]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT (5 * HZ)
60
61 static const char version[] =
62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 164
73
74 enum board_idx {
75 BCM57301,
76 BCM57302,
77 BCM57304,
78 BCM57402,
79 BCM57404,
80 BCM57406,
81 BCM57314,
82 BCM57304_VF,
83 BCM57404_VF,
84 };
85
86 /* indexed by enum above */
87 static const struct {
88 char *name;
89 } board_info[] = {
90 { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
91 { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
92 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
93 { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
94 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
95 { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
96 { "Broadcom BCM57314 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
97 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
98 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
99 };
100
101 static const struct pci_device_id bnxt_pci_tbl[] = {
102 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
103 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
104 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
105 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
106 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
107 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
108 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
109 #ifdef CONFIG_BNXT_SRIOV
110 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
111 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
112 #endif
113 { 0 }
114 };
115
116 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
117
118 static const u16 bnxt_vf_req_snif[] = {
119 HWRM_FUNC_CFG,
120 HWRM_PORT_PHY_QCFG,
121 HWRM_CFA_L2_FILTER_ALLOC,
122 };
123
124 static const u16 bnxt_async_events_arr[] = {
125 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
126 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
127 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
128 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
129 };
130
131 static bool bnxt_vf_pciid(enum board_idx idx)
132 {
133 return (idx == BCM57304_VF || idx == BCM57404_VF);
134 }
135
136 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
137 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
138 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
139
140 #define BNXT_CP_DB_REARM(db, raw_cons) \
141 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
142
143 #define BNXT_CP_DB(db, raw_cons) \
144 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
145
146 #define BNXT_CP_DB_IRQ_DIS(db) \
147 writel(DB_CP_IRQ_DIS_FLAGS, db)
148
149 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
150 {
151 /* Tell compiler to fetch tx indices from memory. */
152 barrier();
153
154 return bp->tx_ring_size -
155 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
156 }
157
158 static const u16 bnxt_lhint_arr[] = {
159 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
160 TX_BD_FLAGS_LHINT_512_TO_1023,
161 TX_BD_FLAGS_LHINT_1024_TO_2047,
162 TX_BD_FLAGS_LHINT_1024_TO_2047,
163 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
169 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
170 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
171 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
172 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
173 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
174 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
175 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
176 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
177 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
178 };
179
180 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
181 {
182 struct bnxt *bp = netdev_priv(dev);
183 struct tx_bd *txbd;
184 struct tx_bd_ext *txbd1;
185 struct netdev_queue *txq;
186 int i;
187 dma_addr_t mapping;
188 unsigned int length, pad = 0;
189 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
190 u16 prod, last_frag;
191 struct pci_dev *pdev = bp->pdev;
192 struct bnxt_tx_ring_info *txr;
193 struct bnxt_sw_tx_bd *tx_buf;
194
195 i = skb_get_queue_mapping(skb);
196 if (unlikely(i >= bp->tx_nr_rings)) {
197 dev_kfree_skb_any(skb);
198 return NETDEV_TX_OK;
199 }
200
201 txr = &bp->tx_ring[i];
202 txq = netdev_get_tx_queue(dev, i);
203 prod = txr->tx_prod;
204
205 free_size = bnxt_tx_avail(bp, txr);
206 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
207 netif_tx_stop_queue(txq);
208 return NETDEV_TX_BUSY;
209 }
210
211 length = skb->len;
212 len = skb_headlen(skb);
213 last_frag = skb_shinfo(skb)->nr_frags;
214
215 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
216
217 txbd->tx_bd_opaque = prod;
218
219 tx_buf = &txr->tx_buf_ring[prod];
220 tx_buf->skb = skb;
221 tx_buf->nr_frags = last_frag;
222
223 vlan_tag_flags = 0;
224 cfa_action = 0;
225 if (skb_vlan_tag_present(skb)) {
226 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
227 skb_vlan_tag_get(skb);
228 /* Currently supports 8021Q, 8021AD vlan offloads
229 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
230 */
231 if (skb->vlan_proto == htons(ETH_P_8021Q))
232 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
233 }
234
235 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
236 struct tx_push_buffer *tx_push_buf = txr->tx_push;
237 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
238 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
239 void *pdata = tx_push_buf->data;
240 u64 *end;
241 int j, push_len;
242
243 /* Set COAL_NOW to be ready quickly for the next push */
244 tx_push->tx_bd_len_flags_type =
245 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
246 TX_BD_TYPE_LONG_TX_BD |
247 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
248 TX_BD_FLAGS_COAL_NOW |
249 TX_BD_FLAGS_PACKET_END |
250 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
251
252 if (skb->ip_summed == CHECKSUM_PARTIAL)
253 tx_push1->tx_bd_hsize_lflags =
254 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
255 else
256 tx_push1->tx_bd_hsize_lflags = 0;
257
258 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
259 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
260
261 end = pdata + length;
262 end = PTR_ALIGN(end, 8) - 1;
263 *end = 0;
264
265 skb_copy_from_linear_data(skb, pdata, len);
266 pdata += len;
267 for (j = 0; j < last_frag; j++) {
268 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
269 void *fptr;
270
271 fptr = skb_frag_address_safe(frag);
272 if (!fptr)
273 goto normal_tx;
274
275 memcpy(pdata, fptr, skb_frag_size(frag));
276 pdata += skb_frag_size(frag);
277 }
278
279 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
280 txbd->tx_bd_haddr = txr->data_mapping;
281 prod = NEXT_TX(prod);
282 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
283 memcpy(txbd, tx_push1, sizeof(*txbd));
284 prod = NEXT_TX(prod);
285 tx_push->doorbell =
286 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
287 txr->tx_prod = prod;
288
289 tx_buf->is_push = 1;
290 netdev_tx_sent_queue(txq, skb->len);
291 wmb(); /* Sync is_push and byte queue before pushing data */
292
293 push_len = (length + sizeof(*tx_push) + 7) / 8;
294 if (push_len > 16) {
295 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
296 __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
297 push_len - 16);
298 } else {
299 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
300 push_len);
301 }
302
303 goto tx_done;
304 }
305
306 normal_tx:
307 if (length < BNXT_MIN_PKT_SIZE) {
308 pad = BNXT_MIN_PKT_SIZE - length;
309 if (skb_pad(skb, pad)) {
310 /* SKB already freed. */
311 tx_buf->skb = NULL;
312 return NETDEV_TX_OK;
313 }
314 length = BNXT_MIN_PKT_SIZE;
315 }
316
317 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
318
319 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
320 dev_kfree_skb_any(skb);
321 tx_buf->skb = NULL;
322 return NETDEV_TX_OK;
323 }
324
325 dma_unmap_addr_set(tx_buf, mapping, mapping);
326 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
327 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
328
329 txbd->tx_bd_haddr = cpu_to_le64(mapping);
330
331 prod = NEXT_TX(prod);
332 txbd1 = (struct tx_bd_ext *)
333 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
334
335 txbd1->tx_bd_hsize_lflags = 0;
336 if (skb_is_gso(skb)) {
337 u32 hdr_len;
338
339 if (skb->encapsulation)
340 hdr_len = skb_inner_network_offset(skb) +
341 skb_inner_network_header_len(skb) +
342 inner_tcp_hdrlen(skb);
343 else
344 hdr_len = skb_transport_offset(skb) +
345 tcp_hdrlen(skb);
346
347 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
348 TX_BD_FLAGS_T_IPID |
349 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
350 length = skb_shinfo(skb)->gso_size;
351 txbd1->tx_bd_mss = cpu_to_le32(length);
352 length += hdr_len;
353 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
354 txbd1->tx_bd_hsize_lflags =
355 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
356 txbd1->tx_bd_mss = 0;
357 }
358
359 length >>= 9;
360 flags |= bnxt_lhint_arr[length];
361 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
362
363 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
364 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
365 for (i = 0; i < last_frag; i++) {
366 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
367
368 prod = NEXT_TX(prod);
369 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
370
371 len = skb_frag_size(frag);
372 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
373 DMA_TO_DEVICE);
374
375 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
376 goto tx_dma_error;
377
378 tx_buf = &txr->tx_buf_ring[prod];
379 dma_unmap_addr_set(tx_buf, mapping, mapping);
380
381 txbd->tx_bd_haddr = cpu_to_le64(mapping);
382
383 flags = len << TX_BD_LEN_SHIFT;
384 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
385 }
386
387 flags &= ~TX_BD_LEN;
388 txbd->tx_bd_len_flags_type =
389 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
390 TX_BD_FLAGS_PACKET_END);
391
392 netdev_tx_sent_queue(txq, skb->len);
393
394 /* Sync BD data before updating doorbell */
395 wmb();
396
397 prod = NEXT_TX(prod);
398 txr->tx_prod = prod;
399
400 writel(DB_KEY_TX | prod, txr->tx_doorbell);
401 writel(DB_KEY_TX | prod, txr->tx_doorbell);
402
403 tx_done:
404
405 mmiowb();
406
407 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
408 netif_tx_stop_queue(txq);
409
410 /* netif_tx_stop_queue() must be done before checking
411 * tx index in bnxt_tx_avail() below, because in
412 * bnxt_tx_int(), we update tx index before checking for
413 * netif_tx_queue_stopped().
414 */
415 smp_mb();
416 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
417 netif_tx_wake_queue(txq);
418 }
419 return NETDEV_TX_OK;
420
421 tx_dma_error:
422 last_frag = i;
423
424 /* start back at beginning and unmap skb */
425 prod = txr->tx_prod;
426 tx_buf = &txr->tx_buf_ring[prod];
427 tx_buf->skb = NULL;
428 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
429 skb_headlen(skb), PCI_DMA_TODEVICE);
430 prod = NEXT_TX(prod);
431
432 /* unmap remaining mapped pages */
433 for (i = 0; i < last_frag; i++) {
434 prod = NEXT_TX(prod);
435 tx_buf = &txr->tx_buf_ring[prod];
436 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
437 skb_frag_size(&skb_shinfo(skb)->frags[i]),
438 PCI_DMA_TODEVICE);
439 }
440
441 dev_kfree_skb_any(skb);
442 return NETDEV_TX_OK;
443 }
444
445 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
446 {
447 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
448 int index = txr - &bp->tx_ring[0];
449 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
450 u16 cons = txr->tx_cons;
451 struct pci_dev *pdev = bp->pdev;
452 int i;
453 unsigned int tx_bytes = 0;
454
455 for (i = 0; i < nr_pkts; i++) {
456 struct bnxt_sw_tx_bd *tx_buf;
457 struct sk_buff *skb;
458 int j, last;
459
460 tx_buf = &txr->tx_buf_ring[cons];
461 cons = NEXT_TX(cons);
462 skb = tx_buf->skb;
463 tx_buf->skb = NULL;
464
465 if (tx_buf->is_push) {
466 tx_buf->is_push = 0;
467 goto next_tx_int;
468 }
469
470 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
471 skb_headlen(skb), PCI_DMA_TODEVICE);
472 last = tx_buf->nr_frags;
473
474 for (j = 0; j < last; j++) {
475 cons = NEXT_TX(cons);
476 tx_buf = &txr->tx_buf_ring[cons];
477 dma_unmap_page(
478 &pdev->dev,
479 dma_unmap_addr(tx_buf, mapping),
480 skb_frag_size(&skb_shinfo(skb)->frags[j]),
481 PCI_DMA_TODEVICE);
482 }
483
484 next_tx_int:
485 cons = NEXT_TX(cons);
486
487 tx_bytes += skb->len;
488 dev_kfree_skb_any(skb);
489 }
490
491 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
492 txr->tx_cons = cons;
493
494 /* Need to make the tx_cons update visible to bnxt_start_xmit()
495 * before checking for netif_tx_queue_stopped(). Without the
496 * memory barrier, there is a small possibility that bnxt_start_xmit()
497 * will miss it and cause the queue to be stopped forever.
498 */
499 smp_mb();
500
501 if (unlikely(netif_tx_queue_stopped(txq)) &&
502 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
503 __netif_tx_lock(txq, smp_processor_id());
504 if (netif_tx_queue_stopped(txq) &&
505 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
506 txr->dev_state != BNXT_DEV_STATE_CLOSING)
507 netif_tx_wake_queue(txq);
508 __netif_tx_unlock(txq);
509 }
510 }
511
512 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
513 gfp_t gfp)
514 {
515 u8 *data;
516 struct pci_dev *pdev = bp->pdev;
517
518 data = kmalloc(bp->rx_buf_size, gfp);
519 if (!data)
520 return NULL;
521
522 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
523 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
524
525 if (dma_mapping_error(&pdev->dev, *mapping)) {
526 kfree(data);
527 data = NULL;
528 }
529 return data;
530 }
531
532 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
533 struct bnxt_rx_ring_info *rxr,
534 u16 prod, gfp_t gfp)
535 {
536 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
537 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
538 u8 *data;
539 dma_addr_t mapping;
540
541 data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
542 if (!data)
543 return -ENOMEM;
544
545 rx_buf->data = data;
546 dma_unmap_addr_set(rx_buf, mapping, mapping);
547
548 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
549
550 return 0;
551 }
552
553 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
554 u8 *data)
555 {
556 u16 prod = rxr->rx_prod;
557 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
558 struct rx_bd *cons_bd, *prod_bd;
559
560 prod_rx_buf = &rxr->rx_buf_ring[prod];
561 cons_rx_buf = &rxr->rx_buf_ring[cons];
562
563 prod_rx_buf->data = data;
564
565 dma_unmap_addr_set(prod_rx_buf, mapping,
566 dma_unmap_addr(cons_rx_buf, mapping));
567
568 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
569 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
570
571 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
572 }
573
574 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
575 {
576 u16 next, max = rxr->rx_agg_bmap_size;
577
578 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
579 if (next >= max)
580 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
581 return next;
582 }
583
584 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
585 struct bnxt_rx_ring_info *rxr,
586 u16 prod, gfp_t gfp)
587 {
588 struct rx_bd *rxbd =
589 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
590 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
591 struct pci_dev *pdev = bp->pdev;
592 struct page *page;
593 dma_addr_t mapping;
594 u16 sw_prod = rxr->rx_sw_agg_prod;
595 unsigned int offset = 0;
596
597 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
598 page = rxr->rx_page;
599 if (!page) {
600 page = alloc_page(gfp);
601 if (!page)
602 return -ENOMEM;
603 rxr->rx_page = page;
604 rxr->rx_page_offset = 0;
605 }
606 offset = rxr->rx_page_offset;
607 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
608 if (rxr->rx_page_offset == PAGE_SIZE)
609 rxr->rx_page = NULL;
610 else
611 get_page(page);
612 } else {
613 page = alloc_page(gfp);
614 if (!page)
615 return -ENOMEM;
616 }
617
618 mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
619 PCI_DMA_FROMDEVICE);
620 if (dma_mapping_error(&pdev->dev, mapping)) {
621 __free_page(page);
622 return -EIO;
623 }
624
625 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
626 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
627
628 __set_bit(sw_prod, rxr->rx_agg_bmap);
629 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
630 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
631
632 rx_agg_buf->page = page;
633 rx_agg_buf->offset = offset;
634 rx_agg_buf->mapping = mapping;
635 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
636 rxbd->rx_bd_opaque = sw_prod;
637 return 0;
638 }
639
640 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
641 u32 agg_bufs)
642 {
643 struct bnxt *bp = bnapi->bp;
644 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
645 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
646 u16 prod = rxr->rx_agg_prod;
647 u16 sw_prod = rxr->rx_sw_agg_prod;
648 u32 i;
649
650 for (i = 0; i < agg_bufs; i++) {
651 u16 cons;
652 struct rx_agg_cmp *agg;
653 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
654 struct rx_bd *prod_bd;
655 struct page *page;
656
657 agg = (struct rx_agg_cmp *)
658 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
659 cons = agg->rx_agg_cmp_opaque;
660 __clear_bit(cons, rxr->rx_agg_bmap);
661
662 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
663 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
664
665 __set_bit(sw_prod, rxr->rx_agg_bmap);
666 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
667 cons_rx_buf = &rxr->rx_agg_ring[cons];
668
669 /* It is possible for sw_prod to be equal to cons, so
670 * set cons_rx_buf->page to NULL first.
671 */
672 page = cons_rx_buf->page;
673 cons_rx_buf->page = NULL;
674 prod_rx_buf->page = page;
675 prod_rx_buf->offset = cons_rx_buf->offset;
676
677 prod_rx_buf->mapping = cons_rx_buf->mapping;
678
679 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
680
681 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
682 prod_bd->rx_bd_opaque = sw_prod;
683
684 prod = NEXT_RX_AGG(prod);
685 sw_prod = NEXT_RX_AGG(sw_prod);
686 cp_cons = NEXT_CMP(cp_cons);
687 }
688 rxr->rx_agg_prod = prod;
689 rxr->rx_sw_agg_prod = sw_prod;
690 }
691
692 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
693 struct bnxt_rx_ring_info *rxr, u16 cons,
694 u16 prod, u8 *data, dma_addr_t dma_addr,
695 unsigned int len)
696 {
697 int err;
698 struct sk_buff *skb;
699
700 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
701 if (unlikely(err)) {
702 bnxt_reuse_rx_data(rxr, cons, data);
703 return NULL;
704 }
705
706 skb = build_skb(data, 0);
707 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
708 PCI_DMA_FROMDEVICE);
709 if (!skb) {
710 kfree(data);
711 return NULL;
712 }
713
714 skb_reserve(skb, BNXT_RX_OFFSET);
715 skb_put(skb, len);
716 return skb;
717 }
718
719 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
720 struct sk_buff *skb, u16 cp_cons,
721 u32 agg_bufs)
722 {
723 struct pci_dev *pdev = bp->pdev;
724 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
725 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
726 u16 prod = rxr->rx_agg_prod;
727 u32 i;
728
729 for (i = 0; i < agg_bufs; i++) {
730 u16 cons, frag_len;
731 struct rx_agg_cmp *agg;
732 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
733 struct page *page;
734 dma_addr_t mapping;
735
736 agg = (struct rx_agg_cmp *)
737 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
738 cons = agg->rx_agg_cmp_opaque;
739 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
740 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
741
742 cons_rx_buf = &rxr->rx_agg_ring[cons];
743 skb_fill_page_desc(skb, i, cons_rx_buf->page,
744 cons_rx_buf->offset, frag_len);
745 __clear_bit(cons, rxr->rx_agg_bmap);
746
747 /* It is possible for bnxt_alloc_rx_page() to allocate
748 * a sw_prod index that equals the cons index, so we
749 * need to clear the cons entry now.
750 */
751 mapping = dma_unmap_addr(cons_rx_buf, mapping);
752 page = cons_rx_buf->page;
753 cons_rx_buf->page = NULL;
754
755 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
756 struct skb_shared_info *shinfo;
757 unsigned int nr_frags;
758
759 shinfo = skb_shinfo(skb);
760 nr_frags = --shinfo->nr_frags;
761 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
762
763 dev_kfree_skb(skb);
764
765 cons_rx_buf->page = page;
766
767 /* Update prod since possibly some pages have been
768 * allocated already.
769 */
770 rxr->rx_agg_prod = prod;
771 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
772 return NULL;
773 }
774
775 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
776 PCI_DMA_FROMDEVICE);
777
778 skb->data_len += frag_len;
779 skb->len += frag_len;
780 skb->truesize += PAGE_SIZE;
781
782 prod = NEXT_RX_AGG(prod);
783 cp_cons = NEXT_CMP(cp_cons);
784 }
785 rxr->rx_agg_prod = prod;
786 return skb;
787 }
788
789 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
790 u8 agg_bufs, u32 *raw_cons)
791 {
792 u16 last;
793 struct rx_agg_cmp *agg;
794
795 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
796 last = RING_CMP(*raw_cons);
797 agg = (struct rx_agg_cmp *)
798 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
799 return RX_AGG_CMP_VALID(agg, *raw_cons);
800 }
801
802 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
803 unsigned int len,
804 dma_addr_t mapping)
805 {
806 struct bnxt *bp = bnapi->bp;
807 struct pci_dev *pdev = bp->pdev;
808 struct sk_buff *skb;
809
810 skb = napi_alloc_skb(&bnapi->napi, len);
811 if (!skb)
812 return NULL;
813
814 dma_sync_single_for_cpu(&pdev->dev, mapping,
815 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
816
817 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
818
819 dma_sync_single_for_device(&pdev->dev, mapping,
820 bp->rx_copy_thresh,
821 PCI_DMA_FROMDEVICE);
822
823 skb_put(skb, len);
824 return skb;
825 }
826
827 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
828 u32 *raw_cons, void *cmp)
829 {
830 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
831 struct rx_cmp *rxcmp = cmp;
832 u32 tmp_raw_cons = *raw_cons;
833 u8 cmp_type, agg_bufs = 0;
834
835 cmp_type = RX_CMP_TYPE(rxcmp);
836
837 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
838 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
839 RX_CMP_AGG_BUFS) >>
840 RX_CMP_AGG_BUFS_SHIFT;
841 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
842 struct rx_tpa_end_cmp *tpa_end = cmp;
843
844 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
845 RX_TPA_END_CMP_AGG_BUFS) >>
846 RX_TPA_END_CMP_AGG_BUFS_SHIFT;
847 }
848
849 if (agg_bufs) {
850 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
851 return -EBUSY;
852 }
853 *raw_cons = tmp_raw_cons;
854 return 0;
855 }
856
857 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
858 {
859 if (!rxr->bnapi->in_reset) {
860 rxr->bnapi->in_reset = true;
861 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
862 schedule_work(&bp->sp_task);
863 }
864 rxr->rx_next_cons = 0xffff;
865 }
866
867 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
868 struct rx_tpa_start_cmp *tpa_start,
869 struct rx_tpa_start_cmp_ext *tpa_start1)
870 {
871 u8 agg_id = TPA_START_AGG_ID(tpa_start);
872 u16 cons, prod;
873 struct bnxt_tpa_info *tpa_info;
874 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
875 struct rx_bd *prod_bd;
876 dma_addr_t mapping;
877
878 cons = tpa_start->rx_tpa_start_cmp_opaque;
879 prod = rxr->rx_prod;
880 cons_rx_buf = &rxr->rx_buf_ring[cons];
881 prod_rx_buf = &rxr->rx_buf_ring[prod];
882 tpa_info = &rxr->rx_tpa[agg_id];
883
884 if (unlikely(cons != rxr->rx_next_cons)) {
885 bnxt_sched_reset(bp, rxr);
886 return;
887 }
888
889 prod_rx_buf->data = tpa_info->data;
890
891 mapping = tpa_info->mapping;
892 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
893
894 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
895
896 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
897
898 tpa_info->data = cons_rx_buf->data;
899 cons_rx_buf->data = NULL;
900 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
901
902 tpa_info->len =
903 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
904 RX_TPA_START_CMP_LEN_SHIFT;
905 if (likely(TPA_START_HASH_VALID(tpa_start))) {
906 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
907
908 tpa_info->hash_type = PKT_HASH_TYPE_L4;
909 tpa_info->gso_type = SKB_GSO_TCPV4;
910 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
911 if (hash_type == 3)
912 tpa_info->gso_type = SKB_GSO_TCPV6;
913 tpa_info->rss_hash =
914 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
915 } else {
916 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
917 tpa_info->gso_type = 0;
918 if (netif_msg_rx_err(bp))
919 netdev_warn(bp->dev, "TPA packet without valid hash\n");
920 }
921 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
922 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
923
924 rxr->rx_prod = NEXT_RX(prod);
925 cons = NEXT_RX(cons);
926 rxr->rx_next_cons = NEXT_RX(cons);
927 cons_rx_buf = &rxr->rx_buf_ring[cons];
928
929 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
930 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
931 cons_rx_buf->data = NULL;
932 }
933
934 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
935 u16 cp_cons, u32 agg_bufs)
936 {
937 if (agg_bufs)
938 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
939 }
940
941 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
942 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
943
944 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
945 struct rx_tpa_end_cmp *tpa_end,
946 struct rx_tpa_end_cmp_ext *tpa_end1,
947 struct sk_buff *skb)
948 {
949 #ifdef CONFIG_INET
950 struct tcphdr *th;
951 int payload_off, tcp_opt_len = 0;
952 int len, nw_off;
953 u16 segs;
954
955 segs = TPA_END_TPA_SEGS(tpa_end);
956 if (segs == 1)
957 return skb;
958
959 NAPI_GRO_CB(skb)->count = segs;
960 skb_shinfo(skb)->gso_size =
961 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
962 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
963 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
964 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
965 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
966 if (TPA_END_GRO_TS(tpa_end))
967 tcp_opt_len = 12;
968
969 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
970 struct iphdr *iph;
971
972 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
973 ETH_HLEN;
974 skb_set_network_header(skb, nw_off);
975 iph = ip_hdr(skb);
976 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
977 len = skb->len - skb_transport_offset(skb);
978 th = tcp_hdr(skb);
979 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
980 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
981 struct ipv6hdr *iph;
982
983 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
984 ETH_HLEN;
985 skb_set_network_header(skb, nw_off);
986 iph = ipv6_hdr(skb);
987 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
988 len = skb->len - skb_transport_offset(skb);
989 th = tcp_hdr(skb);
990 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
991 } else {
992 dev_kfree_skb_any(skb);
993 return NULL;
994 }
995 tcp_gro_complete(skb);
996
997 if (nw_off) { /* tunnel */
998 struct udphdr *uh = NULL;
999
1000 if (skb->protocol == htons(ETH_P_IP)) {
1001 struct iphdr *iph = (struct iphdr *)skb->data;
1002
1003 if (iph->protocol == IPPROTO_UDP)
1004 uh = (struct udphdr *)(iph + 1);
1005 } else {
1006 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1007
1008 if (iph->nexthdr == IPPROTO_UDP)
1009 uh = (struct udphdr *)(iph + 1);
1010 }
1011 if (uh) {
1012 if (uh->check)
1013 skb_shinfo(skb)->gso_type |=
1014 SKB_GSO_UDP_TUNNEL_CSUM;
1015 else
1016 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1017 }
1018 }
1019 #endif
1020 return skb;
1021 }
1022
1023 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1024 struct bnxt_napi *bnapi,
1025 u32 *raw_cons,
1026 struct rx_tpa_end_cmp *tpa_end,
1027 struct rx_tpa_end_cmp_ext *tpa_end1,
1028 bool *agg_event)
1029 {
1030 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1031 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1032 u8 agg_id = TPA_END_AGG_ID(tpa_end);
1033 u8 *data, agg_bufs;
1034 u16 cp_cons = RING_CMP(*raw_cons);
1035 unsigned int len;
1036 struct bnxt_tpa_info *tpa_info;
1037 dma_addr_t mapping;
1038 struct sk_buff *skb;
1039
1040 if (unlikely(bnapi->in_reset)) {
1041 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1042
1043 if (rc < 0)
1044 return ERR_PTR(-EBUSY);
1045 return NULL;
1046 }
1047
1048 tpa_info = &rxr->rx_tpa[agg_id];
1049 data = tpa_info->data;
1050 prefetch(data);
1051 len = tpa_info->len;
1052 mapping = tpa_info->mapping;
1053
1054 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1055 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1056
1057 if (agg_bufs) {
1058 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1059 return ERR_PTR(-EBUSY);
1060
1061 *agg_event = true;
1062 cp_cons = NEXT_CMP(cp_cons);
1063 }
1064
1065 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1066 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1067 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1068 agg_bufs, (int)MAX_SKB_FRAGS);
1069 return NULL;
1070 }
1071
1072 if (len <= bp->rx_copy_thresh) {
1073 skb = bnxt_copy_skb(bnapi, data, len, mapping);
1074 if (!skb) {
1075 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1076 return NULL;
1077 }
1078 } else {
1079 u8 *new_data;
1080 dma_addr_t new_mapping;
1081
1082 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1083 if (!new_data) {
1084 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1085 return NULL;
1086 }
1087
1088 tpa_info->data = new_data;
1089 tpa_info->mapping = new_mapping;
1090
1091 skb = build_skb(data, 0);
1092 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1093 PCI_DMA_FROMDEVICE);
1094
1095 if (!skb) {
1096 kfree(data);
1097 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1098 return NULL;
1099 }
1100 skb_reserve(skb, BNXT_RX_OFFSET);
1101 skb_put(skb, len);
1102 }
1103
1104 if (agg_bufs) {
1105 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1106 if (!skb) {
1107 /* Page reuse already handled by bnxt_rx_pages(). */
1108 return NULL;
1109 }
1110 }
1111 skb->protocol = eth_type_trans(skb, bp->dev);
1112
1113 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1114 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1115
1116 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1117 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1118 u16 vlan_proto = tpa_info->metadata >>
1119 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1120 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1121
1122 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1123 }
1124
1125 skb_checksum_none_assert(skb);
1126 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1127 skb->ip_summed = CHECKSUM_UNNECESSARY;
1128 skb->csum_level =
1129 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1130 }
1131
1132 if (TPA_END_GRO(tpa_end))
1133 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1134
1135 return skb;
1136 }
1137
1138 /* returns the following:
1139 * 1 - 1 packet successfully received
1140 * 0 - successful TPA_START, packet not completed yet
1141 * -EBUSY - completion ring does not have all the agg buffers yet
1142 * -ENOMEM - packet aborted due to out of memory
1143 * -EIO - packet aborted due to hw error indicated in BD
1144 */
1145 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1146 bool *agg_event)
1147 {
1148 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1149 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1150 struct net_device *dev = bp->dev;
1151 struct rx_cmp *rxcmp;
1152 struct rx_cmp_ext *rxcmp1;
1153 u32 tmp_raw_cons = *raw_cons;
1154 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1155 struct bnxt_sw_rx_bd *rx_buf;
1156 unsigned int len;
1157 u8 *data, agg_bufs, cmp_type;
1158 dma_addr_t dma_addr;
1159 struct sk_buff *skb;
1160 int rc = 0;
1161
1162 rxcmp = (struct rx_cmp *)
1163 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1164
1165 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1166 cp_cons = RING_CMP(tmp_raw_cons);
1167 rxcmp1 = (struct rx_cmp_ext *)
1168 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1169
1170 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1171 return -EBUSY;
1172
1173 cmp_type = RX_CMP_TYPE(rxcmp);
1174
1175 prod = rxr->rx_prod;
1176
1177 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1178 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1179 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1180
1181 goto next_rx_no_prod;
1182
1183 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1184 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1185 (struct rx_tpa_end_cmp *)rxcmp,
1186 (struct rx_tpa_end_cmp_ext *)rxcmp1,
1187 agg_event);
1188
1189 if (unlikely(IS_ERR(skb)))
1190 return -EBUSY;
1191
1192 rc = -ENOMEM;
1193 if (likely(skb)) {
1194 skb_record_rx_queue(skb, bnapi->index);
1195 skb_mark_napi_id(skb, &bnapi->napi);
1196 if (bnxt_busy_polling(bnapi))
1197 netif_receive_skb(skb);
1198 else
1199 napi_gro_receive(&bnapi->napi, skb);
1200 rc = 1;
1201 }
1202 goto next_rx_no_prod;
1203 }
1204
1205 cons = rxcmp->rx_cmp_opaque;
1206 rx_buf = &rxr->rx_buf_ring[cons];
1207 data = rx_buf->data;
1208 if (unlikely(cons != rxr->rx_next_cons)) {
1209 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1210
1211 bnxt_sched_reset(bp, rxr);
1212 return rc1;
1213 }
1214 prefetch(data);
1215
1216 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1217 RX_CMP_AGG_BUFS_SHIFT;
1218
1219 if (agg_bufs) {
1220 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1221 return -EBUSY;
1222
1223 cp_cons = NEXT_CMP(cp_cons);
1224 *agg_event = true;
1225 }
1226
1227 rx_buf->data = NULL;
1228 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1229 bnxt_reuse_rx_data(rxr, cons, data);
1230 if (agg_bufs)
1231 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1232
1233 rc = -EIO;
1234 goto next_rx;
1235 }
1236
1237 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1238 dma_addr = dma_unmap_addr(rx_buf, mapping);
1239
1240 if (len <= bp->rx_copy_thresh) {
1241 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1242 bnxt_reuse_rx_data(rxr, cons, data);
1243 if (!skb) {
1244 rc = -ENOMEM;
1245 goto next_rx;
1246 }
1247 } else {
1248 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1249 if (!skb) {
1250 rc = -ENOMEM;
1251 goto next_rx;
1252 }
1253 }
1254
1255 if (agg_bufs) {
1256 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1257 if (!skb) {
1258 rc = -ENOMEM;
1259 goto next_rx;
1260 }
1261 }
1262
1263 if (RX_CMP_HASH_VALID(rxcmp)) {
1264 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1265 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1266
1267 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1268 if (hash_type != 1 && hash_type != 3)
1269 type = PKT_HASH_TYPE_L3;
1270 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1271 }
1272
1273 skb->protocol = eth_type_trans(skb, dev);
1274
1275 if ((rxcmp1->rx_cmp_flags2 &
1276 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1277 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1278 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1279 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1280 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1281
1282 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1283 }
1284
1285 skb_checksum_none_assert(skb);
1286 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1287 if (dev->features & NETIF_F_RXCSUM) {
1288 skb->ip_summed = CHECKSUM_UNNECESSARY;
1289 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1290 }
1291 } else {
1292 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1293 if (dev->features & NETIF_F_RXCSUM)
1294 cpr->rx_l4_csum_errors++;
1295 }
1296 }
1297
1298 skb_record_rx_queue(skb, bnapi->index);
1299 skb_mark_napi_id(skb, &bnapi->napi);
1300 if (bnxt_busy_polling(bnapi))
1301 netif_receive_skb(skb);
1302 else
1303 napi_gro_receive(&bnapi->napi, skb);
1304 rc = 1;
1305
1306 next_rx:
1307 rxr->rx_prod = NEXT_RX(prod);
1308 rxr->rx_next_cons = NEXT_RX(cons);
1309
1310 next_rx_no_prod:
1311 *raw_cons = tmp_raw_cons;
1312
1313 return rc;
1314 }
1315
1316 #define BNXT_GET_EVENT_PORT(data) \
1317 ((data) & \
1318 HWRM_ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1319
1320 static int bnxt_async_event_process(struct bnxt *bp,
1321 struct hwrm_async_event_cmpl *cmpl)
1322 {
1323 u16 event_id = le16_to_cpu(cmpl->event_id);
1324
1325 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1326 switch (event_id) {
1327 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1328 u32 data1 = le32_to_cpu(cmpl->event_data1);
1329 struct bnxt_link_info *link_info = &bp->link_info;
1330
1331 if (BNXT_VF(bp))
1332 goto async_event_process_exit;
1333 if (data1 & 0x20000) {
1334 u16 fw_speed = link_info->force_link_speed;
1335 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1336
1337 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1338 speed);
1339 }
1340 /* fall thru */
1341 }
1342 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1343 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1344 break;
1345 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1346 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1347 break;
1348 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1349 u32 data1 = le32_to_cpu(cmpl->event_data1);
1350 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1351
1352 if (BNXT_VF(bp))
1353 break;
1354
1355 if (bp->pf.port_id != port_id)
1356 break;
1357
1358 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1359 break;
1360 }
1361 default:
1362 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1363 event_id);
1364 goto async_event_process_exit;
1365 }
1366 schedule_work(&bp->sp_task);
1367 async_event_process_exit:
1368 return 0;
1369 }
1370
1371 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1372 {
1373 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1374 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1375 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1376 (struct hwrm_fwd_req_cmpl *)txcmp;
1377
1378 switch (cmpl_type) {
1379 case CMPL_BASE_TYPE_HWRM_DONE:
1380 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1381 if (seq_id == bp->hwrm_intr_seq_id)
1382 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1383 else
1384 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1385 break;
1386
1387 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1388 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1389
1390 if ((vf_id < bp->pf.first_vf_id) ||
1391 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1392 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1393 vf_id);
1394 return -EINVAL;
1395 }
1396
1397 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1398 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1399 schedule_work(&bp->sp_task);
1400 break;
1401
1402 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1403 bnxt_async_event_process(bp,
1404 (struct hwrm_async_event_cmpl *)txcmp);
1405
1406 default:
1407 break;
1408 }
1409
1410 return 0;
1411 }
1412
1413 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1414 {
1415 struct bnxt_napi *bnapi = dev_instance;
1416 struct bnxt *bp = bnapi->bp;
1417 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1418 u32 cons = RING_CMP(cpr->cp_raw_cons);
1419
1420 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1421 napi_schedule(&bnapi->napi);
1422 return IRQ_HANDLED;
1423 }
1424
1425 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1426 {
1427 u32 raw_cons = cpr->cp_raw_cons;
1428 u16 cons = RING_CMP(raw_cons);
1429 struct tx_cmp *txcmp;
1430
1431 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1432
1433 return TX_CMP_VALID(txcmp, raw_cons);
1434 }
1435
1436 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1437 {
1438 struct bnxt_napi *bnapi = dev_instance;
1439 struct bnxt *bp = bnapi->bp;
1440 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1441 u32 cons = RING_CMP(cpr->cp_raw_cons);
1442 u32 int_status;
1443
1444 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1445
1446 if (!bnxt_has_work(bp, cpr)) {
1447 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1448 /* return if erroneous interrupt */
1449 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1450 return IRQ_NONE;
1451 }
1452
1453 /* disable ring IRQ */
1454 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1455
1456 /* Return here if interrupt is shared and is disabled. */
1457 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1458 return IRQ_HANDLED;
1459
1460 napi_schedule(&bnapi->napi);
1461 return IRQ_HANDLED;
1462 }
1463
1464 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1465 {
1466 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1467 u32 raw_cons = cpr->cp_raw_cons;
1468 u32 cons;
1469 int tx_pkts = 0;
1470 int rx_pkts = 0;
1471 bool rx_event = false;
1472 bool agg_event = false;
1473 struct tx_cmp *txcmp;
1474
1475 while (1) {
1476 int rc;
1477
1478 cons = RING_CMP(raw_cons);
1479 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1480
1481 if (!TX_CMP_VALID(txcmp, raw_cons))
1482 break;
1483
1484 /* The valid test of the entry must be done first before
1485 * reading any further.
1486 */
1487 dma_rmb();
1488 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1489 tx_pkts++;
1490 /* return full budget so NAPI will complete. */
1491 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1492 rx_pkts = budget;
1493 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1494 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1495 if (likely(rc >= 0))
1496 rx_pkts += rc;
1497 else if (rc == -EBUSY) /* partial completion */
1498 break;
1499 rx_event = true;
1500 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1501 CMPL_BASE_TYPE_HWRM_DONE) ||
1502 (TX_CMP_TYPE(txcmp) ==
1503 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1504 (TX_CMP_TYPE(txcmp) ==
1505 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1506 bnxt_hwrm_handler(bp, txcmp);
1507 }
1508 raw_cons = NEXT_RAW_CMP(raw_cons);
1509
1510 if (rx_pkts == budget)
1511 break;
1512 }
1513
1514 cpr->cp_raw_cons = raw_cons;
1515 /* ACK completion ring before freeing tx ring and producing new
1516 * buffers in rx/agg rings to prevent overflowing the completion
1517 * ring.
1518 */
1519 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1520
1521 if (tx_pkts)
1522 bnxt_tx_int(bp, bnapi, tx_pkts);
1523
1524 if (rx_event) {
1525 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1526
1527 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1528 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1529 if (agg_event) {
1530 writel(DB_KEY_RX | rxr->rx_agg_prod,
1531 rxr->rx_agg_doorbell);
1532 writel(DB_KEY_RX | rxr->rx_agg_prod,
1533 rxr->rx_agg_doorbell);
1534 }
1535 }
1536 return rx_pkts;
1537 }
1538
1539 static int bnxt_poll(struct napi_struct *napi, int budget)
1540 {
1541 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1542 struct bnxt *bp = bnapi->bp;
1543 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1544 int work_done = 0;
1545
1546 if (!bnxt_lock_napi(bnapi))
1547 return budget;
1548
1549 while (1) {
1550 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1551
1552 if (work_done >= budget)
1553 break;
1554
1555 if (!bnxt_has_work(bp, cpr)) {
1556 napi_complete(napi);
1557 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1558 break;
1559 }
1560 }
1561 mmiowb();
1562 bnxt_unlock_napi(bnapi);
1563 return work_done;
1564 }
1565
1566 #ifdef CONFIG_NET_RX_BUSY_POLL
1567 static int bnxt_busy_poll(struct napi_struct *napi)
1568 {
1569 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1570 struct bnxt *bp = bnapi->bp;
1571 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1572 int rx_work, budget = 4;
1573
1574 if (atomic_read(&bp->intr_sem) != 0)
1575 return LL_FLUSH_FAILED;
1576
1577 if (!bnxt_lock_poll(bnapi))
1578 return LL_FLUSH_BUSY;
1579
1580 rx_work = bnxt_poll_work(bp, bnapi, budget);
1581
1582 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1583
1584 bnxt_unlock_poll(bnapi);
1585 return rx_work;
1586 }
1587 #endif
1588
1589 static void bnxt_free_tx_skbs(struct bnxt *bp)
1590 {
1591 int i, max_idx;
1592 struct pci_dev *pdev = bp->pdev;
1593
1594 if (!bp->tx_ring)
1595 return;
1596
1597 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1598 for (i = 0; i < bp->tx_nr_rings; i++) {
1599 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1600 int j;
1601
1602 for (j = 0; j < max_idx;) {
1603 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1604 struct sk_buff *skb = tx_buf->skb;
1605 int k, last;
1606
1607 if (!skb) {
1608 j++;
1609 continue;
1610 }
1611
1612 tx_buf->skb = NULL;
1613
1614 if (tx_buf->is_push) {
1615 dev_kfree_skb(skb);
1616 j += 2;
1617 continue;
1618 }
1619
1620 dma_unmap_single(&pdev->dev,
1621 dma_unmap_addr(tx_buf, mapping),
1622 skb_headlen(skb),
1623 PCI_DMA_TODEVICE);
1624
1625 last = tx_buf->nr_frags;
1626 j += 2;
1627 for (k = 0; k < last; k++, j++) {
1628 int ring_idx = j & bp->tx_ring_mask;
1629 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1630
1631 tx_buf = &txr->tx_buf_ring[ring_idx];
1632 dma_unmap_page(
1633 &pdev->dev,
1634 dma_unmap_addr(tx_buf, mapping),
1635 skb_frag_size(frag), PCI_DMA_TODEVICE);
1636 }
1637 dev_kfree_skb(skb);
1638 }
1639 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1640 }
1641 }
1642
1643 static void bnxt_free_rx_skbs(struct bnxt *bp)
1644 {
1645 int i, max_idx, max_agg_idx;
1646 struct pci_dev *pdev = bp->pdev;
1647
1648 if (!bp->rx_ring)
1649 return;
1650
1651 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1652 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1653 for (i = 0; i < bp->rx_nr_rings; i++) {
1654 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1655 int j;
1656
1657 if (rxr->rx_tpa) {
1658 for (j = 0; j < MAX_TPA; j++) {
1659 struct bnxt_tpa_info *tpa_info =
1660 &rxr->rx_tpa[j];
1661 u8 *data = tpa_info->data;
1662
1663 if (!data)
1664 continue;
1665
1666 dma_unmap_single(
1667 &pdev->dev,
1668 dma_unmap_addr(tpa_info, mapping),
1669 bp->rx_buf_use_size,
1670 PCI_DMA_FROMDEVICE);
1671
1672 tpa_info->data = NULL;
1673
1674 kfree(data);
1675 }
1676 }
1677
1678 for (j = 0; j < max_idx; j++) {
1679 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1680 u8 *data = rx_buf->data;
1681
1682 if (!data)
1683 continue;
1684
1685 dma_unmap_single(&pdev->dev,
1686 dma_unmap_addr(rx_buf, mapping),
1687 bp->rx_buf_use_size,
1688 PCI_DMA_FROMDEVICE);
1689
1690 rx_buf->data = NULL;
1691
1692 kfree(data);
1693 }
1694
1695 for (j = 0; j < max_agg_idx; j++) {
1696 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1697 &rxr->rx_agg_ring[j];
1698 struct page *page = rx_agg_buf->page;
1699
1700 if (!page)
1701 continue;
1702
1703 dma_unmap_page(&pdev->dev,
1704 dma_unmap_addr(rx_agg_buf, mapping),
1705 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1706
1707 rx_agg_buf->page = NULL;
1708 __clear_bit(j, rxr->rx_agg_bmap);
1709
1710 __free_page(page);
1711 }
1712 if (rxr->rx_page) {
1713 __free_page(rxr->rx_page);
1714 rxr->rx_page = NULL;
1715 }
1716 }
1717 }
1718
1719 static void bnxt_free_skbs(struct bnxt *bp)
1720 {
1721 bnxt_free_tx_skbs(bp);
1722 bnxt_free_rx_skbs(bp);
1723 }
1724
1725 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1726 {
1727 struct pci_dev *pdev = bp->pdev;
1728 int i;
1729
1730 for (i = 0; i < ring->nr_pages; i++) {
1731 if (!ring->pg_arr[i])
1732 continue;
1733
1734 dma_free_coherent(&pdev->dev, ring->page_size,
1735 ring->pg_arr[i], ring->dma_arr[i]);
1736
1737 ring->pg_arr[i] = NULL;
1738 }
1739 if (ring->pg_tbl) {
1740 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1741 ring->pg_tbl, ring->pg_tbl_map);
1742 ring->pg_tbl = NULL;
1743 }
1744 if (ring->vmem_size && *ring->vmem) {
1745 vfree(*ring->vmem);
1746 *ring->vmem = NULL;
1747 }
1748 }
1749
1750 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1751 {
1752 int i;
1753 struct pci_dev *pdev = bp->pdev;
1754
1755 if (ring->nr_pages > 1) {
1756 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1757 ring->nr_pages * 8,
1758 &ring->pg_tbl_map,
1759 GFP_KERNEL);
1760 if (!ring->pg_tbl)
1761 return -ENOMEM;
1762 }
1763
1764 for (i = 0; i < ring->nr_pages; i++) {
1765 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1766 ring->page_size,
1767 &ring->dma_arr[i],
1768 GFP_KERNEL);
1769 if (!ring->pg_arr[i])
1770 return -ENOMEM;
1771
1772 if (ring->nr_pages > 1)
1773 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1774 }
1775
1776 if (ring->vmem_size) {
1777 *ring->vmem = vzalloc(ring->vmem_size);
1778 if (!(*ring->vmem))
1779 return -ENOMEM;
1780 }
1781 return 0;
1782 }
1783
1784 static void bnxt_free_rx_rings(struct bnxt *bp)
1785 {
1786 int i;
1787
1788 if (!bp->rx_ring)
1789 return;
1790
1791 for (i = 0; i < bp->rx_nr_rings; i++) {
1792 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1793 struct bnxt_ring_struct *ring;
1794
1795 kfree(rxr->rx_tpa);
1796 rxr->rx_tpa = NULL;
1797
1798 kfree(rxr->rx_agg_bmap);
1799 rxr->rx_agg_bmap = NULL;
1800
1801 ring = &rxr->rx_ring_struct;
1802 bnxt_free_ring(bp, ring);
1803
1804 ring = &rxr->rx_agg_ring_struct;
1805 bnxt_free_ring(bp, ring);
1806 }
1807 }
1808
1809 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1810 {
1811 int i, rc, agg_rings = 0, tpa_rings = 0;
1812
1813 if (!bp->rx_ring)
1814 return -ENOMEM;
1815
1816 if (bp->flags & BNXT_FLAG_AGG_RINGS)
1817 agg_rings = 1;
1818
1819 if (bp->flags & BNXT_FLAG_TPA)
1820 tpa_rings = 1;
1821
1822 for (i = 0; i < bp->rx_nr_rings; i++) {
1823 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1824 struct bnxt_ring_struct *ring;
1825
1826 ring = &rxr->rx_ring_struct;
1827
1828 rc = bnxt_alloc_ring(bp, ring);
1829 if (rc)
1830 return rc;
1831
1832 if (agg_rings) {
1833 u16 mem_size;
1834
1835 ring = &rxr->rx_agg_ring_struct;
1836 rc = bnxt_alloc_ring(bp, ring);
1837 if (rc)
1838 return rc;
1839
1840 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1841 mem_size = rxr->rx_agg_bmap_size / 8;
1842 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1843 if (!rxr->rx_agg_bmap)
1844 return -ENOMEM;
1845
1846 if (tpa_rings) {
1847 rxr->rx_tpa = kcalloc(MAX_TPA,
1848 sizeof(struct bnxt_tpa_info),
1849 GFP_KERNEL);
1850 if (!rxr->rx_tpa)
1851 return -ENOMEM;
1852 }
1853 }
1854 }
1855 return 0;
1856 }
1857
1858 static void bnxt_free_tx_rings(struct bnxt *bp)
1859 {
1860 int i;
1861 struct pci_dev *pdev = bp->pdev;
1862
1863 if (!bp->tx_ring)
1864 return;
1865
1866 for (i = 0; i < bp->tx_nr_rings; i++) {
1867 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1868 struct bnxt_ring_struct *ring;
1869
1870 if (txr->tx_push) {
1871 dma_free_coherent(&pdev->dev, bp->tx_push_size,
1872 txr->tx_push, txr->tx_push_mapping);
1873 txr->tx_push = NULL;
1874 }
1875
1876 ring = &txr->tx_ring_struct;
1877
1878 bnxt_free_ring(bp, ring);
1879 }
1880 }
1881
1882 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1883 {
1884 int i, j, rc;
1885 struct pci_dev *pdev = bp->pdev;
1886
1887 bp->tx_push_size = 0;
1888 if (bp->tx_push_thresh) {
1889 int push_size;
1890
1891 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1892 bp->tx_push_thresh);
1893
1894 if (push_size > 256) {
1895 push_size = 0;
1896 bp->tx_push_thresh = 0;
1897 }
1898
1899 bp->tx_push_size = push_size;
1900 }
1901
1902 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1903 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1904 struct bnxt_ring_struct *ring;
1905
1906 ring = &txr->tx_ring_struct;
1907
1908 rc = bnxt_alloc_ring(bp, ring);
1909 if (rc)
1910 return rc;
1911
1912 if (bp->tx_push_size) {
1913 dma_addr_t mapping;
1914
1915 /* One pre-allocated DMA buffer to backup
1916 * TX push operation
1917 */
1918 txr->tx_push = dma_alloc_coherent(&pdev->dev,
1919 bp->tx_push_size,
1920 &txr->tx_push_mapping,
1921 GFP_KERNEL);
1922
1923 if (!txr->tx_push)
1924 return -ENOMEM;
1925
1926 mapping = txr->tx_push_mapping +
1927 sizeof(struct tx_push_bd);
1928 txr->data_mapping = cpu_to_le64(mapping);
1929
1930 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1931 }
1932 ring->queue_id = bp->q_info[j].queue_id;
1933 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1934 j++;
1935 }
1936 return 0;
1937 }
1938
1939 static void bnxt_free_cp_rings(struct bnxt *bp)
1940 {
1941 int i;
1942
1943 if (!bp->bnapi)
1944 return;
1945
1946 for (i = 0; i < bp->cp_nr_rings; i++) {
1947 struct bnxt_napi *bnapi = bp->bnapi[i];
1948 struct bnxt_cp_ring_info *cpr;
1949 struct bnxt_ring_struct *ring;
1950
1951 if (!bnapi)
1952 continue;
1953
1954 cpr = &bnapi->cp_ring;
1955 ring = &cpr->cp_ring_struct;
1956
1957 bnxt_free_ring(bp, ring);
1958 }
1959 }
1960
1961 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1962 {
1963 int i, rc;
1964
1965 for (i = 0; i < bp->cp_nr_rings; i++) {
1966 struct bnxt_napi *bnapi = bp->bnapi[i];
1967 struct bnxt_cp_ring_info *cpr;
1968 struct bnxt_ring_struct *ring;
1969
1970 if (!bnapi)
1971 continue;
1972
1973 cpr = &bnapi->cp_ring;
1974 ring = &cpr->cp_ring_struct;
1975
1976 rc = bnxt_alloc_ring(bp, ring);
1977 if (rc)
1978 return rc;
1979 }
1980 return 0;
1981 }
1982
1983 static void bnxt_init_ring_struct(struct bnxt *bp)
1984 {
1985 int i;
1986
1987 for (i = 0; i < bp->cp_nr_rings; i++) {
1988 struct bnxt_napi *bnapi = bp->bnapi[i];
1989 struct bnxt_cp_ring_info *cpr;
1990 struct bnxt_rx_ring_info *rxr;
1991 struct bnxt_tx_ring_info *txr;
1992 struct bnxt_ring_struct *ring;
1993
1994 if (!bnapi)
1995 continue;
1996
1997 cpr = &bnapi->cp_ring;
1998 ring = &cpr->cp_ring_struct;
1999 ring->nr_pages = bp->cp_nr_pages;
2000 ring->page_size = HW_CMPD_RING_SIZE;
2001 ring->pg_arr = (void **)cpr->cp_desc_ring;
2002 ring->dma_arr = cpr->cp_desc_mapping;
2003 ring->vmem_size = 0;
2004
2005 rxr = bnapi->rx_ring;
2006 if (!rxr)
2007 goto skip_rx;
2008
2009 ring = &rxr->rx_ring_struct;
2010 ring->nr_pages = bp->rx_nr_pages;
2011 ring->page_size = HW_RXBD_RING_SIZE;
2012 ring->pg_arr = (void **)rxr->rx_desc_ring;
2013 ring->dma_arr = rxr->rx_desc_mapping;
2014 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2015 ring->vmem = (void **)&rxr->rx_buf_ring;
2016
2017 ring = &rxr->rx_agg_ring_struct;
2018 ring->nr_pages = bp->rx_agg_nr_pages;
2019 ring->page_size = HW_RXBD_RING_SIZE;
2020 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2021 ring->dma_arr = rxr->rx_agg_desc_mapping;
2022 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2023 ring->vmem = (void **)&rxr->rx_agg_ring;
2024
2025 skip_rx:
2026 txr = bnapi->tx_ring;
2027 if (!txr)
2028 continue;
2029
2030 ring = &txr->tx_ring_struct;
2031 ring->nr_pages = bp->tx_nr_pages;
2032 ring->page_size = HW_RXBD_RING_SIZE;
2033 ring->pg_arr = (void **)txr->tx_desc_ring;
2034 ring->dma_arr = txr->tx_desc_mapping;
2035 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2036 ring->vmem = (void **)&txr->tx_buf_ring;
2037 }
2038 }
2039
2040 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2041 {
2042 int i;
2043 u32 prod;
2044 struct rx_bd **rx_buf_ring;
2045
2046 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2047 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2048 int j;
2049 struct rx_bd *rxbd;
2050
2051 rxbd = rx_buf_ring[i];
2052 if (!rxbd)
2053 continue;
2054
2055 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2056 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2057 rxbd->rx_bd_opaque = prod;
2058 }
2059 }
2060 }
2061
2062 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2063 {
2064 struct net_device *dev = bp->dev;
2065 struct bnxt_rx_ring_info *rxr;
2066 struct bnxt_ring_struct *ring;
2067 u32 prod, type;
2068 int i;
2069
2070 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2071 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2072
2073 if (NET_IP_ALIGN == 2)
2074 type |= RX_BD_FLAGS_SOP;
2075
2076 rxr = &bp->rx_ring[ring_nr];
2077 ring = &rxr->rx_ring_struct;
2078 bnxt_init_rxbd_pages(ring, type);
2079
2080 prod = rxr->rx_prod;
2081 for (i = 0; i < bp->rx_ring_size; i++) {
2082 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2083 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2084 ring_nr, i, bp->rx_ring_size);
2085 break;
2086 }
2087 prod = NEXT_RX(prod);
2088 }
2089 rxr->rx_prod = prod;
2090 ring->fw_ring_id = INVALID_HW_RING_ID;
2091
2092 ring = &rxr->rx_agg_ring_struct;
2093 ring->fw_ring_id = INVALID_HW_RING_ID;
2094
2095 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2096 return 0;
2097
2098 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2099 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2100
2101 bnxt_init_rxbd_pages(ring, type);
2102
2103 prod = rxr->rx_agg_prod;
2104 for (i = 0; i < bp->rx_agg_ring_size; i++) {
2105 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2106 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2107 ring_nr, i, bp->rx_ring_size);
2108 break;
2109 }
2110 prod = NEXT_RX_AGG(prod);
2111 }
2112 rxr->rx_agg_prod = prod;
2113
2114 if (bp->flags & BNXT_FLAG_TPA) {
2115 if (rxr->rx_tpa) {
2116 u8 *data;
2117 dma_addr_t mapping;
2118
2119 for (i = 0; i < MAX_TPA; i++) {
2120 data = __bnxt_alloc_rx_data(bp, &mapping,
2121 GFP_KERNEL);
2122 if (!data)
2123 return -ENOMEM;
2124
2125 rxr->rx_tpa[i].data = data;
2126 rxr->rx_tpa[i].mapping = mapping;
2127 }
2128 } else {
2129 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2130 return -ENOMEM;
2131 }
2132 }
2133
2134 return 0;
2135 }
2136
2137 static int bnxt_init_rx_rings(struct bnxt *bp)
2138 {
2139 int i, rc = 0;
2140
2141 for (i = 0; i < bp->rx_nr_rings; i++) {
2142 rc = bnxt_init_one_rx_ring(bp, i);
2143 if (rc)
2144 break;
2145 }
2146
2147 return rc;
2148 }
2149
2150 static int bnxt_init_tx_rings(struct bnxt *bp)
2151 {
2152 u16 i;
2153
2154 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2155 MAX_SKB_FRAGS + 1);
2156
2157 for (i = 0; i < bp->tx_nr_rings; i++) {
2158 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2159 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2160
2161 ring->fw_ring_id = INVALID_HW_RING_ID;
2162 }
2163
2164 return 0;
2165 }
2166
2167 static void bnxt_free_ring_grps(struct bnxt *bp)
2168 {
2169 kfree(bp->grp_info);
2170 bp->grp_info = NULL;
2171 }
2172
2173 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2174 {
2175 int i;
2176
2177 if (irq_re_init) {
2178 bp->grp_info = kcalloc(bp->cp_nr_rings,
2179 sizeof(struct bnxt_ring_grp_info),
2180 GFP_KERNEL);
2181 if (!bp->grp_info)
2182 return -ENOMEM;
2183 }
2184 for (i = 0; i < bp->cp_nr_rings; i++) {
2185 if (irq_re_init)
2186 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2187 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2188 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2189 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2190 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2191 }
2192 return 0;
2193 }
2194
2195 static void bnxt_free_vnics(struct bnxt *bp)
2196 {
2197 kfree(bp->vnic_info);
2198 bp->vnic_info = NULL;
2199 bp->nr_vnics = 0;
2200 }
2201
2202 static int bnxt_alloc_vnics(struct bnxt *bp)
2203 {
2204 int num_vnics = 1;
2205
2206 #ifdef CONFIG_RFS_ACCEL
2207 if (bp->flags & BNXT_FLAG_RFS)
2208 num_vnics += bp->rx_nr_rings;
2209 #endif
2210
2211 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2212 GFP_KERNEL);
2213 if (!bp->vnic_info)
2214 return -ENOMEM;
2215
2216 bp->nr_vnics = num_vnics;
2217 return 0;
2218 }
2219
2220 static void bnxt_init_vnics(struct bnxt *bp)
2221 {
2222 int i;
2223
2224 for (i = 0; i < bp->nr_vnics; i++) {
2225 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2226
2227 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2228 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2229 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2230
2231 if (bp->vnic_info[i].rss_hash_key) {
2232 if (i == 0)
2233 prandom_bytes(vnic->rss_hash_key,
2234 HW_HASH_KEY_SIZE);
2235 else
2236 memcpy(vnic->rss_hash_key,
2237 bp->vnic_info[0].rss_hash_key,
2238 HW_HASH_KEY_SIZE);
2239 }
2240 }
2241 }
2242
2243 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2244 {
2245 int pages;
2246
2247 pages = ring_size / desc_per_pg;
2248
2249 if (!pages)
2250 return 1;
2251
2252 pages++;
2253
2254 while (pages & (pages - 1))
2255 pages++;
2256
2257 return pages;
2258 }
2259
2260 static void bnxt_set_tpa_flags(struct bnxt *bp)
2261 {
2262 bp->flags &= ~BNXT_FLAG_TPA;
2263 if (bp->dev->features & NETIF_F_LRO)
2264 bp->flags |= BNXT_FLAG_LRO;
2265 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2266 bp->flags |= BNXT_FLAG_GRO;
2267 }
2268
2269 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2270 * be set on entry.
2271 */
2272 void bnxt_set_ring_params(struct bnxt *bp)
2273 {
2274 u32 ring_size, rx_size, rx_space;
2275 u32 agg_factor = 0, agg_ring_size = 0;
2276
2277 /* 8 for CRC and VLAN */
2278 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2279
2280 rx_space = rx_size + NET_SKB_PAD +
2281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2282
2283 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2284 ring_size = bp->rx_ring_size;
2285 bp->rx_agg_ring_size = 0;
2286 bp->rx_agg_nr_pages = 0;
2287
2288 if (bp->flags & BNXT_FLAG_TPA)
2289 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2290
2291 bp->flags &= ~BNXT_FLAG_JUMBO;
2292 if (rx_space > PAGE_SIZE) {
2293 u32 jumbo_factor;
2294
2295 bp->flags |= BNXT_FLAG_JUMBO;
2296 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2297 if (jumbo_factor > agg_factor)
2298 agg_factor = jumbo_factor;
2299 }
2300 agg_ring_size = ring_size * agg_factor;
2301
2302 if (agg_ring_size) {
2303 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2304 RX_DESC_CNT);
2305 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2306 u32 tmp = agg_ring_size;
2307
2308 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2309 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2310 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2311 tmp, agg_ring_size);
2312 }
2313 bp->rx_agg_ring_size = agg_ring_size;
2314 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2315 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2316 rx_space = rx_size + NET_SKB_PAD +
2317 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2318 }
2319
2320 bp->rx_buf_use_size = rx_size;
2321 bp->rx_buf_size = rx_space;
2322
2323 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2324 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2325
2326 ring_size = bp->tx_ring_size;
2327 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2328 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2329
2330 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2331 bp->cp_ring_size = ring_size;
2332
2333 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2334 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2335 bp->cp_nr_pages = MAX_CP_PAGES;
2336 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2337 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2338 ring_size, bp->cp_ring_size);
2339 }
2340 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2341 bp->cp_ring_mask = bp->cp_bit - 1;
2342 }
2343
2344 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2345 {
2346 int i;
2347 struct bnxt_vnic_info *vnic;
2348 struct pci_dev *pdev = bp->pdev;
2349
2350 if (!bp->vnic_info)
2351 return;
2352
2353 for (i = 0; i < bp->nr_vnics; i++) {
2354 vnic = &bp->vnic_info[i];
2355
2356 kfree(vnic->fw_grp_ids);
2357 vnic->fw_grp_ids = NULL;
2358
2359 kfree(vnic->uc_list);
2360 vnic->uc_list = NULL;
2361
2362 if (vnic->mc_list) {
2363 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2364 vnic->mc_list, vnic->mc_list_mapping);
2365 vnic->mc_list = NULL;
2366 }
2367
2368 if (vnic->rss_table) {
2369 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2370 vnic->rss_table,
2371 vnic->rss_table_dma_addr);
2372 vnic->rss_table = NULL;
2373 }
2374
2375 vnic->rss_hash_key = NULL;
2376 vnic->flags = 0;
2377 }
2378 }
2379
2380 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2381 {
2382 int i, rc = 0, size;
2383 struct bnxt_vnic_info *vnic;
2384 struct pci_dev *pdev = bp->pdev;
2385 int max_rings;
2386
2387 for (i = 0; i < bp->nr_vnics; i++) {
2388 vnic = &bp->vnic_info[i];
2389
2390 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2391 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2392
2393 if (mem_size > 0) {
2394 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2395 if (!vnic->uc_list) {
2396 rc = -ENOMEM;
2397 goto out;
2398 }
2399 }
2400 }
2401
2402 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2403 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2404 vnic->mc_list =
2405 dma_alloc_coherent(&pdev->dev,
2406 vnic->mc_list_size,
2407 &vnic->mc_list_mapping,
2408 GFP_KERNEL);
2409 if (!vnic->mc_list) {
2410 rc = -ENOMEM;
2411 goto out;
2412 }
2413 }
2414
2415 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2416 max_rings = bp->rx_nr_rings;
2417 else
2418 max_rings = 1;
2419
2420 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2421 if (!vnic->fw_grp_ids) {
2422 rc = -ENOMEM;
2423 goto out;
2424 }
2425
2426 /* Allocate rss table and hash key */
2427 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2428 &vnic->rss_table_dma_addr,
2429 GFP_KERNEL);
2430 if (!vnic->rss_table) {
2431 rc = -ENOMEM;
2432 goto out;
2433 }
2434
2435 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2436
2437 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2438 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2439 }
2440 return 0;
2441
2442 out:
2443 return rc;
2444 }
2445
2446 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2447 {
2448 struct pci_dev *pdev = bp->pdev;
2449
2450 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2451 bp->hwrm_cmd_resp_dma_addr);
2452
2453 bp->hwrm_cmd_resp_addr = NULL;
2454 if (bp->hwrm_dbg_resp_addr) {
2455 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2456 bp->hwrm_dbg_resp_addr,
2457 bp->hwrm_dbg_resp_dma_addr);
2458
2459 bp->hwrm_dbg_resp_addr = NULL;
2460 }
2461 }
2462
2463 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2464 {
2465 struct pci_dev *pdev = bp->pdev;
2466
2467 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2468 &bp->hwrm_cmd_resp_dma_addr,
2469 GFP_KERNEL);
2470 if (!bp->hwrm_cmd_resp_addr)
2471 return -ENOMEM;
2472 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2473 HWRM_DBG_REG_BUF_SIZE,
2474 &bp->hwrm_dbg_resp_dma_addr,
2475 GFP_KERNEL);
2476 if (!bp->hwrm_dbg_resp_addr)
2477 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2478
2479 return 0;
2480 }
2481
2482 static void bnxt_free_stats(struct bnxt *bp)
2483 {
2484 u32 size, i;
2485 struct pci_dev *pdev = bp->pdev;
2486
2487 if (bp->hw_rx_port_stats) {
2488 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2489 bp->hw_rx_port_stats,
2490 bp->hw_rx_port_stats_map);
2491 bp->hw_rx_port_stats = NULL;
2492 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2493 }
2494
2495 if (!bp->bnapi)
2496 return;
2497
2498 size = sizeof(struct ctx_hw_stats);
2499
2500 for (i = 0; i < bp->cp_nr_rings; i++) {
2501 struct bnxt_napi *bnapi = bp->bnapi[i];
2502 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2503
2504 if (cpr->hw_stats) {
2505 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2506 cpr->hw_stats_map);
2507 cpr->hw_stats = NULL;
2508 }
2509 }
2510 }
2511
2512 static int bnxt_alloc_stats(struct bnxt *bp)
2513 {
2514 u32 size, i;
2515 struct pci_dev *pdev = bp->pdev;
2516
2517 size = sizeof(struct ctx_hw_stats);
2518
2519 for (i = 0; i < bp->cp_nr_rings; i++) {
2520 struct bnxt_napi *bnapi = bp->bnapi[i];
2521 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2522
2523 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2524 &cpr->hw_stats_map,
2525 GFP_KERNEL);
2526 if (!cpr->hw_stats)
2527 return -ENOMEM;
2528
2529 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2530 }
2531
2532 if (BNXT_PF(bp)) {
2533 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2534 sizeof(struct tx_port_stats) + 1024;
2535
2536 bp->hw_rx_port_stats =
2537 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2538 &bp->hw_rx_port_stats_map,
2539 GFP_KERNEL);
2540 if (!bp->hw_rx_port_stats)
2541 return -ENOMEM;
2542
2543 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2544 512;
2545 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2546 sizeof(struct rx_port_stats) + 512;
2547 bp->flags |= BNXT_FLAG_PORT_STATS;
2548 }
2549 return 0;
2550 }
2551
2552 static void bnxt_clear_ring_indices(struct bnxt *bp)
2553 {
2554 int i;
2555
2556 if (!bp->bnapi)
2557 return;
2558
2559 for (i = 0; i < bp->cp_nr_rings; i++) {
2560 struct bnxt_napi *bnapi = bp->bnapi[i];
2561 struct bnxt_cp_ring_info *cpr;
2562 struct bnxt_rx_ring_info *rxr;
2563 struct bnxt_tx_ring_info *txr;
2564
2565 if (!bnapi)
2566 continue;
2567
2568 cpr = &bnapi->cp_ring;
2569 cpr->cp_raw_cons = 0;
2570
2571 txr = bnapi->tx_ring;
2572 if (txr) {
2573 txr->tx_prod = 0;
2574 txr->tx_cons = 0;
2575 }
2576
2577 rxr = bnapi->rx_ring;
2578 if (rxr) {
2579 rxr->rx_prod = 0;
2580 rxr->rx_agg_prod = 0;
2581 rxr->rx_sw_agg_prod = 0;
2582 rxr->rx_next_cons = 0;
2583 }
2584 }
2585 }
2586
2587 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2588 {
2589 #ifdef CONFIG_RFS_ACCEL
2590 int i;
2591
2592 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2593 * safe to delete the hash table.
2594 */
2595 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2596 struct hlist_head *head;
2597 struct hlist_node *tmp;
2598 struct bnxt_ntuple_filter *fltr;
2599
2600 head = &bp->ntp_fltr_hash_tbl[i];
2601 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2602 hlist_del(&fltr->hash);
2603 kfree(fltr);
2604 }
2605 }
2606 if (irq_reinit) {
2607 kfree(bp->ntp_fltr_bmap);
2608 bp->ntp_fltr_bmap = NULL;
2609 }
2610 bp->ntp_fltr_count = 0;
2611 #endif
2612 }
2613
2614 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2615 {
2616 #ifdef CONFIG_RFS_ACCEL
2617 int i, rc = 0;
2618
2619 if (!(bp->flags & BNXT_FLAG_RFS))
2620 return 0;
2621
2622 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2623 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2624
2625 bp->ntp_fltr_count = 0;
2626 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2627 GFP_KERNEL);
2628
2629 if (!bp->ntp_fltr_bmap)
2630 rc = -ENOMEM;
2631
2632 return rc;
2633 #else
2634 return 0;
2635 #endif
2636 }
2637
2638 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2639 {
2640 bnxt_free_vnic_attributes(bp);
2641 bnxt_free_tx_rings(bp);
2642 bnxt_free_rx_rings(bp);
2643 bnxt_free_cp_rings(bp);
2644 bnxt_free_ntp_fltrs(bp, irq_re_init);
2645 if (irq_re_init) {
2646 bnxt_free_stats(bp);
2647 bnxt_free_ring_grps(bp);
2648 bnxt_free_vnics(bp);
2649 kfree(bp->tx_ring);
2650 bp->tx_ring = NULL;
2651 kfree(bp->rx_ring);
2652 bp->rx_ring = NULL;
2653 kfree(bp->bnapi);
2654 bp->bnapi = NULL;
2655 } else {
2656 bnxt_clear_ring_indices(bp);
2657 }
2658 }
2659
2660 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2661 {
2662 int i, j, rc, size, arr_size;
2663 void *bnapi;
2664
2665 if (irq_re_init) {
2666 /* Allocate bnapi mem pointer array and mem block for
2667 * all queues
2668 */
2669 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2670 bp->cp_nr_rings);
2671 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2672 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2673 if (!bnapi)
2674 return -ENOMEM;
2675
2676 bp->bnapi = bnapi;
2677 bnapi += arr_size;
2678 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2679 bp->bnapi[i] = bnapi;
2680 bp->bnapi[i]->index = i;
2681 bp->bnapi[i]->bp = bp;
2682 }
2683
2684 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2685 sizeof(struct bnxt_rx_ring_info),
2686 GFP_KERNEL);
2687 if (!bp->rx_ring)
2688 return -ENOMEM;
2689
2690 for (i = 0; i < bp->rx_nr_rings; i++) {
2691 bp->rx_ring[i].bnapi = bp->bnapi[i];
2692 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2693 }
2694
2695 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2696 sizeof(struct bnxt_tx_ring_info),
2697 GFP_KERNEL);
2698 if (!bp->tx_ring)
2699 return -ENOMEM;
2700
2701 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2702 j = 0;
2703 else
2704 j = bp->rx_nr_rings;
2705
2706 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2707 bp->tx_ring[i].bnapi = bp->bnapi[j];
2708 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2709 }
2710
2711 rc = bnxt_alloc_stats(bp);
2712 if (rc)
2713 goto alloc_mem_err;
2714
2715 rc = bnxt_alloc_ntp_fltrs(bp);
2716 if (rc)
2717 goto alloc_mem_err;
2718
2719 rc = bnxt_alloc_vnics(bp);
2720 if (rc)
2721 goto alloc_mem_err;
2722 }
2723
2724 bnxt_init_ring_struct(bp);
2725
2726 rc = bnxt_alloc_rx_rings(bp);
2727 if (rc)
2728 goto alloc_mem_err;
2729
2730 rc = bnxt_alloc_tx_rings(bp);
2731 if (rc)
2732 goto alloc_mem_err;
2733
2734 rc = bnxt_alloc_cp_rings(bp);
2735 if (rc)
2736 goto alloc_mem_err;
2737
2738 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2739 BNXT_VNIC_UCAST_FLAG;
2740 rc = bnxt_alloc_vnic_attributes(bp);
2741 if (rc)
2742 goto alloc_mem_err;
2743 return 0;
2744
2745 alloc_mem_err:
2746 bnxt_free_mem(bp, true);
2747 return rc;
2748 }
2749
2750 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2751 u16 cmpl_ring, u16 target_id)
2752 {
2753 struct input *req = request;
2754
2755 req->req_type = cpu_to_le16(req_type);
2756 req->cmpl_ring = cpu_to_le16(cmpl_ring);
2757 req->target_id = cpu_to_le16(target_id);
2758 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2759 }
2760
2761 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
2762 int timeout, bool silent)
2763 {
2764 int i, intr_process, rc, tmo_count;
2765 struct input *req = msg;
2766 u32 *data = msg;
2767 __le32 *resp_len, *valid;
2768 u16 cp_ring_id, len = 0;
2769 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2770
2771 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
2772 memset(resp, 0, PAGE_SIZE);
2773 cp_ring_id = le16_to_cpu(req->cmpl_ring);
2774 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2775
2776 /* Write request msg to hwrm channel */
2777 __iowrite32_copy(bp->bar0, data, msg_len / 4);
2778
2779 for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
2780 writel(0, bp->bar0 + i);
2781
2782 /* currently supports only one outstanding message */
2783 if (intr_process)
2784 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
2785
2786 /* Ring channel doorbell */
2787 writel(1, bp->bar0 + 0x100);
2788
2789 if (!timeout)
2790 timeout = DFLT_HWRM_CMD_TIMEOUT;
2791
2792 i = 0;
2793 tmo_count = timeout * 40;
2794 if (intr_process) {
2795 /* Wait until hwrm response cmpl interrupt is processed */
2796 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2797 i++ < tmo_count) {
2798 usleep_range(25, 40);
2799 }
2800
2801 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2802 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2803 le16_to_cpu(req->req_type));
2804 return -1;
2805 }
2806 } else {
2807 /* Check if response len is updated */
2808 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2809 for (i = 0; i < tmo_count; i++) {
2810 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2811 HWRM_RESP_LEN_SFT;
2812 if (len)
2813 break;
2814 usleep_range(25, 40);
2815 }
2816
2817 if (i >= tmo_count) {
2818 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2819 timeout, le16_to_cpu(req->req_type),
2820 le16_to_cpu(req->seq_id), len);
2821 return -1;
2822 }
2823
2824 /* Last word of resp contains valid bit */
2825 valid = bp->hwrm_cmd_resp_addr + len - 4;
2826 for (i = 0; i < 5; i++) {
2827 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2828 break;
2829 udelay(1);
2830 }
2831
2832 if (i >= 5) {
2833 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2834 timeout, le16_to_cpu(req->req_type),
2835 le16_to_cpu(req->seq_id), len, *valid);
2836 return -1;
2837 }
2838 }
2839
2840 rc = le16_to_cpu(resp->error_code);
2841 if (rc && !silent)
2842 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2843 le16_to_cpu(resp->req_type),
2844 le16_to_cpu(resp->seq_id), rc);
2845 return rc;
2846 }
2847
2848 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2849 {
2850 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
2851 }
2852
2853 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2854 {
2855 int rc;
2856
2857 mutex_lock(&bp->hwrm_cmd_lock);
2858 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2859 mutex_unlock(&bp->hwrm_cmd_lock);
2860 return rc;
2861 }
2862
2863 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
2864 int timeout)
2865 {
2866 int rc;
2867
2868 mutex_lock(&bp->hwrm_cmd_lock);
2869 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
2870 mutex_unlock(&bp->hwrm_cmd_lock);
2871 return rc;
2872 }
2873
2874 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2875 {
2876 struct hwrm_func_drv_rgtr_input req = {0};
2877 int i;
2878 DECLARE_BITMAP(async_events_bmap, 256);
2879 u32 *events = (u32 *)async_events_bmap;
2880
2881 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2882
2883 req.enables =
2884 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2885 FUNC_DRV_RGTR_REQ_ENABLES_VER |
2886 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2887
2888 memset(async_events_bmap, 0, sizeof(async_events_bmap));
2889 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
2890 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
2891
2892 for (i = 0; i < 8; i++)
2893 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
2894
2895 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
2896 req.ver_maj = DRV_VER_MAJ;
2897 req.ver_min = DRV_VER_MIN;
2898 req.ver_upd = DRV_VER_UPD;
2899
2900 if (BNXT_PF(bp)) {
2901 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2902 u32 *data = (u32 *)vf_req_snif_bmap;
2903
2904 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2905 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2906 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2907
2908 for (i = 0; i < 8; i++)
2909 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2910
2911 req.enables |=
2912 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2913 }
2914
2915 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2916 }
2917
2918 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2919 {
2920 struct hwrm_func_drv_unrgtr_input req = {0};
2921
2922 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2923 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2924 }
2925
2926 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2927 {
2928 u32 rc = 0;
2929 struct hwrm_tunnel_dst_port_free_input req = {0};
2930
2931 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2932 req.tunnel_type = tunnel_type;
2933
2934 switch (tunnel_type) {
2935 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2936 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2937 break;
2938 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2939 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2940 break;
2941 default:
2942 break;
2943 }
2944
2945 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2946 if (rc)
2947 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2948 rc);
2949 return rc;
2950 }
2951
2952 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2953 u8 tunnel_type)
2954 {
2955 u32 rc = 0;
2956 struct hwrm_tunnel_dst_port_alloc_input req = {0};
2957 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2958
2959 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2960
2961 req.tunnel_type = tunnel_type;
2962 req.tunnel_dst_port_val = port;
2963
2964 mutex_lock(&bp->hwrm_cmd_lock);
2965 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2966 if (rc) {
2967 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2968 rc);
2969 goto err_out;
2970 }
2971
2972 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2973 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2974
2975 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2976 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2977 err_out:
2978 mutex_unlock(&bp->hwrm_cmd_lock);
2979 return rc;
2980 }
2981
2982 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2983 {
2984 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2985 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2986
2987 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2988 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2989
2990 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2991 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2992 req.mask = cpu_to_le32(vnic->rx_mask);
2993 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2994 }
2995
2996 #ifdef CONFIG_RFS_ACCEL
2997 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2998 struct bnxt_ntuple_filter *fltr)
2999 {
3000 struct hwrm_cfa_ntuple_filter_free_input req = {0};
3001
3002 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3003 req.ntuple_filter_id = fltr->filter_id;
3004 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3005 }
3006
3007 #define BNXT_NTP_FLTR_FLAGS \
3008 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
3009 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
3010 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
3011 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
3012 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
3013 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
3014 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
3015 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
3016 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
3017 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
3018 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
3019 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
3020 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
3021 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3022
3023 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3024 struct bnxt_ntuple_filter *fltr)
3025 {
3026 int rc = 0;
3027 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3028 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3029 bp->hwrm_cmd_resp_addr;
3030 struct flow_keys *keys = &fltr->fkeys;
3031 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3032
3033 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3034 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
3035
3036 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3037
3038 req.ethertype = htons(ETH_P_IP);
3039 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3040 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3041 req.ip_protocol = keys->basic.ip_proto;
3042
3043 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3044 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3045 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3046 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3047
3048 req.src_port = keys->ports.src;
3049 req.src_port_mask = cpu_to_be16(0xffff);
3050 req.dst_port = keys->ports.dst;
3051 req.dst_port_mask = cpu_to_be16(0xffff);
3052
3053 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3054 mutex_lock(&bp->hwrm_cmd_lock);
3055 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3056 if (!rc)
3057 fltr->filter_id = resp->ntuple_filter_id;
3058 mutex_unlock(&bp->hwrm_cmd_lock);
3059 return rc;
3060 }
3061 #endif
3062
3063 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3064 u8 *mac_addr)
3065 {
3066 u32 rc = 0;
3067 struct hwrm_cfa_l2_filter_alloc_input req = {0};
3068 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3069
3070 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3071 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
3072 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3073 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3074 req.enables =
3075 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3076 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3077 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3078 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3079 req.l2_addr_mask[0] = 0xff;
3080 req.l2_addr_mask[1] = 0xff;
3081 req.l2_addr_mask[2] = 0xff;
3082 req.l2_addr_mask[3] = 0xff;
3083 req.l2_addr_mask[4] = 0xff;
3084 req.l2_addr_mask[5] = 0xff;
3085
3086 mutex_lock(&bp->hwrm_cmd_lock);
3087 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3088 if (!rc)
3089 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3090 resp->l2_filter_id;
3091 mutex_unlock(&bp->hwrm_cmd_lock);
3092 return rc;
3093 }
3094
3095 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3096 {
3097 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3098 int rc = 0;
3099
3100 /* Any associated ntuple filters will also be cleared by firmware. */
3101 mutex_lock(&bp->hwrm_cmd_lock);
3102 for (i = 0; i < num_of_vnics; i++) {
3103 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3104
3105 for (j = 0; j < vnic->uc_filter_count; j++) {
3106 struct hwrm_cfa_l2_filter_free_input req = {0};
3107
3108 bnxt_hwrm_cmd_hdr_init(bp, &req,
3109 HWRM_CFA_L2_FILTER_FREE, -1, -1);
3110
3111 req.l2_filter_id = vnic->fw_l2_filter_id[j];
3112
3113 rc = _hwrm_send_message(bp, &req, sizeof(req),
3114 HWRM_CMD_TIMEOUT);
3115 }
3116 vnic->uc_filter_count = 0;
3117 }
3118 mutex_unlock(&bp->hwrm_cmd_lock);
3119
3120 return rc;
3121 }
3122
3123 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3124 {
3125 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3126 struct hwrm_vnic_tpa_cfg_input req = {0};
3127
3128 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3129
3130 if (tpa_flags) {
3131 u16 mss = bp->dev->mtu - 40;
3132 u32 nsegs, n, segs = 0, flags;
3133
3134 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3135 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3136 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3137 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3138 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3139 if (tpa_flags & BNXT_FLAG_GRO)
3140 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3141
3142 req.flags = cpu_to_le32(flags);
3143
3144 req.enables =
3145 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3146 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3147 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3148
3149 /* Number of segs are log2 units, and first packet is not
3150 * included as part of this units.
3151 */
3152 if (mss <= BNXT_RX_PAGE_SIZE) {
3153 n = BNXT_RX_PAGE_SIZE / mss;
3154 nsegs = (MAX_SKB_FRAGS - 1) * n;
3155 } else {
3156 n = mss / BNXT_RX_PAGE_SIZE;
3157 if (mss & (BNXT_RX_PAGE_SIZE - 1))
3158 n++;
3159 nsegs = (MAX_SKB_FRAGS - n) / n;
3160 }
3161
3162 segs = ilog2(nsegs);
3163 req.max_agg_segs = cpu_to_le16(segs);
3164 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3165
3166 req.min_agg_len = cpu_to_le32(512);
3167 }
3168 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3169
3170 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3171 }
3172
3173 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3174 {
3175 u32 i, j, max_rings;
3176 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3177 struct hwrm_vnic_rss_cfg_input req = {0};
3178
3179 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3180 return 0;
3181
3182 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3183 if (set_rss) {
3184 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3185 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3186 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3187 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3188
3189 req.hash_type = cpu_to_le32(vnic->hash_type);
3190
3191 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3192 max_rings = bp->rx_nr_rings;
3193 else
3194 max_rings = 1;
3195
3196 /* Fill the RSS indirection table with ring group ids */
3197 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3198 if (j == max_rings)
3199 j = 0;
3200 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3201 }
3202
3203 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3204 req.hash_key_tbl_addr =
3205 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3206 }
3207 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3208 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3209 }
3210
3211 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3212 {
3213 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3214 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3215
3216 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3217 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3218 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3219 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3220 req.enables =
3221 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3222 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3223 /* thresholds not implemented in firmware yet */
3224 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3225 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3226 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3227 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3228 }
3229
3230 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3231 {
3232 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3233
3234 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3235 req.rss_cos_lb_ctx_id =
3236 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3237
3238 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3239 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3240 }
3241
3242 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3243 {
3244 int i;
3245
3246 for (i = 0; i < bp->nr_vnics; i++) {
3247 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3248
3249 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3250 bnxt_hwrm_vnic_ctx_free_one(bp, i);
3251 }
3252 bp->rsscos_nr_ctxs = 0;
3253 }
3254
3255 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3256 {
3257 int rc;
3258 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3259 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3260 bp->hwrm_cmd_resp_addr;
3261
3262 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3263 -1);
3264
3265 mutex_lock(&bp->hwrm_cmd_lock);
3266 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3267 if (!rc)
3268 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3269 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3270 mutex_unlock(&bp->hwrm_cmd_lock);
3271
3272 return rc;
3273 }
3274
3275 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3276 {
3277 unsigned int ring = 0, grp_idx;
3278 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3279 struct hwrm_vnic_cfg_input req = {0};
3280
3281 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3282 /* Only RSS support for now TBD: COS & LB */
3283 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3284 VNIC_CFG_REQ_ENABLES_RSS_RULE);
3285 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3286 req.cos_rule = cpu_to_le16(0xffff);
3287 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3288 ring = 0;
3289 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3290 ring = vnic_id - 1;
3291
3292 grp_idx = bp->rx_ring[ring].bnapi->index;
3293 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3294 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3295
3296 req.lb_rule = cpu_to_le16(0xffff);
3297 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3298 VLAN_HLEN);
3299
3300 if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3301 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3302
3303 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3304 }
3305
3306 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3307 {
3308 u32 rc = 0;
3309
3310 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3311 struct hwrm_vnic_free_input req = {0};
3312
3313 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3314 req.vnic_id =
3315 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3316
3317 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3318 if (rc)
3319 return rc;
3320 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3321 }
3322 return rc;
3323 }
3324
3325 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3326 {
3327 u16 i;
3328
3329 for (i = 0; i < bp->nr_vnics; i++)
3330 bnxt_hwrm_vnic_free_one(bp, i);
3331 }
3332
3333 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3334 unsigned int start_rx_ring_idx,
3335 unsigned int nr_rings)
3336 {
3337 int rc = 0;
3338 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3339 struct hwrm_vnic_alloc_input req = {0};
3340 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3341
3342 /* map ring groups to this vnic */
3343 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3344 grp_idx = bp->rx_ring[i].bnapi->index;
3345 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3346 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3347 j, nr_rings);
3348 break;
3349 }
3350 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3351 bp->grp_info[grp_idx].fw_grp_id;
3352 }
3353
3354 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3355 if (vnic_id == 0)
3356 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3357
3358 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3359
3360 mutex_lock(&bp->hwrm_cmd_lock);
3361 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3362 if (!rc)
3363 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3364 mutex_unlock(&bp->hwrm_cmd_lock);
3365 return rc;
3366 }
3367
3368 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3369 {
3370 u16 i;
3371 u32 rc = 0;
3372
3373 mutex_lock(&bp->hwrm_cmd_lock);
3374 for (i = 0; i < bp->rx_nr_rings; i++) {
3375 struct hwrm_ring_grp_alloc_input req = {0};
3376 struct hwrm_ring_grp_alloc_output *resp =
3377 bp->hwrm_cmd_resp_addr;
3378 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3379
3380 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3381
3382 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3383 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3384 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3385 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3386
3387 rc = _hwrm_send_message(bp, &req, sizeof(req),
3388 HWRM_CMD_TIMEOUT);
3389 if (rc)
3390 break;
3391
3392 bp->grp_info[grp_idx].fw_grp_id =
3393 le32_to_cpu(resp->ring_group_id);
3394 }
3395 mutex_unlock(&bp->hwrm_cmd_lock);
3396 return rc;
3397 }
3398
3399 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3400 {
3401 u16 i;
3402 u32 rc = 0;
3403 struct hwrm_ring_grp_free_input req = {0};
3404
3405 if (!bp->grp_info)
3406 return 0;
3407
3408 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3409
3410 mutex_lock(&bp->hwrm_cmd_lock);
3411 for (i = 0; i < bp->cp_nr_rings; i++) {
3412 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3413 continue;
3414 req.ring_group_id =
3415 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3416
3417 rc = _hwrm_send_message(bp, &req, sizeof(req),
3418 HWRM_CMD_TIMEOUT);
3419 if (rc)
3420 break;
3421 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3422 }
3423 mutex_unlock(&bp->hwrm_cmd_lock);
3424 return rc;
3425 }
3426
3427 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3428 struct bnxt_ring_struct *ring,
3429 u32 ring_type, u32 map_index,
3430 u32 stats_ctx_id)
3431 {
3432 int rc = 0, err = 0;
3433 struct hwrm_ring_alloc_input req = {0};
3434 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3435 u16 ring_id;
3436
3437 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3438
3439 req.enables = 0;
3440 if (ring->nr_pages > 1) {
3441 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3442 /* Page size is in log2 units */
3443 req.page_size = BNXT_PAGE_SHIFT;
3444 req.page_tbl_depth = 1;
3445 } else {
3446 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3447 }
3448 req.fbo = 0;
3449 /* Association of ring index with doorbell index and MSIX number */
3450 req.logical_id = cpu_to_le16(map_index);
3451
3452 switch (ring_type) {
3453 case HWRM_RING_ALLOC_TX:
3454 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3455 /* Association of transmit ring with completion ring */
3456 req.cmpl_ring_id =
3457 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3458 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3459 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3460 req.queue_id = cpu_to_le16(ring->queue_id);
3461 break;
3462 case HWRM_RING_ALLOC_RX:
3463 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3464 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3465 break;
3466 case HWRM_RING_ALLOC_AGG:
3467 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3468 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3469 break;
3470 case HWRM_RING_ALLOC_CMPL:
3471 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3472 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3473 if (bp->flags & BNXT_FLAG_USING_MSIX)
3474 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3475 break;
3476 default:
3477 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3478 ring_type);
3479 return -1;
3480 }
3481
3482 mutex_lock(&bp->hwrm_cmd_lock);
3483 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3484 err = le16_to_cpu(resp->error_code);
3485 ring_id = le16_to_cpu(resp->ring_id);
3486 mutex_unlock(&bp->hwrm_cmd_lock);
3487
3488 if (rc || err) {
3489 switch (ring_type) {
3490 case RING_FREE_REQ_RING_TYPE_CMPL:
3491 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3492 rc, err);
3493 return -1;
3494
3495 case RING_FREE_REQ_RING_TYPE_RX:
3496 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3497 rc, err);
3498 return -1;
3499
3500 case RING_FREE_REQ_RING_TYPE_TX:
3501 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3502 rc, err);
3503 return -1;
3504
3505 default:
3506 netdev_err(bp->dev, "Invalid ring\n");
3507 return -1;
3508 }
3509 }
3510 ring->fw_ring_id = ring_id;
3511 return rc;
3512 }
3513
3514 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3515 {
3516 int i, rc = 0;
3517
3518 for (i = 0; i < bp->cp_nr_rings; i++) {
3519 struct bnxt_napi *bnapi = bp->bnapi[i];
3520 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3521 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3522
3523 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3524 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3525 INVALID_STATS_CTX_ID);
3526 if (rc)
3527 goto err_out;
3528 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3529 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3530 }
3531
3532 for (i = 0; i < bp->tx_nr_rings; i++) {
3533 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3534 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3535 u32 map_idx = txr->bnapi->index;
3536 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3537
3538 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3539 map_idx, fw_stats_ctx);
3540 if (rc)
3541 goto err_out;
3542 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3543 }
3544
3545 for (i = 0; i < bp->rx_nr_rings; i++) {
3546 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3547 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3548 u32 map_idx = rxr->bnapi->index;
3549
3550 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3551 map_idx, INVALID_STATS_CTX_ID);
3552 if (rc)
3553 goto err_out;
3554 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3555 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3556 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3557 }
3558
3559 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3560 for (i = 0; i < bp->rx_nr_rings; i++) {
3561 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3562 struct bnxt_ring_struct *ring =
3563 &rxr->rx_agg_ring_struct;
3564 u32 grp_idx = rxr->bnapi->index;
3565 u32 map_idx = grp_idx + bp->rx_nr_rings;
3566
3567 rc = hwrm_ring_alloc_send_msg(bp, ring,
3568 HWRM_RING_ALLOC_AGG,
3569 map_idx,
3570 INVALID_STATS_CTX_ID);
3571 if (rc)
3572 goto err_out;
3573
3574 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3575 writel(DB_KEY_RX | rxr->rx_agg_prod,
3576 rxr->rx_agg_doorbell);
3577 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3578 }
3579 }
3580 err_out:
3581 return rc;
3582 }
3583
3584 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3585 struct bnxt_ring_struct *ring,
3586 u32 ring_type, int cmpl_ring_id)
3587 {
3588 int rc;
3589 struct hwrm_ring_free_input req = {0};
3590 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3591 u16 error_code;
3592
3593 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3594 req.ring_type = ring_type;
3595 req.ring_id = cpu_to_le16(ring->fw_ring_id);
3596
3597 mutex_lock(&bp->hwrm_cmd_lock);
3598 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3599 error_code = le16_to_cpu(resp->error_code);
3600 mutex_unlock(&bp->hwrm_cmd_lock);
3601
3602 if (rc || error_code) {
3603 switch (ring_type) {
3604 case RING_FREE_REQ_RING_TYPE_CMPL:
3605 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3606 rc);
3607 return rc;
3608 case RING_FREE_REQ_RING_TYPE_RX:
3609 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3610 rc);
3611 return rc;
3612 case RING_FREE_REQ_RING_TYPE_TX:
3613 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3614 rc);
3615 return rc;
3616 default:
3617 netdev_err(bp->dev, "Invalid ring\n");
3618 return -1;
3619 }
3620 }
3621 return 0;
3622 }
3623
3624 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3625 {
3626 int i;
3627
3628 if (!bp->bnapi)
3629 return;
3630
3631 for (i = 0; i < bp->tx_nr_rings; i++) {
3632 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3633 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3634 u32 grp_idx = txr->bnapi->index;
3635 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3636
3637 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3638 hwrm_ring_free_send_msg(bp, ring,
3639 RING_FREE_REQ_RING_TYPE_TX,
3640 close_path ? cmpl_ring_id :
3641 INVALID_HW_RING_ID);
3642 ring->fw_ring_id = INVALID_HW_RING_ID;
3643 }
3644 }
3645
3646 for (i = 0; i < bp->rx_nr_rings; i++) {
3647 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3648 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3649 u32 grp_idx = rxr->bnapi->index;
3650 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3651
3652 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3653 hwrm_ring_free_send_msg(bp, ring,
3654 RING_FREE_REQ_RING_TYPE_RX,
3655 close_path ? cmpl_ring_id :
3656 INVALID_HW_RING_ID);
3657 ring->fw_ring_id = INVALID_HW_RING_ID;
3658 bp->grp_info[grp_idx].rx_fw_ring_id =
3659 INVALID_HW_RING_ID;
3660 }
3661 }
3662
3663 for (i = 0; i < bp->rx_nr_rings; i++) {
3664 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3665 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3666 u32 grp_idx = rxr->bnapi->index;
3667 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3668
3669 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3670 hwrm_ring_free_send_msg(bp, ring,
3671 RING_FREE_REQ_RING_TYPE_RX,
3672 close_path ? cmpl_ring_id :
3673 INVALID_HW_RING_ID);
3674 ring->fw_ring_id = INVALID_HW_RING_ID;
3675 bp->grp_info[grp_idx].agg_fw_ring_id =
3676 INVALID_HW_RING_ID;
3677 }
3678 }
3679
3680 for (i = 0; i < bp->cp_nr_rings; i++) {
3681 struct bnxt_napi *bnapi = bp->bnapi[i];
3682 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3683 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3684
3685 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3686 hwrm_ring_free_send_msg(bp, ring,
3687 RING_FREE_REQ_RING_TYPE_CMPL,
3688 INVALID_HW_RING_ID);
3689 ring->fw_ring_id = INVALID_HW_RING_ID;
3690 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3691 }
3692 }
3693 }
3694
3695 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3696 u32 buf_tmrs, u16 flags,
3697 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3698 {
3699 req->flags = cpu_to_le16(flags);
3700 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3701 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3702 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3703 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3704 /* Minimum time between 2 interrupts set to buf_tmr x 2 */
3705 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3706 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3707 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3708 }
3709
3710 int bnxt_hwrm_set_coal(struct bnxt *bp)
3711 {
3712 int i, rc = 0;
3713 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3714 req_tx = {0}, *req;
3715 u16 max_buf, max_buf_irq;
3716 u16 buf_tmr, buf_tmr_irq;
3717 u32 flags;
3718
3719 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3720 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3721 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3722 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3723
3724 /* Each rx completion (2 records) should be DMAed immediately.
3725 * DMA 1/4 of the completion buffers at a time.
3726 */
3727 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
3728 /* max_buf must not be zero */
3729 max_buf = clamp_t(u16, max_buf, 1, 63);
3730 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
3731 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
3732 /* buf timer set to 1/4 of interrupt timer */
3733 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3734 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
3735 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3736
3737 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3738
3739 /* RING_IDLE generates more IRQs for lower latency. Enable it only
3740 * if coal_ticks is less than 25 us.
3741 */
3742 if (bp->rx_coal_ticks < 25)
3743 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3744
3745 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3746 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
3747
3748 /* max_buf must not be zero */
3749 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
3750 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
3751 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
3752 /* buf timer set to 1/4 of interrupt timer */
3753 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3754 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
3755 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3756
3757 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3758 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3759 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
3760
3761 mutex_lock(&bp->hwrm_cmd_lock);
3762 for (i = 0; i < bp->cp_nr_rings; i++) {
3763 struct bnxt_napi *bnapi = bp->bnapi[i];
3764
3765 req = &req_rx;
3766 if (!bnapi->rx_ring)
3767 req = &req_tx;
3768 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3769
3770 rc = _hwrm_send_message(bp, req, sizeof(*req),
3771 HWRM_CMD_TIMEOUT);
3772 if (rc)
3773 break;
3774 }
3775 mutex_unlock(&bp->hwrm_cmd_lock);
3776 return rc;
3777 }
3778
3779 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3780 {
3781 int rc = 0, i;
3782 struct hwrm_stat_ctx_free_input req = {0};
3783
3784 if (!bp->bnapi)
3785 return 0;
3786
3787 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3788
3789 mutex_lock(&bp->hwrm_cmd_lock);
3790 for (i = 0; i < bp->cp_nr_rings; i++) {
3791 struct bnxt_napi *bnapi = bp->bnapi[i];
3792 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3793
3794 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3795 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3796
3797 rc = _hwrm_send_message(bp, &req, sizeof(req),
3798 HWRM_CMD_TIMEOUT);
3799 if (rc)
3800 break;
3801
3802 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3803 }
3804 }
3805 mutex_unlock(&bp->hwrm_cmd_lock);
3806 return rc;
3807 }
3808
3809 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3810 {
3811 int rc = 0, i;
3812 struct hwrm_stat_ctx_alloc_input req = {0};
3813 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3814
3815 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3816
3817 req.update_period_ms = cpu_to_le32(1000);
3818
3819 mutex_lock(&bp->hwrm_cmd_lock);
3820 for (i = 0; i < bp->cp_nr_rings; i++) {
3821 struct bnxt_napi *bnapi = bp->bnapi[i];
3822 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3823
3824 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3825
3826 rc = _hwrm_send_message(bp, &req, sizeof(req),
3827 HWRM_CMD_TIMEOUT);
3828 if (rc)
3829 break;
3830
3831 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3832
3833 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3834 }
3835 mutex_unlock(&bp->hwrm_cmd_lock);
3836 return 0;
3837 }
3838
3839 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3840 {
3841 int rc = 0;
3842 struct hwrm_func_qcaps_input req = {0};
3843 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3844
3845 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3846 req.fid = cpu_to_le16(0xffff);
3847
3848 mutex_lock(&bp->hwrm_cmd_lock);
3849 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3850 if (rc)
3851 goto hwrm_func_qcaps_exit;
3852
3853 if (BNXT_PF(bp)) {
3854 struct bnxt_pf_info *pf = &bp->pf;
3855
3856 pf->fw_fid = le16_to_cpu(resp->fid);
3857 pf->port_id = le16_to_cpu(resp->port_id);
3858 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
3859 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3860 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3861 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3862 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3863 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3864 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3865 if (!pf->max_hw_ring_grps)
3866 pf->max_hw_ring_grps = pf->max_tx_rings;
3867 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3868 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3869 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3870 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3871 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3872 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3873 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3874 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3875 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3876 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3877 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3878 } else {
3879 #ifdef CONFIG_BNXT_SRIOV
3880 struct bnxt_vf_info *vf = &bp->vf;
3881
3882 vf->fw_fid = le16_to_cpu(resp->fid);
3883 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
3884 if (is_valid_ether_addr(vf->mac_addr))
3885 /* overwrite netdev dev_adr with admin VF MAC */
3886 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3887 else
3888 random_ether_addr(bp->dev->dev_addr);
3889
3890 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3891 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3892 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3893 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3894 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3895 if (!vf->max_hw_ring_grps)
3896 vf->max_hw_ring_grps = vf->max_tx_rings;
3897 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3898 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3899 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3900 #endif
3901 }
3902
3903 bp->tx_push_thresh = 0;
3904 if (resp->flags &
3905 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3906 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3907
3908 hwrm_func_qcaps_exit:
3909 mutex_unlock(&bp->hwrm_cmd_lock);
3910 return rc;
3911 }
3912
3913 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3914 {
3915 struct hwrm_func_reset_input req = {0};
3916
3917 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3918 req.enables = 0;
3919
3920 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3921 }
3922
3923 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3924 {
3925 int rc = 0;
3926 struct hwrm_queue_qportcfg_input req = {0};
3927 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3928 u8 i, *qptr;
3929
3930 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3931
3932 mutex_lock(&bp->hwrm_cmd_lock);
3933 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3934 if (rc)
3935 goto qportcfg_exit;
3936
3937 if (!resp->max_configurable_queues) {
3938 rc = -EINVAL;
3939 goto qportcfg_exit;
3940 }
3941 bp->max_tc = resp->max_configurable_queues;
3942 if (bp->max_tc > BNXT_MAX_QUEUE)
3943 bp->max_tc = BNXT_MAX_QUEUE;
3944
3945 qptr = &resp->queue_id0;
3946 for (i = 0; i < bp->max_tc; i++) {
3947 bp->q_info[i].queue_id = *qptr++;
3948 bp->q_info[i].queue_profile = *qptr++;
3949 }
3950
3951 qportcfg_exit:
3952 mutex_unlock(&bp->hwrm_cmd_lock);
3953 return rc;
3954 }
3955
3956 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3957 {
3958 int rc;
3959 struct hwrm_ver_get_input req = {0};
3960 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3961
3962 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
3963 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3964 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3965 req.hwrm_intf_min = HWRM_VERSION_MINOR;
3966 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3967 mutex_lock(&bp->hwrm_cmd_lock);
3968 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3969 if (rc)
3970 goto hwrm_ver_get_exit;
3971
3972 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3973
3974 bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
3975 resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
3976 if (resp->hwrm_intf_maj < 1) {
3977 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3978 resp->hwrm_intf_maj, resp->hwrm_intf_min,
3979 resp->hwrm_intf_upd);
3980 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3981 }
3982 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
3983 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3984 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3985
3986 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
3987 if (!bp->hwrm_cmd_timeout)
3988 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
3989
3990 if (resp->hwrm_intf_maj >= 1)
3991 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
3992
3993 hwrm_ver_get_exit:
3994 mutex_unlock(&bp->hwrm_cmd_lock);
3995 return rc;
3996 }
3997
3998 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
3999 {
4000 int rc;
4001 struct bnxt_pf_info *pf = &bp->pf;
4002 struct hwrm_port_qstats_input req = {0};
4003
4004 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4005 return 0;
4006
4007 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4008 req.port_id = cpu_to_le16(pf->port_id);
4009 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4010 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4011 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4012 return rc;
4013 }
4014
4015 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4016 {
4017 if (bp->vxlan_port_cnt) {
4018 bnxt_hwrm_tunnel_dst_port_free(
4019 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4020 }
4021 bp->vxlan_port_cnt = 0;
4022 if (bp->nge_port_cnt) {
4023 bnxt_hwrm_tunnel_dst_port_free(
4024 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4025 }
4026 bp->nge_port_cnt = 0;
4027 }
4028
4029 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4030 {
4031 int rc, i;
4032 u32 tpa_flags = 0;
4033
4034 if (set_tpa)
4035 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4036 for (i = 0; i < bp->nr_vnics; i++) {
4037 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4038 if (rc) {
4039 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4040 rc, i);
4041 return rc;
4042 }
4043 }
4044 return 0;
4045 }
4046
4047 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4048 {
4049 int i;
4050
4051 for (i = 0; i < bp->nr_vnics; i++)
4052 bnxt_hwrm_vnic_set_rss(bp, i, false);
4053 }
4054
4055 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4056 bool irq_re_init)
4057 {
4058 if (bp->vnic_info) {
4059 bnxt_hwrm_clear_vnic_filter(bp);
4060 /* clear all RSS setting before free vnic ctx */
4061 bnxt_hwrm_clear_vnic_rss(bp);
4062 bnxt_hwrm_vnic_ctx_free(bp);
4063 /* before free the vnic, undo the vnic tpa settings */
4064 if (bp->flags & BNXT_FLAG_TPA)
4065 bnxt_set_tpa(bp, false);
4066 bnxt_hwrm_vnic_free(bp);
4067 }
4068 bnxt_hwrm_ring_free(bp, close_path);
4069 bnxt_hwrm_ring_grp_free(bp);
4070 if (irq_re_init) {
4071 bnxt_hwrm_stat_ctx_free(bp);
4072 bnxt_hwrm_free_tunnel_ports(bp);
4073 }
4074 }
4075
4076 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4077 {
4078 int rc;
4079
4080 /* allocate context for vnic */
4081 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
4082 if (rc) {
4083 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4084 vnic_id, rc);
4085 goto vnic_setup_err;
4086 }
4087 bp->rsscos_nr_ctxs++;
4088
4089 /* configure default vnic, ring grp */
4090 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4091 if (rc) {
4092 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4093 vnic_id, rc);
4094 goto vnic_setup_err;
4095 }
4096
4097 /* Enable RSS hashing on vnic */
4098 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4099 if (rc) {
4100 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4101 vnic_id, rc);
4102 goto vnic_setup_err;
4103 }
4104
4105 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4106 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4107 if (rc) {
4108 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4109 vnic_id, rc);
4110 }
4111 }
4112
4113 vnic_setup_err:
4114 return rc;
4115 }
4116
4117 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4118 {
4119 #ifdef CONFIG_RFS_ACCEL
4120 int i, rc = 0;
4121
4122 for (i = 0; i < bp->rx_nr_rings; i++) {
4123 u16 vnic_id = i + 1;
4124 u16 ring_id = i;
4125
4126 if (vnic_id >= bp->nr_vnics)
4127 break;
4128
4129 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4130 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4131 if (rc) {
4132 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4133 vnic_id, rc);
4134 break;
4135 }
4136 rc = bnxt_setup_vnic(bp, vnic_id);
4137 if (rc)
4138 break;
4139 }
4140 return rc;
4141 #else
4142 return 0;
4143 #endif
4144 }
4145
4146 static int bnxt_cfg_rx_mode(struct bnxt *);
4147 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4148
4149 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4150 {
4151 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4152 int rc = 0;
4153
4154 if (irq_re_init) {
4155 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4156 if (rc) {
4157 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4158 rc);
4159 goto err_out;
4160 }
4161 }
4162
4163 rc = bnxt_hwrm_ring_alloc(bp);
4164 if (rc) {
4165 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4166 goto err_out;
4167 }
4168
4169 rc = bnxt_hwrm_ring_grp_alloc(bp);
4170 if (rc) {
4171 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4172 goto err_out;
4173 }
4174
4175 /* default vnic 0 */
4176 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
4177 if (rc) {
4178 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4179 goto err_out;
4180 }
4181
4182 rc = bnxt_setup_vnic(bp, 0);
4183 if (rc)
4184 goto err_out;
4185
4186 if (bp->flags & BNXT_FLAG_RFS) {
4187 rc = bnxt_alloc_rfs_vnics(bp);
4188 if (rc)
4189 goto err_out;
4190 }
4191
4192 if (bp->flags & BNXT_FLAG_TPA) {
4193 rc = bnxt_set_tpa(bp, true);
4194 if (rc)
4195 goto err_out;
4196 }
4197
4198 if (BNXT_VF(bp))
4199 bnxt_update_vf_mac(bp);
4200
4201 /* Filter for default vnic 0 */
4202 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4203 if (rc) {
4204 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4205 goto err_out;
4206 }
4207 vnic->uc_filter_count = 1;
4208
4209 vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4210
4211 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4212 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4213
4214 if (bp->dev->flags & IFF_ALLMULTI) {
4215 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4216 vnic->mc_list_count = 0;
4217 } else {
4218 u32 mask = 0;
4219
4220 bnxt_mc_list_updated(bp, &mask);
4221 vnic->rx_mask |= mask;
4222 }
4223
4224 rc = bnxt_cfg_rx_mode(bp);
4225 if (rc)
4226 goto err_out;
4227
4228 rc = bnxt_hwrm_set_coal(bp);
4229 if (rc)
4230 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4231 rc);
4232
4233 return 0;
4234
4235 err_out:
4236 bnxt_hwrm_resource_free(bp, 0, true);
4237
4238 return rc;
4239 }
4240
4241 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4242 {
4243 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4244 return 0;
4245 }
4246
4247 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4248 {
4249 bnxt_init_rx_rings(bp);
4250 bnxt_init_tx_rings(bp);
4251 bnxt_init_ring_grps(bp, irq_re_init);
4252 bnxt_init_vnics(bp);
4253
4254 return bnxt_init_chip(bp, irq_re_init);
4255 }
4256
4257 static void bnxt_disable_int(struct bnxt *bp)
4258 {
4259 int i;
4260
4261 if (!bp->bnapi)
4262 return;
4263
4264 for (i = 0; i < bp->cp_nr_rings; i++) {
4265 struct bnxt_napi *bnapi = bp->bnapi[i];
4266 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4267
4268 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4269 }
4270 }
4271
4272 static void bnxt_enable_int(struct bnxt *bp)
4273 {
4274 int i;
4275
4276 atomic_set(&bp->intr_sem, 0);
4277 for (i = 0; i < bp->cp_nr_rings; i++) {
4278 struct bnxt_napi *bnapi = bp->bnapi[i];
4279 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4280
4281 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4282 }
4283 }
4284
4285 static int bnxt_set_real_num_queues(struct bnxt *bp)
4286 {
4287 int rc;
4288 struct net_device *dev = bp->dev;
4289
4290 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4291 if (rc)
4292 return rc;
4293
4294 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4295 if (rc)
4296 return rc;
4297
4298 #ifdef CONFIG_RFS_ACCEL
4299 if (bp->flags & BNXT_FLAG_RFS)
4300 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4301 #endif
4302
4303 return rc;
4304 }
4305
4306 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4307 bool shared)
4308 {
4309 int _rx = *rx, _tx = *tx;
4310
4311 if (shared) {
4312 *rx = min_t(int, _rx, max);
4313 *tx = min_t(int, _tx, max);
4314 } else {
4315 if (max < 2)
4316 return -ENOMEM;
4317
4318 while (_rx + _tx > max) {
4319 if (_rx > _tx && _rx > 1)
4320 _rx--;
4321 else if (_tx > 1)
4322 _tx--;
4323 }
4324 *rx = _rx;
4325 *tx = _tx;
4326 }
4327 return 0;
4328 }
4329
4330 static int bnxt_setup_msix(struct bnxt *bp)
4331 {
4332 struct msix_entry *msix_ent;
4333 struct net_device *dev = bp->dev;
4334 int i, total_vecs, rc = 0, min = 1;
4335 const int len = sizeof(bp->irq_tbl[0].name);
4336
4337 bp->flags &= ~BNXT_FLAG_USING_MSIX;
4338 total_vecs = bp->cp_nr_rings;
4339
4340 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4341 if (!msix_ent)
4342 return -ENOMEM;
4343
4344 for (i = 0; i < total_vecs; i++) {
4345 msix_ent[i].entry = i;
4346 msix_ent[i].vector = 0;
4347 }
4348
4349 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4350 min = 2;
4351
4352 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4353 if (total_vecs < 0) {
4354 rc = -ENODEV;
4355 goto msix_setup_exit;
4356 }
4357
4358 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4359 if (bp->irq_tbl) {
4360 int tcs;
4361
4362 /* Trim rings based upon num of vectors allocated */
4363 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4364 total_vecs, min == 1);
4365 if (rc)
4366 goto msix_setup_exit;
4367
4368 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4369 tcs = netdev_get_num_tc(dev);
4370 if (tcs > 1) {
4371 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4372 if (bp->tx_nr_rings_per_tc == 0) {
4373 netdev_reset_tc(dev);
4374 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4375 } else {
4376 int i, off, count;
4377
4378 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4379 for (i = 0; i < tcs; i++) {
4380 count = bp->tx_nr_rings_per_tc;
4381 off = i * count;
4382 netdev_set_tc_queue(dev, i, count, off);
4383 }
4384 }
4385 }
4386 bp->cp_nr_rings = total_vecs;
4387
4388 for (i = 0; i < bp->cp_nr_rings; i++) {
4389 char *attr;
4390
4391 bp->irq_tbl[i].vector = msix_ent[i].vector;
4392 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4393 attr = "TxRx";
4394 else if (i < bp->rx_nr_rings)
4395 attr = "rx";
4396 else
4397 attr = "tx";
4398
4399 snprintf(bp->irq_tbl[i].name, len,
4400 "%s-%s-%d", dev->name, attr, i);
4401 bp->irq_tbl[i].handler = bnxt_msix;
4402 }
4403 rc = bnxt_set_real_num_queues(bp);
4404 if (rc)
4405 goto msix_setup_exit;
4406 } else {
4407 rc = -ENOMEM;
4408 goto msix_setup_exit;
4409 }
4410 bp->flags |= BNXT_FLAG_USING_MSIX;
4411 kfree(msix_ent);
4412 return 0;
4413
4414 msix_setup_exit:
4415 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4416 pci_disable_msix(bp->pdev);
4417 kfree(msix_ent);
4418 return rc;
4419 }
4420
4421 static int bnxt_setup_inta(struct bnxt *bp)
4422 {
4423 int rc;
4424 const int len = sizeof(bp->irq_tbl[0].name);
4425
4426 if (netdev_get_num_tc(bp->dev))
4427 netdev_reset_tc(bp->dev);
4428
4429 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4430 if (!bp->irq_tbl) {
4431 rc = -ENOMEM;
4432 return rc;
4433 }
4434 bp->rx_nr_rings = 1;
4435 bp->tx_nr_rings = 1;
4436 bp->cp_nr_rings = 1;
4437 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4438 bp->flags |= BNXT_FLAG_SHARED_RINGS;
4439 bp->irq_tbl[0].vector = bp->pdev->irq;
4440 snprintf(bp->irq_tbl[0].name, len,
4441 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4442 bp->irq_tbl[0].handler = bnxt_inta;
4443 rc = bnxt_set_real_num_queues(bp);
4444 return rc;
4445 }
4446
4447 static int bnxt_setup_int_mode(struct bnxt *bp)
4448 {
4449 int rc = 0;
4450
4451 if (bp->flags & BNXT_FLAG_MSIX_CAP)
4452 rc = bnxt_setup_msix(bp);
4453
4454 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4455 /* fallback to INTA */
4456 rc = bnxt_setup_inta(bp);
4457 }
4458 return rc;
4459 }
4460
4461 static void bnxt_free_irq(struct bnxt *bp)
4462 {
4463 struct bnxt_irq *irq;
4464 int i;
4465
4466 #ifdef CONFIG_RFS_ACCEL
4467 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4468 bp->dev->rx_cpu_rmap = NULL;
4469 #endif
4470 if (!bp->irq_tbl)
4471 return;
4472
4473 for (i = 0; i < bp->cp_nr_rings; i++) {
4474 irq = &bp->irq_tbl[i];
4475 if (irq->requested)
4476 free_irq(irq->vector, bp->bnapi[i]);
4477 irq->requested = 0;
4478 }
4479 if (bp->flags & BNXT_FLAG_USING_MSIX)
4480 pci_disable_msix(bp->pdev);
4481 kfree(bp->irq_tbl);
4482 bp->irq_tbl = NULL;
4483 }
4484
4485 static int bnxt_request_irq(struct bnxt *bp)
4486 {
4487 int i, j, rc = 0;
4488 unsigned long flags = 0;
4489 #ifdef CONFIG_RFS_ACCEL
4490 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4491 #endif
4492
4493 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4494 flags = IRQF_SHARED;
4495
4496 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4497 struct bnxt_irq *irq = &bp->irq_tbl[i];
4498 #ifdef CONFIG_RFS_ACCEL
4499 if (rmap && bp->bnapi[i]->rx_ring) {
4500 rc = irq_cpu_rmap_add(rmap, irq->vector);
4501 if (rc)
4502 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4503 j);
4504 j++;
4505 }
4506 #endif
4507 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4508 bp->bnapi[i]);
4509 if (rc)
4510 break;
4511
4512 irq->requested = 1;
4513 }
4514 return rc;
4515 }
4516
4517 static void bnxt_del_napi(struct bnxt *bp)
4518 {
4519 int i;
4520
4521 if (!bp->bnapi)
4522 return;
4523
4524 for (i = 0; i < bp->cp_nr_rings; i++) {
4525 struct bnxt_napi *bnapi = bp->bnapi[i];
4526
4527 napi_hash_del(&bnapi->napi);
4528 netif_napi_del(&bnapi->napi);
4529 }
4530 }
4531
4532 static void bnxt_init_napi(struct bnxt *bp)
4533 {
4534 int i;
4535 struct bnxt_napi *bnapi;
4536
4537 if (bp->flags & BNXT_FLAG_USING_MSIX) {
4538 for (i = 0; i < bp->cp_nr_rings; i++) {
4539 bnapi = bp->bnapi[i];
4540 netif_napi_add(bp->dev, &bnapi->napi,
4541 bnxt_poll, 64);
4542 }
4543 } else {
4544 bnapi = bp->bnapi[0];
4545 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4546 }
4547 }
4548
4549 static void bnxt_disable_napi(struct bnxt *bp)
4550 {
4551 int i;
4552
4553 if (!bp->bnapi)
4554 return;
4555
4556 for (i = 0; i < bp->cp_nr_rings; i++) {
4557 napi_disable(&bp->bnapi[i]->napi);
4558 bnxt_disable_poll(bp->bnapi[i]);
4559 }
4560 }
4561
4562 static void bnxt_enable_napi(struct bnxt *bp)
4563 {
4564 int i;
4565
4566 for (i = 0; i < bp->cp_nr_rings; i++) {
4567 bp->bnapi[i]->in_reset = false;
4568 bnxt_enable_poll(bp->bnapi[i]);
4569 napi_enable(&bp->bnapi[i]->napi);
4570 }
4571 }
4572
4573 static void bnxt_tx_disable(struct bnxt *bp)
4574 {
4575 int i;
4576 struct bnxt_tx_ring_info *txr;
4577 struct netdev_queue *txq;
4578
4579 if (bp->tx_ring) {
4580 for (i = 0; i < bp->tx_nr_rings; i++) {
4581 txr = &bp->tx_ring[i];
4582 txq = netdev_get_tx_queue(bp->dev, i);
4583 __netif_tx_lock(txq, smp_processor_id());
4584 txr->dev_state = BNXT_DEV_STATE_CLOSING;
4585 __netif_tx_unlock(txq);
4586 }
4587 }
4588 /* Stop all TX queues */
4589 netif_tx_disable(bp->dev);
4590 netif_carrier_off(bp->dev);
4591 }
4592
4593 static void bnxt_tx_enable(struct bnxt *bp)
4594 {
4595 int i;
4596 struct bnxt_tx_ring_info *txr;
4597 struct netdev_queue *txq;
4598
4599 for (i = 0; i < bp->tx_nr_rings; i++) {
4600 txr = &bp->tx_ring[i];
4601 txq = netdev_get_tx_queue(bp->dev, i);
4602 txr->dev_state = 0;
4603 }
4604 netif_tx_wake_all_queues(bp->dev);
4605 if (bp->link_info.link_up)
4606 netif_carrier_on(bp->dev);
4607 }
4608
4609 static void bnxt_report_link(struct bnxt *bp)
4610 {
4611 if (bp->link_info.link_up) {
4612 const char *duplex;
4613 const char *flow_ctrl;
4614 u16 speed;
4615
4616 netif_carrier_on(bp->dev);
4617 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4618 duplex = "full";
4619 else
4620 duplex = "half";
4621 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4622 flow_ctrl = "ON - receive & transmit";
4623 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4624 flow_ctrl = "ON - transmit";
4625 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4626 flow_ctrl = "ON - receive";
4627 else
4628 flow_ctrl = "none";
4629 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4630 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4631 speed, duplex, flow_ctrl);
4632 if (bp->flags & BNXT_FLAG_EEE_CAP)
4633 netdev_info(bp->dev, "EEE is %s\n",
4634 bp->eee.eee_active ? "active" :
4635 "not active");
4636 } else {
4637 netif_carrier_off(bp->dev);
4638 netdev_err(bp->dev, "NIC Link is Down\n");
4639 }
4640 }
4641
4642 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
4643 {
4644 int rc = 0;
4645 struct hwrm_port_phy_qcaps_input req = {0};
4646 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4647
4648 if (bp->hwrm_spec_code < 0x10201)
4649 return 0;
4650
4651 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
4652
4653 mutex_lock(&bp->hwrm_cmd_lock);
4654 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4655 if (rc)
4656 goto hwrm_phy_qcaps_exit;
4657
4658 if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
4659 struct ethtool_eee *eee = &bp->eee;
4660 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
4661
4662 bp->flags |= BNXT_FLAG_EEE_CAP;
4663 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
4664 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
4665 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
4666 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
4667 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
4668 }
4669
4670 hwrm_phy_qcaps_exit:
4671 mutex_unlock(&bp->hwrm_cmd_lock);
4672 return rc;
4673 }
4674
4675 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4676 {
4677 int rc = 0;
4678 struct bnxt_link_info *link_info = &bp->link_info;
4679 struct hwrm_port_phy_qcfg_input req = {0};
4680 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4681 u8 link_up = link_info->link_up;
4682
4683 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4684
4685 mutex_lock(&bp->hwrm_cmd_lock);
4686 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4687 if (rc) {
4688 mutex_unlock(&bp->hwrm_cmd_lock);
4689 return rc;
4690 }
4691
4692 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4693 link_info->phy_link_status = resp->link;
4694 link_info->duplex = resp->duplex;
4695 link_info->pause = resp->pause;
4696 link_info->auto_mode = resp->auto_mode;
4697 link_info->auto_pause_setting = resp->auto_pause;
4698 link_info->lp_pause = resp->link_partner_adv_pause;
4699 link_info->force_pause_setting = resp->force_pause;
4700 link_info->duplex_setting = resp->duplex;
4701 if (link_info->phy_link_status == BNXT_LINK_LINK)
4702 link_info->link_speed = le16_to_cpu(resp->link_speed);
4703 else
4704 link_info->link_speed = 0;
4705 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4706 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4707 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4708 link_info->lp_auto_link_speeds =
4709 le16_to_cpu(resp->link_partner_adv_speeds);
4710 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4711 link_info->phy_ver[0] = resp->phy_maj;
4712 link_info->phy_ver[1] = resp->phy_min;
4713 link_info->phy_ver[2] = resp->phy_bld;
4714 link_info->media_type = resp->media_type;
4715 link_info->phy_type = resp->phy_type;
4716 link_info->transceiver = resp->xcvr_pkg_type;
4717 link_info->phy_addr = resp->eee_config_phy_addr &
4718 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
4719 link_info->module_status = resp->module_status;
4720
4721 if (bp->flags & BNXT_FLAG_EEE_CAP) {
4722 struct ethtool_eee *eee = &bp->eee;
4723 u16 fw_speeds;
4724
4725 eee->eee_active = 0;
4726 if (resp->eee_config_phy_addr &
4727 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
4728 eee->eee_active = 1;
4729 fw_speeds = le16_to_cpu(
4730 resp->link_partner_adv_eee_link_speed_mask);
4731 eee->lp_advertised =
4732 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
4733 }
4734
4735 /* Pull initial EEE config */
4736 if (!chng_link_state) {
4737 if (resp->eee_config_phy_addr &
4738 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
4739 eee->eee_enabled = 1;
4740
4741 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
4742 eee->advertised =
4743 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
4744
4745 if (resp->eee_config_phy_addr &
4746 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
4747 __le32 tmr;
4748
4749 eee->tx_lpi_enabled = 1;
4750 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
4751 eee->tx_lpi_timer = le32_to_cpu(tmr) &
4752 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
4753 }
4754 }
4755 }
4756 /* TODO: need to add more logic to report VF link */
4757 if (chng_link_state) {
4758 if (link_info->phy_link_status == BNXT_LINK_LINK)
4759 link_info->link_up = 1;
4760 else
4761 link_info->link_up = 0;
4762 if (link_up != link_info->link_up)
4763 bnxt_report_link(bp);
4764 } else {
4765 /* alwasy link down if not require to update link state */
4766 link_info->link_up = 0;
4767 }
4768 mutex_unlock(&bp->hwrm_cmd_lock);
4769 return 0;
4770 }
4771
4772 static void bnxt_get_port_module_status(struct bnxt *bp)
4773 {
4774 struct bnxt_link_info *link_info = &bp->link_info;
4775 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
4776 u8 module_status;
4777
4778 if (bnxt_update_link(bp, true))
4779 return;
4780
4781 module_status = link_info->module_status;
4782 switch (module_status) {
4783 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
4784 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
4785 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
4786 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
4787 bp->pf.port_id);
4788 if (bp->hwrm_spec_code >= 0x10201) {
4789 netdev_warn(bp->dev, "Module part number %s\n",
4790 resp->phy_vendor_partnumber);
4791 }
4792 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
4793 netdev_warn(bp->dev, "TX is disabled\n");
4794 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
4795 netdev_warn(bp->dev, "SFP+ module is shutdown\n");
4796 }
4797 }
4798
4799 static void
4800 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4801 {
4802 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4803 if (bp->hwrm_spec_code >= 0x10201)
4804 req->auto_pause =
4805 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
4806 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4807 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4808 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4809 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
4810 req->enables |=
4811 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4812 } else {
4813 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4814 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4815 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4816 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4817 req->enables |=
4818 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4819 if (bp->hwrm_spec_code >= 0x10201) {
4820 req->auto_pause = req->force_pause;
4821 req->enables |= cpu_to_le32(
4822 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4823 }
4824 }
4825 }
4826
4827 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4828 struct hwrm_port_phy_cfg_input *req)
4829 {
4830 u8 autoneg = bp->link_info.autoneg;
4831 u16 fw_link_speed = bp->link_info.req_link_speed;
4832 u32 advertising = bp->link_info.advertising;
4833
4834 if (autoneg & BNXT_AUTONEG_SPEED) {
4835 req->auto_mode |=
4836 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
4837
4838 req->enables |= cpu_to_le32(
4839 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4840 req->auto_link_speed_mask = cpu_to_le16(advertising);
4841
4842 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4843 req->flags |=
4844 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4845 } else {
4846 req->force_link_speed = cpu_to_le16(fw_link_speed);
4847 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4848 }
4849
4850 /* tell chimp that the setting takes effect immediately */
4851 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4852 }
4853
4854 int bnxt_hwrm_set_pause(struct bnxt *bp)
4855 {
4856 struct hwrm_port_phy_cfg_input req = {0};
4857 int rc;
4858
4859 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4860 bnxt_hwrm_set_pause_common(bp, &req);
4861
4862 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4863 bp->link_info.force_link_chng)
4864 bnxt_hwrm_set_link_common(bp, &req);
4865
4866 mutex_lock(&bp->hwrm_cmd_lock);
4867 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4868 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4869 /* since changing of pause setting doesn't trigger any link
4870 * change event, the driver needs to update the current pause
4871 * result upon successfully return of the phy_cfg command
4872 */
4873 bp->link_info.pause =
4874 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4875 bp->link_info.auto_pause_setting = 0;
4876 if (!bp->link_info.force_link_chng)
4877 bnxt_report_link(bp);
4878 }
4879 bp->link_info.force_link_chng = false;
4880 mutex_unlock(&bp->hwrm_cmd_lock);
4881 return rc;
4882 }
4883
4884 static void bnxt_hwrm_set_eee(struct bnxt *bp,
4885 struct hwrm_port_phy_cfg_input *req)
4886 {
4887 struct ethtool_eee *eee = &bp->eee;
4888
4889 if (eee->eee_enabled) {
4890 u16 eee_speeds;
4891 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
4892
4893 if (eee->tx_lpi_enabled)
4894 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
4895 else
4896 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
4897
4898 req->flags |= cpu_to_le32(flags);
4899 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
4900 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
4901 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
4902 } else {
4903 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
4904 }
4905 }
4906
4907 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
4908 {
4909 struct hwrm_port_phy_cfg_input req = {0};
4910
4911 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4912 if (set_pause)
4913 bnxt_hwrm_set_pause_common(bp, &req);
4914
4915 bnxt_hwrm_set_link_common(bp, &req);
4916
4917 if (set_eee)
4918 bnxt_hwrm_set_eee(bp, &req);
4919 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4920 }
4921
4922 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
4923 {
4924 struct hwrm_port_phy_cfg_input req = {0};
4925
4926 if (BNXT_VF(bp))
4927 return 0;
4928
4929 if (pci_num_vf(bp->pdev))
4930 return 0;
4931
4932 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4933 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DOWN);
4934 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4935 }
4936
4937 static bool bnxt_eee_config_ok(struct bnxt *bp)
4938 {
4939 struct ethtool_eee *eee = &bp->eee;
4940 struct bnxt_link_info *link_info = &bp->link_info;
4941
4942 if (!(bp->flags & BNXT_FLAG_EEE_CAP))
4943 return true;
4944
4945 if (eee->eee_enabled) {
4946 u32 advertising =
4947 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
4948
4949 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4950 eee->eee_enabled = 0;
4951 return false;
4952 }
4953 if (eee->advertised & ~advertising) {
4954 eee->advertised = advertising & eee->supported;
4955 return false;
4956 }
4957 }
4958 return true;
4959 }
4960
4961 static int bnxt_update_phy_setting(struct bnxt *bp)
4962 {
4963 int rc;
4964 bool update_link = false;
4965 bool update_pause = false;
4966 bool update_eee = false;
4967 struct bnxt_link_info *link_info = &bp->link_info;
4968
4969 rc = bnxt_update_link(bp, true);
4970 if (rc) {
4971 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4972 rc);
4973 return rc;
4974 }
4975 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4976 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
4977 link_info->req_flow_ctrl)
4978 update_pause = true;
4979 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4980 link_info->force_pause_setting != link_info->req_flow_ctrl)
4981 update_pause = true;
4982 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4983 if (BNXT_AUTO_MODE(link_info->auto_mode))
4984 update_link = true;
4985 if (link_info->req_link_speed != link_info->force_link_speed)
4986 update_link = true;
4987 if (link_info->req_duplex != link_info->duplex_setting)
4988 update_link = true;
4989 } else {
4990 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4991 update_link = true;
4992 if (link_info->advertising != link_info->auto_link_speeds)
4993 update_link = true;
4994 }
4995
4996 if (!bnxt_eee_config_ok(bp))
4997 update_eee = true;
4998
4999 if (update_link)
5000 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5001 else if (update_pause)
5002 rc = bnxt_hwrm_set_pause(bp);
5003 if (rc) {
5004 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5005 rc);
5006 return rc;
5007 }
5008
5009 return rc;
5010 }
5011
5012 /* Common routine to pre-map certain register block to different GRC window.
5013 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5014 * in PF and 3 windows in VF that can be customized to map in different
5015 * register blocks.
5016 */
5017 static void bnxt_preset_reg_win(struct bnxt *bp)
5018 {
5019 if (BNXT_PF(bp)) {
5020 /* CAG registers map to GRC window #4 */
5021 writel(BNXT_CAG_REG_BASE,
5022 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5023 }
5024 }
5025
5026 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5027 {
5028 int rc = 0;
5029
5030 bnxt_preset_reg_win(bp);
5031 netif_carrier_off(bp->dev);
5032 if (irq_re_init) {
5033 rc = bnxt_setup_int_mode(bp);
5034 if (rc) {
5035 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5036 rc);
5037 return rc;
5038 }
5039 }
5040 if ((bp->flags & BNXT_FLAG_RFS) &&
5041 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5042 /* disable RFS if falling back to INTA */
5043 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5044 bp->flags &= ~BNXT_FLAG_RFS;
5045 }
5046
5047 rc = bnxt_alloc_mem(bp, irq_re_init);
5048 if (rc) {
5049 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5050 goto open_err_free_mem;
5051 }
5052
5053 if (irq_re_init) {
5054 bnxt_init_napi(bp);
5055 rc = bnxt_request_irq(bp);
5056 if (rc) {
5057 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5058 goto open_err;
5059 }
5060 }
5061
5062 bnxt_enable_napi(bp);
5063
5064 rc = bnxt_init_nic(bp, irq_re_init);
5065 if (rc) {
5066 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5067 goto open_err;
5068 }
5069
5070 if (link_re_init) {
5071 rc = bnxt_update_phy_setting(bp);
5072 if (rc)
5073 netdev_warn(bp->dev, "failed to update phy settings\n");
5074 }
5075
5076 if (irq_re_init) {
5077 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
5078 vxlan_get_rx_port(bp->dev);
5079 #endif
5080 if (!bnxt_hwrm_tunnel_dst_port_alloc(
5081 bp, htons(0x17c1),
5082 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
5083 bp->nge_port_cnt = 1;
5084 }
5085
5086 set_bit(BNXT_STATE_OPEN, &bp->state);
5087 bnxt_enable_int(bp);
5088 /* Enable TX queues */
5089 bnxt_tx_enable(bp);
5090 mod_timer(&bp->timer, jiffies + bp->current_interval);
5091 /* Poll link status and check for SFP+ module status */
5092 bnxt_get_port_module_status(bp);
5093
5094 return 0;
5095
5096 open_err:
5097 bnxt_disable_napi(bp);
5098 bnxt_del_napi(bp);
5099
5100 open_err_free_mem:
5101 bnxt_free_skbs(bp);
5102 bnxt_free_irq(bp);
5103 bnxt_free_mem(bp, true);
5104 return rc;
5105 }
5106
5107 /* rtnl_lock held */
5108 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5109 {
5110 int rc = 0;
5111
5112 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
5113 if (rc) {
5114 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
5115 dev_close(bp->dev);
5116 }
5117 return rc;
5118 }
5119
5120 static int bnxt_open(struct net_device *dev)
5121 {
5122 struct bnxt *bp = netdev_priv(dev);
5123 int rc = 0;
5124
5125 rc = bnxt_hwrm_func_reset(bp);
5126 if (rc) {
5127 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
5128 rc);
5129 rc = -1;
5130 return rc;
5131 }
5132 return __bnxt_open_nic(bp, true, true);
5133 }
5134
5135 static void bnxt_disable_int_sync(struct bnxt *bp)
5136 {
5137 int i;
5138
5139 atomic_inc(&bp->intr_sem);
5140 if (!netif_running(bp->dev))
5141 return;
5142
5143 bnxt_disable_int(bp);
5144 for (i = 0; i < bp->cp_nr_rings; i++)
5145 synchronize_irq(bp->irq_tbl[i].vector);
5146 }
5147
5148 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5149 {
5150 int rc = 0;
5151
5152 #ifdef CONFIG_BNXT_SRIOV
5153 if (bp->sriov_cfg) {
5154 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
5155 !bp->sriov_cfg,
5156 BNXT_SRIOV_CFG_WAIT_TMO);
5157 if (rc)
5158 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
5159 }
5160 #endif
5161 /* Change device state to avoid TX queue wake up's */
5162 bnxt_tx_disable(bp);
5163
5164 clear_bit(BNXT_STATE_OPEN, &bp->state);
5165 smp_mb__after_atomic();
5166 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
5167 msleep(20);
5168
5169 /* Flush rings before disabling interrupts */
5170 bnxt_shutdown_nic(bp, irq_re_init);
5171
5172 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
5173
5174 bnxt_disable_napi(bp);
5175 bnxt_disable_int_sync(bp);
5176 del_timer_sync(&bp->timer);
5177 bnxt_free_skbs(bp);
5178
5179 if (irq_re_init) {
5180 bnxt_free_irq(bp);
5181 bnxt_del_napi(bp);
5182 }
5183 bnxt_free_mem(bp, irq_re_init);
5184 return rc;
5185 }
5186
5187 static int bnxt_close(struct net_device *dev)
5188 {
5189 struct bnxt *bp = netdev_priv(dev);
5190
5191 bnxt_close_nic(bp, true, true);
5192 bnxt_hwrm_shutdown_link(bp);
5193 return 0;
5194 }
5195
5196 /* rtnl_lock held */
5197 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5198 {
5199 switch (cmd) {
5200 case SIOCGMIIPHY:
5201 /* fallthru */
5202 case SIOCGMIIREG: {
5203 if (!netif_running(dev))
5204 return -EAGAIN;
5205
5206 return 0;
5207 }
5208
5209 case SIOCSMIIREG:
5210 if (!netif_running(dev))
5211 return -EAGAIN;
5212
5213 return 0;
5214
5215 default:
5216 /* do nothing */
5217 break;
5218 }
5219 return -EOPNOTSUPP;
5220 }
5221
5222 static struct rtnl_link_stats64 *
5223 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5224 {
5225 u32 i;
5226 struct bnxt *bp = netdev_priv(dev);
5227
5228 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5229
5230 if (!bp->bnapi)
5231 return stats;
5232
5233 /* TODO check if we need to synchronize with bnxt_close path */
5234 for (i = 0; i < bp->cp_nr_rings; i++) {
5235 struct bnxt_napi *bnapi = bp->bnapi[i];
5236 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5237 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5238
5239 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5240 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5241 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5242
5243 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5244 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5245 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5246
5247 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5248 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5249 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5250
5251 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5252 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5253 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5254
5255 stats->rx_missed_errors +=
5256 le64_to_cpu(hw_stats->rx_discard_pkts);
5257
5258 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5259
5260 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5261 }
5262
5263 if (bp->flags & BNXT_FLAG_PORT_STATS) {
5264 struct rx_port_stats *rx = bp->hw_rx_port_stats;
5265 struct tx_port_stats *tx = bp->hw_tx_port_stats;
5266
5267 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5268 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5269 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5270 le64_to_cpu(rx->rx_ovrsz_frames) +
5271 le64_to_cpu(rx->rx_runt_frames);
5272 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5273 le64_to_cpu(rx->rx_jbr_frames);
5274 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5275 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5276 stats->tx_errors = le64_to_cpu(tx->tx_err);
5277 }
5278
5279 return stats;
5280 }
5281
5282 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5283 {
5284 struct net_device *dev = bp->dev;
5285 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5286 struct netdev_hw_addr *ha;
5287 u8 *haddr;
5288 int mc_count = 0;
5289 bool update = false;
5290 int off = 0;
5291
5292 netdev_for_each_mc_addr(ha, dev) {
5293 if (mc_count >= BNXT_MAX_MC_ADDRS) {
5294 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5295 vnic->mc_list_count = 0;
5296 return false;
5297 }
5298 haddr = ha->addr;
5299 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5300 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5301 update = true;
5302 }
5303 off += ETH_ALEN;
5304 mc_count++;
5305 }
5306 if (mc_count)
5307 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5308
5309 if (mc_count != vnic->mc_list_count) {
5310 vnic->mc_list_count = mc_count;
5311 update = true;
5312 }
5313 return update;
5314 }
5315
5316 static bool bnxt_uc_list_updated(struct bnxt *bp)
5317 {
5318 struct net_device *dev = bp->dev;
5319 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5320 struct netdev_hw_addr *ha;
5321 int off = 0;
5322
5323 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5324 return true;
5325
5326 netdev_for_each_uc_addr(ha, dev) {
5327 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5328 return true;
5329
5330 off += ETH_ALEN;
5331 }
5332 return false;
5333 }
5334
5335 static void bnxt_set_rx_mode(struct net_device *dev)
5336 {
5337 struct bnxt *bp = netdev_priv(dev);
5338 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5339 u32 mask = vnic->rx_mask;
5340 bool mc_update = false;
5341 bool uc_update;
5342
5343 if (!netif_running(dev))
5344 return;
5345
5346 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5347 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5348 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5349
5350 /* Only allow PF to be in promiscuous mode */
5351 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
5352 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5353
5354 uc_update = bnxt_uc_list_updated(bp);
5355
5356 if (dev->flags & IFF_ALLMULTI) {
5357 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5358 vnic->mc_list_count = 0;
5359 } else {
5360 mc_update = bnxt_mc_list_updated(bp, &mask);
5361 }
5362
5363 if (mask != vnic->rx_mask || uc_update || mc_update) {
5364 vnic->rx_mask = mask;
5365
5366 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5367 schedule_work(&bp->sp_task);
5368 }
5369 }
5370
5371 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5372 {
5373 struct net_device *dev = bp->dev;
5374 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5375 struct netdev_hw_addr *ha;
5376 int i, off = 0, rc;
5377 bool uc_update;
5378
5379 netif_addr_lock_bh(dev);
5380 uc_update = bnxt_uc_list_updated(bp);
5381 netif_addr_unlock_bh(dev);
5382
5383 if (!uc_update)
5384 goto skip_uc;
5385
5386 mutex_lock(&bp->hwrm_cmd_lock);
5387 for (i = 1; i < vnic->uc_filter_count; i++) {
5388 struct hwrm_cfa_l2_filter_free_input req = {0};
5389
5390 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5391 -1);
5392
5393 req.l2_filter_id = vnic->fw_l2_filter_id[i];
5394
5395 rc = _hwrm_send_message(bp, &req, sizeof(req),
5396 HWRM_CMD_TIMEOUT);
5397 }
5398 mutex_unlock(&bp->hwrm_cmd_lock);
5399
5400 vnic->uc_filter_count = 1;
5401
5402 netif_addr_lock_bh(dev);
5403 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5404 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5405 } else {
5406 netdev_for_each_uc_addr(ha, dev) {
5407 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5408 off += ETH_ALEN;
5409 vnic->uc_filter_count++;
5410 }
5411 }
5412 netif_addr_unlock_bh(dev);
5413
5414 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5415 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5416 if (rc) {
5417 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5418 rc);
5419 vnic->uc_filter_count = i;
5420 return rc;
5421 }
5422 }
5423
5424 skip_uc:
5425 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5426 if (rc)
5427 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5428 rc);
5429
5430 return rc;
5431 }
5432
5433 static bool bnxt_rfs_capable(struct bnxt *bp)
5434 {
5435 #ifdef CONFIG_RFS_ACCEL
5436 struct bnxt_pf_info *pf = &bp->pf;
5437 int vnics;
5438
5439 if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5440 return false;
5441
5442 vnics = 1 + bp->rx_nr_rings;
5443 if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
5444 return false;
5445
5446 return true;
5447 #else
5448 return false;
5449 #endif
5450 }
5451
5452 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5453 netdev_features_t features)
5454 {
5455 struct bnxt *bp = netdev_priv(dev);
5456
5457 if (!bnxt_rfs_capable(bp))
5458 features &= ~NETIF_F_NTUPLE;
5459
5460 /* Both CTAG and STAG VLAN accelaration on the RX side have to be
5461 * turned on or off together.
5462 */
5463 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
5464 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
5465 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
5466 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5467 NETIF_F_HW_VLAN_STAG_RX);
5468 else
5469 features |= NETIF_F_HW_VLAN_CTAG_RX |
5470 NETIF_F_HW_VLAN_STAG_RX;
5471 }
5472
5473 return features;
5474 }
5475
5476 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5477 {
5478 struct bnxt *bp = netdev_priv(dev);
5479 u32 flags = bp->flags;
5480 u32 changes;
5481 int rc = 0;
5482 bool re_init = false;
5483 bool update_tpa = false;
5484
5485 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5486 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5487 flags |= BNXT_FLAG_GRO;
5488 if (features & NETIF_F_LRO)
5489 flags |= BNXT_FLAG_LRO;
5490
5491 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5492 flags |= BNXT_FLAG_STRIP_VLAN;
5493
5494 if (features & NETIF_F_NTUPLE)
5495 flags |= BNXT_FLAG_RFS;
5496
5497 changes = flags ^ bp->flags;
5498 if (changes & BNXT_FLAG_TPA) {
5499 update_tpa = true;
5500 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5501 (flags & BNXT_FLAG_TPA) == 0)
5502 re_init = true;
5503 }
5504
5505 if (changes & ~BNXT_FLAG_TPA)
5506 re_init = true;
5507
5508 if (flags != bp->flags) {
5509 u32 old_flags = bp->flags;
5510
5511 bp->flags = flags;
5512
5513 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5514 if (update_tpa)
5515 bnxt_set_ring_params(bp);
5516 return rc;
5517 }
5518
5519 if (re_init) {
5520 bnxt_close_nic(bp, false, false);
5521 if (update_tpa)
5522 bnxt_set_ring_params(bp);
5523
5524 return bnxt_open_nic(bp, false, false);
5525 }
5526 if (update_tpa) {
5527 rc = bnxt_set_tpa(bp,
5528 (flags & BNXT_FLAG_TPA) ?
5529 true : false);
5530 if (rc)
5531 bp->flags = old_flags;
5532 }
5533 }
5534 return rc;
5535 }
5536
5537 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5538 {
5539 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5540 int i = bnapi->index;
5541
5542 if (!txr)
5543 return;
5544
5545 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5546 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5547 txr->tx_cons);
5548 }
5549
5550 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5551 {
5552 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5553 int i = bnapi->index;
5554
5555 if (!rxr)
5556 return;
5557
5558 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5559 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5560 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5561 rxr->rx_sw_agg_prod);
5562 }
5563
5564 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5565 {
5566 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5567 int i = bnapi->index;
5568
5569 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5570 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5571 }
5572
5573 static void bnxt_dbg_dump_states(struct bnxt *bp)
5574 {
5575 int i;
5576 struct bnxt_napi *bnapi;
5577
5578 for (i = 0; i < bp->cp_nr_rings; i++) {
5579 bnapi = bp->bnapi[i];
5580 if (netif_msg_drv(bp)) {
5581 bnxt_dump_tx_sw_state(bnapi);
5582 bnxt_dump_rx_sw_state(bnapi);
5583 bnxt_dump_cp_sw_state(bnapi);
5584 }
5585 }
5586 }
5587
5588 static void bnxt_reset_task(struct bnxt *bp)
5589 {
5590 bnxt_dbg_dump_states(bp);
5591 if (netif_running(bp->dev)) {
5592 bnxt_close_nic(bp, false, false);
5593 bnxt_open_nic(bp, false, false);
5594 }
5595 }
5596
5597 static void bnxt_tx_timeout(struct net_device *dev)
5598 {
5599 struct bnxt *bp = netdev_priv(dev);
5600
5601 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
5602 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5603 schedule_work(&bp->sp_task);
5604 }
5605
5606 #ifdef CONFIG_NET_POLL_CONTROLLER
5607 static void bnxt_poll_controller(struct net_device *dev)
5608 {
5609 struct bnxt *bp = netdev_priv(dev);
5610 int i;
5611
5612 for (i = 0; i < bp->cp_nr_rings; i++) {
5613 struct bnxt_irq *irq = &bp->irq_tbl[i];
5614
5615 disable_irq(irq->vector);
5616 irq->handler(irq->vector, bp->bnapi[i]);
5617 enable_irq(irq->vector);
5618 }
5619 }
5620 #endif
5621
5622 static void bnxt_timer(unsigned long data)
5623 {
5624 struct bnxt *bp = (struct bnxt *)data;
5625 struct net_device *dev = bp->dev;
5626
5627 if (!netif_running(dev))
5628 return;
5629
5630 if (atomic_read(&bp->intr_sem) != 0)
5631 goto bnxt_restart_timer;
5632
5633 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
5634 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
5635 schedule_work(&bp->sp_task);
5636 }
5637 bnxt_restart_timer:
5638 mod_timer(&bp->timer, jiffies + bp->current_interval);
5639 }
5640
5641 static void bnxt_cfg_ntp_filters(struct bnxt *);
5642
5643 static void bnxt_sp_task(struct work_struct *work)
5644 {
5645 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5646 int rc;
5647
5648 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5649 smp_mb__after_atomic();
5650 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5651 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5652 return;
5653 }
5654
5655 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5656 bnxt_cfg_rx_mode(bp);
5657
5658 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5659 bnxt_cfg_ntp_filters(bp);
5660 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5661 rc = bnxt_update_link(bp, true);
5662 if (rc)
5663 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5664 rc);
5665 }
5666 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5667 bnxt_hwrm_exec_fwd_req(bp);
5668 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5669 bnxt_hwrm_tunnel_dst_port_alloc(
5670 bp, bp->vxlan_port,
5671 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5672 }
5673 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5674 bnxt_hwrm_tunnel_dst_port_free(
5675 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5676 }
5677 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5678 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5679 * for BNXT_STATE_IN_SP_TASK to clear.
5680 */
5681 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5682 rtnl_lock();
5683 bnxt_reset_task(bp);
5684 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5685 rtnl_unlock();
5686 }
5687
5688 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event))
5689 bnxt_get_port_module_status(bp);
5690
5691 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
5692 bnxt_hwrm_port_qstats(bp);
5693
5694 smp_mb__before_atomic();
5695 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5696 }
5697
5698 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5699 {
5700 int rc;
5701 struct bnxt *bp = netdev_priv(dev);
5702
5703 SET_NETDEV_DEV(dev, &pdev->dev);
5704
5705 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5706 rc = pci_enable_device(pdev);
5707 if (rc) {
5708 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5709 goto init_err;
5710 }
5711
5712 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5713 dev_err(&pdev->dev,
5714 "Cannot find PCI device base address, aborting\n");
5715 rc = -ENODEV;
5716 goto init_err_disable;
5717 }
5718
5719 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5720 if (rc) {
5721 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5722 goto init_err_disable;
5723 }
5724
5725 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5726 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5727 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5728 goto init_err_disable;
5729 }
5730
5731 pci_set_master(pdev);
5732
5733 bp->dev = dev;
5734 bp->pdev = pdev;
5735
5736 bp->bar0 = pci_ioremap_bar(pdev, 0);
5737 if (!bp->bar0) {
5738 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5739 rc = -ENOMEM;
5740 goto init_err_release;
5741 }
5742
5743 bp->bar1 = pci_ioremap_bar(pdev, 2);
5744 if (!bp->bar1) {
5745 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5746 rc = -ENOMEM;
5747 goto init_err_release;
5748 }
5749
5750 bp->bar2 = pci_ioremap_bar(pdev, 4);
5751 if (!bp->bar2) {
5752 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5753 rc = -ENOMEM;
5754 goto init_err_release;
5755 }
5756
5757 pci_enable_pcie_error_reporting(pdev);
5758
5759 INIT_WORK(&bp->sp_task, bnxt_sp_task);
5760
5761 spin_lock_init(&bp->ntp_fltr_lock);
5762
5763 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5764 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5765
5766 /* tick values in micro seconds */
5767 bp->rx_coal_ticks = 12;
5768 bp->rx_coal_bufs = 30;
5769 bp->rx_coal_ticks_irq = 1;
5770 bp->rx_coal_bufs_irq = 2;
5771
5772 bp->tx_coal_ticks = 25;
5773 bp->tx_coal_bufs = 30;
5774 bp->tx_coal_ticks_irq = 2;
5775 bp->tx_coal_bufs_irq = 2;
5776
5777 init_timer(&bp->timer);
5778 bp->timer.data = (unsigned long)bp;
5779 bp->timer.function = bnxt_timer;
5780 bp->current_interval = BNXT_TIMER_INTERVAL;
5781
5782 clear_bit(BNXT_STATE_OPEN, &bp->state);
5783
5784 return 0;
5785
5786 init_err_release:
5787 if (bp->bar2) {
5788 pci_iounmap(pdev, bp->bar2);
5789 bp->bar2 = NULL;
5790 }
5791
5792 if (bp->bar1) {
5793 pci_iounmap(pdev, bp->bar1);
5794 bp->bar1 = NULL;
5795 }
5796
5797 if (bp->bar0) {
5798 pci_iounmap(pdev, bp->bar0);
5799 bp->bar0 = NULL;
5800 }
5801
5802 pci_release_regions(pdev);
5803
5804 init_err_disable:
5805 pci_disable_device(pdev);
5806
5807 init_err:
5808 return rc;
5809 }
5810
5811 /* rtnl_lock held */
5812 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5813 {
5814 struct sockaddr *addr = p;
5815 struct bnxt *bp = netdev_priv(dev);
5816 int rc = 0;
5817
5818 if (!is_valid_ether_addr(addr->sa_data))
5819 return -EADDRNOTAVAIL;
5820
5821 rc = bnxt_approve_mac(bp, addr->sa_data);
5822 if (rc)
5823 return rc;
5824
5825 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5826 return 0;
5827
5828 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5829 if (netif_running(dev)) {
5830 bnxt_close_nic(bp, false, false);
5831 rc = bnxt_open_nic(bp, false, false);
5832 }
5833
5834 return rc;
5835 }
5836
5837 /* rtnl_lock held */
5838 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5839 {
5840 struct bnxt *bp = netdev_priv(dev);
5841
5842 if (new_mtu < 60 || new_mtu > 9000)
5843 return -EINVAL;
5844
5845 if (netif_running(dev))
5846 bnxt_close_nic(bp, false, false);
5847
5848 dev->mtu = new_mtu;
5849 bnxt_set_ring_params(bp);
5850
5851 if (netif_running(dev))
5852 return bnxt_open_nic(bp, false, false);
5853
5854 return 0;
5855 }
5856
5857 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
5858 struct tc_to_netdev *ntc)
5859 {
5860 struct bnxt *bp = netdev_priv(dev);
5861 u8 tc;
5862
5863 if (ntc->type != TC_SETUP_MQPRIO)
5864 return -EINVAL;
5865
5866 tc = ntc->tc;
5867
5868 if (tc > bp->max_tc) {
5869 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5870 tc, bp->max_tc);
5871 return -EINVAL;
5872 }
5873
5874 if (netdev_get_num_tc(dev) == tc)
5875 return 0;
5876
5877 if (tc) {
5878 int max_rx_rings, max_tx_rings, rc;
5879 bool sh = false;
5880
5881 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5882 sh = true;
5883
5884 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5885 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5886 return -ENOMEM;
5887 }
5888
5889 /* Needs to close the device and do hw resource re-allocations */
5890 if (netif_running(bp->dev))
5891 bnxt_close_nic(bp, true, false);
5892
5893 if (tc) {
5894 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5895 netdev_set_num_tc(dev, tc);
5896 } else {
5897 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5898 netdev_reset_tc(dev);
5899 }
5900 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5901 bp->num_stat_ctxs = bp->cp_nr_rings;
5902
5903 if (netif_running(bp->dev))
5904 return bnxt_open_nic(bp, true, false);
5905
5906 return 0;
5907 }
5908
5909 #ifdef CONFIG_RFS_ACCEL
5910 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5911 struct bnxt_ntuple_filter *f2)
5912 {
5913 struct flow_keys *keys1 = &f1->fkeys;
5914 struct flow_keys *keys2 = &f2->fkeys;
5915
5916 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5917 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5918 keys1->ports.ports == keys2->ports.ports &&
5919 keys1->basic.ip_proto == keys2->basic.ip_proto &&
5920 keys1->basic.n_proto == keys2->basic.n_proto &&
5921 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5922 return true;
5923
5924 return false;
5925 }
5926
5927 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5928 u16 rxq_index, u32 flow_id)
5929 {
5930 struct bnxt *bp = netdev_priv(dev);
5931 struct bnxt_ntuple_filter *fltr, *new_fltr;
5932 struct flow_keys *fkeys;
5933 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5934 int rc = 0, idx, bit_id;
5935 struct hlist_head *head;
5936
5937 if (skb->encapsulation)
5938 return -EPROTONOSUPPORT;
5939
5940 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5941 if (!new_fltr)
5942 return -ENOMEM;
5943
5944 fkeys = &new_fltr->fkeys;
5945 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5946 rc = -EPROTONOSUPPORT;
5947 goto err_free;
5948 }
5949
5950 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5951 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5952 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5953 rc = -EPROTONOSUPPORT;
5954 goto err_free;
5955 }
5956
5957 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5958
5959 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5960 head = &bp->ntp_fltr_hash_tbl[idx];
5961 rcu_read_lock();
5962 hlist_for_each_entry_rcu(fltr, head, hash) {
5963 if (bnxt_fltr_match(fltr, new_fltr)) {
5964 rcu_read_unlock();
5965 rc = 0;
5966 goto err_free;
5967 }
5968 }
5969 rcu_read_unlock();
5970
5971 spin_lock_bh(&bp->ntp_fltr_lock);
5972 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5973 BNXT_NTP_FLTR_MAX_FLTR, 0);
5974 if (bit_id < 0) {
5975 spin_unlock_bh(&bp->ntp_fltr_lock);
5976 rc = -ENOMEM;
5977 goto err_free;
5978 }
5979
5980 new_fltr->sw_id = (u16)bit_id;
5981 new_fltr->flow_id = flow_id;
5982 new_fltr->rxq = rxq_index;
5983 hlist_add_head_rcu(&new_fltr->hash, head);
5984 bp->ntp_fltr_count++;
5985 spin_unlock_bh(&bp->ntp_fltr_lock);
5986
5987 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5988 schedule_work(&bp->sp_task);
5989
5990 return new_fltr->sw_id;
5991
5992 err_free:
5993 kfree(new_fltr);
5994 return rc;
5995 }
5996
5997 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5998 {
5999 int i;
6000
6001 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
6002 struct hlist_head *head;
6003 struct hlist_node *tmp;
6004 struct bnxt_ntuple_filter *fltr;
6005 int rc;
6006
6007 head = &bp->ntp_fltr_hash_tbl[i];
6008 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
6009 bool del = false;
6010
6011 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
6012 if (rps_may_expire_flow(bp->dev, fltr->rxq,
6013 fltr->flow_id,
6014 fltr->sw_id)) {
6015 bnxt_hwrm_cfa_ntuple_filter_free(bp,
6016 fltr);
6017 del = true;
6018 }
6019 } else {
6020 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
6021 fltr);
6022 if (rc)
6023 del = true;
6024 else
6025 set_bit(BNXT_FLTR_VALID, &fltr->state);
6026 }
6027
6028 if (del) {
6029 spin_lock_bh(&bp->ntp_fltr_lock);
6030 hlist_del_rcu(&fltr->hash);
6031 bp->ntp_fltr_count--;
6032 spin_unlock_bh(&bp->ntp_fltr_lock);
6033 synchronize_rcu();
6034 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
6035 kfree(fltr);
6036 }
6037 }
6038 }
6039 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
6040 netdev_info(bp->dev, "Receive PF driver unload event!");
6041 }
6042
6043 #else
6044
6045 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6046 {
6047 }
6048
6049 #endif /* CONFIG_RFS_ACCEL */
6050
6051 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
6052 __be16 port)
6053 {
6054 struct bnxt *bp = netdev_priv(dev);
6055
6056 if (!netif_running(dev))
6057 return;
6058
6059 if (sa_family != AF_INET6 && sa_family != AF_INET)
6060 return;
6061
6062 if (bp->vxlan_port_cnt && bp->vxlan_port != port)
6063 return;
6064
6065 bp->vxlan_port_cnt++;
6066 if (bp->vxlan_port_cnt == 1) {
6067 bp->vxlan_port = port;
6068 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
6069 schedule_work(&bp->sp_task);
6070 }
6071 }
6072
6073 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
6074 __be16 port)
6075 {
6076 struct bnxt *bp = netdev_priv(dev);
6077
6078 if (!netif_running(dev))
6079 return;
6080
6081 if (sa_family != AF_INET6 && sa_family != AF_INET)
6082 return;
6083
6084 if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
6085 bp->vxlan_port_cnt--;
6086
6087 if (bp->vxlan_port_cnt == 0) {
6088 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
6089 schedule_work(&bp->sp_task);
6090 }
6091 }
6092 }
6093
6094 static const struct net_device_ops bnxt_netdev_ops = {
6095 .ndo_open = bnxt_open,
6096 .ndo_start_xmit = bnxt_start_xmit,
6097 .ndo_stop = bnxt_close,
6098 .ndo_get_stats64 = bnxt_get_stats64,
6099 .ndo_set_rx_mode = bnxt_set_rx_mode,
6100 .ndo_do_ioctl = bnxt_ioctl,
6101 .ndo_validate_addr = eth_validate_addr,
6102 .ndo_set_mac_address = bnxt_change_mac_addr,
6103 .ndo_change_mtu = bnxt_change_mtu,
6104 .ndo_fix_features = bnxt_fix_features,
6105 .ndo_set_features = bnxt_set_features,
6106 .ndo_tx_timeout = bnxt_tx_timeout,
6107 #ifdef CONFIG_BNXT_SRIOV
6108 .ndo_get_vf_config = bnxt_get_vf_config,
6109 .ndo_set_vf_mac = bnxt_set_vf_mac,
6110 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
6111 .ndo_set_vf_rate = bnxt_set_vf_bw,
6112 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
6113 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
6114 #endif
6115 #ifdef CONFIG_NET_POLL_CONTROLLER
6116 .ndo_poll_controller = bnxt_poll_controller,
6117 #endif
6118 .ndo_setup_tc = bnxt_setup_tc,
6119 #ifdef CONFIG_RFS_ACCEL
6120 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
6121 #endif
6122 .ndo_add_vxlan_port = bnxt_add_vxlan_port,
6123 .ndo_del_vxlan_port = bnxt_del_vxlan_port,
6124 #ifdef CONFIG_NET_RX_BUSY_POLL
6125 .ndo_busy_poll = bnxt_busy_poll,
6126 #endif
6127 };
6128
6129 static void bnxt_remove_one(struct pci_dev *pdev)
6130 {
6131 struct net_device *dev = pci_get_drvdata(pdev);
6132 struct bnxt *bp = netdev_priv(dev);
6133
6134 if (BNXT_PF(bp))
6135 bnxt_sriov_disable(bp);
6136
6137 pci_disable_pcie_error_reporting(pdev);
6138 unregister_netdev(dev);
6139 cancel_work_sync(&bp->sp_task);
6140 bp->sp_event = 0;
6141
6142 bnxt_hwrm_func_drv_unrgtr(bp);
6143 bnxt_free_hwrm_resources(bp);
6144 pci_iounmap(pdev, bp->bar2);
6145 pci_iounmap(pdev, bp->bar1);
6146 pci_iounmap(pdev, bp->bar0);
6147 free_netdev(dev);
6148
6149 pci_release_regions(pdev);
6150 pci_disable_device(pdev);
6151 }
6152
6153 static int bnxt_probe_phy(struct bnxt *bp)
6154 {
6155 int rc = 0;
6156 struct bnxt_link_info *link_info = &bp->link_info;
6157
6158 rc = bnxt_hwrm_phy_qcaps(bp);
6159 if (rc) {
6160 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
6161 rc);
6162 return rc;
6163 }
6164
6165 rc = bnxt_update_link(bp, false);
6166 if (rc) {
6167 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
6168 rc);
6169 return rc;
6170 }
6171
6172 /*initialize the ethool setting copy with NVM settings */
6173 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
6174 link_info->autoneg = BNXT_AUTONEG_SPEED;
6175 if (bp->hwrm_spec_code >= 0x10201) {
6176 if (link_info->auto_pause_setting &
6177 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
6178 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6179 } else {
6180 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6181 }
6182 link_info->advertising = link_info->auto_link_speeds;
6183 } else {
6184 link_info->req_link_speed = link_info->force_link_speed;
6185 link_info->req_duplex = link_info->duplex_setting;
6186 }
6187 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
6188 link_info->req_flow_ctrl =
6189 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
6190 else
6191 link_info->req_flow_ctrl = link_info->force_pause_setting;
6192 return rc;
6193 }
6194
6195 static int bnxt_get_max_irq(struct pci_dev *pdev)
6196 {
6197 u16 ctrl;
6198
6199 if (!pdev->msix_cap)
6200 return 1;
6201
6202 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
6203 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
6204 }
6205
6206 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
6207 int *max_cp)
6208 {
6209 int max_ring_grps = 0;
6210
6211 #ifdef CONFIG_BNXT_SRIOV
6212 if (!BNXT_PF(bp)) {
6213 *max_tx = bp->vf.max_tx_rings;
6214 *max_rx = bp->vf.max_rx_rings;
6215 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
6216 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
6217 max_ring_grps = bp->vf.max_hw_ring_grps;
6218 } else
6219 #endif
6220 {
6221 *max_tx = bp->pf.max_tx_rings;
6222 *max_rx = bp->pf.max_rx_rings;
6223 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
6224 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
6225 max_ring_grps = bp->pf.max_hw_ring_grps;
6226 }
6227
6228 if (bp->flags & BNXT_FLAG_AGG_RINGS)
6229 *max_rx >>= 1;
6230 *max_rx = min_t(int, *max_rx, max_ring_grps);
6231 }
6232
6233 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
6234 {
6235 int rx, tx, cp;
6236
6237 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
6238 if (!rx || !tx || !cp)
6239 return -ENOMEM;
6240
6241 *max_rx = rx;
6242 *max_tx = tx;
6243 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
6244 }
6245
6246 static int bnxt_set_dflt_rings(struct bnxt *bp)
6247 {
6248 int dflt_rings, max_rx_rings, max_tx_rings, rc;
6249 bool sh = true;
6250
6251 if (sh)
6252 bp->flags |= BNXT_FLAG_SHARED_RINGS;
6253 dflt_rings = netif_get_num_default_rss_queues();
6254 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6255 if (rc)
6256 return rc;
6257 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6258 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6259 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6260 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6261 bp->tx_nr_rings + bp->rx_nr_rings;
6262 bp->num_stat_ctxs = bp->cp_nr_rings;
6263 return rc;
6264 }
6265
6266 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
6267 {
6268 enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
6269 enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
6270
6271 if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
6272 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
6273 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
6274 else
6275 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
6276 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
6277 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
6278 speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
6279 "Unknown", width);
6280 }
6281
6282 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6283 {
6284 static int version_printed;
6285 struct net_device *dev;
6286 struct bnxt *bp;
6287 int rc, max_irqs;
6288
6289 if (version_printed++ == 0)
6290 pr_info("%s", version);
6291
6292 max_irqs = bnxt_get_max_irq(pdev);
6293 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
6294 if (!dev)
6295 return -ENOMEM;
6296
6297 bp = netdev_priv(dev);
6298
6299 if (bnxt_vf_pciid(ent->driver_data))
6300 bp->flags |= BNXT_FLAG_VF;
6301
6302 if (pdev->msix_cap)
6303 bp->flags |= BNXT_FLAG_MSIX_CAP;
6304
6305 rc = bnxt_init_board(pdev, dev);
6306 if (rc < 0)
6307 goto init_err_free;
6308
6309 dev->netdev_ops = &bnxt_netdev_ops;
6310 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
6311 dev->ethtool_ops = &bnxt_ethtool_ops;
6312
6313 pci_set_drvdata(pdev, dev);
6314
6315 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6316 NETIF_F_TSO | NETIF_F_TSO6 |
6317 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6318 NETIF_F_GSO_IPXIP4 |
6319 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6320 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
6321 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
6322
6323 dev->hw_enc_features =
6324 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6325 NETIF_F_TSO | NETIF_F_TSO6 |
6326 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6327 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6328 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
6329 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
6330 NETIF_F_GSO_GRE_CSUM;
6331 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
6332 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6333 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
6334 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
6335 dev->priv_flags |= IFF_UNICAST_FLT;
6336
6337 #ifdef CONFIG_BNXT_SRIOV
6338 init_waitqueue_head(&bp->sriov_cfg_wait);
6339 #endif
6340 rc = bnxt_alloc_hwrm_resources(bp);
6341 if (rc)
6342 goto init_err;
6343
6344 mutex_init(&bp->hwrm_cmd_lock);
6345 bnxt_hwrm_ver_get(bp);
6346
6347 rc = bnxt_hwrm_func_drv_rgtr(bp);
6348 if (rc)
6349 goto init_err;
6350
6351 /* Get the MAX capabilities for this function */
6352 rc = bnxt_hwrm_func_qcaps(bp);
6353 if (rc) {
6354 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6355 rc);
6356 rc = -1;
6357 goto init_err;
6358 }
6359
6360 rc = bnxt_hwrm_queue_qportcfg(bp);
6361 if (rc) {
6362 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6363 rc);
6364 rc = -1;
6365 goto init_err;
6366 }
6367
6368 bnxt_set_tpa_flags(bp);
6369 bnxt_set_ring_params(bp);
6370 if (BNXT_PF(bp))
6371 bp->pf.max_irqs = max_irqs;
6372 #if defined(CONFIG_BNXT_SRIOV)
6373 else
6374 bp->vf.max_irqs = max_irqs;
6375 #endif
6376 bnxt_set_dflt_rings(bp);
6377
6378 if (BNXT_PF(bp)) {
6379 dev->hw_features |= NETIF_F_NTUPLE;
6380 if (bnxt_rfs_capable(bp)) {
6381 bp->flags |= BNXT_FLAG_RFS;
6382 dev->features |= NETIF_F_NTUPLE;
6383 }
6384 }
6385
6386 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6387 bp->flags |= BNXT_FLAG_STRIP_VLAN;
6388
6389 rc = bnxt_probe_phy(bp);
6390 if (rc)
6391 goto init_err;
6392
6393 rc = register_netdev(dev);
6394 if (rc)
6395 goto init_err;
6396
6397 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6398 board_info[ent->driver_data].name,
6399 (long)pci_resource_start(pdev, 0), dev->dev_addr);
6400
6401 bnxt_parse_log_pcie_link(bp);
6402
6403 return 0;
6404
6405 init_err:
6406 pci_iounmap(pdev, bp->bar0);
6407 pci_release_regions(pdev);
6408 pci_disable_device(pdev);
6409
6410 init_err_free:
6411 free_netdev(dev);
6412 return rc;
6413 }
6414
6415 /**
6416 * bnxt_io_error_detected - called when PCI error is detected
6417 * @pdev: Pointer to PCI device
6418 * @state: The current pci connection state
6419 *
6420 * This function is called after a PCI bus error affecting
6421 * this device has been detected.
6422 */
6423 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6424 pci_channel_state_t state)
6425 {
6426 struct net_device *netdev = pci_get_drvdata(pdev);
6427
6428 netdev_info(netdev, "PCI I/O error detected\n");
6429
6430 rtnl_lock();
6431 netif_device_detach(netdev);
6432
6433 if (state == pci_channel_io_perm_failure) {
6434 rtnl_unlock();
6435 return PCI_ERS_RESULT_DISCONNECT;
6436 }
6437
6438 if (netif_running(netdev))
6439 bnxt_close(netdev);
6440
6441 pci_disable_device(pdev);
6442 rtnl_unlock();
6443
6444 /* Request a slot slot reset. */
6445 return PCI_ERS_RESULT_NEED_RESET;
6446 }
6447
6448 /**
6449 * bnxt_io_slot_reset - called after the pci bus has been reset.
6450 * @pdev: Pointer to PCI device
6451 *
6452 * Restart the card from scratch, as if from a cold-boot.
6453 * At this point, the card has exprienced a hard reset,
6454 * followed by fixups by BIOS, and has its config space
6455 * set up identically to what it was at cold boot.
6456 */
6457 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6458 {
6459 struct net_device *netdev = pci_get_drvdata(pdev);
6460 struct bnxt *bp = netdev_priv(netdev);
6461 int err = 0;
6462 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
6463
6464 netdev_info(bp->dev, "PCI Slot Reset\n");
6465
6466 rtnl_lock();
6467
6468 if (pci_enable_device(pdev)) {
6469 dev_err(&pdev->dev,
6470 "Cannot re-enable PCI device after reset.\n");
6471 } else {
6472 pci_set_master(pdev);
6473
6474 if (netif_running(netdev))
6475 err = bnxt_open(netdev);
6476
6477 if (!err)
6478 result = PCI_ERS_RESULT_RECOVERED;
6479 }
6480
6481 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
6482 dev_close(netdev);
6483
6484 rtnl_unlock();
6485
6486 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6487 if (err) {
6488 dev_err(&pdev->dev,
6489 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
6490 err); /* non-fatal, continue */
6491 }
6492
6493 return PCI_ERS_RESULT_RECOVERED;
6494 }
6495
6496 /**
6497 * bnxt_io_resume - called when traffic can start flowing again.
6498 * @pdev: Pointer to PCI device
6499 *
6500 * This callback is called when the error recovery driver tells
6501 * us that its OK to resume normal operation.
6502 */
6503 static void bnxt_io_resume(struct pci_dev *pdev)
6504 {
6505 struct net_device *netdev = pci_get_drvdata(pdev);
6506
6507 rtnl_lock();
6508
6509 netif_device_attach(netdev);
6510
6511 rtnl_unlock();
6512 }
6513
6514 static const struct pci_error_handlers bnxt_err_handler = {
6515 .error_detected = bnxt_io_error_detected,
6516 .slot_reset = bnxt_io_slot_reset,
6517 .resume = bnxt_io_resume
6518 };
6519
6520 static struct pci_driver bnxt_pci_driver = {
6521 .name = DRV_MODULE_NAME,
6522 .id_table = bnxt_pci_tbl,
6523 .probe = bnxt_init_one,
6524 .remove = bnxt_remove_one,
6525 .err_handler = &bnxt_err_handler,
6526 #if defined(CONFIG_BNXT_SRIOV)
6527 .sriov_configure = bnxt_sriov_configure,
6528 #endif
6529 };
6530
6531 module_pci_driver(bnxt_pci_driver);