flrd_vfs[i]);
967
968 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
969
970 /* clear the acked bits - better yet if the MCP implemented
971 * write to clear semantics
972 */
973 for (i = 0; i < FLRD_VFS_DWORDS; i++)
974 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
975 }
976
977 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
978 {
979 int i;
980
981 /* Read FLR'd VFs */
982 for (i = 0; i < FLRD_VFS_DWORDS; i++)
983 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
984
985 DP(BNX2X_MSG_MCP,
986 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
987 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
988
989 for_each_vf(bp, i) {
990 struct bnx2x_virtf *vf = BP_VF(bp, i);
991 u32 reset = 0;
992
993 if (vf->abs_vfid < 32)
994 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
995 else
996 reset = bp->vfdb->flrd_vfs[1] &
997 (1 << (vf->abs_vfid - 32));
998
999 if (reset) {
1000 /* set as reset and ready for cleanup */
1001 vf->state = VF_RESET;
1002 vf->flr_clnup_stage = true;
1003
1004 DP(BNX2X_MSG_IOV,
1005 "Initiating Final cleanup for VF %d\n",
1006 vf->abs_vfid);
1007 }
1008 }
1009
1010 /* do the FLR cleanup for all marked VFs*/
1011 bnx2x_vf_flr_clnup(bp);
1012 }
1013
1014 /* IOV global initialization routines */
1015 void bnx2x_iov_init_dq(struct bnx2x *bp)
1016 {
1017 if (!IS_SRIOV(bp))
1018 return;
1019
1020 /* Set the DQ such that the CID reflect the abs_vfid */
1021 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1022 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1023
1024 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1025 * the PF L2 queues
1026 */
1027 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1028
1029 /* The VF window size is the log2 of the max number of CIDs per VF */
1030 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1031
1032 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1033 * the Pf doorbell size although the 2 are independent.
1034 */
1035 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1036
1037 /* No security checks for now -
1038 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1039 * CID range 0 - 0x1ffff
1040 */
1041 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1042 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1043 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1044 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1045
1046 /* set the VF doorbell threshold */
1047 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
1048 }
1049
1050 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1051 {
1052 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1053 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1054 }
1055
1056 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1057 {
1058 struct pci_dev *dev = bp->pdev;
1059 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1060
1061 return dev->bus->number + ((dev->devfn + iov->offset +
1062 iov->stride * vfid) >> 8);
1063 }
1064
1065 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1066 {
1067 struct pci_dev *dev = bp->pdev;
1068 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1069
1070 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1071 }
1072
1073 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1074 {
1075 int i, n;
1076 struct pci_dev *dev = bp->pdev;
1077 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1078
1079 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1080 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1081 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1082
1083 size /= iov->total;
1084 vf->bars[n].bar = start + size * vf->abs_vfid;
1085 vf->bars[n].size = size;
1086 }
1087 }
1088
1089 static int bnx2x_ari_enabled(struct pci_dev *dev)
1090 {
1091 return dev->bus->self && dev->bus->self->ari_enabled;
1092 }
1093
1094 static void
1095 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1096 {
1097 int sb_id;
1098 u32 val;
1099 u8 fid, current_pf = 0;
1100
1101 /* IGU in normal mode - read CAM */
1102 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1103 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1104 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1105 continue;
1106 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1107 if (fid & IGU_FID_ENCODE_IS_PF)
1108 current_pf = fid & IGU_FID_PF_NUM_MASK;
1109 else if (current_pf == BP_FUNC(bp))
1110 bnx2x_vf_set_igu_info(bp, sb_id,
1111 (fid & IGU_FID_VF_NUM_MASK));
1112 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1113 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1114 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1115 (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1116 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1117 }
1118 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1119 }
1120
1121 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1122 {
1123 if (bp->vfdb) {
1124 kfree(bp->vfdb->vfqs);
1125 kfree(bp->vfdb->vfs);
1126 kfree(bp->vfdb);
1127 }
1128 bp->vfdb = NULL;
1129 }
1130
1131 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1132 {
1133 int pos;
1134 struct pci_dev *dev = bp->pdev;
1135
1136 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1137 if (!pos) {
1138 BNX2X_ERR("failed to find SRIOV capability in device\n");
1139 return -ENODEV;
1140 }
1141
1142 iov->pos = pos;
1143 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1144 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1145 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1146 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1147 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1148 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1149 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1150 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1151 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1152
1153 return 0;
1154 }
1155
1156 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1157 {
1158 u32 val;
1159
1160 /* read the SRIOV capability structure
1161 * The fields can be read via configuration read or
1162 * directly from the device (starting at offset PCICFG_OFFSET)
1163 */
1164 if (bnx2x_sriov_pci_cfg_info(bp, iov))
1165 return -ENODEV;
1166
1167 /* get the number of SRIOV bars */
1168 iov->nres = 0;
1169
1170 /* read the first_vfid */
1171 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1172 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1173 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1174
1175 DP(BNX2X_MSG_IOV,
1176 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1177 BP_FUNC(bp),
1178 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1179 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1180
1181 return 0;
1182 }
1183
1184 /* must be called after PF bars are mapped */
1185 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1186 int num_vfs_param)
1187 {
1188 int err, i;
1189 struct bnx2x_sriov *iov;
1190 struct pci_dev *dev = bp->pdev;
1191
1192 bp->vfdb = NULL;
1193
1194 /* verify is pf */
1195 if (IS_VF(bp))
1196 return 0;
1197
1198 /* verify sriov capability is present in configuration space */
1199 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1200 return 0;
1201
1202 /* verify chip revision */
1203 if (CHIP_IS_E1x(bp))
1204 return 0;
1205
1206 /* check if SRIOV support is turned off */
1207 if (!num_vfs_param)
1208 return 0;
1209
1210 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1211 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1212 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1213 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1214 return 0;
1215 }
1216
1217 /* SRIOV can be enabled only with MSIX */
1218 if (int_mode_param == BNX2X_INT_MODE_MSI ||
1219 int_mode_param == BNX2X_INT_MODE_INTX) {
1220 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1221 return 0;
1222 }
1223
1224 err = -EIO;
1225 /* verify ari is enabled */
1226 if (!bnx2x_ari_enabled(bp->pdev)) {
1227 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1228 return 0;
1229 }
1230
1231 /* verify igu is in normal mode */
1232 if (CHIP_INT_MODE_IS_BC(bp)) {
1233 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1234 return 0;
1235 }
1236
1237 /* allocate the vfs database */
1238 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1239 if (!bp->vfdb) {
1240 BNX2X_ERR("failed to allocate vf database\n");
1241 err = -ENOMEM;
1242 goto failed;
1243 }
1244
1245 /* get the sriov info - Linux already collected all the pertinent
1246 * information, however the sriov structure is for the private use
1247 * of the pci module. Also we want this information regardless
1248 * of the hyper-visor.
1249 */
1250 iov = &(bp->vfdb->sriov);
1251 err = bnx2x_sriov_info(bp, iov);
1252 if (err)
1253 goto failed;
1254
1255 /* SR-IOV capability was enabled but there are no VFs*/
1256 if (iov->total == 0)
1257 goto failed;
1258
1259 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1260
1261 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1262 num_vfs_param, iov->nr_virtfn);
1263
1264 /* allocate the vf array */
1265 bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1266 BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1267 if (!bp->vfdb->vfs) {
1268 BNX2X_ERR("failed to allocate vf array\n");
1269 err = -ENOMEM;
1270 goto failed;
1271 }
1272
1273 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1274 for_each_vf(bp, i) {
1275 bnx2x_vf(bp, i, index) = i;
1276 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1277 bnx2x_vf(bp, i, state) = VF_FREE;
1278 mutex_init(&bnx2x_vf(bp, i, op_mutex));
1279 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1280 }
1281
1282 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1283 bnx2x_get_vf_igu_cam_info(bp);
1284
1285 /* allocate the queue arrays for all VFs */
1286 bp->vfdb->vfqs = kzalloc(
1287 BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1288 GFP_KERNEL);
1289
1290 DP(BNX2X_MSG_IOV, "bp->vfdb->vfqs was %p\n", bp->vfdb->vfqs);
1291
1292 if (!bp->vfdb->vfqs) {
1293 BNX2X_ERR("failed to allocate vf queue array\n");
1294 err = -ENOMEM;
1295 goto failed;
1296 }
1297
1298 /* Prepare the VFs event synchronization mechanism */
1299 mutex_init(&bp->vfdb->event_mutex);
1300
1301 return 0;
1302 failed:
1303 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1304 __bnx2x_iov_free_vfdb(bp);
1305 return err;
1306 }
1307
1308 void bnx2x_iov_remove_one(struct bnx2x *bp)
1309 {
1310 int vf_idx;
1311
1312 /* if SRIOV is not enabled there's nothing to do */
1313 if (!IS_SRIOV(bp))
1314 return;
1315
1316 DP(BNX2X_MSG_IOV, "about to call disable sriov\n");
1317 pci_disable_sriov(bp->pdev);
1318 DP(BNX2X_MSG_IOV, "sriov disabled\n");
1319
1320 /* disable access to all VFs */
1321 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1322 bnx2x_pretend_func(bp,
1323 HW_VF_HANDLE(bp,
1324 bp->vfdb->sriov.first_vf_in_pf +
1325 vf_idx));
1326 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1327 bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1328 bnx2x_vf_enable_internal(bp, 0);
1329 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1330 }
1331
1332 /* free vf database */
1333 __bnx2x_iov_free_vfdb(bp);
1334 }
1335
1336 void bnx2x_iov_free_mem(struct bnx2x *bp)
1337 {
1338 int i;
1339
1340 if (!IS_SRIOV(bp))
1341 return;
1342
1343 /* free vfs hw contexts */
1344 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1345 struct hw_dma *cxt = &bp->vfdb->context[i];
1346 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1347 }
1348
1349 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1350 BP_VFDB(bp)->sp_dma.mapping,
1351 BP_VFDB(bp)->sp_dma.size);
1352
1353 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1354 BP_VF_MBX_DMA(bp)->mapping,
1355 BP_VF_MBX_DMA(bp)->size);
1356
1357 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1358 BP_VF_BULLETIN_DMA(bp)->mapping,
1359 BP_VF_BULLETIN_DMA(bp)->size);
1360 }
1361
1362 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1363 {
1364 size_t tot_size;
1365 int i, rc = 0;
1366
1367 if (!IS_SRIOV(bp))
1368 return rc;
1369
1370 /* allocate vfs hw contexts */
1371 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1372 BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1373
1374 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1375 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1376 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1377
1378 if (cxt->size) {
1379 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1380 if (!cxt->addr)
1381 goto alloc_mem_err;
1382 } else {
1383 cxt->addr = NULL;
1384 cxt->mapping = 0;
1385 }
1386 tot_size -= cxt->size;
1387 }
1388
1389 /* allocate vfs ramrods dma memory - client_init and set_mac */
1390 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1391 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1392 tot_size);
1393 if (!BP_VFDB(bp)->sp_dma.addr)
1394 goto alloc_mem_err;
1395 BP_VFDB(bp)->sp_dma.size = tot_size;
1396
1397 /* allocate mailboxes */
1398 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1399 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1400 tot_size);
1401 if (!BP_VF_MBX_DMA(bp)->addr)
1402 goto alloc_mem_err;
1403
1404 BP_VF_MBX_DMA(bp)->size = tot_size;
1405
1406 /* allocate local bulletin boards */
1407 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1408 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1409 tot_size);
1410 if (!BP_VF_BULLETIN_DMA(bp)->addr)
1411 goto alloc_mem_err;
1412
1413 BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1414
1415 return 0;
1416
1417 alloc_mem_err:
1418 return -ENOMEM;
1419 }
1420
1421 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1422 struct bnx2x_vf_queue *q)
1423 {
1424 u8 cl_id = vfq_cl_id(vf, q);
1425 u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1426 unsigned long q_type = 0;
1427
1428 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1429 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1430
1431 /* Queue State object */
1432 bnx2x_init_queue_obj(bp, &q->sp_obj,
1433 cl_id, &q->cid, 1, func_id,
1434 bnx2x_vf_sp(bp, vf, q_data),
1435 bnx2x_vf_sp_map(bp, vf, q_data),
1436 q_type);
1437
1438 /* sp indication is set only when vlan/mac/etc. are initialized */
1439 q->sp_initialized = false;
1440
1441 DP(BNX2X_MSG_IOV,
1442 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1443 vf->abs_vfid, q->sp_obj.func_id, q->cid);
1444 }
1445
1446 /* called by bnx2x_nic_load */
1447 int bnx2x_iov_nic_init(struct bnx2x *bp)
1448 {
1449 int vfid;
1450
1451 if (!IS_SRIOV(bp)) {
1452 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1453 return 0;
1454 }
1455
1456 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1457
1458 /* let FLR complete ... */
1459 msleep(100);
1460
1461 /* initialize vf database */
1462 for_each_vf(bp, vfid) {
1463 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1464
1465 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1466 BNX2X_CIDS_PER_VF;
1467
1468 union cdu_context *base_cxt = (union cdu_context *)
1469 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1470 (base_vf_cid & (ILT_PAGE_CIDS-1));
1471
1472 DP(BNX2X_MSG_IOV,
1473 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1474 vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1475 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1476
1477 /* init statically provisioned resources */
1478 bnx2x_iov_static_resc(bp, vf);
1479
1480 /* queues are initialized during VF-ACQUIRE */
1481
1482 /* reserve the vf vlan credit */
1483 bp->vlans_pool.get(&bp->vlans_pool, vf_vlan_rules_cnt(vf));
1484
1485 vf->filter_state = 0;
1486 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1487
1488 /* init mcast object - This object will be re-initialized
1489 * during VF-ACQUIRE with the proper cl_id and cid.
1490 * It needs to be initialized here so that it can be safely
1491 * handled by a subsequent FLR flow.
1492 */
1493 vf->mcast_list_len = 0;
1494 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1495 0xFF, 0xFF, 0xFF,
1496 bnx2x_vf_sp(bp, vf, mcast_rdata),
1497 bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1498 BNX2X_FILTER_MCAST_PENDING,
1499 &vf->filter_state,
1500 BNX2X_OBJ_TYPE_RX_TX);
1501
1502 /* set the mailbox message addresses */
1503 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1504 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1505 MBX_MSG_ALIGNED_SIZE);
1506
1507 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1508 vfid * MBX_MSG_ALIGNED_SIZE;
1509
1510 /* Enable vf mailbox */
1511 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1512 }
1513
1514 /* Final VF init */
1515 for_each_vf(bp, vfid) {
1516 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1517
1518 /* fill in the BDF and bars */
1519 vf->bus = bnx2x_vf_bus(bp, vfid);
1520 vf->devfn = bnx2x_vf_devfn(bp, vfid);
1521 bnx2x_vf_set_bars(bp, vf);
1522
1523 DP(BNX2X_MSG_IOV,
1524 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1525 vf->abs_vfid, vf->bus, vf->devfn,
1526 (unsigned)vf->bars[0].bar, vf->bars[0].size,
1527 (unsigned)vf->bars[1].bar, vf->bars[1].size,
1528 (unsigned)vf->bars[2].bar, vf->bars[2].size);
1529 }
1530
1531 return 0;
1532 }
1533
1534 /* called by bnx2x_chip_cleanup */
1535 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1536 {
1537 int i;
1538
1539 if (!IS_SRIOV(bp))
1540 return 0;
1541
1542 /* release all the VFs */
1543 for_each_vf(bp, i)
1544 bnx2x_vf_release(bp, BP_VF(bp, i));
1545
1546 return 0;
1547 }
1548
1549 /* called by bnx2x_init_hw_func, returns the next ilt line */
1550 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1551 {
1552 int i;
1553 struct bnx2x_ilt *ilt = BP_ILT(bp);
1554
1555 if (!IS_SRIOV(bp))
1556 return line;
1557
1558 /* set vfs ilt lines */
1559 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1560 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1561
1562 ilt->lines[line+i].page = hw_cxt->addr;
1563 ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1564 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1565 }
1566 return line + i;
1567 }
1568
1569 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1570 {
1571 return ((cid >= BNX2X_FIRST_VF_CID) &&
1572 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1573 }
1574
1575 static
1576 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1577 struct bnx2x_vf_queue *vfq,
1578 union event_ring_elem *elem)
1579 {
1580 unsigned long ramrod_flags = 0;
1581 int rc = 0;
1582
1583 /* Always push next commands out, don't wait here */
1584 set_bit(RAMROD_CONT, &ramrod_flags);
1585
1586 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1587 case BNX2X_FILTER_MAC_PENDING:
1588 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1589 &ramrod_flags);
1590 break;
1591 case BNX2X_FILTER_VLAN_PENDING:
1592 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1593 &ramrod_flags);
1594 break;
1595 default:
1596 BNX2X_ERR("Unsupported classification command: %d\n",
1597 elem->message.data.eth_event.echo);
1598 return;
1599 }
1600 if (rc < 0)
1601 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1602 else if (rc > 0)
1603 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1604 }
1605
1606 static
1607 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1608 struct bnx2x_virtf *vf)
1609 {
1610 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1611 int rc;
1612
1613 rparam.mcast_obj = &vf->mcast_obj;
1614 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1615
1616 /* If there are pending mcast commands - send them */
1617 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1618 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1619 if (rc < 0)
1620 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1621 rc);
1622 }
1623 }
1624
1625 static
1626 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1627 struct bnx2x_virtf *vf)
1628 {
1629 smp_mb__before_clear_bit();
1630 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1631 smp_mb__after_clear_bit();
1632 }
1633
1634 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1635 struct bnx2x_virtf *vf)
1636 {
1637 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1638 }
1639
1640 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1641 {
1642 struct bnx2x_virtf *vf;
1643 int qidx = 0, abs_vfid;
1644 u8 opcode;
1645 u16 cid = 0xffff;
1646
1647 if (!IS_SRIOV(bp))
1648 return 1;
1649
1650 /* first get the cid - the only events we handle here are cfc-delete
1651 * and set-mac completion
1652 */
1653 opcode = elem->message.opcode;
1654
1655 switch (opcode) {
1656 case EVENT_RING_OPCODE_CFC_DEL:
1657 cid = SW_CID((__force __le32)
1658 elem->message.data.cfc_del_event.cid);
1659 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1660 break;
1661 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1662 case EVENT_RING_OPCODE_MULTICAST_RULES:
1663 case EVENT_RING_OPCODE_FILTERS_RULES:
1664 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1665 cid = (elem->message.data.eth_event.echo &
1666 BNX2X_SWCID_MASK);
1667 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1668 break;
1669 case EVENT_RING_OPCODE_VF_FLR:
1670 abs_vfid = elem->message.data.vf_flr_event.vf_id;
1671 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1672 abs_vfid);
1673 goto get_vf;
1674 case EVENT_RING_OPCODE_MALICIOUS_VF:
1675 abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1676 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1677 abs_vfid,
1678 elem->message.data.malicious_vf_event.err_id);
1679 goto get_vf;
1680 default:
1681 return 1;
1682 }
1683
1684 /* check if the cid is the VF range */
1685 if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1686 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1687 return 1;
1688 }
1689
1690 /* extract vf and rxq index from vf_cid - relies on the following:
1691 * 1. vfid on cid reflects the true abs_vfid
1692 * 2. The max number of VFs (per path) is 64
1693 */
1694 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1695 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1696 get_vf:
1697 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1698
1699 if (!vf) {
1700 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1701 cid, abs_vfid);
1702 return 0;
1703 }
1704
1705 switch (opcode) {
1706 case EVENT_RING_OPCODE_CFC_DEL:
1707 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1708 vf->abs_vfid, qidx);
1709 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1710 &vfq_get(vf,
1711 qidx)->sp_obj,
1712 BNX2X_Q_CMD_CFC_DEL);
1713 break;
1714 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1715 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1716 vf->abs_vfid, qidx);
1717 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1718 break;
1719 case EVENT_RING_OPCODE_MULTICAST_RULES:
1720 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1721 vf->abs_vfid, qidx);
1722 bnx2x_vf_handle_mcast_eqe(bp, vf);
1723 break;
1724 case EVENT_RING_OPCODE_FILTERS_RULES:
1725 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1726 vf->abs_vfid, qidx);
1727 bnx2x_vf_handle_filters_eqe(bp, vf);
1728 break;
1729 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1730 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1731 vf->abs_vfid, qidx);
1732 bnx2x_vf_handle_rss_update_eqe(bp, vf);
1733 case EVENT_RING_OPCODE_VF_FLR:
1734 case EVENT_RING_OPCODE_MALICIOUS_VF:
1735 /* Do nothing for now */
1736 return 0;
1737 }
1738
1739 return 0;
1740 }
1741
1742 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1743 {
1744 /* extract the vf from vf_cid - relies on the following:
1745 * 1. vfid on cid reflects the true abs_vfid
1746 * 2. The max number of VFs (per path) is 64
1747 */
1748 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1749 return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1750 }
1751
1752 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1753 struct bnx2x_queue_sp_obj **q_obj)
1754 {
1755 struct bnx2x_virtf *vf;
1756
1757 if (!IS_SRIOV(bp))
1758 return;
1759
1760 vf = bnx2x_vf_by_cid(bp, vf_cid);
1761
1762 if (vf) {
1763 /* extract queue index from vf_cid - relies on the following:
1764 * 1. vfid on cid reflects the true abs_vfid
1765 * 2. The max number of VFs (per path) is 64
1766 */
1767 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1768 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1769 } else {
1770 BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1771 }
1772 }
1773
1774 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1775 {
1776 int i;
1777 int first_queue_query_index, num_queues_req;
1778 dma_addr_t cur_data_offset;
1779 struct stats_query_entry *cur_query_entry;
1780 u8 stats_count = 0;
1781 bool is_fcoe = false;
1782
1783 if (!IS_SRIOV(bp))
1784 return;
1785
1786 if (!NO_FCOE(bp))
1787 is_fcoe = true;
1788
1789 /* fcoe adds one global request and one queue request */
1790 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1791 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1792 (is_fcoe ? 0 : 1);
1793
1794 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1795 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1796 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1797 first_queue_query_index + num_queues_req);
1798
1799 cur_data_offset = bp->fw_stats_data_mapping +
1800 offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1801 num_queues_req * sizeof(struct per_queue_stats);
1802
1803 cur_query_entry = &bp->fw_stats_req->
1804 query[first_queue_query_index + num_queues_req];
1805
1806 for_each_vf(bp, i) {
1807 int j;
1808 struct bnx2x_virtf *vf = BP_VF(bp, i);
1809
1810 if (vf->state != VF_ENABLED) {
1811 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1812 "vf %d not enabled so no stats for it\n",
1813 vf->abs_vfid);
1814 continue;
1815 }
1816
1817 DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1818 for_each_vfq(vf, j) {
1819 struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1820
1821 dma_addr_t q_stats_addr =
1822 vf->fw_stat_map + j * vf->stats_stride;
1823
1824 /* collect stats fro active queues only */
1825 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1826 BNX2X_Q_LOGICAL_STATE_STOPPED)
1827 continue;
1828
1829 /* create stats query entry for this queue */
1830 cur_query_entry->kind = STATS_TYPE_QUEUE;
1831 cur_query_entry->index = vfq_stat_id(vf, rxq);
1832 cur_query_entry->funcID =
1833 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1834 cur_query_entry->address.hi =
1835 cpu_to_le32(U64_HI(q_stats_addr));
1836 cur_query_entry->address.lo =
1837 cpu_to_le32(U64_LO(q_stats_addr));
1838 DP(BNX2X_MSG_IOV,
1839 "added address %x %x for vf %d queue %d client %d\n",
1840 cur_query_entry->address.hi,
1841 cur_query_entry->address.lo, cur_query_entry->funcID,
1842 j, cur_query_entry->index);
1843 cur_query_entry++;
1844 cur_data_offset += sizeof(struct per_queue_stats);
1845 stats_count++;
1846
1847 /* all stats are coalesced to the leading queue */
1848 if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1849 break;
1850 }
1851 }
1852 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1853 }
1854
1855 static inline
1856 struct bnx2x_virtf *__vf_from_stat_id(struct bnx2x *bp, u8 stat_id)
1857 {
1858 int i;
1859 struct bnx2x_virtf *vf = NULL;
1860
1861 for_each_vf(bp, i) {
1862 vf = BP_VF(bp, i);
1863 if (stat_id >= vf->igu_base_id &&
1864 stat_id < vf->igu_base_id + vf_sb_count(vf))
1865 break;
1866 }
1867 return vf;
1868 }
1869
1870 /* VF API helpers */
1871 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1872 u8 enable)
1873 {
1874 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1875 u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1876
1877 REG_WR(bp, reg, val);
1878 }
1879
1880 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1881 {
1882 int i;
1883
1884 for_each_vfq(vf, i)
1885 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1886 vfq_qzone_id(vf, vfq_get(vf, i)), false);
1887 }
1888
1889 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1890 {
1891 u32 val;
1892
1893 /* clear the VF configuration - pretend */
1894 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1895 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1896 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1897 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1898 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1899 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1900 }
1901
1902 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1903 {
1904 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1905 BNX2X_VF_MAX_QUEUES);
1906 }
1907
1908 static
1909 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1910 struct vf_pf_resc_request *req_resc)
1911 {
1912 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1913 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1914
1915 return ((req_resc->num_rxqs <= rxq_cnt) &&
1916 (req_resc->num_txqs <= txq_cnt) &&
1917 (req_resc->num_sbs <= vf_sb_count(vf)) &&
1918 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1919 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
1920 }
1921
1922 /* CORE VF API */
1923 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
1924 struct vf_pf_resc_request *resc)
1925 {
1926 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
1927 BNX2X_CIDS_PER_VF;
1928
1929 union cdu_context *base_cxt = (union cdu_context *)
1930 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1931 (base_vf_cid & (ILT_PAGE_CIDS-1));
1932 int i;
1933
1934 /* if state is 'acquired' the VF was not released or FLR'd, in
1935 * this case the returned resources match the acquired already
1936 * acquired resources. Verify that the requested numbers do
1937 * not exceed the already acquired numbers.
1938 */
1939 if (vf->state == VF_ACQUIRED) {
1940 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
1941 vf->abs_vfid);
1942
1943 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1944 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
1945 vf->abs_vfid);
1946 return -EINVAL;
1947 }
1948 return 0;
1949 }
1950
1951 /* Otherwise vf state must be 'free' or 'reset' */
1952 if (vf->state != VF_FREE && vf->state != VF_RESET) {
1953 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
1954 vf->abs_vfid, vf->state);
1955 return -EINVAL;
1956 }
1957
1958 /* static allocation:
1959 * the global maximum number are fixed per VF. Fail the request if
1960 * requested number exceed these globals
1961 */
1962 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
1963 DP(BNX2X_MSG_IOV,
1964 "cannot fulfill vf resource request. Placing maximal available values in response\n");
1965 /* set the max resource in the vf */
1966 return -ENOMEM;
1967 }
1968
1969 /* Set resources counters - 0 request means max available */
1970 vf_sb_count(vf) = resc->num_sbs;
1971 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1972 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
1973 if (resc->num_mac_filters)
1974 vf_mac_rules_cnt(vf) = resc->num_mac_filters;
1975 if (resc->num_vlan_filters)
1976 vf_vlan_rules_cnt(vf) = resc->num_vlan_filters;
1977
1978 DP(BNX2X_MSG_IOV,
1979 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
1980 vf_sb_count(vf), vf_rxq_count(vf),
1981 vf_txq_count(vf), vf_mac_rules_cnt(vf),
1982 vf_vlan_rules_cnt(vf));
1983
1984 /* Initialize the queues */
1985 if (!vf->vfqs) {
1986 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
1987 return -EINVAL;
1988 }
1989
1990 for_each_vfq(vf, i) {
1991 struct bnx2x_vf_queue *q = vfq_get(vf, i);
1992
1993 if (!q) {
1994 BNX2X_ERR("q number %d was not allocated\n", i);
1995 return -EINVAL;
1996 }
1997
1998 q->index = i;
1999 q->cxt = &((base_cxt + i)->eth);
2000 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2001
2002 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2003 vf->abs_vfid, i, q->index, q->cid, q->cxt);
2004
2005 /* init SP objects */
2006 bnx2x_vfq_init(bp, vf, q);
2007 }
2008 vf->state = VF_ACQUIRED;
2009 return 0;
2010 }
2011
2012 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2013 {
2014 struct bnx2x_func_init_params func_init = {0};
2015 u16 flags = 0;
2016 int i;
2017
2018 /* the sb resources are initialized at this point, do the
2019 * FW/HW initializations
2020 */
2021 for_each_vf_sb(vf, i)
2022 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2023 vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2024
2025 /* Sanity checks */
2026 if (vf->state != VF_ACQUIRED) {
2027 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2028 vf->abs_vfid, vf->state);
2029 return -EINVAL;
2030 }
2031
2032 /* let FLR complete ... */
2033 msleep(100);
2034
2035 /* FLR cleanup epilogue */
2036 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2037 return -EBUSY;
2038
2039 /* reset IGU VF statistics: MSIX */
2040 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2041
2042 /* vf init */
2043 if (vf->cfg_flags & VF_CFG_STATS)
2044 flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2045
2046 if (vf->cfg_flags & VF_CFG_TPA)
2047 flags |= FUNC_FLG_TPA;
2048
2049 if (is_vf_multi(vf))
2050 flags |= FUNC_FLG_RSS;
2051
2052 /* function setup */
2053 func_init.func_flgs = flags;
2054 func_init.pf_id = BP_FUNC(bp);
2055 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2056 func_init.fw_stat_map = vf->fw_stat_map;
2057 func_init.spq_map = vf->spq_map;
2058 func_init.spq_prod = 0;
2059 bnx2x_func_init(bp, &func_init);
2060
2061 /* Enable the vf */
2062 bnx2x_vf_enable_access(bp, vf->abs_vfid);
2063 bnx2x_vf_enable_traffic(bp, vf);
2064
2065 /* queue protection table */
2066 for_each_vfq(vf, i)
2067 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2068 vfq_qzone_id(vf, vfq_get(vf, i)), true);
2069
2070 vf->state = VF_ENABLED;
2071
2072 /* update vf bulletin board */
2073 bnx2x_post_vf_bulletin(bp, vf->index);
2074
2075 return 0;
2076 }
2077
2078 struct set_vf_state_cookie {
2079 struct bnx2x_virtf *vf;
2080 u8 state;
2081 };
2082
2083 static void bnx2x_set_vf_state(void *cookie)
2084 {
2085 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2086
2087 p->vf->state = p->state;
2088 }
2089
2090 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2091 {
2092 int rc = 0, i;
2093
2094 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2095
2096 /* Close all queues */
2097 for (i = 0; i < vf_rxq_count(vf); i++) {
2098 rc = bnx2x_vf_queue_teardown(bp, vf, i);
2099 if (rc)
2100 goto op_err;
2101 }
2102
2103 /* disable the interrupts */
2104 DP(BNX2X_MSG_IOV, "disabling igu\n");
2105 bnx2x_vf_igu_disable(bp, vf);
2106
2107 /* disable the VF */
2108 DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2109 bnx2x_vf_clr_qtbl(bp, vf);
2110
2111 /* need to make sure there are no outstanding stats ramrods which may
2112 * cause the device to access the VF's stats buffer which it will free
2113 * as soon as we return from the close flow.
2114 */
2115 {
2116 struct set_vf_state_cookie cookie;
2117
2118 cookie.vf = vf;
2119 cookie.state = VF_ACQUIRED;
2120 bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2121 }
2122
2123 DP(BNX2X_MSG_IOV, "set state to acquired\n");
2124
2125 return 0;
2126 op_err:
2127 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2128 return rc;
2129 }
2130
2131 /* VF release can be called either: 1. The VF was acquired but
2132 * not enabled 2. the vf was enabled or in the process of being
2133 * enabled
2134 */
2135 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2136 {
2137 int rc;
2138
2139 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2140 vf->state == VF_FREE ? "Free" :
2141 vf->state == VF_ACQUIRED ? "Acquired" :
2142 vf->state == VF_ENABLED ? "Enabled" :
2143 vf->state == VF_RESET ? "Reset" :
2144 "Unknown");
2145
2146 switch (vf->state) {
2147 case VF_ENABLED:
2148 rc = bnx2x_vf_close(bp, vf);
2149 if (rc)
2150 goto op_err;
2151 /* Fallthrough to release resources */
2152 case VF_ACQUIRED:
2153 DP(BNX2X_MSG_IOV, "about to free resources\n");
2154 bnx2x_vf_free_resc(bp, vf);
2155 break;
2156
2157 case VF_FREE:
2158 case VF_RESET:
2159 default:
2160 break;
2161 }
2162 return 0;
2163 op_err:
2164 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2165 return rc;
2166 }
2167
2168 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2169 struct bnx2x_config_rss_params *rss)
2170 {
2171 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2172 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2173 return bnx2x_config_rss(bp, rss);
2174 }
2175
2176 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2177 struct vfpf_tpa_tlv *tlv,
2178 struct bnx2x_queue_update_tpa_params *params)
2179 {
2180 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2181 struct bnx2x_queue_state_params qstate;
2182 int qid, rc = 0;
2183
2184 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2185
2186 /* Set ramrod params */
2187 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2188 memcpy(&qstate.params.update_tpa, params,
2189 sizeof(struct bnx2x_queue_update_tpa_params));
2190 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2191 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2192
2193 for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2194 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2195 qstate.params.update_tpa.sge_map = sge_addr[qid];
2196 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2197 vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2198 U64_LO(sge_addr[qid]));
2199 rc = bnx2x_queue_state_change(bp, &qstate);
2200 if (rc) {
2201 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2202 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2203 vf->abs_vfid, qid);
2204 return rc;
2205 }
2206 }
2207
2208 return rc;
2209 }
2210
2211 /* VF release ~ VF close + VF release-resources
2212 * Release is the ultimate SW shutdown and is called whenever an
2213 * irrecoverable error is encountered.
2214 */
2215 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2216 {
2217 int rc;
2218
2219 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2220 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2221
2222 rc = bnx2x_vf_free(bp, vf);
2223 if (rc)
2224 WARN(rc,
2225 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2226 vf->abs_vfid, rc);
2227 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2228 return rc;
2229 }
2230
2231 static inline void bnx2x_vf_get_sbdf(struct bnx2x *bp,
2232 struct bnx2x_virtf *vf, u32 *sbdf)
2233 {
2234 *sbdf = vf->devfn | (vf->bus << 8);
2235 }
2236
2237 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2238 enum channel_tlvs tlv)
2239 {
2240 /* we don't lock the channel for unsupported tlvs */
2241 if (!bnx2x_tlv_supported(tlv)) {
2242 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2243 return;
2244 }
2245
2246 /* lock the channel */
2247 mutex_lock(&vf->op_mutex);
2248
2249 /* record the locking op */
2250 vf->op_current = tlv;
2251
2252 /* log the lock */
2253 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2254 vf->abs_vfid, tlv);
2255 }
2256
2257 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2258 enum channel_tlvs expected_tlv)
2259 {
2260 enum channel_tlvs current_tlv;
2261
2262 if (!vf) {
2263 BNX2X_ERR("VF was %p\n", vf);
2264 return;
2265 }
2266
2267 current_tlv = vf->op_current;
2268
2269 /* we don't unlock the channel for unsupported tlvs */
2270 if (!bnx2x_tlv_supported(expected_tlv))
2271 return;
2272
2273 WARN(expected_tlv != vf->op_current,
2274 "lock mismatch: expected %d found %d", expected_tlv,
2275 vf->op_current);
2276
2277 /* record the locking op */
2278 vf->op_current = CHANNEL_TLV_NONE;
2279
2280 /* lock the channel */
2281 mutex_unlock(&vf->op_mutex);
2282
2283 /* log the unlock */
2284 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2285 vf->abs_vfid, vf->op_current);
2286 }
2287
2288 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2289 {
2290 struct bnx2x_queue_state_params q_params;
2291 u32 prev_flags;
2292 int i, rc;
2293
2294 /* Verify changes are needed and record current Tx switching state */
2295 prev_flags = bp->flags;
2296 if (enable)
2297 bp->flags |= TX_SWITCHING;
2298 else
2299 bp->flags &= ~TX_SWITCHING;
2300 if (prev_flags == bp->flags)
2301 return 0;
2302
2303 /* Verify state enables the sending of queue ramrods */
2304 if ((bp->state != BNX2X_STATE_OPEN) ||
2305 (bnx2x_get_q_logical_state(bp,
2306 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2307 BNX2X_Q_LOGICAL_STATE_ACTIVE))
2308 return 0;
2309
2310 /* send q. update ramrod to configure Tx switching */
2311 memset(&q_params, 0, sizeof(q_params));
2312 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2313 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2314 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2315 &q_params.params.update.update_flags);
2316 if (enable)
2317 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2318 &q_params.params.update.update_flags);
2319 else
2320 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2321 &q_params.params.update.update_flags);
2322
2323 /* send the ramrod on all the queues of the PF */
2324 for_each_eth_queue(bp, i) {
2325 struct bnx2x_fastpath *fp = &bp->fp[i];
2326
2327 /* Set the appropriate Queue object */
2328 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2329
2330 /* Update the Queue state */
2331 rc = bnx2x_queue_state_change(bp, &q_params);
2332 if (rc) {
2333 BNX2X_ERR("Failed to configure Tx switching\n");
2334 return rc;
2335 }
2336 }
2337
2338 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2339 return 0;
2340 }
2341
2342 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2343 {
2344 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2345
2346 if (!IS_SRIOV(bp)) {
2347 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2348 return -EINVAL;
2349 }
2350
2351 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2352 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2353
2354 /* HW channel is only operational when PF is up */
2355 if (bp->state != BNX2X_STATE_OPEN) {
2356 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2357 return -EINVAL;
2358 }
2359
2360 /* we are always bound by the total_vfs in the configuration space */
2361 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2362 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2363 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2364 num_vfs_param = BNX2X_NR_VIRTFN(bp);
2365 }
2366
2367 bp->requested_nr_virtfn = num_vfs_param;
2368 if (num_vfs_param == 0) {
2369 bnx2x_set_pf_tx_switching(bp, false);
2370 pci_disable_sriov(dev);
2371 return 0;
2372 } else {
2373 return bnx2x_enable_sriov(bp);
2374 }
2375 }
2376
2377 #define IGU_ENTRY_SIZE 4
2378
2379 int bnx2x_enable_sriov(struct bnx2x *bp)
2380 {
2381 int rc = 0, req_vfs = bp->requested_nr_virtfn;
2382 int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2383 u32 igu_entry, address;
2384 u16 num_vf_queues;
2385
2386 if (req_vfs == 0)
2387 return 0;
2388
2389 first_vf = bp->vfdb->sriov.first_vf_in_pf;
2390
2391 /* statically distribute vf sb pool between VFs */
2392 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2393 BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2394
2395 /* zero previous values learned from igu cam */
2396 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2397 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2398
2399 vf->sb_count = 0;
2400 vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2401 }
2402 bp->vfdb->vf_sbs_pool = 0;
2403
2404 /* prepare IGU cam */
2405 sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2406 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2407 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2408 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2409 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2410 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2411 IGU_REG_MAPPING_MEMORY_VALID;
2412 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2413 sb_idx, vf_idx);
2414 REG_WR(bp, address, igu_entry);
2415 sb_idx++;
2416 address += IGU_ENTRY_SIZE;
2417 }
2418 }
2419
2420 /* Reinitialize vf database according to igu cam */
2421 bnx2x_get_vf_igu_cam_info(bp);
2422
2423 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2424 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2425
2426 qcount = 0;
2427 for_each_vf(bp, vf_idx) {
2428 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2429
2430 /* set local queue arrays */
2431 vf->vfqs = &bp->vfdb->vfqs[qcount];
2432 qcount += vf_sb_count(vf);
2433 bnx2x_iov_static_resc(bp, vf);
2434 }
2435
2436 /* prepare msix vectors in VF configuration space - the value in the
2437 * PCI configuration space should be the index of the last entry,
2438 * namely one less than the actual size of the table
2439 */
2440 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2441 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2442 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2443 num_vf_queues - 1);
2444 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2445 vf_idx, num_vf_queues - 1);
2446 }
2447 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2448
2449 /* enable sriov. This will probe all the VFs, and consequentially cause
2450 * the "acquire" messages to appear on the VF PF channel.
2451 */
2452 DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2453 bnx2x_disable_sriov(bp);
2454
2455 rc = bnx2x_set_pf_tx_switching(bp, true);
2456 if (rc)
2457 return rc;
2458
2459 rc = pci_enable_sriov(bp->pdev, req_vfs);
2460 if (rc) {
2461 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2462 return rc;
2463 }
2464 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2465 return req_vfs;
2466 }
2467
2468 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2469 {
2470 int vfidx;
2471 struct pf_vf_bulletin_content *bulletin;
2472
2473 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2474 for_each_vf(bp, vfidx) {
2475 bulletin = BP_VF_BULLETIN(bp, vfidx);
2476 if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2477 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2478 }
2479 }
2480
2481 void bnx2x_disable_sriov(struct bnx2x *bp)
2482 {
2483 pci_disable_sriov(bp->pdev);
2484 }
2485
2486 static int bnx2x_vf_ndo_prep(struct bnx2x *bp, int vfidx,
2487 struct bnx2x_virtf **vf,
2488 struct pf_vf_bulletin_content **bulletin)
2489 {
2490 if (bp->state != BNX2X_STATE_OPEN) {
2491 BNX2X_ERR("vf ndo called though PF is down\n");
2492 return -EINVAL;
2493 }
2494
2495 if (!IS_SRIOV(bp)) {
2496 BNX2X_ERR("vf ndo called though sriov is disabled\n");
2497 return -EINVAL;
2498 }
2499
2500 if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2501 BNX2X_ERR("vf ndo called for uninitialized VF. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2502 vfidx, BNX2X_NR_VIRTFN(bp));
2503 return -EINVAL;
2504 }
2505
2506 /* init members */
2507 *vf = BP_VF(bp, vfidx);
2508 *bulletin = BP_VF_BULLETIN(bp, vfidx);
2509
2510 if (!*vf) {
2511 BNX2X_ERR("vf ndo called but vf struct is null. vfidx was %d\n",
2512 vfidx);
2513 return -EINVAL;
2514 }
2515
2516 if (!(*vf)->vfqs) {
2517 BNX2X_ERR("vf ndo called but vfqs struct is null. Was ndo invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2518 vfidx);
2519 return -EINVAL;
2520 }
2521
2522 if (!*bulletin) {
2523 BNX2X_ERR("vf ndo called but Bulletin Board struct is null. vfidx was %d\n",
2524 vfidx);
2525 return -EINVAL;
2526 }
2527
2528 return 0;
2529 }
2530
2531 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2532 struct ifla_vf_info *ivi)
2533 {
2534 struct bnx2x *bp = netdev_priv(dev);
2535 struct bnx2x_virtf *vf = NULL;
2536 struct pf_vf_bulletin_content *bulletin = NULL;
2537 struct bnx2x_vlan_mac_obj *mac_obj;
2538 struct bnx2x_vlan_mac_obj *vlan_obj;
2539 int rc;
2540
2541 /* sanity and init */
2542 rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2543 if (rc)
2544 return rc;
2545 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2546 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2547 if (!mac_obj || !vlan_obj) {
2548 BNX2X_ERR("VF partially initialized\n");
2549 return -EINVAL;
2550 }
2551
2552 ivi->vf = vfidx;
2553 ivi->qos = 0;
2554 ivi->tx_rate = 10000; /* always 10G. TBA take from link struct */
2555 ivi->spoofchk = 1; /*always enabled */
2556 if (vf->state == VF_ENABLED) {
2557 /* mac and vlan are in vlan_mac objects */
2558 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2559 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2560 0, ETH_ALEN);
2561 vlan_obj->get_n_elements(bp, vlan_obj, 1,
2562 (u8 *)&ivi->vlan, 0,
2563 VLAN_HLEN);
2564 }
2565 } else {
2566 /* mac */
2567 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2568 /* mac configured by ndo so its in bulletin board */
2569 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2570 else
2571 /* function has not been loaded yet. Show mac as 0s */
2572 memset(&ivi->mac, 0, ETH_ALEN);
2573
2574 /* vlan */
2575 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2576 /* vlan configured by ndo so its in bulletin board */
2577 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2578 else
2579 /* function has not been loaded yet. Show vlans as 0s */
2580 memset(&ivi->vlan, 0, VLAN_HLEN);
2581 }
2582
2583 return 0;
2584 }
2585
2586 /* New mac for VF. Consider these cases:
2587 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2588 * supply at acquire.
2589 * 2. VF has already been acquired but has not yet initialized - store in local
2590 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2591 * will configure this mac when it is ready.
2592 * 3. VF has already initialized but has not yet setup a queue - post the new
2593 * mac on VF's bulletin board right now. VF will configure this mac when it
2594 * is ready.
2595 * 4. VF has already set a queue - delete any macs already configured for this
2596 * queue and manually config the new mac.
2597 * In any event, once this function has been called refuse any attempts by the
2598 * VF to configure any mac for itself except for this mac. In case of a race
2599 * where the VF fails to see the new post on its bulletin board before sending a
2600 * mac configuration request, the PF will simply fail the request and VF can try
2601 * again after consulting its bulletin board.
2602 */
2603 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2604 {
2605 struct bnx2x *bp = netdev_priv(dev);
2606 int rc, q_logical_state;
2607 struct bnx2x_virtf *vf = NULL;
2608 struct pf_vf_bulletin_content *bulletin = NULL;
2609
2610 /* sanity and init */
2611 rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2612 if (rc)
2613 return rc;
2614 if (!is_valid_ether_addr(mac)) {
2615 BNX2X_ERR("mac address invalid\n");
2616 return -EINVAL;
2617 }
2618
2619 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2620 * configuration requests from vf unless match this mac
2621 */
2622 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2623 memcpy(bulletin->mac, mac, ETH_ALEN);
2624
2625 /* Post update on VF's bulletin board */
2626 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2627 if (rc) {
2628 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2629 return rc;
2630 }
2631
2632 q_logical_state =
2633 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2634 if (vf->state == VF_ENABLED &&
2635 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2636 /* configure the mac in device on this vf's queue */
2637 unsigned long ramrod_flags = 0;
2638 struct bnx2x_vlan_mac_obj *mac_obj;
2639
2640 /* User should be able to see failure reason in system logs */
2641 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2642 return -EINVAL;
2643
2644 /* must lock vfpf channel to protect against vf flows */
2645 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2646
2647 /* remove existing eth macs */
2648 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2649 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2650 if (rc) {
2651 BNX2X_ERR("failed to delete eth macs\n");
2652 rc = -EINVAL;
2653 goto out;
2654 }
2655
2656 /* remove existing uc list macs */
2657 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2658 if (rc) {
2659 BNX2X_ERR("failed to delete uc_list macs\n");
2660 rc = -EINVAL;
2661 goto out;
2662 }
2663
2664 /* configure the new mac to device */
2665 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2666 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2667 BNX2X_ETH_MAC, &ramrod_flags);
2668
2669 out:
2670 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2671 }
2672
2673 return 0;
2674 }
2675
2676 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2677 {
2678 struct bnx2x_queue_state_params q_params = {NULL};
2679 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2680 struct bnx2x_queue_update_params *update_params;
2681 struct pf_vf_bulletin_content *bulletin = NULL;
2682 struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2683 struct bnx2x *bp = netdev_priv(dev);
2684 struct bnx2x_vlan_mac_obj *vlan_obj;
2685 unsigned long vlan_mac_flags = 0;
2686 unsigned long ramrod_flags = 0;
2687 struct bnx2x_virtf *vf = NULL;
2688 unsigned long accept_flags;
2689 int rc;
2690
2691 /* sanity and init */
2692 rc = bnx2x_vf_ndo_prep(bp, vfidx, &vf, &bulletin);
2693 if (rc)
2694 return rc;
2695
2696 if (vlan > 4095) {
2697 BNX2X_ERR("illegal vlan value %d\n", vlan);
2698 return -EINVAL;
2699 }
2700
2701 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2702 vfidx, vlan, 0);
2703
2704 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2705 * to the VF since it doesn't have anything to do with it. But it useful
2706 * to store it here in case the VF is not up yet and we can only
2707 * configure the vlan later when it does. Treat vlan id 0 as remove the
2708 * Host tag.
2709 */
2710 if (vlan > 0)
2711 bulletin->valid_bitmap |= 1 << VLAN_VALID;
2712 else
2713 bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2714 bulletin->vlan = vlan;
2715
2716 /* is vf initialized and queue set up? */
2717 if (vf->state != VF_ENABLED ||
2718 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2719 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2720 return rc;
2721
2722 /* User should be able to see error in system logs */
2723 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2724 return -EINVAL;
2725
2726 /* must lock vfpf channel to protect against vf flows */
2727 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2728
2729 /* remove existing vlans */
2730 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2731 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2732 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2733 &ramrod_flags);
2734 if (rc) {
2735 BNX2X_ERR("failed to delete vlans\n");
2736 rc = -EINVAL;
2737 goto out;
2738 }
2739
2740 /* need to remove/add the VF's accept_any_vlan bit */
2741 accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2742 if (vlan)
2743 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2744 else
2745 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2746
2747 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2748 accept_flags);
2749 bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2750 bnx2x_config_rx_mode(bp, &rx_ramrod);
2751
2752 /* configure the new vlan to device */
2753 memset(&ramrod_param, 0, sizeof(ramrod_param));
2754 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2755 ramrod_param.vlan_mac_obj = vlan_obj;
2756 ramrod_param.ramrod_flags = ramrod_flags;
2757 set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2758 &ramrod_param.user_req.vlan_mac_flags);
2759 ramrod_param.user_req.u.vlan.vlan = vlan;
2760 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2761 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2762 if (rc) {
2763 BNX2X_ERR("failed to configure vlan\n");
2764 rc = -EINVAL;
2765 goto out;
2766 }
2767
2768 /* send queue update ramrod to configure default vlan and silent
2769 * vlan removal
2770 */
2771 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2772 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2773 q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2774 update_params = &q_params.params.update;
2775 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2776 &update_params->update_flags);
2777 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2778 &update_params->update_flags);
2779 if (vlan == 0) {
2780 /* if vlan is 0 then we want to leave the VF traffic
2781 * untagged, and leave the incoming traffic untouched
2782 * (i.e. do not remove any vlan tags).
2783 */
2784 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2785 &update_params->update_flags);
2786 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2787 &update_params->update_flags);
2788 } else {
2789 /* configure default vlan to vf queue and set silent
2790 * vlan removal (the vf remains unaware of this vlan).
2791 */
2792 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2793 &update_params->update_flags);
2794 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2795 &update_params->update_flags);
2796 update_params->def_vlan = vlan;
2797 update_params->silent_removal_value =
2798 vlan & VLAN_VID_MASK;
2799 update_params->silent_removal_mask = VLAN_VID_MASK;
2800 }
2801
2802 /* Update the Queue state */
2803 rc = bnx2x_queue_state_change(bp, &q_params);
2804 if (rc) {
2805 BNX2X_ERR("Failed to configure default VLAN\n");
2806 goto out;
2807 }
2808
2809
2810 /* clear the flag indicating that this VF needs its vlan
2811 * (will only be set if the HV configured the Vlan before vf was
2812 * up and we were called because the VF came up later
2813 */
2814 out:
2815 vf->cfg_flags &= ~VF_CFG_VLAN;
2816 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2817
2818 return rc;
2819 }
2820
2821 /* crc is the first field in the bulletin board. Compute the crc over the
2822 * entire bulletin board excluding the crc field itself. Use the length field
2823 * as the Bulletin Board was posted by a PF with possibly a different version
2824 * from the vf which will sample it. Therefore, the length is computed by the
2825 * PF and the used blindly by the VF.
2826 */
2827 u32 bnx2x_crc_vf_bulletin(struct bnx2x *bp,
2828 struct pf_vf_bulletin_content *bulletin)
2829 {
2830 return crc32(BULLETIN_CRC_SEED,
2831 ((u8 *)bulletin) + sizeof(bulletin->crc),
2832 bulletin->length - sizeof(bulletin->crc));
2833 }
2834
2835 /* Check for new posts on the bulletin board */
2836 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2837 {
2838 struct pf_vf_bulletin_content bulletin = bp->pf2vf_bulletin->content;
2839 int attempts;
2840
2841 /* bulletin board hasn't changed since last sample */
2842 if (bp->old_bulletin.version == bulletin.version)
2843 return PFVF_BULLETIN_UNCHANGED;
2844
2845 /* validate crc of new bulletin board */
2846 if (bp->old_bulletin.version != bp->pf2vf_bulletin->content.version) {
2847 /* sampling structure in mid post may result with corrupted data
2848 * validate crc to ensure coherency.
2849 */
2850 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2851 bulletin = bp->pf2vf_bulletin->content;
2852 if (bulletin.crc == bnx2x_crc_vf_bulletin(bp,
2853 &bulletin))
2854 break;
2855 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2856 bulletin.crc,
2857 bnx2x_crc_vf_bulletin(bp, &bulletin));
2858 }
2859 if (attempts >= BULLETIN_ATTEMPTS) {
2860 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2861 attempts);
2862 return PFVF_BULLETIN_CRC_ERR;
2863 }
2864 }
2865
2866 /* the mac address in bulletin board is valid and is new */
2867 if (bulletin.valid_bitmap & 1 << MAC_ADDR_VALID &&
2868 !ether_addr_equal(bulletin.mac, bp->old_bulletin.mac)) {
2869 /* update new mac to net device */
2870 memcpy(bp->dev->dev_addr, bulletin.mac, ETH_ALEN);
2871 }
2872
2873 /* the vlan in bulletin board is valid and is new */
2874 if (bulletin.valid_bitmap & 1 << VLAN_VALID)
2875 memcpy(&bulletin.vlan, &bp->old_bulletin.vlan, VLAN_HLEN);
2876
2877 /* copy new bulletin board to bp */
2878 bp->old_bulletin = bulletin;
2879
2880 return PFVF_BULLETIN_UPDATED;
2881 }
2882
2883 void bnx2x_timer_sriov(struct bnx2x *bp)
2884 {
2885 bnx2x_sample_bulletin(bp);
2886
2887 /* if channel is down we need to self destruct */
2888 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
2889 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
2890 BNX2X_MSG_IOV);
2891 }
2892
2893 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
2894 {
2895 /* vf doorbells are embedded within the regview */
2896 return bp->regview + PXP_VF_ADDR_DB_START;
2897 }
2898
2899 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
2900 {
2901 mutex_init(&bp->vf2pf_mutex);
2902
2903 /* allocate vf2pf mailbox for vf to pf channel */
2904 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
2905 sizeof(struct bnx2x_vf_mbx_msg));
2906 if (!bp->vf2pf_mbox)
2907 goto alloc_mem_err;
2908
2909 /* allocate pf 2 vf bulletin board */
2910 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
2911 sizeof(union pf_vf_bulletin));
2912 if (!bp->pf2vf_bulletin)
2913 goto alloc_mem_err;
2914
2915 return 0;
2916
2917 alloc_mem_err:
2918 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
2919 sizeof(struct bnx2x_vf_mbx_msg));
2920 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
2921 sizeof(union pf_vf_bulletin));
2922 return -ENOMEM;
2923 }
2924
2925 void bnx2x_iov_channel_down(struct bnx2x *bp)
2926 {
2927 int vf_idx;
2928 struct pf_vf_bulletin_content *bulletin;
2929
2930 if (!IS_SRIOV(bp))
2931 return;
2932
2933 for_each_vf(bp, vf_idx) {
2934 /* locate this VFs bulletin board and update the channel down
2935 * bit
2936 */
2937 bulletin = BP_VF_BULLETIN(bp, vf_idx);
2938 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
2939
2940 /* update vf bulletin board */
2941 bnx2x_post_vf_bulletin(bp, vf_idx);
2942 }
2943 }
2944
2945 void bnx2x_iov_task(struct work_struct *work)
2946 {
2947 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
2948
2949 if (!netif_running(bp->dev))
2950 return;
2951
2952 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
2953 &bp->iov_task_state))
2954 bnx2x_vf_handle_flr_event(bp);
2955
2956 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
2957 &bp->iov_task_state))
2958 bnx2x_vf_mbx(bp);
2959 }
2960
2961 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
2962 {
2963 smp_mb__before_clear_bit();
2964 set_bit(flag, &bp->iov_task_state);
2965 smp_mb__after_clear_bit();
2966 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
2967 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
2968 }