]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
Merge remote-tracking branches 'regulator/topic/lp8788', 'regulator/topic/mt6311...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT (5 * HZ)
60
61 static const char version[] =
62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 92
73
74 enum board_idx {
75 BCM57302,
76 BCM57304,
77 BCM57404,
78 BCM57406,
79 BCM57304_VF,
80 BCM57404_VF,
81 };
82
83 /* indexed by enum above */
84 static const struct {
85 char *name;
86 } board_info[] = {
87 { "Broadcom BCM57302 NetXtreme-C Single-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
88 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
89 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
90 { "Broadcom BCM57406 NetXtreme-E Dual-port 10Gb Ethernet" },
91 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
92 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
93 };
94
95 static const struct pci_device_id bnxt_pci_tbl[] = {
96 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
97 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
98 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
99 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
100 #ifdef CONFIG_BNXT_SRIOV
101 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
102 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
103 #endif
104 { 0 }
105 };
106
107 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
108
109 static const u16 bnxt_vf_req_snif[] = {
110 HWRM_FUNC_CFG,
111 HWRM_PORT_PHY_QCFG,
112 HWRM_CFA_L2_FILTER_ALLOC,
113 };
114
115 static bool bnxt_vf_pciid(enum board_idx idx)
116 {
117 return (idx == BCM57304_VF || idx == BCM57404_VF);
118 }
119
120 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
121 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
122 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
123
124 #define BNXT_CP_DB_REARM(db, raw_cons) \
125 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
126
127 #define BNXT_CP_DB(db, raw_cons) \
128 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
129
130 #define BNXT_CP_DB_IRQ_DIS(db) \
131 writel(DB_CP_IRQ_DIS_FLAGS, db)
132
133 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
134 {
135 /* Tell compiler to fetch tx indices from memory. */
136 barrier();
137
138 return bp->tx_ring_size -
139 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
140 }
141
142 static const u16 bnxt_lhint_arr[] = {
143 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
144 TX_BD_FLAGS_LHINT_512_TO_1023,
145 TX_BD_FLAGS_LHINT_1024_TO_2047,
146 TX_BD_FLAGS_LHINT_1024_TO_2047,
147 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
148 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
149 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
150 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
151 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
152 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
153 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 };
163
164 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
165 {
166 struct bnxt *bp = netdev_priv(dev);
167 struct tx_bd *txbd;
168 struct tx_bd_ext *txbd1;
169 struct netdev_queue *txq;
170 int i;
171 dma_addr_t mapping;
172 unsigned int length, pad = 0;
173 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
174 u16 prod, last_frag;
175 struct pci_dev *pdev = bp->pdev;
176 struct bnxt_napi *bnapi;
177 struct bnxt_tx_ring_info *txr;
178 struct bnxt_sw_tx_bd *tx_buf;
179
180 i = skb_get_queue_mapping(skb);
181 if (unlikely(i >= bp->tx_nr_rings)) {
182 dev_kfree_skb_any(skb);
183 return NETDEV_TX_OK;
184 }
185
186 bnapi = bp->bnapi[i];
187 txr = &bnapi->tx_ring;
188 txq = netdev_get_tx_queue(dev, i);
189 prod = txr->tx_prod;
190
191 free_size = bnxt_tx_avail(bp, txr);
192 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
193 netif_tx_stop_queue(txq);
194 return NETDEV_TX_BUSY;
195 }
196
197 length = skb->len;
198 len = skb_headlen(skb);
199 last_frag = skb_shinfo(skb)->nr_frags;
200
201 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
202
203 txbd->tx_bd_opaque = prod;
204
205 tx_buf = &txr->tx_buf_ring[prod];
206 tx_buf->skb = skb;
207 tx_buf->nr_frags = last_frag;
208
209 vlan_tag_flags = 0;
210 cfa_action = 0;
211 if (skb_vlan_tag_present(skb)) {
212 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
213 skb_vlan_tag_get(skb);
214 /* Currently supports 8021Q, 8021AD vlan offloads
215 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
216 */
217 if (skb->vlan_proto == htons(ETH_P_8021Q))
218 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
219 }
220
221 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
222 struct tx_push_bd *push = txr->tx_push;
223 struct tx_bd *tx_push = &push->txbd1;
224 struct tx_bd_ext *tx_push1 = &push->txbd2;
225 void *pdata = tx_push1 + 1;
226 int j;
227
228 /* Set COAL_NOW to be ready quickly for the next push */
229 tx_push->tx_bd_len_flags_type =
230 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
231 TX_BD_TYPE_LONG_TX_BD |
232 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
233 TX_BD_FLAGS_COAL_NOW |
234 TX_BD_FLAGS_PACKET_END |
235 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
236
237 if (skb->ip_summed == CHECKSUM_PARTIAL)
238 tx_push1->tx_bd_hsize_lflags =
239 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
240 else
241 tx_push1->tx_bd_hsize_lflags = 0;
242
243 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
244 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
245
246 skb_copy_from_linear_data(skb, pdata, len);
247 pdata += len;
248 for (j = 0; j < last_frag; j++) {
249 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
250 void *fptr;
251
252 fptr = skb_frag_address_safe(frag);
253 if (!fptr)
254 goto normal_tx;
255
256 memcpy(pdata, fptr, skb_frag_size(frag));
257 pdata += skb_frag_size(frag);
258 }
259
260 memcpy(txbd, tx_push, sizeof(*txbd));
261 prod = NEXT_TX(prod);
262 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
263 memcpy(txbd, tx_push1, sizeof(*txbd));
264 prod = NEXT_TX(prod);
265 push->doorbell =
266 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
267 txr->tx_prod = prod;
268
269 netdev_tx_sent_queue(txq, skb->len);
270
271 __iowrite64_copy(txr->tx_doorbell, push,
272 (length + sizeof(*push) + 8) / 8);
273
274 tx_buf->is_push = 1;
275
276 goto tx_done;
277 }
278
279 normal_tx:
280 if (length < BNXT_MIN_PKT_SIZE) {
281 pad = BNXT_MIN_PKT_SIZE - length;
282 if (skb_pad(skb, pad)) {
283 /* SKB already freed. */
284 tx_buf->skb = NULL;
285 return NETDEV_TX_OK;
286 }
287 length = BNXT_MIN_PKT_SIZE;
288 }
289
290 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
291
292 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
293 dev_kfree_skb_any(skb);
294 tx_buf->skb = NULL;
295 return NETDEV_TX_OK;
296 }
297
298 dma_unmap_addr_set(tx_buf, mapping, mapping);
299 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
300 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
301
302 txbd->tx_bd_haddr = cpu_to_le64(mapping);
303
304 prod = NEXT_TX(prod);
305 txbd1 = (struct tx_bd_ext *)
306 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
307
308 txbd1->tx_bd_hsize_lflags = 0;
309 if (skb_is_gso(skb)) {
310 u32 hdr_len;
311
312 if (skb->encapsulation)
313 hdr_len = skb_inner_network_offset(skb) +
314 skb_inner_network_header_len(skb) +
315 inner_tcp_hdrlen(skb);
316 else
317 hdr_len = skb_transport_offset(skb) +
318 tcp_hdrlen(skb);
319
320 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
321 TX_BD_FLAGS_T_IPID |
322 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
323 length = skb_shinfo(skb)->gso_size;
324 txbd1->tx_bd_mss = cpu_to_le32(length);
325 length += hdr_len;
326 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
327 txbd1->tx_bd_hsize_lflags =
328 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
329 txbd1->tx_bd_mss = 0;
330 }
331
332 length >>= 9;
333 flags |= bnxt_lhint_arr[length];
334 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
335
336 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
337 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
338 for (i = 0; i < last_frag; i++) {
339 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
340
341 prod = NEXT_TX(prod);
342 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
343
344 len = skb_frag_size(frag);
345 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
346 DMA_TO_DEVICE);
347
348 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
349 goto tx_dma_error;
350
351 tx_buf = &txr->tx_buf_ring[prod];
352 dma_unmap_addr_set(tx_buf, mapping, mapping);
353
354 txbd->tx_bd_haddr = cpu_to_le64(mapping);
355
356 flags = len << TX_BD_LEN_SHIFT;
357 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
358 }
359
360 flags &= ~TX_BD_LEN;
361 txbd->tx_bd_len_flags_type =
362 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
363 TX_BD_FLAGS_PACKET_END);
364
365 netdev_tx_sent_queue(txq, skb->len);
366
367 /* Sync BD data before updating doorbell */
368 wmb();
369
370 prod = NEXT_TX(prod);
371 txr->tx_prod = prod;
372
373 writel(DB_KEY_TX | prod, txr->tx_doorbell);
374 writel(DB_KEY_TX | prod, txr->tx_doorbell);
375
376 tx_done:
377
378 mmiowb();
379
380 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
381 netif_tx_stop_queue(txq);
382
383 /* netif_tx_stop_queue() must be done before checking
384 * tx index in bnxt_tx_avail() below, because in
385 * bnxt_tx_int(), we update tx index before checking for
386 * netif_tx_queue_stopped().
387 */
388 smp_mb();
389 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
390 netif_tx_wake_queue(txq);
391 }
392 return NETDEV_TX_OK;
393
394 tx_dma_error:
395 last_frag = i;
396
397 /* start back at beginning and unmap skb */
398 prod = txr->tx_prod;
399 tx_buf = &txr->tx_buf_ring[prod];
400 tx_buf->skb = NULL;
401 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
402 skb_headlen(skb), PCI_DMA_TODEVICE);
403 prod = NEXT_TX(prod);
404
405 /* unmap remaining mapped pages */
406 for (i = 0; i < last_frag; i++) {
407 prod = NEXT_TX(prod);
408 tx_buf = &txr->tx_buf_ring[prod];
409 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
410 skb_frag_size(&skb_shinfo(skb)->frags[i]),
411 PCI_DMA_TODEVICE);
412 }
413
414 dev_kfree_skb_any(skb);
415 return NETDEV_TX_OK;
416 }
417
418 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
419 {
420 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
421 int index = bnapi->index;
422 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
423 u16 cons = txr->tx_cons;
424 struct pci_dev *pdev = bp->pdev;
425 int i;
426 unsigned int tx_bytes = 0;
427
428 for (i = 0; i < nr_pkts; i++) {
429 struct bnxt_sw_tx_bd *tx_buf;
430 struct sk_buff *skb;
431 int j, last;
432
433 tx_buf = &txr->tx_buf_ring[cons];
434 cons = NEXT_TX(cons);
435 skb = tx_buf->skb;
436 tx_buf->skb = NULL;
437
438 if (tx_buf->is_push) {
439 tx_buf->is_push = 0;
440 goto next_tx_int;
441 }
442
443 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
444 skb_headlen(skb), PCI_DMA_TODEVICE);
445 last = tx_buf->nr_frags;
446
447 for (j = 0; j < last; j++) {
448 cons = NEXT_TX(cons);
449 tx_buf = &txr->tx_buf_ring[cons];
450 dma_unmap_page(
451 &pdev->dev,
452 dma_unmap_addr(tx_buf, mapping),
453 skb_frag_size(&skb_shinfo(skb)->frags[j]),
454 PCI_DMA_TODEVICE);
455 }
456
457 next_tx_int:
458 cons = NEXT_TX(cons);
459
460 tx_bytes += skb->len;
461 dev_kfree_skb_any(skb);
462 }
463
464 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
465 txr->tx_cons = cons;
466
467 /* Need to make the tx_cons update visible to bnxt_start_xmit()
468 * before checking for netif_tx_queue_stopped(). Without the
469 * memory barrier, there is a small possibility that bnxt_start_xmit()
470 * will miss it and cause the queue to be stopped forever.
471 */
472 smp_mb();
473
474 if (unlikely(netif_tx_queue_stopped(txq)) &&
475 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
476 __netif_tx_lock(txq, smp_processor_id());
477 if (netif_tx_queue_stopped(txq) &&
478 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
479 txr->dev_state != BNXT_DEV_STATE_CLOSING)
480 netif_tx_wake_queue(txq);
481 __netif_tx_unlock(txq);
482 }
483 }
484
485 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
486 gfp_t gfp)
487 {
488 u8 *data;
489 struct pci_dev *pdev = bp->pdev;
490
491 data = kmalloc(bp->rx_buf_size, gfp);
492 if (!data)
493 return NULL;
494
495 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
496 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
497
498 if (dma_mapping_error(&pdev->dev, *mapping)) {
499 kfree(data);
500 data = NULL;
501 }
502 return data;
503 }
504
505 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
506 struct bnxt_rx_ring_info *rxr,
507 u16 prod, gfp_t gfp)
508 {
509 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
510 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
511 u8 *data;
512 dma_addr_t mapping;
513
514 data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
515 if (!data)
516 return -ENOMEM;
517
518 rx_buf->data = data;
519 dma_unmap_addr_set(rx_buf, mapping, mapping);
520
521 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
522
523 return 0;
524 }
525
526 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
527 u8 *data)
528 {
529 u16 prod = rxr->rx_prod;
530 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
531 struct rx_bd *cons_bd, *prod_bd;
532
533 prod_rx_buf = &rxr->rx_buf_ring[prod];
534 cons_rx_buf = &rxr->rx_buf_ring[cons];
535
536 prod_rx_buf->data = data;
537
538 dma_unmap_addr_set(prod_rx_buf, mapping,
539 dma_unmap_addr(cons_rx_buf, mapping));
540
541 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
542 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
543
544 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
545 }
546
547 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
548 {
549 u16 next, max = rxr->rx_agg_bmap_size;
550
551 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
552 if (next >= max)
553 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
554 return next;
555 }
556
557 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
558 struct bnxt_rx_ring_info *rxr,
559 u16 prod, gfp_t gfp)
560 {
561 struct rx_bd *rxbd =
562 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
563 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
564 struct pci_dev *pdev = bp->pdev;
565 struct page *page;
566 dma_addr_t mapping;
567 u16 sw_prod = rxr->rx_sw_agg_prod;
568
569 page = alloc_page(gfp);
570 if (!page)
571 return -ENOMEM;
572
573 mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
574 PCI_DMA_FROMDEVICE);
575 if (dma_mapping_error(&pdev->dev, mapping)) {
576 __free_page(page);
577 return -EIO;
578 }
579
580 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
581 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
582
583 __set_bit(sw_prod, rxr->rx_agg_bmap);
584 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
585 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
586
587 rx_agg_buf->page = page;
588 rx_agg_buf->mapping = mapping;
589 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
590 rxbd->rx_bd_opaque = sw_prod;
591 return 0;
592 }
593
594 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
595 u32 agg_bufs)
596 {
597 struct bnxt *bp = bnapi->bp;
598 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
599 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
600 u16 prod = rxr->rx_agg_prod;
601 u16 sw_prod = rxr->rx_sw_agg_prod;
602 u32 i;
603
604 for (i = 0; i < agg_bufs; i++) {
605 u16 cons;
606 struct rx_agg_cmp *agg;
607 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
608 struct rx_bd *prod_bd;
609 struct page *page;
610
611 agg = (struct rx_agg_cmp *)
612 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
613 cons = agg->rx_agg_cmp_opaque;
614 __clear_bit(cons, rxr->rx_agg_bmap);
615
616 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
617 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
618
619 __set_bit(sw_prod, rxr->rx_agg_bmap);
620 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
621 cons_rx_buf = &rxr->rx_agg_ring[cons];
622
623 /* It is possible for sw_prod to be equal to cons, so
624 * set cons_rx_buf->page to NULL first.
625 */
626 page = cons_rx_buf->page;
627 cons_rx_buf->page = NULL;
628 prod_rx_buf->page = page;
629
630 prod_rx_buf->mapping = cons_rx_buf->mapping;
631
632 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
633
634 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
635 prod_bd->rx_bd_opaque = sw_prod;
636
637 prod = NEXT_RX_AGG(prod);
638 sw_prod = NEXT_RX_AGG(sw_prod);
639 cp_cons = NEXT_CMP(cp_cons);
640 }
641 rxr->rx_agg_prod = prod;
642 rxr->rx_sw_agg_prod = sw_prod;
643 }
644
645 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
646 struct bnxt_rx_ring_info *rxr, u16 cons,
647 u16 prod, u8 *data, dma_addr_t dma_addr,
648 unsigned int len)
649 {
650 int err;
651 struct sk_buff *skb;
652
653 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
654 if (unlikely(err)) {
655 bnxt_reuse_rx_data(rxr, cons, data);
656 return NULL;
657 }
658
659 skb = build_skb(data, 0);
660 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
661 PCI_DMA_FROMDEVICE);
662 if (!skb) {
663 kfree(data);
664 return NULL;
665 }
666
667 skb_reserve(skb, BNXT_RX_OFFSET);
668 skb_put(skb, len);
669 return skb;
670 }
671
672 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
673 struct sk_buff *skb, u16 cp_cons,
674 u32 agg_bufs)
675 {
676 struct pci_dev *pdev = bp->pdev;
677 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
678 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
679 u16 prod = rxr->rx_agg_prod;
680 u32 i;
681
682 for (i = 0; i < agg_bufs; i++) {
683 u16 cons, frag_len;
684 struct rx_agg_cmp *agg;
685 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
686 struct page *page;
687 dma_addr_t mapping;
688
689 agg = (struct rx_agg_cmp *)
690 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
691 cons = agg->rx_agg_cmp_opaque;
692 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
693 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
694
695 cons_rx_buf = &rxr->rx_agg_ring[cons];
696 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
697 __clear_bit(cons, rxr->rx_agg_bmap);
698
699 /* It is possible for bnxt_alloc_rx_page() to allocate
700 * a sw_prod index that equals the cons index, so we
701 * need to clear the cons entry now.
702 */
703 mapping = dma_unmap_addr(cons_rx_buf, mapping);
704 page = cons_rx_buf->page;
705 cons_rx_buf->page = NULL;
706
707 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
708 struct skb_shared_info *shinfo;
709 unsigned int nr_frags;
710
711 shinfo = skb_shinfo(skb);
712 nr_frags = --shinfo->nr_frags;
713 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
714
715 dev_kfree_skb(skb);
716
717 cons_rx_buf->page = page;
718
719 /* Update prod since possibly some pages have been
720 * allocated already.
721 */
722 rxr->rx_agg_prod = prod;
723 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
724 return NULL;
725 }
726
727 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
728 PCI_DMA_FROMDEVICE);
729
730 skb->data_len += frag_len;
731 skb->len += frag_len;
732 skb->truesize += PAGE_SIZE;
733
734 prod = NEXT_RX_AGG(prod);
735 cp_cons = NEXT_CMP(cp_cons);
736 }
737 rxr->rx_agg_prod = prod;
738 return skb;
739 }
740
741 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
742 u8 agg_bufs, u32 *raw_cons)
743 {
744 u16 last;
745 struct rx_agg_cmp *agg;
746
747 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
748 last = RING_CMP(*raw_cons);
749 agg = (struct rx_agg_cmp *)
750 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
751 return RX_AGG_CMP_VALID(agg, *raw_cons);
752 }
753
754 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
755 unsigned int len,
756 dma_addr_t mapping)
757 {
758 struct bnxt *bp = bnapi->bp;
759 struct pci_dev *pdev = bp->pdev;
760 struct sk_buff *skb;
761
762 skb = napi_alloc_skb(&bnapi->napi, len);
763 if (!skb)
764 return NULL;
765
766 dma_sync_single_for_cpu(&pdev->dev, mapping,
767 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
768
769 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
770
771 dma_sync_single_for_device(&pdev->dev, mapping,
772 bp->rx_copy_thresh,
773 PCI_DMA_FROMDEVICE);
774
775 skb_put(skb, len);
776 return skb;
777 }
778
779 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
780 struct rx_tpa_start_cmp *tpa_start,
781 struct rx_tpa_start_cmp_ext *tpa_start1)
782 {
783 u8 agg_id = TPA_START_AGG_ID(tpa_start);
784 u16 cons, prod;
785 struct bnxt_tpa_info *tpa_info;
786 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
787 struct rx_bd *prod_bd;
788 dma_addr_t mapping;
789
790 cons = tpa_start->rx_tpa_start_cmp_opaque;
791 prod = rxr->rx_prod;
792 cons_rx_buf = &rxr->rx_buf_ring[cons];
793 prod_rx_buf = &rxr->rx_buf_ring[prod];
794 tpa_info = &rxr->rx_tpa[agg_id];
795
796 prod_rx_buf->data = tpa_info->data;
797
798 mapping = tpa_info->mapping;
799 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
800
801 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
802
803 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
804
805 tpa_info->data = cons_rx_buf->data;
806 cons_rx_buf->data = NULL;
807 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
808
809 tpa_info->len =
810 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
811 RX_TPA_START_CMP_LEN_SHIFT;
812 if (likely(TPA_START_HASH_VALID(tpa_start))) {
813 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
814
815 tpa_info->hash_type = PKT_HASH_TYPE_L4;
816 tpa_info->gso_type = SKB_GSO_TCPV4;
817 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
818 if (hash_type == 3)
819 tpa_info->gso_type = SKB_GSO_TCPV6;
820 tpa_info->rss_hash =
821 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
822 } else {
823 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
824 tpa_info->gso_type = 0;
825 if (netif_msg_rx_err(bp))
826 netdev_warn(bp->dev, "TPA packet without valid hash\n");
827 }
828 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
829 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
830
831 rxr->rx_prod = NEXT_RX(prod);
832 cons = NEXT_RX(cons);
833 cons_rx_buf = &rxr->rx_buf_ring[cons];
834
835 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
836 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
837 cons_rx_buf->data = NULL;
838 }
839
840 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
841 u16 cp_cons, u32 agg_bufs)
842 {
843 if (agg_bufs)
844 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
845 }
846
847 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
848 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
849
850 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
851 struct rx_tpa_end_cmp *tpa_end,
852 struct rx_tpa_end_cmp_ext *tpa_end1,
853 struct sk_buff *skb)
854 {
855 #ifdef CONFIG_INET
856 struct tcphdr *th;
857 int payload_off, tcp_opt_len = 0;
858 int len, nw_off;
859
860 NAPI_GRO_CB(skb)->count = TPA_END_TPA_SEGS(tpa_end);
861 skb_shinfo(skb)->gso_size =
862 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
863 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
864 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
865 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
866 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
867 if (TPA_END_GRO_TS(tpa_end))
868 tcp_opt_len = 12;
869
870 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
871 struct iphdr *iph;
872
873 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
874 ETH_HLEN;
875 skb_set_network_header(skb, nw_off);
876 iph = ip_hdr(skb);
877 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
878 len = skb->len - skb_transport_offset(skb);
879 th = tcp_hdr(skb);
880 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
881 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
882 struct ipv6hdr *iph;
883
884 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
885 ETH_HLEN;
886 skb_set_network_header(skb, nw_off);
887 iph = ipv6_hdr(skb);
888 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
889 len = skb->len - skb_transport_offset(skb);
890 th = tcp_hdr(skb);
891 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
892 } else {
893 dev_kfree_skb_any(skb);
894 return NULL;
895 }
896 tcp_gro_complete(skb);
897
898 if (nw_off) { /* tunnel */
899 struct udphdr *uh = NULL;
900
901 if (skb->protocol == htons(ETH_P_IP)) {
902 struct iphdr *iph = (struct iphdr *)skb->data;
903
904 if (iph->protocol == IPPROTO_UDP)
905 uh = (struct udphdr *)(iph + 1);
906 } else {
907 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
908
909 if (iph->nexthdr == IPPROTO_UDP)
910 uh = (struct udphdr *)(iph + 1);
911 }
912 if (uh) {
913 if (uh->check)
914 skb_shinfo(skb)->gso_type |=
915 SKB_GSO_UDP_TUNNEL_CSUM;
916 else
917 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
918 }
919 }
920 #endif
921 return skb;
922 }
923
924 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
925 struct bnxt_napi *bnapi,
926 u32 *raw_cons,
927 struct rx_tpa_end_cmp *tpa_end,
928 struct rx_tpa_end_cmp_ext *tpa_end1,
929 bool *agg_event)
930 {
931 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
932 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
933 u8 agg_id = TPA_END_AGG_ID(tpa_end);
934 u8 *data, agg_bufs;
935 u16 cp_cons = RING_CMP(*raw_cons);
936 unsigned int len;
937 struct bnxt_tpa_info *tpa_info;
938 dma_addr_t mapping;
939 struct sk_buff *skb;
940
941 tpa_info = &rxr->rx_tpa[agg_id];
942 data = tpa_info->data;
943 prefetch(data);
944 len = tpa_info->len;
945 mapping = tpa_info->mapping;
946
947 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
948 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
949
950 if (agg_bufs) {
951 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
952 return ERR_PTR(-EBUSY);
953
954 *agg_event = true;
955 cp_cons = NEXT_CMP(cp_cons);
956 }
957
958 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
959 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
960 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
961 agg_bufs, (int)MAX_SKB_FRAGS);
962 return NULL;
963 }
964
965 if (len <= bp->rx_copy_thresh) {
966 skb = bnxt_copy_skb(bnapi, data, len, mapping);
967 if (!skb) {
968 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
969 return NULL;
970 }
971 } else {
972 u8 *new_data;
973 dma_addr_t new_mapping;
974
975 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
976 if (!new_data) {
977 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
978 return NULL;
979 }
980
981 tpa_info->data = new_data;
982 tpa_info->mapping = new_mapping;
983
984 skb = build_skb(data, 0);
985 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
986 PCI_DMA_FROMDEVICE);
987
988 if (!skb) {
989 kfree(data);
990 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
991 return NULL;
992 }
993 skb_reserve(skb, BNXT_RX_OFFSET);
994 skb_put(skb, len);
995 }
996
997 if (agg_bufs) {
998 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
999 if (!skb) {
1000 /* Page reuse already handled by bnxt_rx_pages(). */
1001 return NULL;
1002 }
1003 }
1004 skb->protocol = eth_type_trans(skb, bp->dev);
1005
1006 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1007 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1008
1009 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1010 netdev_features_t features = skb->dev->features;
1011 u16 vlan_proto = tpa_info->metadata >>
1012 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1013
1014 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1015 vlan_proto == ETH_P_8021Q) ||
1016 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1017 vlan_proto == ETH_P_8021AD)) {
1018 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1019 tpa_info->metadata &
1020 RX_CMP_FLAGS2_METADATA_VID_MASK);
1021 }
1022 }
1023
1024 skb_checksum_none_assert(skb);
1025 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1026 skb->ip_summed = CHECKSUM_UNNECESSARY;
1027 skb->csum_level =
1028 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1029 }
1030
1031 if (TPA_END_GRO(tpa_end))
1032 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1033
1034 return skb;
1035 }
1036
1037 /* returns the following:
1038 * 1 - 1 packet successfully received
1039 * 0 - successful TPA_START, packet not completed yet
1040 * -EBUSY - completion ring does not have all the agg buffers yet
1041 * -ENOMEM - packet aborted due to out of memory
1042 * -EIO - packet aborted due to hw error indicated in BD
1043 */
1044 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1045 bool *agg_event)
1046 {
1047 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1048 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
1049 struct net_device *dev = bp->dev;
1050 struct rx_cmp *rxcmp;
1051 struct rx_cmp_ext *rxcmp1;
1052 u32 tmp_raw_cons = *raw_cons;
1053 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1054 struct bnxt_sw_rx_bd *rx_buf;
1055 unsigned int len;
1056 u8 *data, agg_bufs, cmp_type;
1057 dma_addr_t dma_addr;
1058 struct sk_buff *skb;
1059 int rc = 0;
1060
1061 rxcmp = (struct rx_cmp *)
1062 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1063
1064 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1065 cp_cons = RING_CMP(tmp_raw_cons);
1066 rxcmp1 = (struct rx_cmp_ext *)
1067 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1068
1069 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1070 return -EBUSY;
1071
1072 cmp_type = RX_CMP_TYPE(rxcmp);
1073
1074 prod = rxr->rx_prod;
1075
1076 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1077 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1078 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1079
1080 goto next_rx_no_prod;
1081
1082 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1083 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1084 (struct rx_tpa_end_cmp *)rxcmp,
1085 (struct rx_tpa_end_cmp_ext *)rxcmp1,
1086 agg_event);
1087
1088 if (unlikely(IS_ERR(skb)))
1089 return -EBUSY;
1090
1091 rc = -ENOMEM;
1092 if (likely(skb)) {
1093 skb_record_rx_queue(skb, bnapi->index);
1094 skb_mark_napi_id(skb, &bnapi->napi);
1095 if (bnxt_busy_polling(bnapi))
1096 netif_receive_skb(skb);
1097 else
1098 napi_gro_receive(&bnapi->napi, skb);
1099 rc = 1;
1100 }
1101 goto next_rx_no_prod;
1102 }
1103
1104 cons = rxcmp->rx_cmp_opaque;
1105 rx_buf = &rxr->rx_buf_ring[cons];
1106 data = rx_buf->data;
1107 prefetch(data);
1108
1109 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1110 RX_CMP_AGG_BUFS_SHIFT;
1111
1112 if (agg_bufs) {
1113 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1114 return -EBUSY;
1115
1116 cp_cons = NEXT_CMP(cp_cons);
1117 *agg_event = true;
1118 }
1119
1120 rx_buf->data = NULL;
1121 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1122 bnxt_reuse_rx_data(rxr, cons, data);
1123 if (agg_bufs)
1124 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1125
1126 rc = -EIO;
1127 goto next_rx;
1128 }
1129
1130 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1131 dma_addr = dma_unmap_addr(rx_buf, mapping);
1132
1133 if (len <= bp->rx_copy_thresh) {
1134 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1135 bnxt_reuse_rx_data(rxr, cons, data);
1136 if (!skb) {
1137 rc = -ENOMEM;
1138 goto next_rx;
1139 }
1140 } else {
1141 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1142 if (!skb) {
1143 rc = -ENOMEM;
1144 goto next_rx;
1145 }
1146 }
1147
1148 if (agg_bufs) {
1149 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1150 if (!skb) {
1151 rc = -ENOMEM;
1152 goto next_rx;
1153 }
1154 }
1155
1156 if (RX_CMP_HASH_VALID(rxcmp)) {
1157 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1158 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1159
1160 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1161 if (hash_type != 1 && hash_type != 3)
1162 type = PKT_HASH_TYPE_L3;
1163 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1164 }
1165
1166 skb->protocol = eth_type_trans(skb, dev);
1167
1168 if (rxcmp1->rx_cmp_flags2 &
1169 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1170 netdev_features_t features = skb->dev->features;
1171 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1172 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1173
1174 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1175 vlan_proto == ETH_P_8021Q) ||
1176 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1177 vlan_proto == ETH_P_8021AD))
1178 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1179 meta_data &
1180 RX_CMP_FLAGS2_METADATA_VID_MASK);
1181 }
1182
1183 skb_checksum_none_assert(skb);
1184 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1185 if (dev->features & NETIF_F_RXCSUM) {
1186 skb->ip_summed = CHECKSUM_UNNECESSARY;
1187 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1188 }
1189 } else {
1190 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS)
1191 cpr->rx_l4_csum_errors++;
1192 }
1193
1194 skb_record_rx_queue(skb, bnapi->index);
1195 skb_mark_napi_id(skb, &bnapi->napi);
1196 if (bnxt_busy_polling(bnapi))
1197 netif_receive_skb(skb);
1198 else
1199 napi_gro_receive(&bnapi->napi, skb);
1200 rc = 1;
1201
1202 next_rx:
1203 rxr->rx_prod = NEXT_RX(prod);
1204
1205 next_rx_no_prod:
1206 *raw_cons = tmp_raw_cons;
1207
1208 return rc;
1209 }
1210
1211 static int bnxt_async_event_process(struct bnxt *bp,
1212 struct hwrm_async_event_cmpl *cmpl)
1213 {
1214 u16 event_id = le16_to_cpu(cmpl->event_id);
1215
1216 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1217 switch (event_id) {
1218 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1219 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1220 schedule_work(&bp->sp_task);
1221 break;
1222 default:
1223 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1224 event_id);
1225 break;
1226 }
1227 return 0;
1228 }
1229
1230 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1231 {
1232 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1233 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1234 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1235 (struct hwrm_fwd_req_cmpl *)txcmp;
1236
1237 switch (cmpl_type) {
1238 case CMPL_BASE_TYPE_HWRM_DONE:
1239 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1240 if (seq_id == bp->hwrm_intr_seq_id)
1241 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1242 else
1243 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1244 break;
1245
1246 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1247 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1248
1249 if ((vf_id < bp->pf.first_vf_id) ||
1250 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1251 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1252 vf_id);
1253 return -EINVAL;
1254 }
1255
1256 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1257 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1258 schedule_work(&bp->sp_task);
1259 break;
1260
1261 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1262 bnxt_async_event_process(bp,
1263 (struct hwrm_async_event_cmpl *)txcmp);
1264
1265 default:
1266 break;
1267 }
1268
1269 return 0;
1270 }
1271
1272 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1273 {
1274 struct bnxt_napi *bnapi = dev_instance;
1275 struct bnxt *bp = bnapi->bp;
1276 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1277 u32 cons = RING_CMP(cpr->cp_raw_cons);
1278
1279 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1280 napi_schedule(&bnapi->napi);
1281 return IRQ_HANDLED;
1282 }
1283
1284 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1285 {
1286 u32 raw_cons = cpr->cp_raw_cons;
1287 u16 cons = RING_CMP(raw_cons);
1288 struct tx_cmp *txcmp;
1289
1290 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1291
1292 return TX_CMP_VALID(txcmp, raw_cons);
1293 }
1294
1295 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1296 {
1297 struct bnxt_napi *bnapi = dev_instance;
1298 struct bnxt *bp = bnapi->bp;
1299 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1300 u32 cons = RING_CMP(cpr->cp_raw_cons);
1301 u32 int_status;
1302
1303 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1304
1305 if (!bnxt_has_work(bp, cpr)) {
1306 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1307 /* return if erroneous interrupt */
1308 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1309 return IRQ_NONE;
1310 }
1311
1312 /* disable ring IRQ */
1313 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1314
1315 /* Return here if interrupt is shared and is disabled. */
1316 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1317 return IRQ_HANDLED;
1318
1319 napi_schedule(&bnapi->napi);
1320 return IRQ_HANDLED;
1321 }
1322
1323 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1324 {
1325 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1326 u32 raw_cons = cpr->cp_raw_cons;
1327 u32 cons;
1328 int tx_pkts = 0;
1329 int rx_pkts = 0;
1330 bool rx_event = false;
1331 bool agg_event = false;
1332 struct tx_cmp *txcmp;
1333
1334 while (1) {
1335 int rc;
1336
1337 cons = RING_CMP(raw_cons);
1338 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1339
1340 if (!TX_CMP_VALID(txcmp, raw_cons))
1341 break;
1342
1343 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1344 tx_pkts++;
1345 /* return full budget so NAPI will complete. */
1346 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1347 rx_pkts = budget;
1348 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1349 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1350 if (likely(rc >= 0))
1351 rx_pkts += rc;
1352 else if (rc == -EBUSY) /* partial completion */
1353 break;
1354 rx_event = true;
1355 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1356 CMPL_BASE_TYPE_HWRM_DONE) ||
1357 (TX_CMP_TYPE(txcmp) ==
1358 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1359 (TX_CMP_TYPE(txcmp) ==
1360 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1361 bnxt_hwrm_handler(bp, txcmp);
1362 }
1363 raw_cons = NEXT_RAW_CMP(raw_cons);
1364
1365 if (rx_pkts == budget)
1366 break;
1367 }
1368
1369 cpr->cp_raw_cons = raw_cons;
1370 /* ACK completion ring before freeing tx ring and producing new
1371 * buffers in rx/agg rings to prevent overflowing the completion
1372 * ring.
1373 */
1374 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1375
1376 if (tx_pkts)
1377 bnxt_tx_int(bp, bnapi, tx_pkts);
1378
1379 if (rx_event) {
1380 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
1381
1382 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1383 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1384 if (agg_event) {
1385 writel(DB_KEY_RX | rxr->rx_agg_prod,
1386 rxr->rx_agg_doorbell);
1387 writel(DB_KEY_RX | rxr->rx_agg_prod,
1388 rxr->rx_agg_doorbell);
1389 }
1390 }
1391 return rx_pkts;
1392 }
1393
1394 static int bnxt_poll(struct napi_struct *napi, int budget)
1395 {
1396 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1397 struct bnxt *bp = bnapi->bp;
1398 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1399 int work_done = 0;
1400
1401 if (!bnxt_lock_napi(bnapi))
1402 return budget;
1403
1404 while (1) {
1405 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1406
1407 if (work_done >= budget)
1408 break;
1409
1410 if (!bnxt_has_work(bp, cpr)) {
1411 napi_complete(napi);
1412 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1413 break;
1414 }
1415 }
1416 mmiowb();
1417 bnxt_unlock_napi(bnapi);
1418 return work_done;
1419 }
1420
1421 #ifdef CONFIG_NET_RX_BUSY_POLL
1422 static int bnxt_busy_poll(struct napi_struct *napi)
1423 {
1424 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1425 struct bnxt *bp = bnapi->bp;
1426 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1427 int rx_work, budget = 4;
1428
1429 if (atomic_read(&bp->intr_sem) != 0)
1430 return LL_FLUSH_FAILED;
1431
1432 if (!bnxt_lock_poll(bnapi))
1433 return LL_FLUSH_BUSY;
1434
1435 rx_work = bnxt_poll_work(bp, bnapi, budget);
1436
1437 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1438
1439 bnxt_unlock_poll(bnapi);
1440 return rx_work;
1441 }
1442 #endif
1443
1444 static void bnxt_free_tx_skbs(struct bnxt *bp)
1445 {
1446 int i, max_idx;
1447 struct pci_dev *pdev = bp->pdev;
1448
1449 if (!bp->bnapi)
1450 return;
1451
1452 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1453 for (i = 0; i < bp->tx_nr_rings; i++) {
1454 struct bnxt_napi *bnapi = bp->bnapi[i];
1455 struct bnxt_tx_ring_info *txr;
1456 int j;
1457
1458 if (!bnapi)
1459 continue;
1460
1461 txr = &bnapi->tx_ring;
1462 for (j = 0; j < max_idx;) {
1463 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1464 struct sk_buff *skb = tx_buf->skb;
1465 int k, last;
1466
1467 if (!skb) {
1468 j++;
1469 continue;
1470 }
1471
1472 tx_buf->skb = NULL;
1473
1474 if (tx_buf->is_push) {
1475 dev_kfree_skb(skb);
1476 j += 2;
1477 continue;
1478 }
1479
1480 dma_unmap_single(&pdev->dev,
1481 dma_unmap_addr(tx_buf, mapping),
1482 skb_headlen(skb),
1483 PCI_DMA_TODEVICE);
1484
1485 last = tx_buf->nr_frags;
1486 j += 2;
1487 for (k = 0; k < last; k++, j = NEXT_TX(j)) {
1488 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1489
1490 tx_buf = &txr->tx_buf_ring[j];
1491 dma_unmap_page(
1492 &pdev->dev,
1493 dma_unmap_addr(tx_buf, mapping),
1494 skb_frag_size(frag), PCI_DMA_TODEVICE);
1495 }
1496 dev_kfree_skb(skb);
1497 }
1498 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1499 }
1500 }
1501
1502 static void bnxt_free_rx_skbs(struct bnxt *bp)
1503 {
1504 int i, max_idx, max_agg_idx;
1505 struct pci_dev *pdev = bp->pdev;
1506
1507 if (!bp->bnapi)
1508 return;
1509
1510 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1511 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1512 for (i = 0; i < bp->rx_nr_rings; i++) {
1513 struct bnxt_napi *bnapi = bp->bnapi[i];
1514 struct bnxt_rx_ring_info *rxr;
1515 int j;
1516
1517 if (!bnapi)
1518 continue;
1519
1520 rxr = &bnapi->rx_ring;
1521
1522 if (rxr->rx_tpa) {
1523 for (j = 0; j < MAX_TPA; j++) {
1524 struct bnxt_tpa_info *tpa_info =
1525 &rxr->rx_tpa[j];
1526 u8 *data = tpa_info->data;
1527
1528 if (!data)
1529 continue;
1530
1531 dma_unmap_single(
1532 &pdev->dev,
1533 dma_unmap_addr(tpa_info, mapping),
1534 bp->rx_buf_use_size,
1535 PCI_DMA_FROMDEVICE);
1536
1537 tpa_info->data = NULL;
1538
1539 kfree(data);
1540 }
1541 }
1542
1543 for (j = 0; j < max_idx; j++) {
1544 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1545 u8 *data = rx_buf->data;
1546
1547 if (!data)
1548 continue;
1549
1550 dma_unmap_single(&pdev->dev,
1551 dma_unmap_addr(rx_buf, mapping),
1552 bp->rx_buf_use_size,
1553 PCI_DMA_FROMDEVICE);
1554
1555 rx_buf->data = NULL;
1556
1557 kfree(data);
1558 }
1559
1560 for (j = 0; j < max_agg_idx; j++) {
1561 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1562 &rxr->rx_agg_ring[j];
1563 struct page *page = rx_agg_buf->page;
1564
1565 if (!page)
1566 continue;
1567
1568 dma_unmap_page(&pdev->dev,
1569 dma_unmap_addr(rx_agg_buf, mapping),
1570 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1571
1572 rx_agg_buf->page = NULL;
1573 __clear_bit(j, rxr->rx_agg_bmap);
1574
1575 __free_page(page);
1576 }
1577 }
1578 }
1579
1580 static void bnxt_free_skbs(struct bnxt *bp)
1581 {
1582 bnxt_free_tx_skbs(bp);
1583 bnxt_free_rx_skbs(bp);
1584 }
1585
1586 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1587 {
1588 struct pci_dev *pdev = bp->pdev;
1589 int i;
1590
1591 for (i = 0; i < ring->nr_pages; i++) {
1592 if (!ring->pg_arr[i])
1593 continue;
1594
1595 dma_free_coherent(&pdev->dev, ring->page_size,
1596 ring->pg_arr[i], ring->dma_arr[i]);
1597
1598 ring->pg_arr[i] = NULL;
1599 }
1600 if (ring->pg_tbl) {
1601 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1602 ring->pg_tbl, ring->pg_tbl_map);
1603 ring->pg_tbl = NULL;
1604 }
1605 if (ring->vmem_size && *ring->vmem) {
1606 vfree(*ring->vmem);
1607 *ring->vmem = NULL;
1608 }
1609 }
1610
1611 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1612 {
1613 int i;
1614 struct pci_dev *pdev = bp->pdev;
1615
1616 if (ring->nr_pages > 1) {
1617 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1618 ring->nr_pages * 8,
1619 &ring->pg_tbl_map,
1620 GFP_KERNEL);
1621 if (!ring->pg_tbl)
1622 return -ENOMEM;
1623 }
1624
1625 for (i = 0; i < ring->nr_pages; i++) {
1626 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1627 ring->page_size,
1628 &ring->dma_arr[i],
1629 GFP_KERNEL);
1630 if (!ring->pg_arr[i])
1631 return -ENOMEM;
1632
1633 if (ring->nr_pages > 1)
1634 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1635 }
1636
1637 if (ring->vmem_size) {
1638 *ring->vmem = vzalloc(ring->vmem_size);
1639 if (!(*ring->vmem))
1640 return -ENOMEM;
1641 }
1642 return 0;
1643 }
1644
1645 static void bnxt_free_rx_rings(struct bnxt *bp)
1646 {
1647 int i;
1648
1649 if (!bp->bnapi)
1650 return;
1651
1652 for (i = 0; i < bp->rx_nr_rings; i++) {
1653 struct bnxt_napi *bnapi = bp->bnapi[i];
1654 struct bnxt_rx_ring_info *rxr;
1655 struct bnxt_ring_struct *ring;
1656
1657 if (!bnapi)
1658 continue;
1659
1660 rxr = &bnapi->rx_ring;
1661
1662 kfree(rxr->rx_tpa);
1663 rxr->rx_tpa = NULL;
1664
1665 kfree(rxr->rx_agg_bmap);
1666 rxr->rx_agg_bmap = NULL;
1667
1668 ring = &rxr->rx_ring_struct;
1669 bnxt_free_ring(bp, ring);
1670
1671 ring = &rxr->rx_agg_ring_struct;
1672 bnxt_free_ring(bp, ring);
1673 }
1674 }
1675
1676 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1677 {
1678 int i, rc, agg_rings = 0, tpa_rings = 0;
1679
1680 if (bp->flags & BNXT_FLAG_AGG_RINGS)
1681 agg_rings = 1;
1682
1683 if (bp->flags & BNXT_FLAG_TPA)
1684 tpa_rings = 1;
1685
1686 for (i = 0; i < bp->rx_nr_rings; i++) {
1687 struct bnxt_napi *bnapi = bp->bnapi[i];
1688 struct bnxt_rx_ring_info *rxr;
1689 struct bnxt_ring_struct *ring;
1690
1691 if (!bnapi)
1692 continue;
1693
1694 rxr = &bnapi->rx_ring;
1695 ring = &rxr->rx_ring_struct;
1696
1697 rc = bnxt_alloc_ring(bp, ring);
1698 if (rc)
1699 return rc;
1700
1701 if (agg_rings) {
1702 u16 mem_size;
1703
1704 ring = &rxr->rx_agg_ring_struct;
1705 rc = bnxt_alloc_ring(bp, ring);
1706 if (rc)
1707 return rc;
1708
1709 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1710 mem_size = rxr->rx_agg_bmap_size / 8;
1711 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1712 if (!rxr->rx_agg_bmap)
1713 return -ENOMEM;
1714
1715 if (tpa_rings) {
1716 rxr->rx_tpa = kcalloc(MAX_TPA,
1717 sizeof(struct bnxt_tpa_info),
1718 GFP_KERNEL);
1719 if (!rxr->rx_tpa)
1720 return -ENOMEM;
1721 }
1722 }
1723 }
1724 return 0;
1725 }
1726
1727 static void bnxt_free_tx_rings(struct bnxt *bp)
1728 {
1729 int i;
1730 struct pci_dev *pdev = bp->pdev;
1731
1732 if (!bp->bnapi)
1733 return;
1734
1735 for (i = 0; i < bp->tx_nr_rings; i++) {
1736 struct bnxt_napi *bnapi = bp->bnapi[i];
1737 struct bnxt_tx_ring_info *txr;
1738 struct bnxt_ring_struct *ring;
1739
1740 if (!bnapi)
1741 continue;
1742
1743 txr = &bnapi->tx_ring;
1744
1745 if (txr->tx_push) {
1746 dma_free_coherent(&pdev->dev, bp->tx_push_size,
1747 txr->tx_push, txr->tx_push_mapping);
1748 txr->tx_push = NULL;
1749 }
1750
1751 ring = &txr->tx_ring_struct;
1752
1753 bnxt_free_ring(bp, ring);
1754 }
1755 }
1756
1757 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1758 {
1759 int i, j, rc;
1760 struct pci_dev *pdev = bp->pdev;
1761
1762 bp->tx_push_size = 0;
1763 if (bp->tx_push_thresh) {
1764 int push_size;
1765
1766 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1767 bp->tx_push_thresh);
1768
1769 if (push_size > 128) {
1770 push_size = 0;
1771 bp->tx_push_thresh = 0;
1772 }
1773
1774 bp->tx_push_size = push_size;
1775 }
1776
1777 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1778 struct bnxt_napi *bnapi = bp->bnapi[i];
1779 struct bnxt_tx_ring_info *txr;
1780 struct bnxt_ring_struct *ring;
1781
1782 if (!bnapi)
1783 continue;
1784
1785 txr = &bnapi->tx_ring;
1786 ring = &txr->tx_ring_struct;
1787
1788 rc = bnxt_alloc_ring(bp, ring);
1789 if (rc)
1790 return rc;
1791
1792 if (bp->tx_push_size) {
1793 struct tx_bd *txbd;
1794 dma_addr_t mapping;
1795
1796 /* One pre-allocated DMA buffer to backup
1797 * TX push operation
1798 */
1799 txr->tx_push = dma_alloc_coherent(&pdev->dev,
1800 bp->tx_push_size,
1801 &txr->tx_push_mapping,
1802 GFP_KERNEL);
1803
1804 if (!txr->tx_push)
1805 return -ENOMEM;
1806
1807 txbd = &txr->tx_push->txbd1;
1808
1809 mapping = txr->tx_push_mapping +
1810 sizeof(struct tx_push_bd);
1811 txbd->tx_bd_haddr = cpu_to_le64(mapping);
1812
1813 memset(txbd + 1, 0, sizeof(struct tx_bd_ext));
1814 }
1815 ring->queue_id = bp->q_info[j].queue_id;
1816 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1817 j++;
1818 }
1819 return 0;
1820 }
1821
1822 static void bnxt_free_cp_rings(struct bnxt *bp)
1823 {
1824 int i;
1825
1826 if (!bp->bnapi)
1827 return;
1828
1829 for (i = 0; i < bp->cp_nr_rings; i++) {
1830 struct bnxt_napi *bnapi = bp->bnapi[i];
1831 struct bnxt_cp_ring_info *cpr;
1832 struct bnxt_ring_struct *ring;
1833
1834 if (!bnapi)
1835 continue;
1836
1837 cpr = &bnapi->cp_ring;
1838 ring = &cpr->cp_ring_struct;
1839
1840 bnxt_free_ring(bp, ring);
1841 }
1842 }
1843
1844 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1845 {
1846 int i, rc;
1847
1848 for (i = 0; i < bp->cp_nr_rings; i++) {
1849 struct bnxt_napi *bnapi = bp->bnapi[i];
1850 struct bnxt_cp_ring_info *cpr;
1851 struct bnxt_ring_struct *ring;
1852
1853 if (!bnapi)
1854 continue;
1855
1856 cpr = &bnapi->cp_ring;
1857 ring = &cpr->cp_ring_struct;
1858
1859 rc = bnxt_alloc_ring(bp, ring);
1860 if (rc)
1861 return rc;
1862 }
1863 return 0;
1864 }
1865
1866 static void bnxt_init_ring_struct(struct bnxt *bp)
1867 {
1868 int i;
1869
1870 for (i = 0; i < bp->cp_nr_rings; i++) {
1871 struct bnxt_napi *bnapi = bp->bnapi[i];
1872 struct bnxt_cp_ring_info *cpr;
1873 struct bnxt_rx_ring_info *rxr;
1874 struct bnxt_tx_ring_info *txr;
1875 struct bnxt_ring_struct *ring;
1876
1877 if (!bnapi)
1878 continue;
1879
1880 cpr = &bnapi->cp_ring;
1881 ring = &cpr->cp_ring_struct;
1882 ring->nr_pages = bp->cp_nr_pages;
1883 ring->page_size = HW_CMPD_RING_SIZE;
1884 ring->pg_arr = (void **)cpr->cp_desc_ring;
1885 ring->dma_arr = cpr->cp_desc_mapping;
1886 ring->vmem_size = 0;
1887
1888 rxr = &bnapi->rx_ring;
1889 ring = &rxr->rx_ring_struct;
1890 ring->nr_pages = bp->rx_nr_pages;
1891 ring->page_size = HW_RXBD_RING_SIZE;
1892 ring->pg_arr = (void **)rxr->rx_desc_ring;
1893 ring->dma_arr = rxr->rx_desc_mapping;
1894 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1895 ring->vmem = (void **)&rxr->rx_buf_ring;
1896
1897 ring = &rxr->rx_agg_ring_struct;
1898 ring->nr_pages = bp->rx_agg_nr_pages;
1899 ring->page_size = HW_RXBD_RING_SIZE;
1900 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1901 ring->dma_arr = rxr->rx_agg_desc_mapping;
1902 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1903 ring->vmem = (void **)&rxr->rx_agg_ring;
1904
1905 txr = &bnapi->tx_ring;
1906 ring = &txr->tx_ring_struct;
1907 ring->nr_pages = bp->tx_nr_pages;
1908 ring->page_size = HW_RXBD_RING_SIZE;
1909 ring->pg_arr = (void **)txr->tx_desc_ring;
1910 ring->dma_arr = txr->tx_desc_mapping;
1911 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1912 ring->vmem = (void **)&txr->tx_buf_ring;
1913 }
1914 }
1915
1916 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1917 {
1918 int i;
1919 u32 prod;
1920 struct rx_bd **rx_buf_ring;
1921
1922 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1923 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1924 int j;
1925 struct rx_bd *rxbd;
1926
1927 rxbd = rx_buf_ring[i];
1928 if (!rxbd)
1929 continue;
1930
1931 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1932 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1933 rxbd->rx_bd_opaque = prod;
1934 }
1935 }
1936 }
1937
1938 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1939 {
1940 struct net_device *dev = bp->dev;
1941 struct bnxt_napi *bnapi = bp->bnapi[ring_nr];
1942 struct bnxt_rx_ring_info *rxr;
1943 struct bnxt_ring_struct *ring;
1944 u32 prod, type;
1945 int i;
1946
1947 if (!bnapi)
1948 return -EINVAL;
1949
1950 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1951 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1952
1953 if (NET_IP_ALIGN == 2)
1954 type |= RX_BD_FLAGS_SOP;
1955
1956 rxr = &bnapi->rx_ring;
1957 ring = &rxr->rx_ring_struct;
1958 bnxt_init_rxbd_pages(ring, type);
1959
1960 prod = rxr->rx_prod;
1961 for (i = 0; i < bp->rx_ring_size; i++) {
1962 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1963 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1964 ring_nr, i, bp->rx_ring_size);
1965 break;
1966 }
1967 prod = NEXT_RX(prod);
1968 }
1969 rxr->rx_prod = prod;
1970 ring->fw_ring_id = INVALID_HW_RING_ID;
1971
1972 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1973 return 0;
1974
1975 ring = &rxr->rx_agg_ring_struct;
1976
1977 type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1978 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1979
1980 bnxt_init_rxbd_pages(ring, type);
1981
1982 prod = rxr->rx_agg_prod;
1983 for (i = 0; i < bp->rx_agg_ring_size; i++) {
1984 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1985 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1986 ring_nr, i, bp->rx_ring_size);
1987 break;
1988 }
1989 prod = NEXT_RX_AGG(prod);
1990 }
1991 rxr->rx_agg_prod = prod;
1992 ring->fw_ring_id = INVALID_HW_RING_ID;
1993
1994 if (bp->flags & BNXT_FLAG_TPA) {
1995 if (rxr->rx_tpa) {
1996 u8 *data;
1997 dma_addr_t mapping;
1998
1999 for (i = 0; i < MAX_TPA; i++) {
2000 data = __bnxt_alloc_rx_data(bp, &mapping,
2001 GFP_KERNEL);
2002 if (!data)
2003 return -ENOMEM;
2004
2005 rxr->rx_tpa[i].data = data;
2006 rxr->rx_tpa[i].mapping = mapping;
2007 }
2008 } else {
2009 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2010 return -ENOMEM;
2011 }
2012 }
2013
2014 return 0;
2015 }
2016
2017 static int bnxt_init_rx_rings(struct bnxt *bp)
2018 {
2019 int i, rc = 0;
2020
2021 for (i = 0; i < bp->rx_nr_rings; i++) {
2022 rc = bnxt_init_one_rx_ring(bp, i);
2023 if (rc)
2024 break;
2025 }
2026
2027 return rc;
2028 }
2029
2030 static int bnxt_init_tx_rings(struct bnxt *bp)
2031 {
2032 u16 i;
2033
2034 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2035 MAX_SKB_FRAGS + 1);
2036
2037 for (i = 0; i < bp->tx_nr_rings; i++) {
2038 struct bnxt_napi *bnapi = bp->bnapi[i];
2039 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
2040 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2041
2042 ring->fw_ring_id = INVALID_HW_RING_ID;
2043 }
2044
2045 return 0;
2046 }
2047
2048 static void bnxt_free_ring_grps(struct bnxt *bp)
2049 {
2050 kfree(bp->grp_info);
2051 bp->grp_info = NULL;
2052 }
2053
2054 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2055 {
2056 int i;
2057
2058 if (irq_re_init) {
2059 bp->grp_info = kcalloc(bp->cp_nr_rings,
2060 sizeof(struct bnxt_ring_grp_info),
2061 GFP_KERNEL);
2062 if (!bp->grp_info)
2063 return -ENOMEM;
2064 }
2065 for (i = 0; i < bp->cp_nr_rings; i++) {
2066 if (irq_re_init)
2067 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2068 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2069 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2070 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2071 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2072 }
2073 return 0;
2074 }
2075
2076 static void bnxt_free_vnics(struct bnxt *bp)
2077 {
2078 kfree(bp->vnic_info);
2079 bp->vnic_info = NULL;
2080 bp->nr_vnics = 0;
2081 }
2082
2083 static int bnxt_alloc_vnics(struct bnxt *bp)
2084 {
2085 int num_vnics = 1;
2086
2087 #ifdef CONFIG_RFS_ACCEL
2088 if (bp->flags & BNXT_FLAG_RFS)
2089 num_vnics += bp->rx_nr_rings;
2090 #endif
2091
2092 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2093 GFP_KERNEL);
2094 if (!bp->vnic_info)
2095 return -ENOMEM;
2096
2097 bp->nr_vnics = num_vnics;
2098 return 0;
2099 }
2100
2101 static void bnxt_init_vnics(struct bnxt *bp)
2102 {
2103 int i;
2104
2105 for (i = 0; i < bp->nr_vnics; i++) {
2106 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2107
2108 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2109 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2110 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2111
2112 if (bp->vnic_info[i].rss_hash_key) {
2113 if (i == 0)
2114 prandom_bytes(vnic->rss_hash_key,
2115 HW_HASH_KEY_SIZE);
2116 else
2117 memcpy(vnic->rss_hash_key,
2118 bp->vnic_info[0].rss_hash_key,
2119 HW_HASH_KEY_SIZE);
2120 }
2121 }
2122 }
2123
2124 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2125 {
2126 int pages;
2127
2128 pages = ring_size / desc_per_pg;
2129
2130 if (!pages)
2131 return 1;
2132
2133 pages++;
2134
2135 while (pages & (pages - 1))
2136 pages++;
2137
2138 return pages;
2139 }
2140
2141 static void bnxt_set_tpa_flags(struct bnxt *bp)
2142 {
2143 bp->flags &= ~BNXT_FLAG_TPA;
2144 if (bp->dev->features & NETIF_F_LRO)
2145 bp->flags |= BNXT_FLAG_LRO;
2146 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2147 bp->flags |= BNXT_FLAG_GRO;
2148 }
2149
2150 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2151 * be set on entry.
2152 */
2153 void bnxt_set_ring_params(struct bnxt *bp)
2154 {
2155 u32 ring_size, rx_size, rx_space;
2156 u32 agg_factor = 0, agg_ring_size = 0;
2157
2158 /* 8 for CRC and VLAN */
2159 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2160
2161 rx_space = rx_size + NET_SKB_PAD +
2162 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2163
2164 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2165 ring_size = bp->rx_ring_size;
2166 bp->rx_agg_ring_size = 0;
2167 bp->rx_agg_nr_pages = 0;
2168
2169 if (bp->flags & BNXT_FLAG_TPA)
2170 agg_factor = 4;
2171
2172 bp->flags &= ~BNXT_FLAG_JUMBO;
2173 if (rx_space > PAGE_SIZE) {
2174 u32 jumbo_factor;
2175
2176 bp->flags |= BNXT_FLAG_JUMBO;
2177 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2178 if (jumbo_factor > agg_factor)
2179 agg_factor = jumbo_factor;
2180 }
2181 agg_ring_size = ring_size * agg_factor;
2182
2183 if (agg_ring_size) {
2184 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2185 RX_DESC_CNT);
2186 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2187 u32 tmp = agg_ring_size;
2188
2189 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2190 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2191 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2192 tmp, agg_ring_size);
2193 }
2194 bp->rx_agg_ring_size = agg_ring_size;
2195 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2196 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2197 rx_space = rx_size + NET_SKB_PAD +
2198 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2199 }
2200
2201 bp->rx_buf_use_size = rx_size;
2202 bp->rx_buf_size = rx_space;
2203
2204 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2205 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2206
2207 ring_size = bp->tx_ring_size;
2208 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2209 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2210
2211 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2212 bp->cp_ring_size = ring_size;
2213
2214 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2215 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2216 bp->cp_nr_pages = MAX_CP_PAGES;
2217 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2218 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2219 ring_size, bp->cp_ring_size);
2220 }
2221 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2222 bp->cp_ring_mask = bp->cp_bit - 1;
2223 }
2224
2225 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2226 {
2227 int i;
2228 struct bnxt_vnic_info *vnic;
2229 struct pci_dev *pdev = bp->pdev;
2230
2231 if (!bp->vnic_info)
2232 return;
2233
2234 for (i = 0; i < bp->nr_vnics; i++) {
2235 vnic = &bp->vnic_info[i];
2236
2237 kfree(vnic->fw_grp_ids);
2238 vnic->fw_grp_ids = NULL;
2239
2240 kfree(vnic->uc_list);
2241 vnic->uc_list = NULL;
2242
2243 if (vnic->mc_list) {
2244 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2245 vnic->mc_list, vnic->mc_list_mapping);
2246 vnic->mc_list = NULL;
2247 }
2248
2249 if (vnic->rss_table) {
2250 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2251 vnic->rss_table,
2252 vnic->rss_table_dma_addr);
2253 vnic->rss_table = NULL;
2254 }
2255
2256 vnic->rss_hash_key = NULL;
2257 vnic->flags = 0;
2258 }
2259 }
2260
2261 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2262 {
2263 int i, rc = 0, size;
2264 struct bnxt_vnic_info *vnic;
2265 struct pci_dev *pdev = bp->pdev;
2266 int max_rings;
2267
2268 for (i = 0; i < bp->nr_vnics; i++) {
2269 vnic = &bp->vnic_info[i];
2270
2271 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2272 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2273
2274 if (mem_size > 0) {
2275 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2276 if (!vnic->uc_list) {
2277 rc = -ENOMEM;
2278 goto out;
2279 }
2280 }
2281 }
2282
2283 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2284 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2285 vnic->mc_list =
2286 dma_alloc_coherent(&pdev->dev,
2287 vnic->mc_list_size,
2288 &vnic->mc_list_mapping,
2289 GFP_KERNEL);
2290 if (!vnic->mc_list) {
2291 rc = -ENOMEM;
2292 goto out;
2293 }
2294 }
2295
2296 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2297 max_rings = bp->rx_nr_rings;
2298 else
2299 max_rings = 1;
2300
2301 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2302 if (!vnic->fw_grp_ids) {
2303 rc = -ENOMEM;
2304 goto out;
2305 }
2306
2307 /* Allocate rss table and hash key */
2308 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2309 &vnic->rss_table_dma_addr,
2310 GFP_KERNEL);
2311 if (!vnic->rss_table) {
2312 rc = -ENOMEM;
2313 goto out;
2314 }
2315
2316 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2317
2318 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2319 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2320 }
2321 return 0;
2322
2323 out:
2324 return rc;
2325 }
2326
2327 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2328 {
2329 struct pci_dev *pdev = bp->pdev;
2330
2331 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2332 bp->hwrm_cmd_resp_dma_addr);
2333
2334 bp->hwrm_cmd_resp_addr = NULL;
2335 if (bp->hwrm_dbg_resp_addr) {
2336 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2337 bp->hwrm_dbg_resp_addr,
2338 bp->hwrm_dbg_resp_dma_addr);
2339
2340 bp->hwrm_dbg_resp_addr = NULL;
2341 }
2342 }
2343
2344 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2345 {
2346 struct pci_dev *pdev = bp->pdev;
2347
2348 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2349 &bp->hwrm_cmd_resp_dma_addr,
2350 GFP_KERNEL);
2351 if (!bp->hwrm_cmd_resp_addr)
2352 return -ENOMEM;
2353 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2354 HWRM_DBG_REG_BUF_SIZE,
2355 &bp->hwrm_dbg_resp_dma_addr,
2356 GFP_KERNEL);
2357 if (!bp->hwrm_dbg_resp_addr)
2358 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2359
2360 return 0;
2361 }
2362
2363 static void bnxt_free_stats(struct bnxt *bp)
2364 {
2365 u32 size, i;
2366 struct pci_dev *pdev = bp->pdev;
2367
2368 if (!bp->bnapi)
2369 return;
2370
2371 size = sizeof(struct ctx_hw_stats);
2372
2373 for (i = 0; i < bp->cp_nr_rings; i++) {
2374 struct bnxt_napi *bnapi = bp->bnapi[i];
2375 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2376
2377 if (cpr->hw_stats) {
2378 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2379 cpr->hw_stats_map);
2380 cpr->hw_stats = NULL;
2381 }
2382 }
2383 }
2384
2385 static int bnxt_alloc_stats(struct bnxt *bp)
2386 {
2387 u32 size, i;
2388 struct pci_dev *pdev = bp->pdev;
2389
2390 size = sizeof(struct ctx_hw_stats);
2391
2392 for (i = 0; i < bp->cp_nr_rings; i++) {
2393 struct bnxt_napi *bnapi = bp->bnapi[i];
2394 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2395
2396 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2397 &cpr->hw_stats_map,
2398 GFP_KERNEL);
2399 if (!cpr->hw_stats)
2400 return -ENOMEM;
2401
2402 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2403 }
2404 return 0;
2405 }
2406
2407 static void bnxt_clear_ring_indices(struct bnxt *bp)
2408 {
2409 int i;
2410
2411 if (!bp->bnapi)
2412 return;
2413
2414 for (i = 0; i < bp->cp_nr_rings; i++) {
2415 struct bnxt_napi *bnapi = bp->bnapi[i];
2416 struct bnxt_cp_ring_info *cpr;
2417 struct bnxt_rx_ring_info *rxr;
2418 struct bnxt_tx_ring_info *txr;
2419
2420 if (!bnapi)
2421 continue;
2422
2423 cpr = &bnapi->cp_ring;
2424 cpr->cp_raw_cons = 0;
2425
2426 txr = &bnapi->tx_ring;
2427 txr->tx_prod = 0;
2428 txr->tx_cons = 0;
2429
2430 rxr = &bnapi->rx_ring;
2431 rxr->rx_prod = 0;
2432 rxr->rx_agg_prod = 0;
2433 rxr->rx_sw_agg_prod = 0;
2434 }
2435 }
2436
2437 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2438 {
2439 #ifdef CONFIG_RFS_ACCEL
2440 int i;
2441
2442 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2443 * safe to delete the hash table.
2444 */
2445 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2446 struct hlist_head *head;
2447 struct hlist_node *tmp;
2448 struct bnxt_ntuple_filter *fltr;
2449
2450 head = &bp->ntp_fltr_hash_tbl[i];
2451 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2452 hlist_del(&fltr->hash);
2453 kfree(fltr);
2454 }
2455 }
2456 if (irq_reinit) {
2457 kfree(bp->ntp_fltr_bmap);
2458 bp->ntp_fltr_bmap = NULL;
2459 }
2460 bp->ntp_fltr_count = 0;
2461 #endif
2462 }
2463
2464 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2465 {
2466 #ifdef CONFIG_RFS_ACCEL
2467 int i, rc = 0;
2468
2469 if (!(bp->flags & BNXT_FLAG_RFS))
2470 return 0;
2471
2472 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2473 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2474
2475 bp->ntp_fltr_count = 0;
2476 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2477 GFP_KERNEL);
2478
2479 if (!bp->ntp_fltr_bmap)
2480 rc = -ENOMEM;
2481
2482 return rc;
2483 #else
2484 return 0;
2485 #endif
2486 }
2487
2488 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2489 {
2490 bnxt_free_vnic_attributes(bp);
2491 bnxt_free_tx_rings(bp);
2492 bnxt_free_rx_rings(bp);
2493 bnxt_free_cp_rings(bp);
2494 bnxt_free_ntp_fltrs(bp, irq_re_init);
2495 if (irq_re_init) {
2496 bnxt_free_stats(bp);
2497 bnxt_free_ring_grps(bp);
2498 bnxt_free_vnics(bp);
2499 kfree(bp->bnapi);
2500 bp->bnapi = NULL;
2501 } else {
2502 bnxt_clear_ring_indices(bp);
2503 }
2504 }
2505
2506 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2507 {
2508 int i, rc, size, arr_size;
2509 void *bnapi;
2510
2511 if (irq_re_init) {
2512 /* Allocate bnapi mem pointer array and mem block for
2513 * all queues
2514 */
2515 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2516 bp->cp_nr_rings);
2517 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2518 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2519 if (!bnapi)
2520 return -ENOMEM;
2521
2522 bp->bnapi = bnapi;
2523 bnapi += arr_size;
2524 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2525 bp->bnapi[i] = bnapi;
2526 bp->bnapi[i]->index = i;
2527 bp->bnapi[i]->bp = bp;
2528 }
2529
2530 rc = bnxt_alloc_stats(bp);
2531 if (rc)
2532 goto alloc_mem_err;
2533
2534 rc = bnxt_alloc_ntp_fltrs(bp);
2535 if (rc)
2536 goto alloc_mem_err;
2537
2538 rc = bnxt_alloc_vnics(bp);
2539 if (rc)
2540 goto alloc_mem_err;
2541 }
2542
2543 bnxt_init_ring_struct(bp);
2544
2545 rc = bnxt_alloc_rx_rings(bp);
2546 if (rc)
2547 goto alloc_mem_err;
2548
2549 rc = bnxt_alloc_tx_rings(bp);
2550 if (rc)
2551 goto alloc_mem_err;
2552
2553 rc = bnxt_alloc_cp_rings(bp);
2554 if (rc)
2555 goto alloc_mem_err;
2556
2557 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2558 BNXT_VNIC_UCAST_FLAG;
2559 rc = bnxt_alloc_vnic_attributes(bp);
2560 if (rc)
2561 goto alloc_mem_err;
2562 return 0;
2563
2564 alloc_mem_err:
2565 bnxt_free_mem(bp, true);
2566 return rc;
2567 }
2568
2569 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2570 u16 cmpl_ring, u16 target_id)
2571 {
2572 struct hwrm_cmd_req_hdr *req = request;
2573
2574 req->cmpl_ring_req_type =
2575 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2576 req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2577 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2578 }
2579
2580 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2581 {
2582 int i, intr_process, rc;
2583 struct hwrm_cmd_req_hdr *req = msg;
2584 u32 *data = msg;
2585 __le32 *resp_len, *valid;
2586 u16 cp_ring_id, len = 0;
2587 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2588
2589 req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2590 memset(resp, 0, PAGE_SIZE);
2591 cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2592 HWRM_CMPL_RING_MASK) >>
2593 HWRM_CMPL_RING_SFT;
2594 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2595
2596 /* Write request msg to hwrm channel */
2597 __iowrite32_copy(bp->bar0, data, msg_len / 4);
2598
2599 /* currently supports only one outstanding message */
2600 if (intr_process)
2601 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2602 HWRM_SEQ_ID_MASK;
2603
2604 /* Ring channel doorbell */
2605 writel(1, bp->bar0 + 0x100);
2606
2607 i = 0;
2608 if (intr_process) {
2609 /* Wait until hwrm response cmpl interrupt is processed */
2610 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2611 i++ < timeout) {
2612 usleep_range(600, 800);
2613 }
2614
2615 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2616 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2617 req->cmpl_ring_req_type);
2618 return -1;
2619 }
2620 } else {
2621 /* Check if response len is updated */
2622 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2623 for (i = 0; i < timeout; i++) {
2624 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2625 HWRM_RESP_LEN_SFT;
2626 if (len)
2627 break;
2628 usleep_range(600, 800);
2629 }
2630
2631 if (i >= timeout) {
2632 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2633 timeout, req->cmpl_ring_req_type,
2634 req->target_id_seq_id, *resp_len);
2635 return -1;
2636 }
2637
2638 /* Last word of resp contains valid bit */
2639 valid = bp->hwrm_cmd_resp_addr + len - 4;
2640 for (i = 0; i < timeout; i++) {
2641 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2642 break;
2643 usleep_range(600, 800);
2644 }
2645
2646 if (i >= timeout) {
2647 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2648 timeout, req->cmpl_ring_req_type,
2649 req->target_id_seq_id, len, *valid);
2650 return -1;
2651 }
2652 }
2653
2654 rc = le16_to_cpu(resp->error_code);
2655 if (rc) {
2656 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2657 le16_to_cpu(resp->req_type),
2658 le16_to_cpu(resp->seq_id), rc);
2659 return rc;
2660 }
2661 return 0;
2662 }
2663
2664 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2665 {
2666 int rc;
2667
2668 mutex_lock(&bp->hwrm_cmd_lock);
2669 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2670 mutex_unlock(&bp->hwrm_cmd_lock);
2671 return rc;
2672 }
2673
2674 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2675 {
2676 struct hwrm_func_drv_rgtr_input req = {0};
2677 int i;
2678
2679 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2680
2681 req.enables =
2682 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2683 FUNC_DRV_RGTR_REQ_ENABLES_VER |
2684 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2685
2686 /* TODO: current async event fwd bits are not defined and the firmware
2687 * only checks if it is non-zero to enable async event forwarding
2688 */
2689 req.async_event_fwd[0] |= cpu_to_le32(1);
2690 req.os_type = cpu_to_le16(1);
2691 req.ver_maj = DRV_VER_MAJ;
2692 req.ver_min = DRV_VER_MIN;
2693 req.ver_upd = DRV_VER_UPD;
2694
2695 if (BNXT_PF(bp)) {
2696 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2697 u32 *data = (u32 *)vf_req_snif_bmap;
2698
2699 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2700 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2701 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2702
2703 for (i = 0; i < 8; i++)
2704 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2705
2706 req.enables |=
2707 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2708 }
2709
2710 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2711 }
2712
2713 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2714 {
2715 u32 rc = 0;
2716 struct hwrm_tunnel_dst_port_free_input req = {0};
2717
2718 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2719 req.tunnel_type = tunnel_type;
2720
2721 switch (tunnel_type) {
2722 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2723 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2724 break;
2725 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2726 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2727 break;
2728 default:
2729 break;
2730 }
2731
2732 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2733 if (rc)
2734 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2735 rc);
2736 return rc;
2737 }
2738
2739 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2740 u8 tunnel_type)
2741 {
2742 u32 rc = 0;
2743 struct hwrm_tunnel_dst_port_alloc_input req = {0};
2744 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2745
2746 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2747
2748 req.tunnel_type = tunnel_type;
2749 req.tunnel_dst_port_val = port;
2750
2751 mutex_lock(&bp->hwrm_cmd_lock);
2752 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2753 if (rc) {
2754 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2755 rc);
2756 goto err_out;
2757 }
2758
2759 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2760 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2761
2762 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2763 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2764 err_out:
2765 mutex_unlock(&bp->hwrm_cmd_lock);
2766 return rc;
2767 }
2768
2769 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2770 {
2771 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2772 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2773
2774 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2775 req.dflt_vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2776
2777 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2778 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2779 req.mask = cpu_to_le32(vnic->rx_mask);
2780 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2781 }
2782
2783 #ifdef CONFIG_RFS_ACCEL
2784 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2785 struct bnxt_ntuple_filter *fltr)
2786 {
2787 struct hwrm_cfa_ntuple_filter_free_input req = {0};
2788
2789 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2790 req.ntuple_filter_id = fltr->filter_id;
2791 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2792 }
2793
2794 #define BNXT_NTP_FLTR_FLAGS \
2795 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
2796 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
2797 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
2798 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
2799 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
2800 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
2801 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
2802 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
2803 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
2804 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
2805 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
2806 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
2807 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
2808 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID)
2809
2810 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2811 struct bnxt_ntuple_filter *fltr)
2812 {
2813 int rc = 0;
2814 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2815 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2816 bp->hwrm_cmd_resp_addr;
2817 struct flow_keys *keys = &fltr->fkeys;
2818 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2819
2820 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2821 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2822
2823 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2824
2825 req.ethertype = htons(ETH_P_IP);
2826 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2827 req.ipaddr_type = 4;
2828 req.ip_protocol = keys->basic.ip_proto;
2829
2830 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2831 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2832 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2833 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2834
2835 req.src_port = keys->ports.src;
2836 req.src_port_mask = cpu_to_be16(0xffff);
2837 req.dst_port = keys->ports.dst;
2838 req.dst_port_mask = cpu_to_be16(0xffff);
2839
2840 req.dst_vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2841 mutex_lock(&bp->hwrm_cmd_lock);
2842 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2843 if (!rc)
2844 fltr->filter_id = resp->ntuple_filter_id;
2845 mutex_unlock(&bp->hwrm_cmd_lock);
2846 return rc;
2847 }
2848 #endif
2849
2850 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2851 u8 *mac_addr)
2852 {
2853 u32 rc = 0;
2854 struct hwrm_cfa_l2_filter_alloc_input req = {0};
2855 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2856
2857 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2858 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2859 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2860 req.dst_vnic_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2861 req.enables =
2862 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2863 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID |
2864 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2865 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2866 req.l2_addr_mask[0] = 0xff;
2867 req.l2_addr_mask[1] = 0xff;
2868 req.l2_addr_mask[2] = 0xff;
2869 req.l2_addr_mask[3] = 0xff;
2870 req.l2_addr_mask[4] = 0xff;
2871 req.l2_addr_mask[5] = 0xff;
2872
2873 mutex_lock(&bp->hwrm_cmd_lock);
2874 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2875 if (!rc)
2876 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2877 resp->l2_filter_id;
2878 mutex_unlock(&bp->hwrm_cmd_lock);
2879 return rc;
2880 }
2881
2882 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2883 {
2884 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2885 int rc = 0;
2886
2887 /* Any associated ntuple filters will also be cleared by firmware. */
2888 mutex_lock(&bp->hwrm_cmd_lock);
2889 for (i = 0; i < num_of_vnics; i++) {
2890 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2891
2892 for (j = 0; j < vnic->uc_filter_count; j++) {
2893 struct hwrm_cfa_l2_filter_free_input req = {0};
2894
2895 bnxt_hwrm_cmd_hdr_init(bp, &req,
2896 HWRM_CFA_L2_FILTER_FREE, -1, -1);
2897
2898 req.l2_filter_id = vnic->fw_l2_filter_id[j];
2899
2900 rc = _hwrm_send_message(bp, &req, sizeof(req),
2901 HWRM_CMD_TIMEOUT);
2902 }
2903 vnic->uc_filter_count = 0;
2904 }
2905 mutex_unlock(&bp->hwrm_cmd_lock);
2906
2907 return rc;
2908 }
2909
2910 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2911 {
2912 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2913 struct hwrm_vnic_tpa_cfg_input req = {0};
2914
2915 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2916
2917 if (tpa_flags) {
2918 u16 mss = bp->dev->mtu - 40;
2919 u32 nsegs, n, segs = 0, flags;
2920
2921 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2922 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2923 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2924 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2925 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2926 if (tpa_flags & BNXT_FLAG_GRO)
2927 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2928
2929 req.flags = cpu_to_le32(flags);
2930
2931 req.enables =
2932 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2933 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS);
2934
2935 /* Number of segs are log2 units, and first packet is not
2936 * included as part of this units.
2937 */
2938 if (mss <= PAGE_SIZE) {
2939 n = PAGE_SIZE / mss;
2940 nsegs = (MAX_SKB_FRAGS - 1) * n;
2941 } else {
2942 n = mss / PAGE_SIZE;
2943 if (mss & (PAGE_SIZE - 1))
2944 n++;
2945 nsegs = (MAX_SKB_FRAGS - n) / n;
2946 }
2947
2948 segs = ilog2(nsegs);
2949 req.max_agg_segs = cpu_to_le16(segs);
2950 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2951 }
2952 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2953
2954 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2955 }
2956
2957 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
2958 {
2959 u32 i, j, max_rings;
2960 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2961 struct hwrm_vnic_rss_cfg_input req = {0};
2962
2963 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
2964 return 0;
2965
2966 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
2967 if (set_rss) {
2968 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
2969 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
2970 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
2971 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
2972
2973 req.hash_type = cpu_to_le32(vnic->hash_type);
2974
2975 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2976 max_rings = bp->rx_nr_rings;
2977 else
2978 max_rings = 1;
2979
2980 /* Fill the RSS indirection table with ring group ids */
2981 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
2982 if (j == max_rings)
2983 j = 0;
2984 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
2985 }
2986
2987 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
2988 req.hash_key_tbl_addr =
2989 cpu_to_le64(vnic->rss_hash_key_dma_addr);
2990 }
2991 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
2992 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2993 }
2994
2995 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
2996 {
2997 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2998 struct hwrm_vnic_plcmodes_cfg_input req = {0};
2999
3000 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3001 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3002 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3003 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3004 req.enables =
3005 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3006 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3007 /* thresholds not implemented in firmware yet */
3008 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3009 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3010 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3011 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3012 }
3013
3014 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3015 {
3016 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3017
3018 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3019 req.rss_cos_lb_ctx_id =
3020 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3021
3022 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3023 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3024 }
3025
3026 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3027 {
3028 int i;
3029
3030 for (i = 0; i < bp->nr_vnics; i++) {
3031 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3032
3033 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3034 bnxt_hwrm_vnic_ctx_free_one(bp, i);
3035 }
3036 bp->rsscos_nr_ctxs = 0;
3037 }
3038
3039 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3040 {
3041 int rc;
3042 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3043 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3044 bp->hwrm_cmd_resp_addr;
3045
3046 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3047 -1);
3048
3049 mutex_lock(&bp->hwrm_cmd_lock);
3050 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3051 if (!rc)
3052 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3053 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3054 mutex_unlock(&bp->hwrm_cmd_lock);
3055
3056 return rc;
3057 }
3058
3059 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3060 {
3061 int grp_idx = 0;
3062 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3063 struct hwrm_vnic_cfg_input req = {0};
3064
3065 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3066 /* Only RSS support for now TBD: COS & LB */
3067 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3068 VNIC_CFG_REQ_ENABLES_RSS_RULE);
3069 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3070 req.cos_rule = cpu_to_le16(0xffff);
3071 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3072 grp_idx = 0;
3073 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3074 grp_idx = vnic_id - 1;
3075
3076 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3077 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3078
3079 req.lb_rule = cpu_to_le16(0xffff);
3080 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3081 VLAN_HLEN);
3082
3083 if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3084 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3085
3086 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3087 }
3088
3089 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3090 {
3091 u32 rc = 0;
3092
3093 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3094 struct hwrm_vnic_free_input req = {0};
3095
3096 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3097 req.vnic_id =
3098 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3099
3100 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3101 if (rc)
3102 return rc;
3103 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3104 }
3105 return rc;
3106 }
3107
3108 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3109 {
3110 u16 i;
3111
3112 for (i = 0; i < bp->nr_vnics; i++)
3113 bnxt_hwrm_vnic_free_one(bp, i);
3114 }
3115
3116 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, u16 start_grp_id,
3117 u16 end_grp_id)
3118 {
3119 u32 rc = 0, i, j;
3120 struct hwrm_vnic_alloc_input req = {0};
3121 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3122
3123 /* map ring groups to this vnic */
3124 for (i = start_grp_id, j = 0; i < end_grp_id; i++, j++) {
3125 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) {
3126 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3127 j, (end_grp_id - start_grp_id));
3128 break;
3129 }
3130 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3131 bp->grp_info[i].fw_grp_id;
3132 }
3133
3134 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3135 if (vnic_id == 0)
3136 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3137
3138 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3139
3140 mutex_lock(&bp->hwrm_cmd_lock);
3141 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3142 if (!rc)
3143 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3144 mutex_unlock(&bp->hwrm_cmd_lock);
3145 return rc;
3146 }
3147
3148 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3149 {
3150 u16 i;
3151 u32 rc = 0;
3152
3153 mutex_lock(&bp->hwrm_cmd_lock);
3154 for (i = 0; i < bp->rx_nr_rings; i++) {
3155 struct hwrm_ring_grp_alloc_input req = {0};
3156 struct hwrm_ring_grp_alloc_output *resp =
3157 bp->hwrm_cmd_resp_addr;
3158
3159 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3160
3161 req.cr = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3162 req.rr = cpu_to_le16(bp->grp_info[i].rx_fw_ring_id);
3163 req.ar = cpu_to_le16(bp->grp_info[i].agg_fw_ring_id);
3164 req.sc = cpu_to_le16(bp->grp_info[i].fw_stats_ctx);
3165
3166 rc = _hwrm_send_message(bp, &req, sizeof(req),
3167 HWRM_CMD_TIMEOUT);
3168 if (rc)
3169 break;
3170
3171 bp->grp_info[i].fw_grp_id = le32_to_cpu(resp->ring_group_id);
3172 }
3173 mutex_unlock(&bp->hwrm_cmd_lock);
3174 return rc;
3175 }
3176
3177 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3178 {
3179 u16 i;
3180 u32 rc = 0;
3181 struct hwrm_ring_grp_free_input req = {0};
3182
3183 if (!bp->grp_info)
3184 return 0;
3185
3186 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3187
3188 mutex_lock(&bp->hwrm_cmd_lock);
3189 for (i = 0; i < bp->cp_nr_rings; i++) {
3190 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3191 continue;
3192 req.ring_group_id =
3193 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3194
3195 rc = _hwrm_send_message(bp, &req, sizeof(req),
3196 HWRM_CMD_TIMEOUT);
3197 if (rc)
3198 break;
3199 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3200 }
3201 mutex_unlock(&bp->hwrm_cmd_lock);
3202 return rc;
3203 }
3204
3205 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3206 struct bnxt_ring_struct *ring,
3207 u32 ring_type, u32 map_index,
3208 u32 stats_ctx_id)
3209 {
3210 int rc = 0, err = 0;
3211 struct hwrm_ring_alloc_input req = {0};
3212 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3213 u16 ring_id;
3214
3215 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3216
3217 req.enables = 0;
3218 if (ring->nr_pages > 1) {
3219 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3220 /* Page size is in log2 units */
3221 req.page_size = BNXT_PAGE_SHIFT;
3222 req.page_tbl_depth = 1;
3223 } else {
3224 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3225 }
3226 req.fbo = 0;
3227 /* Association of ring index with doorbell index and MSIX number */
3228 req.logical_id = cpu_to_le16(map_index);
3229
3230 switch (ring_type) {
3231 case HWRM_RING_ALLOC_TX:
3232 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3233 /* Association of transmit ring with completion ring */
3234 req.cmpl_ring_id =
3235 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3236 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3237 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3238 req.queue_id = cpu_to_le16(ring->queue_id);
3239 break;
3240 case HWRM_RING_ALLOC_RX:
3241 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3242 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3243 break;
3244 case HWRM_RING_ALLOC_AGG:
3245 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3246 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3247 break;
3248 case HWRM_RING_ALLOC_CMPL:
3249 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3250 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3251 if (bp->flags & BNXT_FLAG_USING_MSIX)
3252 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3253 break;
3254 default:
3255 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3256 ring_type);
3257 return -1;
3258 }
3259
3260 mutex_lock(&bp->hwrm_cmd_lock);
3261 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3262 err = le16_to_cpu(resp->error_code);
3263 ring_id = le16_to_cpu(resp->ring_id);
3264 mutex_unlock(&bp->hwrm_cmd_lock);
3265
3266 if (rc || err) {
3267 switch (ring_type) {
3268 case RING_FREE_REQ_RING_TYPE_CMPL:
3269 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3270 rc, err);
3271 return -1;
3272
3273 case RING_FREE_REQ_RING_TYPE_RX:
3274 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3275 rc, err);
3276 return -1;
3277
3278 case RING_FREE_REQ_RING_TYPE_TX:
3279 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3280 rc, err);
3281 return -1;
3282
3283 default:
3284 netdev_err(bp->dev, "Invalid ring\n");
3285 return -1;
3286 }
3287 }
3288 ring->fw_ring_id = ring_id;
3289 return rc;
3290 }
3291
3292 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3293 {
3294 int i, rc = 0;
3295
3296 if (bp->cp_nr_rings) {
3297 for (i = 0; i < bp->cp_nr_rings; i++) {
3298 struct bnxt_napi *bnapi = bp->bnapi[i];
3299 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3300 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3301
3302 rc = hwrm_ring_alloc_send_msg(bp, ring,
3303 HWRM_RING_ALLOC_CMPL, i,
3304 INVALID_STATS_CTX_ID);
3305 if (rc)
3306 goto err_out;
3307 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3308 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3309 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3310 }
3311 }
3312
3313 if (bp->tx_nr_rings) {
3314 for (i = 0; i < bp->tx_nr_rings; i++) {
3315 struct bnxt_napi *bnapi = bp->bnapi[i];
3316 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
3317 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3318 u16 fw_stats_ctx = bp->grp_info[i].fw_stats_ctx;
3319
3320 rc = hwrm_ring_alloc_send_msg(bp, ring,
3321 HWRM_RING_ALLOC_TX, i,
3322 fw_stats_ctx);
3323 if (rc)
3324 goto err_out;
3325 txr->tx_doorbell = bp->bar1 + i * 0x80;
3326 }
3327 }
3328
3329 if (bp->rx_nr_rings) {
3330 for (i = 0; i < bp->rx_nr_rings; i++) {
3331 struct bnxt_napi *bnapi = bp->bnapi[i];
3332 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3333 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3334
3335 rc = hwrm_ring_alloc_send_msg(bp, ring,
3336 HWRM_RING_ALLOC_RX, i,
3337 INVALID_STATS_CTX_ID);
3338 if (rc)
3339 goto err_out;
3340 rxr->rx_doorbell = bp->bar1 + i * 0x80;
3341 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3342 bp->grp_info[i].rx_fw_ring_id = ring->fw_ring_id;
3343 }
3344 }
3345
3346 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3347 for (i = 0; i < bp->rx_nr_rings; i++) {
3348 struct bnxt_napi *bnapi = bp->bnapi[i];
3349 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3350 struct bnxt_ring_struct *ring =
3351 &rxr->rx_agg_ring_struct;
3352
3353 rc = hwrm_ring_alloc_send_msg(bp, ring,
3354 HWRM_RING_ALLOC_AGG,
3355 bp->rx_nr_rings + i,
3356 INVALID_STATS_CTX_ID);
3357 if (rc)
3358 goto err_out;
3359
3360 rxr->rx_agg_doorbell =
3361 bp->bar1 + (bp->rx_nr_rings + i) * 0x80;
3362 writel(DB_KEY_RX | rxr->rx_agg_prod,
3363 rxr->rx_agg_doorbell);
3364 bp->grp_info[i].agg_fw_ring_id = ring->fw_ring_id;
3365 }
3366 }
3367 err_out:
3368 return rc;
3369 }
3370
3371 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3372 struct bnxt_ring_struct *ring,
3373 u32 ring_type, int cmpl_ring_id)
3374 {
3375 int rc;
3376 struct hwrm_ring_free_input req = {0};
3377 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3378 u16 error_code;
3379
3380 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, -1, -1);
3381 req.ring_type = ring_type;
3382 req.ring_id = cpu_to_le16(ring->fw_ring_id);
3383
3384 mutex_lock(&bp->hwrm_cmd_lock);
3385 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3386 error_code = le16_to_cpu(resp->error_code);
3387 mutex_unlock(&bp->hwrm_cmd_lock);
3388
3389 if (rc || error_code) {
3390 switch (ring_type) {
3391 case RING_FREE_REQ_RING_TYPE_CMPL:
3392 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3393 rc);
3394 return rc;
3395 case RING_FREE_REQ_RING_TYPE_RX:
3396 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3397 rc);
3398 return rc;
3399 case RING_FREE_REQ_RING_TYPE_TX:
3400 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3401 rc);
3402 return rc;
3403 default:
3404 netdev_err(bp->dev, "Invalid ring\n");
3405 return -1;
3406 }
3407 }
3408 return 0;
3409 }
3410
3411 static int bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3412 {
3413 int i, rc = 0;
3414
3415 if (!bp->bnapi)
3416 return 0;
3417
3418 if (bp->tx_nr_rings) {
3419 for (i = 0; i < bp->tx_nr_rings; i++) {
3420 struct bnxt_napi *bnapi = bp->bnapi[i];
3421 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
3422 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3423 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3424
3425 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3426 hwrm_ring_free_send_msg(
3427 bp, ring,
3428 RING_FREE_REQ_RING_TYPE_TX,
3429 close_path ? cmpl_ring_id :
3430 INVALID_HW_RING_ID);
3431 ring->fw_ring_id = INVALID_HW_RING_ID;
3432 }
3433 }
3434 }
3435
3436 if (bp->rx_nr_rings) {
3437 for (i = 0; i < bp->rx_nr_rings; i++) {
3438 struct bnxt_napi *bnapi = bp->bnapi[i];
3439 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3440 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3441 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3442
3443 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3444 hwrm_ring_free_send_msg(
3445 bp, ring,
3446 RING_FREE_REQ_RING_TYPE_RX,
3447 close_path ? cmpl_ring_id :
3448 INVALID_HW_RING_ID);
3449 ring->fw_ring_id = INVALID_HW_RING_ID;
3450 bp->grp_info[i].rx_fw_ring_id =
3451 INVALID_HW_RING_ID;
3452 }
3453 }
3454 }
3455
3456 if (bp->rx_agg_nr_pages) {
3457 for (i = 0; i < bp->rx_nr_rings; i++) {
3458 struct bnxt_napi *bnapi = bp->bnapi[i];
3459 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3460 struct bnxt_ring_struct *ring =
3461 &rxr->rx_agg_ring_struct;
3462 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3463
3464 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3465 hwrm_ring_free_send_msg(
3466 bp, ring,
3467 RING_FREE_REQ_RING_TYPE_RX,
3468 close_path ? cmpl_ring_id :
3469 INVALID_HW_RING_ID);
3470 ring->fw_ring_id = INVALID_HW_RING_ID;
3471 bp->grp_info[i].agg_fw_ring_id =
3472 INVALID_HW_RING_ID;
3473 }
3474 }
3475 }
3476
3477 if (bp->cp_nr_rings) {
3478 for (i = 0; i < bp->cp_nr_rings; i++) {
3479 struct bnxt_napi *bnapi = bp->bnapi[i];
3480 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3481 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3482
3483 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3484 hwrm_ring_free_send_msg(
3485 bp, ring,
3486 RING_FREE_REQ_RING_TYPE_CMPL,
3487 INVALID_HW_RING_ID);
3488 ring->fw_ring_id = INVALID_HW_RING_ID;
3489 bp->grp_info[i].cp_fw_ring_id =
3490 INVALID_HW_RING_ID;
3491 }
3492 }
3493 }
3494
3495 return rc;
3496 }
3497
3498 int bnxt_hwrm_set_coal(struct bnxt *bp)
3499 {
3500 int i, rc = 0;
3501 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3502 u16 max_buf, max_buf_irq;
3503 u16 buf_tmr, buf_tmr_irq;
3504 u32 flags;
3505
3506 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3507 -1, -1);
3508
3509 /* Each rx completion (2 records) should be DMAed immediately */
3510 max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3511 /* max_buf must not be zero */
3512 max_buf = clamp_t(u16, max_buf, 1, 63);
3513 max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3514 buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3515 buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3516
3517 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3518
3519 /* RING_IDLE generates more IRQs for lower latency. Enable it only
3520 * if coal_ticks is less than 25 us.
3521 */
3522 if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3523 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3524
3525 req.flags = cpu_to_le16(flags);
3526 req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3527 req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3528 req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3529 req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3530 req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3531 req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3532 req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3533
3534 mutex_lock(&bp->hwrm_cmd_lock);
3535 for (i = 0; i < bp->cp_nr_rings; i++) {
3536 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3537
3538 rc = _hwrm_send_message(bp, &req, sizeof(req),
3539 HWRM_CMD_TIMEOUT);
3540 if (rc)
3541 break;
3542 }
3543 mutex_unlock(&bp->hwrm_cmd_lock);
3544 return rc;
3545 }
3546
3547 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3548 {
3549 int rc = 0, i;
3550 struct hwrm_stat_ctx_free_input req = {0};
3551
3552 if (!bp->bnapi)
3553 return 0;
3554
3555 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3556
3557 mutex_lock(&bp->hwrm_cmd_lock);
3558 for (i = 0; i < bp->cp_nr_rings; i++) {
3559 struct bnxt_napi *bnapi = bp->bnapi[i];
3560 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3561
3562 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3563 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3564
3565 rc = _hwrm_send_message(bp, &req, sizeof(req),
3566 HWRM_CMD_TIMEOUT);
3567 if (rc)
3568 break;
3569
3570 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3571 }
3572 }
3573 mutex_unlock(&bp->hwrm_cmd_lock);
3574 return rc;
3575 }
3576
3577 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3578 {
3579 int rc = 0, i;
3580 struct hwrm_stat_ctx_alloc_input req = {0};
3581 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3582
3583 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3584
3585 req.update_period_ms = cpu_to_le32(1000);
3586
3587 mutex_lock(&bp->hwrm_cmd_lock);
3588 for (i = 0; i < bp->cp_nr_rings; i++) {
3589 struct bnxt_napi *bnapi = bp->bnapi[i];
3590 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3591
3592 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3593
3594 rc = _hwrm_send_message(bp, &req, sizeof(req),
3595 HWRM_CMD_TIMEOUT);
3596 if (rc)
3597 break;
3598
3599 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3600
3601 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3602 }
3603 mutex_unlock(&bp->hwrm_cmd_lock);
3604 return 0;
3605 }
3606
3607 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3608 {
3609 int rc = 0;
3610 struct hwrm_func_qcaps_input req = {0};
3611 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3612
3613 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3614 req.fid = cpu_to_le16(0xffff);
3615
3616 mutex_lock(&bp->hwrm_cmd_lock);
3617 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3618 if (rc)
3619 goto hwrm_func_qcaps_exit;
3620
3621 if (BNXT_PF(bp)) {
3622 struct bnxt_pf_info *pf = &bp->pf;
3623
3624 pf->fw_fid = le16_to_cpu(resp->fid);
3625 pf->port_id = le16_to_cpu(resp->port_id);
3626 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3627 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3628 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3629 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3630 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3631 pf->max_pf_tx_rings = pf->max_tx_rings;
3632 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3633 pf->max_pf_rx_rings = pf->max_rx_rings;
3634 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3635 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3636 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3637 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3638 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3639 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3640 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3641 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3642 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3643 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3644 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3645 } else {
3646 #ifdef CONFIG_BNXT_SRIOV
3647 struct bnxt_vf_info *vf = &bp->vf;
3648
3649 vf->fw_fid = le16_to_cpu(resp->fid);
3650 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3651 if (is_valid_ether_addr(vf->mac_addr))
3652 /* overwrite netdev dev_adr with admin VF MAC */
3653 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3654 else
3655 random_ether_addr(bp->dev->dev_addr);
3656
3657 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3658 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3659 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3660 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3661 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3662 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3663 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3664 #endif
3665 }
3666
3667 bp->tx_push_thresh = 0;
3668 if (resp->flags &
3669 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3670 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3671
3672 hwrm_func_qcaps_exit:
3673 mutex_unlock(&bp->hwrm_cmd_lock);
3674 return rc;
3675 }
3676
3677 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3678 {
3679 struct hwrm_func_reset_input req = {0};
3680
3681 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3682 req.enables = 0;
3683
3684 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3685 }
3686
3687 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3688 {
3689 int rc = 0;
3690 struct hwrm_queue_qportcfg_input req = {0};
3691 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3692 u8 i, *qptr;
3693
3694 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3695
3696 mutex_lock(&bp->hwrm_cmd_lock);
3697 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3698 if (rc)
3699 goto qportcfg_exit;
3700
3701 if (!resp->max_configurable_queues) {
3702 rc = -EINVAL;
3703 goto qportcfg_exit;
3704 }
3705 bp->max_tc = resp->max_configurable_queues;
3706 if (bp->max_tc > BNXT_MAX_QUEUE)
3707 bp->max_tc = BNXT_MAX_QUEUE;
3708
3709 qptr = &resp->queue_id0;
3710 for (i = 0; i < bp->max_tc; i++) {
3711 bp->q_info[i].queue_id = *qptr++;
3712 bp->q_info[i].queue_profile = *qptr++;
3713 }
3714
3715 qportcfg_exit:
3716 mutex_unlock(&bp->hwrm_cmd_lock);
3717 return rc;
3718 }
3719
3720 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3721 {
3722 int rc;
3723 struct hwrm_ver_get_input req = {0};
3724 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3725
3726 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3727 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3728 req.hwrm_intf_min = HWRM_VERSION_MINOR;
3729 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3730 mutex_lock(&bp->hwrm_cmd_lock);
3731 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3732 if (rc)
3733 goto hwrm_ver_get_exit;
3734
3735 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3736
3737 if (req.hwrm_intf_maj != resp->hwrm_intf_maj ||
3738 req.hwrm_intf_min != resp->hwrm_intf_min ||
3739 req.hwrm_intf_upd != resp->hwrm_intf_upd) {
3740 netdev_warn(bp->dev, "HWRM interface %d.%d.%d does not match driver interface %d.%d.%d.\n",
3741 resp->hwrm_intf_maj, resp->hwrm_intf_min,
3742 resp->hwrm_intf_upd, req.hwrm_intf_maj,
3743 req.hwrm_intf_min, req.hwrm_intf_upd);
3744 netdev_warn(bp->dev, "Please update driver or firmware with matching interface versions.\n");
3745 }
3746 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3747 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3748 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3749
3750 hwrm_ver_get_exit:
3751 mutex_unlock(&bp->hwrm_cmd_lock);
3752 return rc;
3753 }
3754
3755 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3756 {
3757 if (bp->vxlan_port_cnt) {
3758 bnxt_hwrm_tunnel_dst_port_free(
3759 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3760 }
3761 bp->vxlan_port_cnt = 0;
3762 if (bp->nge_port_cnt) {
3763 bnxt_hwrm_tunnel_dst_port_free(
3764 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3765 }
3766 bp->nge_port_cnt = 0;
3767 }
3768
3769 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3770 {
3771 int rc, i;
3772 u32 tpa_flags = 0;
3773
3774 if (set_tpa)
3775 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3776 for (i = 0; i < bp->nr_vnics; i++) {
3777 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3778 if (rc) {
3779 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3780 rc, i);
3781 return rc;
3782 }
3783 }
3784 return 0;
3785 }
3786
3787 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3788 {
3789 int i;
3790
3791 for (i = 0; i < bp->nr_vnics; i++)
3792 bnxt_hwrm_vnic_set_rss(bp, i, false);
3793 }
3794
3795 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3796 bool irq_re_init)
3797 {
3798 if (bp->vnic_info) {
3799 bnxt_hwrm_clear_vnic_filter(bp);
3800 /* clear all RSS setting before free vnic ctx */
3801 bnxt_hwrm_clear_vnic_rss(bp);
3802 bnxt_hwrm_vnic_ctx_free(bp);
3803 /* before free the vnic, undo the vnic tpa settings */
3804 if (bp->flags & BNXT_FLAG_TPA)
3805 bnxt_set_tpa(bp, false);
3806 bnxt_hwrm_vnic_free(bp);
3807 }
3808 bnxt_hwrm_ring_free(bp, close_path);
3809 bnxt_hwrm_ring_grp_free(bp);
3810 if (irq_re_init) {
3811 bnxt_hwrm_stat_ctx_free(bp);
3812 bnxt_hwrm_free_tunnel_ports(bp);
3813 }
3814 }
3815
3816 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3817 {
3818 int rc;
3819
3820 /* allocate context for vnic */
3821 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3822 if (rc) {
3823 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3824 vnic_id, rc);
3825 goto vnic_setup_err;
3826 }
3827 bp->rsscos_nr_ctxs++;
3828
3829 /* configure default vnic, ring grp */
3830 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3831 if (rc) {
3832 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3833 vnic_id, rc);
3834 goto vnic_setup_err;
3835 }
3836
3837 /* Enable RSS hashing on vnic */
3838 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3839 if (rc) {
3840 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3841 vnic_id, rc);
3842 goto vnic_setup_err;
3843 }
3844
3845 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3846 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3847 if (rc) {
3848 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3849 vnic_id, rc);
3850 }
3851 }
3852
3853 vnic_setup_err:
3854 return rc;
3855 }
3856
3857 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3858 {
3859 #ifdef CONFIG_RFS_ACCEL
3860 int i, rc = 0;
3861
3862 for (i = 0; i < bp->rx_nr_rings; i++) {
3863 u16 vnic_id = i + 1;
3864 u16 ring_id = i;
3865
3866 if (vnic_id >= bp->nr_vnics)
3867 break;
3868
3869 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3870 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, ring_id + 1);
3871 if (rc) {
3872 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3873 vnic_id, rc);
3874 break;
3875 }
3876 rc = bnxt_setup_vnic(bp, vnic_id);
3877 if (rc)
3878 break;
3879 }
3880 return rc;
3881 #else
3882 return 0;
3883 #endif
3884 }
3885
3886 static int bnxt_cfg_rx_mode(struct bnxt *);
3887
3888 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3889 {
3890 int rc = 0;
3891
3892 if (irq_re_init) {
3893 rc = bnxt_hwrm_stat_ctx_alloc(bp);
3894 if (rc) {
3895 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3896 rc);
3897 goto err_out;
3898 }
3899 }
3900
3901 rc = bnxt_hwrm_ring_alloc(bp);
3902 if (rc) {
3903 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3904 goto err_out;
3905 }
3906
3907 rc = bnxt_hwrm_ring_grp_alloc(bp);
3908 if (rc) {
3909 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3910 goto err_out;
3911 }
3912
3913 /* default vnic 0 */
3914 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3915 if (rc) {
3916 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3917 goto err_out;
3918 }
3919
3920 rc = bnxt_setup_vnic(bp, 0);
3921 if (rc)
3922 goto err_out;
3923
3924 if (bp->flags & BNXT_FLAG_RFS) {
3925 rc = bnxt_alloc_rfs_vnics(bp);
3926 if (rc)
3927 goto err_out;
3928 }
3929
3930 if (bp->flags & BNXT_FLAG_TPA) {
3931 rc = bnxt_set_tpa(bp, true);
3932 if (rc)
3933 goto err_out;
3934 }
3935
3936 if (BNXT_VF(bp))
3937 bnxt_update_vf_mac(bp);
3938
3939 /* Filter for default vnic 0 */
3940 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3941 if (rc) {
3942 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3943 goto err_out;
3944 }
3945 bp->vnic_info[0].uc_filter_count = 1;
3946
3947 bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_UNICAST |
3948 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3949
3950 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3951 bp->vnic_info[0].rx_mask |=
3952 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3953
3954 rc = bnxt_cfg_rx_mode(bp);
3955 if (rc)
3956 goto err_out;
3957
3958 rc = bnxt_hwrm_set_coal(bp);
3959 if (rc)
3960 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3961 rc);
3962
3963 return 0;
3964
3965 err_out:
3966 bnxt_hwrm_resource_free(bp, 0, true);
3967
3968 return rc;
3969 }
3970
3971 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3972 {
3973 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3974 return 0;
3975 }
3976
3977 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
3978 {
3979 bnxt_init_rx_rings(bp);
3980 bnxt_init_tx_rings(bp);
3981 bnxt_init_ring_grps(bp, irq_re_init);
3982 bnxt_init_vnics(bp);
3983
3984 return bnxt_init_chip(bp, irq_re_init);
3985 }
3986
3987 static void bnxt_disable_int(struct bnxt *bp)
3988 {
3989 int i;
3990
3991 if (!bp->bnapi)
3992 return;
3993
3994 for (i = 0; i < bp->cp_nr_rings; i++) {
3995 struct bnxt_napi *bnapi = bp->bnapi[i];
3996 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3997
3998 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3999 }
4000 }
4001
4002 static void bnxt_enable_int(struct bnxt *bp)
4003 {
4004 int i;
4005
4006 atomic_set(&bp->intr_sem, 0);
4007 for (i = 0; i < bp->cp_nr_rings; i++) {
4008 struct bnxt_napi *bnapi = bp->bnapi[i];
4009 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4010
4011 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4012 }
4013 }
4014
4015 static int bnxt_set_real_num_queues(struct bnxt *bp)
4016 {
4017 int rc;
4018 struct net_device *dev = bp->dev;
4019
4020 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4021 if (rc)
4022 return rc;
4023
4024 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4025 if (rc)
4026 return rc;
4027
4028 #ifdef CONFIG_RFS_ACCEL
4029 if (bp->rx_nr_rings)
4030 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4031 if (!dev->rx_cpu_rmap)
4032 rc = -ENOMEM;
4033 #endif
4034
4035 return rc;
4036 }
4037
4038 static int bnxt_setup_msix(struct bnxt *bp)
4039 {
4040 struct msix_entry *msix_ent;
4041 struct net_device *dev = bp->dev;
4042 int i, total_vecs, rc = 0;
4043 const int len = sizeof(bp->irq_tbl[0].name);
4044
4045 bp->flags &= ~BNXT_FLAG_USING_MSIX;
4046 total_vecs = bp->cp_nr_rings;
4047
4048 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4049 if (!msix_ent)
4050 return -ENOMEM;
4051
4052 for (i = 0; i < total_vecs; i++) {
4053 msix_ent[i].entry = i;
4054 msix_ent[i].vector = 0;
4055 }
4056
4057 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, 1, total_vecs);
4058 if (total_vecs < 0) {
4059 rc = -ENODEV;
4060 goto msix_setup_exit;
4061 }
4062
4063 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4064 if (bp->irq_tbl) {
4065 int tcs;
4066
4067 /* Trim rings based upon num of vectors allocated */
4068 bp->rx_nr_rings = min_t(int, total_vecs, bp->rx_nr_rings);
4069 bp->tx_nr_rings = min_t(int, total_vecs, bp->tx_nr_rings);
4070 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4071 tcs = netdev_get_num_tc(dev);
4072 if (tcs > 1) {
4073 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4074 if (bp->tx_nr_rings_per_tc == 0) {
4075 netdev_reset_tc(dev);
4076 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4077 } else {
4078 int i, off, count;
4079
4080 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4081 for (i = 0; i < tcs; i++) {
4082 count = bp->tx_nr_rings_per_tc;
4083 off = i * count;
4084 netdev_set_tc_queue(dev, i, count, off);
4085 }
4086 }
4087 }
4088 bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings);
4089
4090 for (i = 0; i < bp->cp_nr_rings; i++) {
4091 bp->irq_tbl[i].vector = msix_ent[i].vector;
4092 snprintf(bp->irq_tbl[i].name, len,
4093 "%s-%s-%d", dev->name, "TxRx", i);
4094 bp->irq_tbl[i].handler = bnxt_msix;
4095 }
4096 rc = bnxt_set_real_num_queues(bp);
4097 if (rc)
4098 goto msix_setup_exit;
4099 } else {
4100 rc = -ENOMEM;
4101 goto msix_setup_exit;
4102 }
4103 bp->flags |= BNXT_FLAG_USING_MSIX;
4104 kfree(msix_ent);
4105 return 0;
4106
4107 msix_setup_exit:
4108 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4109 pci_disable_msix(bp->pdev);
4110 kfree(msix_ent);
4111 return rc;
4112 }
4113
4114 static int bnxt_setup_inta(struct bnxt *bp)
4115 {
4116 int rc;
4117 const int len = sizeof(bp->irq_tbl[0].name);
4118
4119 if (netdev_get_num_tc(bp->dev))
4120 netdev_reset_tc(bp->dev);
4121
4122 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4123 if (!bp->irq_tbl) {
4124 rc = -ENOMEM;
4125 return rc;
4126 }
4127 bp->rx_nr_rings = 1;
4128 bp->tx_nr_rings = 1;
4129 bp->cp_nr_rings = 1;
4130 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4131 bp->irq_tbl[0].vector = bp->pdev->irq;
4132 snprintf(bp->irq_tbl[0].name, len,
4133 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4134 bp->irq_tbl[0].handler = bnxt_inta;
4135 rc = bnxt_set_real_num_queues(bp);
4136 return rc;
4137 }
4138
4139 static int bnxt_setup_int_mode(struct bnxt *bp)
4140 {
4141 int rc = 0;
4142
4143 if (bp->flags & BNXT_FLAG_MSIX_CAP)
4144 rc = bnxt_setup_msix(bp);
4145
4146 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4147 /* fallback to INTA */
4148 rc = bnxt_setup_inta(bp);
4149 }
4150 return rc;
4151 }
4152
4153 static void bnxt_free_irq(struct bnxt *bp)
4154 {
4155 struct bnxt_irq *irq;
4156 int i;
4157
4158 #ifdef CONFIG_RFS_ACCEL
4159 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4160 bp->dev->rx_cpu_rmap = NULL;
4161 #endif
4162 if (!bp->irq_tbl)
4163 return;
4164
4165 for (i = 0; i < bp->cp_nr_rings; i++) {
4166 irq = &bp->irq_tbl[i];
4167 if (irq->requested)
4168 free_irq(irq->vector, bp->bnapi[i]);
4169 irq->requested = 0;
4170 }
4171 if (bp->flags & BNXT_FLAG_USING_MSIX)
4172 pci_disable_msix(bp->pdev);
4173 kfree(bp->irq_tbl);
4174 bp->irq_tbl = NULL;
4175 }
4176
4177 static int bnxt_request_irq(struct bnxt *bp)
4178 {
4179 int i, rc = 0;
4180 unsigned long flags = 0;
4181 #ifdef CONFIG_RFS_ACCEL
4182 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4183 #endif
4184
4185 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4186 flags = IRQF_SHARED;
4187
4188 for (i = 0; i < bp->cp_nr_rings; i++) {
4189 struct bnxt_irq *irq = &bp->irq_tbl[i];
4190 #ifdef CONFIG_RFS_ACCEL
4191 if (rmap && (i < bp->rx_nr_rings)) {
4192 rc = irq_cpu_rmap_add(rmap, irq->vector);
4193 if (rc)
4194 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4195 i);
4196 }
4197 #endif
4198 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4199 bp->bnapi[i]);
4200 if (rc)
4201 break;
4202
4203 irq->requested = 1;
4204 }
4205 return rc;
4206 }
4207
4208 static void bnxt_del_napi(struct bnxt *bp)
4209 {
4210 int i;
4211
4212 if (!bp->bnapi)
4213 return;
4214
4215 for (i = 0; i < bp->cp_nr_rings; i++) {
4216 struct bnxt_napi *bnapi = bp->bnapi[i];
4217
4218 napi_hash_del(&bnapi->napi);
4219 netif_napi_del(&bnapi->napi);
4220 }
4221 }
4222
4223 static void bnxt_init_napi(struct bnxt *bp)
4224 {
4225 int i;
4226 struct bnxt_napi *bnapi;
4227
4228 if (bp->flags & BNXT_FLAG_USING_MSIX) {
4229 for (i = 0; i < bp->cp_nr_rings; i++) {
4230 bnapi = bp->bnapi[i];
4231 netif_napi_add(bp->dev, &bnapi->napi,
4232 bnxt_poll, 64);
4233 napi_hash_add(&bnapi->napi);
4234 }
4235 } else {
4236 bnapi = bp->bnapi[0];
4237 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4238 napi_hash_add(&bnapi->napi);
4239 }
4240 }
4241
4242 static void bnxt_disable_napi(struct bnxt *bp)
4243 {
4244 int i;
4245
4246 if (!bp->bnapi)
4247 return;
4248
4249 for (i = 0; i < bp->cp_nr_rings; i++) {
4250 napi_disable(&bp->bnapi[i]->napi);
4251 bnxt_disable_poll(bp->bnapi[i]);
4252 }
4253 }
4254
4255 static void bnxt_enable_napi(struct bnxt *bp)
4256 {
4257 int i;
4258
4259 for (i = 0; i < bp->cp_nr_rings; i++) {
4260 bnxt_enable_poll(bp->bnapi[i]);
4261 napi_enable(&bp->bnapi[i]->napi);
4262 }
4263 }
4264
4265 static void bnxt_tx_disable(struct bnxt *bp)
4266 {
4267 int i;
4268 struct bnxt_napi *bnapi;
4269 struct bnxt_tx_ring_info *txr;
4270 struct netdev_queue *txq;
4271
4272 if (bp->bnapi) {
4273 for (i = 0; i < bp->tx_nr_rings; i++) {
4274 bnapi = bp->bnapi[i];
4275 txr = &bnapi->tx_ring;
4276 txq = netdev_get_tx_queue(bp->dev, i);
4277 __netif_tx_lock(txq, smp_processor_id());
4278 txr->dev_state = BNXT_DEV_STATE_CLOSING;
4279 __netif_tx_unlock(txq);
4280 }
4281 }
4282 /* Stop all TX queues */
4283 netif_tx_disable(bp->dev);
4284 netif_carrier_off(bp->dev);
4285 }
4286
4287 static void bnxt_tx_enable(struct bnxt *bp)
4288 {
4289 int i;
4290 struct bnxt_napi *bnapi;
4291 struct bnxt_tx_ring_info *txr;
4292 struct netdev_queue *txq;
4293
4294 for (i = 0; i < bp->tx_nr_rings; i++) {
4295 bnapi = bp->bnapi[i];
4296 txr = &bnapi->tx_ring;
4297 txq = netdev_get_tx_queue(bp->dev, i);
4298 txr->dev_state = 0;
4299 }
4300 netif_tx_wake_all_queues(bp->dev);
4301 if (bp->link_info.link_up)
4302 netif_carrier_on(bp->dev);
4303 }
4304
4305 static void bnxt_report_link(struct bnxt *bp)
4306 {
4307 if (bp->link_info.link_up) {
4308 const char *duplex;
4309 const char *flow_ctrl;
4310 u16 speed;
4311
4312 netif_carrier_on(bp->dev);
4313 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4314 duplex = "full";
4315 else
4316 duplex = "half";
4317 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4318 flow_ctrl = "ON - receive & transmit";
4319 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4320 flow_ctrl = "ON - transmit";
4321 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4322 flow_ctrl = "ON - receive";
4323 else
4324 flow_ctrl = "none";
4325 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4326 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4327 speed, duplex, flow_ctrl);
4328 } else {
4329 netif_carrier_off(bp->dev);
4330 netdev_err(bp->dev, "NIC Link is Down\n");
4331 }
4332 }
4333
4334 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4335 {
4336 int rc = 0;
4337 struct bnxt_link_info *link_info = &bp->link_info;
4338 struct hwrm_port_phy_qcfg_input req = {0};
4339 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4340 u8 link_up = link_info->link_up;
4341
4342 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4343
4344 mutex_lock(&bp->hwrm_cmd_lock);
4345 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4346 if (rc) {
4347 mutex_unlock(&bp->hwrm_cmd_lock);
4348 return rc;
4349 }
4350
4351 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4352 link_info->phy_link_status = resp->link;
4353 link_info->duplex = resp->duplex;
4354 link_info->pause = resp->pause;
4355 link_info->auto_mode = resp->auto_mode;
4356 link_info->auto_pause_setting = resp->auto_pause;
4357 link_info->force_pause_setting = resp->force_pause;
4358 link_info->duplex_setting = resp->duplex_setting;
4359 if (link_info->phy_link_status == BNXT_LINK_LINK)
4360 link_info->link_speed = le16_to_cpu(resp->link_speed);
4361 else
4362 link_info->link_speed = 0;
4363 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4364 link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4365 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4366 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4367 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4368 link_info->phy_ver[0] = resp->phy_maj;
4369 link_info->phy_ver[1] = resp->phy_min;
4370 link_info->phy_ver[2] = resp->phy_bld;
4371 link_info->media_type = resp->media_type;
4372 link_info->transceiver = resp->transceiver_type;
4373 link_info->phy_addr = resp->phy_addr;
4374
4375 /* TODO: need to add more logic to report VF link */
4376 if (chng_link_state) {
4377 if (link_info->phy_link_status == BNXT_LINK_LINK)
4378 link_info->link_up = 1;
4379 else
4380 link_info->link_up = 0;
4381 if (link_up != link_info->link_up)
4382 bnxt_report_link(bp);
4383 } else {
4384 /* alwasy link down if not require to update link state */
4385 link_info->link_up = 0;
4386 }
4387 mutex_unlock(&bp->hwrm_cmd_lock);
4388 return 0;
4389 }
4390
4391 static void
4392 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4393 {
4394 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4395 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4396 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4397 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4398 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4399 req->enables |=
4400 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4401 } else {
4402 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4403 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4404 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4405 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4406 req->enables |=
4407 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4408 }
4409 }
4410
4411 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4412 struct hwrm_port_phy_cfg_input *req)
4413 {
4414 u8 autoneg = bp->link_info.autoneg;
4415 u16 fw_link_speed = bp->link_info.req_link_speed;
4416 u32 advertising = bp->link_info.advertising;
4417
4418 if (autoneg & BNXT_AUTONEG_SPEED) {
4419 req->auto_mode |=
4420 PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4421
4422 req->enables |= cpu_to_le32(
4423 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4424 req->auto_link_speed_mask = cpu_to_le16(advertising);
4425
4426 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4427 req->flags |=
4428 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4429 } else {
4430 req->force_link_speed = cpu_to_le16(fw_link_speed);
4431 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4432 }
4433
4434 /* currently don't support half duplex */
4435 req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4436 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4437 /* tell chimp that the setting takes effect immediately */
4438 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4439 }
4440
4441 int bnxt_hwrm_set_pause(struct bnxt *bp)
4442 {
4443 struct hwrm_port_phy_cfg_input req = {0};
4444 int rc;
4445
4446 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4447 bnxt_hwrm_set_pause_common(bp, &req);
4448
4449 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4450 bp->link_info.force_link_chng)
4451 bnxt_hwrm_set_link_common(bp, &req);
4452
4453 mutex_lock(&bp->hwrm_cmd_lock);
4454 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4455 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4456 /* since changing of pause setting doesn't trigger any link
4457 * change event, the driver needs to update the current pause
4458 * result upon successfully return of the phy_cfg command
4459 */
4460 bp->link_info.pause =
4461 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4462 bp->link_info.auto_pause_setting = 0;
4463 if (!bp->link_info.force_link_chng)
4464 bnxt_report_link(bp);
4465 }
4466 bp->link_info.force_link_chng = false;
4467 mutex_unlock(&bp->hwrm_cmd_lock);
4468 return rc;
4469 }
4470
4471 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4472 {
4473 struct hwrm_port_phy_cfg_input req = {0};
4474
4475 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4476 if (set_pause)
4477 bnxt_hwrm_set_pause_common(bp, &req);
4478
4479 bnxt_hwrm_set_link_common(bp, &req);
4480 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4481 }
4482
4483 static int bnxt_update_phy_setting(struct bnxt *bp)
4484 {
4485 int rc;
4486 bool update_link = false;
4487 bool update_pause = false;
4488 struct bnxt_link_info *link_info = &bp->link_info;
4489
4490 rc = bnxt_update_link(bp, true);
4491 if (rc) {
4492 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4493 rc);
4494 return rc;
4495 }
4496 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4497 link_info->auto_pause_setting != link_info->req_flow_ctrl)
4498 update_pause = true;
4499 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4500 link_info->force_pause_setting != link_info->req_flow_ctrl)
4501 update_pause = true;
4502 if (link_info->req_duplex != link_info->duplex_setting)
4503 update_link = true;
4504 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4505 if (BNXT_AUTO_MODE(link_info->auto_mode))
4506 update_link = true;
4507 if (link_info->req_link_speed != link_info->force_link_speed)
4508 update_link = true;
4509 } else {
4510 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4511 update_link = true;
4512 if (link_info->advertising != link_info->auto_link_speeds)
4513 update_link = true;
4514 if (link_info->req_link_speed != link_info->auto_link_speed)
4515 update_link = true;
4516 }
4517
4518 if (update_link)
4519 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4520 else if (update_pause)
4521 rc = bnxt_hwrm_set_pause(bp);
4522 if (rc) {
4523 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4524 rc);
4525 return rc;
4526 }
4527
4528 return rc;
4529 }
4530
4531 /* Common routine to pre-map certain register block to different GRC window.
4532 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4533 * in PF and 3 windows in VF that can be customized to map in different
4534 * register blocks.
4535 */
4536 static void bnxt_preset_reg_win(struct bnxt *bp)
4537 {
4538 if (BNXT_PF(bp)) {
4539 /* CAG registers map to GRC window #4 */
4540 writel(BNXT_CAG_REG_BASE,
4541 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4542 }
4543 }
4544
4545 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4546 {
4547 int rc = 0;
4548
4549 bnxt_preset_reg_win(bp);
4550 netif_carrier_off(bp->dev);
4551 if (irq_re_init) {
4552 rc = bnxt_setup_int_mode(bp);
4553 if (rc) {
4554 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4555 rc);
4556 return rc;
4557 }
4558 }
4559 if ((bp->flags & BNXT_FLAG_RFS) &&
4560 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4561 /* disable RFS if falling back to INTA */
4562 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4563 bp->flags &= ~BNXT_FLAG_RFS;
4564 }
4565
4566 rc = bnxt_alloc_mem(bp, irq_re_init);
4567 if (rc) {
4568 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4569 goto open_err_free_mem;
4570 }
4571
4572 if (irq_re_init) {
4573 bnxt_init_napi(bp);
4574 rc = bnxt_request_irq(bp);
4575 if (rc) {
4576 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4577 goto open_err;
4578 }
4579 }
4580
4581 bnxt_enable_napi(bp);
4582
4583 rc = bnxt_init_nic(bp, irq_re_init);
4584 if (rc) {
4585 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4586 goto open_err;
4587 }
4588
4589 if (link_re_init) {
4590 rc = bnxt_update_phy_setting(bp);
4591 if (rc)
4592 goto open_err;
4593 }
4594
4595 if (irq_re_init) {
4596 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4597 vxlan_get_rx_port(bp->dev);
4598 #endif
4599 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4600 bp, htons(0x17c1),
4601 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4602 bp->nge_port_cnt = 1;
4603 }
4604
4605 set_bit(BNXT_STATE_OPEN, &bp->state);
4606 bnxt_enable_int(bp);
4607 /* Enable TX queues */
4608 bnxt_tx_enable(bp);
4609 mod_timer(&bp->timer, jiffies + bp->current_interval);
4610
4611 return 0;
4612
4613 open_err:
4614 bnxt_disable_napi(bp);
4615 bnxt_del_napi(bp);
4616
4617 open_err_free_mem:
4618 bnxt_free_skbs(bp);
4619 bnxt_free_irq(bp);
4620 bnxt_free_mem(bp, true);
4621 return rc;
4622 }
4623
4624 /* rtnl_lock held */
4625 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4626 {
4627 int rc = 0;
4628
4629 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4630 if (rc) {
4631 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4632 dev_close(bp->dev);
4633 }
4634 return rc;
4635 }
4636
4637 static int bnxt_open(struct net_device *dev)
4638 {
4639 struct bnxt *bp = netdev_priv(dev);
4640 int rc = 0;
4641
4642 rc = bnxt_hwrm_func_reset(bp);
4643 if (rc) {
4644 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4645 rc);
4646 rc = -1;
4647 return rc;
4648 }
4649 return __bnxt_open_nic(bp, true, true);
4650 }
4651
4652 static void bnxt_disable_int_sync(struct bnxt *bp)
4653 {
4654 int i;
4655
4656 atomic_inc(&bp->intr_sem);
4657 if (!netif_running(bp->dev))
4658 return;
4659
4660 bnxt_disable_int(bp);
4661 for (i = 0; i < bp->cp_nr_rings; i++)
4662 synchronize_irq(bp->irq_tbl[i].vector);
4663 }
4664
4665 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4666 {
4667 int rc = 0;
4668
4669 #ifdef CONFIG_BNXT_SRIOV
4670 if (bp->sriov_cfg) {
4671 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4672 !bp->sriov_cfg,
4673 BNXT_SRIOV_CFG_WAIT_TMO);
4674 if (rc)
4675 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4676 }
4677 #endif
4678 /* Change device state to avoid TX queue wake up's */
4679 bnxt_tx_disable(bp);
4680
4681 clear_bit(BNXT_STATE_OPEN, &bp->state);
4682 smp_mb__after_atomic();
4683 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4684 msleep(20);
4685
4686 /* Flush rings before disabling interrupts */
4687 bnxt_shutdown_nic(bp, irq_re_init);
4688
4689 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4690
4691 bnxt_disable_napi(bp);
4692 bnxt_disable_int_sync(bp);
4693 del_timer_sync(&bp->timer);
4694 bnxt_free_skbs(bp);
4695
4696 if (irq_re_init) {
4697 bnxt_free_irq(bp);
4698 bnxt_del_napi(bp);
4699 }
4700 bnxt_free_mem(bp, irq_re_init);
4701 return rc;
4702 }
4703
4704 static int bnxt_close(struct net_device *dev)
4705 {
4706 struct bnxt *bp = netdev_priv(dev);
4707
4708 bnxt_close_nic(bp, true, true);
4709 return 0;
4710 }
4711
4712 /* rtnl_lock held */
4713 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4714 {
4715 switch (cmd) {
4716 case SIOCGMIIPHY:
4717 /* fallthru */
4718 case SIOCGMIIREG: {
4719 if (!netif_running(dev))
4720 return -EAGAIN;
4721
4722 return 0;
4723 }
4724
4725 case SIOCSMIIREG:
4726 if (!netif_running(dev))
4727 return -EAGAIN;
4728
4729 return 0;
4730
4731 default:
4732 /* do nothing */
4733 break;
4734 }
4735 return -EOPNOTSUPP;
4736 }
4737
4738 static struct rtnl_link_stats64 *
4739 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4740 {
4741 u32 i;
4742 struct bnxt *bp = netdev_priv(dev);
4743
4744 memset(stats, 0, sizeof(struct rtnl_link_stats64));
4745
4746 if (!bp->bnapi)
4747 return stats;
4748
4749 /* TODO check if we need to synchronize with bnxt_close path */
4750 for (i = 0; i < bp->cp_nr_rings; i++) {
4751 struct bnxt_napi *bnapi = bp->bnapi[i];
4752 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4753 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4754
4755 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4756 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4757 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4758
4759 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4760 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4761 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4762
4763 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4764 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4765 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4766
4767 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4768 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4769 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4770
4771 stats->rx_missed_errors +=
4772 le64_to_cpu(hw_stats->rx_discard_pkts);
4773
4774 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4775
4776 stats->rx_dropped += le64_to_cpu(hw_stats->rx_drop_pkts);
4777
4778 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4779 }
4780
4781 return stats;
4782 }
4783
4784 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4785 {
4786 struct net_device *dev = bp->dev;
4787 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4788 struct netdev_hw_addr *ha;
4789 u8 *haddr;
4790 int mc_count = 0;
4791 bool update = false;
4792 int off = 0;
4793
4794 netdev_for_each_mc_addr(ha, dev) {
4795 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4796 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4797 vnic->mc_list_count = 0;
4798 return false;
4799 }
4800 haddr = ha->addr;
4801 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4802 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4803 update = true;
4804 }
4805 off += ETH_ALEN;
4806 mc_count++;
4807 }
4808 if (mc_count)
4809 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4810
4811 if (mc_count != vnic->mc_list_count) {
4812 vnic->mc_list_count = mc_count;
4813 update = true;
4814 }
4815 return update;
4816 }
4817
4818 static bool bnxt_uc_list_updated(struct bnxt *bp)
4819 {
4820 struct net_device *dev = bp->dev;
4821 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4822 struct netdev_hw_addr *ha;
4823 int off = 0;
4824
4825 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4826 return true;
4827
4828 netdev_for_each_uc_addr(ha, dev) {
4829 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4830 return true;
4831
4832 off += ETH_ALEN;
4833 }
4834 return false;
4835 }
4836
4837 static void bnxt_set_rx_mode(struct net_device *dev)
4838 {
4839 struct bnxt *bp = netdev_priv(dev);
4840 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4841 u32 mask = vnic->rx_mask;
4842 bool mc_update = false;
4843 bool uc_update;
4844
4845 if (!netif_running(dev))
4846 return;
4847
4848 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4849 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4850 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4851
4852 /* Only allow PF to be in promiscuous mode */
4853 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4854 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4855
4856 uc_update = bnxt_uc_list_updated(bp);
4857
4858 if (dev->flags & IFF_ALLMULTI) {
4859 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4860 vnic->mc_list_count = 0;
4861 } else {
4862 mc_update = bnxt_mc_list_updated(bp, &mask);
4863 }
4864
4865 if (mask != vnic->rx_mask || uc_update || mc_update) {
4866 vnic->rx_mask = mask;
4867
4868 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4869 schedule_work(&bp->sp_task);
4870 }
4871 }
4872
4873 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4874 {
4875 struct net_device *dev = bp->dev;
4876 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4877 struct netdev_hw_addr *ha;
4878 int i, off = 0, rc;
4879 bool uc_update;
4880
4881 netif_addr_lock_bh(dev);
4882 uc_update = bnxt_uc_list_updated(bp);
4883 netif_addr_unlock_bh(dev);
4884
4885 if (!uc_update)
4886 goto skip_uc;
4887
4888 mutex_lock(&bp->hwrm_cmd_lock);
4889 for (i = 1; i < vnic->uc_filter_count; i++) {
4890 struct hwrm_cfa_l2_filter_free_input req = {0};
4891
4892 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4893 -1);
4894
4895 req.l2_filter_id = vnic->fw_l2_filter_id[i];
4896
4897 rc = _hwrm_send_message(bp, &req, sizeof(req),
4898 HWRM_CMD_TIMEOUT);
4899 }
4900 mutex_unlock(&bp->hwrm_cmd_lock);
4901
4902 vnic->uc_filter_count = 1;
4903
4904 netif_addr_lock_bh(dev);
4905 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4906 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4907 } else {
4908 netdev_for_each_uc_addr(ha, dev) {
4909 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4910 off += ETH_ALEN;
4911 vnic->uc_filter_count++;
4912 }
4913 }
4914 netif_addr_unlock_bh(dev);
4915
4916 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4917 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4918 if (rc) {
4919 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4920 rc);
4921 vnic->uc_filter_count = i;
4922 return rc;
4923 }
4924 }
4925
4926 skip_uc:
4927 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4928 if (rc)
4929 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4930 rc);
4931
4932 return rc;
4933 }
4934
4935 static netdev_features_t bnxt_fix_features(struct net_device *dev,
4936 netdev_features_t features)
4937 {
4938 return features;
4939 }
4940
4941 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
4942 {
4943 struct bnxt *bp = netdev_priv(dev);
4944 u32 flags = bp->flags;
4945 u32 changes;
4946 int rc = 0;
4947 bool re_init = false;
4948 bool update_tpa = false;
4949
4950 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
4951 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
4952 flags |= BNXT_FLAG_GRO;
4953 if (features & NETIF_F_LRO)
4954 flags |= BNXT_FLAG_LRO;
4955
4956 if (features & NETIF_F_HW_VLAN_CTAG_RX)
4957 flags |= BNXT_FLAG_STRIP_VLAN;
4958
4959 if (features & NETIF_F_NTUPLE)
4960 flags |= BNXT_FLAG_RFS;
4961
4962 changes = flags ^ bp->flags;
4963 if (changes & BNXT_FLAG_TPA) {
4964 update_tpa = true;
4965 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
4966 (flags & BNXT_FLAG_TPA) == 0)
4967 re_init = true;
4968 }
4969
4970 if (changes & ~BNXT_FLAG_TPA)
4971 re_init = true;
4972
4973 if (flags != bp->flags) {
4974 u32 old_flags = bp->flags;
4975
4976 bp->flags = flags;
4977
4978 if (!netif_running(dev)) {
4979 if (update_tpa)
4980 bnxt_set_ring_params(bp);
4981 return rc;
4982 }
4983
4984 if (re_init) {
4985 bnxt_close_nic(bp, false, false);
4986 if (update_tpa)
4987 bnxt_set_ring_params(bp);
4988
4989 return bnxt_open_nic(bp, false, false);
4990 }
4991 if (update_tpa) {
4992 rc = bnxt_set_tpa(bp,
4993 (flags & BNXT_FLAG_TPA) ?
4994 true : false);
4995 if (rc)
4996 bp->flags = old_flags;
4997 }
4998 }
4999 return rc;
5000 }
5001
5002 static void bnxt_dbg_dump_states(struct bnxt *bp)
5003 {
5004 int i;
5005 struct bnxt_napi *bnapi;
5006 struct bnxt_tx_ring_info *txr;
5007 struct bnxt_rx_ring_info *rxr;
5008 struct bnxt_cp_ring_info *cpr;
5009
5010 for (i = 0; i < bp->cp_nr_rings; i++) {
5011 bnapi = bp->bnapi[i];
5012 txr = &bnapi->tx_ring;
5013 rxr = &bnapi->rx_ring;
5014 cpr = &bnapi->cp_ring;
5015 if (netif_msg_drv(bp)) {
5016 netdev_info(bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5017 i, txr->tx_ring_struct.fw_ring_id,
5018 txr->tx_prod, txr->tx_cons);
5019 netdev_info(bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5020 i, rxr->rx_ring_struct.fw_ring_id,
5021 rxr->rx_prod,
5022 rxr->rx_agg_ring_struct.fw_ring_id,
5023 rxr->rx_agg_prod, rxr->rx_sw_agg_prod);
5024 netdev_info(bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5025 i, cpr->cp_ring_struct.fw_ring_id,
5026 cpr->cp_raw_cons);
5027 }
5028 }
5029 }
5030
5031 static void bnxt_reset_task(struct bnxt *bp)
5032 {
5033 bnxt_dbg_dump_states(bp);
5034 if (netif_running(bp->dev)) {
5035 bnxt_close_nic(bp, false, false);
5036 bnxt_open_nic(bp, false, false);
5037 }
5038 }
5039
5040 static void bnxt_tx_timeout(struct net_device *dev)
5041 {
5042 struct bnxt *bp = netdev_priv(dev);
5043
5044 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
5045 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5046 schedule_work(&bp->sp_task);
5047 }
5048
5049 #ifdef CONFIG_NET_POLL_CONTROLLER
5050 static void bnxt_poll_controller(struct net_device *dev)
5051 {
5052 struct bnxt *bp = netdev_priv(dev);
5053 int i;
5054
5055 for (i = 0; i < bp->cp_nr_rings; i++) {
5056 struct bnxt_irq *irq = &bp->irq_tbl[i];
5057
5058 disable_irq(irq->vector);
5059 irq->handler(irq->vector, bp->bnapi[i]);
5060 enable_irq(irq->vector);
5061 }
5062 }
5063 #endif
5064
5065 static void bnxt_timer(unsigned long data)
5066 {
5067 struct bnxt *bp = (struct bnxt *)data;
5068 struct net_device *dev = bp->dev;
5069
5070 if (!netif_running(dev))
5071 return;
5072
5073 if (atomic_read(&bp->intr_sem) != 0)
5074 goto bnxt_restart_timer;
5075
5076 bnxt_restart_timer:
5077 mod_timer(&bp->timer, jiffies + bp->current_interval);
5078 }
5079
5080 static void bnxt_cfg_ntp_filters(struct bnxt *);
5081
5082 static void bnxt_sp_task(struct work_struct *work)
5083 {
5084 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5085 int rc;
5086
5087 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5088 smp_mb__after_atomic();
5089 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5090 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5091 return;
5092 }
5093
5094 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5095 bnxt_cfg_rx_mode(bp);
5096
5097 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5098 bnxt_cfg_ntp_filters(bp);
5099 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5100 rc = bnxt_update_link(bp, true);
5101 if (rc)
5102 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5103 rc);
5104 }
5105 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5106 bnxt_hwrm_exec_fwd_req(bp);
5107 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5108 bnxt_hwrm_tunnel_dst_port_alloc(
5109 bp, bp->vxlan_port,
5110 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5111 }
5112 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5113 bnxt_hwrm_tunnel_dst_port_free(
5114 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5115 }
5116 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5117 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5118 * for BNXT_STATE_IN_SP_TASK to clear.
5119 */
5120 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5121 rtnl_lock();
5122 bnxt_reset_task(bp);
5123 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5124 rtnl_unlock();
5125 }
5126
5127 smp_mb__before_atomic();
5128 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5129 }
5130
5131 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5132 {
5133 int rc;
5134 struct bnxt *bp = netdev_priv(dev);
5135
5136 SET_NETDEV_DEV(dev, &pdev->dev);
5137
5138 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5139 rc = pci_enable_device(pdev);
5140 if (rc) {
5141 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5142 goto init_err;
5143 }
5144
5145 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5146 dev_err(&pdev->dev,
5147 "Cannot find PCI device base address, aborting\n");
5148 rc = -ENODEV;
5149 goto init_err_disable;
5150 }
5151
5152 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5153 if (rc) {
5154 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5155 goto init_err_disable;
5156 }
5157
5158 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5159 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5160 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5161 goto init_err_disable;
5162 }
5163
5164 pci_set_master(pdev);
5165
5166 bp->dev = dev;
5167 bp->pdev = pdev;
5168
5169 bp->bar0 = pci_ioremap_bar(pdev, 0);
5170 if (!bp->bar0) {
5171 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5172 rc = -ENOMEM;
5173 goto init_err_release;
5174 }
5175
5176 bp->bar1 = pci_ioremap_bar(pdev, 2);
5177 if (!bp->bar1) {
5178 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5179 rc = -ENOMEM;
5180 goto init_err_release;
5181 }
5182
5183 bp->bar2 = pci_ioremap_bar(pdev, 4);
5184 if (!bp->bar2) {
5185 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5186 rc = -ENOMEM;
5187 goto init_err_release;
5188 }
5189
5190 INIT_WORK(&bp->sp_task, bnxt_sp_task);
5191
5192 spin_lock_init(&bp->ntp_fltr_lock);
5193
5194 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5195 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5196
5197 bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5198 bp->coal_bufs = 20;
5199 bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5200 bp->coal_bufs_irq = 2;
5201
5202 init_timer(&bp->timer);
5203 bp->timer.data = (unsigned long)bp;
5204 bp->timer.function = bnxt_timer;
5205 bp->current_interval = BNXT_TIMER_INTERVAL;
5206
5207 clear_bit(BNXT_STATE_OPEN, &bp->state);
5208
5209 return 0;
5210
5211 init_err_release:
5212 if (bp->bar2) {
5213 pci_iounmap(pdev, bp->bar2);
5214 bp->bar2 = NULL;
5215 }
5216
5217 if (bp->bar1) {
5218 pci_iounmap(pdev, bp->bar1);
5219 bp->bar1 = NULL;
5220 }
5221
5222 if (bp->bar0) {
5223 pci_iounmap(pdev, bp->bar0);
5224 bp->bar0 = NULL;
5225 }
5226
5227 pci_release_regions(pdev);
5228
5229 init_err_disable:
5230 pci_disable_device(pdev);
5231
5232 init_err:
5233 return rc;
5234 }
5235
5236 /* rtnl_lock held */
5237 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5238 {
5239 struct sockaddr *addr = p;
5240 struct bnxt *bp = netdev_priv(dev);
5241 int rc = 0;
5242
5243 if (!is_valid_ether_addr(addr->sa_data))
5244 return -EADDRNOTAVAIL;
5245
5246 #ifdef CONFIG_BNXT_SRIOV
5247 if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5248 return -EADDRNOTAVAIL;
5249 #endif
5250
5251 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5252 return 0;
5253
5254 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5255 if (netif_running(dev)) {
5256 bnxt_close_nic(bp, false, false);
5257 rc = bnxt_open_nic(bp, false, false);
5258 }
5259
5260 return rc;
5261 }
5262
5263 /* rtnl_lock held */
5264 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5265 {
5266 struct bnxt *bp = netdev_priv(dev);
5267
5268 if (new_mtu < 60 || new_mtu > 9000)
5269 return -EINVAL;
5270
5271 if (netif_running(dev))
5272 bnxt_close_nic(bp, false, false);
5273
5274 dev->mtu = new_mtu;
5275 bnxt_set_ring_params(bp);
5276
5277 if (netif_running(dev))
5278 return bnxt_open_nic(bp, false, false);
5279
5280 return 0;
5281 }
5282
5283 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5284 {
5285 struct bnxt *bp = netdev_priv(dev);
5286
5287 if (tc > bp->max_tc) {
5288 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5289 tc, bp->max_tc);
5290 return -EINVAL;
5291 }
5292
5293 if (netdev_get_num_tc(dev) == tc)
5294 return 0;
5295
5296 if (tc) {
5297 int max_rx_rings, max_tx_rings;
5298
5299 bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings);
5300 if (bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5301 return -ENOMEM;
5302 }
5303
5304 /* Needs to close the device and do hw resource re-allocations */
5305 if (netif_running(bp->dev))
5306 bnxt_close_nic(bp, true, false);
5307
5308 if (tc) {
5309 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5310 netdev_set_num_tc(dev, tc);
5311 } else {
5312 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5313 netdev_reset_tc(dev);
5314 }
5315 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5316 bp->num_stat_ctxs = bp->cp_nr_rings;
5317
5318 if (netif_running(bp->dev))
5319 return bnxt_open_nic(bp, true, false);
5320
5321 return 0;
5322 }
5323
5324 #ifdef CONFIG_RFS_ACCEL
5325 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5326 struct bnxt_ntuple_filter *f2)
5327 {
5328 struct flow_keys *keys1 = &f1->fkeys;
5329 struct flow_keys *keys2 = &f2->fkeys;
5330
5331 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5332 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5333 keys1->ports.ports == keys2->ports.ports &&
5334 keys1->basic.ip_proto == keys2->basic.ip_proto &&
5335 keys1->basic.n_proto == keys2->basic.n_proto &&
5336 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5337 return true;
5338
5339 return false;
5340 }
5341
5342 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5343 u16 rxq_index, u32 flow_id)
5344 {
5345 struct bnxt *bp = netdev_priv(dev);
5346 struct bnxt_ntuple_filter *fltr, *new_fltr;
5347 struct flow_keys *fkeys;
5348 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5349 int rc = 0, idx, bit_id;
5350 struct hlist_head *head;
5351
5352 if (skb->encapsulation)
5353 return -EPROTONOSUPPORT;
5354
5355 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5356 if (!new_fltr)
5357 return -ENOMEM;
5358
5359 fkeys = &new_fltr->fkeys;
5360 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5361 rc = -EPROTONOSUPPORT;
5362 goto err_free;
5363 }
5364
5365 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5366 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5367 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5368 rc = -EPROTONOSUPPORT;
5369 goto err_free;
5370 }
5371
5372 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5373
5374 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5375 head = &bp->ntp_fltr_hash_tbl[idx];
5376 rcu_read_lock();
5377 hlist_for_each_entry_rcu(fltr, head, hash) {
5378 if (bnxt_fltr_match(fltr, new_fltr)) {
5379 rcu_read_unlock();
5380 rc = 0;
5381 goto err_free;
5382 }
5383 }
5384 rcu_read_unlock();
5385
5386 spin_lock_bh(&bp->ntp_fltr_lock);
5387 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5388 BNXT_NTP_FLTR_MAX_FLTR, 0);
5389 if (bit_id < 0) {
5390 spin_unlock_bh(&bp->ntp_fltr_lock);
5391 rc = -ENOMEM;
5392 goto err_free;
5393 }
5394
5395 new_fltr->sw_id = (u16)bit_id;
5396 new_fltr->flow_id = flow_id;
5397 new_fltr->rxq = rxq_index;
5398 hlist_add_head_rcu(&new_fltr->hash, head);
5399 bp->ntp_fltr_count++;
5400 spin_unlock_bh(&bp->ntp_fltr_lock);
5401
5402 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5403 schedule_work(&bp->sp_task);
5404
5405 return new_fltr->sw_id;
5406
5407 err_free:
5408 kfree(new_fltr);
5409 return rc;
5410 }
5411
5412 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5413 {
5414 int i;
5415
5416 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5417 struct hlist_head *head;
5418 struct hlist_node *tmp;
5419 struct bnxt_ntuple_filter *fltr;
5420 int rc;
5421
5422 head = &bp->ntp_fltr_hash_tbl[i];
5423 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5424 bool del = false;
5425
5426 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5427 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5428 fltr->flow_id,
5429 fltr->sw_id)) {
5430 bnxt_hwrm_cfa_ntuple_filter_free(bp,
5431 fltr);
5432 del = true;
5433 }
5434 } else {
5435 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5436 fltr);
5437 if (rc)
5438 del = true;
5439 else
5440 set_bit(BNXT_FLTR_VALID, &fltr->state);
5441 }
5442
5443 if (del) {
5444 spin_lock_bh(&bp->ntp_fltr_lock);
5445 hlist_del_rcu(&fltr->hash);
5446 bp->ntp_fltr_count--;
5447 spin_unlock_bh(&bp->ntp_fltr_lock);
5448 synchronize_rcu();
5449 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5450 kfree(fltr);
5451 }
5452 }
5453 }
5454 }
5455
5456 #else
5457
5458 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5459 {
5460 }
5461
5462 #endif /* CONFIG_RFS_ACCEL */
5463
5464 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5465 __be16 port)
5466 {
5467 struct bnxt *bp = netdev_priv(dev);
5468
5469 if (!netif_running(dev))
5470 return;
5471
5472 if (sa_family != AF_INET6 && sa_family != AF_INET)
5473 return;
5474
5475 if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5476 return;
5477
5478 bp->vxlan_port_cnt++;
5479 if (bp->vxlan_port_cnt == 1) {
5480 bp->vxlan_port = port;
5481 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5482 schedule_work(&bp->sp_task);
5483 }
5484 }
5485
5486 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5487 __be16 port)
5488 {
5489 struct bnxt *bp = netdev_priv(dev);
5490
5491 if (!netif_running(dev))
5492 return;
5493
5494 if (sa_family != AF_INET6 && sa_family != AF_INET)
5495 return;
5496
5497 if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5498 bp->vxlan_port_cnt--;
5499
5500 if (bp->vxlan_port_cnt == 0) {
5501 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5502 schedule_work(&bp->sp_task);
5503 }
5504 }
5505 }
5506
5507 static const struct net_device_ops bnxt_netdev_ops = {
5508 .ndo_open = bnxt_open,
5509 .ndo_start_xmit = bnxt_start_xmit,
5510 .ndo_stop = bnxt_close,
5511 .ndo_get_stats64 = bnxt_get_stats64,
5512 .ndo_set_rx_mode = bnxt_set_rx_mode,
5513 .ndo_do_ioctl = bnxt_ioctl,
5514 .ndo_validate_addr = eth_validate_addr,
5515 .ndo_set_mac_address = bnxt_change_mac_addr,
5516 .ndo_change_mtu = bnxt_change_mtu,
5517 .ndo_fix_features = bnxt_fix_features,
5518 .ndo_set_features = bnxt_set_features,
5519 .ndo_tx_timeout = bnxt_tx_timeout,
5520 #ifdef CONFIG_BNXT_SRIOV
5521 .ndo_get_vf_config = bnxt_get_vf_config,
5522 .ndo_set_vf_mac = bnxt_set_vf_mac,
5523 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
5524 .ndo_set_vf_rate = bnxt_set_vf_bw,
5525 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
5526 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
5527 #endif
5528 #ifdef CONFIG_NET_POLL_CONTROLLER
5529 .ndo_poll_controller = bnxt_poll_controller,
5530 #endif
5531 .ndo_setup_tc = bnxt_setup_tc,
5532 #ifdef CONFIG_RFS_ACCEL
5533 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
5534 #endif
5535 .ndo_add_vxlan_port = bnxt_add_vxlan_port,
5536 .ndo_del_vxlan_port = bnxt_del_vxlan_port,
5537 #ifdef CONFIG_NET_RX_BUSY_POLL
5538 .ndo_busy_poll = bnxt_busy_poll,
5539 #endif
5540 };
5541
5542 static void bnxt_remove_one(struct pci_dev *pdev)
5543 {
5544 struct net_device *dev = pci_get_drvdata(pdev);
5545 struct bnxt *bp = netdev_priv(dev);
5546
5547 if (BNXT_PF(bp))
5548 bnxt_sriov_disable(bp);
5549
5550 unregister_netdev(dev);
5551 cancel_work_sync(&bp->sp_task);
5552 bp->sp_event = 0;
5553
5554 bnxt_free_hwrm_resources(bp);
5555 pci_iounmap(pdev, bp->bar2);
5556 pci_iounmap(pdev, bp->bar1);
5557 pci_iounmap(pdev, bp->bar0);
5558 free_netdev(dev);
5559
5560 pci_release_regions(pdev);
5561 pci_disable_device(pdev);
5562 }
5563
5564 static int bnxt_probe_phy(struct bnxt *bp)
5565 {
5566 int rc = 0;
5567 struct bnxt_link_info *link_info = &bp->link_info;
5568 char phy_ver[PHY_VER_STR_LEN];
5569
5570 rc = bnxt_update_link(bp, false);
5571 if (rc) {
5572 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5573 rc);
5574 return rc;
5575 }
5576
5577 /*initialize the ethool setting copy with NVM settings */
5578 if (BNXT_AUTO_MODE(link_info->auto_mode))
5579 link_info->autoneg |= BNXT_AUTONEG_SPEED;
5580
5581 if (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5582 if (link_info->auto_pause_setting == BNXT_LINK_PAUSE_BOTH)
5583 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
5584 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5585 } else if (link_info->force_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5586 link_info->req_flow_ctrl = link_info->force_pause_setting;
5587 }
5588 link_info->req_duplex = link_info->duplex_setting;
5589 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5590 link_info->req_link_speed = link_info->auto_link_speed;
5591 else
5592 link_info->req_link_speed = link_info->force_link_speed;
5593 link_info->advertising = link_info->auto_link_speeds;
5594 snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5595 link_info->phy_ver[0],
5596 link_info->phy_ver[1],
5597 link_info->phy_ver[2]);
5598 strcat(bp->fw_ver_str, phy_ver);
5599 return rc;
5600 }
5601
5602 static int bnxt_get_max_irq(struct pci_dev *pdev)
5603 {
5604 u16 ctrl;
5605
5606 if (!pdev->msix_cap)
5607 return 1;
5608
5609 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5610 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5611 }
5612
5613 void bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx)
5614 {
5615 int max_rings = 0;
5616
5617 if (BNXT_PF(bp)) {
5618 *max_tx = bp->pf.max_pf_tx_rings;
5619 *max_rx = bp->pf.max_pf_rx_rings;
5620 max_rings = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5621 max_rings = min_t(int, max_rings, bp->pf.max_stat_ctxs);
5622 } else {
5623 #ifdef CONFIG_BNXT_SRIOV
5624 *max_tx = bp->vf.max_tx_rings;
5625 *max_rx = bp->vf.max_rx_rings;
5626 max_rings = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5627 max_rings = min_t(int, max_rings, bp->vf.max_stat_ctxs);
5628 #endif
5629 }
5630 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5631 *max_rx >>= 1;
5632
5633 *max_rx = min_t(int, *max_rx, max_rings);
5634 *max_tx = min_t(int, *max_tx, max_rings);
5635 }
5636
5637 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5638 {
5639 static int version_printed;
5640 struct net_device *dev;
5641 struct bnxt *bp;
5642 int rc, max_rx_rings, max_tx_rings, max_irqs, dflt_rings;
5643
5644 if (version_printed++ == 0)
5645 pr_info("%s", version);
5646
5647 max_irqs = bnxt_get_max_irq(pdev);
5648 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5649 if (!dev)
5650 return -ENOMEM;
5651
5652 bp = netdev_priv(dev);
5653
5654 if (bnxt_vf_pciid(ent->driver_data))
5655 bp->flags |= BNXT_FLAG_VF;
5656
5657 if (pdev->msix_cap) {
5658 bp->flags |= BNXT_FLAG_MSIX_CAP;
5659 if (BNXT_PF(bp))
5660 bp->flags |= BNXT_FLAG_RFS;
5661 }
5662
5663 rc = bnxt_init_board(pdev, dev);
5664 if (rc < 0)
5665 goto init_err_free;
5666
5667 dev->netdev_ops = &bnxt_netdev_ops;
5668 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5669 dev->ethtool_ops = &bnxt_ethtool_ops;
5670
5671 pci_set_drvdata(pdev, dev);
5672
5673 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5674 NETIF_F_TSO | NETIF_F_TSO6 |
5675 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5676 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5677 NETIF_F_RXHASH |
5678 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5679
5680 if (bp->flags & BNXT_FLAG_RFS)
5681 dev->hw_features |= NETIF_F_NTUPLE;
5682
5683 dev->hw_enc_features =
5684 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5685 NETIF_F_TSO | NETIF_F_TSO6 |
5686 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5687 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5688 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5689 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5690 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5691 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5692 dev->priv_flags |= IFF_UNICAST_FLT;
5693
5694 #ifdef CONFIG_BNXT_SRIOV
5695 init_waitqueue_head(&bp->sriov_cfg_wait);
5696 #endif
5697 rc = bnxt_alloc_hwrm_resources(bp);
5698 if (rc)
5699 goto init_err;
5700
5701 mutex_init(&bp->hwrm_cmd_lock);
5702 bnxt_hwrm_ver_get(bp);
5703
5704 rc = bnxt_hwrm_func_drv_rgtr(bp);
5705 if (rc)
5706 goto init_err;
5707
5708 /* Get the MAX capabilities for this function */
5709 rc = bnxt_hwrm_func_qcaps(bp);
5710 if (rc) {
5711 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5712 rc);
5713 rc = -1;
5714 goto init_err;
5715 }
5716
5717 rc = bnxt_hwrm_queue_qportcfg(bp);
5718 if (rc) {
5719 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5720 rc);
5721 rc = -1;
5722 goto init_err;
5723 }
5724
5725 bnxt_set_tpa_flags(bp);
5726 bnxt_set_ring_params(bp);
5727 dflt_rings = netif_get_num_default_rss_queues();
5728 if (BNXT_PF(bp))
5729 bp->pf.max_irqs = max_irqs;
5730 #if defined(CONFIG_BNXT_SRIOV)
5731 else
5732 bp->vf.max_irqs = max_irqs;
5733 #endif
5734 bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings);
5735 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5736 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5737 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5738 bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings);
5739 bp->num_stat_ctxs = bp->cp_nr_rings;
5740
5741 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5742 bp->flags |= BNXT_FLAG_STRIP_VLAN;
5743
5744 rc = bnxt_probe_phy(bp);
5745 if (rc)
5746 goto init_err;
5747
5748 rc = register_netdev(dev);
5749 if (rc)
5750 goto init_err;
5751
5752 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5753 board_info[ent->driver_data].name,
5754 (long)pci_resource_start(pdev, 0), dev->dev_addr);
5755
5756 return 0;
5757
5758 init_err:
5759 pci_iounmap(pdev, bp->bar0);
5760 pci_release_regions(pdev);
5761 pci_disable_device(pdev);
5762
5763 init_err_free:
5764 free_netdev(dev);
5765 return rc;
5766 }
5767
5768 static struct pci_driver bnxt_pci_driver = {
5769 .name = DRV_MODULE_NAME,
5770 .id_table = bnxt_pci_tbl,
5771 .probe = bnxt_init_one,
5772 .remove = bnxt_remove_one,
5773 #if defined(CONFIG_BNXT_SRIOV)
5774 .sriov_configure = bnxt_sriov_configure,
5775 #endif
5776 };
5777
5778 module_pci_driver(bnxt_pci_driver);