]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 * Copyright (c) 2016-2017 Broadcom Limited
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/rtc.h>
37 #include <linux/bpf.h>
38 #include <net/ip.h>
39 #include <net/tcp.h>
40 #include <net/udp.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <net/udp_tunnel.h>
44 #include <linux/workqueue.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/log2.h>
48 #include <linux/aer.h>
49 #include <linux/bitmap.h>
50 #include <linux/cpu_rmap.h>
51
52 #include "bnxt_hsi.h"
53 #include "bnxt.h"
54 #include "bnxt_ulp.h"
55 #include "bnxt_sriov.h"
56 #include "bnxt_ethtool.h"
57 #include "bnxt_dcb.h"
58 #include "bnxt_xdp.h"
59
60 #define BNXT_TX_TIMEOUT (5 * HZ)
61
62 static const char version[] =
63 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
64
65 MODULE_LICENSE("GPL");
66 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
67 MODULE_VERSION(DRV_MODULE_VERSION);
68
69 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
70 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
71 #define BNXT_RX_COPY_THRESH 256
72
73 #define BNXT_TX_PUSH_THRESH 164
74
75 enum board_idx {
76 BCM57301,
77 BCM57302,
78 BCM57304,
79 BCM57417_NPAR,
80 BCM58700,
81 BCM57311,
82 BCM57312,
83 BCM57402,
84 BCM57404,
85 BCM57406,
86 BCM57402_NPAR,
87 BCM57407,
88 BCM57412,
89 BCM57414,
90 BCM57416,
91 BCM57417,
92 BCM57412_NPAR,
93 BCM57314,
94 BCM57417_SFP,
95 BCM57416_SFP,
96 BCM57404_NPAR,
97 BCM57406_NPAR,
98 BCM57407_SFP,
99 BCM57407_NPAR,
100 BCM57414_NPAR,
101 BCM57416_NPAR,
102 BCM57452,
103 BCM57454,
104 NETXTREME_E_VF,
105 NETXTREME_C_VF,
106 };
107
108 /* indexed by enum above */
109 static const struct {
110 char *name;
111 } board_info[] = {
112 { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
113 { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
114 { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
115 { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
116 { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
117 { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
118 { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
119 { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
120 { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
121 { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
122 { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
123 { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
124 { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
125 { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
126 { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
127 { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
128 { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
129 { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
130 { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
131 { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
132 { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
133 { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
134 { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
135 { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
136 { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
137 { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
138 { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
139 { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
140 { "Broadcom NetXtreme-E Ethernet Virtual Function" },
141 { "Broadcom NetXtreme-C Ethernet Virtual Function" },
142 };
143
144 static const struct pci_device_id bnxt_pci_tbl[] = {
145 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
146 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
147 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
148 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
149 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
150 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
151 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
152 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
153 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
154 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
155 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
156 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
157 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
158 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
159 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
160 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
161 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
162 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
163 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
164 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
165 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
166 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
167 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
168 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
169 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
170 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
171 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
172 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
173 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
174 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
175 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
176 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
177 #ifdef CONFIG_BNXT_SRIOV
178 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
179 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
180 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
181 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
182 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
183 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
184 #endif
185 { 0 }
186 };
187
188 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
189
190 static const u16 bnxt_vf_req_snif[] = {
191 HWRM_FUNC_CFG,
192 HWRM_PORT_PHY_QCFG,
193 HWRM_CFA_L2_FILTER_ALLOC,
194 };
195
196 static const u16 bnxt_async_events_arr[] = {
197 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
198 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
199 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
200 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
201 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
202 };
203
204 static bool bnxt_vf_pciid(enum board_idx idx)
205 {
206 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
207 }
208
209 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
210 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
211 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
212
213 #define BNXT_CP_DB_REARM(db, raw_cons) \
214 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
215
216 #define BNXT_CP_DB(db, raw_cons) \
217 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
218
219 #define BNXT_CP_DB_IRQ_DIS(db) \
220 writel(DB_CP_IRQ_DIS_FLAGS, db)
221
222 const u16 bnxt_lhint_arr[] = {
223 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
224 TX_BD_FLAGS_LHINT_512_TO_1023,
225 TX_BD_FLAGS_LHINT_1024_TO_2047,
226 TX_BD_FLAGS_LHINT_1024_TO_2047,
227 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
228 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242 };
243
244 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
245 {
246 struct bnxt *bp = netdev_priv(dev);
247 struct tx_bd *txbd;
248 struct tx_bd_ext *txbd1;
249 struct netdev_queue *txq;
250 int i;
251 dma_addr_t mapping;
252 unsigned int length, pad = 0;
253 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
254 u16 prod, last_frag;
255 struct pci_dev *pdev = bp->pdev;
256 struct bnxt_tx_ring_info *txr;
257 struct bnxt_sw_tx_bd *tx_buf;
258
259 i = skb_get_queue_mapping(skb);
260 if (unlikely(i >= bp->tx_nr_rings)) {
261 dev_kfree_skb_any(skb);
262 return NETDEV_TX_OK;
263 }
264
265 txq = netdev_get_tx_queue(dev, i);
266 txr = &bp->tx_ring[bp->tx_ring_map[i]];
267 prod = txr->tx_prod;
268
269 free_size = bnxt_tx_avail(bp, txr);
270 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
271 netif_tx_stop_queue(txq);
272 return NETDEV_TX_BUSY;
273 }
274
275 length = skb->len;
276 len = skb_headlen(skb);
277 last_frag = skb_shinfo(skb)->nr_frags;
278
279 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
280
281 txbd->tx_bd_opaque = prod;
282
283 tx_buf = &txr->tx_buf_ring[prod];
284 tx_buf->skb = skb;
285 tx_buf->nr_frags = last_frag;
286
287 vlan_tag_flags = 0;
288 cfa_action = 0;
289 if (skb_vlan_tag_present(skb)) {
290 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
291 skb_vlan_tag_get(skb);
292 /* Currently supports 8021Q, 8021AD vlan offloads
293 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
294 */
295 if (skb->vlan_proto == htons(ETH_P_8021Q))
296 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
297 }
298
299 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
300 struct tx_push_buffer *tx_push_buf = txr->tx_push;
301 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
302 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
303 void *pdata = tx_push_buf->data;
304 u64 *end;
305 int j, push_len;
306
307 /* Set COAL_NOW to be ready quickly for the next push */
308 tx_push->tx_bd_len_flags_type =
309 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
310 TX_BD_TYPE_LONG_TX_BD |
311 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
312 TX_BD_FLAGS_COAL_NOW |
313 TX_BD_FLAGS_PACKET_END |
314 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
315
316 if (skb->ip_summed == CHECKSUM_PARTIAL)
317 tx_push1->tx_bd_hsize_lflags =
318 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
319 else
320 tx_push1->tx_bd_hsize_lflags = 0;
321
322 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
323 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
324
325 end = pdata + length;
326 end = PTR_ALIGN(end, 8) - 1;
327 *end = 0;
328
329 skb_copy_from_linear_data(skb, pdata, len);
330 pdata += len;
331 for (j = 0; j < last_frag; j++) {
332 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
333 void *fptr;
334
335 fptr = skb_frag_address_safe(frag);
336 if (!fptr)
337 goto normal_tx;
338
339 memcpy(pdata, fptr, skb_frag_size(frag));
340 pdata += skb_frag_size(frag);
341 }
342
343 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
344 txbd->tx_bd_haddr = txr->data_mapping;
345 prod = NEXT_TX(prod);
346 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
347 memcpy(txbd, tx_push1, sizeof(*txbd));
348 prod = NEXT_TX(prod);
349 tx_push->doorbell =
350 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
351 txr->tx_prod = prod;
352
353 tx_buf->is_push = 1;
354 netdev_tx_sent_queue(txq, skb->len);
355 wmb(); /* Sync is_push and byte queue before pushing data */
356
357 push_len = (length + sizeof(*tx_push) + 7) / 8;
358 if (push_len > 16) {
359 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
360 __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
361 (push_len - 16) << 1);
362 } else {
363 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
364 push_len);
365 }
366
367 goto tx_done;
368 }
369
370 normal_tx:
371 if (length < BNXT_MIN_PKT_SIZE) {
372 pad = BNXT_MIN_PKT_SIZE - length;
373 if (skb_pad(skb, pad)) {
374 /* SKB already freed. */
375 tx_buf->skb = NULL;
376 return NETDEV_TX_OK;
377 }
378 length = BNXT_MIN_PKT_SIZE;
379 }
380
381 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
382
383 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
384 dev_kfree_skb_any(skb);
385 tx_buf->skb = NULL;
386 return NETDEV_TX_OK;
387 }
388
389 dma_unmap_addr_set(tx_buf, mapping, mapping);
390 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
391 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
392
393 txbd->tx_bd_haddr = cpu_to_le64(mapping);
394
395 prod = NEXT_TX(prod);
396 txbd1 = (struct tx_bd_ext *)
397 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
398
399 txbd1->tx_bd_hsize_lflags = 0;
400 if (skb_is_gso(skb)) {
401 u32 hdr_len;
402
403 if (skb->encapsulation)
404 hdr_len = skb_inner_network_offset(skb) +
405 skb_inner_network_header_len(skb) +
406 inner_tcp_hdrlen(skb);
407 else
408 hdr_len = skb_transport_offset(skb) +
409 tcp_hdrlen(skb);
410
411 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
412 TX_BD_FLAGS_T_IPID |
413 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
414 length = skb_shinfo(skb)->gso_size;
415 txbd1->tx_bd_mss = cpu_to_le32(length);
416 length += hdr_len;
417 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
418 txbd1->tx_bd_hsize_lflags =
419 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
420 txbd1->tx_bd_mss = 0;
421 }
422
423 length >>= 9;
424 flags |= bnxt_lhint_arr[length];
425 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
426
427 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
428 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
429 for (i = 0; i < last_frag; i++) {
430 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
431
432 prod = NEXT_TX(prod);
433 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
434
435 len = skb_frag_size(frag);
436 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
437 DMA_TO_DEVICE);
438
439 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
440 goto tx_dma_error;
441
442 tx_buf = &txr->tx_buf_ring[prod];
443 dma_unmap_addr_set(tx_buf, mapping, mapping);
444
445 txbd->tx_bd_haddr = cpu_to_le64(mapping);
446
447 flags = len << TX_BD_LEN_SHIFT;
448 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
449 }
450
451 flags &= ~TX_BD_LEN;
452 txbd->tx_bd_len_flags_type =
453 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
454 TX_BD_FLAGS_PACKET_END);
455
456 netdev_tx_sent_queue(txq, skb->len);
457
458 /* Sync BD data before updating doorbell */
459 wmb();
460
461 prod = NEXT_TX(prod);
462 txr->tx_prod = prod;
463
464 writel(DB_KEY_TX | prod, txr->tx_doorbell);
465 writel(DB_KEY_TX | prod, txr->tx_doorbell);
466
467 tx_done:
468
469 mmiowb();
470
471 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
472 netif_tx_stop_queue(txq);
473
474 /* netif_tx_stop_queue() must be done before checking
475 * tx index in bnxt_tx_avail() below, because in
476 * bnxt_tx_int(), we update tx index before checking for
477 * netif_tx_queue_stopped().
478 */
479 smp_mb();
480 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
481 netif_tx_wake_queue(txq);
482 }
483 return NETDEV_TX_OK;
484
485 tx_dma_error:
486 last_frag = i;
487
488 /* start back at beginning and unmap skb */
489 prod = txr->tx_prod;
490 tx_buf = &txr->tx_buf_ring[prod];
491 tx_buf->skb = NULL;
492 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
493 skb_headlen(skb), PCI_DMA_TODEVICE);
494 prod = NEXT_TX(prod);
495
496 /* unmap remaining mapped pages */
497 for (i = 0; i < last_frag; i++) {
498 prod = NEXT_TX(prod);
499 tx_buf = &txr->tx_buf_ring[prod];
500 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
501 skb_frag_size(&skb_shinfo(skb)->frags[i]),
502 PCI_DMA_TODEVICE);
503 }
504
505 dev_kfree_skb_any(skb);
506 return NETDEV_TX_OK;
507 }
508
509 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
510 {
511 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
512 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
513 u16 cons = txr->tx_cons;
514 struct pci_dev *pdev = bp->pdev;
515 int i;
516 unsigned int tx_bytes = 0;
517
518 for (i = 0; i < nr_pkts; i++) {
519 struct bnxt_sw_tx_bd *tx_buf;
520 struct sk_buff *skb;
521 int j, last;
522
523 tx_buf = &txr->tx_buf_ring[cons];
524 cons = NEXT_TX(cons);
525 skb = tx_buf->skb;
526 tx_buf->skb = NULL;
527
528 if (tx_buf->is_push) {
529 tx_buf->is_push = 0;
530 goto next_tx_int;
531 }
532
533 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
534 skb_headlen(skb), PCI_DMA_TODEVICE);
535 last = tx_buf->nr_frags;
536
537 for (j = 0; j < last; j++) {
538 cons = NEXT_TX(cons);
539 tx_buf = &txr->tx_buf_ring[cons];
540 dma_unmap_page(
541 &pdev->dev,
542 dma_unmap_addr(tx_buf, mapping),
543 skb_frag_size(&skb_shinfo(skb)->frags[j]),
544 PCI_DMA_TODEVICE);
545 }
546
547 next_tx_int:
548 cons = NEXT_TX(cons);
549
550 tx_bytes += skb->len;
551 dev_kfree_skb_any(skb);
552 }
553
554 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
555 txr->tx_cons = cons;
556
557 /* Need to make the tx_cons update visible to bnxt_start_xmit()
558 * before checking for netif_tx_queue_stopped(). Without the
559 * memory barrier, there is a small possibility that bnxt_start_xmit()
560 * will miss it and cause the queue to be stopped forever.
561 */
562 smp_mb();
563
564 if (unlikely(netif_tx_queue_stopped(txq)) &&
565 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
566 __netif_tx_lock(txq, smp_processor_id());
567 if (netif_tx_queue_stopped(txq) &&
568 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
569 txr->dev_state != BNXT_DEV_STATE_CLOSING)
570 netif_tx_wake_queue(txq);
571 __netif_tx_unlock(txq);
572 }
573 }
574
575 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
576 gfp_t gfp)
577 {
578 struct device *dev = &bp->pdev->dev;
579 struct page *page;
580
581 page = alloc_page(gfp);
582 if (!page)
583 return NULL;
584
585 *mapping = dma_map_page(dev, page, 0, PAGE_SIZE, bp->rx_dir);
586 if (dma_mapping_error(dev, *mapping)) {
587 __free_page(page);
588 return NULL;
589 }
590 *mapping += bp->rx_dma_offset;
591 return page;
592 }
593
594 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
595 gfp_t gfp)
596 {
597 u8 *data;
598 struct pci_dev *pdev = bp->pdev;
599
600 data = kmalloc(bp->rx_buf_size, gfp);
601 if (!data)
602 return NULL;
603
604 *mapping = dma_map_single(&pdev->dev, data + bp->rx_dma_offset,
605 bp->rx_buf_use_size, bp->rx_dir);
606
607 if (dma_mapping_error(&pdev->dev, *mapping)) {
608 kfree(data);
609 data = NULL;
610 }
611 return data;
612 }
613
614 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
615 u16 prod, gfp_t gfp)
616 {
617 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
618 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
619 dma_addr_t mapping;
620
621 if (BNXT_RX_PAGE_MODE(bp)) {
622 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
623
624 if (!page)
625 return -ENOMEM;
626
627 rx_buf->data = page;
628 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
629 } else {
630 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
631
632 if (!data)
633 return -ENOMEM;
634
635 rx_buf->data = data;
636 rx_buf->data_ptr = data + bp->rx_offset;
637 }
638 rx_buf->mapping = mapping;
639
640 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
641 return 0;
642 }
643
644 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
645 {
646 u16 prod = rxr->rx_prod;
647 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
648 struct rx_bd *cons_bd, *prod_bd;
649
650 prod_rx_buf = &rxr->rx_buf_ring[prod];
651 cons_rx_buf = &rxr->rx_buf_ring[cons];
652
653 prod_rx_buf->data = data;
654 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
655
656 prod_rx_buf->mapping = cons_rx_buf->mapping;
657
658 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
659 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
660
661 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
662 }
663
664 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
665 {
666 u16 next, max = rxr->rx_agg_bmap_size;
667
668 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
669 if (next >= max)
670 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
671 return next;
672 }
673
674 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
675 struct bnxt_rx_ring_info *rxr,
676 u16 prod, gfp_t gfp)
677 {
678 struct rx_bd *rxbd =
679 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
680 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
681 struct pci_dev *pdev = bp->pdev;
682 struct page *page;
683 dma_addr_t mapping;
684 u16 sw_prod = rxr->rx_sw_agg_prod;
685 unsigned int offset = 0;
686
687 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
688 page = rxr->rx_page;
689 if (!page) {
690 page = alloc_page(gfp);
691 if (!page)
692 return -ENOMEM;
693 rxr->rx_page = page;
694 rxr->rx_page_offset = 0;
695 }
696 offset = rxr->rx_page_offset;
697 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
698 if (rxr->rx_page_offset == PAGE_SIZE)
699 rxr->rx_page = NULL;
700 else
701 get_page(page);
702 } else {
703 page = alloc_page(gfp);
704 if (!page)
705 return -ENOMEM;
706 }
707
708 mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
709 PCI_DMA_FROMDEVICE);
710 if (dma_mapping_error(&pdev->dev, mapping)) {
711 __free_page(page);
712 return -EIO;
713 }
714
715 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
716 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
717
718 __set_bit(sw_prod, rxr->rx_agg_bmap);
719 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
720 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
721
722 rx_agg_buf->page = page;
723 rx_agg_buf->offset = offset;
724 rx_agg_buf->mapping = mapping;
725 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
726 rxbd->rx_bd_opaque = sw_prod;
727 return 0;
728 }
729
730 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
731 u32 agg_bufs)
732 {
733 struct bnxt *bp = bnapi->bp;
734 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
735 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
736 u16 prod = rxr->rx_agg_prod;
737 u16 sw_prod = rxr->rx_sw_agg_prod;
738 u32 i;
739
740 for (i = 0; i < agg_bufs; i++) {
741 u16 cons;
742 struct rx_agg_cmp *agg;
743 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
744 struct rx_bd *prod_bd;
745 struct page *page;
746
747 agg = (struct rx_agg_cmp *)
748 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
749 cons = agg->rx_agg_cmp_opaque;
750 __clear_bit(cons, rxr->rx_agg_bmap);
751
752 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
753 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
754
755 __set_bit(sw_prod, rxr->rx_agg_bmap);
756 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
757 cons_rx_buf = &rxr->rx_agg_ring[cons];
758
759 /* It is possible for sw_prod to be equal to cons, so
760 * set cons_rx_buf->page to NULL first.
761 */
762 page = cons_rx_buf->page;
763 cons_rx_buf->page = NULL;
764 prod_rx_buf->page = page;
765 prod_rx_buf->offset = cons_rx_buf->offset;
766
767 prod_rx_buf->mapping = cons_rx_buf->mapping;
768
769 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
770
771 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
772 prod_bd->rx_bd_opaque = sw_prod;
773
774 prod = NEXT_RX_AGG(prod);
775 sw_prod = NEXT_RX_AGG(sw_prod);
776 cp_cons = NEXT_CMP(cp_cons);
777 }
778 rxr->rx_agg_prod = prod;
779 rxr->rx_sw_agg_prod = sw_prod;
780 }
781
782 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
783 struct bnxt_rx_ring_info *rxr,
784 u16 cons, void *data, u8 *data_ptr,
785 dma_addr_t dma_addr,
786 unsigned int offset_and_len)
787 {
788 unsigned int payload = offset_and_len >> 16;
789 unsigned int len = offset_and_len & 0xffff;
790 struct skb_frag_struct *frag;
791 struct page *page = data;
792 u16 prod = rxr->rx_prod;
793 struct sk_buff *skb;
794 int off, err;
795
796 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
797 if (unlikely(err)) {
798 bnxt_reuse_rx_data(rxr, cons, data);
799 return NULL;
800 }
801 dma_addr -= bp->rx_dma_offset;
802 dma_unmap_page(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir);
803
804 if (unlikely(!payload))
805 payload = eth_get_headlen(data_ptr, len);
806
807 skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
808 if (!skb) {
809 __free_page(page);
810 return NULL;
811 }
812
813 off = (void *)data_ptr - page_address(page);
814 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
815 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
816 payload + NET_IP_ALIGN);
817
818 frag = &skb_shinfo(skb)->frags[0];
819 skb_frag_size_sub(frag, payload);
820 frag->page_offset += payload;
821 skb->data_len -= payload;
822 skb->tail += payload;
823
824 return skb;
825 }
826
827 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
828 struct bnxt_rx_ring_info *rxr, u16 cons,
829 void *data, u8 *data_ptr,
830 dma_addr_t dma_addr,
831 unsigned int offset_and_len)
832 {
833 u16 prod = rxr->rx_prod;
834 struct sk_buff *skb;
835 int err;
836
837 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
838 if (unlikely(err)) {
839 bnxt_reuse_rx_data(rxr, cons, data);
840 return NULL;
841 }
842
843 skb = build_skb(data, 0);
844 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
845 bp->rx_dir);
846 if (!skb) {
847 kfree(data);
848 return NULL;
849 }
850
851 skb_reserve(skb, bp->rx_offset);
852 skb_put(skb, offset_and_len & 0xffff);
853 return skb;
854 }
855
856 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
857 struct sk_buff *skb, u16 cp_cons,
858 u32 agg_bufs)
859 {
860 struct pci_dev *pdev = bp->pdev;
861 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
862 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
863 u16 prod = rxr->rx_agg_prod;
864 u32 i;
865
866 for (i = 0; i < agg_bufs; i++) {
867 u16 cons, frag_len;
868 struct rx_agg_cmp *agg;
869 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
870 struct page *page;
871 dma_addr_t mapping;
872
873 agg = (struct rx_agg_cmp *)
874 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
875 cons = agg->rx_agg_cmp_opaque;
876 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
877 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
878
879 cons_rx_buf = &rxr->rx_agg_ring[cons];
880 skb_fill_page_desc(skb, i, cons_rx_buf->page,
881 cons_rx_buf->offset, frag_len);
882 __clear_bit(cons, rxr->rx_agg_bmap);
883
884 /* It is possible for bnxt_alloc_rx_page() to allocate
885 * a sw_prod index that equals the cons index, so we
886 * need to clear the cons entry now.
887 */
888 mapping = cons_rx_buf->mapping;
889 page = cons_rx_buf->page;
890 cons_rx_buf->page = NULL;
891
892 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
893 struct skb_shared_info *shinfo;
894 unsigned int nr_frags;
895
896 shinfo = skb_shinfo(skb);
897 nr_frags = --shinfo->nr_frags;
898 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
899
900 dev_kfree_skb(skb);
901
902 cons_rx_buf->page = page;
903
904 /* Update prod since possibly some pages have been
905 * allocated already.
906 */
907 rxr->rx_agg_prod = prod;
908 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
909 return NULL;
910 }
911
912 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
913 PCI_DMA_FROMDEVICE);
914
915 skb->data_len += frag_len;
916 skb->len += frag_len;
917 skb->truesize += PAGE_SIZE;
918
919 prod = NEXT_RX_AGG(prod);
920 cp_cons = NEXT_CMP(cp_cons);
921 }
922 rxr->rx_agg_prod = prod;
923 return skb;
924 }
925
926 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
927 u8 agg_bufs, u32 *raw_cons)
928 {
929 u16 last;
930 struct rx_agg_cmp *agg;
931
932 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
933 last = RING_CMP(*raw_cons);
934 agg = (struct rx_agg_cmp *)
935 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
936 return RX_AGG_CMP_VALID(agg, *raw_cons);
937 }
938
939 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
940 unsigned int len,
941 dma_addr_t mapping)
942 {
943 struct bnxt *bp = bnapi->bp;
944 struct pci_dev *pdev = bp->pdev;
945 struct sk_buff *skb;
946
947 skb = napi_alloc_skb(&bnapi->napi, len);
948 if (!skb)
949 return NULL;
950
951 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
952 bp->rx_dir);
953
954 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
955 len + NET_IP_ALIGN);
956
957 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
958 bp->rx_dir);
959
960 skb_put(skb, len);
961 return skb;
962 }
963
964 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
965 u32 *raw_cons, void *cmp)
966 {
967 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
968 struct rx_cmp *rxcmp = cmp;
969 u32 tmp_raw_cons = *raw_cons;
970 u8 cmp_type, agg_bufs = 0;
971
972 cmp_type = RX_CMP_TYPE(rxcmp);
973
974 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
975 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
976 RX_CMP_AGG_BUFS) >>
977 RX_CMP_AGG_BUFS_SHIFT;
978 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
979 struct rx_tpa_end_cmp *tpa_end = cmp;
980
981 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
982 RX_TPA_END_CMP_AGG_BUFS) >>
983 RX_TPA_END_CMP_AGG_BUFS_SHIFT;
984 }
985
986 if (agg_bufs) {
987 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
988 return -EBUSY;
989 }
990 *raw_cons = tmp_raw_cons;
991 return 0;
992 }
993
994 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
995 {
996 if (!rxr->bnapi->in_reset) {
997 rxr->bnapi->in_reset = true;
998 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
999 schedule_work(&bp->sp_task);
1000 }
1001 rxr->rx_next_cons = 0xffff;
1002 }
1003
1004 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1005 struct rx_tpa_start_cmp *tpa_start,
1006 struct rx_tpa_start_cmp_ext *tpa_start1)
1007 {
1008 u8 agg_id = TPA_START_AGG_ID(tpa_start);
1009 u16 cons, prod;
1010 struct bnxt_tpa_info *tpa_info;
1011 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1012 struct rx_bd *prod_bd;
1013 dma_addr_t mapping;
1014
1015 cons = tpa_start->rx_tpa_start_cmp_opaque;
1016 prod = rxr->rx_prod;
1017 cons_rx_buf = &rxr->rx_buf_ring[cons];
1018 prod_rx_buf = &rxr->rx_buf_ring[prod];
1019 tpa_info = &rxr->rx_tpa[agg_id];
1020
1021 if (unlikely(cons != rxr->rx_next_cons)) {
1022 bnxt_sched_reset(bp, rxr);
1023 return;
1024 }
1025
1026 prod_rx_buf->data = tpa_info->data;
1027 prod_rx_buf->data_ptr = tpa_info->data_ptr;
1028
1029 mapping = tpa_info->mapping;
1030 prod_rx_buf->mapping = mapping;
1031
1032 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1033
1034 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1035
1036 tpa_info->data = cons_rx_buf->data;
1037 tpa_info->data_ptr = cons_rx_buf->data_ptr;
1038 cons_rx_buf->data = NULL;
1039 tpa_info->mapping = cons_rx_buf->mapping;
1040
1041 tpa_info->len =
1042 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1043 RX_TPA_START_CMP_LEN_SHIFT;
1044 if (likely(TPA_START_HASH_VALID(tpa_start))) {
1045 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1046
1047 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1048 tpa_info->gso_type = SKB_GSO_TCPV4;
1049 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1050 if (hash_type == 3)
1051 tpa_info->gso_type = SKB_GSO_TCPV6;
1052 tpa_info->rss_hash =
1053 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1054 } else {
1055 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1056 tpa_info->gso_type = 0;
1057 if (netif_msg_rx_err(bp))
1058 netdev_warn(bp->dev, "TPA packet without valid hash\n");
1059 }
1060 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1061 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1062 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1063
1064 rxr->rx_prod = NEXT_RX(prod);
1065 cons = NEXT_RX(cons);
1066 rxr->rx_next_cons = NEXT_RX(cons);
1067 cons_rx_buf = &rxr->rx_buf_ring[cons];
1068
1069 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1070 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1071 cons_rx_buf->data = NULL;
1072 }
1073
1074 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1075 u16 cp_cons, u32 agg_bufs)
1076 {
1077 if (agg_bufs)
1078 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1079 }
1080
1081 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1082 int payload_off, int tcp_ts,
1083 struct sk_buff *skb)
1084 {
1085 #ifdef CONFIG_INET
1086 struct tcphdr *th;
1087 int len, nw_off;
1088 u16 outer_ip_off, inner_ip_off, inner_mac_off;
1089 u32 hdr_info = tpa_info->hdr_info;
1090 bool loopback = false;
1091
1092 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1093 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1094 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1095
1096 /* If the packet is an internal loopback packet, the offsets will
1097 * have an extra 4 bytes.
1098 */
1099 if (inner_mac_off == 4) {
1100 loopback = true;
1101 } else if (inner_mac_off > 4) {
1102 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1103 ETH_HLEN - 2));
1104
1105 /* We only support inner iPv4/ipv6. If we don't see the
1106 * correct protocol ID, it must be a loopback packet where
1107 * the offsets are off by 4.
1108 */
1109 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1110 loopback = true;
1111 }
1112 if (loopback) {
1113 /* internal loopback packet, subtract all offsets by 4 */
1114 inner_ip_off -= 4;
1115 inner_mac_off -= 4;
1116 outer_ip_off -= 4;
1117 }
1118
1119 nw_off = inner_ip_off - ETH_HLEN;
1120 skb_set_network_header(skb, nw_off);
1121 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1122 struct ipv6hdr *iph = ipv6_hdr(skb);
1123
1124 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1125 len = skb->len - skb_transport_offset(skb);
1126 th = tcp_hdr(skb);
1127 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1128 } else {
1129 struct iphdr *iph = ip_hdr(skb);
1130
1131 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1132 len = skb->len - skb_transport_offset(skb);
1133 th = tcp_hdr(skb);
1134 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1135 }
1136
1137 if (inner_mac_off) { /* tunnel */
1138 struct udphdr *uh = NULL;
1139 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1140 ETH_HLEN - 2));
1141
1142 if (proto == htons(ETH_P_IP)) {
1143 struct iphdr *iph = (struct iphdr *)skb->data;
1144
1145 if (iph->protocol == IPPROTO_UDP)
1146 uh = (struct udphdr *)(iph + 1);
1147 } else {
1148 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1149
1150 if (iph->nexthdr == IPPROTO_UDP)
1151 uh = (struct udphdr *)(iph + 1);
1152 }
1153 if (uh) {
1154 if (uh->check)
1155 skb_shinfo(skb)->gso_type |=
1156 SKB_GSO_UDP_TUNNEL_CSUM;
1157 else
1158 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1159 }
1160 }
1161 #endif
1162 return skb;
1163 }
1164
1165 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
1166 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1167
1168 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1169 int payload_off, int tcp_ts,
1170 struct sk_buff *skb)
1171 {
1172 #ifdef CONFIG_INET
1173 struct tcphdr *th;
1174 int len, nw_off, tcp_opt_len = 0;
1175
1176 if (tcp_ts)
1177 tcp_opt_len = 12;
1178
1179 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1180 struct iphdr *iph;
1181
1182 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1183 ETH_HLEN;
1184 skb_set_network_header(skb, nw_off);
1185 iph = ip_hdr(skb);
1186 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1187 len = skb->len - skb_transport_offset(skb);
1188 th = tcp_hdr(skb);
1189 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1190 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1191 struct ipv6hdr *iph;
1192
1193 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1194 ETH_HLEN;
1195 skb_set_network_header(skb, nw_off);
1196 iph = ipv6_hdr(skb);
1197 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1198 len = skb->len - skb_transport_offset(skb);
1199 th = tcp_hdr(skb);
1200 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1201 } else {
1202 dev_kfree_skb_any(skb);
1203 return NULL;
1204 }
1205
1206 if (nw_off) { /* tunnel */
1207 struct udphdr *uh = NULL;
1208
1209 if (skb->protocol == htons(ETH_P_IP)) {
1210 struct iphdr *iph = (struct iphdr *)skb->data;
1211
1212 if (iph->protocol == IPPROTO_UDP)
1213 uh = (struct udphdr *)(iph + 1);
1214 } else {
1215 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1216
1217 if (iph->nexthdr == IPPROTO_UDP)
1218 uh = (struct udphdr *)(iph + 1);
1219 }
1220 if (uh) {
1221 if (uh->check)
1222 skb_shinfo(skb)->gso_type |=
1223 SKB_GSO_UDP_TUNNEL_CSUM;
1224 else
1225 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1226 }
1227 }
1228 #endif
1229 return skb;
1230 }
1231
1232 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1233 struct bnxt_tpa_info *tpa_info,
1234 struct rx_tpa_end_cmp *tpa_end,
1235 struct rx_tpa_end_cmp_ext *tpa_end1,
1236 struct sk_buff *skb)
1237 {
1238 #ifdef CONFIG_INET
1239 int payload_off;
1240 u16 segs;
1241
1242 segs = TPA_END_TPA_SEGS(tpa_end);
1243 if (segs == 1)
1244 return skb;
1245
1246 NAPI_GRO_CB(skb)->count = segs;
1247 skb_shinfo(skb)->gso_size =
1248 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1249 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1250 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1251 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1252 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1253 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1254 if (likely(skb))
1255 tcp_gro_complete(skb);
1256 #endif
1257 return skb;
1258 }
1259
1260 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1261 struct bnxt_napi *bnapi,
1262 u32 *raw_cons,
1263 struct rx_tpa_end_cmp *tpa_end,
1264 struct rx_tpa_end_cmp_ext *tpa_end1,
1265 u8 *event)
1266 {
1267 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1268 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1269 u8 agg_id = TPA_END_AGG_ID(tpa_end);
1270 u8 *data_ptr, agg_bufs;
1271 u16 cp_cons = RING_CMP(*raw_cons);
1272 unsigned int len;
1273 struct bnxt_tpa_info *tpa_info;
1274 dma_addr_t mapping;
1275 struct sk_buff *skb;
1276 void *data;
1277
1278 if (unlikely(bnapi->in_reset)) {
1279 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1280
1281 if (rc < 0)
1282 return ERR_PTR(-EBUSY);
1283 return NULL;
1284 }
1285
1286 tpa_info = &rxr->rx_tpa[agg_id];
1287 data = tpa_info->data;
1288 data_ptr = tpa_info->data_ptr;
1289 prefetch(data_ptr);
1290 len = tpa_info->len;
1291 mapping = tpa_info->mapping;
1292
1293 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1294 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1295
1296 if (agg_bufs) {
1297 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1298 return ERR_PTR(-EBUSY);
1299
1300 *event |= BNXT_AGG_EVENT;
1301 cp_cons = NEXT_CMP(cp_cons);
1302 }
1303
1304 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1305 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1306 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1307 agg_bufs, (int)MAX_SKB_FRAGS);
1308 return NULL;
1309 }
1310
1311 if (len <= bp->rx_copy_thresh) {
1312 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1313 if (!skb) {
1314 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1315 return NULL;
1316 }
1317 } else {
1318 u8 *new_data;
1319 dma_addr_t new_mapping;
1320
1321 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1322 if (!new_data) {
1323 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1324 return NULL;
1325 }
1326
1327 tpa_info->data = new_data;
1328 tpa_info->data_ptr = new_data + bp->rx_offset;
1329 tpa_info->mapping = new_mapping;
1330
1331 skb = build_skb(data, 0);
1332 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1333 bp->rx_dir);
1334
1335 if (!skb) {
1336 kfree(data);
1337 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1338 return NULL;
1339 }
1340 skb_reserve(skb, bp->rx_offset);
1341 skb_put(skb, len);
1342 }
1343
1344 if (agg_bufs) {
1345 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1346 if (!skb) {
1347 /* Page reuse already handled by bnxt_rx_pages(). */
1348 return NULL;
1349 }
1350 }
1351 skb->protocol = eth_type_trans(skb, bp->dev);
1352
1353 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1354 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1355
1356 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1357 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1358 u16 vlan_proto = tpa_info->metadata >>
1359 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1360 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1361
1362 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1363 }
1364
1365 skb_checksum_none_assert(skb);
1366 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1367 skb->ip_summed = CHECKSUM_UNNECESSARY;
1368 skb->csum_level =
1369 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1370 }
1371
1372 if (TPA_END_GRO(tpa_end))
1373 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1374
1375 return skb;
1376 }
1377
1378 /* returns the following:
1379 * 1 - 1 packet successfully received
1380 * 0 - successful TPA_START, packet not completed yet
1381 * -EBUSY - completion ring does not have all the agg buffers yet
1382 * -ENOMEM - packet aborted due to out of memory
1383 * -EIO - packet aborted due to hw error indicated in BD
1384 */
1385 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1386 u8 *event)
1387 {
1388 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1389 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1390 struct net_device *dev = bp->dev;
1391 struct rx_cmp *rxcmp;
1392 struct rx_cmp_ext *rxcmp1;
1393 u32 tmp_raw_cons = *raw_cons;
1394 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1395 struct bnxt_sw_rx_bd *rx_buf;
1396 unsigned int len;
1397 u8 *data_ptr, agg_bufs, cmp_type;
1398 dma_addr_t dma_addr;
1399 struct sk_buff *skb;
1400 void *data;
1401 int rc = 0;
1402 u32 misc;
1403
1404 rxcmp = (struct rx_cmp *)
1405 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1406
1407 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1408 cp_cons = RING_CMP(tmp_raw_cons);
1409 rxcmp1 = (struct rx_cmp_ext *)
1410 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1411
1412 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1413 return -EBUSY;
1414
1415 cmp_type = RX_CMP_TYPE(rxcmp);
1416
1417 prod = rxr->rx_prod;
1418
1419 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1420 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1421 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1422
1423 *event |= BNXT_RX_EVENT;
1424 goto next_rx_no_prod;
1425
1426 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1427 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1428 (struct rx_tpa_end_cmp *)rxcmp,
1429 (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1430
1431 if (unlikely(IS_ERR(skb)))
1432 return -EBUSY;
1433
1434 rc = -ENOMEM;
1435 if (likely(skb)) {
1436 skb_record_rx_queue(skb, bnapi->index);
1437 napi_gro_receive(&bnapi->napi, skb);
1438 rc = 1;
1439 }
1440 *event |= BNXT_RX_EVENT;
1441 goto next_rx_no_prod;
1442 }
1443
1444 cons = rxcmp->rx_cmp_opaque;
1445 rx_buf = &rxr->rx_buf_ring[cons];
1446 data = rx_buf->data;
1447 data_ptr = rx_buf->data_ptr;
1448 if (unlikely(cons != rxr->rx_next_cons)) {
1449 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1450
1451 bnxt_sched_reset(bp, rxr);
1452 return rc1;
1453 }
1454 prefetch(data_ptr);
1455
1456 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1457 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1458
1459 if (agg_bufs) {
1460 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1461 return -EBUSY;
1462
1463 cp_cons = NEXT_CMP(cp_cons);
1464 *event |= BNXT_AGG_EVENT;
1465 }
1466 *event |= BNXT_RX_EVENT;
1467
1468 rx_buf->data = NULL;
1469 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1470 bnxt_reuse_rx_data(rxr, cons, data);
1471 if (agg_bufs)
1472 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1473
1474 rc = -EIO;
1475 goto next_rx;
1476 }
1477
1478 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1479 dma_addr = rx_buf->mapping;
1480
1481 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1482 rc = 1;
1483 goto next_rx;
1484 }
1485
1486 if (len <= bp->rx_copy_thresh) {
1487 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1488 bnxt_reuse_rx_data(rxr, cons, data);
1489 if (!skb) {
1490 rc = -ENOMEM;
1491 goto next_rx;
1492 }
1493 } else {
1494 u32 payload;
1495
1496 if (rx_buf->data_ptr == data_ptr)
1497 payload = misc & RX_CMP_PAYLOAD_OFFSET;
1498 else
1499 payload = 0;
1500 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1501 payload | len);
1502 if (!skb) {
1503 rc = -ENOMEM;
1504 goto next_rx;
1505 }
1506 }
1507
1508 if (agg_bufs) {
1509 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1510 if (!skb) {
1511 rc = -ENOMEM;
1512 goto next_rx;
1513 }
1514 }
1515
1516 if (RX_CMP_HASH_VALID(rxcmp)) {
1517 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1518 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1519
1520 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1521 if (hash_type != 1 && hash_type != 3)
1522 type = PKT_HASH_TYPE_L3;
1523 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1524 }
1525
1526 skb->protocol = eth_type_trans(skb, dev);
1527
1528 if ((rxcmp1->rx_cmp_flags2 &
1529 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1530 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1531 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1532 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1533 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1534
1535 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1536 }
1537
1538 skb_checksum_none_assert(skb);
1539 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1540 if (dev->features & NETIF_F_RXCSUM) {
1541 skb->ip_summed = CHECKSUM_UNNECESSARY;
1542 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1543 }
1544 } else {
1545 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1546 if (dev->features & NETIF_F_RXCSUM)
1547 cpr->rx_l4_csum_errors++;
1548 }
1549 }
1550
1551 skb_record_rx_queue(skb, bnapi->index);
1552 napi_gro_receive(&bnapi->napi, skb);
1553 rc = 1;
1554
1555 next_rx:
1556 rxr->rx_prod = NEXT_RX(prod);
1557 rxr->rx_next_cons = NEXT_RX(cons);
1558
1559 next_rx_no_prod:
1560 *raw_cons = tmp_raw_cons;
1561
1562 return rc;
1563 }
1564
1565 #define BNXT_GET_EVENT_PORT(data) \
1566 ((data) & \
1567 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1568
1569 static int bnxt_async_event_process(struct bnxt *bp,
1570 struct hwrm_async_event_cmpl *cmpl)
1571 {
1572 u16 event_id = le16_to_cpu(cmpl->event_id);
1573
1574 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1575 switch (event_id) {
1576 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1577 u32 data1 = le32_to_cpu(cmpl->event_data1);
1578 struct bnxt_link_info *link_info = &bp->link_info;
1579
1580 if (BNXT_VF(bp))
1581 goto async_event_process_exit;
1582 if (data1 & 0x20000) {
1583 u16 fw_speed = link_info->force_link_speed;
1584 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1585
1586 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1587 speed);
1588 }
1589 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1590 /* fall thru */
1591 }
1592 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1593 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1594 break;
1595 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1596 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1597 break;
1598 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1599 u32 data1 = le32_to_cpu(cmpl->event_data1);
1600 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1601
1602 if (BNXT_VF(bp))
1603 break;
1604
1605 if (bp->pf.port_id != port_id)
1606 break;
1607
1608 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1609 break;
1610 }
1611 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1612 if (BNXT_PF(bp))
1613 goto async_event_process_exit;
1614 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1615 break;
1616 default:
1617 goto async_event_process_exit;
1618 }
1619 schedule_work(&bp->sp_task);
1620 async_event_process_exit:
1621 bnxt_ulp_async_events(bp, cmpl);
1622 return 0;
1623 }
1624
1625 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1626 {
1627 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1628 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1629 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1630 (struct hwrm_fwd_req_cmpl *)txcmp;
1631
1632 switch (cmpl_type) {
1633 case CMPL_BASE_TYPE_HWRM_DONE:
1634 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1635 if (seq_id == bp->hwrm_intr_seq_id)
1636 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1637 else
1638 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1639 break;
1640
1641 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1642 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1643
1644 if ((vf_id < bp->pf.first_vf_id) ||
1645 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1646 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1647 vf_id);
1648 return -EINVAL;
1649 }
1650
1651 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1652 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1653 schedule_work(&bp->sp_task);
1654 break;
1655
1656 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1657 bnxt_async_event_process(bp,
1658 (struct hwrm_async_event_cmpl *)txcmp);
1659
1660 default:
1661 break;
1662 }
1663
1664 return 0;
1665 }
1666
1667 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1668 {
1669 struct bnxt_napi *bnapi = dev_instance;
1670 struct bnxt *bp = bnapi->bp;
1671 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1672 u32 cons = RING_CMP(cpr->cp_raw_cons);
1673
1674 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1675 napi_schedule(&bnapi->napi);
1676 return IRQ_HANDLED;
1677 }
1678
1679 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1680 {
1681 u32 raw_cons = cpr->cp_raw_cons;
1682 u16 cons = RING_CMP(raw_cons);
1683 struct tx_cmp *txcmp;
1684
1685 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1686
1687 return TX_CMP_VALID(txcmp, raw_cons);
1688 }
1689
1690 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1691 {
1692 struct bnxt_napi *bnapi = dev_instance;
1693 struct bnxt *bp = bnapi->bp;
1694 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1695 u32 cons = RING_CMP(cpr->cp_raw_cons);
1696 u32 int_status;
1697
1698 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1699
1700 if (!bnxt_has_work(bp, cpr)) {
1701 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1702 /* return if erroneous interrupt */
1703 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1704 return IRQ_NONE;
1705 }
1706
1707 /* disable ring IRQ */
1708 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1709
1710 /* Return here if interrupt is shared and is disabled. */
1711 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1712 return IRQ_HANDLED;
1713
1714 napi_schedule(&bnapi->napi);
1715 return IRQ_HANDLED;
1716 }
1717
1718 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1719 {
1720 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1721 u32 raw_cons = cpr->cp_raw_cons;
1722 u32 cons;
1723 int tx_pkts = 0;
1724 int rx_pkts = 0;
1725 u8 event = 0;
1726 struct tx_cmp *txcmp;
1727
1728 while (1) {
1729 int rc;
1730
1731 cons = RING_CMP(raw_cons);
1732 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1733
1734 if (!TX_CMP_VALID(txcmp, raw_cons))
1735 break;
1736
1737 /* The valid test of the entry must be done first before
1738 * reading any further.
1739 */
1740 dma_rmb();
1741 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1742 tx_pkts++;
1743 /* return full budget so NAPI will complete. */
1744 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1745 rx_pkts = budget;
1746 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1747 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1748 if (likely(rc >= 0))
1749 rx_pkts += rc;
1750 else if (rc == -EBUSY) /* partial completion */
1751 break;
1752 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1753 CMPL_BASE_TYPE_HWRM_DONE) ||
1754 (TX_CMP_TYPE(txcmp) ==
1755 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1756 (TX_CMP_TYPE(txcmp) ==
1757 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1758 bnxt_hwrm_handler(bp, txcmp);
1759 }
1760 raw_cons = NEXT_RAW_CMP(raw_cons);
1761
1762 if (rx_pkts == budget)
1763 break;
1764 }
1765
1766 if (event & BNXT_TX_EVENT) {
1767 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1768 void __iomem *db = txr->tx_doorbell;
1769 u16 prod = txr->tx_prod;
1770
1771 /* Sync BD data before updating doorbell */
1772 wmb();
1773
1774 writel(DB_KEY_TX | prod, db);
1775 writel(DB_KEY_TX | prod, db);
1776 }
1777
1778 cpr->cp_raw_cons = raw_cons;
1779 /* ACK completion ring before freeing tx ring and producing new
1780 * buffers in rx/agg rings to prevent overflowing the completion
1781 * ring.
1782 */
1783 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1784
1785 if (tx_pkts)
1786 bnapi->tx_int(bp, bnapi, tx_pkts);
1787
1788 if (event & BNXT_RX_EVENT) {
1789 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1790
1791 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1792 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1793 if (event & BNXT_AGG_EVENT) {
1794 writel(DB_KEY_RX | rxr->rx_agg_prod,
1795 rxr->rx_agg_doorbell);
1796 writel(DB_KEY_RX | rxr->rx_agg_prod,
1797 rxr->rx_agg_doorbell);
1798 }
1799 }
1800 return rx_pkts;
1801 }
1802
1803 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1804 {
1805 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1806 struct bnxt *bp = bnapi->bp;
1807 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1808 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1809 struct tx_cmp *txcmp;
1810 struct rx_cmp_ext *rxcmp1;
1811 u32 cp_cons, tmp_raw_cons;
1812 u32 raw_cons = cpr->cp_raw_cons;
1813 u32 rx_pkts = 0;
1814 u8 event = 0;
1815
1816 while (1) {
1817 int rc;
1818
1819 cp_cons = RING_CMP(raw_cons);
1820 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1821
1822 if (!TX_CMP_VALID(txcmp, raw_cons))
1823 break;
1824
1825 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1826 tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1827 cp_cons = RING_CMP(tmp_raw_cons);
1828 rxcmp1 = (struct rx_cmp_ext *)
1829 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1830
1831 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1832 break;
1833
1834 /* force an error to recycle the buffer */
1835 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1836 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1837
1838 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1839 if (likely(rc == -EIO))
1840 rx_pkts++;
1841 else if (rc == -EBUSY) /* partial completion */
1842 break;
1843 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1844 CMPL_BASE_TYPE_HWRM_DONE)) {
1845 bnxt_hwrm_handler(bp, txcmp);
1846 } else {
1847 netdev_err(bp->dev,
1848 "Invalid completion received on special ring\n");
1849 }
1850 raw_cons = NEXT_RAW_CMP(raw_cons);
1851
1852 if (rx_pkts == budget)
1853 break;
1854 }
1855
1856 cpr->cp_raw_cons = raw_cons;
1857 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1858 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1859 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1860
1861 if (event & BNXT_AGG_EVENT) {
1862 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1863 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1864 }
1865
1866 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1867 napi_complete_done(napi, rx_pkts);
1868 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1869 }
1870 return rx_pkts;
1871 }
1872
1873 static int bnxt_poll(struct napi_struct *napi, int budget)
1874 {
1875 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1876 struct bnxt *bp = bnapi->bp;
1877 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1878 int work_done = 0;
1879
1880 while (1) {
1881 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1882
1883 if (work_done >= budget)
1884 break;
1885
1886 if (!bnxt_has_work(bp, cpr)) {
1887 if (napi_complete_done(napi, work_done))
1888 BNXT_CP_DB_REARM(cpr->cp_doorbell,
1889 cpr->cp_raw_cons);
1890 break;
1891 }
1892 }
1893 mmiowb();
1894 return work_done;
1895 }
1896
1897 static void bnxt_free_tx_skbs(struct bnxt *bp)
1898 {
1899 int i, max_idx;
1900 struct pci_dev *pdev = bp->pdev;
1901
1902 if (!bp->tx_ring)
1903 return;
1904
1905 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1906 for (i = 0; i < bp->tx_nr_rings; i++) {
1907 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1908 int j;
1909
1910 for (j = 0; j < max_idx;) {
1911 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1912 struct sk_buff *skb = tx_buf->skb;
1913 int k, last;
1914
1915 if (!skb) {
1916 j++;
1917 continue;
1918 }
1919
1920 tx_buf->skb = NULL;
1921
1922 if (tx_buf->is_push) {
1923 dev_kfree_skb(skb);
1924 j += 2;
1925 continue;
1926 }
1927
1928 dma_unmap_single(&pdev->dev,
1929 dma_unmap_addr(tx_buf, mapping),
1930 skb_headlen(skb),
1931 PCI_DMA_TODEVICE);
1932
1933 last = tx_buf->nr_frags;
1934 j += 2;
1935 for (k = 0; k < last; k++, j++) {
1936 int ring_idx = j & bp->tx_ring_mask;
1937 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1938
1939 tx_buf = &txr->tx_buf_ring[ring_idx];
1940 dma_unmap_page(
1941 &pdev->dev,
1942 dma_unmap_addr(tx_buf, mapping),
1943 skb_frag_size(frag), PCI_DMA_TODEVICE);
1944 }
1945 dev_kfree_skb(skb);
1946 }
1947 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1948 }
1949 }
1950
1951 static void bnxt_free_rx_skbs(struct bnxt *bp)
1952 {
1953 int i, max_idx, max_agg_idx;
1954 struct pci_dev *pdev = bp->pdev;
1955
1956 if (!bp->rx_ring)
1957 return;
1958
1959 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1960 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1961 for (i = 0; i < bp->rx_nr_rings; i++) {
1962 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1963 int j;
1964
1965 if (rxr->rx_tpa) {
1966 for (j = 0; j < MAX_TPA; j++) {
1967 struct bnxt_tpa_info *tpa_info =
1968 &rxr->rx_tpa[j];
1969 u8 *data = tpa_info->data;
1970
1971 if (!data)
1972 continue;
1973
1974 dma_unmap_single(&pdev->dev, tpa_info->mapping,
1975 bp->rx_buf_use_size,
1976 bp->rx_dir);
1977
1978 tpa_info->data = NULL;
1979
1980 kfree(data);
1981 }
1982 }
1983
1984 for (j = 0; j < max_idx; j++) {
1985 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1986 dma_addr_t mapping = rx_buf->mapping;
1987 void *data = rx_buf->data;
1988
1989 if (!data)
1990 continue;
1991
1992 rx_buf->data = NULL;
1993
1994 if (BNXT_RX_PAGE_MODE(bp)) {
1995 mapping -= bp->rx_dma_offset;
1996 dma_unmap_page(&pdev->dev, mapping,
1997 PAGE_SIZE, bp->rx_dir);
1998 __free_page(data);
1999 } else {
2000 dma_unmap_single(&pdev->dev, mapping,
2001 bp->rx_buf_use_size,
2002 bp->rx_dir);
2003 kfree(data);
2004 }
2005 }
2006
2007 for (j = 0; j < max_agg_idx; j++) {
2008 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2009 &rxr->rx_agg_ring[j];
2010 struct page *page = rx_agg_buf->page;
2011
2012 if (!page)
2013 continue;
2014
2015 dma_unmap_page(&pdev->dev, rx_agg_buf->mapping,
2016 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
2017
2018 rx_agg_buf->page = NULL;
2019 __clear_bit(j, rxr->rx_agg_bmap);
2020
2021 __free_page(page);
2022 }
2023 if (rxr->rx_page) {
2024 __free_page(rxr->rx_page);
2025 rxr->rx_page = NULL;
2026 }
2027 }
2028 }
2029
2030 static void bnxt_free_skbs(struct bnxt *bp)
2031 {
2032 bnxt_free_tx_skbs(bp);
2033 bnxt_free_rx_skbs(bp);
2034 }
2035
2036 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2037 {
2038 struct pci_dev *pdev = bp->pdev;
2039 int i;
2040
2041 for (i = 0; i < ring->nr_pages; i++) {
2042 if (!ring->pg_arr[i])
2043 continue;
2044
2045 dma_free_coherent(&pdev->dev, ring->page_size,
2046 ring->pg_arr[i], ring->dma_arr[i]);
2047
2048 ring->pg_arr[i] = NULL;
2049 }
2050 if (ring->pg_tbl) {
2051 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2052 ring->pg_tbl, ring->pg_tbl_map);
2053 ring->pg_tbl = NULL;
2054 }
2055 if (ring->vmem_size && *ring->vmem) {
2056 vfree(*ring->vmem);
2057 *ring->vmem = NULL;
2058 }
2059 }
2060
2061 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2062 {
2063 int i;
2064 struct pci_dev *pdev = bp->pdev;
2065
2066 if (ring->nr_pages > 1) {
2067 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2068 ring->nr_pages * 8,
2069 &ring->pg_tbl_map,
2070 GFP_KERNEL);
2071 if (!ring->pg_tbl)
2072 return -ENOMEM;
2073 }
2074
2075 for (i = 0; i < ring->nr_pages; i++) {
2076 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2077 ring->page_size,
2078 &ring->dma_arr[i],
2079 GFP_KERNEL);
2080 if (!ring->pg_arr[i])
2081 return -ENOMEM;
2082
2083 if (ring->nr_pages > 1)
2084 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2085 }
2086
2087 if (ring->vmem_size) {
2088 *ring->vmem = vzalloc(ring->vmem_size);
2089 if (!(*ring->vmem))
2090 return -ENOMEM;
2091 }
2092 return 0;
2093 }
2094
2095 static void bnxt_free_rx_rings(struct bnxt *bp)
2096 {
2097 int i;
2098
2099 if (!bp->rx_ring)
2100 return;
2101
2102 for (i = 0; i < bp->rx_nr_rings; i++) {
2103 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2104 struct bnxt_ring_struct *ring;
2105
2106 if (rxr->xdp_prog)
2107 bpf_prog_put(rxr->xdp_prog);
2108
2109 kfree(rxr->rx_tpa);
2110 rxr->rx_tpa = NULL;
2111
2112 kfree(rxr->rx_agg_bmap);
2113 rxr->rx_agg_bmap = NULL;
2114
2115 ring = &rxr->rx_ring_struct;
2116 bnxt_free_ring(bp, ring);
2117
2118 ring = &rxr->rx_agg_ring_struct;
2119 bnxt_free_ring(bp, ring);
2120 }
2121 }
2122
2123 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2124 {
2125 int i, rc, agg_rings = 0, tpa_rings = 0;
2126
2127 if (!bp->rx_ring)
2128 return -ENOMEM;
2129
2130 if (bp->flags & BNXT_FLAG_AGG_RINGS)
2131 agg_rings = 1;
2132
2133 if (bp->flags & BNXT_FLAG_TPA)
2134 tpa_rings = 1;
2135
2136 for (i = 0; i < bp->rx_nr_rings; i++) {
2137 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2138 struct bnxt_ring_struct *ring;
2139
2140 ring = &rxr->rx_ring_struct;
2141
2142 rc = bnxt_alloc_ring(bp, ring);
2143 if (rc)
2144 return rc;
2145
2146 if (agg_rings) {
2147 u16 mem_size;
2148
2149 ring = &rxr->rx_agg_ring_struct;
2150 rc = bnxt_alloc_ring(bp, ring);
2151 if (rc)
2152 return rc;
2153
2154 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2155 mem_size = rxr->rx_agg_bmap_size / 8;
2156 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2157 if (!rxr->rx_agg_bmap)
2158 return -ENOMEM;
2159
2160 if (tpa_rings) {
2161 rxr->rx_tpa = kcalloc(MAX_TPA,
2162 sizeof(struct bnxt_tpa_info),
2163 GFP_KERNEL);
2164 if (!rxr->rx_tpa)
2165 return -ENOMEM;
2166 }
2167 }
2168 }
2169 return 0;
2170 }
2171
2172 static void bnxt_free_tx_rings(struct bnxt *bp)
2173 {
2174 int i;
2175 struct pci_dev *pdev = bp->pdev;
2176
2177 if (!bp->tx_ring)
2178 return;
2179
2180 for (i = 0; i < bp->tx_nr_rings; i++) {
2181 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2182 struct bnxt_ring_struct *ring;
2183
2184 if (txr->tx_push) {
2185 dma_free_coherent(&pdev->dev, bp->tx_push_size,
2186 txr->tx_push, txr->tx_push_mapping);
2187 txr->tx_push = NULL;
2188 }
2189
2190 ring = &txr->tx_ring_struct;
2191
2192 bnxt_free_ring(bp, ring);
2193 }
2194 }
2195
2196 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2197 {
2198 int i, j, rc;
2199 struct pci_dev *pdev = bp->pdev;
2200
2201 bp->tx_push_size = 0;
2202 if (bp->tx_push_thresh) {
2203 int push_size;
2204
2205 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2206 bp->tx_push_thresh);
2207
2208 if (push_size > 256) {
2209 push_size = 0;
2210 bp->tx_push_thresh = 0;
2211 }
2212
2213 bp->tx_push_size = push_size;
2214 }
2215
2216 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2217 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2218 struct bnxt_ring_struct *ring;
2219
2220 ring = &txr->tx_ring_struct;
2221
2222 rc = bnxt_alloc_ring(bp, ring);
2223 if (rc)
2224 return rc;
2225
2226 if (bp->tx_push_size) {
2227 dma_addr_t mapping;
2228
2229 /* One pre-allocated DMA buffer to backup
2230 * TX push operation
2231 */
2232 txr->tx_push = dma_alloc_coherent(&pdev->dev,
2233 bp->tx_push_size,
2234 &txr->tx_push_mapping,
2235 GFP_KERNEL);
2236
2237 if (!txr->tx_push)
2238 return -ENOMEM;
2239
2240 mapping = txr->tx_push_mapping +
2241 sizeof(struct tx_push_bd);
2242 txr->data_mapping = cpu_to_le64(mapping);
2243
2244 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2245 }
2246 ring->queue_id = bp->q_info[j].queue_id;
2247 if (i < bp->tx_nr_rings_xdp)
2248 continue;
2249 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2250 j++;
2251 }
2252 return 0;
2253 }
2254
2255 static void bnxt_free_cp_rings(struct bnxt *bp)
2256 {
2257 int i;
2258
2259 if (!bp->bnapi)
2260 return;
2261
2262 for (i = 0; i < bp->cp_nr_rings; i++) {
2263 struct bnxt_napi *bnapi = bp->bnapi[i];
2264 struct bnxt_cp_ring_info *cpr;
2265 struct bnxt_ring_struct *ring;
2266
2267 if (!bnapi)
2268 continue;
2269
2270 cpr = &bnapi->cp_ring;
2271 ring = &cpr->cp_ring_struct;
2272
2273 bnxt_free_ring(bp, ring);
2274 }
2275 }
2276
2277 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2278 {
2279 int i, rc;
2280
2281 for (i = 0; i < bp->cp_nr_rings; i++) {
2282 struct bnxt_napi *bnapi = bp->bnapi[i];
2283 struct bnxt_cp_ring_info *cpr;
2284 struct bnxt_ring_struct *ring;
2285
2286 if (!bnapi)
2287 continue;
2288
2289 cpr = &bnapi->cp_ring;
2290 ring = &cpr->cp_ring_struct;
2291
2292 rc = bnxt_alloc_ring(bp, ring);
2293 if (rc)
2294 return rc;
2295 }
2296 return 0;
2297 }
2298
2299 static void bnxt_init_ring_struct(struct bnxt *bp)
2300 {
2301 int i;
2302
2303 for (i = 0; i < bp->cp_nr_rings; i++) {
2304 struct bnxt_napi *bnapi = bp->bnapi[i];
2305 struct bnxt_cp_ring_info *cpr;
2306 struct bnxt_rx_ring_info *rxr;
2307 struct bnxt_tx_ring_info *txr;
2308 struct bnxt_ring_struct *ring;
2309
2310 if (!bnapi)
2311 continue;
2312
2313 cpr = &bnapi->cp_ring;
2314 ring = &cpr->cp_ring_struct;
2315 ring->nr_pages = bp->cp_nr_pages;
2316 ring->page_size = HW_CMPD_RING_SIZE;
2317 ring->pg_arr = (void **)cpr->cp_desc_ring;
2318 ring->dma_arr = cpr->cp_desc_mapping;
2319 ring->vmem_size = 0;
2320
2321 rxr = bnapi->rx_ring;
2322 if (!rxr)
2323 goto skip_rx;
2324
2325 ring = &rxr->rx_ring_struct;
2326 ring->nr_pages = bp->rx_nr_pages;
2327 ring->page_size = HW_RXBD_RING_SIZE;
2328 ring->pg_arr = (void **)rxr->rx_desc_ring;
2329 ring->dma_arr = rxr->rx_desc_mapping;
2330 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2331 ring->vmem = (void **)&rxr->rx_buf_ring;
2332
2333 ring = &rxr->rx_agg_ring_struct;
2334 ring->nr_pages = bp->rx_agg_nr_pages;
2335 ring->page_size = HW_RXBD_RING_SIZE;
2336 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2337 ring->dma_arr = rxr->rx_agg_desc_mapping;
2338 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2339 ring->vmem = (void **)&rxr->rx_agg_ring;
2340
2341 skip_rx:
2342 txr = bnapi->tx_ring;
2343 if (!txr)
2344 continue;
2345
2346 ring = &txr->tx_ring_struct;
2347 ring->nr_pages = bp->tx_nr_pages;
2348 ring->page_size = HW_RXBD_RING_SIZE;
2349 ring->pg_arr = (void **)txr->tx_desc_ring;
2350 ring->dma_arr = txr->tx_desc_mapping;
2351 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2352 ring->vmem = (void **)&txr->tx_buf_ring;
2353 }
2354 }
2355
2356 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2357 {
2358 int i;
2359 u32 prod;
2360 struct rx_bd **rx_buf_ring;
2361
2362 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2363 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2364 int j;
2365 struct rx_bd *rxbd;
2366
2367 rxbd = rx_buf_ring[i];
2368 if (!rxbd)
2369 continue;
2370
2371 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2372 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2373 rxbd->rx_bd_opaque = prod;
2374 }
2375 }
2376 }
2377
2378 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2379 {
2380 struct net_device *dev = bp->dev;
2381 struct bnxt_rx_ring_info *rxr;
2382 struct bnxt_ring_struct *ring;
2383 u32 prod, type;
2384 int i;
2385
2386 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2387 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2388
2389 if (NET_IP_ALIGN == 2)
2390 type |= RX_BD_FLAGS_SOP;
2391
2392 rxr = &bp->rx_ring[ring_nr];
2393 ring = &rxr->rx_ring_struct;
2394 bnxt_init_rxbd_pages(ring, type);
2395
2396 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2397 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2398 if (IS_ERR(rxr->xdp_prog)) {
2399 int rc = PTR_ERR(rxr->xdp_prog);
2400
2401 rxr->xdp_prog = NULL;
2402 return rc;
2403 }
2404 }
2405 prod = rxr->rx_prod;
2406 for (i = 0; i < bp->rx_ring_size; i++) {
2407 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2408 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2409 ring_nr, i, bp->rx_ring_size);
2410 break;
2411 }
2412 prod = NEXT_RX(prod);
2413 }
2414 rxr->rx_prod = prod;
2415 ring->fw_ring_id = INVALID_HW_RING_ID;
2416
2417 ring = &rxr->rx_agg_ring_struct;
2418 ring->fw_ring_id = INVALID_HW_RING_ID;
2419
2420 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2421 return 0;
2422
2423 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2424 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2425
2426 bnxt_init_rxbd_pages(ring, type);
2427
2428 prod = rxr->rx_agg_prod;
2429 for (i = 0; i < bp->rx_agg_ring_size; i++) {
2430 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2431 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2432 ring_nr, i, bp->rx_ring_size);
2433 break;
2434 }
2435 prod = NEXT_RX_AGG(prod);
2436 }
2437 rxr->rx_agg_prod = prod;
2438
2439 if (bp->flags & BNXT_FLAG_TPA) {
2440 if (rxr->rx_tpa) {
2441 u8 *data;
2442 dma_addr_t mapping;
2443
2444 for (i = 0; i < MAX_TPA; i++) {
2445 data = __bnxt_alloc_rx_data(bp, &mapping,
2446 GFP_KERNEL);
2447 if (!data)
2448 return -ENOMEM;
2449
2450 rxr->rx_tpa[i].data = data;
2451 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2452 rxr->rx_tpa[i].mapping = mapping;
2453 }
2454 } else {
2455 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2456 return -ENOMEM;
2457 }
2458 }
2459
2460 return 0;
2461 }
2462
2463 static void bnxt_init_cp_rings(struct bnxt *bp)
2464 {
2465 int i;
2466
2467 for (i = 0; i < bp->cp_nr_rings; i++) {
2468 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2469 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2470
2471 ring->fw_ring_id = INVALID_HW_RING_ID;
2472 }
2473 }
2474
2475 static int bnxt_init_rx_rings(struct bnxt *bp)
2476 {
2477 int i, rc = 0;
2478
2479 if (BNXT_RX_PAGE_MODE(bp)) {
2480 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2481 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2482 } else {
2483 bp->rx_offset = BNXT_RX_OFFSET;
2484 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2485 }
2486
2487 for (i = 0; i < bp->rx_nr_rings; i++) {
2488 rc = bnxt_init_one_rx_ring(bp, i);
2489 if (rc)
2490 break;
2491 }
2492
2493 return rc;
2494 }
2495
2496 static int bnxt_init_tx_rings(struct bnxt *bp)
2497 {
2498 u16 i;
2499
2500 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2501 MAX_SKB_FRAGS + 1);
2502
2503 for (i = 0; i < bp->tx_nr_rings; i++) {
2504 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2505 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2506
2507 ring->fw_ring_id = INVALID_HW_RING_ID;
2508 }
2509
2510 return 0;
2511 }
2512
2513 static void bnxt_free_ring_grps(struct bnxt *bp)
2514 {
2515 kfree(bp->grp_info);
2516 bp->grp_info = NULL;
2517 }
2518
2519 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2520 {
2521 int i;
2522
2523 if (irq_re_init) {
2524 bp->grp_info = kcalloc(bp->cp_nr_rings,
2525 sizeof(struct bnxt_ring_grp_info),
2526 GFP_KERNEL);
2527 if (!bp->grp_info)
2528 return -ENOMEM;
2529 }
2530 for (i = 0; i < bp->cp_nr_rings; i++) {
2531 if (irq_re_init)
2532 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2533 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2534 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2535 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2536 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2537 }
2538 return 0;
2539 }
2540
2541 static void bnxt_free_vnics(struct bnxt *bp)
2542 {
2543 kfree(bp->vnic_info);
2544 bp->vnic_info = NULL;
2545 bp->nr_vnics = 0;
2546 }
2547
2548 static int bnxt_alloc_vnics(struct bnxt *bp)
2549 {
2550 int num_vnics = 1;
2551
2552 #ifdef CONFIG_RFS_ACCEL
2553 if (bp->flags & BNXT_FLAG_RFS)
2554 num_vnics += bp->rx_nr_rings;
2555 #endif
2556
2557 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2558 num_vnics++;
2559
2560 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2561 GFP_KERNEL);
2562 if (!bp->vnic_info)
2563 return -ENOMEM;
2564
2565 bp->nr_vnics = num_vnics;
2566 return 0;
2567 }
2568
2569 static void bnxt_init_vnics(struct bnxt *bp)
2570 {
2571 int i;
2572
2573 for (i = 0; i < bp->nr_vnics; i++) {
2574 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2575
2576 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2577 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2578 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2579 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2580
2581 if (bp->vnic_info[i].rss_hash_key) {
2582 if (i == 0)
2583 prandom_bytes(vnic->rss_hash_key,
2584 HW_HASH_KEY_SIZE);
2585 else
2586 memcpy(vnic->rss_hash_key,
2587 bp->vnic_info[0].rss_hash_key,
2588 HW_HASH_KEY_SIZE);
2589 }
2590 }
2591 }
2592
2593 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2594 {
2595 int pages;
2596
2597 pages = ring_size / desc_per_pg;
2598
2599 if (!pages)
2600 return 1;
2601
2602 pages++;
2603
2604 while (pages & (pages - 1))
2605 pages++;
2606
2607 return pages;
2608 }
2609
2610 void bnxt_set_tpa_flags(struct bnxt *bp)
2611 {
2612 bp->flags &= ~BNXT_FLAG_TPA;
2613 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2614 return;
2615 if (bp->dev->features & NETIF_F_LRO)
2616 bp->flags |= BNXT_FLAG_LRO;
2617 if (bp->dev->features & NETIF_F_GRO)
2618 bp->flags |= BNXT_FLAG_GRO;
2619 }
2620
2621 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2622 * be set on entry.
2623 */
2624 void bnxt_set_ring_params(struct bnxt *bp)
2625 {
2626 u32 ring_size, rx_size, rx_space;
2627 u32 agg_factor = 0, agg_ring_size = 0;
2628
2629 /* 8 for CRC and VLAN */
2630 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2631
2632 rx_space = rx_size + NET_SKB_PAD +
2633 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2634
2635 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2636 ring_size = bp->rx_ring_size;
2637 bp->rx_agg_ring_size = 0;
2638 bp->rx_agg_nr_pages = 0;
2639
2640 if (bp->flags & BNXT_FLAG_TPA)
2641 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2642
2643 bp->flags &= ~BNXT_FLAG_JUMBO;
2644 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2645 u32 jumbo_factor;
2646
2647 bp->flags |= BNXT_FLAG_JUMBO;
2648 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2649 if (jumbo_factor > agg_factor)
2650 agg_factor = jumbo_factor;
2651 }
2652 agg_ring_size = ring_size * agg_factor;
2653
2654 if (agg_ring_size) {
2655 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2656 RX_DESC_CNT);
2657 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2658 u32 tmp = agg_ring_size;
2659
2660 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2661 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2662 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2663 tmp, agg_ring_size);
2664 }
2665 bp->rx_agg_ring_size = agg_ring_size;
2666 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2667 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2668 rx_space = rx_size + NET_SKB_PAD +
2669 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2670 }
2671
2672 bp->rx_buf_use_size = rx_size;
2673 bp->rx_buf_size = rx_space;
2674
2675 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2676 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2677
2678 ring_size = bp->tx_ring_size;
2679 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2680 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2681
2682 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2683 bp->cp_ring_size = ring_size;
2684
2685 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2686 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2687 bp->cp_nr_pages = MAX_CP_PAGES;
2688 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2689 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2690 ring_size, bp->cp_ring_size);
2691 }
2692 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2693 bp->cp_ring_mask = bp->cp_bit - 1;
2694 }
2695
2696 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2697 {
2698 if (page_mode) {
2699 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2700 return -EOPNOTSUPP;
2701 bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
2702 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2703 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2704 bp->dev->hw_features &= ~NETIF_F_LRO;
2705 bp->dev->features &= ~NETIF_F_LRO;
2706 bp->rx_dir = DMA_BIDIRECTIONAL;
2707 bp->rx_skb_func = bnxt_rx_page_skb;
2708 } else {
2709 bp->dev->max_mtu = BNXT_MAX_MTU;
2710 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2711 bp->rx_dir = DMA_FROM_DEVICE;
2712 bp->rx_skb_func = bnxt_rx_skb;
2713 }
2714 return 0;
2715 }
2716
2717 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2718 {
2719 int i;
2720 struct bnxt_vnic_info *vnic;
2721 struct pci_dev *pdev = bp->pdev;
2722
2723 if (!bp->vnic_info)
2724 return;
2725
2726 for (i = 0; i < bp->nr_vnics; i++) {
2727 vnic = &bp->vnic_info[i];
2728
2729 kfree(vnic->fw_grp_ids);
2730 vnic->fw_grp_ids = NULL;
2731
2732 kfree(vnic->uc_list);
2733 vnic->uc_list = NULL;
2734
2735 if (vnic->mc_list) {
2736 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2737 vnic->mc_list, vnic->mc_list_mapping);
2738 vnic->mc_list = NULL;
2739 }
2740
2741 if (vnic->rss_table) {
2742 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2743 vnic->rss_table,
2744 vnic->rss_table_dma_addr);
2745 vnic->rss_table = NULL;
2746 }
2747
2748 vnic->rss_hash_key = NULL;
2749 vnic->flags = 0;
2750 }
2751 }
2752
2753 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2754 {
2755 int i, rc = 0, size;
2756 struct bnxt_vnic_info *vnic;
2757 struct pci_dev *pdev = bp->pdev;
2758 int max_rings;
2759
2760 for (i = 0; i < bp->nr_vnics; i++) {
2761 vnic = &bp->vnic_info[i];
2762
2763 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2764 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2765
2766 if (mem_size > 0) {
2767 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2768 if (!vnic->uc_list) {
2769 rc = -ENOMEM;
2770 goto out;
2771 }
2772 }
2773 }
2774
2775 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2776 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2777 vnic->mc_list =
2778 dma_alloc_coherent(&pdev->dev,
2779 vnic->mc_list_size,
2780 &vnic->mc_list_mapping,
2781 GFP_KERNEL);
2782 if (!vnic->mc_list) {
2783 rc = -ENOMEM;
2784 goto out;
2785 }
2786 }
2787
2788 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2789 max_rings = bp->rx_nr_rings;
2790 else
2791 max_rings = 1;
2792
2793 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2794 if (!vnic->fw_grp_ids) {
2795 rc = -ENOMEM;
2796 goto out;
2797 }
2798
2799 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2800 !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2801 continue;
2802
2803 /* Allocate rss table and hash key */
2804 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2805 &vnic->rss_table_dma_addr,
2806 GFP_KERNEL);
2807 if (!vnic->rss_table) {
2808 rc = -ENOMEM;
2809 goto out;
2810 }
2811
2812 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2813
2814 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2815 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2816 }
2817 return 0;
2818
2819 out:
2820 return rc;
2821 }
2822
2823 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2824 {
2825 struct pci_dev *pdev = bp->pdev;
2826
2827 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2828 bp->hwrm_cmd_resp_dma_addr);
2829
2830 bp->hwrm_cmd_resp_addr = NULL;
2831 if (bp->hwrm_dbg_resp_addr) {
2832 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2833 bp->hwrm_dbg_resp_addr,
2834 bp->hwrm_dbg_resp_dma_addr);
2835
2836 bp->hwrm_dbg_resp_addr = NULL;
2837 }
2838 }
2839
2840 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2841 {
2842 struct pci_dev *pdev = bp->pdev;
2843
2844 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2845 &bp->hwrm_cmd_resp_dma_addr,
2846 GFP_KERNEL);
2847 if (!bp->hwrm_cmd_resp_addr)
2848 return -ENOMEM;
2849 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2850 HWRM_DBG_REG_BUF_SIZE,
2851 &bp->hwrm_dbg_resp_dma_addr,
2852 GFP_KERNEL);
2853 if (!bp->hwrm_dbg_resp_addr)
2854 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2855
2856 return 0;
2857 }
2858
2859 static void bnxt_free_stats(struct bnxt *bp)
2860 {
2861 u32 size, i;
2862 struct pci_dev *pdev = bp->pdev;
2863
2864 if (bp->hw_rx_port_stats) {
2865 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2866 bp->hw_rx_port_stats,
2867 bp->hw_rx_port_stats_map);
2868 bp->hw_rx_port_stats = NULL;
2869 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2870 }
2871
2872 if (!bp->bnapi)
2873 return;
2874
2875 size = sizeof(struct ctx_hw_stats);
2876
2877 for (i = 0; i < bp->cp_nr_rings; i++) {
2878 struct bnxt_napi *bnapi = bp->bnapi[i];
2879 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2880
2881 if (cpr->hw_stats) {
2882 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2883 cpr->hw_stats_map);
2884 cpr->hw_stats = NULL;
2885 }
2886 }
2887 }
2888
2889 static int bnxt_alloc_stats(struct bnxt *bp)
2890 {
2891 u32 size, i;
2892 struct pci_dev *pdev = bp->pdev;
2893
2894 size = sizeof(struct ctx_hw_stats);
2895
2896 for (i = 0; i < bp->cp_nr_rings; i++) {
2897 struct bnxt_napi *bnapi = bp->bnapi[i];
2898 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2899
2900 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2901 &cpr->hw_stats_map,
2902 GFP_KERNEL);
2903 if (!cpr->hw_stats)
2904 return -ENOMEM;
2905
2906 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2907 }
2908
2909 if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2910 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2911 sizeof(struct tx_port_stats) + 1024;
2912
2913 bp->hw_rx_port_stats =
2914 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2915 &bp->hw_rx_port_stats_map,
2916 GFP_KERNEL);
2917 if (!bp->hw_rx_port_stats)
2918 return -ENOMEM;
2919
2920 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2921 512;
2922 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2923 sizeof(struct rx_port_stats) + 512;
2924 bp->flags |= BNXT_FLAG_PORT_STATS;
2925 }
2926 return 0;
2927 }
2928
2929 static void bnxt_clear_ring_indices(struct bnxt *bp)
2930 {
2931 int i;
2932
2933 if (!bp->bnapi)
2934 return;
2935
2936 for (i = 0; i < bp->cp_nr_rings; i++) {
2937 struct bnxt_napi *bnapi = bp->bnapi[i];
2938 struct bnxt_cp_ring_info *cpr;
2939 struct bnxt_rx_ring_info *rxr;
2940 struct bnxt_tx_ring_info *txr;
2941
2942 if (!bnapi)
2943 continue;
2944
2945 cpr = &bnapi->cp_ring;
2946 cpr->cp_raw_cons = 0;
2947
2948 txr = bnapi->tx_ring;
2949 if (txr) {
2950 txr->tx_prod = 0;
2951 txr->tx_cons = 0;
2952 }
2953
2954 rxr = bnapi->rx_ring;
2955 if (rxr) {
2956 rxr->rx_prod = 0;
2957 rxr->rx_agg_prod = 0;
2958 rxr->rx_sw_agg_prod = 0;
2959 rxr->rx_next_cons = 0;
2960 }
2961 }
2962 }
2963
2964 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2965 {
2966 #ifdef CONFIG_RFS_ACCEL
2967 int i;
2968
2969 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2970 * safe to delete the hash table.
2971 */
2972 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2973 struct hlist_head *head;
2974 struct hlist_node *tmp;
2975 struct bnxt_ntuple_filter *fltr;
2976
2977 head = &bp->ntp_fltr_hash_tbl[i];
2978 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2979 hlist_del(&fltr->hash);
2980 kfree(fltr);
2981 }
2982 }
2983 if (irq_reinit) {
2984 kfree(bp->ntp_fltr_bmap);
2985 bp->ntp_fltr_bmap = NULL;
2986 }
2987 bp->ntp_fltr_count = 0;
2988 #endif
2989 }
2990
2991 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2992 {
2993 #ifdef CONFIG_RFS_ACCEL
2994 int i, rc = 0;
2995
2996 if (!(bp->flags & BNXT_FLAG_RFS))
2997 return 0;
2998
2999 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3000 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3001
3002 bp->ntp_fltr_count = 0;
3003 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3004 sizeof(long),
3005 GFP_KERNEL);
3006
3007 if (!bp->ntp_fltr_bmap)
3008 rc = -ENOMEM;
3009
3010 return rc;
3011 #else
3012 return 0;
3013 #endif
3014 }
3015
3016 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3017 {
3018 bnxt_free_vnic_attributes(bp);
3019 bnxt_free_tx_rings(bp);
3020 bnxt_free_rx_rings(bp);
3021 bnxt_free_cp_rings(bp);
3022 bnxt_free_ntp_fltrs(bp, irq_re_init);
3023 if (irq_re_init) {
3024 bnxt_free_stats(bp);
3025 bnxt_free_ring_grps(bp);
3026 bnxt_free_vnics(bp);
3027 kfree(bp->tx_ring_map);
3028 bp->tx_ring_map = NULL;
3029 kfree(bp->tx_ring);
3030 bp->tx_ring = NULL;
3031 kfree(bp->rx_ring);
3032 bp->rx_ring = NULL;
3033 kfree(bp->bnapi);
3034 bp->bnapi = NULL;
3035 } else {
3036 bnxt_clear_ring_indices(bp);
3037 }
3038 }
3039
3040 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3041 {
3042 int i, j, rc, size, arr_size;
3043 void *bnapi;
3044
3045 if (irq_re_init) {
3046 /* Allocate bnapi mem pointer array and mem block for
3047 * all queues
3048 */
3049 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3050 bp->cp_nr_rings);
3051 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3052 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3053 if (!bnapi)
3054 return -ENOMEM;
3055
3056 bp->bnapi = bnapi;
3057 bnapi += arr_size;
3058 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3059 bp->bnapi[i] = bnapi;
3060 bp->bnapi[i]->index = i;
3061 bp->bnapi[i]->bp = bp;
3062 }
3063
3064 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3065 sizeof(struct bnxt_rx_ring_info),
3066 GFP_KERNEL);
3067 if (!bp->rx_ring)
3068 return -ENOMEM;
3069
3070 for (i = 0; i < bp->rx_nr_rings; i++) {
3071 bp->rx_ring[i].bnapi = bp->bnapi[i];
3072 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3073 }
3074
3075 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3076 sizeof(struct bnxt_tx_ring_info),
3077 GFP_KERNEL);
3078 if (!bp->tx_ring)
3079 return -ENOMEM;
3080
3081 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3082 GFP_KERNEL);
3083
3084 if (!bp->tx_ring_map)
3085 return -ENOMEM;
3086
3087 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3088 j = 0;
3089 else
3090 j = bp->rx_nr_rings;
3091
3092 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3093 bp->tx_ring[i].bnapi = bp->bnapi[j];
3094 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3095 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3096 if (i >= bp->tx_nr_rings_xdp) {
3097 bp->tx_ring[i].txq_index = i -
3098 bp->tx_nr_rings_xdp;
3099 bp->bnapi[j]->tx_int = bnxt_tx_int;
3100 } else {
3101 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3102 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3103 }
3104 }
3105
3106 rc = bnxt_alloc_stats(bp);
3107 if (rc)
3108 goto alloc_mem_err;
3109
3110 rc = bnxt_alloc_ntp_fltrs(bp);
3111 if (rc)
3112 goto alloc_mem_err;
3113
3114 rc = bnxt_alloc_vnics(bp);
3115 if (rc)
3116 goto alloc_mem_err;
3117 }
3118
3119 bnxt_init_ring_struct(bp);
3120
3121 rc = bnxt_alloc_rx_rings(bp);
3122 if (rc)
3123 goto alloc_mem_err;
3124
3125 rc = bnxt_alloc_tx_rings(bp);
3126 if (rc)
3127 goto alloc_mem_err;
3128
3129 rc = bnxt_alloc_cp_rings(bp);
3130 if (rc)
3131 goto alloc_mem_err;
3132
3133 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3134 BNXT_VNIC_UCAST_FLAG;
3135 rc = bnxt_alloc_vnic_attributes(bp);
3136 if (rc)
3137 goto alloc_mem_err;
3138 return 0;
3139
3140 alloc_mem_err:
3141 bnxt_free_mem(bp, true);
3142 return rc;
3143 }
3144
3145 static void bnxt_disable_int(struct bnxt *bp)
3146 {
3147 int i;
3148
3149 if (!bp->bnapi)
3150 return;
3151
3152 for (i = 0; i < bp->cp_nr_rings; i++) {
3153 struct bnxt_napi *bnapi = bp->bnapi[i];
3154 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3155 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3156
3157 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3158 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3159 }
3160 }
3161
3162 static void bnxt_disable_int_sync(struct bnxt *bp)
3163 {
3164 int i;
3165
3166 atomic_inc(&bp->intr_sem);
3167
3168 bnxt_disable_int(bp);
3169 for (i = 0; i < bp->cp_nr_rings; i++)
3170 synchronize_irq(bp->irq_tbl[i].vector);
3171 }
3172
3173 static void bnxt_enable_int(struct bnxt *bp)
3174 {
3175 int i;
3176
3177 atomic_set(&bp->intr_sem, 0);
3178 for (i = 0; i < bp->cp_nr_rings; i++) {
3179 struct bnxt_napi *bnapi = bp->bnapi[i];
3180 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3181
3182 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3183 }
3184 }
3185
3186 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3187 u16 cmpl_ring, u16 target_id)
3188 {
3189 struct input *req = request;
3190
3191 req->req_type = cpu_to_le16(req_type);
3192 req->cmpl_ring = cpu_to_le16(cmpl_ring);
3193 req->target_id = cpu_to_le16(target_id);
3194 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3195 }
3196
3197 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3198 int timeout, bool silent)
3199 {
3200 int i, intr_process, rc, tmo_count;
3201 struct input *req = msg;
3202 u32 *data = msg;
3203 __le32 *resp_len, *valid;
3204 u16 cp_ring_id, len = 0;
3205 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3206
3207 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3208 memset(resp, 0, PAGE_SIZE);
3209 cp_ring_id = le16_to_cpu(req->cmpl_ring);
3210 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3211
3212 /* Write request msg to hwrm channel */
3213 __iowrite32_copy(bp->bar0, data, msg_len / 4);
3214
3215 for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3216 writel(0, bp->bar0 + i);
3217
3218 /* currently supports only one outstanding message */
3219 if (intr_process)
3220 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3221
3222 /* Ring channel doorbell */
3223 writel(1, bp->bar0 + 0x100);
3224
3225 if (!timeout)
3226 timeout = DFLT_HWRM_CMD_TIMEOUT;
3227
3228 i = 0;
3229 tmo_count = timeout * 40;
3230 if (intr_process) {
3231 /* Wait until hwrm response cmpl interrupt is processed */
3232 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3233 i++ < tmo_count) {
3234 usleep_range(25, 40);
3235 }
3236
3237 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3238 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3239 le16_to_cpu(req->req_type));
3240 return -1;
3241 }
3242 } else {
3243 /* Check if response len is updated */
3244 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3245 for (i = 0; i < tmo_count; i++) {
3246 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3247 HWRM_RESP_LEN_SFT;
3248 if (len)
3249 break;
3250 usleep_range(25, 40);
3251 }
3252
3253 if (i >= tmo_count) {
3254 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3255 timeout, le16_to_cpu(req->req_type),
3256 le16_to_cpu(req->seq_id), len);
3257 return -1;
3258 }
3259
3260 /* Last word of resp contains valid bit */
3261 valid = bp->hwrm_cmd_resp_addr + len - 4;
3262 for (i = 0; i < 5; i++) {
3263 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3264 break;
3265 udelay(1);
3266 }
3267
3268 if (i >= 5) {
3269 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3270 timeout, le16_to_cpu(req->req_type),
3271 le16_to_cpu(req->seq_id), len, *valid);
3272 return -1;
3273 }
3274 }
3275
3276 rc = le16_to_cpu(resp->error_code);
3277 if (rc && !silent)
3278 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3279 le16_to_cpu(resp->req_type),
3280 le16_to_cpu(resp->seq_id), rc);
3281 return rc;
3282 }
3283
3284 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3285 {
3286 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3287 }
3288
3289 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3290 {
3291 int rc;
3292
3293 mutex_lock(&bp->hwrm_cmd_lock);
3294 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3295 mutex_unlock(&bp->hwrm_cmd_lock);
3296 return rc;
3297 }
3298
3299 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3300 int timeout)
3301 {
3302 int rc;
3303
3304 mutex_lock(&bp->hwrm_cmd_lock);
3305 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3306 mutex_unlock(&bp->hwrm_cmd_lock);
3307 return rc;
3308 }
3309
3310 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3311 int bmap_size)
3312 {
3313 struct hwrm_func_drv_rgtr_input req = {0};
3314 DECLARE_BITMAP(async_events_bmap, 256);
3315 u32 *events = (u32 *)async_events_bmap;
3316 int i;
3317
3318 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3319
3320 req.enables =
3321 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3322
3323 memset(async_events_bmap, 0, sizeof(async_events_bmap));
3324 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3325 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3326
3327 if (bmap && bmap_size) {
3328 for (i = 0; i < bmap_size; i++) {
3329 if (test_bit(i, bmap))
3330 __set_bit(i, async_events_bmap);
3331 }
3332 }
3333
3334 for (i = 0; i < 8; i++)
3335 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3336
3337 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3338 }
3339
3340 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3341 {
3342 struct hwrm_func_drv_rgtr_input req = {0};
3343
3344 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3345
3346 req.enables =
3347 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3348 FUNC_DRV_RGTR_REQ_ENABLES_VER);
3349
3350 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3351 req.ver_maj = DRV_VER_MAJ;
3352 req.ver_min = DRV_VER_MIN;
3353 req.ver_upd = DRV_VER_UPD;
3354
3355 if (BNXT_PF(bp)) {
3356 DECLARE_BITMAP(vf_req_snif_bmap, 256);
3357 u32 *data = (u32 *)vf_req_snif_bmap;
3358 int i;
3359
3360 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3361 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3362 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3363
3364 for (i = 0; i < 8; i++)
3365 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3366
3367 req.enables |=
3368 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3369 }
3370
3371 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3372 }
3373
3374 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3375 {
3376 struct hwrm_func_drv_unrgtr_input req = {0};
3377
3378 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3379 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3380 }
3381
3382 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3383 {
3384 u32 rc = 0;
3385 struct hwrm_tunnel_dst_port_free_input req = {0};
3386
3387 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3388 req.tunnel_type = tunnel_type;
3389
3390 switch (tunnel_type) {
3391 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3392 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3393 break;
3394 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3395 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3396 break;
3397 default:
3398 break;
3399 }
3400
3401 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3402 if (rc)
3403 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3404 rc);
3405 return rc;
3406 }
3407
3408 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3409 u8 tunnel_type)
3410 {
3411 u32 rc = 0;
3412 struct hwrm_tunnel_dst_port_alloc_input req = {0};
3413 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3414
3415 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3416
3417 req.tunnel_type = tunnel_type;
3418 req.tunnel_dst_port_val = port;
3419
3420 mutex_lock(&bp->hwrm_cmd_lock);
3421 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3422 if (rc) {
3423 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3424 rc);
3425 goto err_out;
3426 }
3427
3428 switch (tunnel_type) {
3429 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3430 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3431 break;
3432 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3433 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3434 break;
3435 default:
3436 break;
3437 }
3438
3439 err_out:
3440 mutex_unlock(&bp->hwrm_cmd_lock);
3441 return rc;
3442 }
3443
3444 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3445 {
3446 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3447 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3448
3449 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3450 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3451
3452 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3453 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3454 req.mask = cpu_to_le32(vnic->rx_mask);
3455 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3456 }
3457
3458 #ifdef CONFIG_RFS_ACCEL
3459 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3460 struct bnxt_ntuple_filter *fltr)
3461 {
3462 struct hwrm_cfa_ntuple_filter_free_input req = {0};
3463
3464 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3465 req.ntuple_filter_id = fltr->filter_id;
3466 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3467 }
3468
3469 #define BNXT_NTP_FLTR_FLAGS \
3470 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
3471 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
3472 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
3473 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
3474 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
3475 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
3476 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
3477 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
3478 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
3479 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
3480 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
3481 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
3482 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
3483 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3484
3485 #define BNXT_NTP_TUNNEL_FLTR_FLAG \
3486 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3487
3488 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3489 struct bnxt_ntuple_filter *fltr)
3490 {
3491 int rc = 0;
3492 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3493 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3494 bp->hwrm_cmd_resp_addr;
3495 struct flow_keys *keys = &fltr->fkeys;
3496 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3497
3498 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3499 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3500
3501 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3502
3503 req.ethertype = htons(ETH_P_IP);
3504 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3505 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3506 req.ip_protocol = keys->basic.ip_proto;
3507
3508 if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3509 int i;
3510
3511 req.ethertype = htons(ETH_P_IPV6);
3512 req.ip_addr_type =
3513 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3514 *(struct in6_addr *)&req.src_ipaddr[0] =
3515 keys->addrs.v6addrs.src;
3516 *(struct in6_addr *)&req.dst_ipaddr[0] =
3517 keys->addrs.v6addrs.dst;
3518 for (i = 0; i < 4; i++) {
3519 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3520 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3521 }
3522 } else {
3523 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3524 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3525 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3526 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3527 }
3528 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3529 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3530 req.tunnel_type =
3531 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3532 }
3533
3534 req.src_port = keys->ports.src;
3535 req.src_port_mask = cpu_to_be16(0xffff);
3536 req.dst_port = keys->ports.dst;
3537 req.dst_port_mask = cpu_to_be16(0xffff);
3538
3539 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3540 mutex_lock(&bp->hwrm_cmd_lock);
3541 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3542 if (!rc)
3543 fltr->filter_id = resp->ntuple_filter_id;
3544 mutex_unlock(&bp->hwrm_cmd_lock);
3545 return rc;
3546 }
3547 #endif
3548
3549 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3550 u8 *mac_addr)
3551 {
3552 u32 rc = 0;
3553 struct hwrm_cfa_l2_filter_alloc_input req = {0};
3554 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3555
3556 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3557 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3558 if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3559 req.flags |=
3560 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3561 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3562 req.enables =
3563 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3564 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3565 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3566 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3567 req.l2_addr_mask[0] = 0xff;
3568 req.l2_addr_mask[1] = 0xff;
3569 req.l2_addr_mask[2] = 0xff;
3570 req.l2_addr_mask[3] = 0xff;
3571 req.l2_addr_mask[4] = 0xff;
3572 req.l2_addr_mask[5] = 0xff;
3573
3574 mutex_lock(&bp->hwrm_cmd_lock);
3575 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3576 if (!rc)
3577 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3578 resp->l2_filter_id;
3579 mutex_unlock(&bp->hwrm_cmd_lock);
3580 return rc;
3581 }
3582
3583 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3584 {
3585 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3586 int rc = 0;
3587
3588 /* Any associated ntuple filters will also be cleared by firmware. */
3589 mutex_lock(&bp->hwrm_cmd_lock);
3590 for (i = 0; i < num_of_vnics; i++) {
3591 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3592
3593 for (j = 0; j < vnic->uc_filter_count; j++) {
3594 struct hwrm_cfa_l2_filter_free_input req = {0};
3595
3596 bnxt_hwrm_cmd_hdr_init(bp, &req,
3597 HWRM_CFA_L2_FILTER_FREE, -1, -1);
3598
3599 req.l2_filter_id = vnic->fw_l2_filter_id[j];
3600
3601 rc = _hwrm_send_message(bp, &req, sizeof(req),
3602 HWRM_CMD_TIMEOUT);
3603 }
3604 vnic->uc_filter_count = 0;
3605 }
3606 mutex_unlock(&bp->hwrm_cmd_lock);
3607
3608 return rc;
3609 }
3610
3611 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3612 {
3613 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3614 struct hwrm_vnic_tpa_cfg_input req = {0};
3615
3616 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3617
3618 if (tpa_flags) {
3619 u16 mss = bp->dev->mtu - 40;
3620 u32 nsegs, n, segs = 0, flags;
3621
3622 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3623 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3624 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3625 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3626 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3627 if (tpa_flags & BNXT_FLAG_GRO)
3628 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3629
3630 req.flags = cpu_to_le32(flags);
3631
3632 req.enables =
3633 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3634 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3635 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3636
3637 /* Number of segs are log2 units, and first packet is not
3638 * included as part of this units.
3639 */
3640 if (mss <= BNXT_RX_PAGE_SIZE) {
3641 n = BNXT_RX_PAGE_SIZE / mss;
3642 nsegs = (MAX_SKB_FRAGS - 1) * n;
3643 } else {
3644 n = mss / BNXT_RX_PAGE_SIZE;
3645 if (mss & (BNXT_RX_PAGE_SIZE - 1))
3646 n++;
3647 nsegs = (MAX_SKB_FRAGS - n) / n;
3648 }
3649
3650 segs = ilog2(nsegs);
3651 req.max_agg_segs = cpu_to_le16(segs);
3652 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3653
3654 req.min_agg_len = cpu_to_le32(512);
3655 }
3656 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3657
3658 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3659 }
3660
3661 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3662 {
3663 u32 i, j, max_rings;
3664 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3665 struct hwrm_vnic_rss_cfg_input req = {0};
3666
3667 if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3668 return 0;
3669
3670 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3671 if (set_rss) {
3672 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3673 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3674 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3675 max_rings = bp->rx_nr_rings - 1;
3676 else
3677 max_rings = bp->rx_nr_rings;
3678 } else {
3679 max_rings = 1;
3680 }
3681
3682 /* Fill the RSS indirection table with ring group ids */
3683 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3684 if (j == max_rings)
3685 j = 0;
3686 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3687 }
3688
3689 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3690 req.hash_key_tbl_addr =
3691 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3692 }
3693 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3694 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3695 }
3696
3697 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3698 {
3699 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3700 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3701
3702 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3703 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3704 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3705 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3706 req.enables =
3707 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3708 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3709 /* thresholds not implemented in firmware yet */
3710 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3711 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3712 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3713 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3714 }
3715
3716 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3717 u16 ctx_idx)
3718 {
3719 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3720
3721 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3722 req.rss_cos_lb_ctx_id =
3723 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3724
3725 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3726 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3727 }
3728
3729 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3730 {
3731 int i, j;
3732
3733 for (i = 0; i < bp->nr_vnics; i++) {
3734 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3735
3736 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3737 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3738 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3739 }
3740 }
3741 bp->rsscos_nr_ctxs = 0;
3742 }
3743
3744 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3745 {
3746 int rc;
3747 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3748 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3749 bp->hwrm_cmd_resp_addr;
3750
3751 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3752 -1);
3753
3754 mutex_lock(&bp->hwrm_cmd_lock);
3755 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3756 if (!rc)
3757 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3758 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3759 mutex_unlock(&bp->hwrm_cmd_lock);
3760
3761 return rc;
3762 }
3763
3764 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3765 {
3766 unsigned int ring = 0, grp_idx;
3767 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3768 struct hwrm_vnic_cfg_input req = {0};
3769 u16 def_vlan = 0;
3770
3771 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3772
3773 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3774 /* Only RSS support for now TBD: COS & LB */
3775 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3776 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3777 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3778 VNIC_CFG_REQ_ENABLES_MRU);
3779 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3780 req.rss_rule =
3781 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3782 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3783 VNIC_CFG_REQ_ENABLES_MRU);
3784 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3785 } else {
3786 req.rss_rule = cpu_to_le16(0xffff);
3787 }
3788
3789 if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3790 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3791 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3792 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3793 } else {
3794 req.cos_rule = cpu_to_le16(0xffff);
3795 }
3796
3797 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3798 ring = 0;
3799 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3800 ring = vnic_id - 1;
3801 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3802 ring = bp->rx_nr_rings - 1;
3803
3804 grp_idx = bp->rx_ring[ring].bnapi->index;
3805 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3806 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3807
3808 req.lb_rule = cpu_to_le16(0xffff);
3809 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3810 VLAN_HLEN);
3811
3812 #ifdef CONFIG_BNXT_SRIOV
3813 if (BNXT_VF(bp))
3814 def_vlan = bp->vf.vlan;
3815 #endif
3816 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3817 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3818 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
3819 req.flags |=
3820 cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
3821
3822 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3823 }
3824
3825 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3826 {
3827 u32 rc = 0;
3828
3829 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3830 struct hwrm_vnic_free_input req = {0};
3831
3832 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3833 req.vnic_id =
3834 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3835
3836 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3837 if (rc)
3838 return rc;
3839 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3840 }
3841 return rc;
3842 }
3843
3844 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3845 {
3846 u16 i;
3847
3848 for (i = 0; i < bp->nr_vnics; i++)
3849 bnxt_hwrm_vnic_free_one(bp, i);
3850 }
3851
3852 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3853 unsigned int start_rx_ring_idx,
3854 unsigned int nr_rings)
3855 {
3856 int rc = 0;
3857 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3858 struct hwrm_vnic_alloc_input req = {0};
3859 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3860
3861 /* map ring groups to this vnic */
3862 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3863 grp_idx = bp->rx_ring[i].bnapi->index;
3864 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3865 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3866 j, nr_rings);
3867 break;
3868 }
3869 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3870 bp->grp_info[grp_idx].fw_grp_id;
3871 }
3872
3873 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3874 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3875 if (vnic_id == 0)
3876 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3877
3878 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3879
3880 mutex_lock(&bp->hwrm_cmd_lock);
3881 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3882 if (!rc)
3883 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3884 mutex_unlock(&bp->hwrm_cmd_lock);
3885 return rc;
3886 }
3887
3888 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
3889 {
3890 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3891 struct hwrm_vnic_qcaps_input req = {0};
3892 int rc;
3893
3894 if (bp->hwrm_spec_code < 0x10600)
3895 return 0;
3896
3897 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
3898 mutex_lock(&bp->hwrm_cmd_lock);
3899 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3900 if (!rc) {
3901 if (resp->flags &
3902 cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
3903 bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
3904 }
3905 mutex_unlock(&bp->hwrm_cmd_lock);
3906 return rc;
3907 }
3908
3909 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3910 {
3911 u16 i;
3912 u32 rc = 0;
3913
3914 mutex_lock(&bp->hwrm_cmd_lock);
3915 for (i = 0; i < bp->rx_nr_rings; i++) {
3916 struct hwrm_ring_grp_alloc_input req = {0};
3917 struct hwrm_ring_grp_alloc_output *resp =
3918 bp->hwrm_cmd_resp_addr;
3919 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3920
3921 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3922
3923 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3924 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3925 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3926 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3927
3928 rc = _hwrm_send_message(bp, &req, sizeof(req),
3929 HWRM_CMD_TIMEOUT);
3930 if (rc)
3931 break;
3932
3933 bp->grp_info[grp_idx].fw_grp_id =
3934 le32_to_cpu(resp->ring_group_id);
3935 }
3936 mutex_unlock(&bp->hwrm_cmd_lock);
3937 return rc;
3938 }
3939
3940 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3941 {
3942 u16 i;
3943 u32 rc = 0;
3944 struct hwrm_ring_grp_free_input req = {0};
3945
3946 if (!bp->grp_info)
3947 return 0;
3948
3949 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3950
3951 mutex_lock(&bp->hwrm_cmd_lock);
3952 for (i = 0; i < bp->cp_nr_rings; i++) {
3953 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3954 continue;
3955 req.ring_group_id =
3956 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3957
3958 rc = _hwrm_send_message(bp, &req, sizeof(req),
3959 HWRM_CMD_TIMEOUT);
3960 if (rc)
3961 break;
3962 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3963 }
3964 mutex_unlock(&bp->hwrm_cmd_lock);
3965 return rc;
3966 }
3967
3968 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3969 struct bnxt_ring_struct *ring,
3970 u32 ring_type, u32 map_index,
3971 u32 stats_ctx_id)
3972 {
3973 int rc = 0, err = 0;
3974 struct hwrm_ring_alloc_input req = {0};
3975 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3976 u16 ring_id;
3977
3978 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3979
3980 req.enables = 0;
3981 if (ring->nr_pages > 1) {
3982 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3983 /* Page size is in log2 units */
3984 req.page_size = BNXT_PAGE_SHIFT;
3985 req.page_tbl_depth = 1;
3986 } else {
3987 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3988 }
3989 req.fbo = 0;
3990 /* Association of ring index with doorbell index and MSIX number */
3991 req.logical_id = cpu_to_le16(map_index);
3992
3993 switch (ring_type) {
3994 case HWRM_RING_ALLOC_TX:
3995 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3996 /* Association of transmit ring with completion ring */
3997 req.cmpl_ring_id =
3998 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3999 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4000 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4001 req.queue_id = cpu_to_le16(ring->queue_id);
4002 break;
4003 case HWRM_RING_ALLOC_RX:
4004 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4005 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4006 break;
4007 case HWRM_RING_ALLOC_AGG:
4008 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4009 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4010 break;
4011 case HWRM_RING_ALLOC_CMPL:
4012 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4013 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4014 if (bp->flags & BNXT_FLAG_USING_MSIX)
4015 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4016 break;
4017 default:
4018 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4019 ring_type);
4020 return -1;
4021 }
4022
4023 mutex_lock(&bp->hwrm_cmd_lock);
4024 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4025 err = le16_to_cpu(resp->error_code);
4026 ring_id = le16_to_cpu(resp->ring_id);
4027 mutex_unlock(&bp->hwrm_cmd_lock);
4028
4029 if (rc || err) {
4030 switch (ring_type) {
4031 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4032 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4033 rc, err);
4034 return -1;
4035
4036 case RING_FREE_REQ_RING_TYPE_RX:
4037 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4038 rc, err);
4039 return -1;
4040
4041 case RING_FREE_REQ_RING_TYPE_TX:
4042 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4043 rc, err);
4044 return -1;
4045
4046 default:
4047 netdev_err(bp->dev, "Invalid ring\n");
4048 return -1;
4049 }
4050 }
4051 ring->fw_ring_id = ring_id;
4052 return rc;
4053 }
4054
4055 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4056 {
4057 int rc;
4058
4059 if (BNXT_PF(bp)) {
4060 struct hwrm_func_cfg_input req = {0};
4061
4062 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4063 req.fid = cpu_to_le16(0xffff);
4064 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4065 req.async_event_cr = cpu_to_le16(idx);
4066 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4067 } else {
4068 struct hwrm_func_vf_cfg_input req = {0};
4069
4070 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4071 req.enables =
4072 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4073 req.async_event_cr = cpu_to_le16(idx);
4074 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4075 }
4076 return rc;
4077 }
4078
4079 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4080 {
4081 int i, rc = 0;
4082
4083 for (i = 0; i < bp->cp_nr_rings; i++) {
4084 struct bnxt_napi *bnapi = bp->bnapi[i];
4085 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4086 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4087
4088 cpr->cp_doorbell = bp->bar1 + i * 0x80;
4089 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4090 INVALID_STATS_CTX_ID);
4091 if (rc)
4092 goto err_out;
4093 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4094 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4095
4096 if (!i) {
4097 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4098 if (rc)
4099 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4100 }
4101 }
4102
4103 for (i = 0; i < bp->tx_nr_rings; i++) {
4104 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4105 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4106 u32 map_idx = txr->bnapi->index;
4107 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4108
4109 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4110 map_idx, fw_stats_ctx);
4111 if (rc)
4112 goto err_out;
4113 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4114 }
4115
4116 for (i = 0; i < bp->rx_nr_rings; i++) {
4117 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4118 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4119 u32 map_idx = rxr->bnapi->index;
4120
4121 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4122 map_idx, INVALID_STATS_CTX_ID);
4123 if (rc)
4124 goto err_out;
4125 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4126 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4127 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4128 }
4129
4130 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4131 for (i = 0; i < bp->rx_nr_rings; i++) {
4132 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4133 struct bnxt_ring_struct *ring =
4134 &rxr->rx_agg_ring_struct;
4135 u32 grp_idx = rxr->bnapi->index;
4136 u32 map_idx = grp_idx + bp->rx_nr_rings;
4137
4138 rc = hwrm_ring_alloc_send_msg(bp, ring,
4139 HWRM_RING_ALLOC_AGG,
4140 map_idx,
4141 INVALID_STATS_CTX_ID);
4142 if (rc)
4143 goto err_out;
4144
4145 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4146 writel(DB_KEY_RX | rxr->rx_agg_prod,
4147 rxr->rx_agg_doorbell);
4148 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4149 }
4150 }
4151 err_out:
4152 return rc;
4153 }
4154
4155 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4156 struct bnxt_ring_struct *ring,
4157 u32 ring_type, int cmpl_ring_id)
4158 {
4159 int rc;
4160 struct hwrm_ring_free_input req = {0};
4161 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4162 u16 error_code;
4163
4164 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4165 req.ring_type = ring_type;
4166 req.ring_id = cpu_to_le16(ring->fw_ring_id);
4167
4168 mutex_lock(&bp->hwrm_cmd_lock);
4169 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4170 error_code = le16_to_cpu(resp->error_code);
4171 mutex_unlock(&bp->hwrm_cmd_lock);
4172
4173 if (rc || error_code) {
4174 switch (ring_type) {
4175 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4176 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4177 rc);
4178 return rc;
4179 case RING_FREE_REQ_RING_TYPE_RX:
4180 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4181 rc);
4182 return rc;
4183 case RING_FREE_REQ_RING_TYPE_TX:
4184 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4185 rc);
4186 return rc;
4187 default:
4188 netdev_err(bp->dev, "Invalid ring\n");
4189 return -1;
4190 }
4191 }
4192 return 0;
4193 }
4194
4195 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4196 {
4197 int i;
4198
4199 if (!bp->bnapi)
4200 return;
4201
4202 for (i = 0; i < bp->tx_nr_rings; i++) {
4203 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4204 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4205 u32 grp_idx = txr->bnapi->index;
4206 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4207
4208 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4209 hwrm_ring_free_send_msg(bp, ring,
4210 RING_FREE_REQ_RING_TYPE_TX,
4211 close_path ? cmpl_ring_id :
4212 INVALID_HW_RING_ID);
4213 ring->fw_ring_id = INVALID_HW_RING_ID;
4214 }
4215 }
4216
4217 for (i = 0; i < bp->rx_nr_rings; i++) {
4218 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4219 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4220 u32 grp_idx = rxr->bnapi->index;
4221 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4222
4223 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4224 hwrm_ring_free_send_msg(bp, ring,
4225 RING_FREE_REQ_RING_TYPE_RX,
4226 close_path ? cmpl_ring_id :
4227 INVALID_HW_RING_ID);
4228 ring->fw_ring_id = INVALID_HW_RING_ID;
4229 bp->grp_info[grp_idx].rx_fw_ring_id =
4230 INVALID_HW_RING_ID;
4231 }
4232 }
4233
4234 for (i = 0; i < bp->rx_nr_rings; i++) {
4235 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4236 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4237 u32 grp_idx = rxr->bnapi->index;
4238 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4239
4240 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4241 hwrm_ring_free_send_msg(bp, ring,
4242 RING_FREE_REQ_RING_TYPE_RX,
4243 close_path ? cmpl_ring_id :
4244 INVALID_HW_RING_ID);
4245 ring->fw_ring_id = INVALID_HW_RING_ID;
4246 bp->grp_info[grp_idx].agg_fw_ring_id =
4247 INVALID_HW_RING_ID;
4248 }
4249 }
4250
4251 /* The completion rings are about to be freed. After that the
4252 * IRQ doorbell will not work anymore. So we need to disable
4253 * IRQ here.
4254 */
4255 bnxt_disable_int_sync(bp);
4256
4257 for (i = 0; i < bp->cp_nr_rings; i++) {
4258 struct bnxt_napi *bnapi = bp->bnapi[i];
4259 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4260 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4261
4262 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4263 hwrm_ring_free_send_msg(bp, ring,
4264 RING_FREE_REQ_RING_TYPE_L2_CMPL,
4265 INVALID_HW_RING_ID);
4266 ring->fw_ring_id = INVALID_HW_RING_ID;
4267 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4268 }
4269 }
4270 }
4271
4272 /* Caller must hold bp->hwrm_cmd_lock */
4273 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4274 {
4275 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4276 struct hwrm_func_qcfg_input req = {0};
4277 int rc;
4278
4279 if (bp->hwrm_spec_code < 0x10601)
4280 return 0;
4281
4282 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4283 req.fid = cpu_to_le16(fid);
4284 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4285 if (!rc)
4286 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4287
4288 return rc;
4289 }
4290
4291 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4292 {
4293 struct hwrm_func_cfg_input req = {0};
4294 int rc;
4295
4296 if (bp->hwrm_spec_code < 0x10601)
4297 return 0;
4298
4299 if (BNXT_VF(bp))
4300 return 0;
4301
4302 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4303 req.fid = cpu_to_le16(0xffff);
4304 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4305 req.num_tx_rings = cpu_to_le16(*tx_rings);
4306 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4307 if (rc)
4308 return rc;
4309
4310 mutex_lock(&bp->hwrm_cmd_lock);
4311 rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4312 mutex_unlock(&bp->hwrm_cmd_lock);
4313 return rc;
4314 }
4315
4316 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
4317 u32 buf_tmrs, u16 flags,
4318 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4319 {
4320 req->flags = cpu_to_le16(flags);
4321 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
4322 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
4323 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
4324 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
4325 /* Minimum time between 2 interrupts set to buf_tmr x 2 */
4326 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
4327 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
4328 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
4329 }
4330
4331 int bnxt_hwrm_set_coal(struct bnxt *bp)
4332 {
4333 int i, rc = 0;
4334 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4335 req_tx = {0}, *req;
4336 u16 max_buf, max_buf_irq;
4337 u16 buf_tmr, buf_tmr_irq;
4338 u32 flags;
4339
4340 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4341 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4342 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4343 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4344
4345 /* Each rx completion (2 records) should be DMAed immediately.
4346 * DMA 1/4 of the completion buffers at a time.
4347 */
4348 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4349 /* max_buf must not be zero */
4350 max_buf = clamp_t(u16, max_buf, 1, 63);
4351 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4352 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4353 /* buf timer set to 1/4 of interrupt timer */
4354 buf_tmr = max_t(u16, buf_tmr / 4, 1);
4355 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4356 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4357
4358 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4359
4360 /* RING_IDLE generates more IRQs for lower latency. Enable it only
4361 * if coal_ticks is less than 25 us.
4362 */
4363 if (bp->rx_coal_ticks < 25)
4364 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4365
4366 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4367 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4368
4369 /* max_buf must not be zero */
4370 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4371 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4372 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4373 /* buf timer set to 1/4 of interrupt timer */
4374 buf_tmr = max_t(u16, buf_tmr / 4, 1);
4375 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4376 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4377
4378 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4379 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4380 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4381
4382 mutex_lock(&bp->hwrm_cmd_lock);
4383 for (i = 0; i < bp->cp_nr_rings; i++) {
4384 struct bnxt_napi *bnapi = bp->bnapi[i];
4385
4386 req = &req_rx;
4387 if (!bnapi->rx_ring)
4388 req = &req_tx;
4389 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4390
4391 rc = _hwrm_send_message(bp, req, sizeof(*req),
4392 HWRM_CMD_TIMEOUT);
4393 if (rc)
4394 break;
4395 }
4396 mutex_unlock(&bp->hwrm_cmd_lock);
4397 return rc;
4398 }
4399
4400 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4401 {
4402 int rc = 0, i;
4403 struct hwrm_stat_ctx_free_input req = {0};
4404
4405 if (!bp->bnapi)
4406 return 0;
4407
4408 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4409 return 0;
4410
4411 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4412
4413 mutex_lock(&bp->hwrm_cmd_lock);
4414 for (i = 0; i < bp->cp_nr_rings; i++) {
4415 struct bnxt_napi *bnapi = bp->bnapi[i];
4416 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4417
4418 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4419 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4420
4421 rc = _hwrm_send_message(bp, &req, sizeof(req),
4422 HWRM_CMD_TIMEOUT);
4423 if (rc)
4424 break;
4425
4426 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4427 }
4428 }
4429 mutex_unlock(&bp->hwrm_cmd_lock);
4430 return rc;
4431 }
4432
4433 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4434 {
4435 int rc = 0, i;
4436 struct hwrm_stat_ctx_alloc_input req = {0};
4437 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4438
4439 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4440 return 0;
4441
4442 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4443
4444 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4445
4446 mutex_lock(&bp->hwrm_cmd_lock);
4447 for (i = 0; i < bp->cp_nr_rings; i++) {
4448 struct bnxt_napi *bnapi = bp->bnapi[i];
4449 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4450
4451 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4452
4453 rc = _hwrm_send_message(bp, &req, sizeof(req),
4454 HWRM_CMD_TIMEOUT);
4455 if (rc)
4456 break;
4457
4458 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4459
4460 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4461 }
4462 mutex_unlock(&bp->hwrm_cmd_lock);
4463 return rc;
4464 }
4465
4466 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4467 {
4468 struct hwrm_func_qcfg_input req = {0};
4469 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4470 int rc;
4471
4472 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4473 req.fid = cpu_to_le16(0xffff);
4474 mutex_lock(&bp->hwrm_cmd_lock);
4475 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4476 if (rc)
4477 goto func_qcfg_exit;
4478
4479 #ifdef CONFIG_BNXT_SRIOV
4480 if (BNXT_VF(bp)) {
4481 struct bnxt_vf_info *vf = &bp->vf;
4482
4483 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4484 }
4485 #endif
4486 if (BNXT_PF(bp)) {
4487 u16 flags = le16_to_cpu(resp->flags);
4488
4489 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
4490 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED))
4491 bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
4492 if (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)
4493 bp->flags |= BNXT_FLAG_MULTI_HOST;
4494 }
4495
4496 switch (resp->port_partition_type) {
4497 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4498 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4499 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4500 bp->port_partition_type = resp->port_partition_type;
4501 break;
4502 }
4503
4504 func_qcfg_exit:
4505 mutex_unlock(&bp->hwrm_cmd_lock);
4506 return rc;
4507 }
4508
4509 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4510 {
4511 int rc = 0;
4512 struct hwrm_func_qcaps_input req = {0};
4513 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4514
4515 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4516 req.fid = cpu_to_le16(0xffff);
4517
4518 mutex_lock(&bp->hwrm_cmd_lock);
4519 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4520 if (rc)
4521 goto hwrm_func_qcaps_exit;
4522
4523 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4524 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4525 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4526 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4527
4528 bp->tx_push_thresh = 0;
4529 if (resp->flags &
4530 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4531 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4532
4533 if (BNXT_PF(bp)) {
4534 struct bnxt_pf_info *pf = &bp->pf;
4535
4536 pf->fw_fid = le16_to_cpu(resp->fid);
4537 pf->port_id = le16_to_cpu(resp->port_id);
4538 bp->dev->dev_port = pf->port_id;
4539 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4540 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4541 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4542 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4543 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4544 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4545 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4546 if (!pf->max_hw_ring_grps)
4547 pf->max_hw_ring_grps = pf->max_tx_rings;
4548 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4549 pf->max_vnics = le16_to_cpu(resp->max_vnics);
4550 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4551 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4552 pf->max_vfs = le16_to_cpu(resp->max_vfs);
4553 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4554 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4555 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4556 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4557 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4558 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4559 if (resp->flags &
4560 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
4561 bp->flags |= BNXT_FLAG_WOL_CAP;
4562 } else {
4563 #ifdef CONFIG_BNXT_SRIOV
4564 struct bnxt_vf_info *vf = &bp->vf;
4565
4566 vf->fw_fid = le16_to_cpu(resp->fid);
4567
4568 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4569 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4570 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4571 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4572 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4573 if (!vf->max_hw_ring_grps)
4574 vf->max_hw_ring_grps = vf->max_tx_rings;
4575 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4576 vf->max_vnics = le16_to_cpu(resp->max_vnics);
4577 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4578
4579 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4580 mutex_unlock(&bp->hwrm_cmd_lock);
4581
4582 if (is_valid_ether_addr(vf->mac_addr)) {
4583 /* overwrite netdev dev_adr with admin VF MAC */
4584 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4585 } else {
4586 eth_hw_addr_random(bp->dev);
4587 rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
4588 }
4589 return rc;
4590 #endif
4591 }
4592
4593 hwrm_func_qcaps_exit:
4594 mutex_unlock(&bp->hwrm_cmd_lock);
4595 return rc;
4596 }
4597
4598 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4599 {
4600 struct hwrm_func_reset_input req = {0};
4601
4602 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4603 req.enables = 0;
4604
4605 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4606 }
4607
4608 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4609 {
4610 int rc = 0;
4611 struct hwrm_queue_qportcfg_input req = {0};
4612 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4613 u8 i, *qptr;
4614
4615 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4616
4617 mutex_lock(&bp->hwrm_cmd_lock);
4618 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4619 if (rc)
4620 goto qportcfg_exit;
4621
4622 if (!resp->max_configurable_queues) {
4623 rc = -EINVAL;
4624 goto qportcfg_exit;
4625 }
4626 bp->max_tc = resp->max_configurable_queues;
4627 bp->max_lltc = resp->max_configurable_lossless_queues;
4628 if (bp->max_tc > BNXT_MAX_QUEUE)
4629 bp->max_tc = BNXT_MAX_QUEUE;
4630
4631 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4632 bp->max_tc = 1;
4633
4634 if (bp->max_lltc > bp->max_tc)
4635 bp->max_lltc = bp->max_tc;
4636
4637 qptr = &resp->queue_id0;
4638 for (i = 0; i < bp->max_tc; i++) {
4639 bp->q_info[i].queue_id = *qptr++;
4640 bp->q_info[i].queue_profile = *qptr++;
4641 }
4642
4643 qportcfg_exit:
4644 mutex_unlock(&bp->hwrm_cmd_lock);
4645 return rc;
4646 }
4647
4648 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4649 {
4650 int rc;
4651 struct hwrm_ver_get_input req = {0};
4652 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4653
4654 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4655 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4656 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4657 req.hwrm_intf_min = HWRM_VERSION_MINOR;
4658 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4659 mutex_lock(&bp->hwrm_cmd_lock);
4660 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4661 if (rc)
4662 goto hwrm_ver_get_exit;
4663
4664 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4665
4666 bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4667 resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4668 if (resp->hwrm_intf_maj < 1) {
4669 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4670 resp->hwrm_intf_maj, resp->hwrm_intf_min,
4671 resp->hwrm_intf_upd);
4672 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4673 }
4674 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4675 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4676 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4677
4678 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4679 if (!bp->hwrm_cmd_timeout)
4680 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4681
4682 if (resp->hwrm_intf_maj >= 1)
4683 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4684
4685 bp->chip_num = le16_to_cpu(resp->chip_num);
4686 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4687 !resp->chip_metal)
4688 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4689
4690 hwrm_ver_get_exit:
4691 mutex_unlock(&bp->hwrm_cmd_lock);
4692 return rc;
4693 }
4694
4695 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4696 {
4697 #if IS_ENABLED(CONFIG_RTC_LIB)
4698 struct hwrm_fw_set_time_input req = {0};
4699 struct rtc_time tm;
4700 struct timeval tv;
4701
4702 if (bp->hwrm_spec_code < 0x10400)
4703 return -EOPNOTSUPP;
4704
4705 do_gettimeofday(&tv);
4706 rtc_time_to_tm(tv.tv_sec, &tm);
4707 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4708 req.year = cpu_to_le16(1900 + tm.tm_year);
4709 req.month = 1 + tm.tm_mon;
4710 req.day = tm.tm_mday;
4711 req.hour = tm.tm_hour;
4712 req.minute = tm.tm_min;
4713 req.second = tm.tm_sec;
4714 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4715 #else
4716 return -EOPNOTSUPP;
4717 #endif
4718 }
4719
4720 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4721 {
4722 int rc;
4723 struct bnxt_pf_info *pf = &bp->pf;
4724 struct hwrm_port_qstats_input req = {0};
4725
4726 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4727 return 0;
4728
4729 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4730 req.port_id = cpu_to_le16(pf->port_id);
4731 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4732 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4733 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4734 return rc;
4735 }
4736
4737 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4738 {
4739 if (bp->vxlan_port_cnt) {
4740 bnxt_hwrm_tunnel_dst_port_free(
4741 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4742 }
4743 bp->vxlan_port_cnt = 0;
4744 if (bp->nge_port_cnt) {
4745 bnxt_hwrm_tunnel_dst_port_free(
4746 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4747 }
4748 bp->nge_port_cnt = 0;
4749 }
4750
4751 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4752 {
4753 int rc, i;
4754 u32 tpa_flags = 0;
4755
4756 if (set_tpa)
4757 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4758 for (i = 0; i < bp->nr_vnics; i++) {
4759 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4760 if (rc) {
4761 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4762 i, rc);
4763 return rc;
4764 }
4765 }
4766 return 0;
4767 }
4768
4769 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4770 {
4771 int i;
4772
4773 for (i = 0; i < bp->nr_vnics; i++)
4774 bnxt_hwrm_vnic_set_rss(bp, i, false);
4775 }
4776
4777 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4778 bool irq_re_init)
4779 {
4780 if (bp->vnic_info) {
4781 bnxt_hwrm_clear_vnic_filter(bp);
4782 /* clear all RSS setting before free vnic ctx */
4783 bnxt_hwrm_clear_vnic_rss(bp);
4784 bnxt_hwrm_vnic_ctx_free(bp);
4785 /* before free the vnic, undo the vnic tpa settings */
4786 if (bp->flags & BNXT_FLAG_TPA)
4787 bnxt_set_tpa(bp, false);
4788 bnxt_hwrm_vnic_free(bp);
4789 }
4790 bnxt_hwrm_ring_free(bp, close_path);
4791 bnxt_hwrm_ring_grp_free(bp);
4792 if (irq_re_init) {
4793 bnxt_hwrm_stat_ctx_free(bp);
4794 bnxt_hwrm_free_tunnel_ports(bp);
4795 }
4796 }
4797
4798 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4799 {
4800 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4801 int rc;
4802
4803 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
4804 goto skip_rss_ctx;
4805
4806 /* allocate context for vnic */
4807 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4808 if (rc) {
4809 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4810 vnic_id, rc);
4811 goto vnic_setup_err;
4812 }
4813 bp->rsscos_nr_ctxs++;
4814
4815 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4816 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4817 if (rc) {
4818 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4819 vnic_id, rc);
4820 goto vnic_setup_err;
4821 }
4822 bp->rsscos_nr_ctxs++;
4823 }
4824
4825 skip_rss_ctx:
4826 /* configure default vnic, ring grp */
4827 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4828 if (rc) {
4829 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4830 vnic_id, rc);
4831 goto vnic_setup_err;
4832 }
4833
4834 /* Enable RSS hashing on vnic */
4835 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4836 if (rc) {
4837 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4838 vnic_id, rc);
4839 goto vnic_setup_err;
4840 }
4841
4842 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4843 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4844 if (rc) {
4845 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4846 vnic_id, rc);
4847 }
4848 }
4849
4850 vnic_setup_err:
4851 return rc;
4852 }
4853
4854 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4855 {
4856 #ifdef CONFIG_RFS_ACCEL
4857 int i, rc = 0;
4858
4859 for (i = 0; i < bp->rx_nr_rings; i++) {
4860 struct bnxt_vnic_info *vnic;
4861 u16 vnic_id = i + 1;
4862 u16 ring_id = i;
4863
4864 if (vnic_id >= bp->nr_vnics)
4865 break;
4866
4867 vnic = &bp->vnic_info[vnic_id];
4868 vnic->flags |= BNXT_VNIC_RFS_FLAG;
4869 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
4870 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
4871 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4872 if (rc) {
4873 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4874 vnic_id, rc);
4875 break;
4876 }
4877 rc = bnxt_setup_vnic(bp, vnic_id);
4878 if (rc)
4879 break;
4880 }
4881 return rc;
4882 #else
4883 return 0;
4884 #endif
4885 }
4886
4887 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4888 static bool bnxt_promisc_ok(struct bnxt *bp)
4889 {
4890 #ifdef CONFIG_BNXT_SRIOV
4891 if (BNXT_VF(bp) && !bp->vf.vlan)
4892 return false;
4893 #endif
4894 return true;
4895 }
4896
4897 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4898 {
4899 unsigned int rc = 0;
4900
4901 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4902 if (rc) {
4903 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4904 rc);
4905 return rc;
4906 }
4907
4908 rc = bnxt_hwrm_vnic_cfg(bp, 1);
4909 if (rc) {
4910 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4911 rc);
4912 return rc;
4913 }
4914 return rc;
4915 }
4916
4917 static int bnxt_cfg_rx_mode(struct bnxt *);
4918 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4919
4920 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4921 {
4922 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4923 int rc = 0;
4924 unsigned int rx_nr_rings = bp->rx_nr_rings;
4925
4926 if (irq_re_init) {
4927 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4928 if (rc) {
4929 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4930 rc);
4931 goto err_out;
4932 }
4933 }
4934
4935 rc = bnxt_hwrm_ring_alloc(bp);
4936 if (rc) {
4937 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4938 goto err_out;
4939 }
4940
4941 rc = bnxt_hwrm_ring_grp_alloc(bp);
4942 if (rc) {
4943 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4944 goto err_out;
4945 }
4946
4947 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4948 rx_nr_rings--;
4949
4950 /* default vnic 0 */
4951 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4952 if (rc) {
4953 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4954 goto err_out;
4955 }
4956
4957 rc = bnxt_setup_vnic(bp, 0);
4958 if (rc)
4959 goto err_out;
4960
4961 if (bp->flags & BNXT_FLAG_RFS) {
4962 rc = bnxt_alloc_rfs_vnics(bp);
4963 if (rc)
4964 goto err_out;
4965 }
4966
4967 if (bp->flags & BNXT_FLAG_TPA) {
4968 rc = bnxt_set_tpa(bp, true);
4969 if (rc)
4970 goto err_out;
4971 }
4972
4973 if (BNXT_VF(bp))
4974 bnxt_update_vf_mac(bp);
4975
4976 /* Filter for default vnic 0 */
4977 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4978 if (rc) {
4979 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4980 goto err_out;
4981 }
4982 vnic->uc_filter_count = 1;
4983
4984 vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4985
4986 if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4987 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4988
4989 if (bp->dev->flags & IFF_ALLMULTI) {
4990 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4991 vnic->mc_list_count = 0;
4992 } else {
4993 u32 mask = 0;
4994
4995 bnxt_mc_list_updated(bp, &mask);
4996 vnic->rx_mask |= mask;
4997 }
4998
4999 rc = bnxt_cfg_rx_mode(bp);
5000 if (rc)
5001 goto err_out;
5002
5003 rc = bnxt_hwrm_set_coal(bp);
5004 if (rc)
5005 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5006 rc);
5007
5008 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5009 rc = bnxt_setup_nitroa0_vnic(bp);
5010 if (rc)
5011 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5012 rc);
5013 }
5014
5015 if (BNXT_VF(bp)) {
5016 bnxt_hwrm_func_qcfg(bp);
5017 netdev_update_features(bp->dev);
5018 }
5019
5020 return 0;
5021
5022 err_out:
5023 bnxt_hwrm_resource_free(bp, 0, true);
5024
5025 return rc;
5026 }
5027
5028 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5029 {
5030 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5031 return 0;
5032 }
5033
5034 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5035 {
5036 bnxt_init_cp_rings(bp);
5037 bnxt_init_rx_rings(bp);
5038 bnxt_init_tx_rings(bp);
5039 bnxt_init_ring_grps(bp, irq_re_init);
5040 bnxt_init_vnics(bp);
5041
5042 return bnxt_init_chip(bp, irq_re_init);
5043 }
5044
5045 static int bnxt_set_real_num_queues(struct bnxt *bp)
5046 {
5047 int rc;
5048 struct net_device *dev = bp->dev;
5049
5050 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5051 bp->tx_nr_rings_xdp);
5052 if (rc)
5053 return rc;
5054
5055 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5056 if (rc)
5057 return rc;
5058
5059 #ifdef CONFIG_RFS_ACCEL
5060 if (bp->flags & BNXT_FLAG_RFS)
5061 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5062 #endif
5063
5064 return rc;
5065 }
5066
5067 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5068 bool shared)
5069 {
5070 int _rx = *rx, _tx = *tx;
5071
5072 if (shared) {
5073 *rx = min_t(int, _rx, max);
5074 *tx = min_t(int, _tx, max);
5075 } else {
5076 if (max < 2)
5077 return -ENOMEM;
5078
5079 while (_rx + _tx > max) {
5080 if (_rx > _tx && _rx > 1)
5081 _rx--;
5082 else if (_tx > 1)
5083 _tx--;
5084 }
5085 *rx = _rx;
5086 *tx = _tx;
5087 }
5088 return 0;
5089 }
5090
5091 static void bnxt_setup_msix(struct bnxt *bp)
5092 {
5093 const int len = sizeof(bp->irq_tbl[0].name);
5094 struct net_device *dev = bp->dev;
5095 int tcs, i;
5096
5097 tcs = netdev_get_num_tc(dev);
5098 if (tcs > 1) {
5099 int i, off, count;
5100
5101 for (i = 0; i < tcs; i++) {
5102 count = bp->tx_nr_rings_per_tc;
5103 off = i * count;
5104 netdev_set_tc_queue(dev, i, count, off);
5105 }
5106 }
5107
5108 for (i = 0; i < bp->cp_nr_rings; i++) {
5109 char *attr;
5110
5111 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5112 attr = "TxRx";
5113 else if (i < bp->rx_nr_rings)
5114 attr = "rx";
5115 else
5116 attr = "tx";
5117
5118 snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5119 i);
5120 bp->irq_tbl[i].handler = bnxt_msix;
5121 }
5122 }
5123
5124 static void bnxt_setup_inta(struct bnxt *bp)
5125 {
5126 const int len = sizeof(bp->irq_tbl[0].name);
5127
5128 if (netdev_get_num_tc(bp->dev))
5129 netdev_reset_tc(bp->dev);
5130
5131 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5132 0);
5133 bp->irq_tbl[0].handler = bnxt_inta;
5134 }
5135
5136 static int bnxt_setup_int_mode(struct bnxt *bp)
5137 {
5138 int rc;
5139
5140 if (bp->flags & BNXT_FLAG_USING_MSIX)
5141 bnxt_setup_msix(bp);
5142 else
5143 bnxt_setup_inta(bp);
5144
5145 rc = bnxt_set_real_num_queues(bp);
5146 return rc;
5147 }
5148
5149 #ifdef CONFIG_RFS_ACCEL
5150 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5151 {
5152 #if defined(CONFIG_BNXT_SRIOV)
5153 if (BNXT_VF(bp))
5154 return bp->vf.max_rsscos_ctxs;
5155 #endif
5156 return bp->pf.max_rsscos_ctxs;
5157 }
5158
5159 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5160 {
5161 #if defined(CONFIG_BNXT_SRIOV)
5162 if (BNXT_VF(bp))
5163 return bp->vf.max_vnics;
5164 #endif
5165 return bp->pf.max_vnics;
5166 }
5167 #endif
5168
5169 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5170 {
5171 #if defined(CONFIG_BNXT_SRIOV)
5172 if (BNXT_VF(bp))
5173 return bp->vf.max_stat_ctxs;
5174 #endif
5175 return bp->pf.max_stat_ctxs;
5176 }
5177
5178 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5179 {
5180 #if defined(CONFIG_BNXT_SRIOV)
5181 if (BNXT_VF(bp))
5182 bp->vf.max_stat_ctxs = max;
5183 else
5184 #endif
5185 bp->pf.max_stat_ctxs = max;
5186 }
5187
5188 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5189 {
5190 #if defined(CONFIG_BNXT_SRIOV)
5191 if (BNXT_VF(bp))
5192 return bp->vf.max_cp_rings;
5193 #endif
5194 return bp->pf.max_cp_rings;
5195 }
5196
5197 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5198 {
5199 #if defined(CONFIG_BNXT_SRIOV)
5200 if (BNXT_VF(bp))
5201 bp->vf.max_cp_rings = max;
5202 else
5203 #endif
5204 bp->pf.max_cp_rings = max;
5205 }
5206
5207 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5208 {
5209 #if defined(CONFIG_BNXT_SRIOV)
5210 if (BNXT_VF(bp))
5211 return min_t(unsigned int, bp->vf.max_irqs,
5212 bp->vf.max_cp_rings);
5213 #endif
5214 return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5215 }
5216
5217 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5218 {
5219 #if defined(CONFIG_BNXT_SRIOV)
5220 if (BNXT_VF(bp))
5221 bp->vf.max_irqs = max_irqs;
5222 else
5223 #endif
5224 bp->pf.max_irqs = max_irqs;
5225 }
5226
5227 static int bnxt_init_msix(struct bnxt *bp)
5228 {
5229 int i, total_vecs, rc = 0, min = 1;
5230 struct msix_entry *msix_ent;
5231
5232 total_vecs = bnxt_get_max_func_irqs(bp);
5233 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5234 if (!msix_ent)
5235 return -ENOMEM;
5236
5237 for (i = 0; i < total_vecs; i++) {
5238 msix_ent[i].entry = i;
5239 msix_ent[i].vector = 0;
5240 }
5241
5242 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5243 min = 2;
5244
5245 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5246 if (total_vecs < 0) {
5247 rc = -ENODEV;
5248 goto msix_setup_exit;
5249 }
5250
5251 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5252 if (bp->irq_tbl) {
5253 for (i = 0; i < total_vecs; i++)
5254 bp->irq_tbl[i].vector = msix_ent[i].vector;
5255
5256 bp->total_irqs = total_vecs;
5257 /* Trim rings based upon num of vectors allocated */
5258 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5259 total_vecs, min == 1);
5260 if (rc)
5261 goto msix_setup_exit;
5262
5263 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5264 bp->cp_nr_rings = (min == 1) ?
5265 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5266 bp->tx_nr_rings + bp->rx_nr_rings;
5267
5268 } else {
5269 rc = -ENOMEM;
5270 goto msix_setup_exit;
5271 }
5272 bp->flags |= BNXT_FLAG_USING_MSIX;
5273 kfree(msix_ent);
5274 return 0;
5275
5276 msix_setup_exit:
5277 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5278 kfree(bp->irq_tbl);
5279 bp->irq_tbl = NULL;
5280 pci_disable_msix(bp->pdev);
5281 kfree(msix_ent);
5282 return rc;
5283 }
5284
5285 static int bnxt_init_inta(struct bnxt *bp)
5286 {
5287 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5288 if (!bp->irq_tbl)
5289 return -ENOMEM;
5290
5291 bp->total_irqs = 1;
5292 bp->rx_nr_rings = 1;
5293 bp->tx_nr_rings = 1;
5294 bp->cp_nr_rings = 1;
5295 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5296 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5297 bp->irq_tbl[0].vector = bp->pdev->irq;
5298 return 0;
5299 }
5300
5301 static int bnxt_init_int_mode(struct bnxt *bp)
5302 {
5303 int rc = 0;
5304
5305 if (bp->flags & BNXT_FLAG_MSIX_CAP)
5306 rc = bnxt_init_msix(bp);
5307
5308 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5309 /* fallback to INTA */
5310 rc = bnxt_init_inta(bp);
5311 }
5312 return rc;
5313 }
5314
5315 static void bnxt_clear_int_mode(struct bnxt *bp)
5316 {
5317 if (bp->flags & BNXT_FLAG_USING_MSIX)
5318 pci_disable_msix(bp->pdev);
5319
5320 kfree(bp->irq_tbl);
5321 bp->irq_tbl = NULL;
5322 bp->flags &= ~BNXT_FLAG_USING_MSIX;
5323 }
5324
5325 static void bnxt_free_irq(struct bnxt *bp)
5326 {
5327 struct bnxt_irq *irq;
5328 int i;
5329
5330 #ifdef CONFIG_RFS_ACCEL
5331 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5332 bp->dev->rx_cpu_rmap = NULL;
5333 #endif
5334 if (!bp->irq_tbl)
5335 return;
5336
5337 for (i = 0; i < bp->cp_nr_rings; i++) {
5338 irq = &bp->irq_tbl[i];
5339 if (irq->requested)
5340 free_irq(irq->vector, bp->bnapi[i]);
5341 irq->requested = 0;
5342 }
5343 }
5344
5345 static int bnxt_request_irq(struct bnxt *bp)
5346 {
5347 int i, j, rc = 0;
5348 unsigned long flags = 0;
5349 #ifdef CONFIG_RFS_ACCEL
5350 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5351 #endif
5352
5353 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5354 flags = IRQF_SHARED;
5355
5356 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5357 struct bnxt_irq *irq = &bp->irq_tbl[i];
5358 #ifdef CONFIG_RFS_ACCEL
5359 if (rmap && bp->bnapi[i]->rx_ring) {
5360 rc = irq_cpu_rmap_add(rmap, irq->vector);
5361 if (rc)
5362 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5363 j);
5364 j++;
5365 }
5366 #endif
5367 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5368 bp->bnapi[i]);
5369 if (rc)
5370 break;
5371
5372 irq->requested = 1;
5373 }
5374 return rc;
5375 }
5376
5377 static void bnxt_del_napi(struct bnxt *bp)
5378 {
5379 int i;
5380
5381 if (!bp->bnapi)
5382 return;
5383
5384 for (i = 0; i < bp->cp_nr_rings; i++) {
5385 struct bnxt_napi *bnapi = bp->bnapi[i];
5386
5387 napi_hash_del(&bnapi->napi);
5388 netif_napi_del(&bnapi->napi);
5389 }
5390 /* We called napi_hash_del() before netif_napi_del(), we need
5391 * to respect an RCU grace period before freeing napi structures.
5392 */
5393 synchronize_net();
5394 }
5395
5396 static void bnxt_init_napi(struct bnxt *bp)
5397 {
5398 int i;
5399 unsigned int cp_nr_rings = bp->cp_nr_rings;
5400 struct bnxt_napi *bnapi;
5401
5402 if (bp->flags & BNXT_FLAG_USING_MSIX) {
5403 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5404 cp_nr_rings--;
5405 for (i = 0; i < cp_nr_rings; i++) {
5406 bnapi = bp->bnapi[i];
5407 netif_napi_add(bp->dev, &bnapi->napi,
5408 bnxt_poll, 64);
5409 }
5410 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5411 bnapi = bp->bnapi[cp_nr_rings];
5412 netif_napi_add(bp->dev, &bnapi->napi,
5413 bnxt_poll_nitroa0, 64);
5414 }
5415 } else {
5416 bnapi = bp->bnapi[0];
5417 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5418 }
5419 }
5420
5421 static void bnxt_disable_napi(struct bnxt *bp)
5422 {
5423 int i;
5424
5425 if (!bp->bnapi)
5426 return;
5427
5428 for (i = 0; i < bp->cp_nr_rings; i++)
5429 napi_disable(&bp->bnapi[i]->napi);
5430 }
5431
5432 static void bnxt_enable_napi(struct bnxt *bp)
5433 {
5434 int i;
5435
5436 for (i = 0; i < bp->cp_nr_rings; i++) {
5437 bp->bnapi[i]->in_reset = false;
5438 napi_enable(&bp->bnapi[i]->napi);
5439 }
5440 }
5441
5442 void bnxt_tx_disable(struct bnxt *bp)
5443 {
5444 int i;
5445 struct bnxt_tx_ring_info *txr;
5446 struct netdev_queue *txq;
5447
5448 if (bp->tx_ring) {
5449 for (i = 0; i < bp->tx_nr_rings; i++) {
5450 txr = &bp->tx_ring[i];
5451 txq = netdev_get_tx_queue(bp->dev, i);
5452 txr->dev_state = BNXT_DEV_STATE_CLOSING;
5453 }
5454 }
5455 /* Stop all TX queues */
5456 netif_tx_disable(bp->dev);
5457 netif_carrier_off(bp->dev);
5458 }
5459
5460 void bnxt_tx_enable(struct bnxt *bp)
5461 {
5462 int i;
5463 struct bnxt_tx_ring_info *txr;
5464 struct netdev_queue *txq;
5465
5466 for (i = 0; i < bp->tx_nr_rings; i++) {
5467 txr = &bp->tx_ring[i];
5468 txq = netdev_get_tx_queue(bp->dev, i);
5469 txr->dev_state = 0;
5470 }
5471 netif_tx_wake_all_queues(bp->dev);
5472 if (bp->link_info.link_up)
5473 netif_carrier_on(bp->dev);
5474 }
5475
5476 static void bnxt_report_link(struct bnxt *bp)
5477 {
5478 if (bp->link_info.link_up) {
5479 const char *duplex;
5480 const char *flow_ctrl;
5481 u32 speed;
5482 u16 fec;
5483
5484 netif_carrier_on(bp->dev);
5485 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5486 duplex = "full";
5487 else
5488 duplex = "half";
5489 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5490 flow_ctrl = "ON - receive & transmit";
5491 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5492 flow_ctrl = "ON - transmit";
5493 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5494 flow_ctrl = "ON - receive";
5495 else
5496 flow_ctrl = "none";
5497 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5498 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
5499 speed, duplex, flow_ctrl);
5500 if (bp->flags & BNXT_FLAG_EEE_CAP)
5501 netdev_info(bp->dev, "EEE is %s\n",
5502 bp->eee.eee_active ? "active" :
5503 "not active");
5504 fec = bp->link_info.fec_cfg;
5505 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5506 netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5507 (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5508 (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5509 (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5510 } else {
5511 netif_carrier_off(bp->dev);
5512 netdev_err(bp->dev, "NIC Link is Down\n");
5513 }
5514 }
5515
5516 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5517 {
5518 int rc = 0;
5519 struct hwrm_port_phy_qcaps_input req = {0};
5520 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5521 struct bnxt_link_info *link_info = &bp->link_info;
5522
5523 if (bp->hwrm_spec_code < 0x10201)
5524 return 0;
5525
5526 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5527
5528 mutex_lock(&bp->hwrm_cmd_lock);
5529 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5530 if (rc)
5531 goto hwrm_phy_qcaps_exit;
5532
5533 if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5534 struct ethtool_eee *eee = &bp->eee;
5535 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5536
5537 bp->flags |= BNXT_FLAG_EEE_CAP;
5538 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5539 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5540 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5541 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5542 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5543 }
5544 if (resp->supported_speeds_auto_mode)
5545 link_info->support_auto_speeds =
5546 le16_to_cpu(resp->supported_speeds_auto_mode);
5547
5548 hwrm_phy_qcaps_exit:
5549 mutex_unlock(&bp->hwrm_cmd_lock);
5550 return rc;
5551 }
5552
5553 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5554 {
5555 int rc = 0;
5556 struct bnxt_link_info *link_info = &bp->link_info;
5557 struct hwrm_port_phy_qcfg_input req = {0};
5558 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5559 u8 link_up = link_info->link_up;
5560 u16 diff;
5561
5562 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5563
5564 mutex_lock(&bp->hwrm_cmd_lock);
5565 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5566 if (rc) {
5567 mutex_unlock(&bp->hwrm_cmd_lock);
5568 return rc;
5569 }
5570
5571 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5572 link_info->phy_link_status = resp->link;
5573 link_info->duplex = resp->duplex;
5574 link_info->pause = resp->pause;
5575 link_info->auto_mode = resp->auto_mode;
5576 link_info->auto_pause_setting = resp->auto_pause;
5577 link_info->lp_pause = resp->link_partner_adv_pause;
5578 link_info->force_pause_setting = resp->force_pause;
5579 link_info->duplex_setting = resp->duplex;
5580 if (link_info->phy_link_status == BNXT_LINK_LINK)
5581 link_info->link_speed = le16_to_cpu(resp->link_speed);
5582 else
5583 link_info->link_speed = 0;
5584 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5585 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5586 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5587 link_info->lp_auto_link_speeds =
5588 le16_to_cpu(resp->link_partner_adv_speeds);
5589 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5590 link_info->phy_ver[0] = resp->phy_maj;
5591 link_info->phy_ver[1] = resp->phy_min;
5592 link_info->phy_ver[2] = resp->phy_bld;
5593 link_info->media_type = resp->media_type;
5594 link_info->phy_type = resp->phy_type;
5595 link_info->transceiver = resp->xcvr_pkg_type;
5596 link_info->phy_addr = resp->eee_config_phy_addr &
5597 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5598 link_info->module_status = resp->module_status;
5599
5600 if (bp->flags & BNXT_FLAG_EEE_CAP) {
5601 struct ethtool_eee *eee = &bp->eee;
5602 u16 fw_speeds;
5603
5604 eee->eee_active = 0;
5605 if (resp->eee_config_phy_addr &
5606 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5607 eee->eee_active = 1;
5608 fw_speeds = le16_to_cpu(
5609 resp->link_partner_adv_eee_link_speed_mask);
5610 eee->lp_advertised =
5611 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5612 }
5613
5614 /* Pull initial EEE config */
5615 if (!chng_link_state) {
5616 if (resp->eee_config_phy_addr &
5617 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5618 eee->eee_enabled = 1;
5619
5620 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5621 eee->advertised =
5622 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5623
5624 if (resp->eee_config_phy_addr &
5625 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5626 __le32 tmr;
5627
5628 eee->tx_lpi_enabled = 1;
5629 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5630 eee->tx_lpi_timer = le32_to_cpu(tmr) &
5631 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5632 }
5633 }
5634 }
5635
5636 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5637 if (bp->hwrm_spec_code >= 0x10504)
5638 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5639
5640 /* TODO: need to add more logic to report VF link */
5641 if (chng_link_state) {
5642 if (link_info->phy_link_status == BNXT_LINK_LINK)
5643 link_info->link_up = 1;
5644 else
5645 link_info->link_up = 0;
5646 if (link_up != link_info->link_up)
5647 bnxt_report_link(bp);
5648 } else {
5649 /* alwasy link down if not require to update link state */
5650 link_info->link_up = 0;
5651 }
5652 mutex_unlock(&bp->hwrm_cmd_lock);
5653
5654 diff = link_info->support_auto_speeds ^ link_info->advertising;
5655 if ((link_info->support_auto_speeds | diff) !=
5656 link_info->support_auto_speeds) {
5657 /* An advertised speed is no longer supported, so we need to
5658 * update the advertisement settings. Caller holds RTNL
5659 * so we can modify link settings.
5660 */
5661 link_info->advertising = link_info->support_auto_speeds;
5662 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5663 bnxt_hwrm_set_link_setting(bp, true, false);
5664 }
5665 return 0;
5666 }
5667
5668 static void bnxt_get_port_module_status(struct bnxt *bp)
5669 {
5670 struct bnxt_link_info *link_info = &bp->link_info;
5671 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5672 u8 module_status;
5673
5674 if (bnxt_update_link(bp, true))
5675 return;
5676
5677 module_status = link_info->module_status;
5678 switch (module_status) {
5679 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5680 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5681 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5682 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5683 bp->pf.port_id);
5684 if (bp->hwrm_spec_code >= 0x10201) {
5685 netdev_warn(bp->dev, "Module part number %s\n",
5686 resp->phy_vendor_partnumber);
5687 }
5688 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5689 netdev_warn(bp->dev, "TX is disabled\n");
5690 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5691 netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5692 }
5693 }
5694
5695 static void
5696 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5697 {
5698 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5699 if (bp->hwrm_spec_code >= 0x10201)
5700 req->auto_pause =
5701 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5702 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5703 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5704 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5705 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5706 req->enables |=
5707 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5708 } else {
5709 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5710 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5711 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5712 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5713 req->enables |=
5714 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5715 if (bp->hwrm_spec_code >= 0x10201) {
5716 req->auto_pause = req->force_pause;
5717 req->enables |= cpu_to_le32(
5718 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5719 }
5720 }
5721 }
5722
5723 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5724 struct hwrm_port_phy_cfg_input *req)
5725 {
5726 u8 autoneg = bp->link_info.autoneg;
5727 u16 fw_link_speed = bp->link_info.req_link_speed;
5728 u16 advertising = bp->link_info.advertising;
5729
5730 if (autoneg & BNXT_AUTONEG_SPEED) {
5731 req->auto_mode |=
5732 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5733
5734 req->enables |= cpu_to_le32(
5735 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5736 req->auto_link_speed_mask = cpu_to_le16(advertising);
5737
5738 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5739 req->flags |=
5740 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5741 } else {
5742 req->force_link_speed = cpu_to_le16(fw_link_speed);
5743 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5744 }
5745
5746 /* tell chimp that the setting takes effect immediately */
5747 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5748 }
5749
5750 int bnxt_hwrm_set_pause(struct bnxt *bp)
5751 {
5752 struct hwrm_port_phy_cfg_input req = {0};
5753 int rc;
5754
5755 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5756 bnxt_hwrm_set_pause_common(bp, &req);
5757
5758 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5759 bp->link_info.force_link_chng)
5760 bnxt_hwrm_set_link_common(bp, &req);
5761
5762 mutex_lock(&bp->hwrm_cmd_lock);
5763 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5764 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5765 /* since changing of pause setting doesn't trigger any link
5766 * change event, the driver needs to update the current pause
5767 * result upon successfully return of the phy_cfg command
5768 */
5769 bp->link_info.pause =
5770 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5771 bp->link_info.auto_pause_setting = 0;
5772 if (!bp->link_info.force_link_chng)
5773 bnxt_report_link(bp);
5774 }
5775 bp->link_info.force_link_chng = false;
5776 mutex_unlock(&bp->hwrm_cmd_lock);
5777 return rc;
5778 }
5779
5780 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5781 struct hwrm_port_phy_cfg_input *req)
5782 {
5783 struct ethtool_eee *eee = &bp->eee;
5784
5785 if (eee->eee_enabled) {
5786 u16 eee_speeds;
5787 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5788
5789 if (eee->tx_lpi_enabled)
5790 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5791 else
5792 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5793
5794 req->flags |= cpu_to_le32(flags);
5795 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5796 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5797 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5798 } else {
5799 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5800 }
5801 }
5802
5803 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5804 {
5805 struct hwrm_port_phy_cfg_input req = {0};
5806
5807 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5808 if (set_pause)
5809 bnxt_hwrm_set_pause_common(bp, &req);
5810
5811 bnxt_hwrm_set_link_common(bp, &req);
5812
5813 if (set_eee)
5814 bnxt_hwrm_set_eee(bp, &req);
5815 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5816 }
5817
5818 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5819 {
5820 struct hwrm_port_phy_cfg_input req = {0};
5821
5822 if (!BNXT_SINGLE_PF(bp))
5823 return 0;
5824
5825 if (pci_num_vf(bp->pdev))
5826 return 0;
5827
5828 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5829 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
5830 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5831 }
5832
5833 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
5834 {
5835 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5836 struct hwrm_port_led_qcaps_input req = {0};
5837 struct bnxt_pf_info *pf = &bp->pf;
5838 int rc;
5839
5840 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
5841 return 0;
5842
5843 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
5844 req.port_id = cpu_to_le16(pf->port_id);
5845 mutex_lock(&bp->hwrm_cmd_lock);
5846 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5847 if (rc) {
5848 mutex_unlock(&bp->hwrm_cmd_lock);
5849 return rc;
5850 }
5851 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
5852 int i;
5853
5854 bp->num_leds = resp->num_leds;
5855 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
5856 bp->num_leds);
5857 for (i = 0; i < bp->num_leds; i++) {
5858 struct bnxt_led_info *led = &bp->leds[i];
5859 __le16 caps = led->led_state_caps;
5860
5861 if (!led->led_group_id ||
5862 !BNXT_LED_ALT_BLINK_CAP(caps)) {
5863 bp->num_leds = 0;
5864 break;
5865 }
5866 }
5867 }
5868 mutex_unlock(&bp->hwrm_cmd_lock);
5869 return 0;
5870 }
5871
5872 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
5873 {
5874 struct hwrm_wol_filter_alloc_input req = {0};
5875 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5876 int rc;
5877
5878 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
5879 req.port_id = cpu_to_le16(bp->pf.port_id);
5880 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
5881 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
5882 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
5883 mutex_lock(&bp->hwrm_cmd_lock);
5884 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5885 if (!rc)
5886 bp->wol_filter_id = resp->wol_filter_id;
5887 mutex_unlock(&bp->hwrm_cmd_lock);
5888 return rc;
5889 }
5890
5891 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
5892 {
5893 struct hwrm_wol_filter_free_input req = {0};
5894 int rc;
5895
5896 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
5897 req.port_id = cpu_to_le16(bp->pf.port_id);
5898 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
5899 req.wol_filter_id = bp->wol_filter_id;
5900 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5901 return rc;
5902 }
5903
5904 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
5905 {
5906 struct hwrm_wol_filter_qcfg_input req = {0};
5907 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5908 u16 next_handle = 0;
5909 int rc;
5910
5911 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
5912 req.port_id = cpu_to_le16(bp->pf.port_id);
5913 req.handle = cpu_to_le16(handle);
5914 mutex_lock(&bp->hwrm_cmd_lock);
5915 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5916 if (!rc) {
5917 next_handle = le16_to_cpu(resp->next_handle);
5918 if (next_handle != 0) {
5919 if (resp->wol_type ==
5920 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
5921 bp->wol = 1;
5922 bp->wol_filter_id = resp->wol_filter_id;
5923 }
5924 }
5925 }
5926 mutex_unlock(&bp->hwrm_cmd_lock);
5927 return next_handle;
5928 }
5929
5930 static void bnxt_get_wol_settings(struct bnxt *bp)
5931 {
5932 u16 handle = 0;
5933
5934 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
5935 return;
5936
5937 do {
5938 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
5939 } while (handle && handle != 0xffff);
5940 }
5941
5942 static bool bnxt_eee_config_ok(struct bnxt *bp)
5943 {
5944 struct ethtool_eee *eee = &bp->eee;
5945 struct bnxt_link_info *link_info = &bp->link_info;
5946
5947 if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5948 return true;
5949
5950 if (eee->eee_enabled) {
5951 u32 advertising =
5952 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5953
5954 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5955 eee->eee_enabled = 0;
5956 return false;
5957 }
5958 if (eee->advertised & ~advertising) {
5959 eee->advertised = advertising & eee->supported;
5960 return false;
5961 }
5962 }
5963 return true;
5964 }
5965
5966 static int bnxt_update_phy_setting(struct bnxt *bp)
5967 {
5968 int rc;
5969 bool update_link = false;
5970 bool update_pause = false;
5971 bool update_eee = false;
5972 struct bnxt_link_info *link_info = &bp->link_info;
5973
5974 rc = bnxt_update_link(bp, true);
5975 if (rc) {
5976 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5977 rc);
5978 return rc;
5979 }
5980 if (!BNXT_SINGLE_PF(bp))
5981 return 0;
5982
5983 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5984 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5985 link_info->req_flow_ctrl)
5986 update_pause = true;
5987 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5988 link_info->force_pause_setting != link_info->req_flow_ctrl)
5989 update_pause = true;
5990 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5991 if (BNXT_AUTO_MODE(link_info->auto_mode))
5992 update_link = true;
5993 if (link_info->req_link_speed != link_info->force_link_speed)
5994 update_link = true;
5995 if (link_info->req_duplex != link_info->duplex_setting)
5996 update_link = true;
5997 } else {
5998 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5999 update_link = true;
6000 if (link_info->advertising != link_info->auto_link_speeds)
6001 update_link = true;
6002 }
6003
6004 /* The last close may have shutdown the link, so need to call
6005 * PHY_CFG to bring it back up.
6006 */
6007 if (!netif_carrier_ok(bp->dev))
6008 update_link = true;
6009
6010 if (!bnxt_eee_config_ok(bp))
6011 update_eee = true;
6012
6013 if (update_link)
6014 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6015 else if (update_pause)
6016 rc = bnxt_hwrm_set_pause(bp);
6017 if (rc) {
6018 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6019 rc);
6020 return rc;
6021 }
6022
6023 return rc;
6024 }
6025
6026 /* Common routine to pre-map certain register block to different GRC window.
6027 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6028 * in PF and 3 windows in VF that can be customized to map in different
6029 * register blocks.
6030 */
6031 static void bnxt_preset_reg_win(struct bnxt *bp)
6032 {
6033 if (BNXT_PF(bp)) {
6034 /* CAG registers map to GRC window #4 */
6035 writel(BNXT_CAG_REG_BASE,
6036 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6037 }
6038 }
6039
6040 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6041 {
6042 int rc = 0;
6043
6044 bnxt_preset_reg_win(bp);
6045 netif_carrier_off(bp->dev);
6046 if (irq_re_init) {
6047 rc = bnxt_setup_int_mode(bp);
6048 if (rc) {
6049 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6050 rc);
6051 return rc;
6052 }
6053 }
6054 if ((bp->flags & BNXT_FLAG_RFS) &&
6055 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6056 /* disable RFS if falling back to INTA */
6057 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6058 bp->flags &= ~BNXT_FLAG_RFS;
6059 }
6060
6061 rc = bnxt_alloc_mem(bp, irq_re_init);
6062 if (rc) {
6063 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6064 goto open_err_free_mem;
6065 }
6066
6067 if (irq_re_init) {
6068 bnxt_init_napi(bp);
6069 rc = bnxt_request_irq(bp);
6070 if (rc) {
6071 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6072 goto open_err;
6073 }
6074 }
6075
6076 bnxt_enable_napi(bp);
6077
6078 rc = bnxt_init_nic(bp, irq_re_init);
6079 if (rc) {
6080 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6081 goto open_err;
6082 }
6083
6084 if (link_re_init) {
6085 rc = bnxt_update_phy_setting(bp);
6086 if (rc)
6087 netdev_warn(bp->dev, "failed to update phy settings\n");
6088 }
6089
6090 if (irq_re_init)
6091 udp_tunnel_get_rx_info(bp->dev);
6092
6093 set_bit(BNXT_STATE_OPEN, &bp->state);
6094 bnxt_enable_int(bp);
6095 /* Enable TX queues */
6096 bnxt_tx_enable(bp);
6097 mod_timer(&bp->timer, jiffies + bp->current_interval);
6098 /* Poll link status and check for SFP+ module status */
6099 bnxt_get_port_module_status(bp);
6100
6101 return 0;
6102
6103 open_err:
6104 bnxt_disable_napi(bp);
6105 bnxt_del_napi(bp);
6106
6107 open_err_free_mem:
6108 bnxt_free_skbs(bp);
6109 bnxt_free_irq(bp);
6110 bnxt_free_mem(bp, true);
6111 return rc;
6112 }
6113
6114 /* rtnl_lock held */
6115 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6116 {
6117 int rc = 0;
6118
6119 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6120 if (rc) {
6121 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6122 dev_close(bp->dev);
6123 }
6124 return rc;
6125 }
6126
6127 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6128 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline
6129 * self tests.
6130 */
6131 int bnxt_half_open_nic(struct bnxt *bp)
6132 {
6133 int rc = 0;
6134
6135 rc = bnxt_alloc_mem(bp, false);
6136 if (rc) {
6137 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6138 goto half_open_err;
6139 }
6140 rc = bnxt_init_nic(bp, false);
6141 if (rc) {
6142 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6143 goto half_open_err;
6144 }
6145 return 0;
6146
6147 half_open_err:
6148 bnxt_free_skbs(bp);
6149 bnxt_free_mem(bp, false);
6150 dev_close(bp->dev);
6151 return rc;
6152 }
6153
6154 /* rtnl_lock held, this call can only be made after a previous successful
6155 * call to bnxt_half_open_nic().
6156 */
6157 void bnxt_half_close_nic(struct bnxt *bp)
6158 {
6159 bnxt_hwrm_resource_free(bp, false, false);
6160 bnxt_free_skbs(bp);
6161 bnxt_free_mem(bp, false);
6162 }
6163
6164 static int bnxt_open(struct net_device *dev)
6165 {
6166 struct bnxt *bp = netdev_priv(dev);
6167
6168 return __bnxt_open_nic(bp, true, true);
6169 }
6170
6171 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6172 {
6173 int rc = 0;
6174
6175 #ifdef CONFIG_BNXT_SRIOV
6176 if (bp->sriov_cfg) {
6177 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6178 !bp->sriov_cfg,
6179 BNXT_SRIOV_CFG_WAIT_TMO);
6180 if (rc)
6181 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6182 }
6183 #endif
6184 /* Change device state to avoid TX queue wake up's */
6185 bnxt_tx_disable(bp);
6186
6187 clear_bit(BNXT_STATE_OPEN, &bp->state);
6188 smp_mb__after_atomic();
6189 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
6190 msleep(20);
6191
6192 /* Flush rings and and disable interrupts */
6193 bnxt_shutdown_nic(bp, irq_re_init);
6194
6195 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6196
6197 bnxt_disable_napi(bp);
6198 del_timer_sync(&bp->timer);
6199 bnxt_free_skbs(bp);
6200
6201 if (irq_re_init) {
6202 bnxt_free_irq(bp);
6203 bnxt_del_napi(bp);
6204 }
6205 bnxt_free_mem(bp, irq_re_init);
6206 return rc;
6207 }
6208
6209 static int bnxt_close(struct net_device *dev)
6210 {
6211 struct bnxt *bp = netdev_priv(dev);
6212
6213 bnxt_close_nic(bp, true, true);
6214 bnxt_hwrm_shutdown_link(bp);
6215 return 0;
6216 }
6217
6218 /* rtnl_lock held */
6219 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6220 {
6221 switch (cmd) {
6222 case SIOCGMIIPHY:
6223 /* fallthru */
6224 case SIOCGMIIREG: {
6225 if (!netif_running(dev))
6226 return -EAGAIN;
6227
6228 return 0;
6229 }
6230
6231 case SIOCSMIIREG:
6232 if (!netif_running(dev))
6233 return -EAGAIN;
6234
6235 return 0;
6236
6237 default:
6238 /* do nothing */
6239 break;
6240 }
6241 return -EOPNOTSUPP;
6242 }
6243
6244 static void
6245 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6246 {
6247 u32 i;
6248 struct bnxt *bp = netdev_priv(dev);
6249
6250 if (!bp->bnapi)
6251 return;
6252
6253 /* TODO check if we need to synchronize with bnxt_close path */
6254 for (i = 0; i < bp->cp_nr_rings; i++) {
6255 struct bnxt_napi *bnapi = bp->bnapi[i];
6256 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6257 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6258
6259 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6260 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6261 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6262
6263 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6264 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6265 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6266
6267 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6268 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6269 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6270
6271 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6272 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6273 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6274
6275 stats->rx_missed_errors +=
6276 le64_to_cpu(hw_stats->rx_discard_pkts);
6277
6278 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6279
6280 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6281 }
6282
6283 if (bp->flags & BNXT_FLAG_PORT_STATS) {
6284 struct rx_port_stats *rx = bp->hw_rx_port_stats;
6285 struct tx_port_stats *tx = bp->hw_tx_port_stats;
6286
6287 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6288 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6289 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6290 le64_to_cpu(rx->rx_ovrsz_frames) +
6291 le64_to_cpu(rx->rx_runt_frames);
6292 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6293 le64_to_cpu(rx->rx_jbr_frames);
6294 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6295 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6296 stats->tx_errors = le64_to_cpu(tx->tx_err);
6297 }
6298 }
6299
6300 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6301 {
6302 struct net_device *dev = bp->dev;
6303 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6304 struct netdev_hw_addr *ha;
6305 u8 *haddr;
6306 int mc_count = 0;
6307 bool update = false;
6308 int off = 0;
6309
6310 netdev_for_each_mc_addr(ha, dev) {
6311 if (mc_count >= BNXT_MAX_MC_ADDRS) {
6312 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6313 vnic->mc_list_count = 0;
6314 return false;
6315 }
6316 haddr = ha->addr;
6317 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6318 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6319 update = true;
6320 }
6321 off += ETH_ALEN;
6322 mc_count++;
6323 }
6324 if (mc_count)
6325 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6326
6327 if (mc_count != vnic->mc_list_count) {
6328 vnic->mc_list_count = mc_count;
6329 update = true;
6330 }
6331 return update;
6332 }
6333
6334 static bool bnxt_uc_list_updated(struct bnxt *bp)
6335 {
6336 struct net_device *dev = bp->dev;
6337 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6338 struct netdev_hw_addr *ha;
6339 int off = 0;
6340
6341 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6342 return true;
6343
6344 netdev_for_each_uc_addr(ha, dev) {
6345 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6346 return true;
6347
6348 off += ETH_ALEN;
6349 }
6350 return false;
6351 }
6352
6353 static void bnxt_set_rx_mode(struct net_device *dev)
6354 {
6355 struct bnxt *bp = netdev_priv(dev);
6356 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6357 u32 mask = vnic->rx_mask;
6358 bool mc_update = false;
6359 bool uc_update;
6360
6361 if (!netif_running(dev))
6362 return;
6363
6364 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6365 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6366 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6367
6368 if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6369 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6370
6371 uc_update = bnxt_uc_list_updated(bp);
6372
6373 if (dev->flags & IFF_ALLMULTI) {
6374 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6375 vnic->mc_list_count = 0;
6376 } else {
6377 mc_update = bnxt_mc_list_updated(bp, &mask);
6378 }
6379
6380 if (mask != vnic->rx_mask || uc_update || mc_update) {
6381 vnic->rx_mask = mask;
6382
6383 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6384 schedule_work(&bp->sp_task);
6385 }
6386 }
6387
6388 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6389 {
6390 struct net_device *dev = bp->dev;
6391 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6392 struct netdev_hw_addr *ha;
6393 int i, off = 0, rc;
6394 bool uc_update;
6395
6396 netif_addr_lock_bh(dev);
6397 uc_update = bnxt_uc_list_updated(bp);
6398 netif_addr_unlock_bh(dev);
6399
6400 if (!uc_update)
6401 goto skip_uc;
6402
6403 mutex_lock(&bp->hwrm_cmd_lock);
6404 for (i = 1; i < vnic->uc_filter_count; i++) {
6405 struct hwrm_cfa_l2_filter_free_input req = {0};
6406
6407 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6408 -1);
6409
6410 req.l2_filter_id = vnic->fw_l2_filter_id[i];
6411
6412 rc = _hwrm_send_message(bp, &req, sizeof(req),
6413 HWRM_CMD_TIMEOUT);
6414 }
6415 mutex_unlock(&bp->hwrm_cmd_lock);
6416
6417 vnic->uc_filter_count = 1;
6418
6419 netif_addr_lock_bh(dev);
6420 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6421 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6422 } else {
6423 netdev_for_each_uc_addr(ha, dev) {
6424 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6425 off += ETH_ALEN;
6426 vnic->uc_filter_count++;
6427 }
6428 }
6429 netif_addr_unlock_bh(dev);
6430
6431 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6432 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6433 if (rc) {
6434 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6435 rc);
6436 vnic->uc_filter_count = i;
6437 return rc;
6438 }
6439 }
6440
6441 skip_uc:
6442 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6443 if (rc)
6444 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6445 rc);
6446
6447 return rc;
6448 }
6449
6450 /* If the chip and firmware supports RFS */
6451 static bool bnxt_rfs_supported(struct bnxt *bp)
6452 {
6453 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6454 return true;
6455 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6456 return true;
6457 return false;
6458 }
6459
6460 /* If runtime conditions support RFS */
6461 static bool bnxt_rfs_capable(struct bnxt *bp)
6462 {
6463 #ifdef CONFIG_RFS_ACCEL
6464 int vnics, max_vnics, max_rss_ctxs;
6465
6466 if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6467 return false;
6468
6469 vnics = 1 + bp->rx_nr_rings;
6470 max_vnics = bnxt_get_max_func_vnics(bp);
6471 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6472
6473 /* RSS contexts not a limiting factor */
6474 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6475 max_rss_ctxs = max_vnics;
6476 if (vnics > max_vnics || vnics > max_rss_ctxs) {
6477 netdev_warn(bp->dev,
6478 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6479 min(max_rss_ctxs - 1, max_vnics - 1));
6480 return false;
6481 }
6482
6483 return true;
6484 #else
6485 return false;
6486 #endif
6487 }
6488
6489 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6490 netdev_features_t features)
6491 {
6492 struct bnxt *bp = netdev_priv(dev);
6493
6494 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6495 features &= ~NETIF_F_NTUPLE;
6496
6497 /* Both CTAG and STAG VLAN accelaration on the RX side have to be
6498 * turned on or off together.
6499 */
6500 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6501 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6502 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6503 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6504 NETIF_F_HW_VLAN_STAG_RX);
6505 else
6506 features |= NETIF_F_HW_VLAN_CTAG_RX |
6507 NETIF_F_HW_VLAN_STAG_RX;
6508 }
6509 #ifdef CONFIG_BNXT_SRIOV
6510 if (BNXT_VF(bp)) {
6511 if (bp->vf.vlan) {
6512 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6513 NETIF_F_HW_VLAN_STAG_RX);
6514 }
6515 }
6516 #endif
6517 return features;
6518 }
6519
6520 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6521 {
6522 struct bnxt *bp = netdev_priv(dev);
6523 u32 flags = bp->flags;
6524 u32 changes;
6525 int rc = 0;
6526 bool re_init = false;
6527 bool update_tpa = false;
6528
6529 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6530 if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6531 flags |= BNXT_FLAG_GRO;
6532 if (features & NETIF_F_LRO)
6533 flags |= BNXT_FLAG_LRO;
6534
6535 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6536 flags &= ~BNXT_FLAG_TPA;
6537
6538 if (features & NETIF_F_HW_VLAN_CTAG_RX)
6539 flags |= BNXT_FLAG_STRIP_VLAN;
6540
6541 if (features & NETIF_F_NTUPLE)
6542 flags |= BNXT_FLAG_RFS;
6543
6544 changes = flags ^ bp->flags;
6545 if (changes & BNXT_FLAG_TPA) {
6546 update_tpa = true;
6547 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6548 (flags & BNXT_FLAG_TPA) == 0)
6549 re_init = true;
6550 }
6551
6552 if (changes & ~BNXT_FLAG_TPA)
6553 re_init = true;
6554
6555 if (flags != bp->flags) {
6556 u32 old_flags = bp->flags;
6557
6558 bp->flags = flags;
6559
6560 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6561 if (update_tpa)
6562 bnxt_set_ring_params(bp);
6563 return rc;
6564 }
6565
6566 if (re_init) {
6567 bnxt_close_nic(bp, false, false);
6568 if (update_tpa)
6569 bnxt_set_ring_params(bp);
6570
6571 return bnxt_open_nic(bp, false, false);
6572 }
6573 if (update_tpa) {
6574 rc = bnxt_set_tpa(bp,
6575 (flags & BNXT_FLAG_TPA) ?
6576 true : false);
6577 if (rc)
6578 bp->flags = old_flags;
6579 }
6580 }
6581 return rc;
6582 }
6583
6584 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6585 {
6586 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6587 int i = bnapi->index;
6588
6589 if (!txr)
6590 return;
6591
6592 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6593 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6594 txr->tx_cons);
6595 }
6596
6597 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6598 {
6599 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6600 int i = bnapi->index;
6601
6602 if (!rxr)
6603 return;
6604
6605 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6606 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6607 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6608 rxr->rx_sw_agg_prod);
6609 }
6610
6611 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6612 {
6613 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6614 int i = bnapi->index;
6615
6616 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6617 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6618 }
6619
6620 static void bnxt_dbg_dump_states(struct bnxt *bp)
6621 {
6622 int i;
6623 struct bnxt_napi *bnapi;
6624
6625 for (i = 0; i < bp->cp_nr_rings; i++) {
6626 bnapi = bp->bnapi[i];
6627 if (netif_msg_drv(bp)) {
6628 bnxt_dump_tx_sw_state(bnapi);
6629 bnxt_dump_rx_sw_state(bnapi);
6630 bnxt_dump_cp_sw_state(bnapi);
6631 }
6632 }
6633 }
6634
6635 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6636 {
6637 if (!silent)
6638 bnxt_dbg_dump_states(bp);
6639 if (netif_running(bp->dev)) {
6640 int rc;
6641
6642 if (!silent)
6643 bnxt_ulp_stop(bp);
6644 bnxt_close_nic(bp, false, false);
6645 rc = bnxt_open_nic(bp, false, false);
6646 if (!silent && !rc)
6647 bnxt_ulp_start(bp);
6648 }
6649 }
6650
6651 static void bnxt_tx_timeout(struct net_device *dev)
6652 {
6653 struct bnxt *bp = netdev_priv(dev);
6654
6655 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
6656 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6657 schedule_work(&bp->sp_task);
6658 }
6659
6660 #ifdef CONFIG_NET_POLL_CONTROLLER
6661 static void bnxt_poll_controller(struct net_device *dev)
6662 {
6663 struct bnxt *bp = netdev_priv(dev);
6664 int i;
6665
6666 for (i = 0; i < bp->cp_nr_rings; i++) {
6667 struct bnxt_irq *irq = &bp->irq_tbl[i];
6668
6669 disable_irq(irq->vector);
6670 irq->handler(irq->vector, bp->bnapi[i]);
6671 enable_irq(irq->vector);
6672 }
6673 }
6674 #endif
6675
6676 static void bnxt_timer(unsigned long data)
6677 {
6678 struct bnxt *bp = (struct bnxt *)data;
6679 struct net_device *dev = bp->dev;
6680
6681 if (!netif_running(dev))
6682 return;
6683
6684 if (atomic_read(&bp->intr_sem) != 0)
6685 goto bnxt_restart_timer;
6686
6687 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6688 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6689 schedule_work(&bp->sp_task);
6690 }
6691 bnxt_restart_timer:
6692 mod_timer(&bp->timer, jiffies + bp->current_interval);
6693 }
6694
6695 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6696 {
6697 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6698 * set. If the device is being closed, bnxt_close() may be holding
6699 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
6700 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6701 */
6702 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6703 rtnl_lock();
6704 }
6705
6706 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
6707 {
6708 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6709 rtnl_unlock();
6710 }
6711
6712 /* Only called from bnxt_sp_task() */
6713 static void bnxt_reset(struct bnxt *bp, bool silent)
6714 {
6715 bnxt_rtnl_lock_sp(bp);
6716 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6717 bnxt_reset_task(bp, silent);
6718 bnxt_rtnl_unlock_sp(bp);
6719 }
6720
6721 static void bnxt_cfg_ntp_filters(struct bnxt *);
6722
6723 static void bnxt_sp_task(struct work_struct *work)
6724 {
6725 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6726
6727 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6728 smp_mb__after_atomic();
6729 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6730 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6731 return;
6732 }
6733
6734 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6735 bnxt_cfg_rx_mode(bp);
6736
6737 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6738 bnxt_cfg_ntp_filters(bp);
6739 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6740 bnxt_hwrm_exec_fwd_req(bp);
6741 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6742 bnxt_hwrm_tunnel_dst_port_alloc(
6743 bp, bp->vxlan_port,
6744 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6745 }
6746 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6747 bnxt_hwrm_tunnel_dst_port_free(
6748 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6749 }
6750 if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6751 bnxt_hwrm_tunnel_dst_port_alloc(
6752 bp, bp->nge_port,
6753 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6754 }
6755 if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6756 bnxt_hwrm_tunnel_dst_port_free(
6757 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6758 }
6759 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6760 bnxt_hwrm_port_qstats(bp);
6761
6762 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They
6763 * must be the last functions to be called before exiting.
6764 */
6765 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6766 int rc = 0;
6767
6768 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
6769 &bp->sp_event))
6770 bnxt_hwrm_phy_qcaps(bp);
6771
6772 bnxt_rtnl_lock_sp(bp);
6773 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6774 rc = bnxt_update_link(bp, true);
6775 bnxt_rtnl_unlock_sp(bp);
6776 if (rc)
6777 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6778 rc);
6779 }
6780 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
6781 bnxt_rtnl_lock_sp(bp);
6782 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6783 bnxt_get_port_module_status(bp);
6784 bnxt_rtnl_unlock_sp(bp);
6785 }
6786 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6787 bnxt_reset(bp, false);
6788
6789 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6790 bnxt_reset(bp, true);
6791
6792 smp_mb__before_atomic();
6793 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6794 }
6795
6796 /* Under rtnl_lock */
6797 int bnxt_reserve_rings(struct bnxt *bp, int tx, int rx, int tcs, int tx_xdp)
6798 {
6799 int max_rx, max_tx, tx_sets = 1;
6800 int tx_rings_needed;
6801 bool sh = true;
6802 int rc;
6803
6804 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
6805 sh = false;
6806
6807 if (tcs)
6808 tx_sets = tcs;
6809
6810 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
6811 if (rc)
6812 return rc;
6813
6814 if (max_rx < rx)
6815 return -ENOMEM;
6816
6817 tx_rings_needed = tx * tx_sets + tx_xdp;
6818 if (max_tx < tx_rings_needed)
6819 return -ENOMEM;
6820
6821 if (bnxt_hwrm_reserve_tx_rings(bp, &tx_rings_needed) ||
6822 tx_rings_needed < (tx * tx_sets + tx_xdp))
6823 return -ENOMEM;
6824 return 0;
6825 }
6826
6827 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
6828 {
6829 if (bp->bar2) {
6830 pci_iounmap(pdev, bp->bar2);
6831 bp->bar2 = NULL;
6832 }
6833
6834 if (bp->bar1) {
6835 pci_iounmap(pdev, bp->bar1);
6836 bp->bar1 = NULL;
6837 }
6838
6839 if (bp->bar0) {
6840 pci_iounmap(pdev, bp->bar0);
6841 bp->bar0 = NULL;
6842 }
6843 }
6844
6845 static void bnxt_cleanup_pci(struct bnxt *bp)
6846 {
6847 bnxt_unmap_bars(bp, bp->pdev);
6848 pci_release_regions(bp->pdev);
6849 pci_disable_device(bp->pdev);
6850 }
6851
6852 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6853 {
6854 int rc;
6855 struct bnxt *bp = netdev_priv(dev);
6856
6857 SET_NETDEV_DEV(dev, &pdev->dev);
6858
6859 /* enable device (incl. PCI PM wakeup), and bus-mastering */
6860 rc = pci_enable_device(pdev);
6861 if (rc) {
6862 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6863 goto init_err;
6864 }
6865
6866 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6867 dev_err(&pdev->dev,
6868 "Cannot find PCI device base address, aborting\n");
6869 rc = -ENODEV;
6870 goto init_err_disable;
6871 }
6872
6873 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6874 if (rc) {
6875 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6876 goto init_err_disable;
6877 }
6878
6879 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6880 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6881 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6882 goto init_err_disable;
6883 }
6884
6885 pci_set_master(pdev);
6886
6887 bp->dev = dev;
6888 bp->pdev = pdev;
6889
6890 bp->bar0 = pci_ioremap_bar(pdev, 0);
6891 if (!bp->bar0) {
6892 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6893 rc = -ENOMEM;
6894 goto init_err_release;
6895 }
6896
6897 bp->bar1 = pci_ioremap_bar(pdev, 2);
6898 if (!bp->bar1) {
6899 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6900 rc = -ENOMEM;
6901 goto init_err_release;
6902 }
6903
6904 bp->bar2 = pci_ioremap_bar(pdev, 4);
6905 if (!bp->bar2) {
6906 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6907 rc = -ENOMEM;
6908 goto init_err_release;
6909 }
6910
6911 pci_enable_pcie_error_reporting(pdev);
6912
6913 INIT_WORK(&bp->sp_task, bnxt_sp_task);
6914
6915 spin_lock_init(&bp->ntp_fltr_lock);
6916
6917 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6918 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6919
6920 /* tick values in micro seconds */
6921 bp->rx_coal_ticks = 12;
6922 bp->rx_coal_bufs = 30;
6923 bp->rx_coal_ticks_irq = 1;
6924 bp->rx_coal_bufs_irq = 2;
6925
6926 bp->tx_coal_ticks = 25;
6927 bp->tx_coal_bufs = 30;
6928 bp->tx_coal_ticks_irq = 2;
6929 bp->tx_coal_bufs_irq = 2;
6930
6931 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6932
6933 init_timer(&bp->timer);
6934 bp->timer.data = (unsigned long)bp;
6935 bp->timer.function = bnxt_timer;
6936 bp->current_interval = BNXT_TIMER_INTERVAL;
6937
6938 clear_bit(BNXT_STATE_OPEN, &bp->state);
6939 return 0;
6940
6941 init_err_release:
6942 bnxt_unmap_bars(bp, pdev);
6943 pci_release_regions(pdev);
6944
6945 init_err_disable:
6946 pci_disable_device(pdev);
6947
6948 init_err:
6949 return rc;
6950 }
6951
6952 /* rtnl_lock held */
6953 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6954 {
6955 struct sockaddr *addr = p;
6956 struct bnxt *bp = netdev_priv(dev);
6957 int rc = 0;
6958
6959 if (!is_valid_ether_addr(addr->sa_data))
6960 return -EADDRNOTAVAIL;
6961
6962 rc = bnxt_approve_mac(bp, addr->sa_data);
6963 if (rc)
6964 return rc;
6965
6966 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6967 return 0;
6968
6969 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6970 if (netif_running(dev)) {
6971 bnxt_close_nic(bp, false, false);
6972 rc = bnxt_open_nic(bp, false, false);
6973 }
6974
6975 return rc;
6976 }
6977
6978 /* rtnl_lock held */
6979 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6980 {
6981 struct bnxt *bp = netdev_priv(dev);
6982
6983 if (netif_running(dev))
6984 bnxt_close_nic(bp, false, false);
6985
6986 dev->mtu = new_mtu;
6987 bnxt_set_ring_params(bp);
6988
6989 if (netif_running(dev))
6990 return bnxt_open_nic(bp, false, false);
6991
6992 return 0;
6993 }
6994
6995 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
6996 {
6997 struct bnxt *bp = netdev_priv(dev);
6998 bool sh = false;
6999 int rc;
7000
7001 if (tc > bp->max_tc) {
7002 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7003 tc, bp->max_tc);
7004 return -EINVAL;
7005 }
7006
7007 if (netdev_get_num_tc(dev) == tc)
7008 return 0;
7009
7010 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7011 sh = true;
7012
7013 rc = bnxt_reserve_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7014 tc, bp->tx_nr_rings_xdp);
7015 if (rc)
7016 return rc;
7017
7018 /* Needs to close the device and do hw resource re-allocations */
7019 if (netif_running(bp->dev))
7020 bnxt_close_nic(bp, true, false);
7021
7022 if (tc) {
7023 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7024 netdev_set_num_tc(dev, tc);
7025 } else {
7026 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7027 netdev_reset_tc(dev);
7028 }
7029 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7030 bp->tx_nr_rings + bp->rx_nr_rings;
7031 bp->num_stat_ctxs = bp->cp_nr_rings;
7032
7033 if (netif_running(bp->dev))
7034 return bnxt_open_nic(bp, true, false);
7035
7036 return 0;
7037 }
7038
7039 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
7040 struct tc_to_netdev *ntc)
7041 {
7042 if (ntc->type != TC_SETUP_MQPRIO)
7043 return -EINVAL;
7044
7045 ntc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7046
7047 return bnxt_setup_mq_tc(dev, ntc->mqprio->num_tc);
7048 }
7049
7050 #ifdef CONFIG_RFS_ACCEL
7051 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7052 struct bnxt_ntuple_filter *f2)
7053 {
7054 struct flow_keys *keys1 = &f1->fkeys;
7055 struct flow_keys *keys2 = &f2->fkeys;
7056
7057 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7058 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7059 keys1->ports.ports == keys2->ports.ports &&
7060 keys1->basic.ip_proto == keys2->basic.ip_proto &&
7061 keys1->basic.n_proto == keys2->basic.n_proto &&
7062 keys1->control.flags == keys2->control.flags &&
7063 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7064 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7065 return true;
7066
7067 return false;
7068 }
7069
7070 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7071 u16 rxq_index, u32 flow_id)
7072 {
7073 struct bnxt *bp = netdev_priv(dev);
7074 struct bnxt_ntuple_filter *fltr, *new_fltr;
7075 struct flow_keys *fkeys;
7076 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
7077 int rc = 0, idx, bit_id, l2_idx = 0;
7078 struct hlist_head *head;
7079
7080 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
7081 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7082 int off = 0, j;
7083
7084 netif_addr_lock_bh(dev);
7085 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
7086 if (ether_addr_equal(eth->h_dest,
7087 vnic->uc_list + off)) {
7088 l2_idx = j + 1;
7089 break;
7090 }
7091 }
7092 netif_addr_unlock_bh(dev);
7093 if (!l2_idx)
7094 return -EINVAL;
7095 }
7096 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
7097 if (!new_fltr)
7098 return -ENOMEM;
7099
7100 fkeys = &new_fltr->fkeys;
7101 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
7102 rc = -EPROTONOSUPPORT;
7103 goto err_free;
7104 }
7105
7106 if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
7107 fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
7108 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
7109 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
7110 rc = -EPROTONOSUPPORT;
7111 goto err_free;
7112 }
7113 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
7114 bp->hwrm_spec_code < 0x10601) {
7115 rc = -EPROTONOSUPPORT;
7116 goto err_free;
7117 }
7118 if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
7119 bp->hwrm_spec_code < 0x10601) {
7120 rc = -EPROTONOSUPPORT;
7121 goto err_free;
7122 }
7123
7124 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7125 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7126
7127 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7128 head = &bp->ntp_fltr_hash_tbl[idx];
7129 rcu_read_lock();
7130 hlist_for_each_entry_rcu(fltr, head, hash) {
7131 if (bnxt_fltr_match(fltr, new_fltr)) {
7132 rcu_read_unlock();
7133 rc = 0;
7134 goto err_free;
7135 }
7136 }
7137 rcu_read_unlock();
7138
7139 spin_lock_bh(&bp->ntp_fltr_lock);
7140 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7141 BNXT_NTP_FLTR_MAX_FLTR, 0);
7142 if (bit_id < 0) {
7143 spin_unlock_bh(&bp->ntp_fltr_lock);
7144 rc = -ENOMEM;
7145 goto err_free;
7146 }
7147
7148 new_fltr->sw_id = (u16)bit_id;
7149 new_fltr->flow_id = flow_id;
7150 new_fltr->l2_fltr_idx = l2_idx;
7151 new_fltr->rxq = rxq_index;
7152 hlist_add_head_rcu(&new_fltr->hash, head);
7153 bp->ntp_fltr_count++;
7154 spin_unlock_bh(&bp->ntp_fltr_lock);
7155
7156 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7157 schedule_work(&bp->sp_task);
7158
7159 return new_fltr->sw_id;
7160
7161 err_free:
7162 kfree(new_fltr);
7163 return rc;
7164 }
7165
7166 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7167 {
7168 int i;
7169
7170 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7171 struct hlist_head *head;
7172 struct hlist_node *tmp;
7173 struct bnxt_ntuple_filter *fltr;
7174 int rc;
7175
7176 head = &bp->ntp_fltr_hash_tbl[i];
7177 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7178 bool del = false;
7179
7180 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7181 if (rps_may_expire_flow(bp->dev, fltr->rxq,
7182 fltr->flow_id,
7183 fltr->sw_id)) {
7184 bnxt_hwrm_cfa_ntuple_filter_free(bp,
7185 fltr);
7186 del = true;
7187 }
7188 } else {
7189 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7190 fltr);
7191 if (rc)
7192 del = true;
7193 else
7194 set_bit(BNXT_FLTR_VALID, &fltr->state);
7195 }
7196
7197 if (del) {
7198 spin_lock_bh(&bp->ntp_fltr_lock);
7199 hlist_del_rcu(&fltr->hash);
7200 bp->ntp_fltr_count--;
7201 spin_unlock_bh(&bp->ntp_fltr_lock);
7202 synchronize_rcu();
7203 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7204 kfree(fltr);
7205 }
7206 }
7207 }
7208 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7209 netdev_info(bp->dev, "Receive PF driver unload event!");
7210 }
7211
7212 #else
7213
7214 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7215 {
7216 }
7217
7218 #endif /* CONFIG_RFS_ACCEL */
7219
7220 static void bnxt_udp_tunnel_add(struct net_device *dev,
7221 struct udp_tunnel_info *ti)
7222 {
7223 struct bnxt *bp = netdev_priv(dev);
7224
7225 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7226 return;
7227
7228 if (!netif_running(dev))
7229 return;
7230
7231 switch (ti->type) {
7232 case UDP_TUNNEL_TYPE_VXLAN:
7233 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7234 return;
7235
7236 bp->vxlan_port_cnt++;
7237 if (bp->vxlan_port_cnt == 1) {
7238 bp->vxlan_port = ti->port;
7239 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7240 schedule_work(&bp->sp_task);
7241 }
7242 break;
7243 case UDP_TUNNEL_TYPE_GENEVE:
7244 if (bp->nge_port_cnt && bp->nge_port != ti->port)
7245 return;
7246
7247 bp->nge_port_cnt++;
7248 if (bp->nge_port_cnt == 1) {
7249 bp->nge_port = ti->port;
7250 set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7251 }
7252 break;
7253 default:
7254 return;
7255 }
7256
7257 schedule_work(&bp->sp_task);
7258 }
7259
7260 static void bnxt_udp_tunnel_del(struct net_device *dev,
7261 struct udp_tunnel_info *ti)
7262 {
7263 struct bnxt *bp = netdev_priv(dev);
7264
7265 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7266 return;
7267
7268 if (!netif_running(dev))
7269 return;
7270
7271 switch (ti->type) {
7272 case UDP_TUNNEL_TYPE_VXLAN:
7273 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7274 return;
7275 bp->vxlan_port_cnt--;
7276
7277 if (bp->vxlan_port_cnt != 0)
7278 return;
7279
7280 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7281 break;
7282 case UDP_TUNNEL_TYPE_GENEVE:
7283 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7284 return;
7285 bp->nge_port_cnt--;
7286
7287 if (bp->nge_port_cnt != 0)
7288 return;
7289
7290 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7291 break;
7292 default:
7293 return;
7294 }
7295
7296 schedule_work(&bp->sp_task);
7297 }
7298
7299 static const struct net_device_ops bnxt_netdev_ops = {
7300 .ndo_open = bnxt_open,
7301 .ndo_start_xmit = bnxt_start_xmit,
7302 .ndo_stop = bnxt_close,
7303 .ndo_get_stats64 = bnxt_get_stats64,
7304 .ndo_set_rx_mode = bnxt_set_rx_mode,
7305 .ndo_do_ioctl = bnxt_ioctl,
7306 .ndo_validate_addr = eth_validate_addr,
7307 .ndo_set_mac_address = bnxt_change_mac_addr,
7308 .ndo_change_mtu = bnxt_change_mtu,
7309 .ndo_fix_features = bnxt_fix_features,
7310 .ndo_set_features = bnxt_set_features,
7311 .ndo_tx_timeout = bnxt_tx_timeout,
7312 #ifdef CONFIG_BNXT_SRIOV
7313 .ndo_get_vf_config = bnxt_get_vf_config,
7314 .ndo_set_vf_mac = bnxt_set_vf_mac,
7315 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
7316 .ndo_set_vf_rate = bnxt_set_vf_bw,
7317 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
7318 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
7319 #endif
7320 #ifdef CONFIG_NET_POLL_CONTROLLER
7321 .ndo_poll_controller = bnxt_poll_controller,
7322 #endif
7323 .ndo_setup_tc = bnxt_setup_tc,
7324 #ifdef CONFIG_RFS_ACCEL
7325 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
7326 #endif
7327 .ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
7328 .ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
7329 .ndo_xdp = bnxt_xdp,
7330 };
7331
7332 static void bnxt_remove_one(struct pci_dev *pdev)
7333 {
7334 struct net_device *dev = pci_get_drvdata(pdev);
7335 struct bnxt *bp = netdev_priv(dev);
7336
7337 if (BNXT_PF(bp))
7338 bnxt_sriov_disable(bp);
7339
7340 pci_disable_pcie_error_reporting(pdev);
7341 unregister_netdev(dev);
7342 cancel_work_sync(&bp->sp_task);
7343 bp->sp_event = 0;
7344
7345 bnxt_clear_int_mode(bp);
7346 bnxt_hwrm_func_drv_unrgtr(bp);
7347 bnxt_free_hwrm_resources(bp);
7348 bnxt_ethtool_free(bp);
7349 bnxt_dcb_free(bp);
7350 kfree(bp->edev);
7351 bp->edev = NULL;
7352 if (bp->xdp_prog)
7353 bpf_prog_put(bp->xdp_prog);
7354 bnxt_cleanup_pci(bp);
7355 free_netdev(dev);
7356 }
7357
7358 static int bnxt_probe_phy(struct bnxt *bp)
7359 {
7360 int rc = 0;
7361 struct bnxt_link_info *link_info = &bp->link_info;
7362
7363 rc = bnxt_hwrm_phy_qcaps(bp);
7364 if (rc) {
7365 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7366 rc);
7367 return rc;
7368 }
7369
7370 rc = bnxt_update_link(bp, false);
7371 if (rc) {
7372 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7373 rc);
7374 return rc;
7375 }
7376
7377 /* Older firmware does not have supported_auto_speeds, so assume
7378 * that all supported speeds can be autonegotiated.
7379 */
7380 if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7381 link_info->support_auto_speeds = link_info->support_speeds;
7382
7383 /*initialize the ethool setting copy with NVM settings */
7384 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7385 link_info->autoneg = BNXT_AUTONEG_SPEED;
7386 if (bp->hwrm_spec_code >= 0x10201) {
7387 if (link_info->auto_pause_setting &
7388 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7389 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7390 } else {
7391 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7392 }
7393 link_info->advertising = link_info->auto_link_speeds;
7394 } else {
7395 link_info->req_link_speed = link_info->force_link_speed;
7396 link_info->req_duplex = link_info->duplex_setting;
7397 }
7398 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7399 link_info->req_flow_ctrl =
7400 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7401 else
7402 link_info->req_flow_ctrl = link_info->force_pause_setting;
7403 return rc;
7404 }
7405
7406 static int bnxt_get_max_irq(struct pci_dev *pdev)
7407 {
7408 u16 ctrl;
7409
7410 if (!pdev->msix_cap)
7411 return 1;
7412
7413 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7414 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7415 }
7416
7417 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7418 int *max_cp)
7419 {
7420 int max_ring_grps = 0;
7421
7422 #ifdef CONFIG_BNXT_SRIOV
7423 if (!BNXT_PF(bp)) {
7424 *max_tx = bp->vf.max_tx_rings;
7425 *max_rx = bp->vf.max_rx_rings;
7426 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7427 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7428 max_ring_grps = bp->vf.max_hw_ring_grps;
7429 } else
7430 #endif
7431 {
7432 *max_tx = bp->pf.max_tx_rings;
7433 *max_rx = bp->pf.max_rx_rings;
7434 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7435 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7436 max_ring_grps = bp->pf.max_hw_ring_grps;
7437 }
7438 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7439 *max_cp -= 1;
7440 *max_rx -= 2;
7441 }
7442 if (bp->flags & BNXT_FLAG_AGG_RINGS)
7443 *max_rx >>= 1;
7444 *max_rx = min_t(int, *max_rx, max_ring_grps);
7445 }
7446
7447 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7448 {
7449 int rx, tx, cp;
7450
7451 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
7452 if (!rx || !tx || !cp)
7453 return -ENOMEM;
7454
7455 *max_rx = rx;
7456 *max_tx = tx;
7457 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7458 }
7459
7460 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7461 bool shared)
7462 {
7463 int rc;
7464
7465 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7466 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7467 /* Not enough rings, try disabling agg rings. */
7468 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7469 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7470 if (rc)
7471 return rc;
7472 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7473 bp->dev->hw_features &= ~NETIF_F_LRO;
7474 bp->dev->features &= ~NETIF_F_LRO;
7475 bnxt_set_ring_params(bp);
7476 }
7477
7478 if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7479 int max_cp, max_stat, max_irq;
7480
7481 /* Reserve minimum resources for RoCE */
7482 max_cp = bnxt_get_max_func_cp_rings(bp);
7483 max_stat = bnxt_get_max_func_stat_ctxs(bp);
7484 max_irq = bnxt_get_max_func_irqs(bp);
7485 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7486 max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7487 max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7488 return 0;
7489
7490 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7491 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7492 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7493 max_cp = min_t(int, max_cp, max_irq);
7494 max_cp = min_t(int, max_cp, max_stat);
7495 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7496 if (rc)
7497 rc = 0;
7498 }
7499 return rc;
7500 }
7501
7502 static int bnxt_set_dflt_rings(struct bnxt *bp)
7503 {
7504 int dflt_rings, max_rx_rings, max_tx_rings, rc;
7505 bool sh = true;
7506
7507 if (sh)
7508 bp->flags |= BNXT_FLAG_SHARED_RINGS;
7509 dflt_rings = netif_get_num_default_rss_queues();
7510 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7511 if (rc)
7512 return rc;
7513 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7514 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7515
7516 rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7517 if (rc)
7518 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7519
7520 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7521 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7522 bp->tx_nr_rings + bp->rx_nr_rings;
7523 bp->num_stat_ctxs = bp->cp_nr_rings;
7524 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7525 bp->rx_nr_rings++;
7526 bp->cp_nr_rings++;
7527 }
7528 return rc;
7529 }
7530
7531 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7532 {
7533 ASSERT_RTNL();
7534 bnxt_hwrm_func_qcaps(bp);
7535 bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7536 }
7537
7538 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
7539 {
7540 enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
7541 enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
7542
7543 if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
7544 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
7545 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
7546 else
7547 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
7548 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
7549 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
7550 speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
7551 "Unknown", width);
7552 }
7553
7554 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7555 {
7556 static int version_printed;
7557 struct net_device *dev;
7558 struct bnxt *bp;
7559 int rc, max_irqs;
7560
7561 if (pci_is_bridge(pdev))
7562 return -ENODEV;
7563
7564 if (version_printed++ == 0)
7565 pr_info("%s", version);
7566
7567 max_irqs = bnxt_get_max_irq(pdev);
7568 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
7569 if (!dev)
7570 return -ENOMEM;
7571
7572 bp = netdev_priv(dev);
7573
7574 if (bnxt_vf_pciid(ent->driver_data))
7575 bp->flags |= BNXT_FLAG_VF;
7576
7577 if (pdev->msix_cap)
7578 bp->flags |= BNXT_FLAG_MSIX_CAP;
7579
7580 rc = bnxt_init_board(pdev, dev);
7581 if (rc < 0)
7582 goto init_err_free;
7583
7584 dev->netdev_ops = &bnxt_netdev_ops;
7585 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
7586 dev->ethtool_ops = &bnxt_ethtool_ops;
7587 pci_set_drvdata(pdev, dev);
7588
7589 rc = bnxt_alloc_hwrm_resources(bp);
7590 if (rc)
7591 goto init_err_pci_clean;
7592
7593 mutex_init(&bp->hwrm_cmd_lock);
7594 rc = bnxt_hwrm_ver_get(bp);
7595 if (rc)
7596 goto init_err_pci_clean;
7597
7598 rc = bnxt_hwrm_func_reset(bp);
7599 if (rc)
7600 goto init_err_pci_clean;
7601
7602 bnxt_hwrm_fw_set_time(bp);
7603
7604 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7605 NETIF_F_TSO | NETIF_F_TSO6 |
7606 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7607 NETIF_F_GSO_IPXIP4 |
7608 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7609 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
7610 NETIF_F_RXCSUM | NETIF_F_GRO;
7611
7612 if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
7613 dev->hw_features |= NETIF_F_LRO;
7614
7615 dev->hw_enc_features =
7616 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7617 NETIF_F_TSO | NETIF_F_TSO6 |
7618 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7619 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7620 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
7621 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
7622 NETIF_F_GSO_GRE_CSUM;
7623 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
7624 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7625 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
7626 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
7627 dev->priv_flags |= IFF_UNICAST_FLT;
7628
7629 /* MTU range: 60 - 9500 */
7630 dev->min_mtu = ETH_ZLEN;
7631 dev->max_mtu = BNXT_MAX_MTU;
7632
7633 bnxt_dcb_init(bp);
7634
7635 #ifdef CONFIG_BNXT_SRIOV
7636 init_waitqueue_head(&bp->sriov_cfg_wait);
7637 #endif
7638 bp->gro_func = bnxt_gro_func_5730x;
7639 if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
7640 bp->gro_func = bnxt_gro_func_5731x;
7641
7642 rc = bnxt_hwrm_func_drv_rgtr(bp);
7643 if (rc)
7644 goto init_err_pci_clean;
7645
7646 rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
7647 if (rc)
7648 goto init_err_pci_clean;
7649
7650 bp->ulp_probe = bnxt_ulp_probe;
7651
7652 /* Get the MAX capabilities for this function */
7653 rc = bnxt_hwrm_func_qcaps(bp);
7654 if (rc) {
7655 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
7656 rc);
7657 rc = -1;
7658 goto init_err_pci_clean;
7659 }
7660
7661 rc = bnxt_hwrm_queue_qportcfg(bp);
7662 if (rc) {
7663 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
7664 rc);
7665 rc = -1;
7666 goto init_err_pci_clean;
7667 }
7668
7669 bnxt_hwrm_func_qcfg(bp);
7670 bnxt_hwrm_port_led_qcaps(bp);
7671 bnxt_ethtool_init(bp);
7672
7673 bnxt_set_rx_skb_mode(bp, false);
7674 bnxt_set_tpa_flags(bp);
7675 bnxt_set_ring_params(bp);
7676 bnxt_set_max_func_irqs(bp, max_irqs);
7677 rc = bnxt_set_dflt_rings(bp);
7678 if (rc) {
7679 netdev_err(bp->dev, "Not enough rings available.\n");
7680 rc = -ENOMEM;
7681 goto init_err_pci_clean;
7682 }
7683
7684 /* Default RSS hash cfg. */
7685 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
7686 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
7687 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
7688 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
7689 if (!BNXT_CHIP_NUM_57X0X(bp->chip_num) &&
7690 !BNXT_CHIP_TYPE_NITRO_A0(bp) &&
7691 bp->hwrm_spec_code >= 0x10501) {
7692 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
7693 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
7694 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
7695 }
7696
7697 bnxt_hwrm_vnic_qcaps(bp);
7698 if (bnxt_rfs_supported(bp)) {
7699 dev->hw_features |= NETIF_F_NTUPLE;
7700 if (bnxt_rfs_capable(bp)) {
7701 bp->flags |= BNXT_FLAG_RFS;
7702 dev->features |= NETIF_F_NTUPLE;
7703 }
7704 }
7705
7706 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
7707 bp->flags |= BNXT_FLAG_STRIP_VLAN;
7708
7709 rc = bnxt_probe_phy(bp);
7710 if (rc)
7711 goto init_err_pci_clean;
7712
7713 rc = bnxt_init_int_mode(bp);
7714 if (rc)
7715 goto init_err_pci_clean;
7716
7717 bnxt_get_wol_settings(bp);
7718 if (bp->flags & BNXT_FLAG_WOL_CAP)
7719 device_set_wakeup_enable(&pdev->dev, bp->wol);
7720 else
7721 device_set_wakeup_capable(&pdev->dev, false);
7722
7723 rc = register_netdev(dev);
7724 if (rc)
7725 goto init_err_clr_int;
7726
7727 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
7728 board_info[ent->driver_data].name,
7729 (long)pci_resource_start(pdev, 0), dev->dev_addr);
7730
7731 bnxt_parse_log_pcie_link(bp);
7732
7733 return 0;
7734
7735 init_err_clr_int:
7736 bnxt_clear_int_mode(bp);
7737
7738 init_err_pci_clean:
7739 bnxt_cleanup_pci(bp);
7740
7741 init_err_free:
7742 free_netdev(dev);
7743 return rc;
7744 }
7745
7746 static void bnxt_shutdown(struct pci_dev *pdev)
7747 {
7748 struct net_device *dev = pci_get_drvdata(pdev);
7749 struct bnxt *bp;
7750
7751 if (!dev)
7752 return;
7753
7754 rtnl_lock();
7755 bp = netdev_priv(dev);
7756 if (!bp)
7757 goto shutdown_exit;
7758
7759 if (netif_running(dev))
7760 dev_close(dev);
7761
7762 if (system_state == SYSTEM_POWER_OFF) {
7763 bnxt_clear_int_mode(bp);
7764 pci_wake_from_d3(pdev, bp->wol);
7765 pci_set_power_state(pdev, PCI_D3hot);
7766 }
7767
7768 shutdown_exit:
7769 rtnl_unlock();
7770 }
7771
7772 #ifdef CONFIG_PM_SLEEP
7773 static int bnxt_suspend(struct device *device)
7774 {
7775 struct pci_dev *pdev = to_pci_dev(device);
7776 struct net_device *dev = pci_get_drvdata(pdev);
7777 struct bnxt *bp = netdev_priv(dev);
7778 int rc = 0;
7779
7780 rtnl_lock();
7781 if (netif_running(dev)) {
7782 netif_device_detach(dev);
7783 rc = bnxt_close(dev);
7784 }
7785 bnxt_hwrm_func_drv_unrgtr(bp);
7786 rtnl_unlock();
7787 return rc;
7788 }
7789
7790 static int bnxt_resume(struct device *device)
7791 {
7792 struct pci_dev *pdev = to_pci_dev(device);
7793 struct net_device *dev = pci_get_drvdata(pdev);
7794 struct bnxt *bp = netdev_priv(dev);
7795 int rc = 0;
7796
7797 rtnl_lock();
7798 if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
7799 rc = -ENODEV;
7800 goto resume_exit;
7801 }
7802 rc = bnxt_hwrm_func_reset(bp);
7803 if (rc) {
7804 rc = -EBUSY;
7805 goto resume_exit;
7806 }
7807 bnxt_get_wol_settings(bp);
7808 if (netif_running(dev)) {
7809 rc = bnxt_open(dev);
7810 if (!rc)
7811 netif_device_attach(dev);
7812 }
7813
7814 resume_exit:
7815 rtnl_unlock();
7816 return rc;
7817 }
7818
7819 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
7820 #define BNXT_PM_OPS (&bnxt_pm_ops)
7821
7822 #else
7823
7824 #define BNXT_PM_OPS NULL
7825
7826 #endif /* CONFIG_PM_SLEEP */
7827
7828 /**
7829 * bnxt_io_error_detected - called when PCI error is detected
7830 * @pdev: Pointer to PCI device
7831 * @state: The current pci connection state
7832 *
7833 * This function is called after a PCI bus error affecting
7834 * this device has been detected.
7835 */
7836 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
7837 pci_channel_state_t state)
7838 {
7839 struct net_device *netdev = pci_get_drvdata(pdev);
7840 struct bnxt *bp = netdev_priv(netdev);
7841
7842 netdev_info(netdev, "PCI I/O error detected\n");
7843
7844 rtnl_lock();
7845 netif_device_detach(netdev);
7846
7847 bnxt_ulp_stop(bp);
7848
7849 if (state == pci_channel_io_perm_failure) {
7850 rtnl_unlock();
7851 return PCI_ERS_RESULT_DISCONNECT;
7852 }
7853
7854 if (netif_running(netdev))
7855 bnxt_close(netdev);
7856
7857 pci_disable_device(pdev);
7858 rtnl_unlock();
7859
7860 /* Request a slot slot reset. */
7861 return PCI_ERS_RESULT_NEED_RESET;
7862 }
7863
7864 /**
7865 * bnxt_io_slot_reset - called after the pci bus has been reset.
7866 * @pdev: Pointer to PCI device
7867 *
7868 * Restart the card from scratch, as if from a cold-boot.
7869 * At this point, the card has exprienced a hard reset,
7870 * followed by fixups by BIOS, and has its config space
7871 * set up identically to what it was at cold boot.
7872 */
7873 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
7874 {
7875 struct net_device *netdev = pci_get_drvdata(pdev);
7876 struct bnxt *bp = netdev_priv(netdev);
7877 int err = 0;
7878 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
7879
7880 netdev_info(bp->dev, "PCI Slot Reset\n");
7881
7882 rtnl_lock();
7883
7884 if (pci_enable_device(pdev)) {
7885 dev_err(&pdev->dev,
7886 "Cannot re-enable PCI device after reset.\n");
7887 } else {
7888 pci_set_master(pdev);
7889
7890 err = bnxt_hwrm_func_reset(bp);
7891 if (!err && netif_running(netdev))
7892 err = bnxt_open(netdev);
7893
7894 if (!err) {
7895 result = PCI_ERS_RESULT_RECOVERED;
7896 bnxt_ulp_start(bp);
7897 }
7898 }
7899
7900 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7901 dev_close(netdev);
7902
7903 rtnl_unlock();
7904
7905 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7906 if (err) {
7907 dev_err(&pdev->dev,
7908 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7909 err); /* non-fatal, continue */
7910 }
7911
7912 return PCI_ERS_RESULT_RECOVERED;
7913 }
7914
7915 /**
7916 * bnxt_io_resume - called when traffic can start flowing again.
7917 * @pdev: Pointer to PCI device
7918 *
7919 * This callback is called when the error recovery driver tells
7920 * us that its OK to resume normal operation.
7921 */
7922 static void bnxt_io_resume(struct pci_dev *pdev)
7923 {
7924 struct net_device *netdev = pci_get_drvdata(pdev);
7925
7926 rtnl_lock();
7927
7928 netif_device_attach(netdev);
7929
7930 rtnl_unlock();
7931 }
7932
7933 static const struct pci_error_handlers bnxt_err_handler = {
7934 .error_detected = bnxt_io_error_detected,
7935 .slot_reset = bnxt_io_slot_reset,
7936 .resume = bnxt_io_resume
7937 };
7938
7939 static struct pci_driver bnxt_pci_driver = {
7940 .name = DRV_MODULE_NAME,
7941 .id_table = bnxt_pci_tbl,
7942 .probe = bnxt_init_one,
7943 .remove = bnxt_remove_one,
7944 .shutdown = bnxt_shutdown,
7945 .driver.pm = BNXT_PM_OPS,
7946 .err_handler = &bnxt_err_handler,
7947 #if defined(CONFIG_BNXT_SRIOV)
7948 .sriov_configure = bnxt_sriov_configure,
7949 #endif
7950 };
7951
7952 module_pci_driver(bnxt_pci_driver);