]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
ASoC: rsnd: Fix possible NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 * Copyright (c) 2016-2017 Broadcom Limited
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/rtc.h>
37 #include <linux/bpf.h>
38 #include <net/ip.h>
39 #include <net/tcp.h>
40 #include <net/udp.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <net/udp_tunnel.h>
44 #include <linux/workqueue.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/log2.h>
48 #include <linux/aer.h>
49 #include <linux/bitmap.h>
50 #include <linux/cpu_rmap.h>
51
52 #include "bnxt_hsi.h"
53 #include "bnxt.h"
54 #include "bnxt_ulp.h"
55 #include "bnxt_sriov.h"
56 #include "bnxt_ethtool.h"
57 #include "bnxt_dcb.h"
58 #include "bnxt_xdp.h"
59
60 #define BNXT_TX_TIMEOUT (5 * HZ)
61
62 static const char version[] =
63 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
64
65 MODULE_LICENSE("GPL");
66 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
67 MODULE_VERSION(DRV_MODULE_VERSION);
68
69 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
70 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
71 #define BNXT_RX_COPY_THRESH 256
72
73 #define BNXT_TX_PUSH_THRESH 164
74
75 enum board_idx {
76 BCM57301,
77 BCM57302,
78 BCM57304,
79 BCM57417_NPAR,
80 BCM58700,
81 BCM57311,
82 BCM57312,
83 BCM57402,
84 BCM57404,
85 BCM57406,
86 BCM57402_NPAR,
87 BCM57407,
88 BCM57412,
89 BCM57414,
90 BCM57416,
91 BCM57417,
92 BCM57412_NPAR,
93 BCM57314,
94 BCM57417_SFP,
95 BCM57416_SFP,
96 BCM57404_NPAR,
97 BCM57406_NPAR,
98 BCM57407_SFP,
99 BCM57407_NPAR,
100 BCM57414_NPAR,
101 BCM57416_NPAR,
102 BCM57452,
103 BCM57454,
104 NETXTREME_E_VF,
105 NETXTREME_C_VF,
106 };
107
108 /* indexed by enum above */
109 static const struct {
110 char *name;
111 } board_info[] = {
112 { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
113 { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
114 { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
115 { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
116 { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
117 { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
118 { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
119 { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
120 { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
121 { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
122 { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
123 { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
124 { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
125 { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
126 { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
127 { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
128 { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
129 { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
130 { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
131 { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
132 { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
133 { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
134 { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
135 { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
136 { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
137 { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
138 { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
139 { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
140 { "Broadcom NetXtreme-E Ethernet Virtual Function" },
141 { "Broadcom NetXtreme-C Ethernet Virtual Function" },
142 };
143
144 static const struct pci_device_id bnxt_pci_tbl[] = {
145 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
146 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
147 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
148 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
149 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
150 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
151 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
152 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
153 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
154 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
155 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
156 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
157 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
158 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
159 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
160 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
161 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
162 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
163 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
164 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
165 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
166 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
167 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
168 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
169 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
170 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
171 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
172 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
173 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
174 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
175 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
176 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
177 #ifdef CONFIG_BNXT_SRIOV
178 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
179 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
180 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
181 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
182 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
183 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
184 #endif
185 { 0 }
186 };
187
188 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
189
190 static const u16 bnxt_vf_req_snif[] = {
191 HWRM_FUNC_CFG,
192 HWRM_PORT_PHY_QCFG,
193 HWRM_CFA_L2_FILTER_ALLOC,
194 };
195
196 static const u16 bnxt_async_events_arr[] = {
197 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
198 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
199 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
200 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
201 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
202 };
203
204 static bool bnxt_vf_pciid(enum board_idx idx)
205 {
206 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
207 }
208
209 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
210 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
211 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
212
213 #define BNXT_CP_DB_REARM(db, raw_cons) \
214 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
215
216 #define BNXT_CP_DB(db, raw_cons) \
217 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
218
219 #define BNXT_CP_DB_IRQ_DIS(db) \
220 writel(DB_CP_IRQ_DIS_FLAGS, db)
221
222 const u16 bnxt_lhint_arr[] = {
223 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
224 TX_BD_FLAGS_LHINT_512_TO_1023,
225 TX_BD_FLAGS_LHINT_1024_TO_2047,
226 TX_BD_FLAGS_LHINT_1024_TO_2047,
227 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
228 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242 };
243
244 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
245 {
246 struct bnxt *bp = netdev_priv(dev);
247 struct tx_bd *txbd;
248 struct tx_bd_ext *txbd1;
249 struct netdev_queue *txq;
250 int i;
251 dma_addr_t mapping;
252 unsigned int length, pad = 0;
253 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
254 u16 prod, last_frag;
255 struct pci_dev *pdev = bp->pdev;
256 struct bnxt_tx_ring_info *txr;
257 struct bnxt_sw_tx_bd *tx_buf;
258
259 i = skb_get_queue_mapping(skb);
260 if (unlikely(i >= bp->tx_nr_rings)) {
261 dev_kfree_skb_any(skb);
262 return NETDEV_TX_OK;
263 }
264
265 txq = netdev_get_tx_queue(dev, i);
266 txr = &bp->tx_ring[bp->tx_ring_map[i]];
267 prod = txr->tx_prod;
268
269 free_size = bnxt_tx_avail(bp, txr);
270 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
271 netif_tx_stop_queue(txq);
272 return NETDEV_TX_BUSY;
273 }
274
275 length = skb->len;
276 len = skb_headlen(skb);
277 last_frag = skb_shinfo(skb)->nr_frags;
278
279 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
280
281 txbd->tx_bd_opaque = prod;
282
283 tx_buf = &txr->tx_buf_ring[prod];
284 tx_buf->skb = skb;
285 tx_buf->nr_frags = last_frag;
286
287 vlan_tag_flags = 0;
288 cfa_action = 0;
289 if (skb_vlan_tag_present(skb)) {
290 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
291 skb_vlan_tag_get(skb);
292 /* Currently supports 8021Q, 8021AD vlan offloads
293 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
294 */
295 if (skb->vlan_proto == htons(ETH_P_8021Q))
296 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
297 }
298
299 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
300 struct tx_push_buffer *tx_push_buf = txr->tx_push;
301 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
302 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
303 void *pdata = tx_push_buf->data;
304 u64 *end;
305 int j, push_len;
306
307 /* Set COAL_NOW to be ready quickly for the next push */
308 tx_push->tx_bd_len_flags_type =
309 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
310 TX_BD_TYPE_LONG_TX_BD |
311 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
312 TX_BD_FLAGS_COAL_NOW |
313 TX_BD_FLAGS_PACKET_END |
314 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
315
316 if (skb->ip_summed == CHECKSUM_PARTIAL)
317 tx_push1->tx_bd_hsize_lflags =
318 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
319 else
320 tx_push1->tx_bd_hsize_lflags = 0;
321
322 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
323 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
324
325 end = pdata + length;
326 end = PTR_ALIGN(end, 8) - 1;
327 *end = 0;
328
329 skb_copy_from_linear_data(skb, pdata, len);
330 pdata += len;
331 for (j = 0; j < last_frag; j++) {
332 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
333 void *fptr;
334
335 fptr = skb_frag_address_safe(frag);
336 if (!fptr)
337 goto normal_tx;
338
339 memcpy(pdata, fptr, skb_frag_size(frag));
340 pdata += skb_frag_size(frag);
341 }
342
343 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
344 txbd->tx_bd_haddr = txr->data_mapping;
345 prod = NEXT_TX(prod);
346 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
347 memcpy(txbd, tx_push1, sizeof(*txbd));
348 prod = NEXT_TX(prod);
349 tx_push->doorbell =
350 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
351 txr->tx_prod = prod;
352
353 tx_buf->is_push = 1;
354 netdev_tx_sent_queue(txq, skb->len);
355 wmb(); /* Sync is_push and byte queue before pushing data */
356
357 push_len = (length + sizeof(*tx_push) + 7) / 8;
358 if (push_len > 16) {
359 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
360 __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
361 (push_len - 16) << 1);
362 } else {
363 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
364 push_len);
365 }
366
367 goto tx_done;
368 }
369
370 normal_tx:
371 if (length < BNXT_MIN_PKT_SIZE) {
372 pad = BNXT_MIN_PKT_SIZE - length;
373 if (skb_pad(skb, pad)) {
374 /* SKB already freed. */
375 tx_buf->skb = NULL;
376 return NETDEV_TX_OK;
377 }
378 length = BNXT_MIN_PKT_SIZE;
379 }
380
381 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
382
383 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
384 dev_kfree_skb_any(skb);
385 tx_buf->skb = NULL;
386 return NETDEV_TX_OK;
387 }
388
389 dma_unmap_addr_set(tx_buf, mapping, mapping);
390 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
391 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
392
393 txbd->tx_bd_haddr = cpu_to_le64(mapping);
394
395 prod = NEXT_TX(prod);
396 txbd1 = (struct tx_bd_ext *)
397 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
398
399 txbd1->tx_bd_hsize_lflags = 0;
400 if (skb_is_gso(skb)) {
401 u32 hdr_len;
402
403 if (skb->encapsulation)
404 hdr_len = skb_inner_network_offset(skb) +
405 skb_inner_network_header_len(skb) +
406 inner_tcp_hdrlen(skb);
407 else
408 hdr_len = skb_transport_offset(skb) +
409 tcp_hdrlen(skb);
410
411 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
412 TX_BD_FLAGS_T_IPID |
413 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
414 length = skb_shinfo(skb)->gso_size;
415 txbd1->tx_bd_mss = cpu_to_le32(length);
416 length += hdr_len;
417 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
418 txbd1->tx_bd_hsize_lflags =
419 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
420 txbd1->tx_bd_mss = 0;
421 }
422
423 length >>= 9;
424 flags |= bnxt_lhint_arr[length];
425 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
426
427 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
428 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
429 for (i = 0; i < last_frag; i++) {
430 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
431
432 prod = NEXT_TX(prod);
433 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
434
435 len = skb_frag_size(frag);
436 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
437 DMA_TO_DEVICE);
438
439 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
440 goto tx_dma_error;
441
442 tx_buf = &txr->tx_buf_ring[prod];
443 dma_unmap_addr_set(tx_buf, mapping, mapping);
444
445 txbd->tx_bd_haddr = cpu_to_le64(mapping);
446
447 flags = len << TX_BD_LEN_SHIFT;
448 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
449 }
450
451 flags &= ~TX_BD_LEN;
452 txbd->tx_bd_len_flags_type =
453 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
454 TX_BD_FLAGS_PACKET_END);
455
456 netdev_tx_sent_queue(txq, skb->len);
457
458 /* Sync BD data before updating doorbell */
459 wmb();
460
461 prod = NEXT_TX(prod);
462 txr->tx_prod = prod;
463
464 writel(DB_KEY_TX | prod, txr->tx_doorbell);
465 writel(DB_KEY_TX | prod, txr->tx_doorbell);
466
467 tx_done:
468
469 mmiowb();
470
471 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
472 netif_tx_stop_queue(txq);
473
474 /* netif_tx_stop_queue() must be done before checking
475 * tx index in bnxt_tx_avail() below, because in
476 * bnxt_tx_int(), we update tx index before checking for
477 * netif_tx_queue_stopped().
478 */
479 smp_mb();
480 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
481 netif_tx_wake_queue(txq);
482 }
483 return NETDEV_TX_OK;
484
485 tx_dma_error:
486 last_frag = i;
487
488 /* start back at beginning and unmap skb */
489 prod = txr->tx_prod;
490 tx_buf = &txr->tx_buf_ring[prod];
491 tx_buf->skb = NULL;
492 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
493 skb_headlen(skb), PCI_DMA_TODEVICE);
494 prod = NEXT_TX(prod);
495
496 /* unmap remaining mapped pages */
497 for (i = 0; i < last_frag; i++) {
498 prod = NEXT_TX(prod);
499 tx_buf = &txr->tx_buf_ring[prod];
500 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
501 skb_frag_size(&skb_shinfo(skb)->frags[i]),
502 PCI_DMA_TODEVICE);
503 }
504
505 dev_kfree_skb_any(skb);
506 return NETDEV_TX_OK;
507 }
508
509 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
510 {
511 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
512 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
513 u16 cons = txr->tx_cons;
514 struct pci_dev *pdev = bp->pdev;
515 int i;
516 unsigned int tx_bytes = 0;
517
518 for (i = 0; i < nr_pkts; i++) {
519 struct bnxt_sw_tx_bd *tx_buf;
520 struct sk_buff *skb;
521 int j, last;
522
523 tx_buf = &txr->tx_buf_ring[cons];
524 cons = NEXT_TX(cons);
525 skb = tx_buf->skb;
526 tx_buf->skb = NULL;
527
528 if (tx_buf->is_push) {
529 tx_buf->is_push = 0;
530 goto next_tx_int;
531 }
532
533 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
534 skb_headlen(skb), PCI_DMA_TODEVICE);
535 last = tx_buf->nr_frags;
536
537 for (j = 0; j < last; j++) {
538 cons = NEXT_TX(cons);
539 tx_buf = &txr->tx_buf_ring[cons];
540 dma_unmap_page(
541 &pdev->dev,
542 dma_unmap_addr(tx_buf, mapping),
543 skb_frag_size(&skb_shinfo(skb)->frags[j]),
544 PCI_DMA_TODEVICE);
545 }
546
547 next_tx_int:
548 cons = NEXT_TX(cons);
549
550 tx_bytes += skb->len;
551 dev_kfree_skb_any(skb);
552 }
553
554 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
555 txr->tx_cons = cons;
556
557 /* Need to make the tx_cons update visible to bnxt_start_xmit()
558 * before checking for netif_tx_queue_stopped(). Without the
559 * memory barrier, there is a small possibility that bnxt_start_xmit()
560 * will miss it and cause the queue to be stopped forever.
561 */
562 smp_mb();
563
564 if (unlikely(netif_tx_queue_stopped(txq)) &&
565 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
566 __netif_tx_lock(txq, smp_processor_id());
567 if (netif_tx_queue_stopped(txq) &&
568 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
569 txr->dev_state != BNXT_DEV_STATE_CLOSING)
570 netif_tx_wake_queue(txq);
571 __netif_tx_unlock(txq);
572 }
573 }
574
575 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
576 gfp_t gfp)
577 {
578 struct device *dev = &bp->pdev->dev;
579 struct page *page;
580
581 page = alloc_page(gfp);
582 if (!page)
583 return NULL;
584
585 *mapping = dma_map_page(dev, page, 0, PAGE_SIZE, bp->rx_dir);
586 if (dma_mapping_error(dev, *mapping)) {
587 __free_page(page);
588 return NULL;
589 }
590 *mapping += bp->rx_dma_offset;
591 return page;
592 }
593
594 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
595 gfp_t gfp)
596 {
597 u8 *data;
598 struct pci_dev *pdev = bp->pdev;
599
600 data = kmalloc(bp->rx_buf_size, gfp);
601 if (!data)
602 return NULL;
603
604 *mapping = dma_map_single(&pdev->dev, data + bp->rx_dma_offset,
605 bp->rx_buf_use_size, bp->rx_dir);
606
607 if (dma_mapping_error(&pdev->dev, *mapping)) {
608 kfree(data);
609 data = NULL;
610 }
611 return data;
612 }
613
614 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
615 u16 prod, gfp_t gfp)
616 {
617 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
618 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
619 dma_addr_t mapping;
620
621 if (BNXT_RX_PAGE_MODE(bp)) {
622 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
623
624 if (!page)
625 return -ENOMEM;
626
627 rx_buf->data = page;
628 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
629 } else {
630 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
631
632 if (!data)
633 return -ENOMEM;
634
635 rx_buf->data = data;
636 rx_buf->data_ptr = data + bp->rx_offset;
637 }
638 rx_buf->mapping = mapping;
639
640 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
641 return 0;
642 }
643
644 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
645 {
646 u16 prod = rxr->rx_prod;
647 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
648 struct rx_bd *cons_bd, *prod_bd;
649
650 prod_rx_buf = &rxr->rx_buf_ring[prod];
651 cons_rx_buf = &rxr->rx_buf_ring[cons];
652
653 prod_rx_buf->data = data;
654 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
655
656 prod_rx_buf->mapping = cons_rx_buf->mapping;
657
658 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
659 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
660
661 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
662 }
663
664 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
665 {
666 u16 next, max = rxr->rx_agg_bmap_size;
667
668 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
669 if (next >= max)
670 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
671 return next;
672 }
673
674 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
675 struct bnxt_rx_ring_info *rxr,
676 u16 prod, gfp_t gfp)
677 {
678 struct rx_bd *rxbd =
679 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
680 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
681 struct pci_dev *pdev = bp->pdev;
682 struct page *page;
683 dma_addr_t mapping;
684 u16 sw_prod = rxr->rx_sw_agg_prod;
685 unsigned int offset = 0;
686
687 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
688 page = rxr->rx_page;
689 if (!page) {
690 page = alloc_page(gfp);
691 if (!page)
692 return -ENOMEM;
693 rxr->rx_page = page;
694 rxr->rx_page_offset = 0;
695 }
696 offset = rxr->rx_page_offset;
697 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
698 if (rxr->rx_page_offset == PAGE_SIZE)
699 rxr->rx_page = NULL;
700 else
701 get_page(page);
702 } else {
703 page = alloc_page(gfp);
704 if (!page)
705 return -ENOMEM;
706 }
707
708 mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
709 PCI_DMA_FROMDEVICE);
710 if (dma_mapping_error(&pdev->dev, mapping)) {
711 __free_page(page);
712 return -EIO;
713 }
714
715 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
716 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
717
718 __set_bit(sw_prod, rxr->rx_agg_bmap);
719 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
720 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
721
722 rx_agg_buf->page = page;
723 rx_agg_buf->offset = offset;
724 rx_agg_buf->mapping = mapping;
725 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
726 rxbd->rx_bd_opaque = sw_prod;
727 return 0;
728 }
729
730 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
731 u32 agg_bufs)
732 {
733 struct bnxt *bp = bnapi->bp;
734 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
735 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
736 u16 prod = rxr->rx_agg_prod;
737 u16 sw_prod = rxr->rx_sw_agg_prod;
738 u32 i;
739
740 for (i = 0; i < agg_bufs; i++) {
741 u16 cons;
742 struct rx_agg_cmp *agg;
743 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
744 struct rx_bd *prod_bd;
745 struct page *page;
746
747 agg = (struct rx_agg_cmp *)
748 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
749 cons = agg->rx_agg_cmp_opaque;
750 __clear_bit(cons, rxr->rx_agg_bmap);
751
752 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
753 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
754
755 __set_bit(sw_prod, rxr->rx_agg_bmap);
756 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
757 cons_rx_buf = &rxr->rx_agg_ring[cons];
758
759 /* It is possible for sw_prod to be equal to cons, so
760 * set cons_rx_buf->page to NULL first.
761 */
762 page = cons_rx_buf->page;
763 cons_rx_buf->page = NULL;
764 prod_rx_buf->page = page;
765 prod_rx_buf->offset = cons_rx_buf->offset;
766
767 prod_rx_buf->mapping = cons_rx_buf->mapping;
768
769 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
770
771 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
772 prod_bd->rx_bd_opaque = sw_prod;
773
774 prod = NEXT_RX_AGG(prod);
775 sw_prod = NEXT_RX_AGG(sw_prod);
776 cp_cons = NEXT_CMP(cp_cons);
777 }
778 rxr->rx_agg_prod = prod;
779 rxr->rx_sw_agg_prod = sw_prod;
780 }
781
782 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
783 struct bnxt_rx_ring_info *rxr,
784 u16 cons, void *data, u8 *data_ptr,
785 dma_addr_t dma_addr,
786 unsigned int offset_and_len)
787 {
788 unsigned int payload = offset_and_len >> 16;
789 unsigned int len = offset_and_len & 0xffff;
790 struct skb_frag_struct *frag;
791 struct page *page = data;
792 u16 prod = rxr->rx_prod;
793 struct sk_buff *skb;
794 int off, err;
795
796 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
797 if (unlikely(err)) {
798 bnxt_reuse_rx_data(rxr, cons, data);
799 return NULL;
800 }
801 dma_addr -= bp->rx_dma_offset;
802 dma_unmap_page(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir);
803
804 if (unlikely(!payload))
805 payload = eth_get_headlen(data_ptr, len);
806
807 skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
808 if (!skb) {
809 __free_page(page);
810 return NULL;
811 }
812
813 off = (void *)data_ptr - page_address(page);
814 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
815 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
816 payload + NET_IP_ALIGN);
817
818 frag = &skb_shinfo(skb)->frags[0];
819 skb_frag_size_sub(frag, payload);
820 frag->page_offset += payload;
821 skb->data_len -= payload;
822 skb->tail += payload;
823
824 return skb;
825 }
826
827 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
828 struct bnxt_rx_ring_info *rxr, u16 cons,
829 void *data, u8 *data_ptr,
830 dma_addr_t dma_addr,
831 unsigned int offset_and_len)
832 {
833 u16 prod = rxr->rx_prod;
834 struct sk_buff *skb;
835 int err;
836
837 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
838 if (unlikely(err)) {
839 bnxt_reuse_rx_data(rxr, cons, data);
840 return NULL;
841 }
842
843 skb = build_skb(data, 0);
844 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
845 bp->rx_dir);
846 if (!skb) {
847 kfree(data);
848 return NULL;
849 }
850
851 skb_reserve(skb, bp->rx_offset);
852 skb_put(skb, offset_and_len & 0xffff);
853 return skb;
854 }
855
856 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
857 struct sk_buff *skb, u16 cp_cons,
858 u32 agg_bufs)
859 {
860 struct pci_dev *pdev = bp->pdev;
861 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
862 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
863 u16 prod = rxr->rx_agg_prod;
864 u32 i;
865
866 for (i = 0; i < agg_bufs; i++) {
867 u16 cons, frag_len;
868 struct rx_agg_cmp *agg;
869 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
870 struct page *page;
871 dma_addr_t mapping;
872
873 agg = (struct rx_agg_cmp *)
874 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
875 cons = agg->rx_agg_cmp_opaque;
876 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
877 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
878
879 cons_rx_buf = &rxr->rx_agg_ring[cons];
880 skb_fill_page_desc(skb, i, cons_rx_buf->page,
881 cons_rx_buf->offset, frag_len);
882 __clear_bit(cons, rxr->rx_agg_bmap);
883
884 /* It is possible for bnxt_alloc_rx_page() to allocate
885 * a sw_prod index that equals the cons index, so we
886 * need to clear the cons entry now.
887 */
888 mapping = cons_rx_buf->mapping;
889 page = cons_rx_buf->page;
890 cons_rx_buf->page = NULL;
891
892 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
893 struct skb_shared_info *shinfo;
894 unsigned int nr_frags;
895
896 shinfo = skb_shinfo(skb);
897 nr_frags = --shinfo->nr_frags;
898 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
899
900 dev_kfree_skb(skb);
901
902 cons_rx_buf->page = page;
903
904 /* Update prod since possibly some pages have been
905 * allocated already.
906 */
907 rxr->rx_agg_prod = prod;
908 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
909 return NULL;
910 }
911
912 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
913 PCI_DMA_FROMDEVICE);
914
915 skb->data_len += frag_len;
916 skb->len += frag_len;
917 skb->truesize += PAGE_SIZE;
918
919 prod = NEXT_RX_AGG(prod);
920 cp_cons = NEXT_CMP(cp_cons);
921 }
922 rxr->rx_agg_prod = prod;
923 return skb;
924 }
925
926 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
927 u8 agg_bufs, u32 *raw_cons)
928 {
929 u16 last;
930 struct rx_agg_cmp *agg;
931
932 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
933 last = RING_CMP(*raw_cons);
934 agg = (struct rx_agg_cmp *)
935 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
936 return RX_AGG_CMP_VALID(agg, *raw_cons);
937 }
938
939 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
940 unsigned int len,
941 dma_addr_t mapping)
942 {
943 struct bnxt *bp = bnapi->bp;
944 struct pci_dev *pdev = bp->pdev;
945 struct sk_buff *skb;
946
947 skb = napi_alloc_skb(&bnapi->napi, len);
948 if (!skb)
949 return NULL;
950
951 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
952 bp->rx_dir);
953
954 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
955 len + NET_IP_ALIGN);
956
957 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
958 bp->rx_dir);
959
960 skb_put(skb, len);
961 return skb;
962 }
963
964 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
965 u32 *raw_cons, void *cmp)
966 {
967 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
968 struct rx_cmp *rxcmp = cmp;
969 u32 tmp_raw_cons = *raw_cons;
970 u8 cmp_type, agg_bufs = 0;
971
972 cmp_type = RX_CMP_TYPE(rxcmp);
973
974 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
975 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
976 RX_CMP_AGG_BUFS) >>
977 RX_CMP_AGG_BUFS_SHIFT;
978 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
979 struct rx_tpa_end_cmp *tpa_end = cmp;
980
981 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
982 RX_TPA_END_CMP_AGG_BUFS) >>
983 RX_TPA_END_CMP_AGG_BUFS_SHIFT;
984 }
985
986 if (agg_bufs) {
987 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
988 return -EBUSY;
989 }
990 *raw_cons = tmp_raw_cons;
991 return 0;
992 }
993
994 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
995 {
996 if (!rxr->bnapi->in_reset) {
997 rxr->bnapi->in_reset = true;
998 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
999 schedule_work(&bp->sp_task);
1000 }
1001 rxr->rx_next_cons = 0xffff;
1002 }
1003
1004 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1005 struct rx_tpa_start_cmp *tpa_start,
1006 struct rx_tpa_start_cmp_ext *tpa_start1)
1007 {
1008 u8 agg_id = TPA_START_AGG_ID(tpa_start);
1009 u16 cons, prod;
1010 struct bnxt_tpa_info *tpa_info;
1011 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1012 struct rx_bd *prod_bd;
1013 dma_addr_t mapping;
1014
1015 cons = tpa_start->rx_tpa_start_cmp_opaque;
1016 prod = rxr->rx_prod;
1017 cons_rx_buf = &rxr->rx_buf_ring[cons];
1018 prod_rx_buf = &rxr->rx_buf_ring[prod];
1019 tpa_info = &rxr->rx_tpa[agg_id];
1020
1021 if (unlikely(cons != rxr->rx_next_cons)) {
1022 bnxt_sched_reset(bp, rxr);
1023 return;
1024 }
1025
1026 prod_rx_buf->data = tpa_info->data;
1027 prod_rx_buf->data_ptr = tpa_info->data_ptr;
1028
1029 mapping = tpa_info->mapping;
1030 prod_rx_buf->mapping = mapping;
1031
1032 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1033
1034 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1035
1036 tpa_info->data = cons_rx_buf->data;
1037 tpa_info->data_ptr = cons_rx_buf->data_ptr;
1038 cons_rx_buf->data = NULL;
1039 tpa_info->mapping = cons_rx_buf->mapping;
1040
1041 tpa_info->len =
1042 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1043 RX_TPA_START_CMP_LEN_SHIFT;
1044 if (likely(TPA_START_HASH_VALID(tpa_start))) {
1045 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1046
1047 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1048 tpa_info->gso_type = SKB_GSO_TCPV4;
1049 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1050 if (hash_type == 3)
1051 tpa_info->gso_type = SKB_GSO_TCPV6;
1052 tpa_info->rss_hash =
1053 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1054 } else {
1055 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1056 tpa_info->gso_type = 0;
1057 if (netif_msg_rx_err(bp))
1058 netdev_warn(bp->dev, "TPA packet without valid hash\n");
1059 }
1060 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1061 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1062 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1063
1064 rxr->rx_prod = NEXT_RX(prod);
1065 cons = NEXT_RX(cons);
1066 rxr->rx_next_cons = NEXT_RX(cons);
1067 cons_rx_buf = &rxr->rx_buf_ring[cons];
1068
1069 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1070 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1071 cons_rx_buf->data = NULL;
1072 }
1073
1074 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1075 u16 cp_cons, u32 agg_bufs)
1076 {
1077 if (agg_bufs)
1078 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1079 }
1080
1081 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1082 int payload_off, int tcp_ts,
1083 struct sk_buff *skb)
1084 {
1085 #ifdef CONFIG_INET
1086 struct tcphdr *th;
1087 int len, nw_off;
1088 u16 outer_ip_off, inner_ip_off, inner_mac_off;
1089 u32 hdr_info = tpa_info->hdr_info;
1090 bool loopback = false;
1091
1092 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1093 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1094 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1095
1096 /* If the packet is an internal loopback packet, the offsets will
1097 * have an extra 4 bytes.
1098 */
1099 if (inner_mac_off == 4) {
1100 loopback = true;
1101 } else if (inner_mac_off > 4) {
1102 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1103 ETH_HLEN - 2));
1104
1105 /* We only support inner iPv4/ipv6. If we don't see the
1106 * correct protocol ID, it must be a loopback packet where
1107 * the offsets are off by 4.
1108 */
1109 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1110 loopback = true;
1111 }
1112 if (loopback) {
1113 /* internal loopback packet, subtract all offsets by 4 */
1114 inner_ip_off -= 4;
1115 inner_mac_off -= 4;
1116 outer_ip_off -= 4;
1117 }
1118
1119 nw_off = inner_ip_off - ETH_HLEN;
1120 skb_set_network_header(skb, nw_off);
1121 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1122 struct ipv6hdr *iph = ipv6_hdr(skb);
1123
1124 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1125 len = skb->len - skb_transport_offset(skb);
1126 th = tcp_hdr(skb);
1127 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1128 } else {
1129 struct iphdr *iph = ip_hdr(skb);
1130
1131 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1132 len = skb->len - skb_transport_offset(skb);
1133 th = tcp_hdr(skb);
1134 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1135 }
1136
1137 if (inner_mac_off) { /* tunnel */
1138 struct udphdr *uh = NULL;
1139 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1140 ETH_HLEN - 2));
1141
1142 if (proto == htons(ETH_P_IP)) {
1143 struct iphdr *iph = (struct iphdr *)skb->data;
1144
1145 if (iph->protocol == IPPROTO_UDP)
1146 uh = (struct udphdr *)(iph + 1);
1147 } else {
1148 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1149
1150 if (iph->nexthdr == IPPROTO_UDP)
1151 uh = (struct udphdr *)(iph + 1);
1152 }
1153 if (uh) {
1154 if (uh->check)
1155 skb_shinfo(skb)->gso_type |=
1156 SKB_GSO_UDP_TUNNEL_CSUM;
1157 else
1158 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1159 }
1160 }
1161 #endif
1162 return skb;
1163 }
1164
1165 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
1166 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1167
1168 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1169 int payload_off, int tcp_ts,
1170 struct sk_buff *skb)
1171 {
1172 #ifdef CONFIG_INET
1173 struct tcphdr *th;
1174 int len, nw_off, tcp_opt_len = 0;
1175
1176 if (tcp_ts)
1177 tcp_opt_len = 12;
1178
1179 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1180 struct iphdr *iph;
1181
1182 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1183 ETH_HLEN;
1184 skb_set_network_header(skb, nw_off);
1185 iph = ip_hdr(skb);
1186 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1187 len = skb->len - skb_transport_offset(skb);
1188 th = tcp_hdr(skb);
1189 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1190 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1191 struct ipv6hdr *iph;
1192
1193 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1194 ETH_HLEN;
1195 skb_set_network_header(skb, nw_off);
1196 iph = ipv6_hdr(skb);
1197 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1198 len = skb->len - skb_transport_offset(skb);
1199 th = tcp_hdr(skb);
1200 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1201 } else {
1202 dev_kfree_skb_any(skb);
1203 return NULL;
1204 }
1205
1206 if (nw_off) { /* tunnel */
1207 struct udphdr *uh = NULL;
1208
1209 if (skb->protocol == htons(ETH_P_IP)) {
1210 struct iphdr *iph = (struct iphdr *)skb->data;
1211
1212 if (iph->protocol == IPPROTO_UDP)
1213 uh = (struct udphdr *)(iph + 1);
1214 } else {
1215 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1216
1217 if (iph->nexthdr == IPPROTO_UDP)
1218 uh = (struct udphdr *)(iph + 1);
1219 }
1220 if (uh) {
1221 if (uh->check)
1222 skb_shinfo(skb)->gso_type |=
1223 SKB_GSO_UDP_TUNNEL_CSUM;
1224 else
1225 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1226 }
1227 }
1228 #endif
1229 return skb;
1230 }
1231
1232 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1233 struct bnxt_tpa_info *tpa_info,
1234 struct rx_tpa_end_cmp *tpa_end,
1235 struct rx_tpa_end_cmp_ext *tpa_end1,
1236 struct sk_buff *skb)
1237 {
1238 #ifdef CONFIG_INET
1239 int payload_off;
1240 u16 segs;
1241
1242 segs = TPA_END_TPA_SEGS(tpa_end);
1243 if (segs == 1)
1244 return skb;
1245
1246 NAPI_GRO_CB(skb)->count = segs;
1247 skb_shinfo(skb)->gso_size =
1248 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1249 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1250 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1251 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1252 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1253 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1254 if (likely(skb))
1255 tcp_gro_complete(skb);
1256 #endif
1257 return skb;
1258 }
1259
1260 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1261 struct bnxt_napi *bnapi,
1262 u32 *raw_cons,
1263 struct rx_tpa_end_cmp *tpa_end,
1264 struct rx_tpa_end_cmp_ext *tpa_end1,
1265 u8 *event)
1266 {
1267 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1268 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1269 u8 agg_id = TPA_END_AGG_ID(tpa_end);
1270 u8 *data_ptr, agg_bufs;
1271 u16 cp_cons = RING_CMP(*raw_cons);
1272 unsigned int len;
1273 struct bnxt_tpa_info *tpa_info;
1274 dma_addr_t mapping;
1275 struct sk_buff *skb;
1276 void *data;
1277
1278 if (unlikely(bnapi->in_reset)) {
1279 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1280
1281 if (rc < 0)
1282 return ERR_PTR(-EBUSY);
1283 return NULL;
1284 }
1285
1286 tpa_info = &rxr->rx_tpa[agg_id];
1287 data = tpa_info->data;
1288 data_ptr = tpa_info->data_ptr;
1289 prefetch(data_ptr);
1290 len = tpa_info->len;
1291 mapping = tpa_info->mapping;
1292
1293 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1294 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1295
1296 if (agg_bufs) {
1297 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1298 return ERR_PTR(-EBUSY);
1299
1300 *event |= BNXT_AGG_EVENT;
1301 cp_cons = NEXT_CMP(cp_cons);
1302 }
1303
1304 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1305 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1306 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1307 agg_bufs, (int)MAX_SKB_FRAGS);
1308 return NULL;
1309 }
1310
1311 if (len <= bp->rx_copy_thresh) {
1312 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1313 if (!skb) {
1314 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1315 return NULL;
1316 }
1317 } else {
1318 u8 *new_data;
1319 dma_addr_t new_mapping;
1320
1321 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1322 if (!new_data) {
1323 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1324 return NULL;
1325 }
1326
1327 tpa_info->data = new_data;
1328 tpa_info->data_ptr = new_data + bp->rx_offset;
1329 tpa_info->mapping = new_mapping;
1330
1331 skb = build_skb(data, 0);
1332 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1333 bp->rx_dir);
1334
1335 if (!skb) {
1336 kfree(data);
1337 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1338 return NULL;
1339 }
1340 skb_reserve(skb, bp->rx_offset);
1341 skb_put(skb, len);
1342 }
1343
1344 if (agg_bufs) {
1345 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1346 if (!skb) {
1347 /* Page reuse already handled by bnxt_rx_pages(). */
1348 return NULL;
1349 }
1350 }
1351 skb->protocol = eth_type_trans(skb, bp->dev);
1352
1353 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1354 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1355
1356 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1357 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1358 u16 vlan_proto = tpa_info->metadata >>
1359 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1360 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1361
1362 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1363 }
1364
1365 skb_checksum_none_assert(skb);
1366 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1367 skb->ip_summed = CHECKSUM_UNNECESSARY;
1368 skb->csum_level =
1369 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1370 }
1371
1372 if (TPA_END_GRO(tpa_end))
1373 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1374
1375 return skb;
1376 }
1377
1378 /* returns the following:
1379 * 1 - 1 packet successfully received
1380 * 0 - successful TPA_START, packet not completed yet
1381 * -EBUSY - completion ring does not have all the agg buffers yet
1382 * -ENOMEM - packet aborted due to out of memory
1383 * -EIO - packet aborted due to hw error indicated in BD
1384 */
1385 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1386 u8 *event)
1387 {
1388 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1389 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1390 struct net_device *dev = bp->dev;
1391 struct rx_cmp *rxcmp;
1392 struct rx_cmp_ext *rxcmp1;
1393 u32 tmp_raw_cons = *raw_cons;
1394 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1395 struct bnxt_sw_rx_bd *rx_buf;
1396 unsigned int len;
1397 u8 *data_ptr, agg_bufs, cmp_type;
1398 dma_addr_t dma_addr;
1399 struct sk_buff *skb;
1400 void *data;
1401 int rc = 0;
1402 u32 misc;
1403
1404 rxcmp = (struct rx_cmp *)
1405 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1406
1407 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1408 cp_cons = RING_CMP(tmp_raw_cons);
1409 rxcmp1 = (struct rx_cmp_ext *)
1410 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1411
1412 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1413 return -EBUSY;
1414
1415 cmp_type = RX_CMP_TYPE(rxcmp);
1416
1417 prod = rxr->rx_prod;
1418
1419 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1420 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1421 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1422
1423 *event |= BNXT_RX_EVENT;
1424 goto next_rx_no_prod;
1425
1426 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1427 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1428 (struct rx_tpa_end_cmp *)rxcmp,
1429 (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1430
1431 if (unlikely(IS_ERR(skb)))
1432 return -EBUSY;
1433
1434 rc = -ENOMEM;
1435 if (likely(skb)) {
1436 skb_record_rx_queue(skb, bnapi->index);
1437 napi_gro_receive(&bnapi->napi, skb);
1438 rc = 1;
1439 }
1440 *event |= BNXT_RX_EVENT;
1441 goto next_rx_no_prod;
1442 }
1443
1444 cons = rxcmp->rx_cmp_opaque;
1445 rx_buf = &rxr->rx_buf_ring[cons];
1446 data = rx_buf->data;
1447 data_ptr = rx_buf->data_ptr;
1448 if (unlikely(cons != rxr->rx_next_cons)) {
1449 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1450
1451 bnxt_sched_reset(bp, rxr);
1452 return rc1;
1453 }
1454 prefetch(data_ptr);
1455
1456 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1457 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1458
1459 if (agg_bufs) {
1460 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1461 return -EBUSY;
1462
1463 cp_cons = NEXT_CMP(cp_cons);
1464 *event |= BNXT_AGG_EVENT;
1465 }
1466 *event |= BNXT_RX_EVENT;
1467
1468 rx_buf->data = NULL;
1469 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1470 bnxt_reuse_rx_data(rxr, cons, data);
1471 if (agg_bufs)
1472 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1473
1474 rc = -EIO;
1475 goto next_rx;
1476 }
1477
1478 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1479 dma_addr = rx_buf->mapping;
1480
1481 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1482 rc = 1;
1483 goto next_rx;
1484 }
1485
1486 if (len <= bp->rx_copy_thresh) {
1487 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1488 bnxt_reuse_rx_data(rxr, cons, data);
1489 if (!skb) {
1490 rc = -ENOMEM;
1491 goto next_rx;
1492 }
1493 } else {
1494 u32 payload;
1495
1496 if (rx_buf->data_ptr == data_ptr)
1497 payload = misc & RX_CMP_PAYLOAD_OFFSET;
1498 else
1499 payload = 0;
1500 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1501 payload | len);
1502 if (!skb) {
1503 rc = -ENOMEM;
1504 goto next_rx;
1505 }
1506 }
1507
1508 if (agg_bufs) {
1509 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1510 if (!skb) {
1511 rc = -ENOMEM;
1512 goto next_rx;
1513 }
1514 }
1515
1516 if (RX_CMP_HASH_VALID(rxcmp)) {
1517 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1518 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1519
1520 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1521 if (hash_type != 1 && hash_type != 3)
1522 type = PKT_HASH_TYPE_L3;
1523 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1524 }
1525
1526 skb->protocol = eth_type_trans(skb, dev);
1527
1528 if ((rxcmp1->rx_cmp_flags2 &
1529 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1530 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1531 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1532 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1533 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1534
1535 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1536 }
1537
1538 skb_checksum_none_assert(skb);
1539 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1540 if (dev->features & NETIF_F_RXCSUM) {
1541 skb->ip_summed = CHECKSUM_UNNECESSARY;
1542 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1543 }
1544 } else {
1545 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1546 if (dev->features & NETIF_F_RXCSUM)
1547 cpr->rx_l4_csum_errors++;
1548 }
1549 }
1550
1551 skb_record_rx_queue(skb, bnapi->index);
1552 napi_gro_receive(&bnapi->napi, skb);
1553 rc = 1;
1554
1555 next_rx:
1556 rxr->rx_prod = NEXT_RX(prod);
1557 rxr->rx_next_cons = NEXT_RX(cons);
1558
1559 next_rx_no_prod:
1560 *raw_cons = tmp_raw_cons;
1561
1562 return rc;
1563 }
1564
1565 #define BNXT_GET_EVENT_PORT(data) \
1566 ((data) & \
1567 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1568
1569 static int bnxt_async_event_process(struct bnxt *bp,
1570 struct hwrm_async_event_cmpl *cmpl)
1571 {
1572 u16 event_id = le16_to_cpu(cmpl->event_id);
1573
1574 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1575 switch (event_id) {
1576 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1577 u32 data1 = le32_to_cpu(cmpl->event_data1);
1578 struct bnxt_link_info *link_info = &bp->link_info;
1579
1580 if (BNXT_VF(bp))
1581 goto async_event_process_exit;
1582 if (data1 & 0x20000) {
1583 u16 fw_speed = link_info->force_link_speed;
1584 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1585
1586 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1587 speed);
1588 }
1589 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1590 /* fall thru */
1591 }
1592 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1593 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1594 break;
1595 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1596 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1597 break;
1598 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1599 u32 data1 = le32_to_cpu(cmpl->event_data1);
1600 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1601
1602 if (BNXT_VF(bp))
1603 break;
1604
1605 if (bp->pf.port_id != port_id)
1606 break;
1607
1608 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1609 break;
1610 }
1611 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1612 if (BNXT_PF(bp))
1613 goto async_event_process_exit;
1614 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1615 break;
1616 default:
1617 goto async_event_process_exit;
1618 }
1619 schedule_work(&bp->sp_task);
1620 async_event_process_exit:
1621 bnxt_ulp_async_events(bp, cmpl);
1622 return 0;
1623 }
1624
1625 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1626 {
1627 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1628 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1629 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1630 (struct hwrm_fwd_req_cmpl *)txcmp;
1631
1632 switch (cmpl_type) {
1633 case CMPL_BASE_TYPE_HWRM_DONE:
1634 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1635 if (seq_id == bp->hwrm_intr_seq_id)
1636 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1637 else
1638 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1639 break;
1640
1641 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1642 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1643
1644 if ((vf_id < bp->pf.first_vf_id) ||
1645 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1646 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1647 vf_id);
1648 return -EINVAL;
1649 }
1650
1651 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1652 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1653 schedule_work(&bp->sp_task);
1654 break;
1655
1656 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1657 bnxt_async_event_process(bp,
1658 (struct hwrm_async_event_cmpl *)txcmp);
1659
1660 default:
1661 break;
1662 }
1663
1664 return 0;
1665 }
1666
1667 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1668 {
1669 struct bnxt_napi *bnapi = dev_instance;
1670 struct bnxt *bp = bnapi->bp;
1671 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1672 u32 cons = RING_CMP(cpr->cp_raw_cons);
1673
1674 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1675 napi_schedule(&bnapi->napi);
1676 return IRQ_HANDLED;
1677 }
1678
1679 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1680 {
1681 u32 raw_cons = cpr->cp_raw_cons;
1682 u16 cons = RING_CMP(raw_cons);
1683 struct tx_cmp *txcmp;
1684
1685 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1686
1687 return TX_CMP_VALID(txcmp, raw_cons);
1688 }
1689
1690 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1691 {
1692 struct bnxt_napi *bnapi = dev_instance;
1693 struct bnxt *bp = bnapi->bp;
1694 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1695 u32 cons = RING_CMP(cpr->cp_raw_cons);
1696 u32 int_status;
1697
1698 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1699
1700 if (!bnxt_has_work(bp, cpr)) {
1701 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1702 /* return if erroneous interrupt */
1703 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1704 return IRQ_NONE;
1705 }
1706
1707 /* disable ring IRQ */
1708 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1709
1710 /* Return here if interrupt is shared and is disabled. */
1711 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1712 return IRQ_HANDLED;
1713
1714 napi_schedule(&bnapi->napi);
1715 return IRQ_HANDLED;
1716 }
1717
1718 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1719 {
1720 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1721 u32 raw_cons = cpr->cp_raw_cons;
1722 u32 cons;
1723 int tx_pkts = 0;
1724 int rx_pkts = 0;
1725 u8 event = 0;
1726 struct tx_cmp *txcmp;
1727
1728 while (1) {
1729 int rc;
1730
1731 cons = RING_CMP(raw_cons);
1732 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1733
1734 if (!TX_CMP_VALID(txcmp, raw_cons))
1735 break;
1736
1737 /* The valid test of the entry must be done first before
1738 * reading any further.
1739 */
1740 dma_rmb();
1741 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1742 tx_pkts++;
1743 /* return full budget so NAPI will complete. */
1744 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1745 rx_pkts = budget;
1746 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1747 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1748 if (likely(rc >= 0))
1749 rx_pkts += rc;
1750 else if (rc == -EBUSY) /* partial completion */
1751 break;
1752 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1753 CMPL_BASE_TYPE_HWRM_DONE) ||
1754 (TX_CMP_TYPE(txcmp) ==
1755 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1756 (TX_CMP_TYPE(txcmp) ==
1757 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1758 bnxt_hwrm_handler(bp, txcmp);
1759 }
1760 raw_cons = NEXT_RAW_CMP(raw_cons);
1761
1762 if (rx_pkts == budget)
1763 break;
1764 }
1765
1766 if (event & BNXT_TX_EVENT) {
1767 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1768 void __iomem *db = txr->tx_doorbell;
1769 u16 prod = txr->tx_prod;
1770
1771 /* Sync BD data before updating doorbell */
1772 wmb();
1773
1774 writel(DB_KEY_TX | prod, db);
1775 writel(DB_KEY_TX | prod, db);
1776 }
1777
1778 cpr->cp_raw_cons = raw_cons;
1779 /* ACK completion ring before freeing tx ring and producing new
1780 * buffers in rx/agg rings to prevent overflowing the completion
1781 * ring.
1782 */
1783 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1784
1785 if (tx_pkts)
1786 bnapi->tx_int(bp, bnapi, tx_pkts);
1787
1788 if (event & BNXT_RX_EVENT) {
1789 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1790
1791 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1792 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1793 if (event & BNXT_AGG_EVENT) {
1794 writel(DB_KEY_RX | rxr->rx_agg_prod,
1795 rxr->rx_agg_doorbell);
1796 writel(DB_KEY_RX | rxr->rx_agg_prod,
1797 rxr->rx_agg_doorbell);
1798 }
1799 }
1800 return rx_pkts;
1801 }
1802
1803 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1804 {
1805 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1806 struct bnxt *bp = bnapi->bp;
1807 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1808 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1809 struct tx_cmp *txcmp;
1810 struct rx_cmp_ext *rxcmp1;
1811 u32 cp_cons, tmp_raw_cons;
1812 u32 raw_cons = cpr->cp_raw_cons;
1813 u32 rx_pkts = 0;
1814 u8 event = 0;
1815
1816 while (1) {
1817 int rc;
1818
1819 cp_cons = RING_CMP(raw_cons);
1820 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1821
1822 if (!TX_CMP_VALID(txcmp, raw_cons))
1823 break;
1824
1825 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1826 tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1827 cp_cons = RING_CMP(tmp_raw_cons);
1828 rxcmp1 = (struct rx_cmp_ext *)
1829 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1830
1831 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1832 break;
1833
1834 /* force an error to recycle the buffer */
1835 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1836 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1837
1838 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1839 if (likely(rc == -EIO))
1840 rx_pkts++;
1841 else if (rc == -EBUSY) /* partial completion */
1842 break;
1843 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1844 CMPL_BASE_TYPE_HWRM_DONE)) {
1845 bnxt_hwrm_handler(bp, txcmp);
1846 } else {
1847 netdev_err(bp->dev,
1848 "Invalid completion received on special ring\n");
1849 }
1850 raw_cons = NEXT_RAW_CMP(raw_cons);
1851
1852 if (rx_pkts == budget)
1853 break;
1854 }
1855
1856 cpr->cp_raw_cons = raw_cons;
1857 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1858 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1859 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1860
1861 if (event & BNXT_AGG_EVENT) {
1862 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1863 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1864 }
1865
1866 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1867 napi_complete_done(napi, rx_pkts);
1868 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1869 }
1870 return rx_pkts;
1871 }
1872
1873 static int bnxt_poll(struct napi_struct *napi, int budget)
1874 {
1875 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1876 struct bnxt *bp = bnapi->bp;
1877 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1878 int work_done = 0;
1879
1880 while (1) {
1881 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1882
1883 if (work_done >= budget)
1884 break;
1885
1886 if (!bnxt_has_work(bp, cpr)) {
1887 if (napi_complete_done(napi, work_done))
1888 BNXT_CP_DB_REARM(cpr->cp_doorbell,
1889 cpr->cp_raw_cons);
1890 break;
1891 }
1892 }
1893 mmiowb();
1894 return work_done;
1895 }
1896
1897 static void bnxt_free_tx_skbs(struct bnxt *bp)
1898 {
1899 int i, max_idx;
1900 struct pci_dev *pdev = bp->pdev;
1901
1902 if (!bp->tx_ring)
1903 return;
1904
1905 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1906 for (i = 0; i < bp->tx_nr_rings; i++) {
1907 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1908 int j;
1909
1910 for (j = 0; j < max_idx;) {
1911 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1912 struct sk_buff *skb = tx_buf->skb;
1913 int k, last;
1914
1915 if (!skb) {
1916 j++;
1917 continue;
1918 }
1919
1920 tx_buf->skb = NULL;
1921
1922 if (tx_buf->is_push) {
1923 dev_kfree_skb(skb);
1924 j += 2;
1925 continue;
1926 }
1927
1928 dma_unmap_single(&pdev->dev,
1929 dma_unmap_addr(tx_buf, mapping),
1930 skb_headlen(skb),
1931 PCI_DMA_TODEVICE);
1932
1933 last = tx_buf->nr_frags;
1934 j += 2;
1935 for (k = 0; k < last; k++, j++) {
1936 int ring_idx = j & bp->tx_ring_mask;
1937 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1938
1939 tx_buf = &txr->tx_buf_ring[ring_idx];
1940 dma_unmap_page(
1941 &pdev->dev,
1942 dma_unmap_addr(tx_buf, mapping),
1943 skb_frag_size(frag), PCI_DMA_TODEVICE);
1944 }
1945 dev_kfree_skb(skb);
1946 }
1947 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1948 }
1949 }
1950
1951 static void bnxt_free_rx_skbs(struct bnxt *bp)
1952 {
1953 int i, max_idx, max_agg_idx;
1954 struct pci_dev *pdev = bp->pdev;
1955
1956 if (!bp->rx_ring)
1957 return;
1958
1959 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1960 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1961 for (i = 0; i < bp->rx_nr_rings; i++) {
1962 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1963 int j;
1964
1965 if (rxr->rx_tpa) {
1966 for (j = 0; j < MAX_TPA; j++) {
1967 struct bnxt_tpa_info *tpa_info =
1968 &rxr->rx_tpa[j];
1969 u8 *data = tpa_info->data;
1970
1971 if (!data)
1972 continue;
1973
1974 dma_unmap_single(&pdev->dev, tpa_info->mapping,
1975 bp->rx_buf_use_size,
1976 bp->rx_dir);
1977
1978 tpa_info->data = NULL;
1979
1980 kfree(data);
1981 }
1982 }
1983
1984 for (j = 0; j < max_idx; j++) {
1985 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1986 void *data = rx_buf->data;
1987
1988 if (!data)
1989 continue;
1990
1991 dma_unmap_single(&pdev->dev, rx_buf->mapping,
1992 bp->rx_buf_use_size, bp->rx_dir);
1993
1994 rx_buf->data = NULL;
1995
1996 if (BNXT_RX_PAGE_MODE(bp))
1997 __free_page(data);
1998 else
1999 kfree(data);
2000 }
2001
2002 for (j = 0; j < max_agg_idx; j++) {
2003 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2004 &rxr->rx_agg_ring[j];
2005 struct page *page = rx_agg_buf->page;
2006
2007 if (!page)
2008 continue;
2009
2010 dma_unmap_page(&pdev->dev, rx_agg_buf->mapping,
2011 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
2012
2013 rx_agg_buf->page = NULL;
2014 __clear_bit(j, rxr->rx_agg_bmap);
2015
2016 __free_page(page);
2017 }
2018 if (rxr->rx_page) {
2019 __free_page(rxr->rx_page);
2020 rxr->rx_page = NULL;
2021 }
2022 }
2023 }
2024
2025 static void bnxt_free_skbs(struct bnxt *bp)
2026 {
2027 bnxt_free_tx_skbs(bp);
2028 bnxt_free_rx_skbs(bp);
2029 }
2030
2031 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2032 {
2033 struct pci_dev *pdev = bp->pdev;
2034 int i;
2035
2036 for (i = 0; i < ring->nr_pages; i++) {
2037 if (!ring->pg_arr[i])
2038 continue;
2039
2040 dma_free_coherent(&pdev->dev, ring->page_size,
2041 ring->pg_arr[i], ring->dma_arr[i]);
2042
2043 ring->pg_arr[i] = NULL;
2044 }
2045 if (ring->pg_tbl) {
2046 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2047 ring->pg_tbl, ring->pg_tbl_map);
2048 ring->pg_tbl = NULL;
2049 }
2050 if (ring->vmem_size && *ring->vmem) {
2051 vfree(*ring->vmem);
2052 *ring->vmem = NULL;
2053 }
2054 }
2055
2056 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2057 {
2058 int i;
2059 struct pci_dev *pdev = bp->pdev;
2060
2061 if (ring->nr_pages > 1) {
2062 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2063 ring->nr_pages * 8,
2064 &ring->pg_tbl_map,
2065 GFP_KERNEL);
2066 if (!ring->pg_tbl)
2067 return -ENOMEM;
2068 }
2069
2070 for (i = 0; i < ring->nr_pages; i++) {
2071 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2072 ring->page_size,
2073 &ring->dma_arr[i],
2074 GFP_KERNEL);
2075 if (!ring->pg_arr[i])
2076 return -ENOMEM;
2077
2078 if (ring->nr_pages > 1)
2079 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2080 }
2081
2082 if (ring->vmem_size) {
2083 *ring->vmem = vzalloc(ring->vmem_size);
2084 if (!(*ring->vmem))
2085 return -ENOMEM;
2086 }
2087 return 0;
2088 }
2089
2090 static void bnxt_free_rx_rings(struct bnxt *bp)
2091 {
2092 int i;
2093
2094 if (!bp->rx_ring)
2095 return;
2096
2097 for (i = 0; i < bp->rx_nr_rings; i++) {
2098 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2099 struct bnxt_ring_struct *ring;
2100
2101 if (rxr->xdp_prog)
2102 bpf_prog_put(rxr->xdp_prog);
2103
2104 kfree(rxr->rx_tpa);
2105 rxr->rx_tpa = NULL;
2106
2107 kfree(rxr->rx_agg_bmap);
2108 rxr->rx_agg_bmap = NULL;
2109
2110 ring = &rxr->rx_ring_struct;
2111 bnxt_free_ring(bp, ring);
2112
2113 ring = &rxr->rx_agg_ring_struct;
2114 bnxt_free_ring(bp, ring);
2115 }
2116 }
2117
2118 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2119 {
2120 int i, rc, agg_rings = 0, tpa_rings = 0;
2121
2122 if (!bp->rx_ring)
2123 return -ENOMEM;
2124
2125 if (bp->flags & BNXT_FLAG_AGG_RINGS)
2126 agg_rings = 1;
2127
2128 if (bp->flags & BNXT_FLAG_TPA)
2129 tpa_rings = 1;
2130
2131 for (i = 0; i < bp->rx_nr_rings; i++) {
2132 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2133 struct bnxt_ring_struct *ring;
2134
2135 ring = &rxr->rx_ring_struct;
2136
2137 rc = bnxt_alloc_ring(bp, ring);
2138 if (rc)
2139 return rc;
2140
2141 if (agg_rings) {
2142 u16 mem_size;
2143
2144 ring = &rxr->rx_agg_ring_struct;
2145 rc = bnxt_alloc_ring(bp, ring);
2146 if (rc)
2147 return rc;
2148
2149 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2150 mem_size = rxr->rx_agg_bmap_size / 8;
2151 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2152 if (!rxr->rx_agg_bmap)
2153 return -ENOMEM;
2154
2155 if (tpa_rings) {
2156 rxr->rx_tpa = kcalloc(MAX_TPA,
2157 sizeof(struct bnxt_tpa_info),
2158 GFP_KERNEL);
2159 if (!rxr->rx_tpa)
2160 return -ENOMEM;
2161 }
2162 }
2163 }
2164 return 0;
2165 }
2166
2167 static void bnxt_free_tx_rings(struct bnxt *bp)
2168 {
2169 int i;
2170 struct pci_dev *pdev = bp->pdev;
2171
2172 if (!bp->tx_ring)
2173 return;
2174
2175 for (i = 0; i < bp->tx_nr_rings; i++) {
2176 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2177 struct bnxt_ring_struct *ring;
2178
2179 if (txr->tx_push) {
2180 dma_free_coherent(&pdev->dev, bp->tx_push_size,
2181 txr->tx_push, txr->tx_push_mapping);
2182 txr->tx_push = NULL;
2183 }
2184
2185 ring = &txr->tx_ring_struct;
2186
2187 bnxt_free_ring(bp, ring);
2188 }
2189 }
2190
2191 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2192 {
2193 int i, j, rc;
2194 struct pci_dev *pdev = bp->pdev;
2195
2196 bp->tx_push_size = 0;
2197 if (bp->tx_push_thresh) {
2198 int push_size;
2199
2200 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2201 bp->tx_push_thresh);
2202
2203 if (push_size > 256) {
2204 push_size = 0;
2205 bp->tx_push_thresh = 0;
2206 }
2207
2208 bp->tx_push_size = push_size;
2209 }
2210
2211 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2212 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2213 struct bnxt_ring_struct *ring;
2214
2215 ring = &txr->tx_ring_struct;
2216
2217 rc = bnxt_alloc_ring(bp, ring);
2218 if (rc)
2219 return rc;
2220
2221 if (bp->tx_push_size) {
2222 dma_addr_t mapping;
2223
2224 /* One pre-allocated DMA buffer to backup
2225 * TX push operation
2226 */
2227 txr->tx_push = dma_alloc_coherent(&pdev->dev,
2228 bp->tx_push_size,
2229 &txr->tx_push_mapping,
2230 GFP_KERNEL);
2231
2232 if (!txr->tx_push)
2233 return -ENOMEM;
2234
2235 mapping = txr->tx_push_mapping +
2236 sizeof(struct tx_push_bd);
2237 txr->data_mapping = cpu_to_le64(mapping);
2238
2239 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2240 }
2241 ring->queue_id = bp->q_info[j].queue_id;
2242 if (i < bp->tx_nr_rings_xdp)
2243 continue;
2244 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2245 j++;
2246 }
2247 return 0;
2248 }
2249
2250 static void bnxt_free_cp_rings(struct bnxt *bp)
2251 {
2252 int i;
2253
2254 if (!bp->bnapi)
2255 return;
2256
2257 for (i = 0; i < bp->cp_nr_rings; i++) {
2258 struct bnxt_napi *bnapi = bp->bnapi[i];
2259 struct bnxt_cp_ring_info *cpr;
2260 struct bnxt_ring_struct *ring;
2261
2262 if (!bnapi)
2263 continue;
2264
2265 cpr = &bnapi->cp_ring;
2266 ring = &cpr->cp_ring_struct;
2267
2268 bnxt_free_ring(bp, ring);
2269 }
2270 }
2271
2272 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2273 {
2274 int i, rc;
2275
2276 for (i = 0; i < bp->cp_nr_rings; i++) {
2277 struct bnxt_napi *bnapi = bp->bnapi[i];
2278 struct bnxt_cp_ring_info *cpr;
2279 struct bnxt_ring_struct *ring;
2280
2281 if (!bnapi)
2282 continue;
2283
2284 cpr = &bnapi->cp_ring;
2285 ring = &cpr->cp_ring_struct;
2286
2287 rc = bnxt_alloc_ring(bp, ring);
2288 if (rc)
2289 return rc;
2290 }
2291 return 0;
2292 }
2293
2294 static void bnxt_init_ring_struct(struct bnxt *bp)
2295 {
2296 int i;
2297
2298 for (i = 0; i < bp->cp_nr_rings; i++) {
2299 struct bnxt_napi *bnapi = bp->bnapi[i];
2300 struct bnxt_cp_ring_info *cpr;
2301 struct bnxt_rx_ring_info *rxr;
2302 struct bnxt_tx_ring_info *txr;
2303 struct bnxt_ring_struct *ring;
2304
2305 if (!bnapi)
2306 continue;
2307
2308 cpr = &bnapi->cp_ring;
2309 ring = &cpr->cp_ring_struct;
2310 ring->nr_pages = bp->cp_nr_pages;
2311 ring->page_size = HW_CMPD_RING_SIZE;
2312 ring->pg_arr = (void **)cpr->cp_desc_ring;
2313 ring->dma_arr = cpr->cp_desc_mapping;
2314 ring->vmem_size = 0;
2315
2316 rxr = bnapi->rx_ring;
2317 if (!rxr)
2318 goto skip_rx;
2319
2320 ring = &rxr->rx_ring_struct;
2321 ring->nr_pages = bp->rx_nr_pages;
2322 ring->page_size = HW_RXBD_RING_SIZE;
2323 ring->pg_arr = (void **)rxr->rx_desc_ring;
2324 ring->dma_arr = rxr->rx_desc_mapping;
2325 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2326 ring->vmem = (void **)&rxr->rx_buf_ring;
2327
2328 ring = &rxr->rx_agg_ring_struct;
2329 ring->nr_pages = bp->rx_agg_nr_pages;
2330 ring->page_size = HW_RXBD_RING_SIZE;
2331 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2332 ring->dma_arr = rxr->rx_agg_desc_mapping;
2333 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2334 ring->vmem = (void **)&rxr->rx_agg_ring;
2335
2336 skip_rx:
2337 txr = bnapi->tx_ring;
2338 if (!txr)
2339 continue;
2340
2341 ring = &txr->tx_ring_struct;
2342 ring->nr_pages = bp->tx_nr_pages;
2343 ring->page_size = HW_RXBD_RING_SIZE;
2344 ring->pg_arr = (void **)txr->tx_desc_ring;
2345 ring->dma_arr = txr->tx_desc_mapping;
2346 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2347 ring->vmem = (void **)&txr->tx_buf_ring;
2348 }
2349 }
2350
2351 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2352 {
2353 int i;
2354 u32 prod;
2355 struct rx_bd **rx_buf_ring;
2356
2357 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2358 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2359 int j;
2360 struct rx_bd *rxbd;
2361
2362 rxbd = rx_buf_ring[i];
2363 if (!rxbd)
2364 continue;
2365
2366 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2367 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2368 rxbd->rx_bd_opaque = prod;
2369 }
2370 }
2371 }
2372
2373 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2374 {
2375 struct net_device *dev = bp->dev;
2376 struct bnxt_rx_ring_info *rxr;
2377 struct bnxt_ring_struct *ring;
2378 u32 prod, type;
2379 int i;
2380
2381 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2382 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2383
2384 if (NET_IP_ALIGN == 2)
2385 type |= RX_BD_FLAGS_SOP;
2386
2387 rxr = &bp->rx_ring[ring_nr];
2388 ring = &rxr->rx_ring_struct;
2389 bnxt_init_rxbd_pages(ring, type);
2390
2391 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2392 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2393 if (IS_ERR(rxr->xdp_prog)) {
2394 int rc = PTR_ERR(rxr->xdp_prog);
2395
2396 rxr->xdp_prog = NULL;
2397 return rc;
2398 }
2399 }
2400 prod = rxr->rx_prod;
2401 for (i = 0; i < bp->rx_ring_size; i++) {
2402 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2403 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2404 ring_nr, i, bp->rx_ring_size);
2405 break;
2406 }
2407 prod = NEXT_RX(prod);
2408 }
2409 rxr->rx_prod = prod;
2410 ring->fw_ring_id = INVALID_HW_RING_ID;
2411
2412 ring = &rxr->rx_agg_ring_struct;
2413 ring->fw_ring_id = INVALID_HW_RING_ID;
2414
2415 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2416 return 0;
2417
2418 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2419 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2420
2421 bnxt_init_rxbd_pages(ring, type);
2422
2423 prod = rxr->rx_agg_prod;
2424 for (i = 0; i < bp->rx_agg_ring_size; i++) {
2425 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2426 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2427 ring_nr, i, bp->rx_ring_size);
2428 break;
2429 }
2430 prod = NEXT_RX_AGG(prod);
2431 }
2432 rxr->rx_agg_prod = prod;
2433
2434 if (bp->flags & BNXT_FLAG_TPA) {
2435 if (rxr->rx_tpa) {
2436 u8 *data;
2437 dma_addr_t mapping;
2438
2439 for (i = 0; i < MAX_TPA; i++) {
2440 data = __bnxt_alloc_rx_data(bp, &mapping,
2441 GFP_KERNEL);
2442 if (!data)
2443 return -ENOMEM;
2444
2445 rxr->rx_tpa[i].data = data;
2446 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2447 rxr->rx_tpa[i].mapping = mapping;
2448 }
2449 } else {
2450 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2451 return -ENOMEM;
2452 }
2453 }
2454
2455 return 0;
2456 }
2457
2458 static int bnxt_init_rx_rings(struct bnxt *bp)
2459 {
2460 int i, rc = 0;
2461
2462 if (BNXT_RX_PAGE_MODE(bp)) {
2463 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2464 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2465 } else {
2466 bp->rx_offset = BNXT_RX_OFFSET;
2467 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2468 }
2469
2470 for (i = 0; i < bp->rx_nr_rings; i++) {
2471 rc = bnxt_init_one_rx_ring(bp, i);
2472 if (rc)
2473 break;
2474 }
2475
2476 return rc;
2477 }
2478
2479 static int bnxt_init_tx_rings(struct bnxt *bp)
2480 {
2481 u16 i;
2482
2483 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2484 MAX_SKB_FRAGS + 1);
2485
2486 for (i = 0; i < bp->tx_nr_rings; i++) {
2487 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2488 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2489
2490 ring->fw_ring_id = INVALID_HW_RING_ID;
2491 }
2492
2493 return 0;
2494 }
2495
2496 static void bnxt_free_ring_grps(struct bnxt *bp)
2497 {
2498 kfree(bp->grp_info);
2499 bp->grp_info = NULL;
2500 }
2501
2502 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2503 {
2504 int i;
2505
2506 if (irq_re_init) {
2507 bp->grp_info = kcalloc(bp->cp_nr_rings,
2508 sizeof(struct bnxt_ring_grp_info),
2509 GFP_KERNEL);
2510 if (!bp->grp_info)
2511 return -ENOMEM;
2512 }
2513 for (i = 0; i < bp->cp_nr_rings; i++) {
2514 if (irq_re_init)
2515 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2516 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2517 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2518 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2519 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2520 }
2521 return 0;
2522 }
2523
2524 static void bnxt_free_vnics(struct bnxt *bp)
2525 {
2526 kfree(bp->vnic_info);
2527 bp->vnic_info = NULL;
2528 bp->nr_vnics = 0;
2529 }
2530
2531 static int bnxt_alloc_vnics(struct bnxt *bp)
2532 {
2533 int num_vnics = 1;
2534
2535 #ifdef CONFIG_RFS_ACCEL
2536 if (bp->flags & BNXT_FLAG_RFS)
2537 num_vnics += bp->rx_nr_rings;
2538 #endif
2539
2540 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2541 num_vnics++;
2542
2543 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2544 GFP_KERNEL);
2545 if (!bp->vnic_info)
2546 return -ENOMEM;
2547
2548 bp->nr_vnics = num_vnics;
2549 return 0;
2550 }
2551
2552 static void bnxt_init_vnics(struct bnxt *bp)
2553 {
2554 int i;
2555
2556 for (i = 0; i < bp->nr_vnics; i++) {
2557 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2558
2559 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2560 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2561 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2562 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2563
2564 if (bp->vnic_info[i].rss_hash_key) {
2565 if (i == 0)
2566 prandom_bytes(vnic->rss_hash_key,
2567 HW_HASH_KEY_SIZE);
2568 else
2569 memcpy(vnic->rss_hash_key,
2570 bp->vnic_info[0].rss_hash_key,
2571 HW_HASH_KEY_SIZE);
2572 }
2573 }
2574 }
2575
2576 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2577 {
2578 int pages;
2579
2580 pages = ring_size / desc_per_pg;
2581
2582 if (!pages)
2583 return 1;
2584
2585 pages++;
2586
2587 while (pages & (pages - 1))
2588 pages++;
2589
2590 return pages;
2591 }
2592
2593 void bnxt_set_tpa_flags(struct bnxt *bp)
2594 {
2595 bp->flags &= ~BNXT_FLAG_TPA;
2596 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2597 return;
2598 if (bp->dev->features & NETIF_F_LRO)
2599 bp->flags |= BNXT_FLAG_LRO;
2600 if (bp->dev->features & NETIF_F_GRO)
2601 bp->flags |= BNXT_FLAG_GRO;
2602 }
2603
2604 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2605 * be set on entry.
2606 */
2607 void bnxt_set_ring_params(struct bnxt *bp)
2608 {
2609 u32 ring_size, rx_size, rx_space;
2610 u32 agg_factor = 0, agg_ring_size = 0;
2611
2612 /* 8 for CRC and VLAN */
2613 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2614
2615 rx_space = rx_size + NET_SKB_PAD +
2616 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2617
2618 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2619 ring_size = bp->rx_ring_size;
2620 bp->rx_agg_ring_size = 0;
2621 bp->rx_agg_nr_pages = 0;
2622
2623 if (bp->flags & BNXT_FLAG_TPA)
2624 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2625
2626 bp->flags &= ~BNXT_FLAG_JUMBO;
2627 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2628 u32 jumbo_factor;
2629
2630 bp->flags |= BNXT_FLAG_JUMBO;
2631 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2632 if (jumbo_factor > agg_factor)
2633 agg_factor = jumbo_factor;
2634 }
2635 agg_ring_size = ring_size * agg_factor;
2636
2637 if (agg_ring_size) {
2638 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2639 RX_DESC_CNT);
2640 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2641 u32 tmp = agg_ring_size;
2642
2643 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2644 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2645 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2646 tmp, agg_ring_size);
2647 }
2648 bp->rx_agg_ring_size = agg_ring_size;
2649 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2650 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2651 rx_space = rx_size + NET_SKB_PAD +
2652 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2653 }
2654
2655 bp->rx_buf_use_size = rx_size;
2656 bp->rx_buf_size = rx_space;
2657
2658 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2659 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2660
2661 ring_size = bp->tx_ring_size;
2662 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2663 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2664
2665 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2666 bp->cp_ring_size = ring_size;
2667
2668 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2669 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2670 bp->cp_nr_pages = MAX_CP_PAGES;
2671 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2672 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2673 ring_size, bp->cp_ring_size);
2674 }
2675 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2676 bp->cp_ring_mask = bp->cp_bit - 1;
2677 }
2678
2679 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2680 {
2681 if (page_mode) {
2682 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2683 return -EOPNOTSUPP;
2684 bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
2685 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2686 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2687 bp->dev->hw_features &= ~NETIF_F_LRO;
2688 bp->dev->features &= ~NETIF_F_LRO;
2689 bp->rx_dir = DMA_BIDIRECTIONAL;
2690 bp->rx_skb_func = bnxt_rx_page_skb;
2691 } else {
2692 bp->dev->max_mtu = BNXT_MAX_MTU;
2693 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2694 bp->rx_dir = DMA_FROM_DEVICE;
2695 bp->rx_skb_func = bnxt_rx_skb;
2696 }
2697 return 0;
2698 }
2699
2700 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2701 {
2702 int i;
2703 struct bnxt_vnic_info *vnic;
2704 struct pci_dev *pdev = bp->pdev;
2705
2706 if (!bp->vnic_info)
2707 return;
2708
2709 for (i = 0; i < bp->nr_vnics; i++) {
2710 vnic = &bp->vnic_info[i];
2711
2712 kfree(vnic->fw_grp_ids);
2713 vnic->fw_grp_ids = NULL;
2714
2715 kfree(vnic->uc_list);
2716 vnic->uc_list = NULL;
2717
2718 if (vnic->mc_list) {
2719 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2720 vnic->mc_list, vnic->mc_list_mapping);
2721 vnic->mc_list = NULL;
2722 }
2723
2724 if (vnic->rss_table) {
2725 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2726 vnic->rss_table,
2727 vnic->rss_table_dma_addr);
2728 vnic->rss_table = NULL;
2729 }
2730
2731 vnic->rss_hash_key = NULL;
2732 vnic->flags = 0;
2733 }
2734 }
2735
2736 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2737 {
2738 int i, rc = 0, size;
2739 struct bnxt_vnic_info *vnic;
2740 struct pci_dev *pdev = bp->pdev;
2741 int max_rings;
2742
2743 for (i = 0; i < bp->nr_vnics; i++) {
2744 vnic = &bp->vnic_info[i];
2745
2746 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2747 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2748
2749 if (mem_size > 0) {
2750 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2751 if (!vnic->uc_list) {
2752 rc = -ENOMEM;
2753 goto out;
2754 }
2755 }
2756 }
2757
2758 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2759 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2760 vnic->mc_list =
2761 dma_alloc_coherent(&pdev->dev,
2762 vnic->mc_list_size,
2763 &vnic->mc_list_mapping,
2764 GFP_KERNEL);
2765 if (!vnic->mc_list) {
2766 rc = -ENOMEM;
2767 goto out;
2768 }
2769 }
2770
2771 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2772 max_rings = bp->rx_nr_rings;
2773 else
2774 max_rings = 1;
2775
2776 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2777 if (!vnic->fw_grp_ids) {
2778 rc = -ENOMEM;
2779 goto out;
2780 }
2781
2782 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2783 !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2784 continue;
2785
2786 /* Allocate rss table and hash key */
2787 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2788 &vnic->rss_table_dma_addr,
2789 GFP_KERNEL);
2790 if (!vnic->rss_table) {
2791 rc = -ENOMEM;
2792 goto out;
2793 }
2794
2795 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2796
2797 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2798 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2799 }
2800 return 0;
2801
2802 out:
2803 return rc;
2804 }
2805
2806 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2807 {
2808 struct pci_dev *pdev = bp->pdev;
2809
2810 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2811 bp->hwrm_cmd_resp_dma_addr);
2812
2813 bp->hwrm_cmd_resp_addr = NULL;
2814 if (bp->hwrm_dbg_resp_addr) {
2815 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2816 bp->hwrm_dbg_resp_addr,
2817 bp->hwrm_dbg_resp_dma_addr);
2818
2819 bp->hwrm_dbg_resp_addr = NULL;
2820 }
2821 }
2822
2823 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2824 {
2825 struct pci_dev *pdev = bp->pdev;
2826
2827 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2828 &bp->hwrm_cmd_resp_dma_addr,
2829 GFP_KERNEL);
2830 if (!bp->hwrm_cmd_resp_addr)
2831 return -ENOMEM;
2832 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2833 HWRM_DBG_REG_BUF_SIZE,
2834 &bp->hwrm_dbg_resp_dma_addr,
2835 GFP_KERNEL);
2836 if (!bp->hwrm_dbg_resp_addr)
2837 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2838
2839 return 0;
2840 }
2841
2842 static void bnxt_free_stats(struct bnxt *bp)
2843 {
2844 u32 size, i;
2845 struct pci_dev *pdev = bp->pdev;
2846
2847 if (bp->hw_rx_port_stats) {
2848 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2849 bp->hw_rx_port_stats,
2850 bp->hw_rx_port_stats_map);
2851 bp->hw_rx_port_stats = NULL;
2852 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2853 }
2854
2855 if (!bp->bnapi)
2856 return;
2857
2858 size = sizeof(struct ctx_hw_stats);
2859
2860 for (i = 0; i < bp->cp_nr_rings; i++) {
2861 struct bnxt_napi *bnapi = bp->bnapi[i];
2862 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2863
2864 if (cpr->hw_stats) {
2865 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2866 cpr->hw_stats_map);
2867 cpr->hw_stats = NULL;
2868 }
2869 }
2870 }
2871
2872 static int bnxt_alloc_stats(struct bnxt *bp)
2873 {
2874 u32 size, i;
2875 struct pci_dev *pdev = bp->pdev;
2876
2877 size = sizeof(struct ctx_hw_stats);
2878
2879 for (i = 0; i < bp->cp_nr_rings; i++) {
2880 struct bnxt_napi *bnapi = bp->bnapi[i];
2881 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2882
2883 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2884 &cpr->hw_stats_map,
2885 GFP_KERNEL);
2886 if (!cpr->hw_stats)
2887 return -ENOMEM;
2888
2889 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2890 }
2891
2892 if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2893 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2894 sizeof(struct tx_port_stats) + 1024;
2895
2896 bp->hw_rx_port_stats =
2897 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2898 &bp->hw_rx_port_stats_map,
2899 GFP_KERNEL);
2900 if (!bp->hw_rx_port_stats)
2901 return -ENOMEM;
2902
2903 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2904 512;
2905 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2906 sizeof(struct rx_port_stats) + 512;
2907 bp->flags |= BNXT_FLAG_PORT_STATS;
2908 }
2909 return 0;
2910 }
2911
2912 static void bnxt_clear_ring_indices(struct bnxt *bp)
2913 {
2914 int i;
2915
2916 if (!bp->bnapi)
2917 return;
2918
2919 for (i = 0; i < bp->cp_nr_rings; i++) {
2920 struct bnxt_napi *bnapi = bp->bnapi[i];
2921 struct bnxt_cp_ring_info *cpr;
2922 struct bnxt_rx_ring_info *rxr;
2923 struct bnxt_tx_ring_info *txr;
2924
2925 if (!bnapi)
2926 continue;
2927
2928 cpr = &bnapi->cp_ring;
2929 cpr->cp_raw_cons = 0;
2930
2931 txr = bnapi->tx_ring;
2932 if (txr) {
2933 txr->tx_prod = 0;
2934 txr->tx_cons = 0;
2935 }
2936
2937 rxr = bnapi->rx_ring;
2938 if (rxr) {
2939 rxr->rx_prod = 0;
2940 rxr->rx_agg_prod = 0;
2941 rxr->rx_sw_agg_prod = 0;
2942 rxr->rx_next_cons = 0;
2943 }
2944 }
2945 }
2946
2947 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2948 {
2949 #ifdef CONFIG_RFS_ACCEL
2950 int i;
2951
2952 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2953 * safe to delete the hash table.
2954 */
2955 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2956 struct hlist_head *head;
2957 struct hlist_node *tmp;
2958 struct bnxt_ntuple_filter *fltr;
2959
2960 head = &bp->ntp_fltr_hash_tbl[i];
2961 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2962 hlist_del(&fltr->hash);
2963 kfree(fltr);
2964 }
2965 }
2966 if (irq_reinit) {
2967 kfree(bp->ntp_fltr_bmap);
2968 bp->ntp_fltr_bmap = NULL;
2969 }
2970 bp->ntp_fltr_count = 0;
2971 #endif
2972 }
2973
2974 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2975 {
2976 #ifdef CONFIG_RFS_ACCEL
2977 int i, rc = 0;
2978
2979 if (!(bp->flags & BNXT_FLAG_RFS))
2980 return 0;
2981
2982 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2983 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2984
2985 bp->ntp_fltr_count = 0;
2986 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2987 GFP_KERNEL);
2988
2989 if (!bp->ntp_fltr_bmap)
2990 rc = -ENOMEM;
2991
2992 return rc;
2993 #else
2994 return 0;
2995 #endif
2996 }
2997
2998 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2999 {
3000 bnxt_free_vnic_attributes(bp);
3001 bnxt_free_tx_rings(bp);
3002 bnxt_free_rx_rings(bp);
3003 bnxt_free_cp_rings(bp);
3004 bnxt_free_ntp_fltrs(bp, irq_re_init);
3005 if (irq_re_init) {
3006 bnxt_free_stats(bp);
3007 bnxt_free_ring_grps(bp);
3008 bnxt_free_vnics(bp);
3009 kfree(bp->tx_ring_map);
3010 bp->tx_ring_map = NULL;
3011 kfree(bp->tx_ring);
3012 bp->tx_ring = NULL;
3013 kfree(bp->rx_ring);
3014 bp->rx_ring = NULL;
3015 kfree(bp->bnapi);
3016 bp->bnapi = NULL;
3017 } else {
3018 bnxt_clear_ring_indices(bp);
3019 }
3020 }
3021
3022 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3023 {
3024 int i, j, rc, size, arr_size;
3025 void *bnapi;
3026
3027 if (irq_re_init) {
3028 /* Allocate bnapi mem pointer array and mem block for
3029 * all queues
3030 */
3031 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3032 bp->cp_nr_rings);
3033 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3034 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3035 if (!bnapi)
3036 return -ENOMEM;
3037
3038 bp->bnapi = bnapi;
3039 bnapi += arr_size;
3040 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3041 bp->bnapi[i] = bnapi;
3042 bp->bnapi[i]->index = i;
3043 bp->bnapi[i]->bp = bp;
3044 }
3045
3046 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3047 sizeof(struct bnxt_rx_ring_info),
3048 GFP_KERNEL);
3049 if (!bp->rx_ring)
3050 return -ENOMEM;
3051
3052 for (i = 0; i < bp->rx_nr_rings; i++) {
3053 bp->rx_ring[i].bnapi = bp->bnapi[i];
3054 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3055 }
3056
3057 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3058 sizeof(struct bnxt_tx_ring_info),
3059 GFP_KERNEL);
3060 if (!bp->tx_ring)
3061 return -ENOMEM;
3062
3063 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3064 GFP_KERNEL);
3065
3066 if (!bp->tx_ring_map)
3067 return -ENOMEM;
3068
3069 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3070 j = 0;
3071 else
3072 j = bp->rx_nr_rings;
3073
3074 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3075 bp->tx_ring[i].bnapi = bp->bnapi[j];
3076 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3077 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3078 if (i >= bp->tx_nr_rings_xdp) {
3079 bp->tx_ring[i].txq_index = i -
3080 bp->tx_nr_rings_xdp;
3081 bp->bnapi[j]->tx_int = bnxt_tx_int;
3082 } else {
3083 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3084 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3085 }
3086 }
3087
3088 rc = bnxt_alloc_stats(bp);
3089 if (rc)
3090 goto alloc_mem_err;
3091
3092 rc = bnxt_alloc_ntp_fltrs(bp);
3093 if (rc)
3094 goto alloc_mem_err;
3095
3096 rc = bnxt_alloc_vnics(bp);
3097 if (rc)
3098 goto alloc_mem_err;
3099 }
3100
3101 bnxt_init_ring_struct(bp);
3102
3103 rc = bnxt_alloc_rx_rings(bp);
3104 if (rc)
3105 goto alloc_mem_err;
3106
3107 rc = bnxt_alloc_tx_rings(bp);
3108 if (rc)
3109 goto alloc_mem_err;
3110
3111 rc = bnxt_alloc_cp_rings(bp);
3112 if (rc)
3113 goto alloc_mem_err;
3114
3115 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3116 BNXT_VNIC_UCAST_FLAG;
3117 rc = bnxt_alloc_vnic_attributes(bp);
3118 if (rc)
3119 goto alloc_mem_err;
3120 return 0;
3121
3122 alloc_mem_err:
3123 bnxt_free_mem(bp, true);
3124 return rc;
3125 }
3126
3127 static void bnxt_disable_int(struct bnxt *bp)
3128 {
3129 int i;
3130
3131 if (!bp->bnapi)
3132 return;
3133
3134 for (i = 0; i < bp->cp_nr_rings; i++) {
3135 struct bnxt_napi *bnapi = bp->bnapi[i];
3136 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3137 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3138
3139 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3140 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3141 }
3142 }
3143
3144 static void bnxt_disable_int_sync(struct bnxt *bp)
3145 {
3146 int i;
3147
3148 atomic_inc(&bp->intr_sem);
3149
3150 bnxt_disable_int(bp);
3151 for (i = 0; i < bp->cp_nr_rings; i++)
3152 synchronize_irq(bp->irq_tbl[i].vector);
3153 }
3154
3155 static void bnxt_enable_int(struct bnxt *bp)
3156 {
3157 int i;
3158
3159 atomic_set(&bp->intr_sem, 0);
3160 for (i = 0; i < bp->cp_nr_rings; i++) {
3161 struct bnxt_napi *bnapi = bp->bnapi[i];
3162 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3163
3164 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3165 }
3166 }
3167
3168 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3169 u16 cmpl_ring, u16 target_id)
3170 {
3171 struct input *req = request;
3172
3173 req->req_type = cpu_to_le16(req_type);
3174 req->cmpl_ring = cpu_to_le16(cmpl_ring);
3175 req->target_id = cpu_to_le16(target_id);
3176 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3177 }
3178
3179 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3180 int timeout, bool silent)
3181 {
3182 int i, intr_process, rc, tmo_count;
3183 struct input *req = msg;
3184 u32 *data = msg;
3185 __le32 *resp_len, *valid;
3186 u16 cp_ring_id, len = 0;
3187 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3188
3189 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3190 memset(resp, 0, PAGE_SIZE);
3191 cp_ring_id = le16_to_cpu(req->cmpl_ring);
3192 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3193
3194 /* Write request msg to hwrm channel */
3195 __iowrite32_copy(bp->bar0, data, msg_len / 4);
3196
3197 for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3198 writel(0, bp->bar0 + i);
3199
3200 /* currently supports only one outstanding message */
3201 if (intr_process)
3202 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3203
3204 /* Ring channel doorbell */
3205 writel(1, bp->bar0 + 0x100);
3206
3207 if (!timeout)
3208 timeout = DFLT_HWRM_CMD_TIMEOUT;
3209
3210 i = 0;
3211 tmo_count = timeout * 40;
3212 if (intr_process) {
3213 /* Wait until hwrm response cmpl interrupt is processed */
3214 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3215 i++ < tmo_count) {
3216 usleep_range(25, 40);
3217 }
3218
3219 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3220 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3221 le16_to_cpu(req->req_type));
3222 return -1;
3223 }
3224 } else {
3225 /* Check if response len is updated */
3226 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3227 for (i = 0; i < tmo_count; i++) {
3228 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3229 HWRM_RESP_LEN_SFT;
3230 if (len)
3231 break;
3232 usleep_range(25, 40);
3233 }
3234
3235 if (i >= tmo_count) {
3236 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3237 timeout, le16_to_cpu(req->req_type),
3238 le16_to_cpu(req->seq_id), len);
3239 return -1;
3240 }
3241
3242 /* Last word of resp contains valid bit */
3243 valid = bp->hwrm_cmd_resp_addr + len - 4;
3244 for (i = 0; i < 5; i++) {
3245 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3246 break;
3247 udelay(1);
3248 }
3249
3250 if (i >= 5) {
3251 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3252 timeout, le16_to_cpu(req->req_type),
3253 le16_to_cpu(req->seq_id), len, *valid);
3254 return -1;
3255 }
3256 }
3257
3258 rc = le16_to_cpu(resp->error_code);
3259 if (rc && !silent)
3260 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3261 le16_to_cpu(resp->req_type),
3262 le16_to_cpu(resp->seq_id), rc);
3263 return rc;
3264 }
3265
3266 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3267 {
3268 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3269 }
3270
3271 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3272 {
3273 int rc;
3274
3275 mutex_lock(&bp->hwrm_cmd_lock);
3276 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3277 mutex_unlock(&bp->hwrm_cmd_lock);
3278 return rc;
3279 }
3280
3281 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3282 int timeout)
3283 {
3284 int rc;
3285
3286 mutex_lock(&bp->hwrm_cmd_lock);
3287 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3288 mutex_unlock(&bp->hwrm_cmd_lock);
3289 return rc;
3290 }
3291
3292 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3293 int bmap_size)
3294 {
3295 struct hwrm_func_drv_rgtr_input req = {0};
3296 DECLARE_BITMAP(async_events_bmap, 256);
3297 u32 *events = (u32 *)async_events_bmap;
3298 int i;
3299
3300 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3301
3302 req.enables =
3303 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3304
3305 memset(async_events_bmap, 0, sizeof(async_events_bmap));
3306 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3307 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3308
3309 if (bmap && bmap_size) {
3310 for (i = 0; i < bmap_size; i++) {
3311 if (test_bit(i, bmap))
3312 __set_bit(i, async_events_bmap);
3313 }
3314 }
3315
3316 for (i = 0; i < 8; i++)
3317 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3318
3319 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3320 }
3321
3322 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3323 {
3324 struct hwrm_func_drv_rgtr_input req = {0};
3325
3326 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3327
3328 req.enables =
3329 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3330 FUNC_DRV_RGTR_REQ_ENABLES_VER);
3331
3332 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3333 req.ver_maj = DRV_VER_MAJ;
3334 req.ver_min = DRV_VER_MIN;
3335 req.ver_upd = DRV_VER_UPD;
3336
3337 if (BNXT_PF(bp)) {
3338 DECLARE_BITMAP(vf_req_snif_bmap, 256);
3339 u32 *data = (u32 *)vf_req_snif_bmap;
3340 int i;
3341
3342 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3343 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3344 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3345
3346 for (i = 0; i < 8; i++)
3347 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3348
3349 req.enables |=
3350 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3351 }
3352
3353 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3354 }
3355
3356 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3357 {
3358 struct hwrm_func_drv_unrgtr_input req = {0};
3359
3360 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3361 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3362 }
3363
3364 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3365 {
3366 u32 rc = 0;
3367 struct hwrm_tunnel_dst_port_free_input req = {0};
3368
3369 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3370 req.tunnel_type = tunnel_type;
3371
3372 switch (tunnel_type) {
3373 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3374 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3375 break;
3376 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3377 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3378 break;
3379 default:
3380 break;
3381 }
3382
3383 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3384 if (rc)
3385 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3386 rc);
3387 return rc;
3388 }
3389
3390 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3391 u8 tunnel_type)
3392 {
3393 u32 rc = 0;
3394 struct hwrm_tunnel_dst_port_alloc_input req = {0};
3395 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3396
3397 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3398
3399 req.tunnel_type = tunnel_type;
3400 req.tunnel_dst_port_val = port;
3401
3402 mutex_lock(&bp->hwrm_cmd_lock);
3403 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3404 if (rc) {
3405 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3406 rc);
3407 goto err_out;
3408 }
3409
3410 switch (tunnel_type) {
3411 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3412 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3413 break;
3414 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3415 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3416 break;
3417 default:
3418 break;
3419 }
3420
3421 err_out:
3422 mutex_unlock(&bp->hwrm_cmd_lock);
3423 return rc;
3424 }
3425
3426 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3427 {
3428 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3429 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3430
3431 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3432 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3433
3434 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3435 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3436 req.mask = cpu_to_le32(vnic->rx_mask);
3437 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3438 }
3439
3440 #ifdef CONFIG_RFS_ACCEL
3441 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3442 struct bnxt_ntuple_filter *fltr)
3443 {
3444 struct hwrm_cfa_ntuple_filter_free_input req = {0};
3445
3446 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3447 req.ntuple_filter_id = fltr->filter_id;
3448 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3449 }
3450
3451 #define BNXT_NTP_FLTR_FLAGS \
3452 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
3453 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
3454 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
3455 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
3456 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
3457 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
3458 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
3459 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
3460 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
3461 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
3462 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
3463 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
3464 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
3465 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3466
3467 #define BNXT_NTP_TUNNEL_FLTR_FLAG \
3468 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3469
3470 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3471 struct bnxt_ntuple_filter *fltr)
3472 {
3473 int rc = 0;
3474 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3475 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3476 bp->hwrm_cmd_resp_addr;
3477 struct flow_keys *keys = &fltr->fkeys;
3478 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3479
3480 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3481 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3482
3483 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3484
3485 req.ethertype = htons(ETH_P_IP);
3486 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3487 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3488 req.ip_protocol = keys->basic.ip_proto;
3489
3490 if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3491 int i;
3492
3493 req.ethertype = htons(ETH_P_IPV6);
3494 req.ip_addr_type =
3495 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3496 *(struct in6_addr *)&req.src_ipaddr[0] =
3497 keys->addrs.v6addrs.src;
3498 *(struct in6_addr *)&req.dst_ipaddr[0] =
3499 keys->addrs.v6addrs.dst;
3500 for (i = 0; i < 4; i++) {
3501 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3502 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3503 }
3504 } else {
3505 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3506 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3507 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3508 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3509 }
3510 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3511 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3512 req.tunnel_type =
3513 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3514 }
3515
3516 req.src_port = keys->ports.src;
3517 req.src_port_mask = cpu_to_be16(0xffff);
3518 req.dst_port = keys->ports.dst;
3519 req.dst_port_mask = cpu_to_be16(0xffff);
3520
3521 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3522 mutex_lock(&bp->hwrm_cmd_lock);
3523 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3524 if (!rc)
3525 fltr->filter_id = resp->ntuple_filter_id;
3526 mutex_unlock(&bp->hwrm_cmd_lock);
3527 return rc;
3528 }
3529 #endif
3530
3531 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3532 u8 *mac_addr)
3533 {
3534 u32 rc = 0;
3535 struct hwrm_cfa_l2_filter_alloc_input req = {0};
3536 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3537
3538 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3539 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3540 if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3541 req.flags |=
3542 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3543 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3544 req.enables =
3545 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3546 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3547 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3548 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3549 req.l2_addr_mask[0] = 0xff;
3550 req.l2_addr_mask[1] = 0xff;
3551 req.l2_addr_mask[2] = 0xff;
3552 req.l2_addr_mask[3] = 0xff;
3553 req.l2_addr_mask[4] = 0xff;
3554 req.l2_addr_mask[5] = 0xff;
3555
3556 mutex_lock(&bp->hwrm_cmd_lock);
3557 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3558 if (!rc)
3559 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3560 resp->l2_filter_id;
3561 mutex_unlock(&bp->hwrm_cmd_lock);
3562 return rc;
3563 }
3564
3565 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3566 {
3567 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3568 int rc = 0;
3569
3570 /* Any associated ntuple filters will also be cleared by firmware. */
3571 mutex_lock(&bp->hwrm_cmd_lock);
3572 for (i = 0; i < num_of_vnics; i++) {
3573 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3574
3575 for (j = 0; j < vnic->uc_filter_count; j++) {
3576 struct hwrm_cfa_l2_filter_free_input req = {0};
3577
3578 bnxt_hwrm_cmd_hdr_init(bp, &req,
3579 HWRM_CFA_L2_FILTER_FREE, -1, -1);
3580
3581 req.l2_filter_id = vnic->fw_l2_filter_id[j];
3582
3583 rc = _hwrm_send_message(bp, &req, sizeof(req),
3584 HWRM_CMD_TIMEOUT);
3585 }
3586 vnic->uc_filter_count = 0;
3587 }
3588 mutex_unlock(&bp->hwrm_cmd_lock);
3589
3590 return rc;
3591 }
3592
3593 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3594 {
3595 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3596 struct hwrm_vnic_tpa_cfg_input req = {0};
3597
3598 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3599
3600 if (tpa_flags) {
3601 u16 mss = bp->dev->mtu - 40;
3602 u32 nsegs, n, segs = 0, flags;
3603
3604 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3605 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3606 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3607 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3608 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3609 if (tpa_flags & BNXT_FLAG_GRO)
3610 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3611
3612 req.flags = cpu_to_le32(flags);
3613
3614 req.enables =
3615 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3616 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3617 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3618
3619 /* Number of segs are log2 units, and first packet is not
3620 * included as part of this units.
3621 */
3622 if (mss <= BNXT_RX_PAGE_SIZE) {
3623 n = BNXT_RX_PAGE_SIZE / mss;
3624 nsegs = (MAX_SKB_FRAGS - 1) * n;
3625 } else {
3626 n = mss / BNXT_RX_PAGE_SIZE;
3627 if (mss & (BNXT_RX_PAGE_SIZE - 1))
3628 n++;
3629 nsegs = (MAX_SKB_FRAGS - n) / n;
3630 }
3631
3632 segs = ilog2(nsegs);
3633 req.max_agg_segs = cpu_to_le16(segs);
3634 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3635
3636 req.min_agg_len = cpu_to_le32(512);
3637 }
3638 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3639
3640 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3641 }
3642
3643 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3644 {
3645 u32 i, j, max_rings;
3646 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3647 struct hwrm_vnic_rss_cfg_input req = {0};
3648
3649 if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3650 return 0;
3651
3652 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3653 if (set_rss) {
3654 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3655 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3656 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3657 max_rings = bp->rx_nr_rings - 1;
3658 else
3659 max_rings = bp->rx_nr_rings;
3660 } else {
3661 max_rings = 1;
3662 }
3663
3664 /* Fill the RSS indirection table with ring group ids */
3665 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3666 if (j == max_rings)
3667 j = 0;
3668 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3669 }
3670
3671 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3672 req.hash_key_tbl_addr =
3673 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3674 }
3675 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3676 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3677 }
3678
3679 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3680 {
3681 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3682 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3683
3684 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3685 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3686 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3687 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3688 req.enables =
3689 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3690 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3691 /* thresholds not implemented in firmware yet */
3692 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3693 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3694 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3695 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3696 }
3697
3698 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3699 u16 ctx_idx)
3700 {
3701 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3702
3703 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3704 req.rss_cos_lb_ctx_id =
3705 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3706
3707 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3708 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3709 }
3710
3711 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3712 {
3713 int i, j;
3714
3715 for (i = 0; i < bp->nr_vnics; i++) {
3716 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3717
3718 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3719 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3720 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3721 }
3722 }
3723 bp->rsscos_nr_ctxs = 0;
3724 }
3725
3726 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3727 {
3728 int rc;
3729 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3730 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3731 bp->hwrm_cmd_resp_addr;
3732
3733 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3734 -1);
3735
3736 mutex_lock(&bp->hwrm_cmd_lock);
3737 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3738 if (!rc)
3739 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3740 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3741 mutex_unlock(&bp->hwrm_cmd_lock);
3742
3743 return rc;
3744 }
3745
3746 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3747 {
3748 unsigned int ring = 0, grp_idx;
3749 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3750 struct hwrm_vnic_cfg_input req = {0};
3751 u16 def_vlan = 0;
3752
3753 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3754
3755 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3756 /* Only RSS support for now TBD: COS & LB */
3757 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3758 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3759 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3760 VNIC_CFG_REQ_ENABLES_MRU);
3761 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3762 req.rss_rule =
3763 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3764 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3765 VNIC_CFG_REQ_ENABLES_MRU);
3766 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3767 } else {
3768 req.rss_rule = cpu_to_le16(0xffff);
3769 }
3770
3771 if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3772 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3773 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3774 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3775 } else {
3776 req.cos_rule = cpu_to_le16(0xffff);
3777 }
3778
3779 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3780 ring = 0;
3781 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3782 ring = vnic_id - 1;
3783 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3784 ring = bp->rx_nr_rings - 1;
3785
3786 grp_idx = bp->rx_ring[ring].bnapi->index;
3787 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3788 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3789
3790 req.lb_rule = cpu_to_le16(0xffff);
3791 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3792 VLAN_HLEN);
3793
3794 #ifdef CONFIG_BNXT_SRIOV
3795 if (BNXT_VF(bp))
3796 def_vlan = bp->vf.vlan;
3797 #endif
3798 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3799 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3800 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
3801 req.flags |=
3802 cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
3803
3804 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3805 }
3806
3807 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3808 {
3809 u32 rc = 0;
3810
3811 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3812 struct hwrm_vnic_free_input req = {0};
3813
3814 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3815 req.vnic_id =
3816 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3817
3818 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3819 if (rc)
3820 return rc;
3821 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3822 }
3823 return rc;
3824 }
3825
3826 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3827 {
3828 u16 i;
3829
3830 for (i = 0; i < bp->nr_vnics; i++)
3831 bnxt_hwrm_vnic_free_one(bp, i);
3832 }
3833
3834 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3835 unsigned int start_rx_ring_idx,
3836 unsigned int nr_rings)
3837 {
3838 int rc = 0;
3839 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3840 struct hwrm_vnic_alloc_input req = {0};
3841 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3842
3843 /* map ring groups to this vnic */
3844 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3845 grp_idx = bp->rx_ring[i].bnapi->index;
3846 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3847 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3848 j, nr_rings);
3849 break;
3850 }
3851 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3852 bp->grp_info[grp_idx].fw_grp_id;
3853 }
3854
3855 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3856 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3857 if (vnic_id == 0)
3858 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3859
3860 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3861
3862 mutex_lock(&bp->hwrm_cmd_lock);
3863 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3864 if (!rc)
3865 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3866 mutex_unlock(&bp->hwrm_cmd_lock);
3867 return rc;
3868 }
3869
3870 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
3871 {
3872 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3873 struct hwrm_vnic_qcaps_input req = {0};
3874 int rc;
3875
3876 if (bp->hwrm_spec_code < 0x10600)
3877 return 0;
3878
3879 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
3880 mutex_lock(&bp->hwrm_cmd_lock);
3881 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3882 if (!rc) {
3883 if (resp->flags &
3884 cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
3885 bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
3886 }
3887 mutex_unlock(&bp->hwrm_cmd_lock);
3888 return rc;
3889 }
3890
3891 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3892 {
3893 u16 i;
3894 u32 rc = 0;
3895
3896 mutex_lock(&bp->hwrm_cmd_lock);
3897 for (i = 0; i < bp->rx_nr_rings; i++) {
3898 struct hwrm_ring_grp_alloc_input req = {0};
3899 struct hwrm_ring_grp_alloc_output *resp =
3900 bp->hwrm_cmd_resp_addr;
3901 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3902
3903 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3904
3905 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3906 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3907 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3908 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3909
3910 rc = _hwrm_send_message(bp, &req, sizeof(req),
3911 HWRM_CMD_TIMEOUT);
3912 if (rc)
3913 break;
3914
3915 bp->grp_info[grp_idx].fw_grp_id =
3916 le32_to_cpu(resp->ring_group_id);
3917 }
3918 mutex_unlock(&bp->hwrm_cmd_lock);
3919 return rc;
3920 }
3921
3922 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3923 {
3924 u16 i;
3925 u32 rc = 0;
3926 struct hwrm_ring_grp_free_input req = {0};
3927
3928 if (!bp->grp_info)
3929 return 0;
3930
3931 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3932
3933 mutex_lock(&bp->hwrm_cmd_lock);
3934 for (i = 0; i < bp->cp_nr_rings; i++) {
3935 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3936 continue;
3937 req.ring_group_id =
3938 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3939
3940 rc = _hwrm_send_message(bp, &req, sizeof(req),
3941 HWRM_CMD_TIMEOUT);
3942 if (rc)
3943 break;
3944 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3945 }
3946 mutex_unlock(&bp->hwrm_cmd_lock);
3947 return rc;
3948 }
3949
3950 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3951 struct bnxt_ring_struct *ring,
3952 u32 ring_type, u32 map_index,
3953 u32 stats_ctx_id)
3954 {
3955 int rc = 0, err = 0;
3956 struct hwrm_ring_alloc_input req = {0};
3957 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3958 u16 ring_id;
3959
3960 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3961
3962 req.enables = 0;
3963 if (ring->nr_pages > 1) {
3964 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3965 /* Page size is in log2 units */
3966 req.page_size = BNXT_PAGE_SHIFT;
3967 req.page_tbl_depth = 1;
3968 } else {
3969 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3970 }
3971 req.fbo = 0;
3972 /* Association of ring index with doorbell index and MSIX number */
3973 req.logical_id = cpu_to_le16(map_index);
3974
3975 switch (ring_type) {
3976 case HWRM_RING_ALLOC_TX:
3977 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3978 /* Association of transmit ring with completion ring */
3979 req.cmpl_ring_id =
3980 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3981 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3982 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3983 req.queue_id = cpu_to_le16(ring->queue_id);
3984 break;
3985 case HWRM_RING_ALLOC_RX:
3986 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3987 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3988 break;
3989 case HWRM_RING_ALLOC_AGG:
3990 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3991 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3992 break;
3993 case HWRM_RING_ALLOC_CMPL:
3994 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
3995 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3996 if (bp->flags & BNXT_FLAG_USING_MSIX)
3997 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3998 break;
3999 default:
4000 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4001 ring_type);
4002 return -1;
4003 }
4004
4005 mutex_lock(&bp->hwrm_cmd_lock);
4006 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4007 err = le16_to_cpu(resp->error_code);
4008 ring_id = le16_to_cpu(resp->ring_id);
4009 mutex_unlock(&bp->hwrm_cmd_lock);
4010
4011 if (rc || err) {
4012 switch (ring_type) {
4013 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4014 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4015 rc, err);
4016 return -1;
4017
4018 case RING_FREE_REQ_RING_TYPE_RX:
4019 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4020 rc, err);
4021 return -1;
4022
4023 case RING_FREE_REQ_RING_TYPE_TX:
4024 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4025 rc, err);
4026 return -1;
4027
4028 default:
4029 netdev_err(bp->dev, "Invalid ring\n");
4030 return -1;
4031 }
4032 }
4033 ring->fw_ring_id = ring_id;
4034 return rc;
4035 }
4036
4037 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4038 {
4039 int rc;
4040
4041 if (BNXT_PF(bp)) {
4042 struct hwrm_func_cfg_input req = {0};
4043
4044 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4045 req.fid = cpu_to_le16(0xffff);
4046 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4047 req.async_event_cr = cpu_to_le16(idx);
4048 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4049 } else {
4050 struct hwrm_func_vf_cfg_input req = {0};
4051
4052 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4053 req.enables =
4054 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4055 req.async_event_cr = cpu_to_le16(idx);
4056 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4057 }
4058 return rc;
4059 }
4060
4061 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4062 {
4063 int i, rc = 0;
4064
4065 for (i = 0; i < bp->cp_nr_rings; i++) {
4066 struct bnxt_napi *bnapi = bp->bnapi[i];
4067 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4068 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4069
4070 cpr->cp_doorbell = bp->bar1 + i * 0x80;
4071 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4072 INVALID_STATS_CTX_ID);
4073 if (rc)
4074 goto err_out;
4075 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4076 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4077
4078 if (!i) {
4079 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4080 if (rc)
4081 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4082 }
4083 }
4084
4085 for (i = 0; i < bp->tx_nr_rings; i++) {
4086 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4087 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4088 u32 map_idx = txr->bnapi->index;
4089 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4090
4091 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4092 map_idx, fw_stats_ctx);
4093 if (rc)
4094 goto err_out;
4095 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4096 }
4097
4098 for (i = 0; i < bp->rx_nr_rings; i++) {
4099 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4100 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4101 u32 map_idx = rxr->bnapi->index;
4102
4103 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4104 map_idx, INVALID_STATS_CTX_ID);
4105 if (rc)
4106 goto err_out;
4107 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4108 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4109 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4110 }
4111
4112 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4113 for (i = 0; i < bp->rx_nr_rings; i++) {
4114 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4115 struct bnxt_ring_struct *ring =
4116 &rxr->rx_agg_ring_struct;
4117 u32 grp_idx = rxr->bnapi->index;
4118 u32 map_idx = grp_idx + bp->rx_nr_rings;
4119
4120 rc = hwrm_ring_alloc_send_msg(bp, ring,
4121 HWRM_RING_ALLOC_AGG,
4122 map_idx,
4123 INVALID_STATS_CTX_ID);
4124 if (rc)
4125 goto err_out;
4126
4127 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4128 writel(DB_KEY_RX | rxr->rx_agg_prod,
4129 rxr->rx_agg_doorbell);
4130 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4131 }
4132 }
4133 err_out:
4134 return rc;
4135 }
4136
4137 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4138 struct bnxt_ring_struct *ring,
4139 u32 ring_type, int cmpl_ring_id)
4140 {
4141 int rc;
4142 struct hwrm_ring_free_input req = {0};
4143 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4144 u16 error_code;
4145
4146 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4147 req.ring_type = ring_type;
4148 req.ring_id = cpu_to_le16(ring->fw_ring_id);
4149
4150 mutex_lock(&bp->hwrm_cmd_lock);
4151 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4152 error_code = le16_to_cpu(resp->error_code);
4153 mutex_unlock(&bp->hwrm_cmd_lock);
4154
4155 if (rc || error_code) {
4156 switch (ring_type) {
4157 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4158 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4159 rc);
4160 return rc;
4161 case RING_FREE_REQ_RING_TYPE_RX:
4162 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4163 rc);
4164 return rc;
4165 case RING_FREE_REQ_RING_TYPE_TX:
4166 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4167 rc);
4168 return rc;
4169 default:
4170 netdev_err(bp->dev, "Invalid ring\n");
4171 return -1;
4172 }
4173 }
4174 return 0;
4175 }
4176
4177 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4178 {
4179 int i;
4180
4181 if (!bp->bnapi)
4182 return;
4183
4184 for (i = 0; i < bp->tx_nr_rings; i++) {
4185 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4186 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4187 u32 grp_idx = txr->bnapi->index;
4188 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4189
4190 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4191 hwrm_ring_free_send_msg(bp, ring,
4192 RING_FREE_REQ_RING_TYPE_TX,
4193 close_path ? cmpl_ring_id :
4194 INVALID_HW_RING_ID);
4195 ring->fw_ring_id = INVALID_HW_RING_ID;
4196 }
4197 }
4198
4199 for (i = 0; i < bp->rx_nr_rings; i++) {
4200 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4201 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4202 u32 grp_idx = rxr->bnapi->index;
4203 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4204
4205 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4206 hwrm_ring_free_send_msg(bp, ring,
4207 RING_FREE_REQ_RING_TYPE_RX,
4208 close_path ? cmpl_ring_id :
4209 INVALID_HW_RING_ID);
4210 ring->fw_ring_id = INVALID_HW_RING_ID;
4211 bp->grp_info[grp_idx].rx_fw_ring_id =
4212 INVALID_HW_RING_ID;
4213 }
4214 }
4215
4216 for (i = 0; i < bp->rx_nr_rings; i++) {
4217 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4218 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4219 u32 grp_idx = rxr->bnapi->index;
4220 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4221
4222 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4223 hwrm_ring_free_send_msg(bp, ring,
4224 RING_FREE_REQ_RING_TYPE_RX,
4225 close_path ? cmpl_ring_id :
4226 INVALID_HW_RING_ID);
4227 ring->fw_ring_id = INVALID_HW_RING_ID;
4228 bp->grp_info[grp_idx].agg_fw_ring_id =
4229 INVALID_HW_RING_ID;
4230 }
4231 }
4232
4233 /* The completion rings are about to be freed. After that the
4234 * IRQ doorbell will not work anymore. So we need to disable
4235 * IRQ here.
4236 */
4237 bnxt_disable_int_sync(bp);
4238
4239 for (i = 0; i < bp->cp_nr_rings; i++) {
4240 struct bnxt_napi *bnapi = bp->bnapi[i];
4241 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4242 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4243
4244 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4245 hwrm_ring_free_send_msg(bp, ring,
4246 RING_FREE_REQ_RING_TYPE_L2_CMPL,
4247 INVALID_HW_RING_ID);
4248 ring->fw_ring_id = INVALID_HW_RING_ID;
4249 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4250 }
4251 }
4252 }
4253
4254 /* Caller must hold bp->hwrm_cmd_lock */
4255 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4256 {
4257 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4258 struct hwrm_func_qcfg_input req = {0};
4259 int rc;
4260
4261 if (bp->hwrm_spec_code < 0x10601)
4262 return 0;
4263
4264 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4265 req.fid = cpu_to_le16(fid);
4266 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4267 if (!rc)
4268 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4269
4270 return rc;
4271 }
4272
4273 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4274 {
4275 struct hwrm_func_cfg_input req = {0};
4276 int rc;
4277
4278 if (bp->hwrm_spec_code < 0x10601)
4279 return 0;
4280
4281 if (BNXT_VF(bp))
4282 return 0;
4283
4284 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4285 req.fid = cpu_to_le16(0xffff);
4286 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4287 req.num_tx_rings = cpu_to_le16(*tx_rings);
4288 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4289 if (rc)
4290 return rc;
4291
4292 mutex_lock(&bp->hwrm_cmd_lock);
4293 rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4294 mutex_unlock(&bp->hwrm_cmd_lock);
4295 return rc;
4296 }
4297
4298 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
4299 u32 buf_tmrs, u16 flags,
4300 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4301 {
4302 req->flags = cpu_to_le16(flags);
4303 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
4304 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
4305 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
4306 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
4307 /* Minimum time between 2 interrupts set to buf_tmr x 2 */
4308 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
4309 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
4310 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
4311 }
4312
4313 int bnxt_hwrm_set_coal(struct bnxt *bp)
4314 {
4315 int i, rc = 0;
4316 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4317 req_tx = {0}, *req;
4318 u16 max_buf, max_buf_irq;
4319 u16 buf_tmr, buf_tmr_irq;
4320 u32 flags;
4321
4322 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4323 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4324 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4325 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4326
4327 /* Each rx completion (2 records) should be DMAed immediately.
4328 * DMA 1/4 of the completion buffers at a time.
4329 */
4330 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4331 /* max_buf must not be zero */
4332 max_buf = clamp_t(u16, max_buf, 1, 63);
4333 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4334 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4335 /* buf timer set to 1/4 of interrupt timer */
4336 buf_tmr = max_t(u16, buf_tmr / 4, 1);
4337 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4338 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4339
4340 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4341
4342 /* RING_IDLE generates more IRQs for lower latency. Enable it only
4343 * if coal_ticks is less than 25 us.
4344 */
4345 if (bp->rx_coal_ticks < 25)
4346 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4347
4348 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4349 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4350
4351 /* max_buf must not be zero */
4352 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4353 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4354 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4355 /* buf timer set to 1/4 of interrupt timer */
4356 buf_tmr = max_t(u16, buf_tmr / 4, 1);
4357 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4358 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4359
4360 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4361 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4362 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4363
4364 mutex_lock(&bp->hwrm_cmd_lock);
4365 for (i = 0; i < bp->cp_nr_rings; i++) {
4366 struct bnxt_napi *bnapi = bp->bnapi[i];
4367
4368 req = &req_rx;
4369 if (!bnapi->rx_ring)
4370 req = &req_tx;
4371 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4372
4373 rc = _hwrm_send_message(bp, req, sizeof(*req),
4374 HWRM_CMD_TIMEOUT);
4375 if (rc)
4376 break;
4377 }
4378 mutex_unlock(&bp->hwrm_cmd_lock);
4379 return rc;
4380 }
4381
4382 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4383 {
4384 int rc = 0, i;
4385 struct hwrm_stat_ctx_free_input req = {0};
4386
4387 if (!bp->bnapi)
4388 return 0;
4389
4390 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4391 return 0;
4392
4393 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4394
4395 mutex_lock(&bp->hwrm_cmd_lock);
4396 for (i = 0; i < bp->cp_nr_rings; i++) {
4397 struct bnxt_napi *bnapi = bp->bnapi[i];
4398 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4399
4400 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4401 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4402
4403 rc = _hwrm_send_message(bp, &req, sizeof(req),
4404 HWRM_CMD_TIMEOUT);
4405 if (rc)
4406 break;
4407
4408 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4409 }
4410 }
4411 mutex_unlock(&bp->hwrm_cmd_lock);
4412 return rc;
4413 }
4414
4415 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4416 {
4417 int rc = 0, i;
4418 struct hwrm_stat_ctx_alloc_input req = {0};
4419 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4420
4421 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4422 return 0;
4423
4424 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4425
4426 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4427
4428 mutex_lock(&bp->hwrm_cmd_lock);
4429 for (i = 0; i < bp->cp_nr_rings; i++) {
4430 struct bnxt_napi *bnapi = bp->bnapi[i];
4431 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4432
4433 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4434
4435 rc = _hwrm_send_message(bp, &req, sizeof(req),
4436 HWRM_CMD_TIMEOUT);
4437 if (rc)
4438 break;
4439
4440 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4441
4442 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4443 }
4444 mutex_unlock(&bp->hwrm_cmd_lock);
4445 return rc;
4446 }
4447
4448 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4449 {
4450 struct hwrm_func_qcfg_input req = {0};
4451 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4452 int rc;
4453
4454 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4455 req.fid = cpu_to_le16(0xffff);
4456 mutex_lock(&bp->hwrm_cmd_lock);
4457 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4458 if (rc)
4459 goto func_qcfg_exit;
4460
4461 #ifdef CONFIG_BNXT_SRIOV
4462 if (BNXT_VF(bp)) {
4463 struct bnxt_vf_info *vf = &bp->vf;
4464
4465 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4466 }
4467 #endif
4468 switch (resp->port_partition_type) {
4469 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4470 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4471 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4472 bp->port_partition_type = resp->port_partition_type;
4473 break;
4474 }
4475
4476 func_qcfg_exit:
4477 mutex_unlock(&bp->hwrm_cmd_lock);
4478 return rc;
4479 }
4480
4481 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4482 {
4483 int rc = 0;
4484 struct hwrm_func_qcaps_input req = {0};
4485 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4486
4487 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4488 req.fid = cpu_to_le16(0xffff);
4489
4490 mutex_lock(&bp->hwrm_cmd_lock);
4491 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4492 if (rc)
4493 goto hwrm_func_qcaps_exit;
4494
4495 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4496 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4497 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4498 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4499
4500 bp->tx_push_thresh = 0;
4501 if (resp->flags &
4502 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4503 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4504
4505 if (BNXT_PF(bp)) {
4506 struct bnxt_pf_info *pf = &bp->pf;
4507
4508 pf->fw_fid = le16_to_cpu(resp->fid);
4509 pf->port_id = le16_to_cpu(resp->port_id);
4510 bp->dev->dev_port = pf->port_id;
4511 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4512 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4513 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4514 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4515 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4516 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4517 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4518 if (!pf->max_hw_ring_grps)
4519 pf->max_hw_ring_grps = pf->max_tx_rings;
4520 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4521 pf->max_vnics = le16_to_cpu(resp->max_vnics);
4522 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4523 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4524 pf->max_vfs = le16_to_cpu(resp->max_vfs);
4525 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4526 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4527 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4528 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4529 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4530 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4531 } else {
4532 #ifdef CONFIG_BNXT_SRIOV
4533 struct bnxt_vf_info *vf = &bp->vf;
4534
4535 vf->fw_fid = le16_to_cpu(resp->fid);
4536
4537 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4538 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4539 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4540 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4541 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4542 if (!vf->max_hw_ring_grps)
4543 vf->max_hw_ring_grps = vf->max_tx_rings;
4544 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4545 vf->max_vnics = le16_to_cpu(resp->max_vnics);
4546 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4547
4548 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4549 mutex_unlock(&bp->hwrm_cmd_lock);
4550
4551 if (is_valid_ether_addr(vf->mac_addr)) {
4552 /* overwrite netdev dev_adr with admin VF MAC */
4553 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4554 } else {
4555 eth_hw_addr_random(bp->dev);
4556 rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
4557 }
4558 return rc;
4559 #endif
4560 }
4561
4562 hwrm_func_qcaps_exit:
4563 mutex_unlock(&bp->hwrm_cmd_lock);
4564 return rc;
4565 }
4566
4567 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4568 {
4569 struct hwrm_func_reset_input req = {0};
4570
4571 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4572 req.enables = 0;
4573
4574 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4575 }
4576
4577 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4578 {
4579 int rc = 0;
4580 struct hwrm_queue_qportcfg_input req = {0};
4581 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4582 u8 i, *qptr;
4583
4584 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4585
4586 mutex_lock(&bp->hwrm_cmd_lock);
4587 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4588 if (rc)
4589 goto qportcfg_exit;
4590
4591 if (!resp->max_configurable_queues) {
4592 rc = -EINVAL;
4593 goto qportcfg_exit;
4594 }
4595 bp->max_tc = resp->max_configurable_queues;
4596 bp->max_lltc = resp->max_configurable_lossless_queues;
4597 if (bp->max_tc > BNXT_MAX_QUEUE)
4598 bp->max_tc = BNXT_MAX_QUEUE;
4599
4600 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4601 bp->max_tc = 1;
4602
4603 if (bp->max_lltc > bp->max_tc)
4604 bp->max_lltc = bp->max_tc;
4605
4606 qptr = &resp->queue_id0;
4607 for (i = 0; i < bp->max_tc; i++) {
4608 bp->q_info[i].queue_id = *qptr++;
4609 bp->q_info[i].queue_profile = *qptr++;
4610 }
4611
4612 qportcfg_exit:
4613 mutex_unlock(&bp->hwrm_cmd_lock);
4614 return rc;
4615 }
4616
4617 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4618 {
4619 int rc;
4620 struct hwrm_ver_get_input req = {0};
4621 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4622
4623 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4624 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4625 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4626 req.hwrm_intf_min = HWRM_VERSION_MINOR;
4627 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4628 mutex_lock(&bp->hwrm_cmd_lock);
4629 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4630 if (rc)
4631 goto hwrm_ver_get_exit;
4632
4633 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4634
4635 bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4636 resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4637 if (resp->hwrm_intf_maj < 1) {
4638 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4639 resp->hwrm_intf_maj, resp->hwrm_intf_min,
4640 resp->hwrm_intf_upd);
4641 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4642 }
4643 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4644 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4645 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4646
4647 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4648 if (!bp->hwrm_cmd_timeout)
4649 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4650
4651 if (resp->hwrm_intf_maj >= 1)
4652 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4653
4654 bp->chip_num = le16_to_cpu(resp->chip_num);
4655 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4656 !resp->chip_metal)
4657 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4658
4659 hwrm_ver_get_exit:
4660 mutex_unlock(&bp->hwrm_cmd_lock);
4661 return rc;
4662 }
4663
4664 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4665 {
4666 #if IS_ENABLED(CONFIG_RTC_LIB)
4667 struct hwrm_fw_set_time_input req = {0};
4668 struct rtc_time tm;
4669 struct timeval tv;
4670
4671 if (bp->hwrm_spec_code < 0x10400)
4672 return -EOPNOTSUPP;
4673
4674 do_gettimeofday(&tv);
4675 rtc_time_to_tm(tv.tv_sec, &tm);
4676 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4677 req.year = cpu_to_le16(1900 + tm.tm_year);
4678 req.month = 1 + tm.tm_mon;
4679 req.day = tm.tm_mday;
4680 req.hour = tm.tm_hour;
4681 req.minute = tm.tm_min;
4682 req.second = tm.tm_sec;
4683 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4684 #else
4685 return -EOPNOTSUPP;
4686 #endif
4687 }
4688
4689 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4690 {
4691 int rc;
4692 struct bnxt_pf_info *pf = &bp->pf;
4693 struct hwrm_port_qstats_input req = {0};
4694
4695 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4696 return 0;
4697
4698 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4699 req.port_id = cpu_to_le16(pf->port_id);
4700 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4701 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4702 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4703 return rc;
4704 }
4705
4706 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4707 {
4708 if (bp->vxlan_port_cnt) {
4709 bnxt_hwrm_tunnel_dst_port_free(
4710 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4711 }
4712 bp->vxlan_port_cnt = 0;
4713 if (bp->nge_port_cnt) {
4714 bnxt_hwrm_tunnel_dst_port_free(
4715 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4716 }
4717 bp->nge_port_cnt = 0;
4718 }
4719
4720 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4721 {
4722 int rc, i;
4723 u32 tpa_flags = 0;
4724
4725 if (set_tpa)
4726 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4727 for (i = 0; i < bp->nr_vnics; i++) {
4728 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4729 if (rc) {
4730 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4731 rc, i);
4732 return rc;
4733 }
4734 }
4735 return 0;
4736 }
4737
4738 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4739 {
4740 int i;
4741
4742 for (i = 0; i < bp->nr_vnics; i++)
4743 bnxt_hwrm_vnic_set_rss(bp, i, false);
4744 }
4745
4746 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4747 bool irq_re_init)
4748 {
4749 if (bp->vnic_info) {
4750 bnxt_hwrm_clear_vnic_filter(bp);
4751 /* clear all RSS setting before free vnic ctx */
4752 bnxt_hwrm_clear_vnic_rss(bp);
4753 bnxt_hwrm_vnic_ctx_free(bp);
4754 /* before free the vnic, undo the vnic tpa settings */
4755 if (bp->flags & BNXT_FLAG_TPA)
4756 bnxt_set_tpa(bp, false);
4757 bnxt_hwrm_vnic_free(bp);
4758 }
4759 bnxt_hwrm_ring_free(bp, close_path);
4760 bnxt_hwrm_ring_grp_free(bp);
4761 if (irq_re_init) {
4762 bnxt_hwrm_stat_ctx_free(bp);
4763 bnxt_hwrm_free_tunnel_ports(bp);
4764 }
4765 }
4766
4767 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4768 {
4769 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4770 int rc;
4771
4772 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
4773 goto skip_rss_ctx;
4774
4775 /* allocate context for vnic */
4776 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4777 if (rc) {
4778 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4779 vnic_id, rc);
4780 goto vnic_setup_err;
4781 }
4782 bp->rsscos_nr_ctxs++;
4783
4784 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4785 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4786 if (rc) {
4787 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4788 vnic_id, rc);
4789 goto vnic_setup_err;
4790 }
4791 bp->rsscos_nr_ctxs++;
4792 }
4793
4794 skip_rss_ctx:
4795 /* configure default vnic, ring grp */
4796 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4797 if (rc) {
4798 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4799 vnic_id, rc);
4800 goto vnic_setup_err;
4801 }
4802
4803 /* Enable RSS hashing on vnic */
4804 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4805 if (rc) {
4806 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4807 vnic_id, rc);
4808 goto vnic_setup_err;
4809 }
4810
4811 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4812 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4813 if (rc) {
4814 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4815 vnic_id, rc);
4816 }
4817 }
4818
4819 vnic_setup_err:
4820 return rc;
4821 }
4822
4823 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4824 {
4825 #ifdef CONFIG_RFS_ACCEL
4826 int i, rc = 0;
4827
4828 for (i = 0; i < bp->rx_nr_rings; i++) {
4829 struct bnxt_vnic_info *vnic;
4830 u16 vnic_id = i + 1;
4831 u16 ring_id = i;
4832
4833 if (vnic_id >= bp->nr_vnics)
4834 break;
4835
4836 vnic = &bp->vnic_info[vnic_id];
4837 vnic->flags |= BNXT_VNIC_RFS_FLAG;
4838 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
4839 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
4840 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4841 if (rc) {
4842 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4843 vnic_id, rc);
4844 break;
4845 }
4846 rc = bnxt_setup_vnic(bp, vnic_id);
4847 if (rc)
4848 break;
4849 }
4850 return rc;
4851 #else
4852 return 0;
4853 #endif
4854 }
4855
4856 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4857 static bool bnxt_promisc_ok(struct bnxt *bp)
4858 {
4859 #ifdef CONFIG_BNXT_SRIOV
4860 if (BNXT_VF(bp) && !bp->vf.vlan)
4861 return false;
4862 #endif
4863 return true;
4864 }
4865
4866 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4867 {
4868 unsigned int rc = 0;
4869
4870 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4871 if (rc) {
4872 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4873 rc);
4874 return rc;
4875 }
4876
4877 rc = bnxt_hwrm_vnic_cfg(bp, 1);
4878 if (rc) {
4879 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4880 rc);
4881 return rc;
4882 }
4883 return rc;
4884 }
4885
4886 static int bnxt_cfg_rx_mode(struct bnxt *);
4887 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4888
4889 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4890 {
4891 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4892 int rc = 0;
4893 unsigned int rx_nr_rings = bp->rx_nr_rings;
4894
4895 if (irq_re_init) {
4896 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4897 if (rc) {
4898 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4899 rc);
4900 goto err_out;
4901 }
4902 }
4903
4904 rc = bnxt_hwrm_ring_alloc(bp);
4905 if (rc) {
4906 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4907 goto err_out;
4908 }
4909
4910 rc = bnxt_hwrm_ring_grp_alloc(bp);
4911 if (rc) {
4912 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4913 goto err_out;
4914 }
4915
4916 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4917 rx_nr_rings--;
4918
4919 /* default vnic 0 */
4920 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4921 if (rc) {
4922 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4923 goto err_out;
4924 }
4925
4926 rc = bnxt_setup_vnic(bp, 0);
4927 if (rc)
4928 goto err_out;
4929
4930 if (bp->flags & BNXT_FLAG_RFS) {
4931 rc = bnxt_alloc_rfs_vnics(bp);
4932 if (rc)
4933 goto err_out;
4934 }
4935
4936 if (bp->flags & BNXT_FLAG_TPA) {
4937 rc = bnxt_set_tpa(bp, true);
4938 if (rc)
4939 goto err_out;
4940 }
4941
4942 if (BNXT_VF(bp))
4943 bnxt_update_vf_mac(bp);
4944
4945 /* Filter for default vnic 0 */
4946 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4947 if (rc) {
4948 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4949 goto err_out;
4950 }
4951 vnic->uc_filter_count = 1;
4952
4953 vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4954
4955 if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4956 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4957
4958 if (bp->dev->flags & IFF_ALLMULTI) {
4959 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4960 vnic->mc_list_count = 0;
4961 } else {
4962 u32 mask = 0;
4963
4964 bnxt_mc_list_updated(bp, &mask);
4965 vnic->rx_mask |= mask;
4966 }
4967
4968 rc = bnxt_cfg_rx_mode(bp);
4969 if (rc)
4970 goto err_out;
4971
4972 rc = bnxt_hwrm_set_coal(bp);
4973 if (rc)
4974 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4975 rc);
4976
4977 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4978 rc = bnxt_setup_nitroa0_vnic(bp);
4979 if (rc)
4980 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
4981 rc);
4982 }
4983
4984 if (BNXT_VF(bp)) {
4985 bnxt_hwrm_func_qcfg(bp);
4986 netdev_update_features(bp->dev);
4987 }
4988
4989 return 0;
4990
4991 err_out:
4992 bnxt_hwrm_resource_free(bp, 0, true);
4993
4994 return rc;
4995 }
4996
4997 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4998 {
4999 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5000 return 0;
5001 }
5002
5003 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5004 {
5005 bnxt_init_rx_rings(bp);
5006 bnxt_init_tx_rings(bp);
5007 bnxt_init_ring_grps(bp, irq_re_init);
5008 bnxt_init_vnics(bp);
5009
5010 return bnxt_init_chip(bp, irq_re_init);
5011 }
5012
5013 static int bnxt_set_real_num_queues(struct bnxt *bp)
5014 {
5015 int rc;
5016 struct net_device *dev = bp->dev;
5017
5018 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5019 bp->tx_nr_rings_xdp);
5020 if (rc)
5021 return rc;
5022
5023 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5024 if (rc)
5025 return rc;
5026
5027 #ifdef CONFIG_RFS_ACCEL
5028 if (bp->flags & BNXT_FLAG_RFS)
5029 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5030 #endif
5031
5032 return rc;
5033 }
5034
5035 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5036 bool shared)
5037 {
5038 int _rx = *rx, _tx = *tx;
5039
5040 if (shared) {
5041 *rx = min_t(int, _rx, max);
5042 *tx = min_t(int, _tx, max);
5043 } else {
5044 if (max < 2)
5045 return -ENOMEM;
5046
5047 while (_rx + _tx > max) {
5048 if (_rx > _tx && _rx > 1)
5049 _rx--;
5050 else if (_tx > 1)
5051 _tx--;
5052 }
5053 *rx = _rx;
5054 *tx = _tx;
5055 }
5056 return 0;
5057 }
5058
5059 static void bnxt_setup_msix(struct bnxt *bp)
5060 {
5061 const int len = sizeof(bp->irq_tbl[0].name);
5062 struct net_device *dev = bp->dev;
5063 int tcs, i;
5064
5065 tcs = netdev_get_num_tc(dev);
5066 if (tcs > 1) {
5067 int i, off, count;
5068
5069 for (i = 0; i < tcs; i++) {
5070 count = bp->tx_nr_rings_per_tc;
5071 off = i * count;
5072 netdev_set_tc_queue(dev, i, count, off);
5073 }
5074 }
5075
5076 for (i = 0; i < bp->cp_nr_rings; i++) {
5077 char *attr;
5078
5079 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5080 attr = "TxRx";
5081 else if (i < bp->rx_nr_rings)
5082 attr = "rx";
5083 else
5084 attr = "tx";
5085
5086 snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5087 i);
5088 bp->irq_tbl[i].handler = bnxt_msix;
5089 }
5090 }
5091
5092 static void bnxt_setup_inta(struct bnxt *bp)
5093 {
5094 const int len = sizeof(bp->irq_tbl[0].name);
5095
5096 if (netdev_get_num_tc(bp->dev))
5097 netdev_reset_tc(bp->dev);
5098
5099 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5100 0);
5101 bp->irq_tbl[0].handler = bnxt_inta;
5102 }
5103
5104 static int bnxt_setup_int_mode(struct bnxt *bp)
5105 {
5106 int rc;
5107
5108 if (bp->flags & BNXT_FLAG_USING_MSIX)
5109 bnxt_setup_msix(bp);
5110 else
5111 bnxt_setup_inta(bp);
5112
5113 rc = bnxt_set_real_num_queues(bp);
5114 return rc;
5115 }
5116
5117 #ifdef CONFIG_RFS_ACCEL
5118 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5119 {
5120 #if defined(CONFIG_BNXT_SRIOV)
5121 if (BNXT_VF(bp))
5122 return bp->vf.max_rsscos_ctxs;
5123 #endif
5124 return bp->pf.max_rsscos_ctxs;
5125 }
5126
5127 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5128 {
5129 #if defined(CONFIG_BNXT_SRIOV)
5130 if (BNXT_VF(bp))
5131 return bp->vf.max_vnics;
5132 #endif
5133 return bp->pf.max_vnics;
5134 }
5135 #endif
5136
5137 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5138 {
5139 #if defined(CONFIG_BNXT_SRIOV)
5140 if (BNXT_VF(bp))
5141 return bp->vf.max_stat_ctxs;
5142 #endif
5143 return bp->pf.max_stat_ctxs;
5144 }
5145
5146 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5147 {
5148 #if defined(CONFIG_BNXT_SRIOV)
5149 if (BNXT_VF(bp))
5150 bp->vf.max_stat_ctxs = max;
5151 else
5152 #endif
5153 bp->pf.max_stat_ctxs = max;
5154 }
5155
5156 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5157 {
5158 #if defined(CONFIG_BNXT_SRIOV)
5159 if (BNXT_VF(bp))
5160 return bp->vf.max_cp_rings;
5161 #endif
5162 return bp->pf.max_cp_rings;
5163 }
5164
5165 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5166 {
5167 #if defined(CONFIG_BNXT_SRIOV)
5168 if (BNXT_VF(bp))
5169 bp->vf.max_cp_rings = max;
5170 else
5171 #endif
5172 bp->pf.max_cp_rings = max;
5173 }
5174
5175 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5176 {
5177 #if defined(CONFIG_BNXT_SRIOV)
5178 if (BNXT_VF(bp))
5179 return bp->vf.max_irqs;
5180 #endif
5181 return bp->pf.max_irqs;
5182 }
5183
5184 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5185 {
5186 #if defined(CONFIG_BNXT_SRIOV)
5187 if (BNXT_VF(bp))
5188 bp->vf.max_irqs = max_irqs;
5189 else
5190 #endif
5191 bp->pf.max_irqs = max_irqs;
5192 }
5193
5194 static int bnxt_init_msix(struct bnxt *bp)
5195 {
5196 int i, total_vecs, rc = 0, min = 1;
5197 struct msix_entry *msix_ent;
5198
5199 total_vecs = bnxt_get_max_func_irqs(bp);
5200 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5201 if (!msix_ent)
5202 return -ENOMEM;
5203
5204 for (i = 0; i < total_vecs; i++) {
5205 msix_ent[i].entry = i;
5206 msix_ent[i].vector = 0;
5207 }
5208
5209 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5210 min = 2;
5211
5212 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5213 if (total_vecs < 0) {
5214 rc = -ENODEV;
5215 goto msix_setup_exit;
5216 }
5217
5218 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5219 if (bp->irq_tbl) {
5220 for (i = 0; i < total_vecs; i++)
5221 bp->irq_tbl[i].vector = msix_ent[i].vector;
5222
5223 bp->total_irqs = total_vecs;
5224 /* Trim rings based upon num of vectors allocated */
5225 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5226 total_vecs, min == 1);
5227 if (rc)
5228 goto msix_setup_exit;
5229
5230 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5231 bp->cp_nr_rings = (min == 1) ?
5232 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5233 bp->tx_nr_rings + bp->rx_nr_rings;
5234
5235 } else {
5236 rc = -ENOMEM;
5237 goto msix_setup_exit;
5238 }
5239 bp->flags |= BNXT_FLAG_USING_MSIX;
5240 kfree(msix_ent);
5241 return 0;
5242
5243 msix_setup_exit:
5244 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5245 kfree(bp->irq_tbl);
5246 bp->irq_tbl = NULL;
5247 pci_disable_msix(bp->pdev);
5248 kfree(msix_ent);
5249 return rc;
5250 }
5251
5252 static int bnxt_init_inta(struct bnxt *bp)
5253 {
5254 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5255 if (!bp->irq_tbl)
5256 return -ENOMEM;
5257
5258 bp->total_irqs = 1;
5259 bp->rx_nr_rings = 1;
5260 bp->tx_nr_rings = 1;
5261 bp->cp_nr_rings = 1;
5262 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5263 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5264 bp->irq_tbl[0].vector = bp->pdev->irq;
5265 return 0;
5266 }
5267
5268 static int bnxt_init_int_mode(struct bnxt *bp)
5269 {
5270 int rc = 0;
5271
5272 if (bp->flags & BNXT_FLAG_MSIX_CAP)
5273 rc = bnxt_init_msix(bp);
5274
5275 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5276 /* fallback to INTA */
5277 rc = bnxt_init_inta(bp);
5278 }
5279 return rc;
5280 }
5281
5282 static void bnxt_clear_int_mode(struct bnxt *bp)
5283 {
5284 if (bp->flags & BNXT_FLAG_USING_MSIX)
5285 pci_disable_msix(bp->pdev);
5286
5287 kfree(bp->irq_tbl);
5288 bp->irq_tbl = NULL;
5289 bp->flags &= ~BNXT_FLAG_USING_MSIX;
5290 }
5291
5292 static void bnxt_free_irq(struct bnxt *bp)
5293 {
5294 struct bnxt_irq *irq;
5295 int i;
5296
5297 #ifdef CONFIG_RFS_ACCEL
5298 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5299 bp->dev->rx_cpu_rmap = NULL;
5300 #endif
5301 if (!bp->irq_tbl)
5302 return;
5303
5304 for (i = 0; i < bp->cp_nr_rings; i++) {
5305 irq = &bp->irq_tbl[i];
5306 if (irq->requested)
5307 free_irq(irq->vector, bp->bnapi[i]);
5308 irq->requested = 0;
5309 }
5310 }
5311
5312 static int bnxt_request_irq(struct bnxt *bp)
5313 {
5314 int i, j, rc = 0;
5315 unsigned long flags = 0;
5316 #ifdef CONFIG_RFS_ACCEL
5317 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5318 #endif
5319
5320 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5321 flags = IRQF_SHARED;
5322
5323 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5324 struct bnxt_irq *irq = &bp->irq_tbl[i];
5325 #ifdef CONFIG_RFS_ACCEL
5326 if (rmap && bp->bnapi[i]->rx_ring) {
5327 rc = irq_cpu_rmap_add(rmap, irq->vector);
5328 if (rc)
5329 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5330 j);
5331 j++;
5332 }
5333 #endif
5334 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5335 bp->bnapi[i]);
5336 if (rc)
5337 break;
5338
5339 irq->requested = 1;
5340 }
5341 return rc;
5342 }
5343
5344 static void bnxt_del_napi(struct bnxt *bp)
5345 {
5346 int i;
5347
5348 if (!bp->bnapi)
5349 return;
5350
5351 for (i = 0; i < bp->cp_nr_rings; i++) {
5352 struct bnxt_napi *bnapi = bp->bnapi[i];
5353
5354 napi_hash_del(&bnapi->napi);
5355 netif_napi_del(&bnapi->napi);
5356 }
5357 /* We called napi_hash_del() before netif_napi_del(), we need
5358 * to respect an RCU grace period before freeing napi structures.
5359 */
5360 synchronize_net();
5361 }
5362
5363 static void bnxt_init_napi(struct bnxt *bp)
5364 {
5365 int i;
5366 unsigned int cp_nr_rings = bp->cp_nr_rings;
5367 struct bnxt_napi *bnapi;
5368
5369 if (bp->flags & BNXT_FLAG_USING_MSIX) {
5370 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5371 cp_nr_rings--;
5372 for (i = 0; i < cp_nr_rings; i++) {
5373 bnapi = bp->bnapi[i];
5374 netif_napi_add(bp->dev, &bnapi->napi,
5375 bnxt_poll, 64);
5376 }
5377 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5378 bnapi = bp->bnapi[cp_nr_rings];
5379 netif_napi_add(bp->dev, &bnapi->napi,
5380 bnxt_poll_nitroa0, 64);
5381 }
5382 } else {
5383 bnapi = bp->bnapi[0];
5384 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5385 }
5386 }
5387
5388 static void bnxt_disable_napi(struct bnxt *bp)
5389 {
5390 int i;
5391
5392 if (!bp->bnapi)
5393 return;
5394
5395 for (i = 0; i < bp->cp_nr_rings; i++)
5396 napi_disable(&bp->bnapi[i]->napi);
5397 }
5398
5399 static void bnxt_enable_napi(struct bnxt *bp)
5400 {
5401 int i;
5402
5403 for (i = 0; i < bp->cp_nr_rings; i++) {
5404 bp->bnapi[i]->in_reset = false;
5405 napi_enable(&bp->bnapi[i]->napi);
5406 }
5407 }
5408
5409 void bnxt_tx_disable(struct bnxt *bp)
5410 {
5411 int i;
5412 struct bnxt_tx_ring_info *txr;
5413 struct netdev_queue *txq;
5414
5415 if (bp->tx_ring) {
5416 for (i = 0; i < bp->tx_nr_rings; i++) {
5417 txr = &bp->tx_ring[i];
5418 txq = netdev_get_tx_queue(bp->dev, i);
5419 txr->dev_state = BNXT_DEV_STATE_CLOSING;
5420 }
5421 }
5422 /* Stop all TX queues */
5423 netif_tx_disable(bp->dev);
5424 netif_carrier_off(bp->dev);
5425 }
5426
5427 void bnxt_tx_enable(struct bnxt *bp)
5428 {
5429 int i;
5430 struct bnxt_tx_ring_info *txr;
5431 struct netdev_queue *txq;
5432
5433 for (i = 0; i < bp->tx_nr_rings; i++) {
5434 txr = &bp->tx_ring[i];
5435 txq = netdev_get_tx_queue(bp->dev, i);
5436 txr->dev_state = 0;
5437 }
5438 netif_tx_wake_all_queues(bp->dev);
5439 if (bp->link_info.link_up)
5440 netif_carrier_on(bp->dev);
5441 }
5442
5443 static void bnxt_report_link(struct bnxt *bp)
5444 {
5445 if (bp->link_info.link_up) {
5446 const char *duplex;
5447 const char *flow_ctrl;
5448 u16 speed, fec;
5449
5450 netif_carrier_on(bp->dev);
5451 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5452 duplex = "full";
5453 else
5454 duplex = "half";
5455 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5456 flow_ctrl = "ON - receive & transmit";
5457 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5458 flow_ctrl = "ON - transmit";
5459 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5460 flow_ctrl = "ON - receive";
5461 else
5462 flow_ctrl = "none";
5463 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5464 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
5465 speed, duplex, flow_ctrl);
5466 if (bp->flags & BNXT_FLAG_EEE_CAP)
5467 netdev_info(bp->dev, "EEE is %s\n",
5468 bp->eee.eee_active ? "active" :
5469 "not active");
5470 fec = bp->link_info.fec_cfg;
5471 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5472 netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5473 (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5474 (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5475 (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5476 } else {
5477 netif_carrier_off(bp->dev);
5478 netdev_err(bp->dev, "NIC Link is Down\n");
5479 }
5480 }
5481
5482 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5483 {
5484 int rc = 0;
5485 struct hwrm_port_phy_qcaps_input req = {0};
5486 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5487 struct bnxt_link_info *link_info = &bp->link_info;
5488
5489 if (bp->hwrm_spec_code < 0x10201)
5490 return 0;
5491
5492 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5493
5494 mutex_lock(&bp->hwrm_cmd_lock);
5495 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5496 if (rc)
5497 goto hwrm_phy_qcaps_exit;
5498
5499 if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5500 struct ethtool_eee *eee = &bp->eee;
5501 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5502
5503 bp->flags |= BNXT_FLAG_EEE_CAP;
5504 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5505 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5506 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5507 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5508 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5509 }
5510 link_info->support_auto_speeds =
5511 le16_to_cpu(resp->supported_speeds_auto_mode);
5512
5513 hwrm_phy_qcaps_exit:
5514 mutex_unlock(&bp->hwrm_cmd_lock);
5515 return rc;
5516 }
5517
5518 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5519 {
5520 int rc = 0;
5521 struct bnxt_link_info *link_info = &bp->link_info;
5522 struct hwrm_port_phy_qcfg_input req = {0};
5523 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5524 u8 link_up = link_info->link_up;
5525 u16 diff;
5526
5527 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5528
5529 mutex_lock(&bp->hwrm_cmd_lock);
5530 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5531 if (rc) {
5532 mutex_unlock(&bp->hwrm_cmd_lock);
5533 return rc;
5534 }
5535
5536 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5537 link_info->phy_link_status = resp->link;
5538 link_info->duplex = resp->duplex;
5539 link_info->pause = resp->pause;
5540 link_info->auto_mode = resp->auto_mode;
5541 link_info->auto_pause_setting = resp->auto_pause;
5542 link_info->lp_pause = resp->link_partner_adv_pause;
5543 link_info->force_pause_setting = resp->force_pause;
5544 link_info->duplex_setting = resp->duplex;
5545 if (link_info->phy_link_status == BNXT_LINK_LINK)
5546 link_info->link_speed = le16_to_cpu(resp->link_speed);
5547 else
5548 link_info->link_speed = 0;
5549 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5550 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5551 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5552 link_info->lp_auto_link_speeds =
5553 le16_to_cpu(resp->link_partner_adv_speeds);
5554 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5555 link_info->phy_ver[0] = resp->phy_maj;
5556 link_info->phy_ver[1] = resp->phy_min;
5557 link_info->phy_ver[2] = resp->phy_bld;
5558 link_info->media_type = resp->media_type;
5559 link_info->phy_type = resp->phy_type;
5560 link_info->transceiver = resp->xcvr_pkg_type;
5561 link_info->phy_addr = resp->eee_config_phy_addr &
5562 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5563 link_info->module_status = resp->module_status;
5564
5565 if (bp->flags & BNXT_FLAG_EEE_CAP) {
5566 struct ethtool_eee *eee = &bp->eee;
5567 u16 fw_speeds;
5568
5569 eee->eee_active = 0;
5570 if (resp->eee_config_phy_addr &
5571 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5572 eee->eee_active = 1;
5573 fw_speeds = le16_to_cpu(
5574 resp->link_partner_adv_eee_link_speed_mask);
5575 eee->lp_advertised =
5576 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5577 }
5578
5579 /* Pull initial EEE config */
5580 if (!chng_link_state) {
5581 if (resp->eee_config_phy_addr &
5582 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5583 eee->eee_enabled = 1;
5584
5585 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5586 eee->advertised =
5587 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5588
5589 if (resp->eee_config_phy_addr &
5590 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5591 __le32 tmr;
5592
5593 eee->tx_lpi_enabled = 1;
5594 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5595 eee->tx_lpi_timer = le32_to_cpu(tmr) &
5596 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5597 }
5598 }
5599 }
5600
5601 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5602 if (bp->hwrm_spec_code >= 0x10504)
5603 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5604
5605 /* TODO: need to add more logic to report VF link */
5606 if (chng_link_state) {
5607 if (link_info->phy_link_status == BNXT_LINK_LINK)
5608 link_info->link_up = 1;
5609 else
5610 link_info->link_up = 0;
5611 if (link_up != link_info->link_up)
5612 bnxt_report_link(bp);
5613 } else {
5614 /* alwasy link down if not require to update link state */
5615 link_info->link_up = 0;
5616 }
5617 mutex_unlock(&bp->hwrm_cmd_lock);
5618
5619 diff = link_info->support_auto_speeds ^ link_info->advertising;
5620 if ((link_info->support_auto_speeds | diff) !=
5621 link_info->support_auto_speeds) {
5622 /* An advertised speed is no longer supported, so we need to
5623 * update the advertisement settings. Caller holds RTNL
5624 * so we can modify link settings.
5625 */
5626 link_info->advertising = link_info->support_auto_speeds;
5627 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5628 bnxt_hwrm_set_link_setting(bp, true, false);
5629 }
5630 return 0;
5631 }
5632
5633 static void bnxt_get_port_module_status(struct bnxt *bp)
5634 {
5635 struct bnxt_link_info *link_info = &bp->link_info;
5636 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5637 u8 module_status;
5638
5639 if (bnxt_update_link(bp, true))
5640 return;
5641
5642 module_status = link_info->module_status;
5643 switch (module_status) {
5644 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5645 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5646 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5647 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5648 bp->pf.port_id);
5649 if (bp->hwrm_spec_code >= 0x10201) {
5650 netdev_warn(bp->dev, "Module part number %s\n",
5651 resp->phy_vendor_partnumber);
5652 }
5653 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5654 netdev_warn(bp->dev, "TX is disabled\n");
5655 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5656 netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5657 }
5658 }
5659
5660 static void
5661 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5662 {
5663 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5664 if (bp->hwrm_spec_code >= 0x10201)
5665 req->auto_pause =
5666 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5667 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5668 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5669 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5670 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5671 req->enables |=
5672 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5673 } else {
5674 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5675 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5676 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5677 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5678 req->enables |=
5679 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5680 if (bp->hwrm_spec_code >= 0x10201) {
5681 req->auto_pause = req->force_pause;
5682 req->enables |= cpu_to_le32(
5683 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5684 }
5685 }
5686 }
5687
5688 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5689 struct hwrm_port_phy_cfg_input *req)
5690 {
5691 u8 autoneg = bp->link_info.autoneg;
5692 u16 fw_link_speed = bp->link_info.req_link_speed;
5693 u16 advertising = bp->link_info.advertising;
5694
5695 if (autoneg & BNXT_AUTONEG_SPEED) {
5696 req->auto_mode |=
5697 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5698
5699 req->enables |= cpu_to_le32(
5700 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5701 req->auto_link_speed_mask = cpu_to_le16(advertising);
5702
5703 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5704 req->flags |=
5705 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5706 } else {
5707 req->force_link_speed = cpu_to_le16(fw_link_speed);
5708 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5709 }
5710
5711 /* tell chimp that the setting takes effect immediately */
5712 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5713 }
5714
5715 int bnxt_hwrm_set_pause(struct bnxt *bp)
5716 {
5717 struct hwrm_port_phy_cfg_input req = {0};
5718 int rc;
5719
5720 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5721 bnxt_hwrm_set_pause_common(bp, &req);
5722
5723 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5724 bp->link_info.force_link_chng)
5725 bnxt_hwrm_set_link_common(bp, &req);
5726
5727 mutex_lock(&bp->hwrm_cmd_lock);
5728 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5729 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5730 /* since changing of pause setting doesn't trigger any link
5731 * change event, the driver needs to update the current pause
5732 * result upon successfully return of the phy_cfg command
5733 */
5734 bp->link_info.pause =
5735 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5736 bp->link_info.auto_pause_setting = 0;
5737 if (!bp->link_info.force_link_chng)
5738 bnxt_report_link(bp);
5739 }
5740 bp->link_info.force_link_chng = false;
5741 mutex_unlock(&bp->hwrm_cmd_lock);
5742 return rc;
5743 }
5744
5745 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5746 struct hwrm_port_phy_cfg_input *req)
5747 {
5748 struct ethtool_eee *eee = &bp->eee;
5749
5750 if (eee->eee_enabled) {
5751 u16 eee_speeds;
5752 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5753
5754 if (eee->tx_lpi_enabled)
5755 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5756 else
5757 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5758
5759 req->flags |= cpu_to_le32(flags);
5760 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5761 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5762 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5763 } else {
5764 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5765 }
5766 }
5767
5768 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5769 {
5770 struct hwrm_port_phy_cfg_input req = {0};
5771
5772 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5773 if (set_pause)
5774 bnxt_hwrm_set_pause_common(bp, &req);
5775
5776 bnxt_hwrm_set_link_common(bp, &req);
5777
5778 if (set_eee)
5779 bnxt_hwrm_set_eee(bp, &req);
5780 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5781 }
5782
5783 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5784 {
5785 struct hwrm_port_phy_cfg_input req = {0};
5786
5787 if (!BNXT_SINGLE_PF(bp))
5788 return 0;
5789
5790 if (pci_num_vf(bp->pdev))
5791 return 0;
5792
5793 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5794 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
5795 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5796 }
5797
5798 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
5799 {
5800 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5801 struct hwrm_port_led_qcaps_input req = {0};
5802 struct bnxt_pf_info *pf = &bp->pf;
5803 int rc;
5804
5805 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
5806 return 0;
5807
5808 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
5809 req.port_id = cpu_to_le16(pf->port_id);
5810 mutex_lock(&bp->hwrm_cmd_lock);
5811 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5812 if (rc) {
5813 mutex_unlock(&bp->hwrm_cmd_lock);
5814 return rc;
5815 }
5816 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
5817 int i;
5818
5819 bp->num_leds = resp->num_leds;
5820 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
5821 bp->num_leds);
5822 for (i = 0; i < bp->num_leds; i++) {
5823 struct bnxt_led_info *led = &bp->leds[i];
5824 __le16 caps = led->led_state_caps;
5825
5826 if (!led->led_group_id ||
5827 !BNXT_LED_ALT_BLINK_CAP(caps)) {
5828 bp->num_leds = 0;
5829 break;
5830 }
5831 }
5832 }
5833 mutex_unlock(&bp->hwrm_cmd_lock);
5834 return 0;
5835 }
5836
5837 static bool bnxt_eee_config_ok(struct bnxt *bp)
5838 {
5839 struct ethtool_eee *eee = &bp->eee;
5840 struct bnxt_link_info *link_info = &bp->link_info;
5841
5842 if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5843 return true;
5844
5845 if (eee->eee_enabled) {
5846 u32 advertising =
5847 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5848
5849 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5850 eee->eee_enabled = 0;
5851 return false;
5852 }
5853 if (eee->advertised & ~advertising) {
5854 eee->advertised = advertising & eee->supported;
5855 return false;
5856 }
5857 }
5858 return true;
5859 }
5860
5861 static int bnxt_update_phy_setting(struct bnxt *bp)
5862 {
5863 int rc;
5864 bool update_link = false;
5865 bool update_pause = false;
5866 bool update_eee = false;
5867 struct bnxt_link_info *link_info = &bp->link_info;
5868
5869 rc = bnxt_update_link(bp, true);
5870 if (rc) {
5871 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5872 rc);
5873 return rc;
5874 }
5875 if (!BNXT_SINGLE_PF(bp))
5876 return 0;
5877
5878 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5879 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5880 link_info->req_flow_ctrl)
5881 update_pause = true;
5882 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5883 link_info->force_pause_setting != link_info->req_flow_ctrl)
5884 update_pause = true;
5885 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5886 if (BNXT_AUTO_MODE(link_info->auto_mode))
5887 update_link = true;
5888 if (link_info->req_link_speed != link_info->force_link_speed)
5889 update_link = true;
5890 if (link_info->req_duplex != link_info->duplex_setting)
5891 update_link = true;
5892 } else {
5893 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5894 update_link = true;
5895 if (link_info->advertising != link_info->auto_link_speeds)
5896 update_link = true;
5897 }
5898
5899 /* The last close may have shutdown the link, so need to call
5900 * PHY_CFG to bring it back up.
5901 */
5902 if (!netif_carrier_ok(bp->dev))
5903 update_link = true;
5904
5905 if (!bnxt_eee_config_ok(bp))
5906 update_eee = true;
5907
5908 if (update_link)
5909 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5910 else if (update_pause)
5911 rc = bnxt_hwrm_set_pause(bp);
5912 if (rc) {
5913 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5914 rc);
5915 return rc;
5916 }
5917
5918 return rc;
5919 }
5920
5921 /* Common routine to pre-map certain register block to different GRC window.
5922 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5923 * in PF and 3 windows in VF that can be customized to map in different
5924 * register blocks.
5925 */
5926 static void bnxt_preset_reg_win(struct bnxt *bp)
5927 {
5928 if (BNXT_PF(bp)) {
5929 /* CAG registers map to GRC window #4 */
5930 writel(BNXT_CAG_REG_BASE,
5931 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5932 }
5933 }
5934
5935 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5936 {
5937 int rc = 0;
5938
5939 bnxt_preset_reg_win(bp);
5940 netif_carrier_off(bp->dev);
5941 if (irq_re_init) {
5942 rc = bnxt_setup_int_mode(bp);
5943 if (rc) {
5944 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5945 rc);
5946 return rc;
5947 }
5948 }
5949 if ((bp->flags & BNXT_FLAG_RFS) &&
5950 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5951 /* disable RFS if falling back to INTA */
5952 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5953 bp->flags &= ~BNXT_FLAG_RFS;
5954 }
5955
5956 rc = bnxt_alloc_mem(bp, irq_re_init);
5957 if (rc) {
5958 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5959 goto open_err_free_mem;
5960 }
5961
5962 if (irq_re_init) {
5963 bnxt_init_napi(bp);
5964 rc = bnxt_request_irq(bp);
5965 if (rc) {
5966 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5967 goto open_err;
5968 }
5969 }
5970
5971 bnxt_enable_napi(bp);
5972
5973 rc = bnxt_init_nic(bp, irq_re_init);
5974 if (rc) {
5975 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5976 goto open_err;
5977 }
5978
5979 if (link_re_init) {
5980 rc = bnxt_update_phy_setting(bp);
5981 if (rc)
5982 netdev_warn(bp->dev, "failed to update phy settings\n");
5983 }
5984
5985 if (irq_re_init)
5986 udp_tunnel_get_rx_info(bp->dev);
5987
5988 set_bit(BNXT_STATE_OPEN, &bp->state);
5989 bnxt_enable_int(bp);
5990 /* Enable TX queues */
5991 bnxt_tx_enable(bp);
5992 mod_timer(&bp->timer, jiffies + bp->current_interval);
5993 /* Poll link status and check for SFP+ module status */
5994 bnxt_get_port_module_status(bp);
5995
5996 return 0;
5997
5998 open_err:
5999 bnxt_disable_napi(bp);
6000 bnxt_del_napi(bp);
6001
6002 open_err_free_mem:
6003 bnxt_free_skbs(bp);
6004 bnxt_free_irq(bp);
6005 bnxt_free_mem(bp, true);
6006 return rc;
6007 }
6008
6009 /* rtnl_lock held */
6010 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6011 {
6012 int rc = 0;
6013
6014 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6015 if (rc) {
6016 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6017 dev_close(bp->dev);
6018 }
6019 return rc;
6020 }
6021
6022 static int bnxt_open(struct net_device *dev)
6023 {
6024 struct bnxt *bp = netdev_priv(dev);
6025
6026 return __bnxt_open_nic(bp, true, true);
6027 }
6028
6029 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6030 {
6031 int rc = 0;
6032
6033 #ifdef CONFIG_BNXT_SRIOV
6034 if (bp->sriov_cfg) {
6035 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6036 !bp->sriov_cfg,
6037 BNXT_SRIOV_CFG_WAIT_TMO);
6038 if (rc)
6039 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6040 }
6041 #endif
6042 /* Change device state to avoid TX queue wake up's */
6043 bnxt_tx_disable(bp);
6044
6045 clear_bit(BNXT_STATE_OPEN, &bp->state);
6046 smp_mb__after_atomic();
6047 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
6048 msleep(20);
6049
6050 /* Flush rings and and disable interrupts */
6051 bnxt_shutdown_nic(bp, irq_re_init);
6052
6053 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6054
6055 bnxt_disable_napi(bp);
6056 del_timer_sync(&bp->timer);
6057 bnxt_free_skbs(bp);
6058
6059 if (irq_re_init) {
6060 bnxt_free_irq(bp);
6061 bnxt_del_napi(bp);
6062 }
6063 bnxt_free_mem(bp, irq_re_init);
6064 return rc;
6065 }
6066
6067 static int bnxt_close(struct net_device *dev)
6068 {
6069 struct bnxt *bp = netdev_priv(dev);
6070
6071 bnxt_close_nic(bp, true, true);
6072 bnxt_hwrm_shutdown_link(bp);
6073 return 0;
6074 }
6075
6076 /* rtnl_lock held */
6077 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6078 {
6079 switch (cmd) {
6080 case SIOCGMIIPHY:
6081 /* fallthru */
6082 case SIOCGMIIREG: {
6083 if (!netif_running(dev))
6084 return -EAGAIN;
6085
6086 return 0;
6087 }
6088
6089 case SIOCSMIIREG:
6090 if (!netif_running(dev))
6091 return -EAGAIN;
6092
6093 return 0;
6094
6095 default:
6096 /* do nothing */
6097 break;
6098 }
6099 return -EOPNOTSUPP;
6100 }
6101
6102 static void
6103 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6104 {
6105 u32 i;
6106 struct bnxt *bp = netdev_priv(dev);
6107
6108 if (!bp->bnapi)
6109 return;
6110
6111 /* TODO check if we need to synchronize with bnxt_close path */
6112 for (i = 0; i < bp->cp_nr_rings; i++) {
6113 struct bnxt_napi *bnapi = bp->bnapi[i];
6114 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6115 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6116
6117 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6118 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6119 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6120
6121 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6122 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6123 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6124
6125 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6126 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6127 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6128
6129 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6130 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6131 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6132
6133 stats->rx_missed_errors +=
6134 le64_to_cpu(hw_stats->rx_discard_pkts);
6135
6136 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6137
6138 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6139 }
6140
6141 if (bp->flags & BNXT_FLAG_PORT_STATS) {
6142 struct rx_port_stats *rx = bp->hw_rx_port_stats;
6143 struct tx_port_stats *tx = bp->hw_tx_port_stats;
6144
6145 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6146 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6147 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6148 le64_to_cpu(rx->rx_ovrsz_frames) +
6149 le64_to_cpu(rx->rx_runt_frames);
6150 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6151 le64_to_cpu(rx->rx_jbr_frames);
6152 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6153 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6154 stats->tx_errors = le64_to_cpu(tx->tx_err);
6155 }
6156 }
6157
6158 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6159 {
6160 struct net_device *dev = bp->dev;
6161 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6162 struct netdev_hw_addr *ha;
6163 u8 *haddr;
6164 int mc_count = 0;
6165 bool update = false;
6166 int off = 0;
6167
6168 netdev_for_each_mc_addr(ha, dev) {
6169 if (mc_count >= BNXT_MAX_MC_ADDRS) {
6170 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6171 vnic->mc_list_count = 0;
6172 return false;
6173 }
6174 haddr = ha->addr;
6175 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6176 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6177 update = true;
6178 }
6179 off += ETH_ALEN;
6180 mc_count++;
6181 }
6182 if (mc_count)
6183 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6184
6185 if (mc_count != vnic->mc_list_count) {
6186 vnic->mc_list_count = mc_count;
6187 update = true;
6188 }
6189 return update;
6190 }
6191
6192 static bool bnxt_uc_list_updated(struct bnxt *bp)
6193 {
6194 struct net_device *dev = bp->dev;
6195 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6196 struct netdev_hw_addr *ha;
6197 int off = 0;
6198
6199 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6200 return true;
6201
6202 netdev_for_each_uc_addr(ha, dev) {
6203 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6204 return true;
6205
6206 off += ETH_ALEN;
6207 }
6208 return false;
6209 }
6210
6211 static void bnxt_set_rx_mode(struct net_device *dev)
6212 {
6213 struct bnxt *bp = netdev_priv(dev);
6214 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6215 u32 mask = vnic->rx_mask;
6216 bool mc_update = false;
6217 bool uc_update;
6218
6219 if (!netif_running(dev))
6220 return;
6221
6222 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6223 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6224 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6225
6226 if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6227 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6228
6229 uc_update = bnxt_uc_list_updated(bp);
6230
6231 if (dev->flags & IFF_ALLMULTI) {
6232 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6233 vnic->mc_list_count = 0;
6234 } else {
6235 mc_update = bnxt_mc_list_updated(bp, &mask);
6236 }
6237
6238 if (mask != vnic->rx_mask || uc_update || mc_update) {
6239 vnic->rx_mask = mask;
6240
6241 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6242 schedule_work(&bp->sp_task);
6243 }
6244 }
6245
6246 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6247 {
6248 struct net_device *dev = bp->dev;
6249 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6250 struct netdev_hw_addr *ha;
6251 int i, off = 0, rc;
6252 bool uc_update;
6253
6254 netif_addr_lock_bh(dev);
6255 uc_update = bnxt_uc_list_updated(bp);
6256 netif_addr_unlock_bh(dev);
6257
6258 if (!uc_update)
6259 goto skip_uc;
6260
6261 mutex_lock(&bp->hwrm_cmd_lock);
6262 for (i = 1; i < vnic->uc_filter_count; i++) {
6263 struct hwrm_cfa_l2_filter_free_input req = {0};
6264
6265 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6266 -1);
6267
6268 req.l2_filter_id = vnic->fw_l2_filter_id[i];
6269
6270 rc = _hwrm_send_message(bp, &req, sizeof(req),
6271 HWRM_CMD_TIMEOUT);
6272 }
6273 mutex_unlock(&bp->hwrm_cmd_lock);
6274
6275 vnic->uc_filter_count = 1;
6276
6277 netif_addr_lock_bh(dev);
6278 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6279 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6280 } else {
6281 netdev_for_each_uc_addr(ha, dev) {
6282 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6283 off += ETH_ALEN;
6284 vnic->uc_filter_count++;
6285 }
6286 }
6287 netif_addr_unlock_bh(dev);
6288
6289 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6290 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6291 if (rc) {
6292 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6293 rc);
6294 vnic->uc_filter_count = i;
6295 return rc;
6296 }
6297 }
6298
6299 skip_uc:
6300 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6301 if (rc)
6302 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6303 rc);
6304
6305 return rc;
6306 }
6307
6308 /* If the chip and firmware supports RFS */
6309 static bool bnxt_rfs_supported(struct bnxt *bp)
6310 {
6311 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6312 return true;
6313 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6314 return true;
6315 return false;
6316 }
6317
6318 /* If runtime conditions support RFS */
6319 static bool bnxt_rfs_capable(struct bnxt *bp)
6320 {
6321 #ifdef CONFIG_RFS_ACCEL
6322 int vnics, max_vnics, max_rss_ctxs;
6323
6324 if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6325 return false;
6326
6327 vnics = 1 + bp->rx_nr_rings;
6328 max_vnics = bnxt_get_max_func_vnics(bp);
6329 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6330
6331 /* RSS contexts not a limiting factor */
6332 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6333 max_rss_ctxs = max_vnics;
6334 if (vnics > max_vnics || vnics > max_rss_ctxs) {
6335 netdev_warn(bp->dev,
6336 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6337 min(max_rss_ctxs - 1, max_vnics - 1));
6338 return false;
6339 }
6340
6341 return true;
6342 #else
6343 return false;
6344 #endif
6345 }
6346
6347 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6348 netdev_features_t features)
6349 {
6350 struct bnxt *bp = netdev_priv(dev);
6351
6352 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6353 features &= ~NETIF_F_NTUPLE;
6354
6355 /* Both CTAG and STAG VLAN accelaration on the RX side have to be
6356 * turned on or off together.
6357 */
6358 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6359 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6360 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6361 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6362 NETIF_F_HW_VLAN_STAG_RX);
6363 else
6364 features |= NETIF_F_HW_VLAN_CTAG_RX |
6365 NETIF_F_HW_VLAN_STAG_RX;
6366 }
6367 #ifdef CONFIG_BNXT_SRIOV
6368 if (BNXT_VF(bp)) {
6369 if (bp->vf.vlan) {
6370 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6371 NETIF_F_HW_VLAN_STAG_RX);
6372 }
6373 }
6374 #endif
6375 return features;
6376 }
6377
6378 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6379 {
6380 struct bnxt *bp = netdev_priv(dev);
6381 u32 flags = bp->flags;
6382 u32 changes;
6383 int rc = 0;
6384 bool re_init = false;
6385 bool update_tpa = false;
6386
6387 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6388 if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6389 flags |= BNXT_FLAG_GRO;
6390 if (features & NETIF_F_LRO)
6391 flags |= BNXT_FLAG_LRO;
6392
6393 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6394 flags &= ~BNXT_FLAG_TPA;
6395
6396 if (features & NETIF_F_HW_VLAN_CTAG_RX)
6397 flags |= BNXT_FLAG_STRIP_VLAN;
6398
6399 if (features & NETIF_F_NTUPLE)
6400 flags |= BNXT_FLAG_RFS;
6401
6402 changes = flags ^ bp->flags;
6403 if (changes & BNXT_FLAG_TPA) {
6404 update_tpa = true;
6405 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6406 (flags & BNXT_FLAG_TPA) == 0)
6407 re_init = true;
6408 }
6409
6410 if (changes & ~BNXT_FLAG_TPA)
6411 re_init = true;
6412
6413 if (flags != bp->flags) {
6414 u32 old_flags = bp->flags;
6415
6416 bp->flags = flags;
6417
6418 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6419 if (update_tpa)
6420 bnxt_set_ring_params(bp);
6421 return rc;
6422 }
6423
6424 if (re_init) {
6425 bnxt_close_nic(bp, false, false);
6426 if (update_tpa)
6427 bnxt_set_ring_params(bp);
6428
6429 return bnxt_open_nic(bp, false, false);
6430 }
6431 if (update_tpa) {
6432 rc = bnxt_set_tpa(bp,
6433 (flags & BNXT_FLAG_TPA) ?
6434 true : false);
6435 if (rc)
6436 bp->flags = old_flags;
6437 }
6438 }
6439 return rc;
6440 }
6441
6442 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6443 {
6444 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6445 int i = bnapi->index;
6446
6447 if (!txr)
6448 return;
6449
6450 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6451 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6452 txr->tx_cons);
6453 }
6454
6455 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6456 {
6457 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6458 int i = bnapi->index;
6459
6460 if (!rxr)
6461 return;
6462
6463 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6464 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6465 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6466 rxr->rx_sw_agg_prod);
6467 }
6468
6469 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6470 {
6471 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6472 int i = bnapi->index;
6473
6474 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6475 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6476 }
6477
6478 static void bnxt_dbg_dump_states(struct bnxt *bp)
6479 {
6480 int i;
6481 struct bnxt_napi *bnapi;
6482
6483 for (i = 0; i < bp->cp_nr_rings; i++) {
6484 bnapi = bp->bnapi[i];
6485 if (netif_msg_drv(bp)) {
6486 bnxt_dump_tx_sw_state(bnapi);
6487 bnxt_dump_rx_sw_state(bnapi);
6488 bnxt_dump_cp_sw_state(bnapi);
6489 }
6490 }
6491 }
6492
6493 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6494 {
6495 if (!silent)
6496 bnxt_dbg_dump_states(bp);
6497 if (netif_running(bp->dev)) {
6498 bnxt_close_nic(bp, false, false);
6499 bnxt_open_nic(bp, false, false);
6500 }
6501 }
6502
6503 static void bnxt_tx_timeout(struct net_device *dev)
6504 {
6505 struct bnxt *bp = netdev_priv(dev);
6506
6507 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
6508 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6509 schedule_work(&bp->sp_task);
6510 }
6511
6512 #ifdef CONFIG_NET_POLL_CONTROLLER
6513 static void bnxt_poll_controller(struct net_device *dev)
6514 {
6515 struct bnxt *bp = netdev_priv(dev);
6516 int i;
6517
6518 for (i = 0; i < bp->cp_nr_rings; i++) {
6519 struct bnxt_irq *irq = &bp->irq_tbl[i];
6520
6521 disable_irq(irq->vector);
6522 irq->handler(irq->vector, bp->bnapi[i]);
6523 enable_irq(irq->vector);
6524 }
6525 }
6526 #endif
6527
6528 static void bnxt_timer(unsigned long data)
6529 {
6530 struct bnxt *bp = (struct bnxt *)data;
6531 struct net_device *dev = bp->dev;
6532
6533 if (!netif_running(dev))
6534 return;
6535
6536 if (atomic_read(&bp->intr_sem) != 0)
6537 goto bnxt_restart_timer;
6538
6539 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6540 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6541 schedule_work(&bp->sp_task);
6542 }
6543 bnxt_restart_timer:
6544 mod_timer(&bp->timer, jiffies + bp->current_interval);
6545 }
6546
6547 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6548 {
6549 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6550 * set. If the device is being closed, bnxt_close() may be holding
6551 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
6552 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6553 */
6554 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6555 rtnl_lock();
6556 }
6557
6558 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
6559 {
6560 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6561 rtnl_unlock();
6562 }
6563
6564 /* Only called from bnxt_sp_task() */
6565 static void bnxt_reset(struct bnxt *bp, bool silent)
6566 {
6567 bnxt_rtnl_lock_sp(bp);
6568 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6569 bnxt_reset_task(bp, silent);
6570 bnxt_rtnl_unlock_sp(bp);
6571 }
6572
6573 static void bnxt_cfg_ntp_filters(struct bnxt *);
6574
6575 static void bnxt_sp_task(struct work_struct *work)
6576 {
6577 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6578
6579 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6580 smp_mb__after_atomic();
6581 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6582 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6583 return;
6584 }
6585
6586 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6587 bnxt_cfg_rx_mode(bp);
6588
6589 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6590 bnxt_cfg_ntp_filters(bp);
6591 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6592 bnxt_hwrm_exec_fwd_req(bp);
6593 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6594 bnxt_hwrm_tunnel_dst_port_alloc(
6595 bp, bp->vxlan_port,
6596 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6597 }
6598 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6599 bnxt_hwrm_tunnel_dst_port_free(
6600 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6601 }
6602 if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6603 bnxt_hwrm_tunnel_dst_port_alloc(
6604 bp, bp->nge_port,
6605 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6606 }
6607 if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6608 bnxt_hwrm_tunnel_dst_port_free(
6609 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6610 }
6611 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6612 bnxt_hwrm_port_qstats(bp);
6613
6614 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They
6615 * must be the last functions to be called before exiting.
6616 */
6617 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6618 int rc = 0;
6619
6620 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
6621 &bp->sp_event))
6622 bnxt_hwrm_phy_qcaps(bp);
6623
6624 bnxt_rtnl_lock_sp(bp);
6625 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6626 rc = bnxt_update_link(bp, true);
6627 bnxt_rtnl_unlock_sp(bp);
6628 if (rc)
6629 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6630 rc);
6631 }
6632 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
6633 bnxt_rtnl_lock_sp(bp);
6634 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6635 bnxt_get_port_module_status(bp);
6636 bnxt_rtnl_unlock_sp(bp);
6637 }
6638 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6639 bnxt_reset(bp, false);
6640
6641 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6642 bnxt_reset(bp, true);
6643
6644 smp_mb__before_atomic();
6645 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6646 }
6647
6648 /* Under rtnl_lock */
6649 int bnxt_reserve_rings(struct bnxt *bp, int tx, int rx, int tcs, int tx_xdp)
6650 {
6651 int max_rx, max_tx, tx_sets = 1;
6652 int tx_rings_needed;
6653 bool sh = true;
6654 int rc;
6655
6656 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
6657 sh = false;
6658
6659 if (tcs)
6660 tx_sets = tcs;
6661
6662 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
6663 if (rc)
6664 return rc;
6665
6666 if (max_rx < rx)
6667 return -ENOMEM;
6668
6669 tx_rings_needed = tx * tx_sets + tx_xdp;
6670 if (max_tx < tx_rings_needed)
6671 return -ENOMEM;
6672
6673 if (bnxt_hwrm_reserve_tx_rings(bp, &tx_rings_needed) ||
6674 tx_rings_needed < (tx * tx_sets + tx_xdp))
6675 return -ENOMEM;
6676 return 0;
6677 }
6678
6679 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
6680 {
6681 if (bp->bar2) {
6682 pci_iounmap(pdev, bp->bar2);
6683 bp->bar2 = NULL;
6684 }
6685
6686 if (bp->bar1) {
6687 pci_iounmap(pdev, bp->bar1);
6688 bp->bar1 = NULL;
6689 }
6690
6691 if (bp->bar0) {
6692 pci_iounmap(pdev, bp->bar0);
6693 bp->bar0 = NULL;
6694 }
6695 }
6696
6697 static void bnxt_cleanup_pci(struct bnxt *bp)
6698 {
6699 bnxt_unmap_bars(bp, bp->pdev);
6700 pci_release_regions(bp->pdev);
6701 pci_disable_device(bp->pdev);
6702 }
6703
6704 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6705 {
6706 int rc;
6707 struct bnxt *bp = netdev_priv(dev);
6708
6709 SET_NETDEV_DEV(dev, &pdev->dev);
6710
6711 /* enable device (incl. PCI PM wakeup), and bus-mastering */
6712 rc = pci_enable_device(pdev);
6713 if (rc) {
6714 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6715 goto init_err;
6716 }
6717
6718 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6719 dev_err(&pdev->dev,
6720 "Cannot find PCI device base address, aborting\n");
6721 rc = -ENODEV;
6722 goto init_err_disable;
6723 }
6724
6725 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6726 if (rc) {
6727 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6728 goto init_err_disable;
6729 }
6730
6731 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6732 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6733 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6734 goto init_err_disable;
6735 }
6736
6737 pci_set_master(pdev);
6738
6739 bp->dev = dev;
6740 bp->pdev = pdev;
6741
6742 bp->bar0 = pci_ioremap_bar(pdev, 0);
6743 if (!bp->bar0) {
6744 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6745 rc = -ENOMEM;
6746 goto init_err_release;
6747 }
6748
6749 bp->bar1 = pci_ioremap_bar(pdev, 2);
6750 if (!bp->bar1) {
6751 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6752 rc = -ENOMEM;
6753 goto init_err_release;
6754 }
6755
6756 bp->bar2 = pci_ioremap_bar(pdev, 4);
6757 if (!bp->bar2) {
6758 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6759 rc = -ENOMEM;
6760 goto init_err_release;
6761 }
6762
6763 pci_enable_pcie_error_reporting(pdev);
6764
6765 INIT_WORK(&bp->sp_task, bnxt_sp_task);
6766
6767 spin_lock_init(&bp->ntp_fltr_lock);
6768
6769 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6770 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6771
6772 /* tick values in micro seconds */
6773 bp->rx_coal_ticks = 12;
6774 bp->rx_coal_bufs = 30;
6775 bp->rx_coal_ticks_irq = 1;
6776 bp->rx_coal_bufs_irq = 2;
6777
6778 bp->tx_coal_ticks = 25;
6779 bp->tx_coal_bufs = 30;
6780 bp->tx_coal_ticks_irq = 2;
6781 bp->tx_coal_bufs_irq = 2;
6782
6783 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6784
6785 init_timer(&bp->timer);
6786 bp->timer.data = (unsigned long)bp;
6787 bp->timer.function = bnxt_timer;
6788 bp->current_interval = BNXT_TIMER_INTERVAL;
6789
6790 clear_bit(BNXT_STATE_OPEN, &bp->state);
6791 return 0;
6792
6793 init_err_release:
6794 bnxt_unmap_bars(bp, pdev);
6795 pci_release_regions(pdev);
6796
6797 init_err_disable:
6798 pci_disable_device(pdev);
6799
6800 init_err:
6801 return rc;
6802 }
6803
6804 /* rtnl_lock held */
6805 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6806 {
6807 struct sockaddr *addr = p;
6808 struct bnxt *bp = netdev_priv(dev);
6809 int rc = 0;
6810
6811 if (!is_valid_ether_addr(addr->sa_data))
6812 return -EADDRNOTAVAIL;
6813
6814 rc = bnxt_approve_mac(bp, addr->sa_data);
6815 if (rc)
6816 return rc;
6817
6818 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6819 return 0;
6820
6821 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6822 if (netif_running(dev)) {
6823 bnxt_close_nic(bp, false, false);
6824 rc = bnxt_open_nic(bp, false, false);
6825 }
6826
6827 return rc;
6828 }
6829
6830 /* rtnl_lock held */
6831 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6832 {
6833 struct bnxt *bp = netdev_priv(dev);
6834
6835 if (netif_running(dev))
6836 bnxt_close_nic(bp, false, false);
6837
6838 dev->mtu = new_mtu;
6839 bnxt_set_ring_params(bp);
6840
6841 if (netif_running(dev))
6842 return bnxt_open_nic(bp, false, false);
6843
6844 return 0;
6845 }
6846
6847 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
6848 {
6849 struct bnxt *bp = netdev_priv(dev);
6850 bool sh = false;
6851 int rc;
6852
6853 if (tc > bp->max_tc) {
6854 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
6855 tc, bp->max_tc);
6856 return -EINVAL;
6857 }
6858
6859 if (netdev_get_num_tc(dev) == tc)
6860 return 0;
6861
6862 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6863 sh = true;
6864
6865 rc = bnxt_reserve_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
6866 tc, bp->tx_nr_rings_xdp);
6867 if (rc)
6868 return rc;
6869
6870 /* Needs to close the device and do hw resource re-allocations */
6871 if (netif_running(bp->dev))
6872 bnxt_close_nic(bp, true, false);
6873
6874 if (tc) {
6875 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
6876 netdev_set_num_tc(dev, tc);
6877 } else {
6878 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6879 netdev_reset_tc(dev);
6880 }
6881 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6882 bp->tx_nr_rings + bp->rx_nr_rings;
6883 bp->num_stat_ctxs = bp->cp_nr_rings;
6884
6885 if (netif_running(bp->dev))
6886 return bnxt_open_nic(bp, true, false);
6887
6888 return 0;
6889 }
6890
6891 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
6892 struct tc_to_netdev *ntc)
6893 {
6894 if (ntc->type != TC_SETUP_MQPRIO)
6895 return -EINVAL;
6896
6897 return bnxt_setup_mq_tc(dev, ntc->tc);
6898 }
6899
6900 #ifdef CONFIG_RFS_ACCEL
6901 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
6902 struct bnxt_ntuple_filter *f2)
6903 {
6904 struct flow_keys *keys1 = &f1->fkeys;
6905 struct flow_keys *keys2 = &f2->fkeys;
6906
6907 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
6908 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
6909 keys1->ports.ports == keys2->ports.ports &&
6910 keys1->basic.ip_proto == keys2->basic.ip_proto &&
6911 keys1->basic.n_proto == keys2->basic.n_proto &&
6912 keys1->control.flags == keys2->control.flags &&
6913 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
6914 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
6915 return true;
6916
6917 return false;
6918 }
6919
6920 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
6921 u16 rxq_index, u32 flow_id)
6922 {
6923 struct bnxt *bp = netdev_priv(dev);
6924 struct bnxt_ntuple_filter *fltr, *new_fltr;
6925 struct flow_keys *fkeys;
6926 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
6927 int rc = 0, idx, bit_id, l2_idx = 0;
6928 struct hlist_head *head;
6929
6930 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
6931 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6932 int off = 0, j;
6933
6934 netif_addr_lock_bh(dev);
6935 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
6936 if (ether_addr_equal(eth->h_dest,
6937 vnic->uc_list + off)) {
6938 l2_idx = j + 1;
6939 break;
6940 }
6941 }
6942 netif_addr_unlock_bh(dev);
6943 if (!l2_idx)
6944 return -EINVAL;
6945 }
6946 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
6947 if (!new_fltr)
6948 return -ENOMEM;
6949
6950 fkeys = &new_fltr->fkeys;
6951 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
6952 rc = -EPROTONOSUPPORT;
6953 goto err_free;
6954 }
6955
6956 if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
6957 fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
6958 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
6959 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
6960 rc = -EPROTONOSUPPORT;
6961 goto err_free;
6962 }
6963 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
6964 bp->hwrm_spec_code < 0x10601) {
6965 rc = -EPROTONOSUPPORT;
6966 goto err_free;
6967 }
6968 if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
6969 bp->hwrm_spec_code < 0x10601) {
6970 rc = -EPROTONOSUPPORT;
6971 goto err_free;
6972 }
6973
6974 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
6975 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
6976
6977 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
6978 head = &bp->ntp_fltr_hash_tbl[idx];
6979 rcu_read_lock();
6980 hlist_for_each_entry_rcu(fltr, head, hash) {
6981 if (bnxt_fltr_match(fltr, new_fltr)) {
6982 rcu_read_unlock();
6983 rc = 0;
6984 goto err_free;
6985 }
6986 }
6987 rcu_read_unlock();
6988
6989 spin_lock_bh(&bp->ntp_fltr_lock);
6990 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
6991 BNXT_NTP_FLTR_MAX_FLTR, 0);
6992 if (bit_id < 0) {
6993 spin_unlock_bh(&bp->ntp_fltr_lock);
6994 rc = -ENOMEM;
6995 goto err_free;
6996 }
6997
6998 new_fltr->sw_id = (u16)bit_id;
6999 new_fltr->flow_id = flow_id;
7000 new_fltr->l2_fltr_idx = l2_idx;
7001 new_fltr->rxq = rxq_index;
7002 hlist_add_head_rcu(&new_fltr->hash, head);
7003 bp->ntp_fltr_count++;
7004 spin_unlock_bh(&bp->ntp_fltr_lock);
7005
7006 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7007 schedule_work(&bp->sp_task);
7008
7009 return new_fltr->sw_id;
7010
7011 err_free:
7012 kfree(new_fltr);
7013 return rc;
7014 }
7015
7016 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7017 {
7018 int i;
7019
7020 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7021 struct hlist_head *head;
7022 struct hlist_node *tmp;
7023 struct bnxt_ntuple_filter *fltr;
7024 int rc;
7025
7026 head = &bp->ntp_fltr_hash_tbl[i];
7027 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7028 bool del = false;
7029
7030 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7031 if (rps_may_expire_flow(bp->dev, fltr->rxq,
7032 fltr->flow_id,
7033 fltr->sw_id)) {
7034 bnxt_hwrm_cfa_ntuple_filter_free(bp,
7035 fltr);
7036 del = true;
7037 }
7038 } else {
7039 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7040 fltr);
7041 if (rc)
7042 del = true;
7043 else
7044 set_bit(BNXT_FLTR_VALID, &fltr->state);
7045 }
7046
7047 if (del) {
7048 spin_lock_bh(&bp->ntp_fltr_lock);
7049 hlist_del_rcu(&fltr->hash);
7050 bp->ntp_fltr_count--;
7051 spin_unlock_bh(&bp->ntp_fltr_lock);
7052 synchronize_rcu();
7053 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7054 kfree(fltr);
7055 }
7056 }
7057 }
7058 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7059 netdev_info(bp->dev, "Receive PF driver unload event!");
7060 }
7061
7062 #else
7063
7064 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7065 {
7066 }
7067
7068 #endif /* CONFIG_RFS_ACCEL */
7069
7070 static void bnxt_udp_tunnel_add(struct net_device *dev,
7071 struct udp_tunnel_info *ti)
7072 {
7073 struct bnxt *bp = netdev_priv(dev);
7074
7075 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7076 return;
7077
7078 if (!netif_running(dev))
7079 return;
7080
7081 switch (ti->type) {
7082 case UDP_TUNNEL_TYPE_VXLAN:
7083 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7084 return;
7085
7086 bp->vxlan_port_cnt++;
7087 if (bp->vxlan_port_cnt == 1) {
7088 bp->vxlan_port = ti->port;
7089 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7090 schedule_work(&bp->sp_task);
7091 }
7092 break;
7093 case UDP_TUNNEL_TYPE_GENEVE:
7094 if (bp->nge_port_cnt && bp->nge_port != ti->port)
7095 return;
7096
7097 bp->nge_port_cnt++;
7098 if (bp->nge_port_cnt == 1) {
7099 bp->nge_port = ti->port;
7100 set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7101 }
7102 break;
7103 default:
7104 return;
7105 }
7106
7107 schedule_work(&bp->sp_task);
7108 }
7109
7110 static void bnxt_udp_tunnel_del(struct net_device *dev,
7111 struct udp_tunnel_info *ti)
7112 {
7113 struct bnxt *bp = netdev_priv(dev);
7114
7115 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7116 return;
7117
7118 if (!netif_running(dev))
7119 return;
7120
7121 switch (ti->type) {
7122 case UDP_TUNNEL_TYPE_VXLAN:
7123 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7124 return;
7125 bp->vxlan_port_cnt--;
7126
7127 if (bp->vxlan_port_cnt != 0)
7128 return;
7129
7130 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7131 break;
7132 case UDP_TUNNEL_TYPE_GENEVE:
7133 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7134 return;
7135 bp->nge_port_cnt--;
7136
7137 if (bp->nge_port_cnt != 0)
7138 return;
7139
7140 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7141 break;
7142 default:
7143 return;
7144 }
7145
7146 schedule_work(&bp->sp_task);
7147 }
7148
7149 static const struct net_device_ops bnxt_netdev_ops = {
7150 .ndo_open = bnxt_open,
7151 .ndo_start_xmit = bnxt_start_xmit,
7152 .ndo_stop = bnxt_close,
7153 .ndo_get_stats64 = bnxt_get_stats64,
7154 .ndo_set_rx_mode = bnxt_set_rx_mode,
7155 .ndo_do_ioctl = bnxt_ioctl,
7156 .ndo_validate_addr = eth_validate_addr,
7157 .ndo_set_mac_address = bnxt_change_mac_addr,
7158 .ndo_change_mtu = bnxt_change_mtu,
7159 .ndo_fix_features = bnxt_fix_features,
7160 .ndo_set_features = bnxt_set_features,
7161 .ndo_tx_timeout = bnxt_tx_timeout,
7162 #ifdef CONFIG_BNXT_SRIOV
7163 .ndo_get_vf_config = bnxt_get_vf_config,
7164 .ndo_set_vf_mac = bnxt_set_vf_mac,
7165 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
7166 .ndo_set_vf_rate = bnxt_set_vf_bw,
7167 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
7168 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
7169 #endif
7170 #ifdef CONFIG_NET_POLL_CONTROLLER
7171 .ndo_poll_controller = bnxt_poll_controller,
7172 #endif
7173 .ndo_setup_tc = bnxt_setup_tc,
7174 #ifdef CONFIG_RFS_ACCEL
7175 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
7176 #endif
7177 .ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
7178 .ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
7179 .ndo_xdp = bnxt_xdp,
7180 };
7181
7182 static void bnxt_remove_one(struct pci_dev *pdev)
7183 {
7184 struct net_device *dev = pci_get_drvdata(pdev);
7185 struct bnxt *bp = netdev_priv(dev);
7186
7187 if (BNXT_PF(bp))
7188 bnxt_sriov_disable(bp);
7189
7190 pci_disable_pcie_error_reporting(pdev);
7191 unregister_netdev(dev);
7192 cancel_work_sync(&bp->sp_task);
7193 bp->sp_event = 0;
7194
7195 bnxt_clear_int_mode(bp);
7196 bnxt_hwrm_func_drv_unrgtr(bp);
7197 bnxt_free_hwrm_resources(bp);
7198 bnxt_dcb_free(bp);
7199 kfree(bp->edev);
7200 bp->edev = NULL;
7201 if (bp->xdp_prog)
7202 bpf_prog_put(bp->xdp_prog);
7203 bnxt_cleanup_pci(bp);
7204 free_netdev(dev);
7205 }
7206
7207 static int bnxt_probe_phy(struct bnxt *bp)
7208 {
7209 int rc = 0;
7210 struct bnxt_link_info *link_info = &bp->link_info;
7211
7212 rc = bnxt_hwrm_phy_qcaps(bp);
7213 if (rc) {
7214 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7215 rc);
7216 return rc;
7217 }
7218
7219 rc = bnxt_update_link(bp, false);
7220 if (rc) {
7221 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7222 rc);
7223 return rc;
7224 }
7225
7226 /* Older firmware does not have supported_auto_speeds, so assume
7227 * that all supported speeds can be autonegotiated.
7228 */
7229 if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7230 link_info->support_auto_speeds = link_info->support_speeds;
7231
7232 /*initialize the ethool setting copy with NVM settings */
7233 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7234 link_info->autoneg = BNXT_AUTONEG_SPEED;
7235 if (bp->hwrm_spec_code >= 0x10201) {
7236 if (link_info->auto_pause_setting &
7237 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7238 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7239 } else {
7240 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7241 }
7242 link_info->advertising = link_info->auto_link_speeds;
7243 } else {
7244 link_info->req_link_speed = link_info->force_link_speed;
7245 link_info->req_duplex = link_info->duplex_setting;
7246 }
7247 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7248 link_info->req_flow_ctrl =
7249 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7250 else
7251 link_info->req_flow_ctrl = link_info->force_pause_setting;
7252 return rc;
7253 }
7254
7255 static int bnxt_get_max_irq(struct pci_dev *pdev)
7256 {
7257 u16 ctrl;
7258
7259 if (!pdev->msix_cap)
7260 return 1;
7261
7262 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7263 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7264 }
7265
7266 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7267 int *max_cp)
7268 {
7269 int max_ring_grps = 0;
7270
7271 #ifdef CONFIG_BNXT_SRIOV
7272 if (!BNXT_PF(bp)) {
7273 *max_tx = bp->vf.max_tx_rings;
7274 *max_rx = bp->vf.max_rx_rings;
7275 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7276 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7277 max_ring_grps = bp->vf.max_hw_ring_grps;
7278 } else
7279 #endif
7280 {
7281 *max_tx = bp->pf.max_tx_rings;
7282 *max_rx = bp->pf.max_rx_rings;
7283 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7284 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7285 max_ring_grps = bp->pf.max_hw_ring_grps;
7286 }
7287 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7288 *max_cp -= 1;
7289 *max_rx -= 2;
7290 }
7291 if (bp->flags & BNXT_FLAG_AGG_RINGS)
7292 *max_rx >>= 1;
7293 *max_rx = min_t(int, *max_rx, max_ring_grps);
7294 }
7295
7296 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7297 {
7298 int rx, tx, cp;
7299
7300 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
7301 if (!rx || !tx || !cp)
7302 return -ENOMEM;
7303
7304 *max_rx = rx;
7305 *max_tx = tx;
7306 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7307 }
7308
7309 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7310 bool shared)
7311 {
7312 int rc;
7313
7314 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7315 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7316 /* Not enough rings, try disabling agg rings. */
7317 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7318 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7319 if (rc)
7320 return rc;
7321 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7322 bp->dev->hw_features &= ~NETIF_F_LRO;
7323 bp->dev->features &= ~NETIF_F_LRO;
7324 bnxt_set_ring_params(bp);
7325 }
7326
7327 if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7328 int max_cp, max_stat, max_irq;
7329
7330 /* Reserve minimum resources for RoCE */
7331 max_cp = bnxt_get_max_func_cp_rings(bp);
7332 max_stat = bnxt_get_max_func_stat_ctxs(bp);
7333 max_irq = bnxt_get_max_func_irqs(bp);
7334 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7335 max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7336 max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7337 return 0;
7338
7339 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7340 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7341 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7342 max_cp = min_t(int, max_cp, max_irq);
7343 max_cp = min_t(int, max_cp, max_stat);
7344 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7345 if (rc)
7346 rc = 0;
7347 }
7348 return rc;
7349 }
7350
7351 static int bnxt_set_dflt_rings(struct bnxt *bp)
7352 {
7353 int dflt_rings, max_rx_rings, max_tx_rings, rc;
7354 bool sh = true;
7355
7356 if (sh)
7357 bp->flags |= BNXT_FLAG_SHARED_RINGS;
7358 dflt_rings = netif_get_num_default_rss_queues();
7359 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7360 if (rc)
7361 return rc;
7362 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7363 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7364
7365 rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7366 if (rc)
7367 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7368
7369 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7370 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7371 bp->tx_nr_rings + bp->rx_nr_rings;
7372 bp->num_stat_ctxs = bp->cp_nr_rings;
7373 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7374 bp->rx_nr_rings++;
7375 bp->cp_nr_rings++;
7376 }
7377 return rc;
7378 }
7379
7380 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7381 {
7382 ASSERT_RTNL();
7383 bnxt_hwrm_func_qcaps(bp);
7384 bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7385 }
7386
7387 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
7388 {
7389 enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
7390 enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
7391
7392 if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
7393 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
7394 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
7395 else
7396 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
7397 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
7398 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
7399 speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
7400 "Unknown", width);
7401 }
7402
7403 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7404 {
7405 static int version_printed;
7406 struct net_device *dev;
7407 struct bnxt *bp;
7408 int rc, max_irqs;
7409
7410 if (pci_is_bridge(pdev))
7411 return -ENODEV;
7412
7413 if (version_printed++ == 0)
7414 pr_info("%s", version);
7415
7416 max_irqs = bnxt_get_max_irq(pdev);
7417 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
7418 if (!dev)
7419 return -ENOMEM;
7420
7421 bp = netdev_priv(dev);
7422
7423 if (bnxt_vf_pciid(ent->driver_data))
7424 bp->flags |= BNXT_FLAG_VF;
7425
7426 if (pdev->msix_cap)
7427 bp->flags |= BNXT_FLAG_MSIX_CAP;
7428
7429 rc = bnxt_init_board(pdev, dev);
7430 if (rc < 0)
7431 goto init_err_free;
7432
7433 dev->netdev_ops = &bnxt_netdev_ops;
7434 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
7435 dev->ethtool_ops = &bnxt_ethtool_ops;
7436 pci_set_drvdata(pdev, dev);
7437
7438 rc = bnxt_alloc_hwrm_resources(bp);
7439 if (rc)
7440 goto init_err_pci_clean;
7441
7442 mutex_init(&bp->hwrm_cmd_lock);
7443 rc = bnxt_hwrm_ver_get(bp);
7444 if (rc)
7445 goto init_err_pci_clean;
7446
7447 bnxt_hwrm_fw_set_time(bp);
7448
7449 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7450 NETIF_F_TSO | NETIF_F_TSO6 |
7451 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7452 NETIF_F_GSO_IPXIP4 |
7453 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7454 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
7455 NETIF_F_RXCSUM | NETIF_F_GRO;
7456
7457 if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
7458 dev->hw_features |= NETIF_F_LRO;
7459
7460 dev->hw_enc_features =
7461 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7462 NETIF_F_TSO | NETIF_F_TSO6 |
7463 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7464 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7465 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
7466 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
7467 NETIF_F_GSO_GRE_CSUM;
7468 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
7469 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7470 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
7471 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
7472 dev->priv_flags |= IFF_UNICAST_FLT;
7473
7474 /* MTU range: 60 - 9500 */
7475 dev->min_mtu = ETH_ZLEN;
7476 dev->max_mtu = BNXT_MAX_MTU;
7477
7478 bnxt_dcb_init(bp);
7479
7480 #ifdef CONFIG_BNXT_SRIOV
7481 init_waitqueue_head(&bp->sriov_cfg_wait);
7482 #endif
7483 bp->gro_func = bnxt_gro_func_5730x;
7484 if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
7485 bp->gro_func = bnxt_gro_func_5731x;
7486
7487 rc = bnxt_hwrm_func_drv_rgtr(bp);
7488 if (rc)
7489 goto init_err_pci_clean;
7490
7491 rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
7492 if (rc)
7493 goto init_err_pci_clean;
7494
7495 bp->ulp_probe = bnxt_ulp_probe;
7496
7497 /* Get the MAX capabilities for this function */
7498 rc = bnxt_hwrm_func_qcaps(bp);
7499 if (rc) {
7500 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
7501 rc);
7502 rc = -1;
7503 goto init_err_pci_clean;
7504 }
7505
7506 rc = bnxt_hwrm_queue_qportcfg(bp);
7507 if (rc) {
7508 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
7509 rc);
7510 rc = -1;
7511 goto init_err_pci_clean;
7512 }
7513
7514 bnxt_hwrm_func_qcfg(bp);
7515 bnxt_hwrm_port_led_qcaps(bp);
7516
7517 bnxt_set_rx_skb_mode(bp, false);
7518 bnxt_set_tpa_flags(bp);
7519 bnxt_set_ring_params(bp);
7520 bnxt_set_max_func_irqs(bp, max_irqs);
7521 rc = bnxt_set_dflt_rings(bp);
7522 if (rc) {
7523 netdev_err(bp->dev, "Not enough rings available.\n");
7524 rc = -ENOMEM;
7525 goto init_err_pci_clean;
7526 }
7527
7528 /* Default RSS hash cfg. */
7529 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
7530 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
7531 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
7532 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
7533 if (!BNXT_CHIP_NUM_57X0X(bp->chip_num) &&
7534 !BNXT_CHIP_TYPE_NITRO_A0(bp) &&
7535 bp->hwrm_spec_code >= 0x10501) {
7536 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
7537 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
7538 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
7539 }
7540
7541 bnxt_hwrm_vnic_qcaps(bp);
7542 if (bnxt_rfs_supported(bp)) {
7543 dev->hw_features |= NETIF_F_NTUPLE;
7544 if (bnxt_rfs_capable(bp)) {
7545 bp->flags |= BNXT_FLAG_RFS;
7546 dev->features |= NETIF_F_NTUPLE;
7547 }
7548 }
7549
7550 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
7551 bp->flags |= BNXT_FLAG_STRIP_VLAN;
7552
7553 rc = bnxt_probe_phy(bp);
7554 if (rc)
7555 goto init_err_pci_clean;
7556
7557 rc = bnxt_hwrm_func_reset(bp);
7558 if (rc)
7559 goto init_err_pci_clean;
7560
7561 rc = bnxt_init_int_mode(bp);
7562 if (rc)
7563 goto init_err_pci_clean;
7564
7565 rc = register_netdev(dev);
7566 if (rc)
7567 goto init_err_clr_int;
7568
7569 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
7570 board_info[ent->driver_data].name,
7571 (long)pci_resource_start(pdev, 0), dev->dev_addr);
7572
7573 bnxt_parse_log_pcie_link(bp);
7574
7575 return 0;
7576
7577 init_err_clr_int:
7578 bnxt_clear_int_mode(bp);
7579
7580 init_err_pci_clean:
7581 bnxt_cleanup_pci(bp);
7582
7583 init_err_free:
7584 free_netdev(dev);
7585 return rc;
7586 }
7587
7588 /**
7589 * bnxt_io_error_detected - called when PCI error is detected
7590 * @pdev: Pointer to PCI device
7591 * @state: The current pci connection state
7592 *
7593 * This function is called after a PCI bus error affecting
7594 * this device has been detected.
7595 */
7596 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
7597 pci_channel_state_t state)
7598 {
7599 struct net_device *netdev = pci_get_drvdata(pdev);
7600 struct bnxt *bp = netdev_priv(netdev);
7601
7602 netdev_info(netdev, "PCI I/O error detected\n");
7603
7604 rtnl_lock();
7605 netif_device_detach(netdev);
7606
7607 bnxt_ulp_stop(bp);
7608
7609 if (state == pci_channel_io_perm_failure) {
7610 rtnl_unlock();
7611 return PCI_ERS_RESULT_DISCONNECT;
7612 }
7613
7614 if (netif_running(netdev))
7615 bnxt_close(netdev);
7616
7617 pci_disable_device(pdev);
7618 rtnl_unlock();
7619
7620 /* Request a slot slot reset. */
7621 return PCI_ERS_RESULT_NEED_RESET;
7622 }
7623
7624 /**
7625 * bnxt_io_slot_reset - called after the pci bus has been reset.
7626 * @pdev: Pointer to PCI device
7627 *
7628 * Restart the card from scratch, as if from a cold-boot.
7629 * At this point, the card has exprienced a hard reset,
7630 * followed by fixups by BIOS, and has its config space
7631 * set up identically to what it was at cold boot.
7632 */
7633 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
7634 {
7635 struct net_device *netdev = pci_get_drvdata(pdev);
7636 struct bnxt *bp = netdev_priv(netdev);
7637 int err = 0;
7638 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
7639
7640 netdev_info(bp->dev, "PCI Slot Reset\n");
7641
7642 rtnl_lock();
7643
7644 if (pci_enable_device(pdev)) {
7645 dev_err(&pdev->dev,
7646 "Cannot re-enable PCI device after reset.\n");
7647 } else {
7648 pci_set_master(pdev);
7649
7650 err = bnxt_hwrm_func_reset(bp);
7651 if (!err && netif_running(netdev))
7652 err = bnxt_open(netdev);
7653
7654 if (!err) {
7655 result = PCI_ERS_RESULT_RECOVERED;
7656 bnxt_ulp_start(bp);
7657 }
7658 }
7659
7660 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7661 dev_close(netdev);
7662
7663 rtnl_unlock();
7664
7665 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7666 if (err) {
7667 dev_err(&pdev->dev,
7668 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7669 err); /* non-fatal, continue */
7670 }
7671
7672 return PCI_ERS_RESULT_RECOVERED;
7673 }
7674
7675 /**
7676 * bnxt_io_resume - called when traffic can start flowing again.
7677 * @pdev: Pointer to PCI device
7678 *
7679 * This callback is called when the error recovery driver tells
7680 * us that its OK to resume normal operation.
7681 */
7682 static void bnxt_io_resume(struct pci_dev *pdev)
7683 {
7684 struct net_device *netdev = pci_get_drvdata(pdev);
7685
7686 rtnl_lock();
7687
7688 netif_device_attach(netdev);
7689
7690 rtnl_unlock();
7691 }
7692
7693 static const struct pci_error_handlers bnxt_err_handler = {
7694 .error_detected = bnxt_io_error_detected,
7695 .slot_reset = bnxt_io_slot_reset,
7696 .resume = bnxt_io_resume
7697 };
7698
7699 static struct pci_driver bnxt_pci_driver = {
7700 .name = DRV_MODULE_NAME,
7701 .id_table = bnxt_pci_tbl,
7702 .probe = bnxt_init_one,
7703 .remove = bnxt_remove_one,
7704 .err_handler = &bnxt_err_handler,
7705 #if defined(CONFIG_BNXT_SRIOV)
7706 .sriov_configure = bnxt_sriov_configure,
7707 #endif
7708 };
7709
7710 module_pci_driver(bnxt_pci_driver);