]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
Merge tag 'platform-drivers-x86-v4.15-1' of git://git.infradead.org/linux-platform...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 * Copyright (c) 2016-2017 Broadcom Limited
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64 #include "bnxt_devlink.h"
65
66 #define BNXT_TX_TIMEOUT (5 * HZ)
67
68 static const char version[] =
69 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
70
71 MODULE_LICENSE("GPL");
72 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74
75 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
76 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
77 #define BNXT_RX_COPY_THRESH 256
78
79 #define BNXT_TX_PUSH_THRESH 164
80
81 enum board_idx {
82 BCM57301,
83 BCM57302,
84 BCM57304,
85 BCM57417_NPAR,
86 BCM58700,
87 BCM57311,
88 BCM57312,
89 BCM57402,
90 BCM57404,
91 BCM57406,
92 BCM57402_NPAR,
93 BCM57407,
94 BCM57412,
95 BCM57414,
96 BCM57416,
97 BCM57417,
98 BCM57412_NPAR,
99 BCM57314,
100 BCM57417_SFP,
101 BCM57416_SFP,
102 BCM57404_NPAR,
103 BCM57406_NPAR,
104 BCM57407_SFP,
105 BCM57407_NPAR,
106 BCM57414_NPAR,
107 BCM57416_NPAR,
108 BCM57452,
109 BCM57454,
110 BCM58802,
111 BCM58804,
112 BCM58808,
113 NETXTREME_E_VF,
114 NETXTREME_C_VF,
115 NETXTREME_S_VF,
116 };
117
118 /* indexed by enum above */
119 static const struct {
120 char *name;
121 } board_info[] = {
122 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
123 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
124 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
125 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
126 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
127 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
128 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
129 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
130 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
131 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
132 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
133 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
134 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
135 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
136 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
137 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
138 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
139 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
140 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
141 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
142 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
143 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
144 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
145 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
146 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
147 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
148 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
149 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
150 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
151 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
152 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
153 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
154 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
155 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
156 };
157
158 static const struct pci_device_id bnxt_pci_tbl[] = {
159 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
160 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
161 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
162 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
163 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
164 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
165 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
166 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
167 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
168 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
169 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
170 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
171 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
172 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
173 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
174 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
175 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
176 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
177 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
178 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
179 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
180 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
181 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
182 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
183 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
184 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
185 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
186 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
187 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
188 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
189 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
190 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
191 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
192 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
193 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
194 #ifdef CONFIG_BNXT_SRIOV
195 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
196 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
197 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
198 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
199 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
200 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
201 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
202 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
203 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
204 #endif
205 { 0 }
206 };
207
208 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
209
210 static const u16 bnxt_vf_req_snif[] = {
211 HWRM_FUNC_CFG,
212 HWRM_PORT_PHY_QCFG,
213 HWRM_CFA_L2_FILTER_ALLOC,
214 };
215
216 static const u16 bnxt_async_events_arr[] = {
217 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
218 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
219 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
220 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
221 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
222 };
223
224 static struct workqueue_struct *bnxt_pf_wq;
225
226 static bool bnxt_vf_pciid(enum board_idx idx)
227 {
228 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
229 idx == NETXTREME_S_VF);
230 }
231
232 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
233 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
234 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
235
236 #define BNXT_CP_DB_REARM(db, raw_cons) \
237 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
238
239 #define BNXT_CP_DB(db, raw_cons) \
240 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
241
242 #define BNXT_CP_DB_IRQ_DIS(db) \
243 writel(DB_CP_IRQ_DIS_FLAGS, db)
244
245 const u16 bnxt_lhint_arr[] = {
246 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
247 TX_BD_FLAGS_LHINT_512_TO_1023,
248 TX_BD_FLAGS_LHINT_1024_TO_2047,
249 TX_BD_FLAGS_LHINT_1024_TO_2047,
250 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
251 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
252 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
253 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
254 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
255 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
256 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
257 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
258 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265 };
266
267 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
268 {
269 struct metadata_dst *md_dst = skb_metadata_dst(skb);
270
271 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
272 return 0;
273
274 return md_dst->u.port_info.port_id;
275 }
276
277 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
278 {
279 struct bnxt *bp = netdev_priv(dev);
280 struct tx_bd *txbd;
281 struct tx_bd_ext *txbd1;
282 struct netdev_queue *txq;
283 int i;
284 dma_addr_t mapping;
285 unsigned int length, pad = 0;
286 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
287 u16 prod, last_frag;
288 struct pci_dev *pdev = bp->pdev;
289 struct bnxt_tx_ring_info *txr;
290 struct bnxt_sw_tx_bd *tx_buf;
291
292 i = skb_get_queue_mapping(skb);
293 if (unlikely(i >= bp->tx_nr_rings)) {
294 dev_kfree_skb_any(skb);
295 return NETDEV_TX_OK;
296 }
297
298 txq = netdev_get_tx_queue(dev, i);
299 txr = &bp->tx_ring[bp->tx_ring_map[i]];
300 prod = txr->tx_prod;
301
302 free_size = bnxt_tx_avail(bp, txr);
303 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
304 netif_tx_stop_queue(txq);
305 return NETDEV_TX_BUSY;
306 }
307
308 length = skb->len;
309 len = skb_headlen(skb);
310 last_frag = skb_shinfo(skb)->nr_frags;
311
312 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
313
314 txbd->tx_bd_opaque = prod;
315
316 tx_buf = &txr->tx_buf_ring[prod];
317 tx_buf->skb = skb;
318 tx_buf->nr_frags = last_frag;
319
320 vlan_tag_flags = 0;
321 cfa_action = bnxt_xmit_get_cfa_action(skb);
322 if (skb_vlan_tag_present(skb)) {
323 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
324 skb_vlan_tag_get(skb);
325 /* Currently supports 8021Q, 8021AD vlan offloads
326 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
327 */
328 if (skb->vlan_proto == htons(ETH_P_8021Q))
329 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
330 }
331
332 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
333 struct tx_push_buffer *tx_push_buf = txr->tx_push;
334 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
335 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
336 void *pdata = tx_push_buf->data;
337 u64 *end;
338 int j, push_len;
339
340 /* Set COAL_NOW to be ready quickly for the next push */
341 tx_push->tx_bd_len_flags_type =
342 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
343 TX_BD_TYPE_LONG_TX_BD |
344 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
345 TX_BD_FLAGS_COAL_NOW |
346 TX_BD_FLAGS_PACKET_END |
347 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
348
349 if (skb->ip_summed == CHECKSUM_PARTIAL)
350 tx_push1->tx_bd_hsize_lflags =
351 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
352 else
353 tx_push1->tx_bd_hsize_lflags = 0;
354
355 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
356 tx_push1->tx_bd_cfa_action =
357 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
358
359 end = pdata + length;
360 end = PTR_ALIGN(end, 8) - 1;
361 *end = 0;
362
363 skb_copy_from_linear_data(skb, pdata, len);
364 pdata += len;
365 for (j = 0; j < last_frag; j++) {
366 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
367 void *fptr;
368
369 fptr = skb_frag_address_safe(frag);
370 if (!fptr)
371 goto normal_tx;
372
373 memcpy(pdata, fptr, skb_frag_size(frag));
374 pdata += skb_frag_size(frag);
375 }
376
377 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
378 txbd->tx_bd_haddr = txr->data_mapping;
379 prod = NEXT_TX(prod);
380 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
381 memcpy(txbd, tx_push1, sizeof(*txbd));
382 prod = NEXT_TX(prod);
383 tx_push->doorbell =
384 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
385 txr->tx_prod = prod;
386
387 tx_buf->is_push = 1;
388 netdev_tx_sent_queue(txq, skb->len);
389 wmb(); /* Sync is_push and byte queue before pushing data */
390
391 push_len = (length + sizeof(*tx_push) + 7) / 8;
392 if (push_len > 16) {
393 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
394 __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
395 (push_len - 16) << 1);
396 } else {
397 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
398 push_len);
399 }
400
401 goto tx_done;
402 }
403
404 normal_tx:
405 if (length < BNXT_MIN_PKT_SIZE) {
406 pad = BNXT_MIN_PKT_SIZE - length;
407 if (skb_pad(skb, pad)) {
408 /* SKB already freed. */
409 tx_buf->skb = NULL;
410 return NETDEV_TX_OK;
411 }
412 length = BNXT_MIN_PKT_SIZE;
413 }
414
415 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
416
417 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
418 dev_kfree_skb_any(skb);
419 tx_buf->skb = NULL;
420 return NETDEV_TX_OK;
421 }
422
423 dma_unmap_addr_set(tx_buf, mapping, mapping);
424 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
425 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
426
427 txbd->tx_bd_haddr = cpu_to_le64(mapping);
428
429 prod = NEXT_TX(prod);
430 txbd1 = (struct tx_bd_ext *)
431 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
432
433 txbd1->tx_bd_hsize_lflags = 0;
434 if (skb_is_gso(skb)) {
435 u32 hdr_len;
436
437 if (skb->encapsulation)
438 hdr_len = skb_inner_network_offset(skb) +
439 skb_inner_network_header_len(skb) +
440 inner_tcp_hdrlen(skb);
441 else
442 hdr_len = skb_transport_offset(skb) +
443 tcp_hdrlen(skb);
444
445 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
446 TX_BD_FLAGS_T_IPID |
447 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
448 length = skb_shinfo(skb)->gso_size;
449 txbd1->tx_bd_mss = cpu_to_le32(length);
450 length += hdr_len;
451 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
452 txbd1->tx_bd_hsize_lflags =
453 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
454 txbd1->tx_bd_mss = 0;
455 }
456
457 length >>= 9;
458 flags |= bnxt_lhint_arr[length];
459 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
460
461 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
462 txbd1->tx_bd_cfa_action =
463 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
464 for (i = 0; i < last_frag; i++) {
465 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
466
467 prod = NEXT_TX(prod);
468 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
469
470 len = skb_frag_size(frag);
471 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
472 DMA_TO_DEVICE);
473
474 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
475 goto tx_dma_error;
476
477 tx_buf = &txr->tx_buf_ring[prod];
478 dma_unmap_addr_set(tx_buf, mapping, mapping);
479
480 txbd->tx_bd_haddr = cpu_to_le64(mapping);
481
482 flags = len << TX_BD_LEN_SHIFT;
483 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
484 }
485
486 flags &= ~TX_BD_LEN;
487 txbd->tx_bd_len_flags_type =
488 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
489 TX_BD_FLAGS_PACKET_END);
490
491 netdev_tx_sent_queue(txq, skb->len);
492
493 /* Sync BD data before updating doorbell */
494 wmb();
495
496 prod = NEXT_TX(prod);
497 txr->tx_prod = prod;
498
499 if (!skb->xmit_more || netif_xmit_stopped(txq))
500 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
501
502 tx_done:
503
504 mmiowb();
505
506 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
507 if (skb->xmit_more && !tx_buf->is_push)
508 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
509
510 netif_tx_stop_queue(txq);
511
512 /* netif_tx_stop_queue() must be done before checking
513 * tx index in bnxt_tx_avail() below, because in
514 * bnxt_tx_int(), we update tx index before checking for
515 * netif_tx_queue_stopped().
516 */
517 smp_mb();
518 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
519 netif_tx_wake_queue(txq);
520 }
521 return NETDEV_TX_OK;
522
523 tx_dma_error:
524 last_frag = i;
525
526 /* start back at beginning and unmap skb */
527 prod = txr->tx_prod;
528 tx_buf = &txr->tx_buf_ring[prod];
529 tx_buf->skb = NULL;
530 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
531 skb_headlen(skb), PCI_DMA_TODEVICE);
532 prod = NEXT_TX(prod);
533
534 /* unmap remaining mapped pages */
535 for (i = 0; i < last_frag; i++) {
536 prod = NEXT_TX(prod);
537 tx_buf = &txr->tx_buf_ring[prod];
538 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
539 skb_frag_size(&skb_shinfo(skb)->frags[i]),
540 PCI_DMA_TODEVICE);
541 }
542
543 dev_kfree_skb_any(skb);
544 return NETDEV_TX_OK;
545 }
546
547 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
548 {
549 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
550 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
551 u16 cons = txr->tx_cons;
552 struct pci_dev *pdev = bp->pdev;
553 int i;
554 unsigned int tx_bytes = 0;
555
556 for (i = 0; i < nr_pkts; i++) {
557 struct bnxt_sw_tx_bd *tx_buf;
558 struct sk_buff *skb;
559 int j, last;
560
561 tx_buf = &txr->tx_buf_ring[cons];
562 cons = NEXT_TX(cons);
563 skb = tx_buf->skb;
564 tx_buf->skb = NULL;
565
566 if (tx_buf->is_push) {
567 tx_buf->is_push = 0;
568 goto next_tx_int;
569 }
570
571 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
572 skb_headlen(skb), PCI_DMA_TODEVICE);
573 last = tx_buf->nr_frags;
574
575 for (j = 0; j < last; j++) {
576 cons = NEXT_TX(cons);
577 tx_buf = &txr->tx_buf_ring[cons];
578 dma_unmap_page(
579 &pdev->dev,
580 dma_unmap_addr(tx_buf, mapping),
581 skb_frag_size(&skb_shinfo(skb)->frags[j]),
582 PCI_DMA_TODEVICE);
583 }
584
585 next_tx_int:
586 cons = NEXT_TX(cons);
587
588 tx_bytes += skb->len;
589 dev_kfree_skb_any(skb);
590 }
591
592 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
593 txr->tx_cons = cons;
594
595 /* Need to make the tx_cons update visible to bnxt_start_xmit()
596 * before checking for netif_tx_queue_stopped(). Without the
597 * memory barrier, there is a small possibility that bnxt_start_xmit()
598 * will miss it and cause the queue to be stopped forever.
599 */
600 smp_mb();
601
602 if (unlikely(netif_tx_queue_stopped(txq)) &&
603 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
604 __netif_tx_lock(txq, smp_processor_id());
605 if (netif_tx_queue_stopped(txq) &&
606 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
607 txr->dev_state != BNXT_DEV_STATE_CLOSING)
608 netif_tx_wake_queue(txq);
609 __netif_tx_unlock(txq);
610 }
611 }
612
613 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
614 gfp_t gfp)
615 {
616 struct device *dev = &bp->pdev->dev;
617 struct page *page;
618
619 page = alloc_page(gfp);
620 if (!page)
621 return NULL;
622
623 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
624 DMA_ATTR_WEAK_ORDERING);
625 if (dma_mapping_error(dev, *mapping)) {
626 __free_page(page);
627 return NULL;
628 }
629 *mapping += bp->rx_dma_offset;
630 return page;
631 }
632
633 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
634 gfp_t gfp)
635 {
636 u8 *data;
637 struct pci_dev *pdev = bp->pdev;
638
639 data = kmalloc(bp->rx_buf_size, gfp);
640 if (!data)
641 return NULL;
642
643 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
644 bp->rx_buf_use_size, bp->rx_dir,
645 DMA_ATTR_WEAK_ORDERING);
646
647 if (dma_mapping_error(&pdev->dev, *mapping)) {
648 kfree(data);
649 data = NULL;
650 }
651 return data;
652 }
653
654 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
655 u16 prod, gfp_t gfp)
656 {
657 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
658 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
659 dma_addr_t mapping;
660
661 if (BNXT_RX_PAGE_MODE(bp)) {
662 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
663
664 if (!page)
665 return -ENOMEM;
666
667 rx_buf->data = page;
668 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
669 } else {
670 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
671
672 if (!data)
673 return -ENOMEM;
674
675 rx_buf->data = data;
676 rx_buf->data_ptr = data + bp->rx_offset;
677 }
678 rx_buf->mapping = mapping;
679
680 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
681 return 0;
682 }
683
684 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
685 {
686 u16 prod = rxr->rx_prod;
687 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
688 struct rx_bd *cons_bd, *prod_bd;
689
690 prod_rx_buf = &rxr->rx_buf_ring[prod];
691 cons_rx_buf = &rxr->rx_buf_ring[cons];
692
693 prod_rx_buf->data = data;
694 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
695
696 prod_rx_buf->mapping = cons_rx_buf->mapping;
697
698 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
699 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
700
701 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
702 }
703
704 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
705 {
706 u16 next, max = rxr->rx_agg_bmap_size;
707
708 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
709 if (next >= max)
710 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
711 return next;
712 }
713
714 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
715 struct bnxt_rx_ring_info *rxr,
716 u16 prod, gfp_t gfp)
717 {
718 struct rx_bd *rxbd =
719 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
720 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
721 struct pci_dev *pdev = bp->pdev;
722 struct page *page;
723 dma_addr_t mapping;
724 u16 sw_prod = rxr->rx_sw_agg_prod;
725 unsigned int offset = 0;
726
727 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
728 page = rxr->rx_page;
729 if (!page) {
730 page = alloc_page(gfp);
731 if (!page)
732 return -ENOMEM;
733 rxr->rx_page = page;
734 rxr->rx_page_offset = 0;
735 }
736 offset = rxr->rx_page_offset;
737 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
738 if (rxr->rx_page_offset == PAGE_SIZE)
739 rxr->rx_page = NULL;
740 else
741 get_page(page);
742 } else {
743 page = alloc_page(gfp);
744 if (!page)
745 return -ENOMEM;
746 }
747
748 mapping = dma_map_page_attrs(&pdev->dev, page, offset,
749 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
750 DMA_ATTR_WEAK_ORDERING);
751 if (dma_mapping_error(&pdev->dev, mapping)) {
752 __free_page(page);
753 return -EIO;
754 }
755
756 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
757 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
758
759 __set_bit(sw_prod, rxr->rx_agg_bmap);
760 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
761 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
762
763 rx_agg_buf->page = page;
764 rx_agg_buf->offset = offset;
765 rx_agg_buf->mapping = mapping;
766 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
767 rxbd->rx_bd_opaque = sw_prod;
768 return 0;
769 }
770
771 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
772 u32 agg_bufs)
773 {
774 struct bnxt *bp = bnapi->bp;
775 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
776 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
777 u16 prod = rxr->rx_agg_prod;
778 u16 sw_prod = rxr->rx_sw_agg_prod;
779 u32 i;
780
781 for (i = 0; i < agg_bufs; i++) {
782 u16 cons;
783 struct rx_agg_cmp *agg;
784 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
785 struct rx_bd *prod_bd;
786 struct page *page;
787
788 agg = (struct rx_agg_cmp *)
789 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
790 cons = agg->rx_agg_cmp_opaque;
791 __clear_bit(cons, rxr->rx_agg_bmap);
792
793 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
794 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
795
796 __set_bit(sw_prod, rxr->rx_agg_bmap);
797 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
798 cons_rx_buf = &rxr->rx_agg_ring[cons];
799
800 /* It is possible for sw_prod to be equal to cons, so
801 * set cons_rx_buf->page to NULL first.
802 */
803 page = cons_rx_buf->page;
804 cons_rx_buf->page = NULL;
805 prod_rx_buf->page = page;
806 prod_rx_buf->offset = cons_rx_buf->offset;
807
808 prod_rx_buf->mapping = cons_rx_buf->mapping;
809
810 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
811
812 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
813 prod_bd->rx_bd_opaque = sw_prod;
814
815 prod = NEXT_RX_AGG(prod);
816 sw_prod = NEXT_RX_AGG(sw_prod);
817 cp_cons = NEXT_CMP(cp_cons);
818 }
819 rxr->rx_agg_prod = prod;
820 rxr->rx_sw_agg_prod = sw_prod;
821 }
822
823 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
824 struct bnxt_rx_ring_info *rxr,
825 u16 cons, void *data, u8 *data_ptr,
826 dma_addr_t dma_addr,
827 unsigned int offset_and_len)
828 {
829 unsigned int payload = offset_and_len >> 16;
830 unsigned int len = offset_and_len & 0xffff;
831 struct skb_frag_struct *frag;
832 struct page *page = data;
833 u16 prod = rxr->rx_prod;
834 struct sk_buff *skb;
835 int off, err;
836
837 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
838 if (unlikely(err)) {
839 bnxt_reuse_rx_data(rxr, cons, data);
840 return NULL;
841 }
842 dma_addr -= bp->rx_dma_offset;
843 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
844 DMA_ATTR_WEAK_ORDERING);
845
846 if (unlikely(!payload))
847 payload = eth_get_headlen(data_ptr, len);
848
849 skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
850 if (!skb) {
851 __free_page(page);
852 return NULL;
853 }
854
855 off = (void *)data_ptr - page_address(page);
856 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
857 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
858 payload + NET_IP_ALIGN);
859
860 frag = &skb_shinfo(skb)->frags[0];
861 skb_frag_size_sub(frag, payload);
862 frag->page_offset += payload;
863 skb->data_len -= payload;
864 skb->tail += payload;
865
866 return skb;
867 }
868
869 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
870 struct bnxt_rx_ring_info *rxr, u16 cons,
871 void *data, u8 *data_ptr,
872 dma_addr_t dma_addr,
873 unsigned int offset_and_len)
874 {
875 u16 prod = rxr->rx_prod;
876 struct sk_buff *skb;
877 int err;
878
879 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
880 if (unlikely(err)) {
881 bnxt_reuse_rx_data(rxr, cons, data);
882 return NULL;
883 }
884
885 skb = build_skb(data, 0);
886 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
887 bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
888 if (!skb) {
889 kfree(data);
890 return NULL;
891 }
892
893 skb_reserve(skb, bp->rx_offset);
894 skb_put(skb, offset_and_len & 0xffff);
895 return skb;
896 }
897
898 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
899 struct sk_buff *skb, u16 cp_cons,
900 u32 agg_bufs)
901 {
902 struct pci_dev *pdev = bp->pdev;
903 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
904 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
905 u16 prod = rxr->rx_agg_prod;
906 u32 i;
907
908 for (i = 0; i < agg_bufs; i++) {
909 u16 cons, frag_len;
910 struct rx_agg_cmp *agg;
911 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
912 struct page *page;
913 dma_addr_t mapping;
914
915 agg = (struct rx_agg_cmp *)
916 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
917 cons = agg->rx_agg_cmp_opaque;
918 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
919 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
920
921 cons_rx_buf = &rxr->rx_agg_ring[cons];
922 skb_fill_page_desc(skb, i, cons_rx_buf->page,
923 cons_rx_buf->offset, frag_len);
924 __clear_bit(cons, rxr->rx_agg_bmap);
925
926 /* It is possible for bnxt_alloc_rx_page() to allocate
927 * a sw_prod index that equals the cons index, so we
928 * need to clear the cons entry now.
929 */
930 mapping = cons_rx_buf->mapping;
931 page = cons_rx_buf->page;
932 cons_rx_buf->page = NULL;
933
934 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
935 struct skb_shared_info *shinfo;
936 unsigned int nr_frags;
937
938 shinfo = skb_shinfo(skb);
939 nr_frags = --shinfo->nr_frags;
940 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
941
942 dev_kfree_skb(skb);
943
944 cons_rx_buf->page = page;
945
946 /* Update prod since possibly some pages have been
947 * allocated already.
948 */
949 rxr->rx_agg_prod = prod;
950 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
951 return NULL;
952 }
953
954 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
955 PCI_DMA_FROMDEVICE,
956 DMA_ATTR_WEAK_ORDERING);
957
958 skb->data_len += frag_len;
959 skb->len += frag_len;
960 skb->truesize += PAGE_SIZE;
961
962 prod = NEXT_RX_AGG(prod);
963 cp_cons = NEXT_CMP(cp_cons);
964 }
965 rxr->rx_agg_prod = prod;
966 return skb;
967 }
968
969 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
970 u8 agg_bufs, u32 *raw_cons)
971 {
972 u16 last;
973 struct rx_agg_cmp *agg;
974
975 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
976 last = RING_CMP(*raw_cons);
977 agg = (struct rx_agg_cmp *)
978 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
979 return RX_AGG_CMP_VALID(agg, *raw_cons);
980 }
981
982 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
983 unsigned int len,
984 dma_addr_t mapping)
985 {
986 struct bnxt *bp = bnapi->bp;
987 struct pci_dev *pdev = bp->pdev;
988 struct sk_buff *skb;
989
990 skb = napi_alloc_skb(&bnapi->napi, len);
991 if (!skb)
992 return NULL;
993
994 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
995 bp->rx_dir);
996
997 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
998 len + NET_IP_ALIGN);
999
1000 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1001 bp->rx_dir);
1002
1003 skb_put(skb, len);
1004 return skb;
1005 }
1006
1007 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1008 u32 *raw_cons, void *cmp)
1009 {
1010 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1011 struct rx_cmp *rxcmp = cmp;
1012 u32 tmp_raw_cons = *raw_cons;
1013 u8 cmp_type, agg_bufs = 0;
1014
1015 cmp_type = RX_CMP_TYPE(rxcmp);
1016
1017 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1018 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1019 RX_CMP_AGG_BUFS) >>
1020 RX_CMP_AGG_BUFS_SHIFT;
1021 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1022 struct rx_tpa_end_cmp *tpa_end = cmp;
1023
1024 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1025 RX_TPA_END_CMP_AGG_BUFS) >>
1026 RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1027 }
1028
1029 if (agg_bufs) {
1030 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1031 return -EBUSY;
1032 }
1033 *raw_cons = tmp_raw_cons;
1034 return 0;
1035 }
1036
1037 static void bnxt_queue_sp_work(struct bnxt *bp)
1038 {
1039 if (BNXT_PF(bp))
1040 queue_work(bnxt_pf_wq, &bp->sp_task);
1041 else
1042 schedule_work(&bp->sp_task);
1043 }
1044
1045 static void bnxt_cancel_sp_work(struct bnxt *bp)
1046 {
1047 if (BNXT_PF(bp))
1048 flush_workqueue(bnxt_pf_wq);
1049 else
1050 cancel_work_sync(&bp->sp_task);
1051 }
1052
1053 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1054 {
1055 if (!rxr->bnapi->in_reset) {
1056 rxr->bnapi->in_reset = true;
1057 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1058 bnxt_queue_sp_work(bp);
1059 }
1060 rxr->rx_next_cons = 0xffff;
1061 }
1062
1063 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1064 struct rx_tpa_start_cmp *tpa_start,
1065 struct rx_tpa_start_cmp_ext *tpa_start1)
1066 {
1067 u8 agg_id = TPA_START_AGG_ID(tpa_start);
1068 u16 cons, prod;
1069 struct bnxt_tpa_info *tpa_info;
1070 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1071 struct rx_bd *prod_bd;
1072 dma_addr_t mapping;
1073
1074 cons = tpa_start->rx_tpa_start_cmp_opaque;
1075 prod = rxr->rx_prod;
1076 cons_rx_buf = &rxr->rx_buf_ring[cons];
1077 prod_rx_buf = &rxr->rx_buf_ring[prod];
1078 tpa_info = &rxr->rx_tpa[agg_id];
1079
1080 if (unlikely(cons != rxr->rx_next_cons)) {
1081 bnxt_sched_reset(bp, rxr);
1082 return;
1083 }
1084 /* Store cfa_code in tpa_info to use in tpa_end
1085 * completion processing.
1086 */
1087 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1088 prod_rx_buf->data = tpa_info->data;
1089 prod_rx_buf->data_ptr = tpa_info->data_ptr;
1090
1091 mapping = tpa_info->mapping;
1092 prod_rx_buf->mapping = mapping;
1093
1094 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1095
1096 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1097
1098 tpa_info->data = cons_rx_buf->data;
1099 tpa_info->data_ptr = cons_rx_buf->data_ptr;
1100 cons_rx_buf->data = NULL;
1101 tpa_info->mapping = cons_rx_buf->mapping;
1102
1103 tpa_info->len =
1104 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1105 RX_TPA_START_CMP_LEN_SHIFT;
1106 if (likely(TPA_START_HASH_VALID(tpa_start))) {
1107 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1108
1109 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1110 tpa_info->gso_type = SKB_GSO_TCPV4;
1111 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1112 if (hash_type == 3)
1113 tpa_info->gso_type = SKB_GSO_TCPV6;
1114 tpa_info->rss_hash =
1115 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1116 } else {
1117 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1118 tpa_info->gso_type = 0;
1119 if (netif_msg_rx_err(bp))
1120 netdev_warn(bp->dev, "TPA packet without valid hash\n");
1121 }
1122 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1123 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1124 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1125
1126 rxr->rx_prod = NEXT_RX(prod);
1127 cons = NEXT_RX(cons);
1128 rxr->rx_next_cons = NEXT_RX(cons);
1129 cons_rx_buf = &rxr->rx_buf_ring[cons];
1130
1131 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1132 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1133 cons_rx_buf->data = NULL;
1134 }
1135
1136 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1137 u16 cp_cons, u32 agg_bufs)
1138 {
1139 if (agg_bufs)
1140 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1141 }
1142
1143 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1144 int payload_off, int tcp_ts,
1145 struct sk_buff *skb)
1146 {
1147 #ifdef CONFIG_INET
1148 struct tcphdr *th;
1149 int len, nw_off;
1150 u16 outer_ip_off, inner_ip_off, inner_mac_off;
1151 u32 hdr_info = tpa_info->hdr_info;
1152 bool loopback = false;
1153
1154 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1155 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1156 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1157
1158 /* If the packet is an internal loopback packet, the offsets will
1159 * have an extra 4 bytes.
1160 */
1161 if (inner_mac_off == 4) {
1162 loopback = true;
1163 } else if (inner_mac_off > 4) {
1164 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1165 ETH_HLEN - 2));
1166
1167 /* We only support inner iPv4/ipv6. If we don't see the
1168 * correct protocol ID, it must be a loopback packet where
1169 * the offsets are off by 4.
1170 */
1171 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1172 loopback = true;
1173 }
1174 if (loopback) {
1175 /* internal loopback packet, subtract all offsets by 4 */
1176 inner_ip_off -= 4;
1177 inner_mac_off -= 4;
1178 outer_ip_off -= 4;
1179 }
1180
1181 nw_off = inner_ip_off - ETH_HLEN;
1182 skb_set_network_header(skb, nw_off);
1183 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1184 struct ipv6hdr *iph = ipv6_hdr(skb);
1185
1186 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1187 len = skb->len - skb_transport_offset(skb);
1188 th = tcp_hdr(skb);
1189 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1190 } else {
1191 struct iphdr *iph = ip_hdr(skb);
1192
1193 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1194 len = skb->len - skb_transport_offset(skb);
1195 th = tcp_hdr(skb);
1196 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1197 }
1198
1199 if (inner_mac_off) { /* tunnel */
1200 struct udphdr *uh = NULL;
1201 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1202 ETH_HLEN - 2));
1203
1204 if (proto == htons(ETH_P_IP)) {
1205 struct iphdr *iph = (struct iphdr *)skb->data;
1206
1207 if (iph->protocol == IPPROTO_UDP)
1208 uh = (struct udphdr *)(iph + 1);
1209 } else {
1210 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1211
1212 if (iph->nexthdr == IPPROTO_UDP)
1213 uh = (struct udphdr *)(iph + 1);
1214 }
1215 if (uh) {
1216 if (uh->check)
1217 skb_shinfo(skb)->gso_type |=
1218 SKB_GSO_UDP_TUNNEL_CSUM;
1219 else
1220 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1221 }
1222 }
1223 #endif
1224 return skb;
1225 }
1226
1227 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
1228 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1229
1230 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1231 int payload_off, int tcp_ts,
1232 struct sk_buff *skb)
1233 {
1234 #ifdef CONFIG_INET
1235 struct tcphdr *th;
1236 int len, nw_off, tcp_opt_len = 0;
1237
1238 if (tcp_ts)
1239 tcp_opt_len = 12;
1240
1241 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1242 struct iphdr *iph;
1243
1244 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1245 ETH_HLEN;
1246 skb_set_network_header(skb, nw_off);
1247 iph = ip_hdr(skb);
1248 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1249 len = skb->len - skb_transport_offset(skb);
1250 th = tcp_hdr(skb);
1251 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1252 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1253 struct ipv6hdr *iph;
1254
1255 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1256 ETH_HLEN;
1257 skb_set_network_header(skb, nw_off);
1258 iph = ipv6_hdr(skb);
1259 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1260 len = skb->len - skb_transport_offset(skb);
1261 th = tcp_hdr(skb);
1262 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1263 } else {
1264 dev_kfree_skb_any(skb);
1265 return NULL;
1266 }
1267
1268 if (nw_off) { /* tunnel */
1269 struct udphdr *uh = NULL;
1270
1271 if (skb->protocol == htons(ETH_P_IP)) {
1272 struct iphdr *iph = (struct iphdr *)skb->data;
1273
1274 if (iph->protocol == IPPROTO_UDP)
1275 uh = (struct udphdr *)(iph + 1);
1276 } else {
1277 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1278
1279 if (iph->nexthdr == IPPROTO_UDP)
1280 uh = (struct udphdr *)(iph + 1);
1281 }
1282 if (uh) {
1283 if (uh->check)
1284 skb_shinfo(skb)->gso_type |=
1285 SKB_GSO_UDP_TUNNEL_CSUM;
1286 else
1287 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1288 }
1289 }
1290 #endif
1291 return skb;
1292 }
1293
1294 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1295 struct bnxt_tpa_info *tpa_info,
1296 struct rx_tpa_end_cmp *tpa_end,
1297 struct rx_tpa_end_cmp_ext *tpa_end1,
1298 struct sk_buff *skb)
1299 {
1300 #ifdef CONFIG_INET
1301 int payload_off;
1302 u16 segs;
1303
1304 segs = TPA_END_TPA_SEGS(tpa_end);
1305 if (segs == 1)
1306 return skb;
1307
1308 NAPI_GRO_CB(skb)->count = segs;
1309 skb_shinfo(skb)->gso_size =
1310 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1311 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1312 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1313 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1314 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1315 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1316 if (likely(skb))
1317 tcp_gro_complete(skb);
1318 #endif
1319 return skb;
1320 }
1321
1322 /* Given the cfa_code of a received packet determine which
1323 * netdev (vf-rep or PF) the packet is destined to.
1324 */
1325 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1326 {
1327 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1328
1329 /* if vf-rep dev is NULL, the must belongs to the PF */
1330 return dev ? dev : bp->dev;
1331 }
1332
1333 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1334 struct bnxt_napi *bnapi,
1335 u32 *raw_cons,
1336 struct rx_tpa_end_cmp *tpa_end,
1337 struct rx_tpa_end_cmp_ext *tpa_end1,
1338 u8 *event)
1339 {
1340 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1341 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1342 u8 agg_id = TPA_END_AGG_ID(tpa_end);
1343 u8 *data_ptr, agg_bufs;
1344 u16 cp_cons = RING_CMP(*raw_cons);
1345 unsigned int len;
1346 struct bnxt_tpa_info *tpa_info;
1347 dma_addr_t mapping;
1348 struct sk_buff *skb;
1349 void *data;
1350
1351 if (unlikely(bnapi->in_reset)) {
1352 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1353
1354 if (rc < 0)
1355 return ERR_PTR(-EBUSY);
1356 return NULL;
1357 }
1358
1359 tpa_info = &rxr->rx_tpa[agg_id];
1360 data = tpa_info->data;
1361 data_ptr = tpa_info->data_ptr;
1362 prefetch(data_ptr);
1363 len = tpa_info->len;
1364 mapping = tpa_info->mapping;
1365
1366 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1367 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1368
1369 if (agg_bufs) {
1370 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1371 return ERR_PTR(-EBUSY);
1372
1373 *event |= BNXT_AGG_EVENT;
1374 cp_cons = NEXT_CMP(cp_cons);
1375 }
1376
1377 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1378 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1379 if (agg_bufs > MAX_SKB_FRAGS)
1380 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1381 agg_bufs, (int)MAX_SKB_FRAGS);
1382 return NULL;
1383 }
1384
1385 if (len <= bp->rx_copy_thresh) {
1386 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1387 if (!skb) {
1388 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1389 return NULL;
1390 }
1391 } else {
1392 u8 *new_data;
1393 dma_addr_t new_mapping;
1394
1395 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1396 if (!new_data) {
1397 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1398 return NULL;
1399 }
1400
1401 tpa_info->data = new_data;
1402 tpa_info->data_ptr = new_data + bp->rx_offset;
1403 tpa_info->mapping = new_mapping;
1404
1405 skb = build_skb(data, 0);
1406 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1407 bp->rx_buf_use_size, bp->rx_dir,
1408 DMA_ATTR_WEAK_ORDERING);
1409
1410 if (!skb) {
1411 kfree(data);
1412 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1413 return NULL;
1414 }
1415 skb_reserve(skb, bp->rx_offset);
1416 skb_put(skb, len);
1417 }
1418
1419 if (agg_bufs) {
1420 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1421 if (!skb) {
1422 /* Page reuse already handled by bnxt_rx_pages(). */
1423 return NULL;
1424 }
1425 }
1426
1427 skb->protocol =
1428 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1429
1430 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1431 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1432
1433 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1434 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1435 u16 vlan_proto = tpa_info->metadata >>
1436 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1437 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1438
1439 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1440 }
1441
1442 skb_checksum_none_assert(skb);
1443 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1444 skb->ip_summed = CHECKSUM_UNNECESSARY;
1445 skb->csum_level =
1446 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1447 }
1448
1449 if (TPA_END_GRO(tpa_end))
1450 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1451
1452 return skb;
1453 }
1454
1455 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1456 struct sk_buff *skb)
1457 {
1458 if (skb->dev != bp->dev) {
1459 /* this packet belongs to a vf-rep */
1460 bnxt_vf_rep_rx(bp, skb);
1461 return;
1462 }
1463 skb_record_rx_queue(skb, bnapi->index);
1464 napi_gro_receive(&bnapi->napi, skb);
1465 }
1466
1467 /* returns the following:
1468 * 1 - 1 packet successfully received
1469 * 0 - successful TPA_START, packet not completed yet
1470 * -EBUSY - completion ring does not have all the agg buffers yet
1471 * -ENOMEM - packet aborted due to out of memory
1472 * -EIO - packet aborted due to hw error indicated in BD
1473 */
1474 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1475 u8 *event)
1476 {
1477 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1478 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1479 struct net_device *dev = bp->dev;
1480 struct rx_cmp *rxcmp;
1481 struct rx_cmp_ext *rxcmp1;
1482 u32 tmp_raw_cons = *raw_cons;
1483 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1484 struct bnxt_sw_rx_bd *rx_buf;
1485 unsigned int len;
1486 u8 *data_ptr, agg_bufs, cmp_type;
1487 dma_addr_t dma_addr;
1488 struct sk_buff *skb;
1489 void *data;
1490 int rc = 0;
1491 u32 misc;
1492
1493 rxcmp = (struct rx_cmp *)
1494 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1495
1496 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1497 cp_cons = RING_CMP(tmp_raw_cons);
1498 rxcmp1 = (struct rx_cmp_ext *)
1499 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1500
1501 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1502 return -EBUSY;
1503
1504 cmp_type = RX_CMP_TYPE(rxcmp);
1505
1506 prod = rxr->rx_prod;
1507
1508 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1509 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1510 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1511
1512 *event |= BNXT_RX_EVENT;
1513 goto next_rx_no_prod;
1514
1515 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1516 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1517 (struct rx_tpa_end_cmp *)rxcmp,
1518 (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1519
1520 if (IS_ERR(skb))
1521 return -EBUSY;
1522
1523 rc = -ENOMEM;
1524 if (likely(skb)) {
1525 bnxt_deliver_skb(bp, bnapi, skb);
1526 rc = 1;
1527 }
1528 *event |= BNXT_RX_EVENT;
1529 goto next_rx_no_prod;
1530 }
1531
1532 cons = rxcmp->rx_cmp_opaque;
1533 rx_buf = &rxr->rx_buf_ring[cons];
1534 data = rx_buf->data;
1535 data_ptr = rx_buf->data_ptr;
1536 if (unlikely(cons != rxr->rx_next_cons)) {
1537 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1538
1539 bnxt_sched_reset(bp, rxr);
1540 return rc1;
1541 }
1542 prefetch(data_ptr);
1543
1544 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1545 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1546
1547 if (agg_bufs) {
1548 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1549 return -EBUSY;
1550
1551 cp_cons = NEXT_CMP(cp_cons);
1552 *event |= BNXT_AGG_EVENT;
1553 }
1554 *event |= BNXT_RX_EVENT;
1555
1556 rx_buf->data = NULL;
1557 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1558 bnxt_reuse_rx_data(rxr, cons, data);
1559 if (agg_bufs)
1560 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1561
1562 rc = -EIO;
1563 goto next_rx;
1564 }
1565
1566 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1567 dma_addr = rx_buf->mapping;
1568
1569 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1570 rc = 1;
1571 goto next_rx;
1572 }
1573
1574 if (len <= bp->rx_copy_thresh) {
1575 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1576 bnxt_reuse_rx_data(rxr, cons, data);
1577 if (!skb) {
1578 rc = -ENOMEM;
1579 goto next_rx;
1580 }
1581 } else {
1582 u32 payload;
1583
1584 if (rx_buf->data_ptr == data_ptr)
1585 payload = misc & RX_CMP_PAYLOAD_OFFSET;
1586 else
1587 payload = 0;
1588 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1589 payload | len);
1590 if (!skb) {
1591 rc = -ENOMEM;
1592 goto next_rx;
1593 }
1594 }
1595
1596 if (agg_bufs) {
1597 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1598 if (!skb) {
1599 rc = -ENOMEM;
1600 goto next_rx;
1601 }
1602 }
1603
1604 if (RX_CMP_HASH_VALID(rxcmp)) {
1605 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1606 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1607
1608 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1609 if (hash_type != 1 && hash_type != 3)
1610 type = PKT_HASH_TYPE_L3;
1611 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1612 }
1613
1614 cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1615 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1616
1617 if ((rxcmp1->rx_cmp_flags2 &
1618 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1619 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1620 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1621 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1622 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1623
1624 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1625 }
1626
1627 skb_checksum_none_assert(skb);
1628 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1629 if (dev->features & NETIF_F_RXCSUM) {
1630 skb->ip_summed = CHECKSUM_UNNECESSARY;
1631 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1632 }
1633 } else {
1634 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1635 if (dev->features & NETIF_F_RXCSUM)
1636 cpr->rx_l4_csum_errors++;
1637 }
1638 }
1639
1640 bnxt_deliver_skb(bp, bnapi, skb);
1641 rc = 1;
1642
1643 next_rx:
1644 rxr->rx_prod = NEXT_RX(prod);
1645 rxr->rx_next_cons = NEXT_RX(cons);
1646
1647 next_rx_no_prod:
1648 *raw_cons = tmp_raw_cons;
1649
1650 return rc;
1651 }
1652
1653 /* In netpoll mode, if we are using a combined completion ring, we need to
1654 * discard the rx packets and recycle the buffers.
1655 */
1656 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1657 u32 *raw_cons, u8 *event)
1658 {
1659 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1660 u32 tmp_raw_cons = *raw_cons;
1661 struct rx_cmp_ext *rxcmp1;
1662 struct rx_cmp *rxcmp;
1663 u16 cp_cons;
1664 u8 cmp_type;
1665
1666 cp_cons = RING_CMP(tmp_raw_cons);
1667 rxcmp = (struct rx_cmp *)
1668 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1669
1670 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1671 cp_cons = RING_CMP(tmp_raw_cons);
1672 rxcmp1 = (struct rx_cmp_ext *)
1673 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1674
1675 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1676 return -EBUSY;
1677
1678 cmp_type = RX_CMP_TYPE(rxcmp);
1679 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1680 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1681 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1682 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1683 struct rx_tpa_end_cmp_ext *tpa_end1;
1684
1685 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1686 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1687 cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1688 }
1689 return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1690 }
1691
1692 #define BNXT_GET_EVENT_PORT(data) \
1693 ((data) & \
1694 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1695
1696 static int bnxt_async_event_process(struct bnxt *bp,
1697 struct hwrm_async_event_cmpl *cmpl)
1698 {
1699 u16 event_id = le16_to_cpu(cmpl->event_id);
1700
1701 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1702 switch (event_id) {
1703 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1704 u32 data1 = le32_to_cpu(cmpl->event_data1);
1705 struct bnxt_link_info *link_info = &bp->link_info;
1706
1707 if (BNXT_VF(bp))
1708 goto async_event_process_exit;
1709 if (data1 & 0x20000) {
1710 u16 fw_speed = link_info->force_link_speed;
1711 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1712
1713 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1714 speed);
1715 }
1716 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1717 /* fall thru */
1718 }
1719 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1720 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1721 break;
1722 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1723 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1724 break;
1725 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1726 u32 data1 = le32_to_cpu(cmpl->event_data1);
1727 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1728
1729 if (BNXT_VF(bp))
1730 break;
1731
1732 if (bp->pf.port_id != port_id)
1733 break;
1734
1735 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1736 break;
1737 }
1738 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1739 if (BNXT_PF(bp))
1740 goto async_event_process_exit;
1741 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1742 break;
1743 default:
1744 goto async_event_process_exit;
1745 }
1746 bnxt_queue_sp_work(bp);
1747 async_event_process_exit:
1748 bnxt_ulp_async_events(bp, cmpl);
1749 return 0;
1750 }
1751
1752 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1753 {
1754 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1755 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1756 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1757 (struct hwrm_fwd_req_cmpl *)txcmp;
1758
1759 switch (cmpl_type) {
1760 case CMPL_BASE_TYPE_HWRM_DONE:
1761 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1762 if (seq_id == bp->hwrm_intr_seq_id)
1763 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1764 else
1765 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1766 break;
1767
1768 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1769 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1770
1771 if ((vf_id < bp->pf.first_vf_id) ||
1772 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1773 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1774 vf_id);
1775 return -EINVAL;
1776 }
1777
1778 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1779 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1780 bnxt_queue_sp_work(bp);
1781 break;
1782
1783 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1784 bnxt_async_event_process(bp,
1785 (struct hwrm_async_event_cmpl *)txcmp);
1786
1787 default:
1788 break;
1789 }
1790
1791 return 0;
1792 }
1793
1794 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1795 {
1796 struct bnxt_napi *bnapi = dev_instance;
1797 struct bnxt *bp = bnapi->bp;
1798 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1799 u32 cons = RING_CMP(cpr->cp_raw_cons);
1800
1801 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1802 napi_schedule(&bnapi->napi);
1803 return IRQ_HANDLED;
1804 }
1805
1806 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1807 {
1808 u32 raw_cons = cpr->cp_raw_cons;
1809 u16 cons = RING_CMP(raw_cons);
1810 struct tx_cmp *txcmp;
1811
1812 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1813
1814 return TX_CMP_VALID(txcmp, raw_cons);
1815 }
1816
1817 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1818 {
1819 struct bnxt_napi *bnapi = dev_instance;
1820 struct bnxt *bp = bnapi->bp;
1821 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1822 u32 cons = RING_CMP(cpr->cp_raw_cons);
1823 u32 int_status;
1824
1825 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1826
1827 if (!bnxt_has_work(bp, cpr)) {
1828 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1829 /* return if erroneous interrupt */
1830 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1831 return IRQ_NONE;
1832 }
1833
1834 /* disable ring IRQ */
1835 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1836
1837 /* Return here if interrupt is shared and is disabled. */
1838 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1839 return IRQ_HANDLED;
1840
1841 napi_schedule(&bnapi->napi);
1842 return IRQ_HANDLED;
1843 }
1844
1845 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1846 {
1847 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1848 u32 raw_cons = cpr->cp_raw_cons;
1849 u32 cons;
1850 int tx_pkts = 0;
1851 int rx_pkts = 0;
1852 u8 event = 0;
1853 struct tx_cmp *txcmp;
1854
1855 while (1) {
1856 int rc;
1857
1858 cons = RING_CMP(raw_cons);
1859 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1860
1861 if (!TX_CMP_VALID(txcmp, raw_cons))
1862 break;
1863
1864 /* The valid test of the entry must be done first before
1865 * reading any further.
1866 */
1867 dma_rmb();
1868 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1869 tx_pkts++;
1870 /* return full budget so NAPI will complete. */
1871 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1872 rx_pkts = budget;
1873 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1874 if (likely(budget))
1875 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1876 else
1877 rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1878 &event);
1879 if (likely(rc >= 0))
1880 rx_pkts += rc;
1881 /* Increment rx_pkts when rc is -ENOMEM to count towards
1882 * the NAPI budget. Otherwise, we may potentially loop
1883 * here forever if we consistently cannot allocate
1884 * buffers.
1885 */
1886 else if (rc == -ENOMEM)
1887 rx_pkts++;
1888 else if (rc == -EBUSY) /* partial completion */
1889 break;
1890 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1891 CMPL_BASE_TYPE_HWRM_DONE) ||
1892 (TX_CMP_TYPE(txcmp) ==
1893 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1894 (TX_CMP_TYPE(txcmp) ==
1895 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1896 bnxt_hwrm_handler(bp, txcmp);
1897 }
1898 raw_cons = NEXT_RAW_CMP(raw_cons);
1899
1900 if (rx_pkts == budget)
1901 break;
1902 }
1903
1904 if (event & BNXT_TX_EVENT) {
1905 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1906 void __iomem *db = txr->tx_doorbell;
1907 u16 prod = txr->tx_prod;
1908
1909 /* Sync BD data before updating doorbell */
1910 wmb();
1911
1912 bnxt_db_write(bp, db, DB_KEY_TX | prod);
1913 }
1914
1915 cpr->cp_raw_cons = raw_cons;
1916 /* ACK completion ring before freeing tx ring and producing new
1917 * buffers in rx/agg rings to prevent overflowing the completion
1918 * ring.
1919 */
1920 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1921
1922 if (tx_pkts)
1923 bnapi->tx_int(bp, bnapi, tx_pkts);
1924
1925 if (event & BNXT_RX_EVENT) {
1926 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1927
1928 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1929 if (event & BNXT_AGG_EVENT)
1930 bnxt_db_write(bp, rxr->rx_agg_doorbell,
1931 DB_KEY_RX | rxr->rx_agg_prod);
1932 }
1933 return rx_pkts;
1934 }
1935
1936 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1937 {
1938 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1939 struct bnxt *bp = bnapi->bp;
1940 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1941 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1942 struct tx_cmp *txcmp;
1943 struct rx_cmp_ext *rxcmp1;
1944 u32 cp_cons, tmp_raw_cons;
1945 u32 raw_cons = cpr->cp_raw_cons;
1946 u32 rx_pkts = 0;
1947 u8 event = 0;
1948
1949 while (1) {
1950 int rc;
1951
1952 cp_cons = RING_CMP(raw_cons);
1953 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1954
1955 if (!TX_CMP_VALID(txcmp, raw_cons))
1956 break;
1957
1958 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1959 tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1960 cp_cons = RING_CMP(tmp_raw_cons);
1961 rxcmp1 = (struct rx_cmp_ext *)
1962 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1963
1964 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1965 break;
1966
1967 /* force an error to recycle the buffer */
1968 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1969 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1970
1971 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1972 if (likely(rc == -EIO))
1973 rx_pkts++;
1974 else if (rc == -EBUSY) /* partial completion */
1975 break;
1976 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1977 CMPL_BASE_TYPE_HWRM_DONE)) {
1978 bnxt_hwrm_handler(bp, txcmp);
1979 } else {
1980 netdev_err(bp->dev,
1981 "Invalid completion received on special ring\n");
1982 }
1983 raw_cons = NEXT_RAW_CMP(raw_cons);
1984
1985 if (rx_pkts == budget)
1986 break;
1987 }
1988
1989 cpr->cp_raw_cons = raw_cons;
1990 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1991 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1992
1993 if (event & BNXT_AGG_EVENT)
1994 bnxt_db_write(bp, rxr->rx_agg_doorbell,
1995 DB_KEY_RX | rxr->rx_agg_prod);
1996
1997 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1998 napi_complete_done(napi, rx_pkts);
1999 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2000 }
2001 return rx_pkts;
2002 }
2003
2004 static int bnxt_poll(struct napi_struct *napi, int budget)
2005 {
2006 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2007 struct bnxt *bp = bnapi->bp;
2008 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2009 int work_done = 0;
2010
2011 while (1) {
2012 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2013
2014 if (work_done >= budget)
2015 break;
2016
2017 if (!bnxt_has_work(bp, cpr)) {
2018 if (napi_complete_done(napi, work_done))
2019 BNXT_CP_DB_REARM(cpr->cp_doorbell,
2020 cpr->cp_raw_cons);
2021 break;
2022 }
2023 }
2024 mmiowb();
2025 return work_done;
2026 }
2027
2028 static void bnxt_free_tx_skbs(struct bnxt *bp)
2029 {
2030 int i, max_idx;
2031 struct pci_dev *pdev = bp->pdev;
2032
2033 if (!bp->tx_ring)
2034 return;
2035
2036 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2037 for (i = 0; i < bp->tx_nr_rings; i++) {
2038 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2039 int j;
2040
2041 for (j = 0; j < max_idx;) {
2042 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2043 struct sk_buff *skb = tx_buf->skb;
2044 int k, last;
2045
2046 if (!skb) {
2047 j++;
2048 continue;
2049 }
2050
2051 tx_buf->skb = NULL;
2052
2053 if (tx_buf->is_push) {
2054 dev_kfree_skb(skb);
2055 j += 2;
2056 continue;
2057 }
2058
2059 dma_unmap_single(&pdev->dev,
2060 dma_unmap_addr(tx_buf, mapping),
2061 skb_headlen(skb),
2062 PCI_DMA_TODEVICE);
2063
2064 last = tx_buf->nr_frags;
2065 j += 2;
2066 for (k = 0; k < last; k++, j++) {
2067 int ring_idx = j & bp->tx_ring_mask;
2068 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2069
2070 tx_buf = &txr->tx_buf_ring[ring_idx];
2071 dma_unmap_page(
2072 &pdev->dev,
2073 dma_unmap_addr(tx_buf, mapping),
2074 skb_frag_size(frag), PCI_DMA_TODEVICE);
2075 }
2076 dev_kfree_skb(skb);
2077 }
2078 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2079 }
2080 }
2081
2082 static void bnxt_free_rx_skbs(struct bnxt *bp)
2083 {
2084 int i, max_idx, max_agg_idx;
2085 struct pci_dev *pdev = bp->pdev;
2086
2087 if (!bp->rx_ring)
2088 return;
2089
2090 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2091 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2092 for (i = 0; i < bp->rx_nr_rings; i++) {
2093 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2094 int j;
2095
2096 if (rxr->rx_tpa) {
2097 for (j = 0; j < MAX_TPA; j++) {
2098 struct bnxt_tpa_info *tpa_info =
2099 &rxr->rx_tpa[j];
2100 u8 *data = tpa_info->data;
2101
2102 if (!data)
2103 continue;
2104
2105 dma_unmap_single_attrs(&pdev->dev,
2106 tpa_info->mapping,
2107 bp->rx_buf_use_size,
2108 bp->rx_dir,
2109 DMA_ATTR_WEAK_ORDERING);
2110
2111 tpa_info->data = NULL;
2112
2113 kfree(data);
2114 }
2115 }
2116
2117 for (j = 0; j < max_idx; j++) {
2118 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2119 dma_addr_t mapping = rx_buf->mapping;
2120 void *data = rx_buf->data;
2121
2122 if (!data)
2123 continue;
2124
2125 rx_buf->data = NULL;
2126
2127 if (BNXT_RX_PAGE_MODE(bp)) {
2128 mapping -= bp->rx_dma_offset;
2129 dma_unmap_page_attrs(&pdev->dev, mapping,
2130 PAGE_SIZE, bp->rx_dir,
2131 DMA_ATTR_WEAK_ORDERING);
2132 __free_page(data);
2133 } else {
2134 dma_unmap_single_attrs(&pdev->dev, mapping,
2135 bp->rx_buf_use_size,
2136 bp->rx_dir,
2137 DMA_ATTR_WEAK_ORDERING);
2138 kfree(data);
2139 }
2140 }
2141
2142 for (j = 0; j < max_agg_idx; j++) {
2143 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2144 &rxr->rx_agg_ring[j];
2145 struct page *page = rx_agg_buf->page;
2146
2147 if (!page)
2148 continue;
2149
2150 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2151 BNXT_RX_PAGE_SIZE,
2152 PCI_DMA_FROMDEVICE,
2153 DMA_ATTR_WEAK_ORDERING);
2154
2155 rx_agg_buf->page = NULL;
2156 __clear_bit(j, rxr->rx_agg_bmap);
2157
2158 __free_page(page);
2159 }
2160 if (rxr->rx_page) {
2161 __free_page(rxr->rx_page);
2162 rxr->rx_page = NULL;
2163 }
2164 }
2165 }
2166
2167 static void bnxt_free_skbs(struct bnxt *bp)
2168 {
2169 bnxt_free_tx_skbs(bp);
2170 bnxt_free_rx_skbs(bp);
2171 }
2172
2173 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2174 {
2175 struct pci_dev *pdev = bp->pdev;
2176 int i;
2177
2178 for (i = 0; i < ring->nr_pages; i++) {
2179 if (!ring->pg_arr[i])
2180 continue;
2181
2182 dma_free_coherent(&pdev->dev, ring->page_size,
2183 ring->pg_arr[i], ring->dma_arr[i]);
2184
2185 ring->pg_arr[i] = NULL;
2186 }
2187 if (ring->pg_tbl) {
2188 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2189 ring->pg_tbl, ring->pg_tbl_map);
2190 ring->pg_tbl = NULL;
2191 }
2192 if (ring->vmem_size && *ring->vmem) {
2193 vfree(*ring->vmem);
2194 *ring->vmem = NULL;
2195 }
2196 }
2197
2198 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2199 {
2200 int i;
2201 struct pci_dev *pdev = bp->pdev;
2202
2203 if (ring->nr_pages > 1) {
2204 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2205 ring->nr_pages * 8,
2206 &ring->pg_tbl_map,
2207 GFP_KERNEL);
2208 if (!ring->pg_tbl)
2209 return -ENOMEM;
2210 }
2211
2212 for (i = 0; i < ring->nr_pages; i++) {
2213 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2214 ring->page_size,
2215 &ring->dma_arr[i],
2216 GFP_KERNEL);
2217 if (!ring->pg_arr[i])
2218 return -ENOMEM;
2219
2220 if (ring->nr_pages > 1)
2221 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2222 }
2223
2224 if (ring->vmem_size) {
2225 *ring->vmem = vzalloc(ring->vmem_size);
2226 if (!(*ring->vmem))
2227 return -ENOMEM;
2228 }
2229 return 0;
2230 }
2231
2232 static void bnxt_free_rx_rings(struct bnxt *bp)
2233 {
2234 int i;
2235
2236 if (!bp->rx_ring)
2237 return;
2238
2239 for (i = 0; i < bp->rx_nr_rings; i++) {
2240 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2241 struct bnxt_ring_struct *ring;
2242
2243 if (rxr->xdp_prog)
2244 bpf_prog_put(rxr->xdp_prog);
2245
2246 kfree(rxr->rx_tpa);
2247 rxr->rx_tpa = NULL;
2248
2249 kfree(rxr->rx_agg_bmap);
2250 rxr->rx_agg_bmap = NULL;
2251
2252 ring = &rxr->rx_ring_struct;
2253 bnxt_free_ring(bp, ring);
2254
2255 ring = &rxr->rx_agg_ring_struct;
2256 bnxt_free_ring(bp, ring);
2257 }
2258 }
2259
2260 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2261 {
2262 int i, rc, agg_rings = 0, tpa_rings = 0;
2263
2264 if (!bp->rx_ring)
2265 return -ENOMEM;
2266
2267 if (bp->flags & BNXT_FLAG_AGG_RINGS)
2268 agg_rings = 1;
2269
2270 if (bp->flags & BNXT_FLAG_TPA)
2271 tpa_rings = 1;
2272
2273 for (i = 0; i < bp->rx_nr_rings; i++) {
2274 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2275 struct bnxt_ring_struct *ring;
2276
2277 ring = &rxr->rx_ring_struct;
2278
2279 rc = bnxt_alloc_ring(bp, ring);
2280 if (rc)
2281 return rc;
2282
2283 if (agg_rings) {
2284 u16 mem_size;
2285
2286 ring = &rxr->rx_agg_ring_struct;
2287 rc = bnxt_alloc_ring(bp, ring);
2288 if (rc)
2289 return rc;
2290
2291 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2292 mem_size = rxr->rx_agg_bmap_size / 8;
2293 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2294 if (!rxr->rx_agg_bmap)
2295 return -ENOMEM;
2296
2297 if (tpa_rings) {
2298 rxr->rx_tpa = kcalloc(MAX_TPA,
2299 sizeof(struct bnxt_tpa_info),
2300 GFP_KERNEL);
2301 if (!rxr->rx_tpa)
2302 return -ENOMEM;
2303 }
2304 }
2305 }
2306 return 0;
2307 }
2308
2309 static void bnxt_free_tx_rings(struct bnxt *bp)
2310 {
2311 int i;
2312 struct pci_dev *pdev = bp->pdev;
2313
2314 if (!bp->tx_ring)
2315 return;
2316
2317 for (i = 0; i < bp->tx_nr_rings; i++) {
2318 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2319 struct bnxt_ring_struct *ring;
2320
2321 if (txr->tx_push) {
2322 dma_free_coherent(&pdev->dev, bp->tx_push_size,
2323 txr->tx_push, txr->tx_push_mapping);
2324 txr->tx_push = NULL;
2325 }
2326
2327 ring = &txr->tx_ring_struct;
2328
2329 bnxt_free_ring(bp, ring);
2330 }
2331 }
2332
2333 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2334 {
2335 int i, j, rc;
2336 struct pci_dev *pdev = bp->pdev;
2337
2338 bp->tx_push_size = 0;
2339 if (bp->tx_push_thresh) {
2340 int push_size;
2341
2342 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2343 bp->tx_push_thresh);
2344
2345 if (push_size > 256) {
2346 push_size = 0;
2347 bp->tx_push_thresh = 0;
2348 }
2349
2350 bp->tx_push_size = push_size;
2351 }
2352
2353 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2354 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2355 struct bnxt_ring_struct *ring;
2356
2357 ring = &txr->tx_ring_struct;
2358
2359 rc = bnxt_alloc_ring(bp, ring);
2360 if (rc)
2361 return rc;
2362
2363 if (bp->tx_push_size) {
2364 dma_addr_t mapping;
2365
2366 /* One pre-allocated DMA buffer to backup
2367 * TX push operation
2368 */
2369 txr->tx_push = dma_alloc_coherent(&pdev->dev,
2370 bp->tx_push_size,
2371 &txr->tx_push_mapping,
2372 GFP_KERNEL);
2373
2374 if (!txr->tx_push)
2375 return -ENOMEM;
2376
2377 mapping = txr->tx_push_mapping +
2378 sizeof(struct tx_push_bd);
2379 txr->data_mapping = cpu_to_le64(mapping);
2380
2381 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2382 }
2383 ring->queue_id = bp->q_info[j].queue_id;
2384 if (i < bp->tx_nr_rings_xdp)
2385 continue;
2386 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2387 j++;
2388 }
2389 return 0;
2390 }
2391
2392 static void bnxt_free_cp_rings(struct bnxt *bp)
2393 {
2394 int i;
2395
2396 if (!bp->bnapi)
2397 return;
2398
2399 for (i = 0; i < bp->cp_nr_rings; i++) {
2400 struct bnxt_napi *bnapi = bp->bnapi[i];
2401 struct bnxt_cp_ring_info *cpr;
2402 struct bnxt_ring_struct *ring;
2403
2404 if (!bnapi)
2405 continue;
2406
2407 cpr = &bnapi->cp_ring;
2408 ring = &cpr->cp_ring_struct;
2409
2410 bnxt_free_ring(bp, ring);
2411 }
2412 }
2413
2414 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2415 {
2416 int i, rc;
2417
2418 for (i = 0; i < bp->cp_nr_rings; i++) {
2419 struct bnxt_napi *bnapi = bp->bnapi[i];
2420 struct bnxt_cp_ring_info *cpr;
2421 struct bnxt_ring_struct *ring;
2422
2423 if (!bnapi)
2424 continue;
2425
2426 cpr = &bnapi->cp_ring;
2427 ring = &cpr->cp_ring_struct;
2428
2429 rc = bnxt_alloc_ring(bp, ring);
2430 if (rc)
2431 return rc;
2432 }
2433 return 0;
2434 }
2435
2436 static void bnxt_init_ring_struct(struct bnxt *bp)
2437 {
2438 int i;
2439
2440 for (i = 0; i < bp->cp_nr_rings; i++) {
2441 struct bnxt_napi *bnapi = bp->bnapi[i];
2442 struct bnxt_cp_ring_info *cpr;
2443 struct bnxt_rx_ring_info *rxr;
2444 struct bnxt_tx_ring_info *txr;
2445 struct bnxt_ring_struct *ring;
2446
2447 if (!bnapi)
2448 continue;
2449
2450 cpr = &bnapi->cp_ring;
2451 ring = &cpr->cp_ring_struct;
2452 ring->nr_pages = bp->cp_nr_pages;
2453 ring->page_size = HW_CMPD_RING_SIZE;
2454 ring->pg_arr = (void **)cpr->cp_desc_ring;
2455 ring->dma_arr = cpr->cp_desc_mapping;
2456 ring->vmem_size = 0;
2457
2458 rxr = bnapi->rx_ring;
2459 if (!rxr)
2460 goto skip_rx;
2461
2462 ring = &rxr->rx_ring_struct;
2463 ring->nr_pages = bp->rx_nr_pages;
2464 ring->page_size = HW_RXBD_RING_SIZE;
2465 ring->pg_arr = (void **)rxr->rx_desc_ring;
2466 ring->dma_arr = rxr->rx_desc_mapping;
2467 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2468 ring->vmem = (void **)&rxr->rx_buf_ring;
2469
2470 ring = &rxr->rx_agg_ring_struct;
2471 ring->nr_pages = bp->rx_agg_nr_pages;
2472 ring->page_size = HW_RXBD_RING_SIZE;
2473 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2474 ring->dma_arr = rxr->rx_agg_desc_mapping;
2475 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2476 ring->vmem = (void **)&rxr->rx_agg_ring;
2477
2478 skip_rx:
2479 txr = bnapi->tx_ring;
2480 if (!txr)
2481 continue;
2482
2483 ring = &txr->tx_ring_struct;
2484 ring->nr_pages = bp->tx_nr_pages;
2485 ring->page_size = HW_RXBD_RING_SIZE;
2486 ring->pg_arr = (void **)txr->tx_desc_ring;
2487 ring->dma_arr = txr->tx_desc_mapping;
2488 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2489 ring->vmem = (void **)&txr->tx_buf_ring;
2490 }
2491 }
2492
2493 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2494 {
2495 int i;
2496 u32 prod;
2497 struct rx_bd **rx_buf_ring;
2498
2499 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2500 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2501 int j;
2502 struct rx_bd *rxbd;
2503
2504 rxbd = rx_buf_ring[i];
2505 if (!rxbd)
2506 continue;
2507
2508 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2509 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2510 rxbd->rx_bd_opaque = prod;
2511 }
2512 }
2513 }
2514
2515 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2516 {
2517 struct net_device *dev = bp->dev;
2518 struct bnxt_rx_ring_info *rxr;
2519 struct bnxt_ring_struct *ring;
2520 u32 prod, type;
2521 int i;
2522
2523 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2524 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2525
2526 if (NET_IP_ALIGN == 2)
2527 type |= RX_BD_FLAGS_SOP;
2528
2529 rxr = &bp->rx_ring[ring_nr];
2530 ring = &rxr->rx_ring_struct;
2531 bnxt_init_rxbd_pages(ring, type);
2532
2533 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2534 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2535 if (IS_ERR(rxr->xdp_prog)) {
2536 int rc = PTR_ERR(rxr->xdp_prog);
2537
2538 rxr->xdp_prog = NULL;
2539 return rc;
2540 }
2541 }
2542 prod = rxr->rx_prod;
2543 for (i = 0; i < bp->rx_ring_size; i++) {
2544 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2545 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2546 ring_nr, i, bp->rx_ring_size);
2547 break;
2548 }
2549 prod = NEXT_RX(prod);
2550 }
2551 rxr->rx_prod = prod;
2552 ring->fw_ring_id = INVALID_HW_RING_ID;
2553
2554 ring = &rxr->rx_agg_ring_struct;
2555 ring->fw_ring_id = INVALID_HW_RING_ID;
2556
2557 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2558 return 0;
2559
2560 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2561 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2562
2563 bnxt_init_rxbd_pages(ring, type);
2564
2565 prod = rxr->rx_agg_prod;
2566 for (i = 0; i < bp->rx_agg_ring_size; i++) {
2567 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2568 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2569 ring_nr, i, bp->rx_ring_size);
2570 break;
2571 }
2572 prod = NEXT_RX_AGG(prod);
2573 }
2574 rxr->rx_agg_prod = prod;
2575
2576 if (bp->flags & BNXT_FLAG_TPA) {
2577 if (rxr->rx_tpa) {
2578 u8 *data;
2579 dma_addr_t mapping;
2580
2581 for (i = 0; i < MAX_TPA; i++) {
2582 data = __bnxt_alloc_rx_data(bp, &mapping,
2583 GFP_KERNEL);
2584 if (!data)
2585 return -ENOMEM;
2586
2587 rxr->rx_tpa[i].data = data;
2588 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2589 rxr->rx_tpa[i].mapping = mapping;
2590 }
2591 } else {
2592 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2593 return -ENOMEM;
2594 }
2595 }
2596
2597 return 0;
2598 }
2599
2600 static void bnxt_init_cp_rings(struct bnxt *bp)
2601 {
2602 int i;
2603
2604 for (i = 0; i < bp->cp_nr_rings; i++) {
2605 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2606 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2607
2608 ring->fw_ring_id = INVALID_HW_RING_ID;
2609 }
2610 }
2611
2612 static int bnxt_init_rx_rings(struct bnxt *bp)
2613 {
2614 int i, rc = 0;
2615
2616 if (BNXT_RX_PAGE_MODE(bp)) {
2617 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2618 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2619 } else {
2620 bp->rx_offset = BNXT_RX_OFFSET;
2621 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2622 }
2623
2624 for (i = 0; i < bp->rx_nr_rings; i++) {
2625 rc = bnxt_init_one_rx_ring(bp, i);
2626 if (rc)
2627 break;
2628 }
2629
2630 return rc;
2631 }
2632
2633 static int bnxt_init_tx_rings(struct bnxt *bp)
2634 {
2635 u16 i;
2636
2637 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2638 MAX_SKB_FRAGS + 1);
2639
2640 for (i = 0; i < bp->tx_nr_rings; i++) {
2641 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2642 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2643
2644 ring->fw_ring_id = INVALID_HW_RING_ID;
2645 }
2646
2647 return 0;
2648 }
2649
2650 static void bnxt_free_ring_grps(struct bnxt *bp)
2651 {
2652 kfree(bp->grp_info);
2653 bp->grp_info = NULL;
2654 }
2655
2656 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2657 {
2658 int i;
2659
2660 if (irq_re_init) {
2661 bp->grp_info = kcalloc(bp->cp_nr_rings,
2662 sizeof(struct bnxt_ring_grp_info),
2663 GFP_KERNEL);
2664 if (!bp->grp_info)
2665 return -ENOMEM;
2666 }
2667 for (i = 0; i < bp->cp_nr_rings; i++) {
2668 if (irq_re_init)
2669 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2670 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2671 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2672 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2673 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2674 }
2675 return 0;
2676 }
2677
2678 static void bnxt_free_vnics(struct bnxt *bp)
2679 {
2680 kfree(bp->vnic_info);
2681 bp->vnic_info = NULL;
2682 bp->nr_vnics = 0;
2683 }
2684
2685 static int bnxt_alloc_vnics(struct bnxt *bp)
2686 {
2687 int num_vnics = 1;
2688
2689 #ifdef CONFIG_RFS_ACCEL
2690 if (bp->flags & BNXT_FLAG_RFS)
2691 num_vnics += bp->rx_nr_rings;
2692 #endif
2693
2694 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2695 num_vnics++;
2696
2697 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2698 GFP_KERNEL);
2699 if (!bp->vnic_info)
2700 return -ENOMEM;
2701
2702 bp->nr_vnics = num_vnics;
2703 return 0;
2704 }
2705
2706 static void bnxt_init_vnics(struct bnxt *bp)
2707 {
2708 int i;
2709
2710 for (i = 0; i < bp->nr_vnics; i++) {
2711 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2712
2713 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2714 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2715 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2716 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2717
2718 if (bp->vnic_info[i].rss_hash_key) {
2719 if (i == 0)
2720 prandom_bytes(vnic->rss_hash_key,
2721 HW_HASH_KEY_SIZE);
2722 else
2723 memcpy(vnic->rss_hash_key,
2724 bp->vnic_info[0].rss_hash_key,
2725 HW_HASH_KEY_SIZE);
2726 }
2727 }
2728 }
2729
2730 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2731 {
2732 int pages;
2733
2734 pages = ring_size / desc_per_pg;
2735
2736 if (!pages)
2737 return 1;
2738
2739 pages++;
2740
2741 while (pages & (pages - 1))
2742 pages++;
2743
2744 return pages;
2745 }
2746
2747 void bnxt_set_tpa_flags(struct bnxt *bp)
2748 {
2749 bp->flags &= ~BNXT_FLAG_TPA;
2750 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2751 return;
2752 if (bp->dev->features & NETIF_F_LRO)
2753 bp->flags |= BNXT_FLAG_LRO;
2754 if (bp->dev->features & NETIF_F_GRO)
2755 bp->flags |= BNXT_FLAG_GRO;
2756 }
2757
2758 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2759 * be set on entry.
2760 */
2761 void bnxt_set_ring_params(struct bnxt *bp)
2762 {
2763 u32 ring_size, rx_size, rx_space;
2764 u32 agg_factor = 0, agg_ring_size = 0;
2765
2766 /* 8 for CRC and VLAN */
2767 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2768
2769 rx_space = rx_size + NET_SKB_PAD +
2770 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2771
2772 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2773 ring_size = bp->rx_ring_size;
2774 bp->rx_agg_ring_size = 0;
2775 bp->rx_agg_nr_pages = 0;
2776
2777 if (bp->flags & BNXT_FLAG_TPA)
2778 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2779
2780 bp->flags &= ~BNXT_FLAG_JUMBO;
2781 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2782 u32 jumbo_factor;
2783
2784 bp->flags |= BNXT_FLAG_JUMBO;
2785 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2786 if (jumbo_factor > agg_factor)
2787 agg_factor = jumbo_factor;
2788 }
2789 agg_ring_size = ring_size * agg_factor;
2790
2791 if (agg_ring_size) {
2792 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2793 RX_DESC_CNT);
2794 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2795 u32 tmp = agg_ring_size;
2796
2797 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2798 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2799 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2800 tmp, agg_ring_size);
2801 }
2802 bp->rx_agg_ring_size = agg_ring_size;
2803 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2804 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2805 rx_space = rx_size + NET_SKB_PAD +
2806 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2807 }
2808
2809 bp->rx_buf_use_size = rx_size;
2810 bp->rx_buf_size = rx_space;
2811
2812 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2813 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2814
2815 ring_size = bp->tx_ring_size;
2816 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2817 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2818
2819 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2820 bp->cp_ring_size = ring_size;
2821
2822 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2823 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2824 bp->cp_nr_pages = MAX_CP_PAGES;
2825 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2826 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2827 ring_size, bp->cp_ring_size);
2828 }
2829 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2830 bp->cp_ring_mask = bp->cp_bit - 1;
2831 }
2832
2833 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2834 {
2835 if (page_mode) {
2836 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2837 return -EOPNOTSUPP;
2838 bp->dev->max_mtu =
2839 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2840 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2841 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2842 bp->dev->hw_features &= ~NETIF_F_LRO;
2843 bp->dev->features &= ~NETIF_F_LRO;
2844 bp->rx_dir = DMA_BIDIRECTIONAL;
2845 bp->rx_skb_func = bnxt_rx_page_skb;
2846 } else {
2847 bp->dev->max_mtu = bp->max_mtu;
2848 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2849 bp->rx_dir = DMA_FROM_DEVICE;
2850 bp->rx_skb_func = bnxt_rx_skb;
2851 }
2852 return 0;
2853 }
2854
2855 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2856 {
2857 int i;
2858 struct bnxt_vnic_info *vnic;
2859 struct pci_dev *pdev = bp->pdev;
2860
2861 if (!bp->vnic_info)
2862 return;
2863
2864 for (i = 0; i < bp->nr_vnics; i++) {
2865 vnic = &bp->vnic_info[i];
2866
2867 kfree(vnic->fw_grp_ids);
2868 vnic->fw_grp_ids = NULL;
2869
2870 kfree(vnic->uc_list);
2871 vnic->uc_list = NULL;
2872
2873 if (vnic->mc_list) {
2874 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2875 vnic->mc_list, vnic->mc_list_mapping);
2876 vnic->mc_list = NULL;
2877 }
2878
2879 if (vnic->rss_table) {
2880 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2881 vnic->rss_table,
2882 vnic->rss_table_dma_addr);
2883 vnic->rss_table = NULL;
2884 }
2885
2886 vnic->rss_hash_key = NULL;
2887 vnic->flags = 0;
2888 }
2889 }
2890
2891 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2892 {
2893 int i, rc = 0, size;
2894 struct bnxt_vnic_info *vnic;
2895 struct pci_dev *pdev = bp->pdev;
2896 int max_rings;
2897
2898 for (i = 0; i < bp->nr_vnics; i++) {
2899 vnic = &bp->vnic_info[i];
2900
2901 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2902 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2903
2904 if (mem_size > 0) {
2905 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2906 if (!vnic->uc_list) {
2907 rc = -ENOMEM;
2908 goto out;
2909 }
2910 }
2911 }
2912
2913 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2914 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2915 vnic->mc_list =
2916 dma_alloc_coherent(&pdev->dev,
2917 vnic->mc_list_size,
2918 &vnic->mc_list_mapping,
2919 GFP_KERNEL);
2920 if (!vnic->mc_list) {
2921 rc = -ENOMEM;
2922 goto out;
2923 }
2924 }
2925
2926 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2927 max_rings = bp->rx_nr_rings;
2928 else
2929 max_rings = 1;
2930
2931 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2932 if (!vnic->fw_grp_ids) {
2933 rc = -ENOMEM;
2934 goto out;
2935 }
2936
2937 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2938 !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2939 continue;
2940
2941 /* Allocate rss table and hash key */
2942 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2943 &vnic->rss_table_dma_addr,
2944 GFP_KERNEL);
2945 if (!vnic->rss_table) {
2946 rc = -ENOMEM;
2947 goto out;
2948 }
2949
2950 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2951
2952 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2953 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2954 }
2955 return 0;
2956
2957 out:
2958 return rc;
2959 }
2960
2961 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2962 {
2963 struct pci_dev *pdev = bp->pdev;
2964
2965 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2966 bp->hwrm_cmd_resp_dma_addr);
2967
2968 bp->hwrm_cmd_resp_addr = NULL;
2969 if (bp->hwrm_dbg_resp_addr) {
2970 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2971 bp->hwrm_dbg_resp_addr,
2972 bp->hwrm_dbg_resp_dma_addr);
2973
2974 bp->hwrm_dbg_resp_addr = NULL;
2975 }
2976 }
2977
2978 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2979 {
2980 struct pci_dev *pdev = bp->pdev;
2981
2982 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2983 &bp->hwrm_cmd_resp_dma_addr,
2984 GFP_KERNEL);
2985 if (!bp->hwrm_cmd_resp_addr)
2986 return -ENOMEM;
2987 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2988 HWRM_DBG_REG_BUF_SIZE,
2989 &bp->hwrm_dbg_resp_dma_addr,
2990 GFP_KERNEL);
2991 if (!bp->hwrm_dbg_resp_addr)
2992 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2993
2994 return 0;
2995 }
2996
2997 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
2998 {
2999 if (bp->hwrm_short_cmd_req_addr) {
3000 struct pci_dev *pdev = bp->pdev;
3001
3002 dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3003 bp->hwrm_short_cmd_req_addr,
3004 bp->hwrm_short_cmd_req_dma_addr);
3005 bp->hwrm_short_cmd_req_addr = NULL;
3006 }
3007 }
3008
3009 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3010 {
3011 struct pci_dev *pdev = bp->pdev;
3012
3013 bp->hwrm_short_cmd_req_addr =
3014 dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3015 &bp->hwrm_short_cmd_req_dma_addr,
3016 GFP_KERNEL);
3017 if (!bp->hwrm_short_cmd_req_addr)
3018 return -ENOMEM;
3019
3020 return 0;
3021 }
3022
3023 static void bnxt_free_stats(struct bnxt *bp)
3024 {
3025 u32 size, i;
3026 struct pci_dev *pdev = bp->pdev;
3027
3028 if (bp->hw_rx_port_stats) {
3029 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3030 bp->hw_rx_port_stats,
3031 bp->hw_rx_port_stats_map);
3032 bp->hw_rx_port_stats = NULL;
3033 bp->flags &= ~BNXT_FLAG_PORT_STATS;
3034 }
3035
3036 if (!bp->bnapi)
3037 return;
3038
3039 size = sizeof(struct ctx_hw_stats);
3040
3041 for (i = 0; i < bp->cp_nr_rings; i++) {
3042 struct bnxt_napi *bnapi = bp->bnapi[i];
3043 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3044
3045 if (cpr->hw_stats) {
3046 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3047 cpr->hw_stats_map);
3048 cpr->hw_stats = NULL;
3049 }
3050 }
3051 }
3052
3053 static int bnxt_alloc_stats(struct bnxt *bp)
3054 {
3055 u32 size, i;
3056 struct pci_dev *pdev = bp->pdev;
3057
3058 size = sizeof(struct ctx_hw_stats);
3059
3060 for (i = 0; i < bp->cp_nr_rings; i++) {
3061 struct bnxt_napi *bnapi = bp->bnapi[i];
3062 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3063
3064 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3065 &cpr->hw_stats_map,
3066 GFP_KERNEL);
3067 if (!cpr->hw_stats)
3068 return -ENOMEM;
3069
3070 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3071 }
3072
3073 if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3074 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3075 sizeof(struct tx_port_stats) + 1024;
3076
3077 bp->hw_rx_port_stats =
3078 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3079 &bp->hw_rx_port_stats_map,
3080 GFP_KERNEL);
3081 if (!bp->hw_rx_port_stats)
3082 return -ENOMEM;
3083
3084 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3085 512;
3086 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3087 sizeof(struct rx_port_stats) + 512;
3088 bp->flags |= BNXT_FLAG_PORT_STATS;
3089 }
3090 return 0;
3091 }
3092
3093 static void bnxt_clear_ring_indices(struct bnxt *bp)
3094 {
3095 int i;
3096
3097 if (!bp->bnapi)
3098 return;
3099
3100 for (i = 0; i < bp->cp_nr_rings; i++) {
3101 struct bnxt_napi *bnapi = bp->bnapi[i];
3102 struct bnxt_cp_ring_info *cpr;
3103 struct bnxt_rx_ring_info *rxr;
3104 struct bnxt_tx_ring_info *txr;
3105
3106 if (!bnapi)
3107 continue;
3108
3109 cpr = &bnapi->cp_ring;
3110 cpr->cp_raw_cons = 0;
3111
3112 txr = bnapi->tx_ring;
3113 if (txr) {
3114 txr->tx_prod = 0;
3115 txr->tx_cons = 0;
3116 }
3117
3118 rxr = bnapi->rx_ring;
3119 if (rxr) {
3120 rxr->rx_prod = 0;
3121 rxr->rx_agg_prod = 0;
3122 rxr->rx_sw_agg_prod = 0;
3123 rxr->rx_next_cons = 0;
3124 }
3125 }
3126 }
3127
3128 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3129 {
3130 #ifdef CONFIG_RFS_ACCEL
3131 int i;
3132
3133 /* Under rtnl_lock and all our NAPIs have been disabled. It's
3134 * safe to delete the hash table.
3135 */
3136 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3137 struct hlist_head *head;
3138 struct hlist_node *tmp;
3139 struct bnxt_ntuple_filter *fltr;
3140
3141 head = &bp->ntp_fltr_hash_tbl[i];
3142 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3143 hlist_del(&fltr->hash);
3144 kfree(fltr);
3145 }
3146 }
3147 if (irq_reinit) {
3148 kfree(bp->ntp_fltr_bmap);
3149 bp->ntp_fltr_bmap = NULL;
3150 }
3151 bp->ntp_fltr_count = 0;
3152 #endif
3153 }
3154
3155 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3156 {
3157 #ifdef CONFIG_RFS_ACCEL
3158 int i, rc = 0;
3159
3160 if (!(bp->flags & BNXT_FLAG_RFS))
3161 return 0;
3162
3163 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3164 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3165
3166 bp->ntp_fltr_count = 0;
3167 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3168 sizeof(long),
3169 GFP_KERNEL);
3170
3171 if (!bp->ntp_fltr_bmap)
3172 rc = -ENOMEM;
3173
3174 return rc;
3175 #else
3176 return 0;
3177 #endif
3178 }
3179
3180 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3181 {
3182 bnxt_free_vnic_attributes(bp);
3183 bnxt_free_tx_rings(bp);
3184 bnxt_free_rx_rings(bp);
3185 bnxt_free_cp_rings(bp);
3186 bnxt_free_ntp_fltrs(bp, irq_re_init);
3187 if (irq_re_init) {
3188 bnxt_free_stats(bp);
3189 bnxt_free_ring_grps(bp);
3190 bnxt_free_vnics(bp);
3191 kfree(bp->tx_ring_map);
3192 bp->tx_ring_map = NULL;
3193 kfree(bp->tx_ring);
3194 bp->tx_ring = NULL;
3195 kfree(bp->rx_ring);
3196 bp->rx_ring = NULL;
3197 kfree(bp->bnapi);
3198 bp->bnapi = NULL;
3199 } else {
3200 bnxt_clear_ring_indices(bp);
3201 }
3202 }
3203
3204 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3205 {
3206 int i, j, rc, size, arr_size;
3207 void *bnapi;
3208
3209 if (irq_re_init) {
3210 /* Allocate bnapi mem pointer array and mem block for
3211 * all queues
3212 */
3213 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3214 bp->cp_nr_rings);
3215 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3216 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3217 if (!bnapi)
3218 return -ENOMEM;
3219
3220 bp->bnapi = bnapi;
3221 bnapi += arr_size;
3222 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3223 bp->bnapi[i] = bnapi;
3224 bp->bnapi[i]->index = i;
3225 bp->bnapi[i]->bp = bp;
3226 }
3227
3228 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3229 sizeof(struct bnxt_rx_ring_info),
3230 GFP_KERNEL);
3231 if (!bp->rx_ring)
3232 return -ENOMEM;
3233
3234 for (i = 0; i < bp->rx_nr_rings; i++) {
3235 bp->rx_ring[i].bnapi = bp->bnapi[i];
3236 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3237 }
3238
3239 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3240 sizeof(struct bnxt_tx_ring_info),
3241 GFP_KERNEL);
3242 if (!bp->tx_ring)
3243 return -ENOMEM;
3244
3245 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3246 GFP_KERNEL);
3247
3248 if (!bp->tx_ring_map)
3249 return -ENOMEM;
3250
3251 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3252 j = 0;
3253 else
3254 j = bp->rx_nr_rings;
3255
3256 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3257 bp->tx_ring[i].bnapi = bp->bnapi[j];
3258 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3259 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3260 if (i >= bp->tx_nr_rings_xdp) {
3261 bp->tx_ring[i].txq_index = i -
3262 bp->tx_nr_rings_xdp;
3263 bp->bnapi[j]->tx_int = bnxt_tx_int;
3264 } else {
3265 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3266 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3267 }
3268 }
3269
3270 rc = bnxt_alloc_stats(bp);
3271 if (rc)
3272 goto alloc_mem_err;
3273
3274 rc = bnxt_alloc_ntp_fltrs(bp);
3275 if (rc)
3276 goto alloc_mem_err;
3277
3278 rc = bnxt_alloc_vnics(bp);
3279 if (rc)
3280 goto alloc_mem_err;
3281 }
3282
3283 bnxt_init_ring_struct(bp);
3284
3285 rc = bnxt_alloc_rx_rings(bp);
3286 if (rc)
3287 goto alloc_mem_err;
3288
3289 rc = bnxt_alloc_tx_rings(bp);
3290 if (rc)
3291 goto alloc_mem_err;
3292
3293 rc = bnxt_alloc_cp_rings(bp);
3294 if (rc)
3295 goto alloc_mem_err;
3296
3297 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3298 BNXT_VNIC_UCAST_FLAG;
3299 rc = bnxt_alloc_vnic_attributes(bp);
3300 if (rc)
3301 goto alloc_mem_err;
3302 return 0;
3303
3304 alloc_mem_err:
3305 bnxt_free_mem(bp, true);
3306 return rc;
3307 }
3308
3309 static void bnxt_disable_int(struct bnxt *bp)
3310 {
3311 int i;
3312
3313 if (!bp->bnapi)
3314 return;
3315
3316 for (i = 0; i < bp->cp_nr_rings; i++) {
3317 struct bnxt_napi *bnapi = bp->bnapi[i];
3318 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3319 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3320
3321 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3322 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3323 }
3324 }
3325
3326 static void bnxt_disable_int_sync(struct bnxt *bp)
3327 {
3328 int i;
3329
3330 atomic_inc(&bp->intr_sem);
3331
3332 bnxt_disable_int(bp);
3333 for (i = 0; i < bp->cp_nr_rings; i++)
3334 synchronize_irq(bp->irq_tbl[i].vector);
3335 }
3336
3337 static void bnxt_enable_int(struct bnxt *bp)
3338 {
3339 int i;
3340
3341 atomic_set(&bp->intr_sem, 0);
3342 for (i = 0; i < bp->cp_nr_rings; i++) {
3343 struct bnxt_napi *bnapi = bp->bnapi[i];
3344 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3345
3346 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3347 }
3348 }
3349
3350 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3351 u16 cmpl_ring, u16 target_id)
3352 {
3353 struct input *req = request;
3354
3355 req->req_type = cpu_to_le16(req_type);
3356 req->cmpl_ring = cpu_to_le16(cmpl_ring);
3357 req->target_id = cpu_to_le16(target_id);
3358 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3359 }
3360
3361 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3362 int timeout, bool silent)
3363 {
3364 int i, intr_process, rc, tmo_count;
3365 struct input *req = msg;
3366 u32 *data = msg;
3367 __le32 *resp_len, *valid;
3368 u16 cp_ring_id, len = 0;
3369 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3370 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3371
3372 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3373 memset(resp, 0, PAGE_SIZE);
3374 cp_ring_id = le16_to_cpu(req->cmpl_ring);
3375 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3376
3377 if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3378 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3379 struct hwrm_short_input short_input = {0};
3380
3381 memcpy(short_cmd_req, req, msg_len);
3382 memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3383 msg_len);
3384
3385 short_input.req_type = req->req_type;
3386 short_input.signature =
3387 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3388 short_input.size = cpu_to_le16(msg_len);
3389 short_input.req_addr =
3390 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3391
3392 data = (u32 *)&short_input;
3393 msg_len = sizeof(short_input);
3394
3395 /* Sync memory write before updating doorbell */
3396 wmb();
3397
3398 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3399 }
3400
3401 /* Write request msg to hwrm channel */
3402 __iowrite32_copy(bp->bar0, data, msg_len / 4);
3403
3404 for (i = msg_len; i < max_req_len; i += 4)
3405 writel(0, bp->bar0 + i);
3406
3407 /* currently supports only one outstanding message */
3408 if (intr_process)
3409 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3410
3411 /* Ring channel doorbell */
3412 writel(1, bp->bar0 + 0x100);
3413
3414 if (!timeout)
3415 timeout = DFLT_HWRM_CMD_TIMEOUT;
3416
3417 i = 0;
3418 tmo_count = timeout * 40;
3419 if (intr_process) {
3420 /* Wait until hwrm response cmpl interrupt is processed */
3421 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3422 i++ < tmo_count) {
3423 usleep_range(25, 40);
3424 }
3425
3426 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3427 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3428 le16_to_cpu(req->req_type));
3429 return -1;
3430 }
3431 } else {
3432 /* Check if response len is updated */
3433 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3434 for (i = 0; i < tmo_count; i++) {
3435 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3436 HWRM_RESP_LEN_SFT;
3437 if (len)
3438 break;
3439 usleep_range(25, 40);
3440 }
3441
3442 if (i >= tmo_count) {
3443 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3444 timeout, le16_to_cpu(req->req_type),
3445 le16_to_cpu(req->seq_id), len);
3446 return -1;
3447 }
3448
3449 /* Last word of resp contains valid bit */
3450 valid = bp->hwrm_cmd_resp_addr + len - 4;
3451 for (i = 0; i < 5; i++) {
3452 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3453 break;
3454 udelay(1);
3455 }
3456
3457 if (i >= 5) {
3458 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3459 timeout, le16_to_cpu(req->req_type),
3460 le16_to_cpu(req->seq_id), len, *valid);
3461 return -1;
3462 }
3463 }
3464
3465 rc = le16_to_cpu(resp->error_code);
3466 if (rc && !silent)
3467 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3468 le16_to_cpu(resp->req_type),
3469 le16_to_cpu(resp->seq_id), rc);
3470 return rc;
3471 }
3472
3473 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3474 {
3475 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3476 }
3477
3478 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3479 int timeout)
3480 {
3481 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3482 }
3483
3484 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3485 {
3486 int rc;
3487
3488 mutex_lock(&bp->hwrm_cmd_lock);
3489 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3490 mutex_unlock(&bp->hwrm_cmd_lock);
3491 return rc;
3492 }
3493
3494 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3495 int timeout)
3496 {
3497 int rc;
3498
3499 mutex_lock(&bp->hwrm_cmd_lock);
3500 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3501 mutex_unlock(&bp->hwrm_cmd_lock);
3502 return rc;
3503 }
3504
3505 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3506 int bmap_size)
3507 {
3508 struct hwrm_func_drv_rgtr_input req = {0};
3509 DECLARE_BITMAP(async_events_bmap, 256);
3510 u32 *events = (u32 *)async_events_bmap;
3511 int i;
3512
3513 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3514
3515 req.enables =
3516 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3517
3518 memset(async_events_bmap, 0, sizeof(async_events_bmap));
3519 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3520 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3521
3522 if (bmap && bmap_size) {
3523 for (i = 0; i < bmap_size; i++) {
3524 if (test_bit(i, bmap))
3525 __set_bit(i, async_events_bmap);
3526 }
3527 }
3528
3529 for (i = 0; i < 8; i++)
3530 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3531
3532 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3533 }
3534
3535 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3536 {
3537 struct hwrm_func_drv_rgtr_input req = {0};
3538
3539 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3540
3541 req.enables =
3542 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3543 FUNC_DRV_RGTR_REQ_ENABLES_VER);
3544
3545 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3546 req.ver_maj = DRV_VER_MAJ;
3547 req.ver_min = DRV_VER_MIN;
3548 req.ver_upd = DRV_VER_UPD;
3549
3550 if (BNXT_PF(bp)) {
3551 u32 data[8];
3552 int i;
3553
3554 memset(data, 0, sizeof(data));
3555 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3556 u16 cmd = bnxt_vf_req_snif[i];
3557 unsigned int bit, idx;
3558
3559 idx = cmd / 32;
3560 bit = cmd % 32;
3561 data[idx] |= 1 << bit;
3562 }
3563
3564 for (i = 0; i < 8; i++)
3565 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3566
3567 req.enables |=
3568 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3569 }
3570
3571 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3572 }
3573
3574 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3575 {
3576 struct hwrm_func_drv_unrgtr_input req = {0};
3577
3578 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3579 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3580 }
3581
3582 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3583 {
3584 u32 rc = 0;
3585 struct hwrm_tunnel_dst_port_free_input req = {0};
3586
3587 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3588 req.tunnel_type = tunnel_type;
3589
3590 switch (tunnel_type) {
3591 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3592 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3593 break;
3594 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3595 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3596 break;
3597 default:
3598 break;
3599 }
3600
3601 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3602 if (rc)
3603 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3604 rc);
3605 return rc;
3606 }
3607
3608 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3609 u8 tunnel_type)
3610 {
3611 u32 rc = 0;
3612 struct hwrm_tunnel_dst_port_alloc_input req = {0};
3613 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3614
3615 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3616
3617 req.tunnel_type = tunnel_type;
3618 req.tunnel_dst_port_val = port;
3619
3620 mutex_lock(&bp->hwrm_cmd_lock);
3621 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3622 if (rc) {
3623 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3624 rc);
3625 goto err_out;
3626 }
3627
3628 switch (tunnel_type) {
3629 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3630 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3631 break;
3632 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3633 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3634 break;
3635 default:
3636 break;
3637 }
3638
3639 err_out:
3640 mutex_unlock(&bp->hwrm_cmd_lock);
3641 return rc;
3642 }
3643
3644 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3645 {
3646 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3647 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3648
3649 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3650 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3651
3652 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3653 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3654 req.mask = cpu_to_le32(vnic->rx_mask);
3655 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3656 }
3657
3658 #ifdef CONFIG_RFS_ACCEL
3659 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3660 struct bnxt_ntuple_filter *fltr)
3661 {
3662 struct hwrm_cfa_ntuple_filter_free_input req = {0};
3663
3664 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3665 req.ntuple_filter_id = fltr->filter_id;
3666 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3667 }
3668
3669 #define BNXT_NTP_FLTR_FLAGS \
3670 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
3671 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
3672 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
3673 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
3674 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
3675 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
3676 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
3677 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
3678 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
3679 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
3680 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
3681 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
3682 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
3683 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3684
3685 #define BNXT_NTP_TUNNEL_FLTR_FLAG \
3686 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3687
3688 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3689 struct bnxt_ntuple_filter *fltr)
3690 {
3691 int rc = 0;
3692 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3693 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3694 bp->hwrm_cmd_resp_addr;
3695 struct flow_keys *keys = &fltr->fkeys;
3696 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3697
3698 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3699 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3700
3701 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3702
3703 req.ethertype = htons(ETH_P_IP);
3704 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3705 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3706 req.ip_protocol = keys->basic.ip_proto;
3707
3708 if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3709 int i;
3710
3711 req.ethertype = htons(ETH_P_IPV6);
3712 req.ip_addr_type =
3713 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3714 *(struct in6_addr *)&req.src_ipaddr[0] =
3715 keys->addrs.v6addrs.src;
3716 *(struct in6_addr *)&req.dst_ipaddr[0] =
3717 keys->addrs.v6addrs.dst;
3718 for (i = 0; i < 4; i++) {
3719 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3720 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3721 }
3722 } else {
3723 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3724 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3725 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3726 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3727 }
3728 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3729 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3730 req.tunnel_type =
3731 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3732 }
3733
3734 req.src_port = keys->ports.src;
3735 req.src_port_mask = cpu_to_be16(0xffff);
3736 req.dst_port = keys->ports.dst;
3737 req.dst_port_mask = cpu_to_be16(0xffff);
3738
3739 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3740 mutex_lock(&bp->hwrm_cmd_lock);
3741 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3742 if (!rc)
3743 fltr->filter_id = resp->ntuple_filter_id;
3744 mutex_unlock(&bp->hwrm_cmd_lock);
3745 return rc;
3746 }
3747 #endif
3748
3749 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3750 u8 *mac_addr)
3751 {
3752 u32 rc = 0;
3753 struct hwrm_cfa_l2_filter_alloc_input req = {0};
3754 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3755
3756 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3757 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3758 if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3759 req.flags |=
3760 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3761 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3762 req.enables =
3763 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3764 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3765 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3766 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3767 req.l2_addr_mask[0] = 0xff;
3768 req.l2_addr_mask[1] = 0xff;
3769 req.l2_addr_mask[2] = 0xff;
3770 req.l2_addr_mask[3] = 0xff;
3771 req.l2_addr_mask[4] = 0xff;
3772 req.l2_addr_mask[5] = 0xff;
3773
3774 mutex_lock(&bp->hwrm_cmd_lock);
3775 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3776 if (!rc)
3777 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3778 resp->l2_filter_id;
3779 mutex_unlock(&bp->hwrm_cmd_lock);
3780 return rc;
3781 }
3782
3783 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3784 {
3785 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3786 int rc = 0;
3787
3788 /* Any associated ntuple filters will also be cleared by firmware. */
3789 mutex_lock(&bp->hwrm_cmd_lock);
3790 for (i = 0; i < num_of_vnics; i++) {
3791 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3792
3793 for (j = 0; j < vnic->uc_filter_count; j++) {
3794 struct hwrm_cfa_l2_filter_free_input req = {0};
3795
3796 bnxt_hwrm_cmd_hdr_init(bp, &req,
3797 HWRM_CFA_L2_FILTER_FREE, -1, -1);
3798
3799 req.l2_filter_id = vnic->fw_l2_filter_id[j];
3800
3801 rc = _hwrm_send_message(bp, &req, sizeof(req),
3802 HWRM_CMD_TIMEOUT);
3803 }
3804 vnic->uc_filter_count = 0;
3805 }
3806 mutex_unlock(&bp->hwrm_cmd_lock);
3807
3808 return rc;
3809 }
3810
3811 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3812 {
3813 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3814 struct hwrm_vnic_tpa_cfg_input req = {0};
3815
3816 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3817
3818 if (tpa_flags) {
3819 u16 mss = bp->dev->mtu - 40;
3820 u32 nsegs, n, segs = 0, flags;
3821
3822 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3823 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3824 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3825 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3826 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3827 if (tpa_flags & BNXT_FLAG_GRO)
3828 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3829
3830 req.flags = cpu_to_le32(flags);
3831
3832 req.enables =
3833 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3834 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3835 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3836
3837 /* Number of segs are log2 units, and first packet is not
3838 * included as part of this units.
3839 */
3840 if (mss <= BNXT_RX_PAGE_SIZE) {
3841 n = BNXT_RX_PAGE_SIZE / mss;
3842 nsegs = (MAX_SKB_FRAGS - 1) * n;
3843 } else {
3844 n = mss / BNXT_RX_PAGE_SIZE;
3845 if (mss & (BNXT_RX_PAGE_SIZE - 1))
3846 n++;
3847 nsegs = (MAX_SKB_FRAGS - n) / n;
3848 }
3849
3850 segs = ilog2(nsegs);
3851 req.max_agg_segs = cpu_to_le16(segs);
3852 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3853
3854 req.min_agg_len = cpu_to_le32(512);
3855 }
3856 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3857
3858 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3859 }
3860
3861 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3862 {
3863 u32 i, j, max_rings;
3864 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3865 struct hwrm_vnic_rss_cfg_input req = {0};
3866
3867 if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3868 return 0;
3869
3870 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3871 if (set_rss) {
3872 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3873 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3874 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3875 max_rings = bp->rx_nr_rings - 1;
3876 else
3877 max_rings = bp->rx_nr_rings;
3878 } else {
3879 max_rings = 1;
3880 }
3881
3882 /* Fill the RSS indirection table with ring group ids */
3883 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3884 if (j == max_rings)
3885 j = 0;
3886 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3887 }
3888
3889 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3890 req.hash_key_tbl_addr =
3891 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3892 }
3893 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3894 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3895 }
3896
3897 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3898 {
3899 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3900 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3901
3902 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3903 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3904 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3905 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3906 req.enables =
3907 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3908 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3909 /* thresholds not implemented in firmware yet */
3910 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3911 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3912 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3913 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3914 }
3915
3916 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3917 u16 ctx_idx)
3918 {
3919 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3920
3921 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3922 req.rss_cos_lb_ctx_id =
3923 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3924
3925 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3926 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3927 }
3928
3929 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3930 {
3931 int i, j;
3932
3933 for (i = 0; i < bp->nr_vnics; i++) {
3934 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3935
3936 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3937 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3938 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3939 }
3940 }
3941 bp->rsscos_nr_ctxs = 0;
3942 }
3943
3944 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3945 {
3946 int rc;
3947 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3948 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3949 bp->hwrm_cmd_resp_addr;
3950
3951 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3952 -1);
3953
3954 mutex_lock(&bp->hwrm_cmd_lock);
3955 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3956 if (!rc)
3957 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3958 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3959 mutex_unlock(&bp->hwrm_cmd_lock);
3960
3961 return rc;
3962 }
3963
3964 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3965 {
3966 unsigned int ring = 0, grp_idx;
3967 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3968 struct hwrm_vnic_cfg_input req = {0};
3969 u16 def_vlan = 0;
3970
3971 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3972
3973 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3974 /* Only RSS support for now TBD: COS & LB */
3975 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3976 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3977 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3978 VNIC_CFG_REQ_ENABLES_MRU);
3979 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3980 req.rss_rule =
3981 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3982 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3983 VNIC_CFG_REQ_ENABLES_MRU);
3984 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3985 } else {
3986 req.rss_rule = cpu_to_le16(0xffff);
3987 }
3988
3989 if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3990 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3991 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3992 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3993 } else {
3994 req.cos_rule = cpu_to_le16(0xffff);
3995 }
3996
3997 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3998 ring = 0;
3999 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4000 ring = vnic_id - 1;
4001 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4002 ring = bp->rx_nr_rings - 1;
4003
4004 grp_idx = bp->rx_ring[ring].bnapi->index;
4005 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4006 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4007
4008 req.lb_rule = cpu_to_le16(0xffff);
4009 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4010 VLAN_HLEN);
4011
4012 #ifdef CONFIG_BNXT_SRIOV
4013 if (BNXT_VF(bp))
4014 def_vlan = bp->vf.vlan;
4015 #endif
4016 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4017 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4018 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4019 req.flags |=
4020 cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
4021
4022 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4023 }
4024
4025 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4026 {
4027 u32 rc = 0;
4028
4029 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4030 struct hwrm_vnic_free_input req = {0};
4031
4032 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4033 req.vnic_id =
4034 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4035
4036 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4037 if (rc)
4038 return rc;
4039 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4040 }
4041 return rc;
4042 }
4043
4044 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4045 {
4046 u16 i;
4047
4048 for (i = 0; i < bp->nr_vnics; i++)
4049 bnxt_hwrm_vnic_free_one(bp, i);
4050 }
4051
4052 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4053 unsigned int start_rx_ring_idx,
4054 unsigned int nr_rings)
4055 {
4056 int rc = 0;
4057 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4058 struct hwrm_vnic_alloc_input req = {0};
4059 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4060
4061 /* map ring groups to this vnic */
4062 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4063 grp_idx = bp->rx_ring[i].bnapi->index;
4064 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4065 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4066 j, nr_rings);
4067 break;
4068 }
4069 bp->vnic_info[vnic_id].fw_grp_ids[j] =
4070 bp->grp_info[grp_idx].fw_grp_id;
4071 }
4072
4073 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4074 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4075 if (vnic_id == 0)
4076 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4077
4078 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4079
4080 mutex_lock(&bp->hwrm_cmd_lock);
4081 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4082 if (!rc)
4083 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4084 mutex_unlock(&bp->hwrm_cmd_lock);
4085 return rc;
4086 }
4087
4088 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4089 {
4090 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4091 struct hwrm_vnic_qcaps_input req = {0};
4092 int rc;
4093
4094 if (bp->hwrm_spec_code < 0x10600)
4095 return 0;
4096
4097 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4098 mutex_lock(&bp->hwrm_cmd_lock);
4099 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4100 if (!rc) {
4101 if (resp->flags &
4102 cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4103 bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4104 }
4105 mutex_unlock(&bp->hwrm_cmd_lock);
4106 return rc;
4107 }
4108
4109 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4110 {
4111 u16 i;
4112 u32 rc = 0;
4113
4114 mutex_lock(&bp->hwrm_cmd_lock);
4115 for (i = 0; i < bp->rx_nr_rings; i++) {
4116 struct hwrm_ring_grp_alloc_input req = {0};
4117 struct hwrm_ring_grp_alloc_output *resp =
4118 bp->hwrm_cmd_resp_addr;
4119 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4120
4121 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4122
4123 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4124 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4125 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4126 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4127
4128 rc = _hwrm_send_message(bp, &req, sizeof(req),
4129 HWRM_CMD_TIMEOUT);
4130 if (rc)
4131 break;
4132
4133 bp->grp_info[grp_idx].fw_grp_id =
4134 le32_to_cpu(resp->ring_group_id);
4135 }
4136 mutex_unlock(&bp->hwrm_cmd_lock);
4137 return rc;
4138 }
4139
4140 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4141 {
4142 u16 i;
4143 u32 rc = 0;
4144 struct hwrm_ring_grp_free_input req = {0};
4145
4146 if (!bp->grp_info)
4147 return 0;
4148
4149 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4150
4151 mutex_lock(&bp->hwrm_cmd_lock);
4152 for (i = 0; i < bp->cp_nr_rings; i++) {
4153 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4154 continue;
4155 req.ring_group_id =
4156 cpu_to_le32(bp->grp_info[i].fw_grp_id);
4157
4158 rc = _hwrm_send_message(bp, &req, sizeof(req),
4159 HWRM_CMD_TIMEOUT);
4160 if (rc)
4161 break;
4162 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4163 }
4164 mutex_unlock(&bp->hwrm_cmd_lock);
4165 return rc;
4166 }
4167
4168 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4169 struct bnxt_ring_struct *ring,
4170 u32 ring_type, u32 map_index,
4171 u32 stats_ctx_id)
4172 {
4173 int rc = 0, err = 0;
4174 struct hwrm_ring_alloc_input req = {0};
4175 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4176 u16 ring_id;
4177
4178 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4179
4180 req.enables = 0;
4181 if (ring->nr_pages > 1) {
4182 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4183 /* Page size is in log2 units */
4184 req.page_size = BNXT_PAGE_SHIFT;
4185 req.page_tbl_depth = 1;
4186 } else {
4187 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
4188 }
4189 req.fbo = 0;
4190 /* Association of ring index with doorbell index and MSIX number */
4191 req.logical_id = cpu_to_le16(map_index);
4192
4193 switch (ring_type) {
4194 case HWRM_RING_ALLOC_TX:
4195 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4196 /* Association of transmit ring with completion ring */
4197 req.cmpl_ring_id =
4198 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
4199 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4200 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4201 req.queue_id = cpu_to_le16(ring->queue_id);
4202 break;
4203 case HWRM_RING_ALLOC_RX:
4204 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4205 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4206 break;
4207 case HWRM_RING_ALLOC_AGG:
4208 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4209 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4210 break;
4211 case HWRM_RING_ALLOC_CMPL:
4212 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4213 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4214 if (bp->flags & BNXT_FLAG_USING_MSIX)
4215 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4216 break;
4217 default:
4218 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4219 ring_type);
4220 return -1;
4221 }
4222
4223 mutex_lock(&bp->hwrm_cmd_lock);
4224 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4225 err = le16_to_cpu(resp->error_code);
4226 ring_id = le16_to_cpu(resp->ring_id);
4227 mutex_unlock(&bp->hwrm_cmd_lock);
4228
4229 if (rc || err) {
4230 switch (ring_type) {
4231 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4232 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4233 rc, err);
4234 return -1;
4235
4236 case RING_FREE_REQ_RING_TYPE_RX:
4237 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4238 rc, err);
4239 return -1;
4240
4241 case RING_FREE_REQ_RING_TYPE_TX:
4242 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4243 rc, err);
4244 return -1;
4245
4246 default:
4247 netdev_err(bp->dev, "Invalid ring\n");
4248 return -1;
4249 }
4250 }
4251 ring->fw_ring_id = ring_id;
4252 return rc;
4253 }
4254
4255 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4256 {
4257 int rc;
4258
4259 if (BNXT_PF(bp)) {
4260 struct hwrm_func_cfg_input req = {0};
4261
4262 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4263 req.fid = cpu_to_le16(0xffff);
4264 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4265 req.async_event_cr = cpu_to_le16(idx);
4266 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4267 } else {
4268 struct hwrm_func_vf_cfg_input req = {0};
4269
4270 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4271 req.enables =
4272 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4273 req.async_event_cr = cpu_to_le16(idx);
4274 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4275 }
4276 return rc;
4277 }
4278
4279 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4280 {
4281 int i, rc = 0;
4282
4283 for (i = 0; i < bp->cp_nr_rings; i++) {
4284 struct bnxt_napi *bnapi = bp->bnapi[i];
4285 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4286 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4287
4288 cpr->cp_doorbell = bp->bar1 + i * 0x80;
4289 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4290 INVALID_STATS_CTX_ID);
4291 if (rc)
4292 goto err_out;
4293 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4294 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4295
4296 if (!i) {
4297 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4298 if (rc)
4299 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4300 }
4301 }
4302
4303 for (i = 0; i < bp->tx_nr_rings; i++) {
4304 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4305 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4306 u32 map_idx = txr->bnapi->index;
4307 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4308
4309 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4310 map_idx, fw_stats_ctx);
4311 if (rc)
4312 goto err_out;
4313 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4314 }
4315
4316 for (i = 0; i < bp->rx_nr_rings; i++) {
4317 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4318 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4319 u32 map_idx = rxr->bnapi->index;
4320
4321 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4322 map_idx, INVALID_STATS_CTX_ID);
4323 if (rc)
4324 goto err_out;
4325 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4326 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4327 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4328 }
4329
4330 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4331 for (i = 0; i < bp->rx_nr_rings; i++) {
4332 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4333 struct bnxt_ring_struct *ring =
4334 &rxr->rx_agg_ring_struct;
4335 u32 grp_idx = rxr->bnapi->index;
4336 u32 map_idx = grp_idx + bp->rx_nr_rings;
4337
4338 rc = hwrm_ring_alloc_send_msg(bp, ring,
4339 HWRM_RING_ALLOC_AGG,
4340 map_idx,
4341 INVALID_STATS_CTX_ID);
4342 if (rc)
4343 goto err_out;
4344
4345 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4346 writel(DB_KEY_RX | rxr->rx_agg_prod,
4347 rxr->rx_agg_doorbell);
4348 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4349 }
4350 }
4351 err_out:
4352 return rc;
4353 }
4354
4355 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4356 struct bnxt_ring_struct *ring,
4357 u32 ring_type, int cmpl_ring_id)
4358 {
4359 int rc;
4360 struct hwrm_ring_free_input req = {0};
4361 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4362 u16 error_code;
4363
4364 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4365 req.ring_type = ring_type;
4366 req.ring_id = cpu_to_le16(ring->fw_ring_id);
4367
4368 mutex_lock(&bp->hwrm_cmd_lock);
4369 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4370 error_code = le16_to_cpu(resp->error_code);
4371 mutex_unlock(&bp->hwrm_cmd_lock);
4372
4373 if (rc || error_code) {
4374 switch (ring_type) {
4375 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4376 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4377 rc);
4378 return rc;
4379 case RING_FREE_REQ_RING_TYPE_RX:
4380 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4381 rc);
4382 return rc;
4383 case RING_FREE_REQ_RING_TYPE_TX:
4384 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4385 rc);
4386 return rc;
4387 default:
4388 netdev_err(bp->dev, "Invalid ring\n");
4389 return -1;
4390 }
4391 }
4392 return 0;
4393 }
4394
4395 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4396 {
4397 int i;
4398
4399 if (!bp->bnapi)
4400 return;
4401
4402 for (i = 0; i < bp->tx_nr_rings; i++) {
4403 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4404 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4405 u32 grp_idx = txr->bnapi->index;
4406 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4407
4408 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4409 hwrm_ring_free_send_msg(bp, ring,
4410 RING_FREE_REQ_RING_TYPE_TX,
4411 close_path ? cmpl_ring_id :
4412 INVALID_HW_RING_ID);
4413 ring->fw_ring_id = INVALID_HW_RING_ID;
4414 }
4415 }
4416
4417 for (i = 0; i < bp->rx_nr_rings; i++) {
4418 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4419 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4420 u32 grp_idx = rxr->bnapi->index;
4421 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4422
4423 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4424 hwrm_ring_free_send_msg(bp, ring,
4425 RING_FREE_REQ_RING_TYPE_RX,
4426 close_path ? cmpl_ring_id :
4427 INVALID_HW_RING_ID);
4428 ring->fw_ring_id = INVALID_HW_RING_ID;
4429 bp->grp_info[grp_idx].rx_fw_ring_id =
4430 INVALID_HW_RING_ID;
4431 }
4432 }
4433
4434 for (i = 0; i < bp->rx_nr_rings; i++) {
4435 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4436 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4437 u32 grp_idx = rxr->bnapi->index;
4438 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4439
4440 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4441 hwrm_ring_free_send_msg(bp, ring,
4442 RING_FREE_REQ_RING_TYPE_RX,
4443 close_path ? cmpl_ring_id :
4444 INVALID_HW_RING_ID);
4445 ring->fw_ring_id = INVALID_HW_RING_ID;
4446 bp->grp_info[grp_idx].agg_fw_ring_id =
4447 INVALID_HW_RING_ID;
4448 }
4449 }
4450
4451 /* The completion rings are about to be freed. After that the
4452 * IRQ doorbell will not work anymore. So we need to disable
4453 * IRQ here.
4454 */
4455 bnxt_disable_int_sync(bp);
4456
4457 for (i = 0; i < bp->cp_nr_rings; i++) {
4458 struct bnxt_napi *bnapi = bp->bnapi[i];
4459 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4460 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4461
4462 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4463 hwrm_ring_free_send_msg(bp, ring,
4464 RING_FREE_REQ_RING_TYPE_L2_CMPL,
4465 INVALID_HW_RING_ID);
4466 ring->fw_ring_id = INVALID_HW_RING_ID;
4467 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4468 }
4469 }
4470 }
4471
4472 /* Caller must hold bp->hwrm_cmd_lock */
4473 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4474 {
4475 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4476 struct hwrm_func_qcfg_input req = {0};
4477 int rc;
4478
4479 if (bp->hwrm_spec_code < 0x10601)
4480 return 0;
4481
4482 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4483 req.fid = cpu_to_le16(fid);
4484 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4485 if (!rc)
4486 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4487
4488 return rc;
4489 }
4490
4491 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4492 {
4493 struct hwrm_func_cfg_input req = {0};
4494 int rc;
4495
4496 if (bp->hwrm_spec_code < 0x10601)
4497 return 0;
4498
4499 if (BNXT_VF(bp))
4500 return 0;
4501
4502 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4503 req.fid = cpu_to_le16(0xffff);
4504 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4505 req.num_tx_rings = cpu_to_le16(*tx_rings);
4506 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4507 if (rc)
4508 return rc;
4509
4510 mutex_lock(&bp->hwrm_cmd_lock);
4511 rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4512 mutex_unlock(&bp->hwrm_cmd_lock);
4513 if (!rc)
4514 bp->tx_reserved_rings = *tx_rings;
4515 return rc;
4516 }
4517
4518 static int bnxt_hwrm_check_tx_rings(struct bnxt *bp, int tx_rings)
4519 {
4520 struct hwrm_func_cfg_input req = {0};
4521 int rc;
4522
4523 if (bp->hwrm_spec_code < 0x10801)
4524 return 0;
4525
4526 if (BNXT_VF(bp))
4527 return 0;
4528
4529 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4530 req.fid = cpu_to_le16(0xffff);
4531 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST);
4532 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4533 req.num_tx_rings = cpu_to_le16(tx_rings);
4534 rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4535 if (rc)
4536 return -ENOMEM;
4537 return 0;
4538 }
4539
4540 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4541 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4542 {
4543 u16 val, tmr, max, flags;
4544
4545 max = hw_coal->bufs_per_record * 128;
4546 if (hw_coal->budget)
4547 max = hw_coal->bufs_per_record * hw_coal->budget;
4548
4549 val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4550 req->num_cmpl_aggr_int = cpu_to_le16(val);
4551
4552 /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4553 val = min_t(u16, val, 63);
4554 req->num_cmpl_dma_aggr = cpu_to_le16(val);
4555
4556 /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4557 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
4558 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4559
4560 tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4561 tmr = max_t(u16, tmr, 1);
4562 req->int_lat_tmr_max = cpu_to_le16(tmr);
4563
4564 /* min timer set to 1/2 of interrupt timer */
4565 val = tmr / 2;
4566 req->int_lat_tmr_min = cpu_to_le16(val);
4567
4568 /* buf timer set to 1/4 of interrupt timer */
4569 val = max_t(u16, tmr / 4, 1);
4570 req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4571
4572 tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4573 tmr = max_t(u16, tmr, 1);
4574 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4575
4576 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4577 if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4578 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4579 req->flags = cpu_to_le16(flags);
4580 }
4581
4582 int bnxt_hwrm_set_coal(struct bnxt *bp)
4583 {
4584 int i, rc = 0;
4585 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4586 req_tx = {0}, *req;
4587
4588 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4589 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4590 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4591 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4592
4593 bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4594 bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4595
4596 mutex_lock(&bp->hwrm_cmd_lock);
4597 for (i = 0; i < bp->cp_nr_rings; i++) {
4598 struct bnxt_napi *bnapi = bp->bnapi[i];
4599
4600 req = &req_rx;
4601 if (!bnapi->rx_ring)
4602 req = &req_tx;
4603 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4604
4605 rc = _hwrm_send_message(bp, req, sizeof(*req),
4606 HWRM_CMD_TIMEOUT);
4607 if (rc)
4608 break;
4609 }
4610 mutex_unlock(&bp->hwrm_cmd_lock);
4611 return rc;
4612 }
4613
4614 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4615 {
4616 int rc = 0, i;
4617 struct hwrm_stat_ctx_free_input req = {0};
4618
4619 if (!bp->bnapi)
4620 return 0;
4621
4622 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4623 return 0;
4624
4625 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4626
4627 mutex_lock(&bp->hwrm_cmd_lock);
4628 for (i = 0; i < bp->cp_nr_rings; i++) {
4629 struct bnxt_napi *bnapi = bp->bnapi[i];
4630 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4631
4632 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4633 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4634
4635 rc = _hwrm_send_message(bp, &req, sizeof(req),
4636 HWRM_CMD_TIMEOUT);
4637 if (rc)
4638 break;
4639
4640 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4641 }
4642 }
4643 mutex_unlock(&bp->hwrm_cmd_lock);
4644 return rc;
4645 }
4646
4647 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4648 {
4649 int rc = 0, i;
4650 struct hwrm_stat_ctx_alloc_input req = {0};
4651 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4652
4653 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4654 return 0;
4655
4656 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4657
4658 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4659
4660 mutex_lock(&bp->hwrm_cmd_lock);
4661 for (i = 0; i < bp->cp_nr_rings; i++) {
4662 struct bnxt_napi *bnapi = bp->bnapi[i];
4663 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4664
4665 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4666
4667 rc = _hwrm_send_message(bp, &req, sizeof(req),
4668 HWRM_CMD_TIMEOUT);
4669 if (rc)
4670 break;
4671
4672 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4673
4674 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4675 }
4676 mutex_unlock(&bp->hwrm_cmd_lock);
4677 return rc;
4678 }
4679
4680 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4681 {
4682 struct hwrm_func_qcfg_input req = {0};
4683 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4684 u16 flags;
4685 int rc;
4686
4687 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4688 req.fid = cpu_to_le16(0xffff);
4689 mutex_lock(&bp->hwrm_cmd_lock);
4690 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4691 if (rc)
4692 goto func_qcfg_exit;
4693
4694 #ifdef CONFIG_BNXT_SRIOV
4695 if (BNXT_VF(bp)) {
4696 struct bnxt_vf_info *vf = &bp->vf;
4697
4698 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4699 }
4700 #endif
4701 flags = le16_to_cpu(resp->flags);
4702 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
4703 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
4704 bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
4705 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
4706 bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
4707 }
4708 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
4709 bp->flags |= BNXT_FLAG_MULTI_HOST;
4710
4711 switch (resp->port_partition_type) {
4712 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4713 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4714 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4715 bp->port_partition_type = resp->port_partition_type;
4716 break;
4717 }
4718 if (bp->hwrm_spec_code < 0x10707 ||
4719 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
4720 bp->br_mode = BRIDGE_MODE_VEB;
4721 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
4722 bp->br_mode = BRIDGE_MODE_VEPA;
4723 else
4724 bp->br_mode = BRIDGE_MODE_UNDEF;
4725
4726 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
4727 if (!bp->max_mtu)
4728 bp->max_mtu = BNXT_MAX_MTU;
4729
4730 func_qcfg_exit:
4731 mutex_unlock(&bp->hwrm_cmd_lock);
4732 return rc;
4733 }
4734
4735 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4736 {
4737 int rc = 0;
4738 struct hwrm_func_qcaps_input req = {0};
4739 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4740
4741 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4742 req.fid = cpu_to_le16(0xffff);
4743
4744 mutex_lock(&bp->hwrm_cmd_lock);
4745 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4746 if (rc)
4747 goto hwrm_func_qcaps_exit;
4748
4749 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4750 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4751 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4752 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4753
4754 bp->tx_push_thresh = 0;
4755 if (resp->flags &
4756 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4757 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4758
4759 if (BNXT_PF(bp)) {
4760 struct bnxt_pf_info *pf = &bp->pf;
4761
4762 pf->fw_fid = le16_to_cpu(resp->fid);
4763 pf->port_id = le16_to_cpu(resp->port_id);
4764 bp->dev->dev_port = pf->port_id;
4765 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4766 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4767 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4768 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4769 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4770 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4771 if (!pf->max_hw_ring_grps)
4772 pf->max_hw_ring_grps = pf->max_tx_rings;
4773 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4774 pf->max_vnics = le16_to_cpu(resp->max_vnics);
4775 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4776 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4777 pf->max_vfs = le16_to_cpu(resp->max_vfs);
4778 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4779 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4780 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4781 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4782 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4783 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4784 if (resp->flags &
4785 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
4786 bp->flags |= BNXT_FLAG_WOL_CAP;
4787 } else {
4788 #ifdef CONFIG_BNXT_SRIOV
4789 struct bnxt_vf_info *vf = &bp->vf;
4790
4791 vf->fw_fid = le16_to_cpu(resp->fid);
4792
4793 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4794 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4795 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4796 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4797 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4798 if (!vf->max_hw_ring_grps)
4799 vf->max_hw_ring_grps = vf->max_tx_rings;
4800 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4801 vf->max_vnics = le16_to_cpu(resp->max_vnics);
4802 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4803
4804 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4805 #endif
4806 }
4807
4808 hwrm_func_qcaps_exit:
4809 mutex_unlock(&bp->hwrm_cmd_lock);
4810 return rc;
4811 }
4812
4813 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4814 {
4815 struct hwrm_func_reset_input req = {0};
4816
4817 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4818 req.enables = 0;
4819
4820 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4821 }
4822
4823 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4824 {
4825 int rc = 0;
4826 struct hwrm_queue_qportcfg_input req = {0};
4827 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4828 u8 i, *qptr;
4829
4830 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4831
4832 mutex_lock(&bp->hwrm_cmd_lock);
4833 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4834 if (rc)
4835 goto qportcfg_exit;
4836
4837 if (!resp->max_configurable_queues) {
4838 rc = -EINVAL;
4839 goto qportcfg_exit;
4840 }
4841 bp->max_tc = resp->max_configurable_queues;
4842 bp->max_lltc = resp->max_configurable_lossless_queues;
4843 if (bp->max_tc > BNXT_MAX_QUEUE)
4844 bp->max_tc = BNXT_MAX_QUEUE;
4845
4846 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4847 bp->max_tc = 1;
4848
4849 if (bp->max_lltc > bp->max_tc)
4850 bp->max_lltc = bp->max_tc;
4851
4852 qptr = &resp->queue_id0;
4853 for (i = 0; i < bp->max_tc; i++) {
4854 bp->q_info[i].queue_id = *qptr++;
4855 bp->q_info[i].queue_profile = *qptr++;
4856 }
4857
4858 qportcfg_exit:
4859 mutex_unlock(&bp->hwrm_cmd_lock);
4860 return rc;
4861 }
4862
4863 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4864 {
4865 int rc;
4866 struct hwrm_ver_get_input req = {0};
4867 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4868 u32 dev_caps_cfg;
4869
4870 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4871 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4872 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4873 req.hwrm_intf_min = HWRM_VERSION_MINOR;
4874 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4875 mutex_lock(&bp->hwrm_cmd_lock);
4876 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4877 if (rc)
4878 goto hwrm_ver_get_exit;
4879
4880 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4881
4882 bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4883 resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4884 if (resp->hwrm_intf_maj < 1) {
4885 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4886 resp->hwrm_intf_maj, resp->hwrm_intf_min,
4887 resp->hwrm_intf_upd);
4888 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4889 }
4890 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
4891 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4892 resp->hwrm_fw_rsvd);
4893
4894 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4895 if (!bp->hwrm_cmd_timeout)
4896 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4897
4898 if (resp->hwrm_intf_maj >= 1)
4899 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4900
4901 bp->chip_num = le16_to_cpu(resp->chip_num);
4902 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4903 !resp->chip_metal)
4904 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4905
4906 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
4907 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
4908 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
4909 bp->flags |= BNXT_FLAG_SHORT_CMD;
4910
4911 hwrm_ver_get_exit:
4912 mutex_unlock(&bp->hwrm_cmd_lock);
4913 return rc;
4914 }
4915
4916 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4917 {
4918 struct hwrm_fw_set_time_input req = {0};
4919 struct tm tm;
4920 time64_t now = ktime_get_real_seconds();
4921
4922 if (bp->hwrm_spec_code < 0x10400)
4923 return -EOPNOTSUPP;
4924
4925 time64_to_tm(now, 0, &tm);
4926 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4927 req.year = cpu_to_le16(1900 + tm.tm_year);
4928 req.month = 1 + tm.tm_mon;
4929 req.day = tm.tm_mday;
4930 req.hour = tm.tm_hour;
4931 req.minute = tm.tm_min;
4932 req.second = tm.tm_sec;
4933 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4934 }
4935
4936 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4937 {
4938 int rc;
4939 struct bnxt_pf_info *pf = &bp->pf;
4940 struct hwrm_port_qstats_input req = {0};
4941
4942 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4943 return 0;
4944
4945 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4946 req.port_id = cpu_to_le16(pf->port_id);
4947 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4948 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4949 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4950 return rc;
4951 }
4952
4953 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4954 {
4955 if (bp->vxlan_port_cnt) {
4956 bnxt_hwrm_tunnel_dst_port_free(
4957 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4958 }
4959 bp->vxlan_port_cnt = 0;
4960 if (bp->nge_port_cnt) {
4961 bnxt_hwrm_tunnel_dst_port_free(
4962 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4963 }
4964 bp->nge_port_cnt = 0;
4965 }
4966
4967 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4968 {
4969 int rc, i;
4970 u32 tpa_flags = 0;
4971
4972 if (set_tpa)
4973 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4974 for (i = 0; i < bp->nr_vnics; i++) {
4975 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4976 if (rc) {
4977 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4978 i, rc);
4979 return rc;
4980 }
4981 }
4982 return 0;
4983 }
4984
4985 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4986 {
4987 int i;
4988
4989 for (i = 0; i < bp->nr_vnics; i++)
4990 bnxt_hwrm_vnic_set_rss(bp, i, false);
4991 }
4992
4993 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4994 bool irq_re_init)
4995 {
4996 if (bp->vnic_info) {
4997 bnxt_hwrm_clear_vnic_filter(bp);
4998 /* clear all RSS setting before free vnic ctx */
4999 bnxt_hwrm_clear_vnic_rss(bp);
5000 bnxt_hwrm_vnic_ctx_free(bp);
5001 /* before free the vnic, undo the vnic tpa settings */
5002 if (bp->flags & BNXT_FLAG_TPA)
5003 bnxt_set_tpa(bp, false);
5004 bnxt_hwrm_vnic_free(bp);
5005 }
5006 bnxt_hwrm_ring_free(bp, close_path);
5007 bnxt_hwrm_ring_grp_free(bp);
5008 if (irq_re_init) {
5009 bnxt_hwrm_stat_ctx_free(bp);
5010 bnxt_hwrm_free_tunnel_ports(bp);
5011 }
5012 }
5013
5014 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5015 {
5016 struct hwrm_func_cfg_input req = {0};
5017 int rc;
5018
5019 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5020 req.fid = cpu_to_le16(0xffff);
5021 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5022 if (br_mode == BRIDGE_MODE_VEB)
5023 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5024 else if (br_mode == BRIDGE_MODE_VEPA)
5025 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5026 else
5027 return -EINVAL;
5028 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5029 if (rc)
5030 rc = -EIO;
5031 return rc;
5032 }
5033
5034 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5035 {
5036 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5037 int rc;
5038
5039 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5040 goto skip_rss_ctx;
5041
5042 /* allocate context for vnic */
5043 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5044 if (rc) {
5045 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5046 vnic_id, rc);
5047 goto vnic_setup_err;
5048 }
5049 bp->rsscos_nr_ctxs++;
5050
5051 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5052 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5053 if (rc) {
5054 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5055 vnic_id, rc);
5056 goto vnic_setup_err;
5057 }
5058 bp->rsscos_nr_ctxs++;
5059 }
5060
5061 skip_rss_ctx:
5062 /* configure default vnic, ring grp */
5063 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5064 if (rc) {
5065 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5066 vnic_id, rc);
5067 goto vnic_setup_err;
5068 }
5069
5070 /* Enable RSS hashing on vnic */
5071 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5072 if (rc) {
5073 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5074 vnic_id, rc);
5075 goto vnic_setup_err;
5076 }
5077
5078 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5079 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5080 if (rc) {
5081 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5082 vnic_id, rc);
5083 }
5084 }
5085
5086 vnic_setup_err:
5087 return rc;
5088 }
5089
5090 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5091 {
5092 #ifdef CONFIG_RFS_ACCEL
5093 int i, rc = 0;
5094
5095 for (i = 0; i < bp->rx_nr_rings; i++) {
5096 struct bnxt_vnic_info *vnic;
5097 u16 vnic_id = i + 1;
5098 u16 ring_id = i;
5099
5100 if (vnic_id >= bp->nr_vnics)
5101 break;
5102
5103 vnic = &bp->vnic_info[vnic_id];
5104 vnic->flags |= BNXT_VNIC_RFS_FLAG;
5105 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5106 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5107 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5108 if (rc) {
5109 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5110 vnic_id, rc);
5111 break;
5112 }
5113 rc = bnxt_setup_vnic(bp, vnic_id);
5114 if (rc)
5115 break;
5116 }
5117 return rc;
5118 #else
5119 return 0;
5120 #endif
5121 }
5122
5123 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5124 static bool bnxt_promisc_ok(struct bnxt *bp)
5125 {
5126 #ifdef CONFIG_BNXT_SRIOV
5127 if (BNXT_VF(bp) && !bp->vf.vlan)
5128 return false;
5129 #endif
5130 return true;
5131 }
5132
5133 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5134 {
5135 unsigned int rc = 0;
5136
5137 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5138 if (rc) {
5139 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5140 rc);
5141 return rc;
5142 }
5143
5144 rc = bnxt_hwrm_vnic_cfg(bp, 1);
5145 if (rc) {
5146 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5147 rc);
5148 return rc;
5149 }
5150 return rc;
5151 }
5152
5153 static int bnxt_cfg_rx_mode(struct bnxt *);
5154 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5155
5156 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5157 {
5158 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5159 int rc = 0;
5160 unsigned int rx_nr_rings = bp->rx_nr_rings;
5161
5162 if (irq_re_init) {
5163 rc = bnxt_hwrm_stat_ctx_alloc(bp);
5164 if (rc) {
5165 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5166 rc);
5167 goto err_out;
5168 }
5169 if (bp->tx_reserved_rings != bp->tx_nr_rings) {
5170 int tx = bp->tx_nr_rings;
5171
5172 if (bnxt_hwrm_reserve_tx_rings(bp, &tx) ||
5173 tx < bp->tx_nr_rings) {
5174 rc = -ENOMEM;
5175 goto err_out;
5176 }
5177 }
5178 }
5179
5180 rc = bnxt_hwrm_ring_alloc(bp);
5181 if (rc) {
5182 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5183 goto err_out;
5184 }
5185
5186 rc = bnxt_hwrm_ring_grp_alloc(bp);
5187 if (rc) {
5188 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5189 goto err_out;
5190 }
5191
5192 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5193 rx_nr_rings--;
5194
5195 /* default vnic 0 */
5196 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5197 if (rc) {
5198 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5199 goto err_out;
5200 }
5201
5202 rc = bnxt_setup_vnic(bp, 0);
5203 if (rc)
5204 goto err_out;
5205
5206 if (bp->flags & BNXT_FLAG_RFS) {
5207 rc = bnxt_alloc_rfs_vnics(bp);
5208 if (rc)
5209 goto err_out;
5210 }
5211
5212 if (bp->flags & BNXT_FLAG_TPA) {
5213 rc = bnxt_set_tpa(bp, true);
5214 if (rc)
5215 goto err_out;
5216 }
5217
5218 if (BNXT_VF(bp))
5219 bnxt_update_vf_mac(bp);
5220
5221 /* Filter for default vnic 0 */
5222 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5223 if (rc) {
5224 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5225 goto err_out;
5226 }
5227 vnic->uc_filter_count = 1;
5228
5229 vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5230
5231 if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5232 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5233
5234 if (bp->dev->flags & IFF_ALLMULTI) {
5235 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5236 vnic->mc_list_count = 0;
5237 } else {
5238 u32 mask = 0;
5239
5240 bnxt_mc_list_updated(bp, &mask);
5241 vnic->rx_mask |= mask;
5242 }
5243
5244 rc = bnxt_cfg_rx_mode(bp);
5245 if (rc)
5246 goto err_out;
5247
5248 rc = bnxt_hwrm_set_coal(bp);
5249 if (rc)
5250 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5251 rc);
5252
5253 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5254 rc = bnxt_setup_nitroa0_vnic(bp);
5255 if (rc)
5256 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5257 rc);
5258 }
5259
5260 if (BNXT_VF(bp)) {
5261 bnxt_hwrm_func_qcfg(bp);
5262 netdev_update_features(bp->dev);
5263 }
5264
5265 return 0;
5266
5267 err_out:
5268 bnxt_hwrm_resource_free(bp, 0, true);
5269
5270 return rc;
5271 }
5272
5273 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5274 {
5275 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5276 return 0;
5277 }
5278
5279 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5280 {
5281 bnxt_init_cp_rings(bp);
5282 bnxt_init_rx_rings(bp);
5283 bnxt_init_tx_rings(bp);
5284 bnxt_init_ring_grps(bp, irq_re_init);
5285 bnxt_init_vnics(bp);
5286
5287 return bnxt_init_chip(bp, irq_re_init);
5288 }
5289
5290 static int bnxt_set_real_num_queues(struct bnxt *bp)
5291 {
5292 int rc;
5293 struct net_device *dev = bp->dev;
5294
5295 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5296 bp->tx_nr_rings_xdp);
5297 if (rc)
5298 return rc;
5299
5300 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5301 if (rc)
5302 return rc;
5303
5304 #ifdef CONFIG_RFS_ACCEL
5305 if (bp->flags & BNXT_FLAG_RFS)
5306 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5307 #endif
5308
5309 return rc;
5310 }
5311
5312 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5313 bool shared)
5314 {
5315 int _rx = *rx, _tx = *tx;
5316
5317 if (shared) {
5318 *rx = min_t(int, _rx, max);
5319 *tx = min_t(int, _tx, max);
5320 } else {
5321 if (max < 2)
5322 return -ENOMEM;
5323
5324 while (_rx + _tx > max) {
5325 if (_rx > _tx && _rx > 1)
5326 _rx--;
5327 else if (_tx > 1)
5328 _tx--;
5329 }
5330 *rx = _rx;
5331 *tx = _tx;
5332 }
5333 return 0;
5334 }
5335
5336 static void bnxt_setup_msix(struct bnxt *bp)
5337 {
5338 const int len = sizeof(bp->irq_tbl[0].name);
5339 struct net_device *dev = bp->dev;
5340 int tcs, i;
5341
5342 tcs = netdev_get_num_tc(dev);
5343 if (tcs > 1) {
5344 int i, off, count;
5345
5346 for (i = 0; i < tcs; i++) {
5347 count = bp->tx_nr_rings_per_tc;
5348 off = i * count;
5349 netdev_set_tc_queue(dev, i, count, off);
5350 }
5351 }
5352
5353 for (i = 0; i < bp->cp_nr_rings; i++) {
5354 char *attr;
5355
5356 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5357 attr = "TxRx";
5358 else if (i < bp->rx_nr_rings)
5359 attr = "rx";
5360 else
5361 attr = "tx";
5362
5363 snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5364 i);
5365 bp->irq_tbl[i].handler = bnxt_msix;
5366 }
5367 }
5368
5369 static void bnxt_setup_inta(struct bnxt *bp)
5370 {
5371 const int len = sizeof(bp->irq_tbl[0].name);
5372
5373 if (netdev_get_num_tc(bp->dev))
5374 netdev_reset_tc(bp->dev);
5375
5376 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5377 0);
5378 bp->irq_tbl[0].handler = bnxt_inta;
5379 }
5380
5381 static int bnxt_setup_int_mode(struct bnxt *bp)
5382 {
5383 int rc;
5384
5385 if (bp->flags & BNXT_FLAG_USING_MSIX)
5386 bnxt_setup_msix(bp);
5387 else
5388 bnxt_setup_inta(bp);
5389
5390 rc = bnxt_set_real_num_queues(bp);
5391 return rc;
5392 }
5393
5394 #ifdef CONFIG_RFS_ACCEL
5395 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5396 {
5397 #if defined(CONFIG_BNXT_SRIOV)
5398 if (BNXT_VF(bp))
5399 return bp->vf.max_rsscos_ctxs;
5400 #endif
5401 return bp->pf.max_rsscos_ctxs;
5402 }
5403
5404 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5405 {
5406 #if defined(CONFIG_BNXT_SRIOV)
5407 if (BNXT_VF(bp))
5408 return bp->vf.max_vnics;
5409 #endif
5410 return bp->pf.max_vnics;
5411 }
5412 #endif
5413
5414 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5415 {
5416 #if defined(CONFIG_BNXT_SRIOV)
5417 if (BNXT_VF(bp))
5418 return bp->vf.max_stat_ctxs;
5419 #endif
5420 return bp->pf.max_stat_ctxs;
5421 }
5422
5423 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5424 {
5425 #if defined(CONFIG_BNXT_SRIOV)
5426 if (BNXT_VF(bp))
5427 bp->vf.max_stat_ctxs = max;
5428 else
5429 #endif
5430 bp->pf.max_stat_ctxs = max;
5431 }
5432
5433 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5434 {
5435 #if defined(CONFIG_BNXT_SRIOV)
5436 if (BNXT_VF(bp))
5437 return bp->vf.max_cp_rings;
5438 #endif
5439 return bp->pf.max_cp_rings;
5440 }
5441
5442 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5443 {
5444 #if defined(CONFIG_BNXT_SRIOV)
5445 if (BNXT_VF(bp))
5446 bp->vf.max_cp_rings = max;
5447 else
5448 #endif
5449 bp->pf.max_cp_rings = max;
5450 }
5451
5452 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5453 {
5454 #if defined(CONFIG_BNXT_SRIOV)
5455 if (BNXT_VF(bp))
5456 return min_t(unsigned int, bp->vf.max_irqs,
5457 bp->vf.max_cp_rings);
5458 #endif
5459 return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5460 }
5461
5462 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5463 {
5464 #if defined(CONFIG_BNXT_SRIOV)
5465 if (BNXT_VF(bp))
5466 bp->vf.max_irqs = max_irqs;
5467 else
5468 #endif
5469 bp->pf.max_irqs = max_irqs;
5470 }
5471
5472 static int bnxt_init_msix(struct bnxt *bp)
5473 {
5474 int i, total_vecs, rc = 0, min = 1;
5475 struct msix_entry *msix_ent;
5476
5477 total_vecs = bnxt_get_max_func_irqs(bp);
5478 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5479 if (!msix_ent)
5480 return -ENOMEM;
5481
5482 for (i = 0; i < total_vecs; i++) {
5483 msix_ent[i].entry = i;
5484 msix_ent[i].vector = 0;
5485 }
5486
5487 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5488 min = 2;
5489
5490 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5491 if (total_vecs < 0) {
5492 rc = -ENODEV;
5493 goto msix_setup_exit;
5494 }
5495
5496 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5497 if (bp->irq_tbl) {
5498 for (i = 0; i < total_vecs; i++)
5499 bp->irq_tbl[i].vector = msix_ent[i].vector;
5500
5501 bp->total_irqs = total_vecs;
5502 /* Trim rings based upon num of vectors allocated */
5503 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5504 total_vecs, min == 1);
5505 if (rc)
5506 goto msix_setup_exit;
5507
5508 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5509 bp->cp_nr_rings = (min == 1) ?
5510 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5511 bp->tx_nr_rings + bp->rx_nr_rings;
5512
5513 } else {
5514 rc = -ENOMEM;
5515 goto msix_setup_exit;
5516 }
5517 bp->flags |= BNXT_FLAG_USING_MSIX;
5518 kfree(msix_ent);
5519 return 0;
5520
5521 msix_setup_exit:
5522 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5523 kfree(bp->irq_tbl);
5524 bp->irq_tbl = NULL;
5525 pci_disable_msix(bp->pdev);
5526 kfree(msix_ent);
5527 return rc;
5528 }
5529
5530 static int bnxt_init_inta(struct bnxt *bp)
5531 {
5532 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5533 if (!bp->irq_tbl)
5534 return -ENOMEM;
5535
5536 bp->total_irqs = 1;
5537 bp->rx_nr_rings = 1;
5538 bp->tx_nr_rings = 1;
5539 bp->cp_nr_rings = 1;
5540 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5541 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5542 bp->irq_tbl[0].vector = bp->pdev->irq;
5543 return 0;
5544 }
5545
5546 static int bnxt_init_int_mode(struct bnxt *bp)
5547 {
5548 int rc = 0;
5549
5550 if (bp->flags & BNXT_FLAG_MSIX_CAP)
5551 rc = bnxt_init_msix(bp);
5552
5553 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5554 /* fallback to INTA */
5555 rc = bnxt_init_inta(bp);
5556 }
5557 return rc;
5558 }
5559
5560 static void bnxt_clear_int_mode(struct bnxt *bp)
5561 {
5562 if (bp->flags & BNXT_FLAG_USING_MSIX)
5563 pci_disable_msix(bp->pdev);
5564
5565 kfree(bp->irq_tbl);
5566 bp->irq_tbl = NULL;
5567 bp->flags &= ~BNXT_FLAG_USING_MSIX;
5568 }
5569
5570 static void bnxt_free_irq(struct bnxt *bp)
5571 {
5572 struct bnxt_irq *irq;
5573 int i;
5574
5575 #ifdef CONFIG_RFS_ACCEL
5576 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5577 bp->dev->rx_cpu_rmap = NULL;
5578 #endif
5579 if (!bp->irq_tbl)
5580 return;
5581
5582 for (i = 0; i < bp->cp_nr_rings; i++) {
5583 irq = &bp->irq_tbl[i];
5584 if (irq->requested) {
5585 if (irq->have_cpumask) {
5586 irq_set_affinity_hint(irq->vector, NULL);
5587 free_cpumask_var(irq->cpu_mask);
5588 irq->have_cpumask = 0;
5589 }
5590 free_irq(irq->vector, bp->bnapi[i]);
5591 }
5592
5593 irq->requested = 0;
5594 }
5595 }
5596
5597 static int bnxt_request_irq(struct bnxt *bp)
5598 {
5599 int i, j, rc = 0;
5600 unsigned long flags = 0;
5601 #ifdef CONFIG_RFS_ACCEL
5602 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5603 #endif
5604
5605 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5606 flags = IRQF_SHARED;
5607
5608 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5609 struct bnxt_irq *irq = &bp->irq_tbl[i];
5610 #ifdef CONFIG_RFS_ACCEL
5611 if (rmap && bp->bnapi[i]->rx_ring) {
5612 rc = irq_cpu_rmap_add(rmap, irq->vector);
5613 if (rc)
5614 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5615 j);
5616 j++;
5617 }
5618 #endif
5619 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5620 bp->bnapi[i]);
5621 if (rc)
5622 break;
5623
5624 irq->requested = 1;
5625
5626 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
5627 int numa_node = dev_to_node(&bp->pdev->dev);
5628
5629 irq->have_cpumask = 1;
5630 cpumask_set_cpu(cpumask_local_spread(i, numa_node),
5631 irq->cpu_mask);
5632 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
5633 if (rc) {
5634 netdev_warn(bp->dev,
5635 "Set affinity failed, IRQ = %d\n",
5636 irq->vector);
5637 break;
5638 }
5639 }
5640 }
5641 return rc;
5642 }
5643
5644 static void bnxt_del_napi(struct bnxt *bp)
5645 {
5646 int i;
5647
5648 if (!bp->bnapi)
5649 return;
5650
5651 for (i = 0; i < bp->cp_nr_rings; i++) {
5652 struct bnxt_napi *bnapi = bp->bnapi[i];
5653
5654 napi_hash_del(&bnapi->napi);
5655 netif_napi_del(&bnapi->napi);
5656 }
5657 /* We called napi_hash_del() before netif_napi_del(), we need
5658 * to respect an RCU grace period before freeing napi structures.
5659 */
5660 synchronize_net();
5661 }
5662
5663 static void bnxt_init_napi(struct bnxt *bp)
5664 {
5665 int i;
5666 unsigned int cp_nr_rings = bp->cp_nr_rings;
5667 struct bnxt_napi *bnapi;
5668
5669 if (bp->flags & BNXT_FLAG_USING_MSIX) {
5670 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5671 cp_nr_rings--;
5672 for (i = 0; i < cp_nr_rings; i++) {
5673 bnapi = bp->bnapi[i];
5674 netif_napi_add(bp->dev, &bnapi->napi,
5675 bnxt_poll, 64);
5676 }
5677 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5678 bnapi = bp->bnapi[cp_nr_rings];
5679 netif_napi_add(bp->dev, &bnapi->napi,
5680 bnxt_poll_nitroa0, 64);
5681 }
5682 } else {
5683 bnapi = bp->bnapi[0];
5684 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5685 }
5686 }
5687
5688 static void bnxt_disable_napi(struct bnxt *bp)
5689 {
5690 int i;
5691
5692 if (!bp->bnapi)
5693 return;
5694
5695 for (i = 0; i < bp->cp_nr_rings; i++)
5696 napi_disable(&bp->bnapi[i]->napi);
5697 }
5698
5699 static void bnxt_enable_napi(struct bnxt *bp)
5700 {
5701 int i;
5702
5703 for (i = 0; i < bp->cp_nr_rings; i++) {
5704 bp->bnapi[i]->in_reset = false;
5705 napi_enable(&bp->bnapi[i]->napi);
5706 }
5707 }
5708
5709 void bnxt_tx_disable(struct bnxt *bp)
5710 {
5711 int i;
5712 struct bnxt_tx_ring_info *txr;
5713
5714 if (bp->tx_ring) {
5715 for (i = 0; i < bp->tx_nr_rings; i++) {
5716 txr = &bp->tx_ring[i];
5717 txr->dev_state = BNXT_DEV_STATE_CLOSING;
5718 }
5719 }
5720 /* Stop all TX queues */
5721 netif_tx_disable(bp->dev);
5722 netif_carrier_off(bp->dev);
5723 }
5724
5725 void bnxt_tx_enable(struct bnxt *bp)
5726 {
5727 int i;
5728 struct bnxt_tx_ring_info *txr;
5729
5730 for (i = 0; i < bp->tx_nr_rings; i++) {
5731 txr = &bp->tx_ring[i];
5732 txr->dev_state = 0;
5733 }
5734 netif_tx_wake_all_queues(bp->dev);
5735 if (bp->link_info.link_up)
5736 netif_carrier_on(bp->dev);
5737 }
5738
5739 static void bnxt_report_link(struct bnxt *bp)
5740 {
5741 if (bp->link_info.link_up) {
5742 const char *duplex;
5743 const char *flow_ctrl;
5744 u32 speed;
5745 u16 fec;
5746
5747 netif_carrier_on(bp->dev);
5748 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5749 duplex = "full";
5750 else
5751 duplex = "half";
5752 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5753 flow_ctrl = "ON - receive & transmit";
5754 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5755 flow_ctrl = "ON - transmit";
5756 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5757 flow_ctrl = "ON - receive";
5758 else
5759 flow_ctrl = "none";
5760 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5761 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
5762 speed, duplex, flow_ctrl);
5763 if (bp->flags & BNXT_FLAG_EEE_CAP)
5764 netdev_info(bp->dev, "EEE is %s\n",
5765 bp->eee.eee_active ? "active" :
5766 "not active");
5767 fec = bp->link_info.fec_cfg;
5768 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5769 netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5770 (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5771 (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5772 (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5773 } else {
5774 netif_carrier_off(bp->dev);
5775 netdev_err(bp->dev, "NIC Link is Down\n");
5776 }
5777 }
5778
5779 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5780 {
5781 int rc = 0;
5782 struct hwrm_port_phy_qcaps_input req = {0};
5783 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5784 struct bnxt_link_info *link_info = &bp->link_info;
5785
5786 if (bp->hwrm_spec_code < 0x10201)
5787 return 0;
5788
5789 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5790
5791 mutex_lock(&bp->hwrm_cmd_lock);
5792 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5793 if (rc)
5794 goto hwrm_phy_qcaps_exit;
5795
5796 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
5797 struct ethtool_eee *eee = &bp->eee;
5798 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5799
5800 bp->flags |= BNXT_FLAG_EEE_CAP;
5801 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5802 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5803 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5804 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5805 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5806 }
5807 if (resp->supported_speeds_auto_mode)
5808 link_info->support_auto_speeds =
5809 le16_to_cpu(resp->supported_speeds_auto_mode);
5810
5811 bp->port_count = resp->port_cnt;
5812
5813 hwrm_phy_qcaps_exit:
5814 mutex_unlock(&bp->hwrm_cmd_lock);
5815 return rc;
5816 }
5817
5818 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5819 {
5820 int rc = 0;
5821 struct bnxt_link_info *link_info = &bp->link_info;
5822 struct hwrm_port_phy_qcfg_input req = {0};
5823 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5824 u8 link_up = link_info->link_up;
5825 u16 diff;
5826
5827 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5828
5829 mutex_lock(&bp->hwrm_cmd_lock);
5830 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5831 if (rc) {
5832 mutex_unlock(&bp->hwrm_cmd_lock);
5833 return rc;
5834 }
5835
5836 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5837 link_info->phy_link_status = resp->link;
5838 link_info->duplex = resp->duplex_cfg;
5839 if (bp->hwrm_spec_code >= 0x10800)
5840 link_info->duplex = resp->duplex_state;
5841 link_info->pause = resp->pause;
5842 link_info->auto_mode = resp->auto_mode;
5843 link_info->auto_pause_setting = resp->auto_pause;
5844 link_info->lp_pause = resp->link_partner_adv_pause;
5845 link_info->force_pause_setting = resp->force_pause;
5846 link_info->duplex_setting = resp->duplex_cfg;
5847 if (link_info->phy_link_status == BNXT_LINK_LINK)
5848 link_info->link_speed = le16_to_cpu(resp->link_speed);
5849 else
5850 link_info->link_speed = 0;
5851 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5852 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5853 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5854 link_info->lp_auto_link_speeds =
5855 le16_to_cpu(resp->link_partner_adv_speeds);
5856 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5857 link_info->phy_ver[0] = resp->phy_maj;
5858 link_info->phy_ver[1] = resp->phy_min;
5859 link_info->phy_ver[2] = resp->phy_bld;
5860 link_info->media_type = resp->media_type;
5861 link_info->phy_type = resp->phy_type;
5862 link_info->transceiver = resp->xcvr_pkg_type;
5863 link_info->phy_addr = resp->eee_config_phy_addr &
5864 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5865 link_info->module_status = resp->module_status;
5866
5867 if (bp->flags & BNXT_FLAG_EEE_CAP) {
5868 struct ethtool_eee *eee = &bp->eee;
5869 u16 fw_speeds;
5870
5871 eee->eee_active = 0;
5872 if (resp->eee_config_phy_addr &
5873 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5874 eee->eee_active = 1;
5875 fw_speeds = le16_to_cpu(
5876 resp->link_partner_adv_eee_link_speed_mask);
5877 eee->lp_advertised =
5878 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5879 }
5880
5881 /* Pull initial EEE config */
5882 if (!chng_link_state) {
5883 if (resp->eee_config_phy_addr &
5884 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5885 eee->eee_enabled = 1;
5886
5887 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5888 eee->advertised =
5889 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5890
5891 if (resp->eee_config_phy_addr &
5892 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5893 __le32 tmr;
5894
5895 eee->tx_lpi_enabled = 1;
5896 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5897 eee->tx_lpi_timer = le32_to_cpu(tmr) &
5898 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5899 }
5900 }
5901 }
5902
5903 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5904 if (bp->hwrm_spec_code >= 0x10504)
5905 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5906
5907 /* TODO: need to add more logic to report VF link */
5908 if (chng_link_state) {
5909 if (link_info->phy_link_status == BNXT_LINK_LINK)
5910 link_info->link_up = 1;
5911 else
5912 link_info->link_up = 0;
5913 if (link_up != link_info->link_up)
5914 bnxt_report_link(bp);
5915 } else {
5916 /* alwasy link down if not require to update link state */
5917 link_info->link_up = 0;
5918 }
5919 mutex_unlock(&bp->hwrm_cmd_lock);
5920
5921 diff = link_info->support_auto_speeds ^ link_info->advertising;
5922 if ((link_info->support_auto_speeds | diff) !=
5923 link_info->support_auto_speeds) {
5924 /* An advertised speed is no longer supported, so we need to
5925 * update the advertisement settings. Caller holds RTNL
5926 * so we can modify link settings.
5927 */
5928 link_info->advertising = link_info->support_auto_speeds;
5929 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5930 bnxt_hwrm_set_link_setting(bp, true, false);
5931 }
5932 return 0;
5933 }
5934
5935 static void bnxt_get_port_module_status(struct bnxt *bp)
5936 {
5937 struct bnxt_link_info *link_info = &bp->link_info;
5938 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5939 u8 module_status;
5940
5941 if (bnxt_update_link(bp, true))
5942 return;
5943
5944 module_status = link_info->module_status;
5945 switch (module_status) {
5946 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5947 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5948 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5949 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5950 bp->pf.port_id);
5951 if (bp->hwrm_spec_code >= 0x10201) {
5952 netdev_warn(bp->dev, "Module part number %s\n",
5953 resp->phy_vendor_partnumber);
5954 }
5955 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5956 netdev_warn(bp->dev, "TX is disabled\n");
5957 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5958 netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5959 }
5960 }
5961
5962 static void
5963 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5964 {
5965 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5966 if (bp->hwrm_spec_code >= 0x10201)
5967 req->auto_pause =
5968 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5969 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5970 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5971 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5972 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5973 req->enables |=
5974 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5975 } else {
5976 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5977 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5978 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5979 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5980 req->enables |=
5981 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5982 if (bp->hwrm_spec_code >= 0x10201) {
5983 req->auto_pause = req->force_pause;
5984 req->enables |= cpu_to_le32(
5985 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5986 }
5987 }
5988 }
5989
5990 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5991 struct hwrm_port_phy_cfg_input *req)
5992 {
5993 u8 autoneg = bp->link_info.autoneg;
5994 u16 fw_link_speed = bp->link_info.req_link_speed;
5995 u16 advertising = bp->link_info.advertising;
5996
5997 if (autoneg & BNXT_AUTONEG_SPEED) {
5998 req->auto_mode |=
5999 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6000
6001 req->enables |= cpu_to_le32(
6002 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6003 req->auto_link_speed_mask = cpu_to_le16(advertising);
6004
6005 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6006 req->flags |=
6007 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6008 } else {
6009 req->force_link_speed = cpu_to_le16(fw_link_speed);
6010 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6011 }
6012
6013 /* tell chimp that the setting takes effect immediately */
6014 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6015 }
6016
6017 int bnxt_hwrm_set_pause(struct bnxt *bp)
6018 {
6019 struct hwrm_port_phy_cfg_input req = {0};
6020 int rc;
6021
6022 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6023 bnxt_hwrm_set_pause_common(bp, &req);
6024
6025 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6026 bp->link_info.force_link_chng)
6027 bnxt_hwrm_set_link_common(bp, &req);
6028
6029 mutex_lock(&bp->hwrm_cmd_lock);
6030 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6031 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6032 /* since changing of pause setting doesn't trigger any link
6033 * change event, the driver needs to update the current pause
6034 * result upon successfully return of the phy_cfg command
6035 */
6036 bp->link_info.pause =
6037 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6038 bp->link_info.auto_pause_setting = 0;
6039 if (!bp->link_info.force_link_chng)
6040 bnxt_report_link(bp);
6041 }
6042 bp->link_info.force_link_chng = false;
6043 mutex_unlock(&bp->hwrm_cmd_lock);
6044 return rc;
6045 }
6046
6047 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6048 struct hwrm_port_phy_cfg_input *req)
6049 {
6050 struct ethtool_eee *eee = &bp->eee;
6051
6052 if (eee->eee_enabled) {
6053 u16 eee_speeds;
6054 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6055
6056 if (eee->tx_lpi_enabled)
6057 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6058 else
6059 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6060
6061 req->flags |= cpu_to_le32(flags);
6062 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6063 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6064 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6065 } else {
6066 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6067 }
6068 }
6069
6070 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6071 {
6072 struct hwrm_port_phy_cfg_input req = {0};
6073
6074 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6075 if (set_pause)
6076 bnxt_hwrm_set_pause_common(bp, &req);
6077
6078 bnxt_hwrm_set_link_common(bp, &req);
6079
6080 if (set_eee)
6081 bnxt_hwrm_set_eee(bp, &req);
6082 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6083 }
6084
6085 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6086 {
6087 struct hwrm_port_phy_cfg_input req = {0};
6088
6089 if (!BNXT_SINGLE_PF(bp))
6090 return 0;
6091
6092 if (pci_num_vf(bp->pdev))
6093 return 0;
6094
6095 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6096 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6097 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6098 }
6099
6100 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6101 {
6102 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6103 struct hwrm_port_led_qcaps_input req = {0};
6104 struct bnxt_pf_info *pf = &bp->pf;
6105 int rc;
6106
6107 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6108 return 0;
6109
6110 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6111 req.port_id = cpu_to_le16(pf->port_id);
6112 mutex_lock(&bp->hwrm_cmd_lock);
6113 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6114 if (rc) {
6115 mutex_unlock(&bp->hwrm_cmd_lock);
6116 return rc;
6117 }
6118 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6119 int i;
6120
6121 bp->num_leds = resp->num_leds;
6122 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6123 bp->num_leds);
6124 for (i = 0; i < bp->num_leds; i++) {
6125 struct bnxt_led_info *led = &bp->leds[i];
6126 __le16 caps = led->led_state_caps;
6127
6128 if (!led->led_group_id ||
6129 !BNXT_LED_ALT_BLINK_CAP(caps)) {
6130 bp->num_leds = 0;
6131 break;
6132 }
6133 }
6134 }
6135 mutex_unlock(&bp->hwrm_cmd_lock);
6136 return 0;
6137 }
6138
6139 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6140 {
6141 struct hwrm_wol_filter_alloc_input req = {0};
6142 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6143 int rc;
6144
6145 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6146 req.port_id = cpu_to_le16(bp->pf.port_id);
6147 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6148 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6149 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6150 mutex_lock(&bp->hwrm_cmd_lock);
6151 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6152 if (!rc)
6153 bp->wol_filter_id = resp->wol_filter_id;
6154 mutex_unlock(&bp->hwrm_cmd_lock);
6155 return rc;
6156 }
6157
6158 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6159 {
6160 struct hwrm_wol_filter_free_input req = {0};
6161 int rc;
6162
6163 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6164 req.port_id = cpu_to_le16(bp->pf.port_id);
6165 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6166 req.wol_filter_id = bp->wol_filter_id;
6167 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6168 return rc;
6169 }
6170
6171 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6172 {
6173 struct hwrm_wol_filter_qcfg_input req = {0};
6174 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6175 u16 next_handle = 0;
6176 int rc;
6177
6178 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6179 req.port_id = cpu_to_le16(bp->pf.port_id);
6180 req.handle = cpu_to_le16(handle);
6181 mutex_lock(&bp->hwrm_cmd_lock);
6182 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6183 if (!rc) {
6184 next_handle = le16_to_cpu(resp->next_handle);
6185 if (next_handle != 0) {
6186 if (resp->wol_type ==
6187 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6188 bp->wol = 1;
6189 bp->wol_filter_id = resp->wol_filter_id;
6190 }
6191 }
6192 }
6193 mutex_unlock(&bp->hwrm_cmd_lock);
6194 return next_handle;
6195 }
6196
6197 static void bnxt_get_wol_settings(struct bnxt *bp)
6198 {
6199 u16 handle = 0;
6200
6201 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6202 return;
6203
6204 do {
6205 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6206 } while (handle && handle != 0xffff);
6207 }
6208
6209 static bool bnxt_eee_config_ok(struct bnxt *bp)
6210 {
6211 struct ethtool_eee *eee = &bp->eee;
6212 struct bnxt_link_info *link_info = &bp->link_info;
6213
6214 if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6215 return true;
6216
6217 if (eee->eee_enabled) {
6218 u32 advertising =
6219 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6220
6221 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6222 eee->eee_enabled = 0;
6223 return false;
6224 }
6225 if (eee->advertised & ~advertising) {
6226 eee->advertised = advertising & eee->supported;
6227 return false;
6228 }
6229 }
6230 return true;
6231 }
6232
6233 static int bnxt_update_phy_setting(struct bnxt *bp)
6234 {
6235 int rc;
6236 bool update_link = false;
6237 bool update_pause = false;
6238 bool update_eee = false;
6239 struct bnxt_link_info *link_info = &bp->link_info;
6240
6241 rc = bnxt_update_link(bp, true);
6242 if (rc) {
6243 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6244 rc);
6245 return rc;
6246 }
6247 if (!BNXT_SINGLE_PF(bp))
6248 return 0;
6249
6250 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6251 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6252 link_info->req_flow_ctrl)
6253 update_pause = true;
6254 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6255 link_info->force_pause_setting != link_info->req_flow_ctrl)
6256 update_pause = true;
6257 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6258 if (BNXT_AUTO_MODE(link_info->auto_mode))
6259 update_link = true;
6260 if (link_info->req_link_speed != link_info->force_link_speed)
6261 update_link = true;
6262 if (link_info->req_duplex != link_info->duplex_setting)
6263 update_link = true;
6264 } else {
6265 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6266 update_link = true;
6267 if (link_info->advertising != link_info->auto_link_speeds)
6268 update_link = true;
6269 }
6270
6271 /* The last close may have shutdown the link, so need to call
6272 * PHY_CFG to bring it back up.
6273 */
6274 if (!netif_carrier_ok(bp->dev))
6275 update_link = true;
6276
6277 if (!bnxt_eee_config_ok(bp))
6278 update_eee = true;
6279
6280 if (update_link)
6281 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6282 else if (update_pause)
6283 rc = bnxt_hwrm_set_pause(bp);
6284 if (rc) {
6285 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6286 rc);
6287 return rc;
6288 }
6289
6290 return rc;
6291 }
6292
6293 /* Common routine to pre-map certain register block to different GRC window.
6294 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6295 * in PF and 3 windows in VF that can be customized to map in different
6296 * register blocks.
6297 */
6298 static void bnxt_preset_reg_win(struct bnxt *bp)
6299 {
6300 if (BNXT_PF(bp)) {
6301 /* CAG registers map to GRC window #4 */
6302 writel(BNXT_CAG_REG_BASE,
6303 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6304 }
6305 }
6306
6307 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6308 {
6309 int rc = 0;
6310
6311 bnxt_preset_reg_win(bp);
6312 netif_carrier_off(bp->dev);
6313 if (irq_re_init) {
6314 rc = bnxt_setup_int_mode(bp);
6315 if (rc) {
6316 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6317 rc);
6318 return rc;
6319 }
6320 }
6321 if ((bp->flags & BNXT_FLAG_RFS) &&
6322 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6323 /* disable RFS if falling back to INTA */
6324 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6325 bp->flags &= ~BNXT_FLAG_RFS;
6326 }
6327
6328 rc = bnxt_alloc_mem(bp, irq_re_init);
6329 if (rc) {
6330 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6331 goto open_err_free_mem;
6332 }
6333
6334 if (irq_re_init) {
6335 bnxt_init_napi(bp);
6336 rc = bnxt_request_irq(bp);
6337 if (rc) {
6338 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6339 goto open_err;
6340 }
6341 }
6342
6343 bnxt_enable_napi(bp);
6344
6345 rc = bnxt_init_nic(bp, irq_re_init);
6346 if (rc) {
6347 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6348 goto open_err;
6349 }
6350
6351 if (link_re_init) {
6352 mutex_lock(&bp->link_lock);
6353 rc = bnxt_update_phy_setting(bp);
6354 mutex_unlock(&bp->link_lock);
6355 if (rc)
6356 netdev_warn(bp->dev, "failed to update phy settings\n");
6357 }
6358
6359 if (irq_re_init)
6360 udp_tunnel_get_rx_info(bp->dev);
6361
6362 set_bit(BNXT_STATE_OPEN, &bp->state);
6363 bnxt_enable_int(bp);
6364 /* Enable TX queues */
6365 bnxt_tx_enable(bp);
6366 mod_timer(&bp->timer, jiffies + bp->current_interval);
6367 /* Poll link status and check for SFP+ module status */
6368 bnxt_get_port_module_status(bp);
6369
6370 /* VF-reps may need to be re-opened after the PF is re-opened */
6371 if (BNXT_PF(bp))
6372 bnxt_vf_reps_open(bp);
6373 return 0;
6374
6375 open_err:
6376 bnxt_disable_napi(bp);
6377 bnxt_del_napi(bp);
6378
6379 open_err_free_mem:
6380 bnxt_free_skbs(bp);
6381 bnxt_free_irq(bp);
6382 bnxt_free_mem(bp, true);
6383 return rc;
6384 }
6385
6386 /* rtnl_lock held */
6387 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6388 {
6389 int rc = 0;
6390
6391 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6392 if (rc) {
6393 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6394 dev_close(bp->dev);
6395 }
6396 return rc;
6397 }
6398
6399 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6400 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline
6401 * self tests.
6402 */
6403 int bnxt_half_open_nic(struct bnxt *bp)
6404 {
6405 int rc = 0;
6406
6407 rc = bnxt_alloc_mem(bp, false);
6408 if (rc) {
6409 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6410 goto half_open_err;
6411 }
6412 rc = bnxt_init_nic(bp, false);
6413 if (rc) {
6414 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6415 goto half_open_err;
6416 }
6417 return 0;
6418
6419 half_open_err:
6420 bnxt_free_skbs(bp);
6421 bnxt_free_mem(bp, false);
6422 dev_close(bp->dev);
6423 return rc;
6424 }
6425
6426 /* rtnl_lock held, this call can only be made after a previous successful
6427 * call to bnxt_half_open_nic().
6428 */
6429 void bnxt_half_close_nic(struct bnxt *bp)
6430 {
6431 bnxt_hwrm_resource_free(bp, false, false);
6432 bnxt_free_skbs(bp);
6433 bnxt_free_mem(bp, false);
6434 }
6435
6436 static int bnxt_open(struct net_device *dev)
6437 {
6438 struct bnxt *bp = netdev_priv(dev);
6439
6440 return __bnxt_open_nic(bp, true, true);
6441 }
6442
6443 static bool bnxt_drv_busy(struct bnxt *bp)
6444 {
6445 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
6446 test_bit(BNXT_STATE_READ_STATS, &bp->state));
6447 }
6448
6449 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6450 {
6451 int rc = 0;
6452
6453 #ifdef CONFIG_BNXT_SRIOV
6454 if (bp->sriov_cfg) {
6455 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6456 !bp->sriov_cfg,
6457 BNXT_SRIOV_CFG_WAIT_TMO);
6458 if (rc)
6459 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6460 }
6461
6462 /* Close the VF-reps before closing PF */
6463 if (BNXT_PF(bp))
6464 bnxt_vf_reps_close(bp);
6465 #endif
6466 /* Change device state to avoid TX queue wake up's */
6467 bnxt_tx_disable(bp);
6468
6469 clear_bit(BNXT_STATE_OPEN, &bp->state);
6470 smp_mb__after_atomic();
6471 while (bnxt_drv_busy(bp))
6472 msleep(20);
6473
6474 /* Flush rings and and disable interrupts */
6475 bnxt_shutdown_nic(bp, irq_re_init);
6476
6477 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6478
6479 bnxt_disable_napi(bp);
6480 del_timer_sync(&bp->timer);
6481 bnxt_free_skbs(bp);
6482
6483 if (irq_re_init) {
6484 bnxt_free_irq(bp);
6485 bnxt_del_napi(bp);
6486 }
6487 bnxt_free_mem(bp, irq_re_init);
6488 return rc;
6489 }
6490
6491 static int bnxt_close(struct net_device *dev)
6492 {
6493 struct bnxt *bp = netdev_priv(dev);
6494
6495 bnxt_close_nic(bp, true, true);
6496 bnxt_hwrm_shutdown_link(bp);
6497 return 0;
6498 }
6499
6500 /* rtnl_lock held */
6501 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6502 {
6503 switch (cmd) {
6504 case SIOCGMIIPHY:
6505 /* fallthru */
6506 case SIOCGMIIREG: {
6507 if (!netif_running(dev))
6508 return -EAGAIN;
6509
6510 return 0;
6511 }
6512
6513 case SIOCSMIIREG:
6514 if (!netif_running(dev))
6515 return -EAGAIN;
6516
6517 return 0;
6518
6519 default:
6520 /* do nothing */
6521 break;
6522 }
6523 return -EOPNOTSUPP;
6524 }
6525
6526 static void
6527 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6528 {
6529 u32 i;
6530 struct bnxt *bp = netdev_priv(dev);
6531
6532 set_bit(BNXT_STATE_READ_STATS, &bp->state);
6533 /* Make sure bnxt_close_nic() sees that we are reading stats before
6534 * we check the BNXT_STATE_OPEN flag.
6535 */
6536 smp_mb__after_atomic();
6537 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6538 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6539 return;
6540 }
6541
6542 /* TODO check if we need to synchronize with bnxt_close path */
6543 for (i = 0; i < bp->cp_nr_rings; i++) {
6544 struct bnxt_napi *bnapi = bp->bnapi[i];
6545 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6546 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6547
6548 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6549 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6550 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6551
6552 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6553 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6554 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6555
6556 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6557 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6558 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6559
6560 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6561 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6562 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6563
6564 stats->rx_missed_errors +=
6565 le64_to_cpu(hw_stats->rx_discard_pkts);
6566
6567 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6568
6569 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6570 }
6571
6572 if (bp->flags & BNXT_FLAG_PORT_STATS) {
6573 struct rx_port_stats *rx = bp->hw_rx_port_stats;
6574 struct tx_port_stats *tx = bp->hw_tx_port_stats;
6575
6576 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6577 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6578 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6579 le64_to_cpu(rx->rx_ovrsz_frames) +
6580 le64_to_cpu(rx->rx_runt_frames);
6581 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6582 le64_to_cpu(rx->rx_jbr_frames);
6583 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6584 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6585 stats->tx_errors = le64_to_cpu(tx->tx_err);
6586 }
6587 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6588 }
6589
6590 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6591 {
6592 struct net_device *dev = bp->dev;
6593 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6594 struct netdev_hw_addr *ha;
6595 u8 *haddr;
6596 int mc_count = 0;
6597 bool update = false;
6598 int off = 0;
6599
6600 netdev_for_each_mc_addr(ha, dev) {
6601 if (mc_count >= BNXT_MAX_MC_ADDRS) {
6602 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6603 vnic->mc_list_count = 0;
6604 return false;
6605 }
6606 haddr = ha->addr;
6607 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6608 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6609 update = true;
6610 }
6611 off += ETH_ALEN;
6612 mc_count++;
6613 }
6614 if (mc_count)
6615 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6616
6617 if (mc_count != vnic->mc_list_count) {
6618 vnic->mc_list_count = mc_count;
6619 update = true;
6620 }
6621 return update;
6622 }
6623
6624 static bool bnxt_uc_list_updated(struct bnxt *bp)
6625 {
6626 struct net_device *dev = bp->dev;
6627 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6628 struct netdev_hw_addr *ha;
6629 int off = 0;
6630
6631 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6632 return true;
6633
6634 netdev_for_each_uc_addr(ha, dev) {
6635 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6636 return true;
6637
6638 off += ETH_ALEN;
6639 }
6640 return false;
6641 }
6642
6643 static void bnxt_set_rx_mode(struct net_device *dev)
6644 {
6645 struct bnxt *bp = netdev_priv(dev);
6646 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6647 u32 mask = vnic->rx_mask;
6648 bool mc_update = false;
6649 bool uc_update;
6650
6651 if (!netif_running(dev))
6652 return;
6653
6654 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6655 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6656 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6657
6658 if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6659 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6660
6661 uc_update = bnxt_uc_list_updated(bp);
6662
6663 if (dev->flags & IFF_ALLMULTI) {
6664 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6665 vnic->mc_list_count = 0;
6666 } else {
6667 mc_update = bnxt_mc_list_updated(bp, &mask);
6668 }
6669
6670 if (mask != vnic->rx_mask || uc_update || mc_update) {
6671 vnic->rx_mask = mask;
6672
6673 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6674 bnxt_queue_sp_work(bp);
6675 }
6676 }
6677
6678 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6679 {
6680 struct net_device *dev = bp->dev;
6681 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6682 struct netdev_hw_addr *ha;
6683 int i, off = 0, rc;
6684 bool uc_update;
6685
6686 netif_addr_lock_bh(dev);
6687 uc_update = bnxt_uc_list_updated(bp);
6688 netif_addr_unlock_bh(dev);
6689
6690 if (!uc_update)
6691 goto skip_uc;
6692
6693 mutex_lock(&bp->hwrm_cmd_lock);
6694 for (i = 1; i < vnic->uc_filter_count; i++) {
6695 struct hwrm_cfa_l2_filter_free_input req = {0};
6696
6697 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6698 -1);
6699
6700 req.l2_filter_id = vnic->fw_l2_filter_id[i];
6701
6702 rc = _hwrm_send_message(bp, &req, sizeof(req),
6703 HWRM_CMD_TIMEOUT);
6704 }
6705 mutex_unlock(&bp->hwrm_cmd_lock);
6706
6707 vnic->uc_filter_count = 1;
6708
6709 netif_addr_lock_bh(dev);
6710 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6711 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6712 } else {
6713 netdev_for_each_uc_addr(ha, dev) {
6714 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6715 off += ETH_ALEN;
6716 vnic->uc_filter_count++;
6717 }
6718 }
6719 netif_addr_unlock_bh(dev);
6720
6721 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6722 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6723 if (rc) {
6724 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6725 rc);
6726 vnic->uc_filter_count = i;
6727 return rc;
6728 }
6729 }
6730
6731 skip_uc:
6732 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6733 if (rc)
6734 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6735 rc);
6736
6737 return rc;
6738 }
6739
6740 /* If the chip and firmware supports RFS */
6741 static bool bnxt_rfs_supported(struct bnxt *bp)
6742 {
6743 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6744 return true;
6745 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6746 return true;
6747 return false;
6748 }
6749
6750 /* If runtime conditions support RFS */
6751 static bool bnxt_rfs_capable(struct bnxt *bp)
6752 {
6753 #ifdef CONFIG_RFS_ACCEL
6754 int vnics, max_vnics, max_rss_ctxs;
6755
6756 if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6757 return false;
6758
6759 vnics = 1 + bp->rx_nr_rings;
6760 max_vnics = bnxt_get_max_func_vnics(bp);
6761 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6762
6763 /* RSS contexts not a limiting factor */
6764 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6765 max_rss_ctxs = max_vnics;
6766 if (vnics > max_vnics || vnics > max_rss_ctxs) {
6767 netdev_warn(bp->dev,
6768 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6769 min(max_rss_ctxs - 1, max_vnics - 1));
6770 return false;
6771 }
6772
6773 return true;
6774 #else
6775 return false;
6776 #endif
6777 }
6778
6779 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6780 netdev_features_t features)
6781 {
6782 struct bnxt *bp = netdev_priv(dev);
6783
6784 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6785 features &= ~NETIF_F_NTUPLE;
6786
6787 /* Both CTAG and STAG VLAN accelaration on the RX side have to be
6788 * turned on or off together.
6789 */
6790 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6791 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6792 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6793 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6794 NETIF_F_HW_VLAN_STAG_RX);
6795 else
6796 features |= NETIF_F_HW_VLAN_CTAG_RX |
6797 NETIF_F_HW_VLAN_STAG_RX;
6798 }
6799 #ifdef CONFIG_BNXT_SRIOV
6800 if (BNXT_VF(bp)) {
6801 if (bp->vf.vlan) {
6802 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6803 NETIF_F_HW_VLAN_STAG_RX);
6804 }
6805 }
6806 #endif
6807 return features;
6808 }
6809
6810 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6811 {
6812 struct bnxt *bp = netdev_priv(dev);
6813 u32 flags = bp->flags;
6814 u32 changes;
6815 int rc = 0;
6816 bool re_init = false;
6817 bool update_tpa = false;
6818
6819 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6820 if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6821 flags |= BNXT_FLAG_GRO;
6822 if (features & NETIF_F_LRO)
6823 flags |= BNXT_FLAG_LRO;
6824
6825 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6826 flags &= ~BNXT_FLAG_TPA;
6827
6828 if (features & NETIF_F_HW_VLAN_CTAG_RX)
6829 flags |= BNXT_FLAG_STRIP_VLAN;
6830
6831 if (features & NETIF_F_NTUPLE)
6832 flags |= BNXT_FLAG_RFS;
6833
6834 changes = flags ^ bp->flags;
6835 if (changes & BNXT_FLAG_TPA) {
6836 update_tpa = true;
6837 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6838 (flags & BNXT_FLAG_TPA) == 0)
6839 re_init = true;
6840 }
6841
6842 if (changes & ~BNXT_FLAG_TPA)
6843 re_init = true;
6844
6845 if (flags != bp->flags) {
6846 u32 old_flags = bp->flags;
6847
6848 bp->flags = flags;
6849
6850 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6851 if (update_tpa)
6852 bnxt_set_ring_params(bp);
6853 return rc;
6854 }
6855
6856 if (re_init) {
6857 bnxt_close_nic(bp, false, false);
6858 if (update_tpa)
6859 bnxt_set_ring_params(bp);
6860
6861 return bnxt_open_nic(bp, false, false);
6862 }
6863 if (update_tpa) {
6864 rc = bnxt_set_tpa(bp,
6865 (flags & BNXT_FLAG_TPA) ?
6866 true : false);
6867 if (rc)
6868 bp->flags = old_flags;
6869 }
6870 }
6871 return rc;
6872 }
6873
6874 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6875 {
6876 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6877 int i = bnapi->index;
6878
6879 if (!txr)
6880 return;
6881
6882 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6883 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6884 txr->tx_cons);
6885 }
6886
6887 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6888 {
6889 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6890 int i = bnapi->index;
6891
6892 if (!rxr)
6893 return;
6894
6895 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6896 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6897 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6898 rxr->rx_sw_agg_prod);
6899 }
6900
6901 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6902 {
6903 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6904 int i = bnapi->index;
6905
6906 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6907 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6908 }
6909
6910 static void bnxt_dbg_dump_states(struct bnxt *bp)
6911 {
6912 int i;
6913 struct bnxt_napi *bnapi;
6914
6915 for (i = 0; i < bp->cp_nr_rings; i++) {
6916 bnapi = bp->bnapi[i];
6917 if (netif_msg_drv(bp)) {
6918 bnxt_dump_tx_sw_state(bnapi);
6919 bnxt_dump_rx_sw_state(bnapi);
6920 bnxt_dump_cp_sw_state(bnapi);
6921 }
6922 }
6923 }
6924
6925 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6926 {
6927 if (!silent)
6928 bnxt_dbg_dump_states(bp);
6929 if (netif_running(bp->dev)) {
6930 int rc;
6931
6932 if (!silent)
6933 bnxt_ulp_stop(bp);
6934 bnxt_close_nic(bp, false, false);
6935 rc = bnxt_open_nic(bp, false, false);
6936 if (!silent && !rc)
6937 bnxt_ulp_start(bp);
6938 }
6939 }
6940
6941 static void bnxt_tx_timeout(struct net_device *dev)
6942 {
6943 struct bnxt *bp = netdev_priv(dev);
6944
6945 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
6946 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6947 bnxt_queue_sp_work(bp);
6948 }
6949
6950 #ifdef CONFIG_NET_POLL_CONTROLLER
6951 static void bnxt_poll_controller(struct net_device *dev)
6952 {
6953 struct bnxt *bp = netdev_priv(dev);
6954 int i;
6955
6956 /* Only process tx rings/combined rings in netpoll mode. */
6957 for (i = 0; i < bp->tx_nr_rings; i++) {
6958 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6959
6960 napi_schedule(&txr->bnapi->napi);
6961 }
6962 }
6963 #endif
6964
6965 static void bnxt_timer(unsigned long data)
6966 {
6967 struct bnxt *bp = (struct bnxt *)data;
6968 struct net_device *dev = bp->dev;
6969
6970 if (!netif_running(dev))
6971 return;
6972
6973 if (atomic_read(&bp->intr_sem) != 0)
6974 goto bnxt_restart_timer;
6975
6976 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
6977 bp->stats_coal_ticks) {
6978 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6979 bnxt_queue_sp_work(bp);
6980 }
6981
6982 if (bnxt_tc_flower_enabled(bp)) {
6983 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
6984 bnxt_queue_sp_work(bp);
6985 }
6986 bnxt_restart_timer:
6987 mod_timer(&bp->timer, jiffies + bp->current_interval);
6988 }
6989
6990 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6991 {
6992 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6993 * set. If the device is being closed, bnxt_close() may be holding
6994 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
6995 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6996 */
6997 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6998 rtnl_lock();
6999 }
7000
7001 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7002 {
7003 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7004 rtnl_unlock();
7005 }
7006
7007 /* Only called from bnxt_sp_task() */
7008 static void bnxt_reset(struct bnxt *bp, bool silent)
7009 {
7010 bnxt_rtnl_lock_sp(bp);
7011 if (test_bit(BNXT_STATE_OPEN, &bp->state))
7012 bnxt_reset_task(bp, silent);
7013 bnxt_rtnl_unlock_sp(bp);
7014 }
7015
7016 static void bnxt_cfg_ntp_filters(struct bnxt *);
7017
7018 static void bnxt_sp_task(struct work_struct *work)
7019 {
7020 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7021
7022 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7023 smp_mb__after_atomic();
7024 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7025 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7026 return;
7027 }
7028
7029 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7030 bnxt_cfg_rx_mode(bp);
7031
7032 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7033 bnxt_cfg_ntp_filters(bp);
7034 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7035 bnxt_hwrm_exec_fwd_req(bp);
7036 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7037 bnxt_hwrm_tunnel_dst_port_alloc(
7038 bp, bp->vxlan_port,
7039 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7040 }
7041 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7042 bnxt_hwrm_tunnel_dst_port_free(
7043 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7044 }
7045 if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7046 bnxt_hwrm_tunnel_dst_port_alloc(
7047 bp, bp->nge_port,
7048 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7049 }
7050 if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7051 bnxt_hwrm_tunnel_dst_port_free(
7052 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7053 }
7054 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
7055 bnxt_hwrm_port_qstats(bp);
7056
7057 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7058 int rc;
7059
7060 mutex_lock(&bp->link_lock);
7061 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7062 &bp->sp_event))
7063 bnxt_hwrm_phy_qcaps(bp);
7064
7065 rc = bnxt_update_link(bp, true);
7066 mutex_unlock(&bp->link_lock);
7067 if (rc)
7068 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7069 rc);
7070 }
7071 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7072 mutex_lock(&bp->link_lock);
7073 bnxt_get_port_module_status(bp);
7074 mutex_unlock(&bp->link_lock);
7075 }
7076
7077 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7078 bnxt_tc_flow_stats_work(bp);
7079
7080 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They
7081 * must be the last functions to be called before exiting.
7082 */
7083 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7084 bnxt_reset(bp, false);
7085
7086 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7087 bnxt_reset(bp, true);
7088
7089 smp_mb__before_atomic();
7090 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7091 }
7092
7093 /* Under rtnl_lock */
7094 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7095 int tx_xdp)
7096 {
7097 int max_rx, max_tx, tx_sets = 1;
7098 int tx_rings_needed;
7099 int rc;
7100
7101 if (tcs)
7102 tx_sets = tcs;
7103
7104 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7105 if (rc)
7106 return rc;
7107
7108 if (max_rx < rx)
7109 return -ENOMEM;
7110
7111 tx_rings_needed = tx * tx_sets + tx_xdp;
7112 if (max_tx < tx_rings_needed)
7113 return -ENOMEM;
7114
7115 return bnxt_hwrm_check_tx_rings(bp, tx_rings_needed);
7116 }
7117
7118 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7119 {
7120 if (bp->bar2) {
7121 pci_iounmap(pdev, bp->bar2);
7122 bp->bar2 = NULL;
7123 }
7124
7125 if (bp->bar1) {
7126 pci_iounmap(pdev, bp->bar1);
7127 bp->bar1 = NULL;
7128 }
7129
7130 if (bp->bar0) {
7131 pci_iounmap(pdev, bp->bar0);
7132 bp->bar0 = NULL;
7133 }
7134 }
7135
7136 static void bnxt_cleanup_pci(struct bnxt *bp)
7137 {
7138 bnxt_unmap_bars(bp, bp->pdev);
7139 pci_release_regions(bp->pdev);
7140 pci_disable_device(bp->pdev);
7141 }
7142
7143 static void bnxt_init_dflt_coal(struct bnxt *bp)
7144 {
7145 struct bnxt_coal *coal;
7146
7147 /* Tick values in micro seconds.
7148 * 1 coal_buf x bufs_per_record = 1 completion record.
7149 */
7150 coal = &bp->rx_coal;
7151 coal->coal_ticks = 14;
7152 coal->coal_bufs = 30;
7153 coal->coal_ticks_irq = 1;
7154 coal->coal_bufs_irq = 2;
7155 coal->idle_thresh = 25;
7156 coal->bufs_per_record = 2;
7157 coal->budget = 64; /* NAPI budget */
7158
7159 coal = &bp->tx_coal;
7160 coal->coal_ticks = 28;
7161 coal->coal_bufs = 30;
7162 coal->coal_ticks_irq = 2;
7163 coal->coal_bufs_irq = 2;
7164 coal->bufs_per_record = 1;
7165
7166 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7167 }
7168
7169 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7170 {
7171 int rc;
7172 struct bnxt *bp = netdev_priv(dev);
7173
7174 SET_NETDEV_DEV(dev, &pdev->dev);
7175
7176 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7177 rc = pci_enable_device(pdev);
7178 if (rc) {
7179 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7180 goto init_err;
7181 }
7182
7183 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7184 dev_err(&pdev->dev,
7185 "Cannot find PCI device base address, aborting\n");
7186 rc = -ENODEV;
7187 goto init_err_disable;
7188 }
7189
7190 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7191 if (rc) {
7192 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7193 goto init_err_disable;
7194 }
7195
7196 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7197 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7198 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7199 goto init_err_disable;
7200 }
7201
7202 pci_set_master(pdev);
7203
7204 bp->dev = dev;
7205 bp->pdev = pdev;
7206
7207 bp->bar0 = pci_ioremap_bar(pdev, 0);
7208 if (!bp->bar0) {
7209 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7210 rc = -ENOMEM;
7211 goto init_err_release;
7212 }
7213
7214 bp->bar1 = pci_ioremap_bar(pdev, 2);
7215 if (!bp->bar1) {
7216 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7217 rc = -ENOMEM;
7218 goto init_err_release;
7219 }
7220
7221 bp->bar2 = pci_ioremap_bar(pdev, 4);
7222 if (!bp->bar2) {
7223 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7224 rc = -ENOMEM;
7225 goto init_err_release;
7226 }
7227
7228 pci_enable_pcie_error_reporting(pdev);
7229
7230 INIT_WORK(&bp->sp_task, bnxt_sp_task);
7231
7232 spin_lock_init(&bp->ntp_fltr_lock);
7233
7234 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7235 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7236
7237 bnxt_init_dflt_coal(bp);
7238
7239 setup_timer(&bp->timer, bnxt_timer, (unsigned long)bp);
7240 bp->current_interval = BNXT_TIMER_INTERVAL;
7241
7242 clear_bit(BNXT_STATE_OPEN, &bp->state);
7243 return 0;
7244
7245 init_err_release:
7246 bnxt_unmap_bars(bp, pdev);
7247 pci_release_regions(pdev);
7248
7249 init_err_disable:
7250 pci_disable_device(pdev);
7251
7252 init_err:
7253 return rc;
7254 }
7255
7256 /* rtnl_lock held */
7257 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7258 {
7259 struct sockaddr *addr = p;
7260 struct bnxt *bp = netdev_priv(dev);
7261 int rc = 0;
7262
7263 if (!is_valid_ether_addr(addr->sa_data))
7264 return -EADDRNOTAVAIL;
7265
7266 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7267 return 0;
7268
7269 rc = bnxt_approve_mac(bp, addr->sa_data);
7270 if (rc)
7271 return rc;
7272
7273 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7274 if (netif_running(dev)) {
7275 bnxt_close_nic(bp, false, false);
7276 rc = bnxt_open_nic(bp, false, false);
7277 }
7278
7279 return rc;
7280 }
7281
7282 /* rtnl_lock held */
7283 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7284 {
7285 struct bnxt *bp = netdev_priv(dev);
7286
7287 if (netif_running(dev))
7288 bnxt_close_nic(bp, false, false);
7289
7290 dev->mtu = new_mtu;
7291 bnxt_set_ring_params(bp);
7292
7293 if (netif_running(dev))
7294 return bnxt_open_nic(bp, false, false);
7295
7296 return 0;
7297 }
7298
7299 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7300 {
7301 struct bnxt *bp = netdev_priv(dev);
7302 bool sh = false;
7303 int rc;
7304
7305 if (tc > bp->max_tc) {
7306 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7307 tc, bp->max_tc);
7308 return -EINVAL;
7309 }
7310
7311 if (netdev_get_num_tc(dev) == tc)
7312 return 0;
7313
7314 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7315 sh = true;
7316
7317 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7318 sh, tc, bp->tx_nr_rings_xdp);
7319 if (rc)
7320 return rc;
7321
7322 /* Needs to close the device and do hw resource re-allocations */
7323 if (netif_running(bp->dev))
7324 bnxt_close_nic(bp, true, false);
7325
7326 if (tc) {
7327 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7328 netdev_set_num_tc(dev, tc);
7329 } else {
7330 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7331 netdev_reset_tc(dev);
7332 }
7333 bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7334 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7335 bp->tx_nr_rings + bp->rx_nr_rings;
7336 bp->num_stat_ctxs = bp->cp_nr_rings;
7337
7338 if (netif_running(bp->dev))
7339 return bnxt_open_nic(bp, true, false);
7340
7341 return 0;
7342 }
7343
7344 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7345 void *cb_priv)
7346 {
7347 struct bnxt *bp = cb_priv;
7348
7349 if (!bnxt_tc_flower_enabled(bp) || !tc_can_offload(bp->dev))
7350 return -EOPNOTSUPP;
7351
7352 switch (type) {
7353 case TC_SETUP_CLSFLOWER:
7354 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
7355 default:
7356 return -EOPNOTSUPP;
7357 }
7358 }
7359
7360 static int bnxt_setup_tc_block(struct net_device *dev,
7361 struct tc_block_offload *f)
7362 {
7363 struct bnxt *bp = netdev_priv(dev);
7364
7365 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7366 return -EOPNOTSUPP;
7367
7368 switch (f->command) {
7369 case TC_BLOCK_BIND:
7370 return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
7371 bp, bp);
7372 case TC_BLOCK_UNBIND:
7373 tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
7374 return 0;
7375 default:
7376 return -EOPNOTSUPP;
7377 }
7378 }
7379
7380 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7381 void *type_data)
7382 {
7383 switch (type) {
7384 case TC_SETUP_BLOCK:
7385 return bnxt_setup_tc_block(dev, type_data);
7386 case TC_SETUP_QDISC_MQPRIO: {
7387 struct tc_mqprio_qopt *mqprio = type_data;
7388
7389 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7390
7391 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
7392 }
7393 default:
7394 return -EOPNOTSUPP;
7395 }
7396 }
7397
7398 #ifdef CONFIG_RFS_ACCEL
7399 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7400 struct bnxt_ntuple_filter *f2)
7401 {
7402 struct flow_keys *keys1 = &f1->fkeys;
7403 struct flow_keys *keys2 = &f2->fkeys;
7404
7405 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7406 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7407 keys1->ports.ports == keys2->ports.ports &&
7408 keys1->basic.ip_proto == keys2->basic.ip_proto &&
7409 keys1->basic.n_proto == keys2->basic.n_proto &&
7410 keys1->control.flags == keys2->control.flags &&
7411 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7412 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7413 return true;
7414
7415 return false;
7416 }
7417
7418 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7419 u16 rxq_index, u32 flow_id)
7420 {
7421 struct bnxt *bp = netdev_priv(dev);
7422 struct bnxt_ntuple_filter *fltr, *new_fltr;
7423 struct flow_keys *fkeys;
7424 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
7425 int rc = 0, idx, bit_id, l2_idx = 0;
7426 struct hlist_head *head;
7427
7428 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
7429 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7430 int off = 0, j;
7431
7432 netif_addr_lock_bh(dev);
7433 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
7434 if (ether_addr_equal(eth->h_dest,
7435 vnic->uc_list + off)) {
7436 l2_idx = j + 1;
7437 break;
7438 }
7439 }
7440 netif_addr_unlock_bh(dev);
7441 if (!l2_idx)
7442 return -EINVAL;
7443 }
7444 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
7445 if (!new_fltr)
7446 return -ENOMEM;
7447
7448 fkeys = &new_fltr->fkeys;
7449 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
7450 rc = -EPROTONOSUPPORT;
7451 goto err_free;
7452 }
7453
7454 if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
7455 fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
7456 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
7457 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
7458 rc = -EPROTONOSUPPORT;
7459 goto err_free;
7460 }
7461 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
7462 bp->hwrm_spec_code < 0x10601) {
7463 rc = -EPROTONOSUPPORT;
7464 goto err_free;
7465 }
7466 if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
7467 bp->hwrm_spec_code < 0x10601) {
7468 rc = -EPROTONOSUPPORT;
7469 goto err_free;
7470 }
7471
7472 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7473 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7474
7475 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7476 head = &bp->ntp_fltr_hash_tbl[idx];
7477 rcu_read_lock();
7478 hlist_for_each_entry_rcu(fltr, head, hash) {
7479 if (bnxt_fltr_match(fltr, new_fltr)) {
7480 rcu_read_unlock();
7481 rc = 0;
7482 goto err_free;
7483 }
7484 }
7485 rcu_read_unlock();
7486
7487 spin_lock_bh(&bp->ntp_fltr_lock);
7488 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7489 BNXT_NTP_FLTR_MAX_FLTR, 0);
7490 if (bit_id < 0) {
7491 spin_unlock_bh(&bp->ntp_fltr_lock);
7492 rc = -ENOMEM;
7493 goto err_free;
7494 }
7495
7496 new_fltr->sw_id = (u16)bit_id;
7497 new_fltr->flow_id = flow_id;
7498 new_fltr->l2_fltr_idx = l2_idx;
7499 new_fltr->rxq = rxq_index;
7500 hlist_add_head_rcu(&new_fltr->hash, head);
7501 bp->ntp_fltr_count++;
7502 spin_unlock_bh(&bp->ntp_fltr_lock);
7503
7504 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7505 bnxt_queue_sp_work(bp);
7506
7507 return new_fltr->sw_id;
7508
7509 err_free:
7510 kfree(new_fltr);
7511 return rc;
7512 }
7513
7514 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7515 {
7516 int i;
7517
7518 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7519 struct hlist_head *head;
7520 struct hlist_node *tmp;
7521 struct bnxt_ntuple_filter *fltr;
7522 int rc;
7523
7524 head = &bp->ntp_fltr_hash_tbl[i];
7525 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7526 bool del = false;
7527
7528 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7529 if (rps_may_expire_flow(bp->dev, fltr->rxq,
7530 fltr->flow_id,
7531 fltr->sw_id)) {
7532 bnxt_hwrm_cfa_ntuple_filter_free(bp,
7533 fltr);
7534 del = true;
7535 }
7536 } else {
7537 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7538 fltr);
7539 if (rc)
7540 del = true;
7541 else
7542 set_bit(BNXT_FLTR_VALID, &fltr->state);
7543 }
7544
7545 if (del) {
7546 spin_lock_bh(&bp->ntp_fltr_lock);
7547 hlist_del_rcu(&fltr->hash);
7548 bp->ntp_fltr_count--;
7549 spin_unlock_bh(&bp->ntp_fltr_lock);
7550 synchronize_rcu();
7551 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7552 kfree(fltr);
7553 }
7554 }
7555 }
7556 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7557 netdev_info(bp->dev, "Receive PF driver unload event!");
7558 }
7559
7560 #else
7561
7562 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7563 {
7564 }
7565
7566 #endif /* CONFIG_RFS_ACCEL */
7567
7568 static void bnxt_udp_tunnel_add(struct net_device *dev,
7569 struct udp_tunnel_info *ti)
7570 {
7571 struct bnxt *bp = netdev_priv(dev);
7572
7573 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7574 return;
7575
7576 if (!netif_running(dev))
7577 return;
7578
7579 switch (ti->type) {
7580 case UDP_TUNNEL_TYPE_VXLAN:
7581 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7582 return;
7583
7584 bp->vxlan_port_cnt++;
7585 if (bp->vxlan_port_cnt == 1) {
7586 bp->vxlan_port = ti->port;
7587 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7588 bnxt_queue_sp_work(bp);
7589 }
7590 break;
7591 case UDP_TUNNEL_TYPE_GENEVE:
7592 if (bp->nge_port_cnt && bp->nge_port != ti->port)
7593 return;
7594
7595 bp->nge_port_cnt++;
7596 if (bp->nge_port_cnt == 1) {
7597 bp->nge_port = ti->port;
7598 set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7599 }
7600 break;
7601 default:
7602 return;
7603 }
7604
7605 bnxt_queue_sp_work(bp);
7606 }
7607
7608 static void bnxt_udp_tunnel_del(struct net_device *dev,
7609 struct udp_tunnel_info *ti)
7610 {
7611 struct bnxt *bp = netdev_priv(dev);
7612
7613 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7614 return;
7615
7616 if (!netif_running(dev))
7617 return;
7618
7619 switch (ti->type) {
7620 case UDP_TUNNEL_TYPE_VXLAN:
7621 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7622 return;
7623 bp->vxlan_port_cnt--;
7624
7625 if (bp->vxlan_port_cnt != 0)
7626 return;
7627
7628 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7629 break;
7630 case UDP_TUNNEL_TYPE_GENEVE:
7631 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7632 return;
7633 bp->nge_port_cnt--;
7634
7635 if (bp->nge_port_cnt != 0)
7636 return;
7637
7638 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7639 break;
7640 default:
7641 return;
7642 }
7643
7644 bnxt_queue_sp_work(bp);
7645 }
7646
7647 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7648 struct net_device *dev, u32 filter_mask,
7649 int nlflags)
7650 {
7651 struct bnxt *bp = netdev_priv(dev);
7652
7653 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
7654 nlflags, filter_mask, NULL);
7655 }
7656
7657 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7658 u16 flags)
7659 {
7660 struct bnxt *bp = netdev_priv(dev);
7661 struct nlattr *attr, *br_spec;
7662 int rem, rc = 0;
7663
7664 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
7665 return -EOPNOTSUPP;
7666
7667 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7668 if (!br_spec)
7669 return -EINVAL;
7670
7671 nla_for_each_nested(attr, br_spec, rem) {
7672 u16 mode;
7673
7674 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7675 continue;
7676
7677 if (nla_len(attr) < sizeof(mode))
7678 return -EINVAL;
7679
7680 mode = nla_get_u16(attr);
7681 if (mode == bp->br_mode)
7682 break;
7683
7684 rc = bnxt_hwrm_set_br_mode(bp, mode);
7685 if (!rc)
7686 bp->br_mode = mode;
7687 break;
7688 }
7689 return rc;
7690 }
7691
7692 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
7693 size_t len)
7694 {
7695 struct bnxt *bp = netdev_priv(dev);
7696 int rc;
7697
7698 /* The PF and it's VF-reps only support the switchdev framework */
7699 if (!BNXT_PF(bp))
7700 return -EOPNOTSUPP;
7701
7702 rc = snprintf(buf, len, "p%d", bp->pf.port_id);
7703
7704 if (rc >= len)
7705 return -EOPNOTSUPP;
7706 return 0;
7707 }
7708
7709 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
7710 {
7711 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
7712 return -EOPNOTSUPP;
7713
7714 /* The PF and it's VF-reps only support the switchdev framework */
7715 if (!BNXT_PF(bp))
7716 return -EOPNOTSUPP;
7717
7718 switch (attr->id) {
7719 case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
7720 /* In SRIOV each PF-pool (PF + child VFs) serves as a
7721 * switching domain, the PF's perm mac-addr can be used
7722 * as the unique parent-id
7723 */
7724 attr->u.ppid.id_len = ETH_ALEN;
7725 ether_addr_copy(attr->u.ppid.id, bp->pf.mac_addr);
7726 break;
7727 default:
7728 return -EOPNOTSUPP;
7729 }
7730 return 0;
7731 }
7732
7733 static int bnxt_swdev_port_attr_get(struct net_device *dev,
7734 struct switchdev_attr *attr)
7735 {
7736 return bnxt_port_attr_get(netdev_priv(dev), attr);
7737 }
7738
7739 static const struct switchdev_ops bnxt_switchdev_ops = {
7740 .switchdev_port_attr_get = bnxt_swdev_port_attr_get
7741 };
7742
7743 static const struct net_device_ops bnxt_netdev_ops = {
7744 .ndo_open = bnxt_open,
7745 .ndo_start_xmit = bnxt_start_xmit,
7746 .ndo_stop = bnxt_close,
7747 .ndo_get_stats64 = bnxt_get_stats64,
7748 .ndo_set_rx_mode = bnxt_set_rx_mode,
7749 .ndo_do_ioctl = bnxt_ioctl,
7750 .ndo_validate_addr = eth_validate_addr,
7751 .ndo_set_mac_address = bnxt_change_mac_addr,
7752 .ndo_change_mtu = bnxt_change_mtu,
7753 .ndo_fix_features = bnxt_fix_features,
7754 .ndo_set_features = bnxt_set_features,
7755 .ndo_tx_timeout = bnxt_tx_timeout,
7756 #ifdef CONFIG_BNXT_SRIOV
7757 .ndo_get_vf_config = bnxt_get_vf_config,
7758 .ndo_set_vf_mac = bnxt_set_vf_mac,
7759 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
7760 .ndo_set_vf_rate = bnxt_set_vf_bw,
7761 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
7762 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
7763 #endif
7764 #ifdef CONFIG_NET_POLL_CONTROLLER
7765 .ndo_poll_controller = bnxt_poll_controller,
7766 #endif
7767 .ndo_setup_tc = bnxt_setup_tc,
7768 #ifdef CONFIG_RFS_ACCEL
7769 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
7770 #endif
7771 .ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
7772 .ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
7773 .ndo_bpf = bnxt_xdp,
7774 .ndo_bridge_getlink = bnxt_bridge_getlink,
7775 .ndo_bridge_setlink = bnxt_bridge_setlink,
7776 .ndo_get_phys_port_name = bnxt_get_phys_port_name
7777 };
7778
7779 static void bnxt_remove_one(struct pci_dev *pdev)
7780 {
7781 struct net_device *dev = pci_get_drvdata(pdev);
7782 struct bnxt *bp = netdev_priv(dev);
7783
7784 if (BNXT_PF(bp)) {
7785 bnxt_sriov_disable(bp);
7786 bnxt_dl_unregister(bp);
7787 }
7788
7789 pci_disable_pcie_error_reporting(pdev);
7790 unregister_netdev(dev);
7791 bnxt_shutdown_tc(bp);
7792 bnxt_cancel_sp_work(bp);
7793 bp->sp_event = 0;
7794
7795 bnxt_clear_int_mode(bp);
7796 bnxt_hwrm_func_drv_unrgtr(bp);
7797 bnxt_free_hwrm_resources(bp);
7798 bnxt_free_hwrm_short_cmd_req(bp);
7799 bnxt_ethtool_free(bp);
7800 bnxt_dcb_free(bp);
7801 kfree(bp->edev);
7802 bp->edev = NULL;
7803 if (bp->xdp_prog)
7804 bpf_prog_put(bp->xdp_prog);
7805 bnxt_cleanup_pci(bp);
7806 free_netdev(dev);
7807 }
7808
7809 static int bnxt_probe_phy(struct bnxt *bp)
7810 {
7811 int rc = 0;
7812 struct bnxt_link_info *link_info = &bp->link_info;
7813
7814 rc = bnxt_hwrm_phy_qcaps(bp);
7815 if (rc) {
7816 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7817 rc);
7818 return rc;
7819 }
7820 mutex_init(&bp->link_lock);
7821
7822 rc = bnxt_update_link(bp, false);
7823 if (rc) {
7824 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7825 rc);
7826 return rc;
7827 }
7828
7829 /* Older firmware does not have supported_auto_speeds, so assume
7830 * that all supported speeds can be autonegotiated.
7831 */
7832 if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7833 link_info->support_auto_speeds = link_info->support_speeds;
7834
7835 /*initialize the ethool setting copy with NVM settings */
7836 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7837 link_info->autoneg = BNXT_AUTONEG_SPEED;
7838 if (bp->hwrm_spec_code >= 0x10201) {
7839 if (link_info->auto_pause_setting &
7840 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7841 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7842 } else {
7843 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7844 }
7845 link_info->advertising = link_info->auto_link_speeds;
7846 } else {
7847 link_info->req_link_speed = link_info->force_link_speed;
7848 link_info->req_duplex = link_info->duplex_setting;
7849 }
7850 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7851 link_info->req_flow_ctrl =
7852 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7853 else
7854 link_info->req_flow_ctrl = link_info->force_pause_setting;
7855 return rc;
7856 }
7857
7858 static int bnxt_get_max_irq(struct pci_dev *pdev)
7859 {
7860 u16 ctrl;
7861
7862 if (!pdev->msix_cap)
7863 return 1;
7864
7865 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7866 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7867 }
7868
7869 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7870 int *max_cp)
7871 {
7872 int max_ring_grps = 0;
7873
7874 #ifdef CONFIG_BNXT_SRIOV
7875 if (!BNXT_PF(bp)) {
7876 *max_tx = bp->vf.max_tx_rings;
7877 *max_rx = bp->vf.max_rx_rings;
7878 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7879 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7880 max_ring_grps = bp->vf.max_hw_ring_grps;
7881 } else
7882 #endif
7883 {
7884 *max_tx = bp->pf.max_tx_rings;
7885 *max_rx = bp->pf.max_rx_rings;
7886 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7887 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7888 max_ring_grps = bp->pf.max_hw_ring_grps;
7889 }
7890 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7891 *max_cp -= 1;
7892 *max_rx -= 2;
7893 }
7894 if (bp->flags & BNXT_FLAG_AGG_RINGS)
7895 *max_rx >>= 1;
7896 *max_rx = min_t(int, *max_rx, max_ring_grps);
7897 }
7898
7899 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7900 {
7901 int rx, tx, cp;
7902
7903 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
7904 if (!rx || !tx || !cp)
7905 return -ENOMEM;
7906
7907 *max_rx = rx;
7908 *max_tx = tx;
7909 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7910 }
7911
7912 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7913 bool shared)
7914 {
7915 int rc;
7916
7917 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7918 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7919 /* Not enough rings, try disabling agg rings. */
7920 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7921 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7922 if (rc)
7923 return rc;
7924 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7925 bp->dev->hw_features &= ~NETIF_F_LRO;
7926 bp->dev->features &= ~NETIF_F_LRO;
7927 bnxt_set_ring_params(bp);
7928 }
7929
7930 if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7931 int max_cp, max_stat, max_irq;
7932
7933 /* Reserve minimum resources for RoCE */
7934 max_cp = bnxt_get_max_func_cp_rings(bp);
7935 max_stat = bnxt_get_max_func_stat_ctxs(bp);
7936 max_irq = bnxt_get_max_func_irqs(bp);
7937 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7938 max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7939 max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7940 return 0;
7941
7942 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7943 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7944 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7945 max_cp = min_t(int, max_cp, max_irq);
7946 max_cp = min_t(int, max_cp, max_stat);
7947 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7948 if (rc)
7949 rc = 0;
7950 }
7951 return rc;
7952 }
7953
7954 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
7955 {
7956 int dflt_rings, max_rx_rings, max_tx_rings, rc;
7957
7958 if (sh)
7959 bp->flags |= BNXT_FLAG_SHARED_RINGS;
7960 dflt_rings = netif_get_num_default_rss_queues();
7961 /* Reduce default rings to reduce memory usage on multi-port cards */
7962 if (bp->port_count > 1)
7963 dflt_rings = min_t(int, dflt_rings, 4);
7964 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7965 if (rc)
7966 return rc;
7967 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7968 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7969
7970 rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7971 if (rc)
7972 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7973
7974 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7975 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7976 bp->tx_nr_rings + bp->rx_nr_rings;
7977 bp->num_stat_ctxs = bp->cp_nr_rings;
7978 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7979 bp->rx_nr_rings++;
7980 bp->cp_nr_rings++;
7981 }
7982 return rc;
7983 }
7984
7985 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7986 {
7987 ASSERT_RTNL();
7988 bnxt_hwrm_func_qcaps(bp);
7989 bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7990 }
7991
7992 static int bnxt_init_mac_addr(struct bnxt *bp)
7993 {
7994 int rc = 0;
7995
7996 if (BNXT_PF(bp)) {
7997 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
7998 } else {
7999 #ifdef CONFIG_BNXT_SRIOV
8000 struct bnxt_vf_info *vf = &bp->vf;
8001
8002 if (is_valid_ether_addr(vf->mac_addr)) {
8003 /* overwrite netdev dev_adr with admin VF MAC */
8004 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8005 } else {
8006 eth_hw_addr_random(bp->dev);
8007 rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8008 }
8009 #endif
8010 }
8011 return rc;
8012 }
8013
8014 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
8015 {
8016 enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
8017 enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
8018
8019 if (pcie_get_minimum_link(pci_physfn(bp->pdev), &speed, &width) ||
8020 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
8021 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
8022 else
8023 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
8024 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
8025 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
8026 speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
8027 "Unknown", width);
8028 }
8029
8030 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8031 {
8032 static int version_printed;
8033 struct net_device *dev;
8034 struct bnxt *bp;
8035 int rc, max_irqs;
8036
8037 if (pci_is_bridge(pdev))
8038 return -ENODEV;
8039
8040 if (version_printed++ == 0)
8041 pr_info("%s", version);
8042
8043 max_irqs = bnxt_get_max_irq(pdev);
8044 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8045 if (!dev)
8046 return -ENOMEM;
8047
8048 bp = netdev_priv(dev);
8049
8050 if (bnxt_vf_pciid(ent->driver_data))
8051 bp->flags |= BNXT_FLAG_VF;
8052
8053 if (pdev->msix_cap)
8054 bp->flags |= BNXT_FLAG_MSIX_CAP;
8055
8056 rc = bnxt_init_board(pdev, dev);
8057 if (rc < 0)
8058 goto init_err_free;
8059
8060 dev->netdev_ops = &bnxt_netdev_ops;
8061 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8062 dev->ethtool_ops = &bnxt_ethtool_ops;
8063 SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8064 pci_set_drvdata(pdev, dev);
8065
8066 rc = bnxt_alloc_hwrm_resources(bp);
8067 if (rc)
8068 goto init_err_pci_clean;
8069
8070 mutex_init(&bp->hwrm_cmd_lock);
8071 rc = bnxt_hwrm_ver_get(bp);
8072 if (rc)
8073 goto init_err_pci_clean;
8074
8075 if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8076 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8077 if (rc)
8078 goto init_err_pci_clean;
8079 }
8080
8081 rc = bnxt_hwrm_func_reset(bp);
8082 if (rc)
8083 goto init_err_pci_clean;
8084
8085 bnxt_hwrm_fw_set_time(bp);
8086
8087 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8088 NETIF_F_TSO | NETIF_F_TSO6 |
8089 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8090 NETIF_F_GSO_IPXIP4 |
8091 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8092 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8093 NETIF_F_RXCSUM | NETIF_F_GRO;
8094
8095 if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8096 dev->hw_features |= NETIF_F_LRO;
8097
8098 dev->hw_enc_features =
8099 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8100 NETIF_F_TSO | NETIF_F_TSO6 |
8101 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8102 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8103 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8104 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8105 NETIF_F_GSO_GRE_CSUM;
8106 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8107 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8108 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8109 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8110 dev->priv_flags |= IFF_UNICAST_FLT;
8111
8112 #ifdef CONFIG_BNXT_SRIOV
8113 init_waitqueue_head(&bp->sriov_cfg_wait);
8114 mutex_init(&bp->sriov_lock);
8115 #endif
8116 bp->gro_func = bnxt_gro_func_5730x;
8117 if (BNXT_CHIP_P4_PLUS(bp))
8118 bp->gro_func = bnxt_gro_func_5731x;
8119 else
8120 bp->flags |= BNXT_FLAG_DOUBLE_DB;
8121
8122 rc = bnxt_hwrm_func_drv_rgtr(bp);
8123 if (rc)
8124 goto init_err_pci_clean;
8125
8126 rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8127 if (rc)
8128 goto init_err_pci_clean;
8129
8130 bp->ulp_probe = bnxt_ulp_probe;
8131
8132 /* Get the MAX capabilities for this function */
8133 rc = bnxt_hwrm_func_qcaps(bp);
8134 if (rc) {
8135 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8136 rc);
8137 rc = -1;
8138 goto init_err_pci_clean;
8139 }
8140 rc = bnxt_init_mac_addr(bp);
8141 if (rc) {
8142 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8143 rc = -EADDRNOTAVAIL;
8144 goto init_err_pci_clean;
8145 }
8146 rc = bnxt_hwrm_queue_qportcfg(bp);
8147 if (rc) {
8148 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8149 rc);
8150 rc = -1;
8151 goto init_err_pci_clean;
8152 }
8153
8154 bnxt_hwrm_func_qcfg(bp);
8155 bnxt_hwrm_port_led_qcaps(bp);
8156 bnxt_ethtool_init(bp);
8157 bnxt_dcb_init(bp);
8158
8159 /* MTU range: 60 - FW defined max */
8160 dev->min_mtu = ETH_ZLEN;
8161 dev->max_mtu = bp->max_mtu;
8162
8163 rc = bnxt_probe_phy(bp);
8164 if (rc)
8165 goto init_err_pci_clean;
8166
8167 bnxt_set_rx_skb_mode(bp, false);
8168 bnxt_set_tpa_flags(bp);
8169 bnxt_set_ring_params(bp);
8170 bnxt_set_max_func_irqs(bp, max_irqs);
8171 rc = bnxt_set_dflt_rings(bp, true);
8172 if (rc) {
8173 netdev_err(bp->dev, "Not enough rings available.\n");
8174 rc = -ENOMEM;
8175 goto init_err_pci_clean;
8176 }
8177
8178 /* Default RSS hash cfg. */
8179 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8180 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8181 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8182 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8183 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8184 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8185 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8186 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8187 }
8188
8189 bnxt_hwrm_vnic_qcaps(bp);
8190 if (bnxt_rfs_supported(bp)) {
8191 dev->hw_features |= NETIF_F_NTUPLE;
8192 if (bnxt_rfs_capable(bp)) {
8193 bp->flags |= BNXT_FLAG_RFS;
8194 dev->features |= NETIF_F_NTUPLE;
8195 }
8196 }
8197
8198 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8199 bp->flags |= BNXT_FLAG_STRIP_VLAN;
8200
8201 rc = bnxt_init_int_mode(bp);
8202 if (rc)
8203 goto init_err_pci_clean;
8204
8205 bnxt_get_wol_settings(bp);
8206 if (bp->flags & BNXT_FLAG_WOL_CAP)
8207 device_set_wakeup_enable(&pdev->dev, bp->wol);
8208 else
8209 device_set_wakeup_capable(&pdev->dev, false);
8210
8211 if (BNXT_PF(bp)) {
8212 if (!bnxt_pf_wq) {
8213 bnxt_pf_wq =
8214 create_singlethread_workqueue("bnxt_pf_wq");
8215 if (!bnxt_pf_wq) {
8216 dev_err(&pdev->dev, "Unable to create workqueue.\n");
8217 goto init_err_pci_clean;
8218 }
8219 }
8220 bnxt_init_tc(bp);
8221 }
8222
8223 rc = register_netdev(dev);
8224 if (rc)
8225 goto init_err_cleanup_tc;
8226
8227 if (BNXT_PF(bp))
8228 bnxt_dl_register(bp);
8229
8230 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8231 board_info[ent->driver_data].name,
8232 (long)pci_resource_start(pdev, 0), dev->dev_addr);
8233
8234 bnxt_parse_log_pcie_link(bp);
8235
8236 return 0;
8237
8238 init_err_cleanup_tc:
8239 bnxt_shutdown_tc(bp);
8240 bnxt_clear_int_mode(bp);
8241
8242 init_err_pci_clean:
8243 bnxt_cleanup_pci(bp);
8244
8245 init_err_free:
8246 free_netdev(dev);
8247 return rc;
8248 }
8249
8250 static void bnxt_shutdown(struct pci_dev *pdev)
8251 {
8252 struct net_device *dev = pci_get_drvdata(pdev);
8253 struct bnxt *bp;
8254
8255 if (!dev)
8256 return;
8257
8258 rtnl_lock();
8259 bp = netdev_priv(dev);
8260 if (!bp)
8261 goto shutdown_exit;
8262
8263 if (netif_running(dev))
8264 dev_close(dev);
8265
8266 if (system_state == SYSTEM_POWER_OFF) {
8267 bnxt_ulp_shutdown(bp);
8268 bnxt_clear_int_mode(bp);
8269 pci_wake_from_d3(pdev, bp->wol);
8270 pci_set_power_state(pdev, PCI_D3hot);
8271 }
8272
8273 shutdown_exit:
8274 rtnl_unlock();
8275 }
8276
8277 #ifdef CONFIG_PM_SLEEP
8278 static int bnxt_suspend(struct device *device)
8279 {
8280 struct pci_dev *pdev = to_pci_dev(device);
8281 struct net_device *dev = pci_get_drvdata(pdev);
8282 struct bnxt *bp = netdev_priv(dev);
8283 int rc = 0;
8284
8285 rtnl_lock();
8286 if (netif_running(dev)) {
8287 netif_device_detach(dev);
8288 rc = bnxt_close(dev);
8289 }
8290 bnxt_hwrm_func_drv_unrgtr(bp);
8291 rtnl_unlock();
8292 return rc;
8293 }
8294
8295 static int bnxt_resume(struct device *device)
8296 {
8297 struct pci_dev *pdev = to_pci_dev(device);
8298 struct net_device *dev = pci_get_drvdata(pdev);
8299 struct bnxt *bp = netdev_priv(dev);
8300 int rc = 0;
8301
8302 rtnl_lock();
8303 if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8304 rc = -ENODEV;
8305 goto resume_exit;
8306 }
8307 rc = bnxt_hwrm_func_reset(bp);
8308 if (rc) {
8309 rc = -EBUSY;
8310 goto resume_exit;
8311 }
8312 bnxt_get_wol_settings(bp);
8313 if (netif_running(dev)) {
8314 rc = bnxt_open(dev);
8315 if (!rc)
8316 netif_device_attach(dev);
8317 }
8318
8319 resume_exit:
8320 rtnl_unlock();
8321 return rc;
8322 }
8323
8324 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8325 #define BNXT_PM_OPS (&bnxt_pm_ops)
8326
8327 #else
8328
8329 #define BNXT_PM_OPS NULL
8330
8331 #endif /* CONFIG_PM_SLEEP */
8332
8333 /**
8334 * bnxt_io_error_detected - called when PCI error is detected
8335 * @pdev: Pointer to PCI device
8336 * @state: The current pci connection state
8337 *
8338 * This function is called after a PCI bus error affecting
8339 * this device has been detected.
8340 */
8341 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
8342 pci_channel_state_t state)
8343 {
8344 struct net_device *netdev = pci_get_drvdata(pdev);
8345 struct bnxt *bp = netdev_priv(netdev);
8346
8347 netdev_info(netdev, "PCI I/O error detected\n");
8348
8349 rtnl_lock();
8350 netif_device_detach(netdev);
8351
8352 bnxt_ulp_stop(bp);
8353
8354 if (state == pci_channel_io_perm_failure) {
8355 rtnl_unlock();
8356 return PCI_ERS_RESULT_DISCONNECT;
8357 }
8358
8359 if (netif_running(netdev))
8360 bnxt_close(netdev);
8361
8362 pci_disable_device(pdev);
8363 rtnl_unlock();
8364
8365 /* Request a slot slot reset. */
8366 return PCI_ERS_RESULT_NEED_RESET;
8367 }
8368
8369 /**
8370 * bnxt_io_slot_reset - called after the pci bus has been reset.
8371 * @pdev: Pointer to PCI device
8372 *
8373 * Restart the card from scratch, as if from a cold-boot.
8374 * At this point, the card has exprienced a hard reset,
8375 * followed by fixups by BIOS, and has its config space
8376 * set up identically to what it was at cold boot.
8377 */
8378 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
8379 {
8380 struct net_device *netdev = pci_get_drvdata(pdev);
8381 struct bnxt *bp = netdev_priv(netdev);
8382 int err = 0;
8383 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
8384
8385 netdev_info(bp->dev, "PCI Slot Reset\n");
8386
8387 rtnl_lock();
8388
8389 if (pci_enable_device(pdev)) {
8390 dev_err(&pdev->dev,
8391 "Cannot re-enable PCI device after reset.\n");
8392 } else {
8393 pci_set_master(pdev);
8394
8395 err = bnxt_hwrm_func_reset(bp);
8396 if (!err && netif_running(netdev))
8397 err = bnxt_open(netdev);
8398
8399 if (!err) {
8400 result = PCI_ERS_RESULT_RECOVERED;
8401 bnxt_ulp_start(bp);
8402 }
8403 }
8404
8405 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
8406 dev_close(netdev);
8407
8408 rtnl_unlock();
8409
8410 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8411 if (err) {
8412 dev_err(&pdev->dev,
8413 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8414 err); /* non-fatal, continue */
8415 }
8416
8417 return PCI_ERS_RESULT_RECOVERED;
8418 }
8419
8420 /**
8421 * bnxt_io_resume - called when traffic can start flowing again.
8422 * @pdev: Pointer to PCI device
8423 *
8424 * This callback is called when the error recovery driver tells
8425 * us that its OK to resume normal operation.
8426 */
8427 static void bnxt_io_resume(struct pci_dev *pdev)
8428 {
8429 struct net_device *netdev = pci_get_drvdata(pdev);
8430
8431 rtnl_lock();
8432
8433 netif_device_attach(netdev);
8434
8435 rtnl_unlock();
8436 }
8437
8438 static const struct pci_error_handlers bnxt_err_handler = {
8439 .error_detected = bnxt_io_error_detected,
8440 .slot_reset = bnxt_io_slot_reset,
8441 .resume = bnxt_io_resume
8442 };
8443
8444 static struct pci_driver bnxt_pci_driver = {
8445 .name = DRV_MODULE_NAME,
8446 .id_table = bnxt_pci_tbl,
8447 .probe = bnxt_init_one,
8448 .remove = bnxt_remove_one,
8449 .shutdown = bnxt_shutdown,
8450 .driver.pm = BNXT_PM_OPS,
8451 .err_handler = &bnxt_err_handler,
8452 #if defined(CONFIG_BNXT_SRIOV)
8453 .sriov_configure = bnxt_sriov_configure,
8454 #endif
8455 };
8456
8457 static int __init bnxt_init(void)
8458 {
8459 return pci_register_driver(&bnxt_pci_driver);
8460 }
8461
8462 static void __exit bnxt_exit(void)
8463 {
8464 pci_unregister_driver(&bnxt_pci_driver);
8465 if (bnxt_pf_wq)
8466 destroy_workqueue(bnxt_pf_wq);
8467 }
8468
8469 module_init(bnxt_init);
8470 module_exit(bnxt_exit);