]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
Merge branch 'for-4.15/alps' into for-linus
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 * Copyright (c) 2016-2017 Broadcom Limited
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64
65 #define BNXT_TX_TIMEOUT (5 * HZ)
66
67 static const char version[] =
68 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
69
70 MODULE_LICENSE("GPL");
71 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
72 MODULE_VERSION(DRV_MODULE_VERSION);
73
74 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
75 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
76 #define BNXT_RX_COPY_THRESH 256
77
78 #define BNXT_TX_PUSH_THRESH 164
79
80 enum board_idx {
81 BCM57301,
82 BCM57302,
83 BCM57304,
84 BCM57417_NPAR,
85 BCM58700,
86 BCM57311,
87 BCM57312,
88 BCM57402,
89 BCM57404,
90 BCM57406,
91 BCM57402_NPAR,
92 BCM57407,
93 BCM57412,
94 BCM57414,
95 BCM57416,
96 BCM57417,
97 BCM57412_NPAR,
98 BCM57314,
99 BCM57417_SFP,
100 BCM57416_SFP,
101 BCM57404_NPAR,
102 BCM57406_NPAR,
103 BCM57407_SFP,
104 BCM57407_NPAR,
105 BCM57414_NPAR,
106 BCM57416_NPAR,
107 BCM57452,
108 BCM57454,
109 BCM58802,
110 BCM58808,
111 NETXTREME_E_VF,
112 NETXTREME_C_VF,
113 };
114
115 /* indexed by enum above */
116 static const struct {
117 char *name;
118 } board_info[] = {
119 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
120 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
121 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
122 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
123 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
124 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
125 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
126 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
127 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
128 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
129 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
130 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
131 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
132 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
133 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
134 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
135 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
136 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
137 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
138 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
139 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
140 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
141 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
142 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
143 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
144 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
145 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
146 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
147 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
148 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
149 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
150 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
151 };
152
153 static const struct pci_device_id bnxt_pci_tbl[] = {
154 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
155 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
156 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
157 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
158 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
159 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
160 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
161 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
162 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
163 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
164 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
165 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
166 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
167 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
168 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
169 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
170 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
171 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
172 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
173 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
174 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
175 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
176 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
177 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
178 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
179 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
180 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
181 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
182 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
183 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
184 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
185 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
186 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
187 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
188 #ifdef CONFIG_BNXT_SRIOV
189 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
190 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
192 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
193 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
194 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
195 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
196 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
197 #endif
198 { 0 }
199 };
200
201 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
202
203 static const u16 bnxt_vf_req_snif[] = {
204 HWRM_FUNC_CFG,
205 HWRM_PORT_PHY_QCFG,
206 HWRM_CFA_L2_FILTER_ALLOC,
207 };
208
209 static const u16 bnxt_async_events_arr[] = {
210 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
211 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
212 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
213 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
214 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
215 };
216
217 static bool bnxt_vf_pciid(enum board_idx idx)
218 {
219 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
220 }
221
222 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
223 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
224 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
225
226 #define BNXT_CP_DB_REARM(db, raw_cons) \
227 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
228
229 #define BNXT_CP_DB(db, raw_cons) \
230 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
231
232 #define BNXT_CP_DB_IRQ_DIS(db) \
233 writel(DB_CP_IRQ_DIS_FLAGS, db)
234
235 const u16 bnxt_lhint_arr[] = {
236 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
237 TX_BD_FLAGS_LHINT_512_TO_1023,
238 TX_BD_FLAGS_LHINT_1024_TO_2047,
239 TX_BD_FLAGS_LHINT_1024_TO_2047,
240 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
243 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
244 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
245 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
246 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
247 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
248 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
249 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
250 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
251 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
252 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
253 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
254 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
255 };
256
257 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
258 {
259 struct metadata_dst *md_dst = skb_metadata_dst(skb);
260
261 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
262 return 0;
263
264 return md_dst->u.port_info.port_id;
265 }
266
267 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
268 {
269 struct bnxt *bp = netdev_priv(dev);
270 struct tx_bd *txbd;
271 struct tx_bd_ext *txbd1;
272 struct netdev_queue *txq;
273 int i;
274 dma_addr_t mapping;
275 unsigned int length, pad = 0;
276 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
277 u16 prod, last_frag;
278 struct pci_dev *pdev = bp->pdev;
279 struct bnxt_tx_ring_info *txr;
280 struct bnxt_sw_tx_bd *tx_buf;
281
282 i = skb_get_queue_mapping(skb);
283 if (unlikely(i >= bp->tx_nr_rings)) {
284 dev_kfree_skb_any(skb);
285 return NETDEV_TX_OK;
286 }
287
288 txq = netdev_get_tx_queue(dev, i);
289 txr = &bp->tx_ring[bp->tx_ring_map[i]];
290 prod = txr->tx_prod;
291
292 free_size = bnxt_tx_avail(bp, txr);
293 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
294 netif_tx_stop_queue(txq);
295 return NETDEV_TX_BUSY;
296 }
297
298 length = skb->len;
299 len = skb_headlen(skb);
300 last_frag = skb_shinfo(skb)->nr_frags;
301
302 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
303
304 txbd->tx_bd_opaque = prod;
305
306 tx_buf = &txr->tx_buf_ring[prod];
307 tx_buf->skb = skb;
308 tx_buf->nr_frags = last_frag;
309
310 vlan_tag_flags = 0;
311 cfa_action = bnxt_xmit_get_cfa_action(skb);
312 if (skb_vlan_tag_present(skb)) {
313 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
314 skb_vlan_tag_get(skb);
315 /* Currently supports 8021Q, 8021AD vlan offloads
316 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
317 */
318 if (skb->vlan_proto == htons(ETH_P_8021Q))
319 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
320 }
321
322 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
323 struct tx_push_buffer *tx_push_buf = txr->tx_push;
324 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
325 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
326 void *pdata = tx_push_buf->data;
327 u64 *end;
328 int j, push_len;
329
330 /* Set COAL_NOW to be ready quickly for the next push */
331 tx_push->tx_bd_len_flags_type =
332 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
333 TX_BD_TYPE_LONG_TX_BD |
334 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
335 TX_BD_FLAGS_COAL_NOW |
336 TX_BD_FLAGS_PACKET_END |
337 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
338
339 if (skb->ip_summed == CHECKSUM_PARTIAL)
340 tx_push1->tx_bd_hsize_lflags =
341 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
342 else
343 tx_push1->tx_bd_hsize_lflags = 0;
344
345 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
346 tx_push1->tx_bd_cfa_action =
347 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
348
349 end = pdata + length;
350 end = PTR_ALIGN(end, 8) - 1;
351 *end = 0;
352
353 skb_copy_from_linear_data(skb, pdata, len);
354 pdata += len;
355 for (j = 0; j < last_frag; j++) {
356 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
357 void *fptr;
358
359 fptr = skb_frag_address_safe(frag);
360 if (!fptr)
361 goto normal_tx;
362
363 memcpy(pdata, fptr, skb_frag_size(frag));
364 pdata += skb_frag_size(frag);
365 }
366
367 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
368 txbd->tx_bd_haddr = txr->data_mapping;
369 prod = NEXT_TX(prod);
370 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
371 memcpy(txbd, tx_push1, sizeof(*txbd));
372 prod = NEXT_TX(prod);
373 tx_push->doorbell =
374 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
375 txr->tx_prod = prod;
376
377 tx_buf->is_push = 1;
378 netdev_tx_sent_queue(txq, skb->len);
379 wmb(); /* Sync is_push and byte queue before pushing data */
380
381 push_len = (length + sizeof(*tx_push) + 7) / 8;
382 if (push_len > 16) {
383 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
384 __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
385 (push_len - 16) << 1);
386 } else {
387 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
388 push_len);
389 }
390
391 goto tx_done;
392 }
393
394 normal_tx:
395 if (length < BNXT_MIN_PKT_SIZE) {
396 pad = BNXT_MIN_PKT_SIZE - length;
397 if (skb_pad(skb, pad)) {
398 /* SKB already freed. */
399 tx_buf->skb = NULL;
400 return NETDEV_TX_OK;
401 }
402 length = BNXT_MIN_PKT_SIZE;
403 }
404
405 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
406
407 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
408 dev_kfree_skb_any(skb);
409 tx_buf->skb = NULL;
410 return NETDEV_TX_OK;
411 }
412
413 dma_unmap_addr_set(tx_buf, mapping, mapping);
414 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
415 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
416
417 txbd->tx_bd_haddr = cpu_to_le64(mapping);
418
419 prod = NEXT_TX(prod);
420 txbd1 = (struct tx_bd_ext *)
421 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
422
423 txbd1->tx_bd_hsize_lflags = 0;
424 if (skb_is_gso(skb)) {
425 u32 hdr_len;
426
427 if (skb->encapsulation)
428 hdr_len = skb_inner_network_offset(skb) +
429 skb_inner_network_header_len(skb) +
430 inner_tcp_hdrlen(skb);
431 else
432 hdr_len = skb_transport_offset(skb) +
433 tcp_hdrlen(skb);
434
435 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
436 TX_BD_FLAGS_T_IPID |
437 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
438 length = skb_shinfo(skb)->gso_size;
439 txbd1->tx_bd_mss = cpu_to_le32(length);
440 length += hdr_len;
441 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
442 txbd1->tx_bd_hsize_lflags =
443 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
444 txbd1->tx_bd_mss = 0;
445 }
446
447 length >>= 9;
448 flags |= bnxt_lhint_arr[length];
449 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
450
451 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
452 txbd1->tx_bd_cfa_action =
453 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
454 for (i = 0; i < last_frag; i++) {
455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
456
457 prod = NEXT_TX(prod);
458 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
459
460 len = skb_frag_size(frag);
461 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
462 DMA_TO_DEVICE);
463
464 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
465 goto tx_dma_error;
466
467 tx_buf = &txr->tx_buf_ring[prod];
468 dma_unmap_addr_set(tx_buf, mapping, mapping);
469
470 txbd->tx_bd_haddr = cpu_to_le64(mapping);
471
472 flags = len << TX_BD_LEN_SHIFT;
473 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
474 }
475
476 flags &= ~TX_BD_LEN;
477 txbd->tx_bd_len_flags_type =
478 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
479 TX_BD_FLAGS_PACKET_END);
480
481 netdev_tx_sent_queue(txq, skb->len);
482
483 /* Sync BD data before updating doorbell */
484 wmb();
485
486 prod = NEXT_TX(prod);
487 txr->tx_prod = prod;
488
489 if (!skb->xmit_more || netif_xmit_stopped(txq))
490 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
491
492 tx_done:
493
494 mmiowb();
495
496 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
497 if (skb->xmit_more && !tx_buf->is_push)
498 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
499
500 netif_tx_stop_queue(txq);
501
502 /* netif_tx_stop_queue() must be done before checking
503 * tx index in bnxt_tx_avail() below, because in
504 * bnxt_tx_int(), we update tx index before checking for
505 * netif_tx_queue_stopped().
506 */
507 smp_mb();
508 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
509 netif_tx_wake_queue(txq);
510 }
511 return NETDEV_TX_OK;
512
513 tx_dma_error:
514 last_frag = i;
515
516 /* start back at beginning and unmap skb */
517 prod = txr->tx_prod;
518 tx_buf = &txr->tx_buf_ring[prod];
519 tx_buf->skb = NULL;
520 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
521 skb_headlen(skb), PCI_DMA_TODEVICE);
522 prod = NEXT_TX(prod);
523
524 /* unmap remaining mapped pages */
525 for (i = 0; i < last_frag; i++) {
526 prod = NEXT_TX(prod);
527 tx_buf = &txr->tx_buf_ring[prod];
528 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
529 skb_frag_size(&skb_shinfo(skb)->frags[i]),
530 PCI_DMA_TODEVICE);
531 }
532
533 dev_kfree_skb_any(skb);
534 return NETDEV_TX_OK;
535 }
536
537 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
538 {
539 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
540 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
541 u16 cons = txr->tx_cons;
542 struct pci_dev *pdev = bp->pdev;
543 int i;
544 unsigned int tx_bytes = 0;
545
546 for (i = 0; i < nr_pkts; i++) {
547 struct bnxt_sw_tx_bd *tx_buf;
548 struct sk_buff *skb;
549 int j, last;
550
551 tx_buf = &txr->tx_buf_ring[cons];
552 cons = NEXT_TX(cons);
553 skb = tx_buf->skb;
554 tx_buf->skb = NULL;
555
556 if (tx_buf->is_push) {
557 tx_buf->is_push = 0;
558 goto next_tx_int;
559 }
560
561 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
562 skb_headlen(skb), PCI_DMA_TODEVICE);
563 last = tx_buf->nr_frags;
564
565 for (j = 0; j < last; j++) {
566 cons = NEXT_TX(cons);
567 tx_buf = &txr->tx_buf_ring[cons];
568 dma_unmap_page(
569 &pdev->dev,
570 dma_unmap_addr(tx_buf, mapping),
571 skb_frag_size(&skb_shinfo(skb)->frags[j]),
572 PCI_DMA_TODEVICE);
573 }
574
575 next_tx_int:
576 cons = NEXT_TX(cons);
577
578 tx_bytes += skb->len;
579 dev_kfree_skb_any(skb);
580 }
581
582 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
583 txr->tx_cons = cons;
584
585 /* Need to make the tx_cons update visible to bnxt_start_xmit()
586 * before checking for netif_tx_queue_stopped(). Without the
587 * memory barrier, there is a small possibility that bnxt_start_xmit()
588 * will miss it and cause the queue to be stopped forever.
589 */
590 smp_mb();
591
592 if (unlikely(netif_tx_queue_stopped(txq)) &&
593 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
594 __netif_tx_lock(txq, smp_processor_id());
595 if (netif_tx_queue_stopped(txq) &&
596 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
597 txr->dev_state != BNXT_DEV_STATE_CLOSING)
598 netif_tx_wake_queue(txq);
599 __netif_tx_unlock(txq);
600 }
601 }
602
603 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
604 gfp_t gfp)
605 {
606 struct device *dev = &bp->pdev->dev;
607 struct page *page;
608
609 page = alloc_page(gfp);
610 if (!page)
611 return NULL;
612
613 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
614 DMA_ATTR_WEAK_ORDERING);
615 if (dma_mapping_error(dev, *mapping)) {
616 __free_page(page);
617 return NULL;
618 }
619 *mapping += bp->rx_dma_offset;
620 return page;
621 }
622
623 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
624 gfp_t gfp)
625 {
626 u8 *data;
627 struct pci_dev *pdev = bp->pdev;
628
629 data = kmalloc(bp->rx_buf_size, gfp);
630 if (!data)
631 return NULL;
632
633 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
634 bp->rx_buf_use_size, bp->rx_dir,
635 DMA_ATTR_WEAK_ORDERING);
636
637 if (dma_mapping_error(&pdev->dev, *mapping)) {
638 kfree(data);
639 data = NULL;
640 }
641 return data;
642 }
643
644 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
645 u16 prod, gfp_t gfp)
646 {
647 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
648 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
649 dma_addr_t mapping;
650
651 if (BNXT_RX_PAGE_MODE(bp)) {
652 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
653
654 if (!page)
655 return -ENOMEM;
656
657 rx_buf->data = page;
658 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
659 } else {
660 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
661
662 if (!data)
663 return -ENOMEM;
664
665 rx_buf->data = data;
666 rx_buf->data_ptr = data + bp->rx_offset;
667 }
668 rx_buf->mapping = mapping;
669
670 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
671 return 0;
672 }
673
674 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
675 {
676 u16 prod = rxr->rx_prod;
677 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
678 struct rx_bd *cons_bd, *prod_bd;
679
680 prod_rx_buf = &rxr->rx_buf_ring[prod];
681 cons_rx_buf = &rxr->rx_buf_ring[cons];
682
683 prod_rx_buf->data = data;
684 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
685
686 prod_rx_buf->mapping = cons_rx_buf->mapping;
687
688 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
689 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
690
691 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
692 }
693
694 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
695 {
696 u16 next, max = rxr->rx_agg_bmap_size;
697
698 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
699 if (next >= max)
700 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
701 return next;
702 }
703
704 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
705 struct bnxt_rx_ring_info *rxr,
706 u16 prod, gfp_t gfp)
707 {
708 struct rx_bd *rxbd =
709 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
710 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
711 struct pci_dev *pdev = bp->pdev;
712 struct page *page;
713 dma_addr_t mapping;
714 u16 sw_prod = rxr->rx_sw_agg_prod;
715 unsigned int offset = 0;
716
717 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
718 page = rxr->rx_page;
719 if (!page) {
720 page = alloc_page(gfp);
721 if (!page)
722 return -ENOMEM;
723 rxr->rx_page = page;
724 rxr->rx_page_offset = 0;
725 }
726 offset = rxr->rx_page_offset;
727 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
728 if (rxr->rx_page_offset == PAGE_SIZE)
729 rxr->rx_page = NULL;
730 else
731 get_page(page);
732 } else {
733 page = alloc_page(gfp);
734 if (!page)
735 return -ENOMEM;
736 }
737
738 mapping = dma_map_page_attrs(&pdev->dev, page, offset,
739 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
740 DMA_ATTR_WEAK_ORDERING);
741 if (dma_mapping_error(&pdev->dev, mapping)) {
742 __free_page(page);
743 return -EIO;
744 }
745
746 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
747 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
748
749 __set_bit(sw_prod, rxr->rx_agg_bmap);
750 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
751 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
752
753 rx_agg_buf->page = page;
754 rx_agg_buf->offset = offset;
755 rx_agg_buf->mapping = mapping;
756 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
757 rxbd->rx_bd_opaque = sw_prod;
758 return 0;
759 }
760
761 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
762 u32 agg_bufs)
763 {
764 struct bnxt *bp = bnapi->bp;
765 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
766 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
767 u16 prod = rxr->rx_agg_prod;
768 u16 sw_prod = rxr->rx_sw_agg_prod;
769 u32 i;
770
771 for (i = 0; i < agg_bufs; i++) {
772 u16 cons;
773 struct rx_agg_cmp *agg;
774 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
775 struct rx_bd *prod_bd;
776 struct page *page;
777
778 agg = (struct rx_agg_cmp *)
779 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
780 cons = agg->rx_agg_cmp_opaque;
781 __clear_bit(cons, rxr->rx_agg_bmap);
782
783 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
784 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
785
786 __set_bit(sw_prod, rxr->rx_agg_bmap);
787 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
788 cons_rx_buf = &rxr->rx_agg_ring[cons];
789
790 /* It is possible for sw_prod to be equal to cons, so
791 * set cons_rx_buf->page to NULL first.
792 */
793 page = cons_rx_buf->page;
794 cons_rx_buf->page = NULL;
795 prod_rx_buf->page = page;
796 prod_rx_buf->offset = cons_rx_buf->offset;
797
798 prod_rx_buf->mapping = cons_rx_buf->mapping;
799
800 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
801
802 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
803 prod_bd->rx_bd_opaque = sw_prod;
804
805 prod = NEXT_RX_AGG(prod);
806 sw_prod = NEXT_RX_AGG(sw_prod);
807 cp_cons = NEXT_CMP(cp_cons);
808 }
809 rxr->rx_agg_prod = prod;
810 rxr->rx_sw_agg_prod = sw_prod;
811 }
812
813 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
814 struct bnxt_rx_ring_info *rxr,
815 u16 cons, void *data, u8 *data_ptr,
816 dma_addr_t dma_addr,
817 unsigned int offset_and_len)
818 {
819 unsigned int payload = offset_and_len >> 16;
820 unsigned int len = offset_and_len & 0xffff;
821 struct skb_frag_struct *frag;
822 struct page *page = data;
823 u16 prod = rxr->rx_prod;
824 struct sk_buff *skb;
825 int off, err;
826
827 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
828 if (unlikely(err)) {
829 bnxt_reuse_rx_data(rxr, cons, data);
830 return NULL;
831 }
832 dma_addr -= bp->rx_dma_offset;
833 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
834 DMA_ATTR_WEAK_ORDERING);
835
836 if (unlikely(!payload))
837 payload = eth_get_headlen(data_ptr, len);
838
839 skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
840 if (!skb) {
841 __free_page(page);
842 return NULL;
843 }
844
845 off = (void *)data_ptr - page_address(page);
846 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
847 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
848 payload + NET_IP_ALIGN);
849
850 frag = &skb_shinfo(skb)->frags[0];
851 skb_frag_size_sub(frag, payload);
852 frag->page_offset += payload;
853 skb->data_len -= payload;
854 skb->tail += payload;
855
856 return skb;
857 }
858
859 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
860 struct bnxt_rx_ring_info *rxr, u16 cons,
861 void *data, u8 *data_ptr,
862 dma_addr_t dma_addr,
863 unsigned int offset_and_len)
864 {
865 u16 prod = rxr->rx_prod;
866 struct sk_buff *skb;
867 int err;
868
869 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
870 if (unlikely(err)) {
871 bnxt_reuse_rx_data(rxr, cons, data);
872 return NULL;
873 }
874
875 skb = build_skb(data, 0);
876 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
877 bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
878 if (!skb) {
879 kfree(data);
880 return NULL;
881 }
882
883 skb_reserve(skb, bp->rx_offset);
884 skb_put(skb, offset_and_len & 0xffff);
885 return skb;
886 }
887
888 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
889 struct sk_buff *skb, u16 cp_cons,
890 u32 agg_bufs)
891 {
892 struct pci_dev *pdev = bp->pdev;
893 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
894 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
895 u16 prod = rxr->rx_agg_prod;
896 u32 i;
897
898 for (i = 0; i < agg_bufs; i++) {
899 u16 cons, frag_len;
900 struct rx_agg_cmp *agg;
901 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
902 struct page *page;
903 dma_addr_t mapping;
904
905 agg = (struct rx_agg_cmp *)
906 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
907 cons = agg->rx_agg_cmp_opaque;
908 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
909 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
910
911 cons_rx_buf = &rxr->rx_agg_ring[cons];
912 skb_fill_page_desc(skb, i, cons_rx_buf->page,
913 cons_rx_buf->offset, frag_len);
914 __clear_bit(cons, rxr->rx_agg_bmap);
915
916 /* It is possible for bnxt_alloc_rx_page() to allocate
917 * a sw_prod index that equals the cons index, so we
918 * need to clear the cons entry now.
919 */
920 mapping = cons_rx_buf->mapping;
921 page = cons_rx_buf->page;
922 cons_rx_buf->page = NULL;
923
924 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
925 struct skb_shared_info *shinfo;
926 unsigned int nr_frags;
927
928 shinfo = skb_shinfo(skb);
929 nr_frags = --shinfo->nr_frags;
930 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
931
932 dev_kfree_skb(skb);
933
934 cons_rx_buf->page = page;
935
936 /* Update prod since possibly some pages have been
937 * allocated already.
938 */
939 rxr->rx_agg_prod = prod;
940 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
941 return NULL;
942 }
943
944 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
945 PCI_DMA_FROMDEVICE,
946 DMA_ATTR_WEAK_ORDERING);
947
948 skb->data_len += frag_len;
949 skb->len += frag_len;
950 skb->truesize += PAGE_SIZE;
951
952 prod = NEXT_RX_AGG(prod);
953 cp_cons = NEXT_CMP(cp_cons);
954 }
955 rxr->rx_agg_prod = prod;
956 return skb;
957 }
958
959 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
960 u8 agg_bufs, u32 *raw_cons)
961 {
962 u16 last;
963 struct rx_agg_cmp *agg;
964
965 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
966 last = RING_CMP(*raw_cons);
967 agg = (struct rx_agg_cmp *)
968 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
969 return RX_AGG_CMP_VALID(agg, *raw_cons);
970 }
971
972 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
973 unsigned int len,
974 dma_addr_t mapping)
975 {
976 struct bnxt *bp = bnapi->bp;
977 struct pci_dev *pdev = bp->pdev;
978 struct sk_buff *skb;
979
980 skb = napi_alloc_skb(&bnapi->napi, len);
981 if (!skb)
982 return NULL;
983
984 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
985 bp->rx_dir);
986
987 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
988 len + NET_IP_ALIGN);
989
990 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
991 bp->rx_dir);
992
993 skb_put(skb, len);
994 return skb;
995 }
996
997 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
998 u32 *raw_cons, void *cmp)
999 {
1000 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1001 struct rx_cmp *rxcmp = cmp;
1002 u32 tmp_raw_cons = *raw_cons;
1003 u8 cmp_type, agg_bufs = 0;
1004
1005 cmp_type = RX_CMP_TYPE(rxcmp);
1006
1007 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1008 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1009 RX_CMP_AGG_BUFS) >>
1010 RX_CMP_AGG_BUFS_SHIFT;
1011 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1012 struct rx_tpa_end_cmp *tpa_end = cmp;
1013
1014 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1015 RX_TPA_END_CMP_AGG_BUFS) >>
1016 RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1017 }
1018
1019 if (agg_bufs) {
1020 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1021 return -EBUSY;
1022 }
1023 *raw_cons = tmp_raw_cons;
1024 return 0;
1025 }
1026
1027 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1028 {
1029 if (!rxr->bnapi->in_reset) {
1030 rxr->bnapi->in_reset = true;
1031 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1032 schedule_work(&bp->sp_task);
1033 }
1034 rxr->rx_next_cons = 0xffff;
1035 }
1036
1037 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1038 struct rx_tpa_start_cmp *tpa_start,
1039 struct rx_tpa_start_cmp_ext *tpa_start1)
1040 {
1041 u8 agg_id = TPA_START_AGG_ID(tpa_start);
1042 u16 cons, prod;
1043 struct bnxt_tpa_info *tpa_info;
1044 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1045 struct rx_bd *prod_bd;
1046 dma_addr_t mapping;
1047
1048 cons = tpa_start->rx_tpa_start_cmp_opaque;
1049 prod = rxr->rx_prod;
1050 cons_rx_buf = &rxr->rx_buf_ring[cons];
1051 prod_rx_buf = &rxr->rx_buf_ring[prod];
1052 tpa_info = &rxr->rx_tpa[agg_id];
1053
1054 if (unlikely(cons != rxr->rx_next_cons)) {
1055 bnxt_sched_reset(bp, rxr);
1056 return;
1057 }
1058 /* Store cfa_code in tpa_info to use in tpa_end
1059 * completion processing.
1060 */
1061 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1062 prod_rx_buf->data = tpa_info->data;
1063 prod_rx_buf->data_ptr = tpa_info->data_ptr;
1064
1065 mapping = tpa_info->mapping;
1066 prod_rx_buf->mapping = mapping;
1067
1068 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1069
1070 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1071
1072 tpa_info->data = cons_rx_buf->data;
1073 tpa_info->data_ptr = cons_rx_buf->data_ptr;
1074 cons_rx_buf->data = NULL;
1075 tpa_info->mapping = cons_rx_buf->mapping;
1076
1077 tpa_info->len =
1078 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1079 RX_TPA_START_CMP_LEN_SHIFT;
1080 if (likely(TPA_START_HASH_VALID(tpa_start))) {
1081 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1082
1083 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1084 tpa_info->gso_type = SKB_GSO_TCPV4;
1085 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1086 if (hash_type == 3)
1087 tpa_info->gso_type = SKB_GSO_TCPV6;
1088 tpa_info->rss_hash =
1089 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1090 } else {
1091 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1092 tpa_info->gso_type = 0;
1093 if (netif_msg_rx_err(bp))
1094 netdev_warn(bp->dev, "TPA packet without valid hash\n");
1095 }
1096 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1097 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1098 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1099
1100 rxr->rx_prod = NEXT_RX(prod);
1101 cons = NEXT_RX(cons);
1102 rxr->rx_next_cons = NEXT_RX(cons);
1103 cons_rx_buf = &rxr->rx_buf_ring[cons];
1104
1105 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1106 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1107 cons_rx_buf->data = NULL;
1108 }
1109
1110 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1111 u16 cp_cons, u32 agg_bufs)
1112 {
1113 if (agg_bufs)
1114 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1115 }
1116
1117 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1118 int payload_off, int tcp_ts,
1119 struct sk_buff *skb)
1120 {
1121 #ifdef CONFIG_INET
1122 struct tcphdr *th;
1123 int len, nw_off;
1124 u16 outer_ip_off, inner_ip_off, inner_mac_off;
1125 u32 hdr_info = tpa_info->hdr_info;
1126 bool loopback = false;
1127
1128 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1129 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1130 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1131
1132 /* If the packet is an internal loopback packet, the offsets will
1133 * have an extra 4 bytes.
1134 */
1135 if (inner_mac_off == 4) {
1136 loopback = true;
1137 } else if (inner_mac_off > 4) {
1138 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1139 ETH_HLEN - 2));
1140
1141 /* We only support inner iPv4/ipv6. If we don't see the
1142 * correct protocol ID, it must be a loopback packet where
1143 * the offsets are off by 4.
1144 */
1145 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1146 loopback = true;
1147 }
1148 if (loopback) {
1149 /* internal loopback packet, subtract all offsets by 4 */
1150 inner_ip_off -= 4;
1151 inner_mac_off -= 4;
1152 outer_ip_off -= 4;
1153 }
1154
1155 nw_off = inner_ip_off - ETH_HLEN;
1156 skb_set_network_header(skb, nw_off);
1157 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1158 struct ipv6hdr *iph = ipv6_hdr(skb);
1159
1160 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1161 len = skb->len - skb_transport_offset(skb);
1162 th = tcp_hdr(skb);
1163 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1164 } else {
1165 struct iphdr *iph = ip_hdr(skb);
1166
1167 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1168 len = skb->len - skb_transport_offset(skb);
1169 th = tcp_hdr(skb);
1170 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1171 }
1172
1173 if (inner_mac_off) { /* tunnel */
1174 struct udphdr *uh = NULL;
1175 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1176 ETH_HLEN - 2));
1177
1178 if (proto == htons(ETH_P_IP)) {
1179 struct iphdr *iph = (struct iphdr *)skb->data;
1180
1181 if (iph->protocol == IPPROTO_UDP)
1182 uh = (struct udphdr *)(iph + 1);
1183 } else {
1184 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1185
1186 if (iph->nexthdr == IPPROTO_UDP)
1187 uh = (struct udphdr *)(iph + 1);
1188 }
1189 if (uh) {
1190 if (uh->check)
1191 skb_shinfo(skb)->gso_type |=
1192 SKB_GSO_UDP_TUNNEL_CSUM;
1193 else
1194 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1195 }
1196 }
1197 #endif
1198 return skb;
1199 }
1200
1201 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
1202 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1203
1204 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1205 int payload_off, int tcp_ts,
1206 struct sk_buff *skb)
1207 {
1208 #ifdef CONFIG_INET
1209 struct tcphdr *th;
1210 int len, nw_off, tcp_opt_len = 0;
1211
1212 if (tcp_ts)
1213 tcp_opt_len = 12;
1214
1215 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1216 struct iphdr *iph;
1217
1218 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1219 ETH_HLEN;
1220 skb_set_network_header(skb, nw_off);
1221 iph = ip_hdr(skb);
1222 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1223 len = skb->len - skb_transport_offset(skb);
1224 th = tcp_hdr(skb);
1225 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1226 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1227 struct ipv6hdr *iph;
1228
1229 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1230 ETH_HLEN;
1231 skb_set_network_header(skb, nw_off);
1232 iph = ipv6_hdr(skb);
1233 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1234 len = skb->len - skb_transport_offset(skb);
1235 th = tcp_hdr(skb);
1236 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1237 } else {
1238 dev_kfree_skb_any(skb);
1239 return NULL;
1240 }
1241
1242 if (nw_off) { /* tunnel */
1243 struct udphdr *uh = NULL;
1244
1245 if (skb->protocol == htons(ETH_P_IP)) {
1246 struct iphdr *iph = (struct iphdr *)skb->data;
1247
1248 if (iph->protocol == IPPROTO_UDP)
1249 uh = (struct udphdr *)(iph + 1);
1250 } else {
1251 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1252
1253 if (iph->nexthdr == IPPROTO_UDP)
1254 uh = (struct udphdr *)(iph + 1);
1255 }
1256 if (uh) {
1257 if (uh->check)
1258 skb_shinfo(skb)->gso_type |=
1259 SKB_GSO_UDP_TUNNEL_CSUM;
1260 else
1261 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1262 }
1263 }
1264 #endif
1265 return skb;
1266 }
1267
1268 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1269 struct bnxt_tpa_info *tpa_info,
1270 struct rx_tpa_end_cmp *tpa_end,
1271 struct rx_tpa_end_cmp_ext *tpa_end1,
1272 struct sk_buff *skb)
1273 {
1274 #ifdef CONFIG_INET
1275 int payload_off;
1276 u16 segs;
1277
1278 segs = TPA_END_TPA_SEGS(tpa_end);
1279 if (segs == 1)
1280 return skb;
1281
1282 NAPI_GRO_CB(skb)->count = segs;
1283 skb_shinfo(skb)->gso_size =
1284 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1285 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1286 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1287 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1288 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1289 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1290 if (likely(skb))
1291 tcp_gro_complete(skb);
1292 #endif
1293 return skb;
1294 }
1295
1296 /* Given the cfa_code of a received packet determine which
1297 * netdev (vf-rep or PF) the packet is destined to.
1298 */
1299 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1300 {
1301 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1302
1303 /* if vf-rep dev is NULL, the must belongs to the PF */
1304 return dev ? dev : bp->dev;
1305 }
1306
1307 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1308 struct bnxt_napi *bnapi,
1309 u32 *raw_cons,
1310 struct rx_tpa_end_cmp *tpa_end,
1311 struct rx_tpa_end_cmp_ext *tpa_end1,
1312 u8 *event)
1313 {
1314 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1315 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1316 u8 agg_id = TPA_END_AGG_ID(tpa_end);
1317 u8 *data_ptr, agg_bufs;
1318 u16 cp_cons = RING_CMP(*raw_cons);
1319 unsigned int len;
1320 struct bnxt_tpa_info *tpa_info;
1321 dma_addr_t mapping;
1322 struct sk_buff *skb;
1323 void *data;
1324
1325 if (unlikely(bnapi->in_reset)) {
1326 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1327
1328 if (rc < 0)
1329 return ERR_PTR(-EBUSY);
1330 return NULL;
1331 }
1332
1333 tpa_info = &rxr->rx_tpa[agg_id];
1334 data = tpa_info->data;
1335 data_ptr = tpa_info->data_ptr;
1336 prefetch(data_ptr);
1337 len = tpa_info->len;
1338 mapping = tpa_info->mapping;
1339
1340 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1341 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1342
1343 if (agg_bufs) {
1344 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1345 return ERR_PTR(-EBUSY);
1346
1347 *event |= BNXT_AGG_EVENT;
1348 cp_cons = NEXT_CMP(cp_cons);
1349 }
1350
1351 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1352 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1353 if (agg_bufs > MAX_SKB_FRAGS)
1354 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1355 agg_bufs, (int)MAX_SKB_FRAGS);
1356 return NULL;
1357 }
1358
1359 if (len <= bp->rx_copy_thresh) {
1360 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1361 if (!skb) {
1362 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1363 return NULL;
1364 }
1365 } else {
1366 u8 *new_data;
1367 dma_addr_t new_mapping;
1368
1369 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1370 if (!new_data) {
1371 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1372 return NULL;
1373 }
1374
1375 tpa_info->data = new_data;
1376 tpa_info->data_ptr = new_data + bp->rx_offset;
1377 tpa_info->mapping = new_mapping;
1378
1379 skb = build_skb(data, 0);
1380 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1381 bp->rx_buf_use_size, bp->rx_dir,
1382 DMA_ATTR_WEAK_ORDERING);
1383
1384 if (!skb) {
1385 kfree(data);
1386 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1387 return NULL;
1388 }
1389 skb_reserve(skb, bp->rx_offset);
1390 skb_put(skb, len);
1391 }
1392
1393 if (agg_bufs) {
1394 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1395 if (!skb) {
1396 /* Page reuse already handled by bnxt_rx_pages(). */
1397 return NULL;
1398 }
1399 }
1400
1401 skb->protocol =
1402 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1403
1404 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1405 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1406
1407 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1408 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1409 u16 vlan_proto = tpa_info->metadata >>
1410 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1411 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1412
1413 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1414 }
1415
1416 skb_checksum_none_assert(skb);
1417 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1418 skb->ip_summed = CHECKSUM_UNNECESSARY;
1419 skb->csum_level =
1420 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1421 }
1422
1423 if (TPA_END_GRO(tpa_end))
1424 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1425
1426 return skb;
1427 }
1428
1429 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1430 struct sk_buff *skb)
1431 {
1432 if (skb->dev != bp->dev) {
1433 /* this packet belongs to a vf-rep */
1434 bnxt_vf_rep_rx(bp, skb);
1435 return;
1436 }
1437 skb_record_rx_queue(skb, bnapi->index);
1438 napi_gro_receive(&bnapi->napi, skb);
1439 }
1440
1441 /* returns the following:
1442 * 1 - 1 packet successfully received
1443 * 0 - successful TPA_START, packet not completed yet
1444 * -EBUSY - completion ring does not have all the agg buffers yet
1445 * -ENOMEM - packet aborted due to out of memory
1446 * -EIO - packet aborted due to hw error indicated in BD
1447 */
1448 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1449 u8 *event)
1450 {
1451 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1452 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1453 struct net_device *dev = bp->dev;
1454 struct rx_cmp *rxcmp;
1455 struct rx_cmp_ext *rxcmp1;
1456 u32 tmp_raw_cons = *raw_cons;
1457 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1458 struct bnxt_sw_rx_bd *rx_buf;
1459 unsigned int len;
1460 u8 *data_ptr, agg_bufs, cmp_type;
1461 dma_addr_t dma_addr;
1462 struct sk_buff *skb;
1463 void *data;
1464 int rc = 0;
1465 u32 misc;
1466
1467 rxcmp = (struct rx_cmp *)
1468 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1469
1470 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1471 cp_cons = RING_CMP(tmp_raw_cons);
1472 rxcmp1 = (struct rx_cmp_ext *)
1473 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1474
1475 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1476 return -EBUSY;
1477
1478 cmp_type = RX_CMP_TYPE(rxcmp);
1479
1480 prod = rxr->rx_prod;
1481
1482 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1483 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1484 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1485
1486 *event |= BNXT_RX_EVENT;
1487 goto next_rx_no_prod;
1488
1489 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1490 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1491 (struct rx_tpa_end_cmp *)rxcmp,
1492 (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1493
1494 if (unlikely(IS_ERR(skb)))
1495 return -EBUSY;
1496
1497 rc = -ENOMEM;
1498 if (likely(skb)) {
1499 bnxt_deliver_skb(bp, bnapi, skb);
1500 rc = 1;
1501 }
1502 *event |= BNXT_RX_EVENT;
1503 goto next_rx_no_prod;
1504 }
1505
1506 cons = rxcmp->rx_cmp_opaque;
1507 rx_buf = &rxr->rx_buf_ring[cons];
1508 data = rx_buf->data;
1509 data_ptr = rx_buf->data_ptr;
1510 if (unlikely(cons != rxr->rx_next_cons)) {
1511 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1512
1513 bnxt_sched_reset(bp, rxr);
1514 return rc1;
1515 }
1516 prefetch(data_ptr);
1517
1518 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1519 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1520
1521 if (agg_bufs) {
1522 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1523 return -EBUSY;
1524
1525 cp_cons = NEXT_CMP(cp_cons);
1526 *event |= BNXT_AGG_EVENT;
1527 }
1528 *event |= BNXT_RX_EVENT;
1529
1530 rx_buf->data = NULL;
1531 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1532 bnxt_reuse_rx_data(rxr, cons, data);
1533 if (agg_bufs)
1534 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1535
1536 rc = -EIO;
1537 goto next_rx;
1538 }
1539
1540 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1541 dma_addr = rx_buf->mapping;
1542
1543 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1544 rc = 1;
1545 goto next_rx;
1546 }
1547
1548 if (len <= bp->rx_copy_thresh) {
1549 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1550 bnxt_reuse_rx_data(rxr, cons, data);
1551 if (!skb) {
1552 rc = -ENOMEM;
1553 goto next_rx;
1554 }
1555 } else {
1556 u32 payload;
1557
1558 if (rx_buf->data_ptr == data_ptr)
1559 payload = misc & RX_CMP_PAYLOAD_OFFSET;
1560 else
1561 payload = 0;
1562 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1563 payload | len);
1564 if (!skb) {
1565 rc = -ENOMEM;
1566 goto next_rx;
1567 }
1568 }
1569
1570 if (agg_bufs) {
1571 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1572 if (!skb) {
1573 rc = -ENOMEM;
1574 goto next_rx;
1575 }
1576 }
1577
1578 if (RX_CMP_HASH_VALID(rxcmp)) {
1579 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1580 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1581
1582 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1583 if (hash_type != 1 && hash_type != 3)
1584 type = PKT_HASH_TYPE_L3;
1585 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1586 }
1587
1588 cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1589 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1590
1591 if ((rxcmp1->rx_cmp_flags2 &
1592 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1593 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1594 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1595 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1596 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1597
1598 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1599 }
1600
1601 skb_checksum_none_assert(skb);
1602 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1603 if (dev->features & NETIF_F_RXCSUM) {
1604 skb->ip_summed = CHECKSUM_UNNECESSARY;
1605 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1606 }
1607 } else {
1608 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1609 if (dev->features & NETIF_F_RXCSUM)
1610 cpr->rx_l4_csum_errors++;
1611 }
1612 }
1613
1614 bnxt_deliver_skb(bp, bnapi, skb);
1615 rc = 1;
1616
1617 next_rx:
1618 rxr->rx_prod = NEXT_RX(prod);
1619 rxr->rx_next_cons = NEXT_RX(cons);
1620
1621 next_rx_no_prod:
1622 *raw_cons = tmp_raw_cons;
1623
1624 return rc;
1625 }
1626
1627 /* In netpoll mode, if we are using a combined completion ring, we need to
1628 * discard the rx packets and recycle the buffers.
1629 */
1630 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1631 u32 *raw_cons, u8 *event)
1632 {
1633 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1634 u32 tmp_raw_cons = *raw_cons;
1635 struct rx_cmp_ext *rxcmp1;
1636 struct rx_cmp *rxcmp;
1637 u16 cp_cons;
1638 u8 cmp_type;
1639
1640 cp_cons = RING_CMP(tmp_raw_cons);
1641 rxcmp = (struct rx_cmp *)
1642 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1643
1644 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1645 cp_cons = RING_CMP(tmp_raw_cons);
1646 rxcmp1 = (struct rx_cmp_ext *)
1647 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1648
1649 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1650 return -EBUSY;
1651
1652 cmp_type = RX_CMP_TYPE(rxcmp);
1653 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1654 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1655 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1656 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1657 struct rx_tpa_end_cmp_ext *tpa_end1;
1658
1659 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1660 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1661 cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1662 }
1663 return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1664 }
1665
1666 #define BNXT_GET_EVENT_PORT(data) \
1667 ((data) & \
1668 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1669
1670 static int bnxt_async_event_process(struct bnxt *bp,
1671 struct hwrm_async_event_cmpl *cmpl)
1672 {
1673 u16 event_id = le16_to_cpu(cmpl->event_id);
1674
1675 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1676 switch (event_id) {
1677 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1678 u32 data1 = le32_to_cpu(cmpl->event_data1);
1679 struct bnxt_link_info *link_info = &bp->link_info;
1680
1681 if (BNXT_VF(bp))
1682 goto async_event_process_exit;
1683 if (data1 & 0x20000) {
1684 u16 fw_speed = link_info->force_link_speed;
1685 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1686
1687 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1688 speed);
1689 }
1690 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1691 /* fall thru */
1692 }
1693 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1694 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1695 break;
1696 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1697 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1698 break;
1699 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1700 u32 data1 = le32_to_cpu(cmpl->event_data1);
1701 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1702
1703 if (BNXT_VF(bp))
1704 break;
1705
1706 if (bp->pf.port_id != port_id)
1707 break;
1708
1709 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1710 break;
1711 }
1712 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1713 if (BNXT_PF(bp))
1714 goto async_event_process_exit;
1715 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1716 break;
1717 default:
1718 goto async_event_process_exit;
1719 }
1720 schedule_work(&bp->sp_task);
1721 async_event_process_exit:
1722 bnxt_ulp_async_events(bp, cmpl);
1723 return 0;
1724 }
1725
1726 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1727 {
1728 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1729 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1730 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1731 (struct hwrm_fwd_req_cmpl *)txcmp;
1732
1733 switch (cmpl_type) {
1734 case CMPL_BASE_TYPE_HWRM_DONE:
1735 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1736 if (seq_id == bp->hwrm_intr_seq_id)
1737 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1738 else
1739 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1740 break;
1741
1742 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1743 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1744
1745 if ((vf_id < bp->pf.first_vf_id) ||
1746 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1747 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1748 vf_id);
1749 return -EINVAL;
1750 }
1751
1752 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1753 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1754 schedule_work(&bp->sp_task);
1755 break;
1756
1757 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1758 bnxt_async_event_process(bp,
1759 (struct hwrm_async_event_cmpl *)txcmp);
1760
1761 default:
1762 break;
1763 }
1764
1765 return 0;
1766 }
1767
1768 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1769 {
1770 struct bnxt_napi *bnapi = dev_instance;
1771 struct bnxt *bp = bnapi->bp;
1772 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1773 u32 cons = RING_CMP(cpr->cp_raw_cons);
1774
1775 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1776 napi_schedule(&bnapi->napi);
1777 return IRQ_HANDLED;
1778 }
1779
1780 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1781 {
1782 u32 raw_cons = cpr->cp_raw_cons;
1783 u16 cons = RING_CMP(raw_cons);
1784 struct tx_cmp *txcmp;
1785
1786 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1787
1788 return TX_CMP_VALID(txcmp, raw_cons);
1789 }
1790
1791 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1792 {
1793 struct bnxt_napi *bnapi = dev_instance;
1794 struct bnxt *bp = bnapi->bp;
1795 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1796 u32 cons = RING_CMP(cpr->cp_raw_cons);
1797 u32 int_status;
1798
1799 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1800
1801 if (!bnxt_has_work(bp, cpr)) {
1802 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1803 /* return if erroneous interrupt */
1804 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1805 return IRQ_NONE;
1806 }
1807
1808 /* disable ring IRQ */
1809 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1810
1811 /* Return here if interrupt is shared and is disabled. */
1812 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1813 return IRQ_HANDLED;
1814
1815 napi_schedule(&bnapi->napi);
1816 return IRQ_HANDLED;
1817 }
1818
1819 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1820 {
1821 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1822 u32 raw_cons = cpr->cp_raw_cons;
1823 u32 cons;
1824 int tx_pkts = 0;
1825 int rx_pkts = 0;
1826 u8 event = 0;
1827 struct tx_cmp *txcmp;
1828
1829 while (1) {
1830 int rc;
1831
1832 cons = RING_CMP(raw_cons);
1833 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1834
1835 if (!TX_CMP_VALID(txcmp, raw_cons))
1836 break;
1837
1838 /* The valid test of the entry must be done first before
1839 * reading any further.
1840 */
1841 dma_rmb();
1842 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1843 tx_pkts++;
1844 /* return full budget so NAPI will complete. */
1845 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1846 rx_pkts = budget;
1847 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1848 if (likely(budget))
1849 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1850 else
1851 rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1852 &event);
1853 if (likely(rc >= 0))
1854 rx_pkts += rc;
1855 /* Increment rx_pkts when rc is -ENOMEM to count towards
1856 * the NAPI budget. Otherwise, we may potentially loop
1857 * here forever if we consistently cannot allocate
1858 * buffers.
1859 */
1860 else if (rc == -ENOMEM)
1861 rx_pkts++;
1862 else if (rc == -EBUSY) /* partial completion */
1863 break;
1864 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1865 CMPL_BASE_TYPE_HWRM_DONE) ||
1866 (TX_CMP_TYPE(txcmp) ==
1867 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1868 (TX_CMP_TYPE(txcmp) ==
1869 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1870 bnxt_hwrm_handler(bp, txcmp);
1871 }
1872 raw_cons = NEXT_RAW_CMP(raw_cons);
1873
1874 if (rx_pkts == budget)
1875 break;
1876 }
1877
1878 if (event & BNXT_TX_EVENT) {
1879 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1880 void __iomem *db = txr->tx_doorbell;
1881 u16 prod = txr->tx_prod;
1882
1883 /* Sync BD data before updating doorbell */
1884 wmb();
1885
1886 bnxt_db_write(bp, db, DB_KEY_TX | prod);
1887 }
1888
1889 cpr->cp_raw_cons = raw_cons;
1890 /* ACK completion ring before freeing tx ring and producing new
1891 * buffers in rx/agg rings to prevent overflowing the completion
1892 * ring.
1893 */
1894 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1895
1896 if (tx_pkts)
1897 bnapi->tx_int(bp, bnapi, tx_pkts);
1898
1899 if (event & BNXT_RX_EVENT) {
1900 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1901
1902 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1903 if (event & BNXT_AGG_EVENT)
1904 bnxt_db_write(bp, rxr->rx_agg_doorbell,
1905 DB_KEY_RX | rxr->rx_agg_prod);
1906 }
1907 return rx_pkts;
1908 }
1909
1910 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1911 {
1912 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1913 struct bnxt *bp = bnapi->bp;
1914 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1915 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1916 struct tx_cmp *txcmp;
1917 struct rx_cmp_ext *rxcmp1;
1918 u32 cp_cons, tmp_raw_cons;
1919 u32 raw_cons = cpr->cp_raw_cons;
1920 u32 rx_pkts = 0;
1921 u8 event = 0;
1922
1923 while (1) {
1924 int rc;
1925
1926 cp_cons = RING_CMP(raw_cons);
1927 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1928
1929 if (!TX_CMP_VALID(txcmp, raw_cons))
1930 break;
1931
1932 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1933 tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1934 cp_cons = RING_CMP(tmp_raw_cons);
1935 rxcmp1 = (struct rx_cmp_ext *)
1936 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1937
1938 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1939 break;
1940
1941 /* force an error to recycle the buffer */
1942 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1943 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1944
1945 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1946 if (likely(rc == -EIO))
1947 rx_pkts++;
1948 else if (rc == -EBUSY) /* partial completion */
1949 break;
1950 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1951 CMPL_BASE_TYPE_HWRM_DONE)) {
1952 bnxt_hwrm_handler(bp, txcmp);
1953 } else {
1954 netdev_err(bp->dev,
1955 "Invalid completion received on special ring\n");
1956 }
1957 raw_cons = NEXT_RAW_CMP(raw_cons);
1958
1959 if (rx_pkts == budget)
1960 break;
1961 }
1962
1963 cpr->cp_raw_cons = raw_cons;
1964 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1965 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1966
1967 if (event & BNXT_AGG_EVENT)
1968 bnxt_db_write(bp, rxr->rx_agg_doorbell,
1969 DB_KEY_RX | rxr->rx_agg_prod);
1970
1971 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1972 napi_complete_done(napi, rx_pkts);
1973 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1974 }
1975 return rx_pkts;
1976 }
1977
1978 static int bnxt_poll(struct napi_struct *napi, int budget)
1979 {
1980 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1981 struct bnxt *bp = bnapi->bp;
1982 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1983 int work_done = 0;
1984
1985 while (1) {
1986 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1987
1988 if (work_done >= budget)
1989 break;
1990
1991 if (!bnxt_has_work(bp, cpr)) {
1992 if (napi_complete_done(napi, work_done))
1993 BNXT_CP_DB_REARM(cpr->cp_doorbell,
1994 cpr->cp_raw_cons);
1995 break;
1996 }
1997 }
1998 mmiowb();
1999 return work_done;
2000 }
2001
2002 static void bnxt_free_tx_skbs(struct bnxt *bp)
2003 {
2004 int i, max_idx;
2005 struct pci_dev *pdev = bp->pdev;
2006
2007 if (!bp->tx_ring)
2008 return;
2009
2010 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2011 for (i = 0; i < bp->tx_nr_rings; i++) {
2012 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2013 int j;
2014
2015 for (j = 0; j < max_idx;) {
2016 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2017 struct sk_buff *skb = tx_buf->skb;
2018 int k, last;
2019
2020 if (!skb) {
2021 j++;
2022 continue;
2023 }
2024
2025 tx_buf->skb = NULL;
2026
2027 if (tx_buf->is_push) {
2028 dev_kfree_skb(skb);
2029 j += 2;
2030 continue;
2031 }
2032
2033 dma_unmap_single(&pdev->dev,
2034 dma_unmap_addr(tx_buf, mapping),
2035 skb_headlen(skb),
2036 PCI_DMA_TODEVICE);
2037
2038 last = tx_buf->nr_frags;
2039 j += 2;
2040 for (k = 0; k < last; k++, j++) {
2041 int ring_idx = j & bp->tx_ring_mask;
2042 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2043
2044 tx_buf = &txr->tx_buf_ring[ring_idx];
2045 dma_unmap_page(
2046 &pdev->dev,
2047 dma_unmap_addr(tx_buf, mapping),
2048 skb_frag_size(frag), PCI_DMA_TODEVICE);
2049 }
2050 dev_kfree_skb(skb);
2051 }
2052 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2053 }
2054 }
2055
2056 static void bnxt_free_rx_skbs(struct bnxt *bp)
2057 {
2058 int i, max_idx, max_agg_idx;
2059 struct pci_dev *pdev = bp->pdev;
2060
2061 if (!bp->rx_ring)
2062 return;
2063
2064 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2065 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2066 for (i = 0; i < bp->rx_nr_rings; i++) {
2067 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2068 int j;
2069
2070 if (rxr->rx_tpa) {
2071 for (j = 0; j < MAX_TPA; j++) {
2072 struct bnxt_tpa_info *tpa_info =
2073 &rxr->rx_tpa[j];
2074 u8 *data = tpa_info->data;
2075
2076 if (!data)
2077 continue;
2078
2079 dma_unmap_single_attrs(&pdev->dev,
2080 tpa_info->mapping,
2081 bp->rx_buf_use_size,
2082 bp->rx_dir,
2083 DMA_ATTR_WEAK_ORDERING);
2084
2085 tpa_info->data = NULL;
2086
2087 kfree(data);
2088 }
2089 }
2090
2091 for (j = 0; j < max_idx; j++) {
2092 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2093 dma_addr_t mapping = rx_buf->mapping;
2094 void *data = rx_buf->data;
2095
2096 if (!data)
2097 continue;
2098
2099 rx_buf->data = NULL;
2100
2101 if (BNXT_RX_PAGE_MODE(bp)) {
2102 mapping -= bp->rx_dma_offset;
2103 dma_unmap_page_attrs(&pdev->dev, mapping,
2104 PAGE_SIZE, bp->rx_dir,
2105 DMA_ATTR_WEAK_ORDERING);
2106 __free_page(data);
2107 } else {
2108 dma_unmap_single_attrs(&pdev->dev, mapping,
2109 bp->rx_buf_use_size,
2110 bp->rx_dir,
2111 DMA_ATTR_WEAK_ORDERING);
2112 kfree(data);
2113 }
2114 }
2115
2116 for (j = 0; j < max_agg_idx; j++) {
2117 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2118 &rxr->rx_agg_ring[j];
2119 struct page *page = rx_agg_buf->page;
2120
2121 if (!page)
2122 continue;
2123
2124 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2125 BNXT_RX_PAGE_SIZE,
2126 PCI_DMA_FROMDEVICE,
2127 DMA_ATTR_WEAK_ORDERING);
2128
2129 rx_agg_buf->page = NULL;
2130 __clear_bit(j, rxr->rx_agg_bmap);
2131
2132 __free_page(page);
2133 }
2134 if (rxr->rx_page) {
2135 __free_page(rxr->rx_page);
2136 rxr->rx_page = NULL;
2137 }
2138 }
2139 }
2140
2141 static void bnxt_free_skbs(struct bnxt *bp)
2142 {
2143 bnxt_free_tx_skbs(bp);
2144 bnxt_free_rx_skbs(bp);
2145 }
2146
2147 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2148 {
2149 struct pci_dev *pdev = bp->pdev;
2150 int i;
2151
2152 for (i = 0; i < ring->nr_pages; i++) {
2153 if (!ring->pg_arr[i])
2154 continue;
2155
2156 dma_free_coherent(&pdev->dev, ring->page_size,
2157 ring->pg_arr[i], ring->dma_arr[i]);
2158
2159 ring->pg_arr[i] = NULL;
2160 }
2161 if (ring->pg_tbl) {
2162 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2163 ring->pg_tbl, ring->pg_tbl_map);
2164 ring->pg_tbl = NULL;
2165 }
2166 if (ring->vmem_size && *ring->vmem) {
2167 vfree(*ring->vmem);
2168 *ring->vmem = NULL;
2169 }
2170 }
2171
2172 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2173 {
2174 int i;
2175 struct pci_dev *pdev = bp->pdev;
2176
2177 if (ring->nr_pages > 1) {
2178 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2179 ring->nr_pages * 8,
2180 &ring->pg_tbl_map,
2181 GFP_KERNEL);
2182 if (!ring->pg_tbl)
2183 return -ENOMEM;
2184 }
2185
2186 for (i = 0; i < ring->nr_pages; i++) {
2187 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2188 ring->page_size,
2189 &ring->dma_arr[i],
2190 GFP_KERNEL);
2191 if (!ring->pg_arr[i])
2192 return -ENOMEM;
2193
2194 if (ring->nr_pages > 1)
2195 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2196 }
2197
2198 if (ring->vmem_size) {
2199 *ring->vmem = vzalloc(ring->vmem_size);
2200 if (!(*ring->vmem))
2201 return -ENOMEM;
2202 }
2203 return 0;
2204 }
2205
2206 static void bnxt_free_rx_rings(struct bnxt *bp)
2207 {
2208 int i;
2209
2210 if (!bp->rx_ring)
2211 return;
2212
2213 for (i = 0; i < bp->rx_nr_rings; i++) {
2214 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2215 struct bnxt_ring_struct *ring;
2216
2217 if (rxr->xdp_prog)
2218 bpf_prog_put(rxr->xdp_prog);
2219
2220 kfree(rxr->rx_tpa);
2221 rxr->rx_tpa = NULL;
2222
2223 kfree(rxr->rx_agg_bmap);
2224 rxr->rx_agg_bmap = NULL;
2225
2226 ring = &rxr->rx_ring_struct;
2227 bnxt_free_ring(bp, ring);
2228
2229 ring = &rxr->rx_agg_ring_struct;
2230 bnxt_free_ring(bp, ring);
2231 }
2232 }
2233
2234 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2235 {
2236 int i, rc, agg_rings = 0, tpa_rings = 0;
2237
2238 if (!bp->rx_ring)
2239 return -ENOMEM;
2240
2241 if (bp->flags & BNXT_FLAG_AGG_RINGS)
2242 agg_rings = 1;
2243
2244 if (bp->flags & BNXT_FLAG_TPA)
2245 tpa_rings = 1;
2246
2247 for (i = 0; i < bp->rx_nr_rings; i++) {
2248 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2249 struct bnxt_ring_struct *ring;
2250
2251 ring = &rxr->rx_ring_struct;
2252
2253 rc = bnxt_alloc_ring(bp, ring);
2254 if (rc)
2255 return rc;
2256
2257 if (agg_rings) {
2258 u16 mem_size;
2259
2260 ring = &rxr->rx_agg_ring_struct;
2261 rc = bnxt_alloc_ring(bp, ring);
2262 if (rc)
2263 return rc;
2264
2265 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2266 mem_size = rxr->rx_agg_bmap_size / 8;
2267 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2268 if (!rxr->rx_agg_bmap)
2269 return -ENOMEM;
2270
2271 if (tpa_rings) {
2272 rxr->rx_tpa = kcalloc(MAX_TPA,
2273 sizeof(struct bnxt_tpa_info),
2274 GFP_KERNEL);
2275 if (!rxr->rx_tpa)
2276 return -ENOMEM;
2277 }
2278 }
2279 }
2280 return 0;
2281 }
2282
2283 static void bnxt_free_tx_rings(struct bnxt *bp)
2284 {
2285 int i;
2286 struct pci_dev *pdev = bp->pdev;
2287
2288 if (!bp->tx_ring)
2289 return;
2290
2291 for (i = 0; i < bp->tx_nr_rings; i++) {
2292 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2293 struct bnxt_ring_struct *ring;
2294
2295 if (txr->tx_push) {
2296 dma_free_coherent(&pdev->dev, bp->tx_push_size,
2297 txr->tx_push, txr->tx_push_mapping);
2298 txr->tx_push = NULL;
2299 }
2300
2301 ring = &txr->tx_ring_struct;
2302
2303 bnxt_free_ring(bp, ring);
2304 }
2305 }
2306
2307 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2308 {
2309 int i, j, rc;
2310 struct pci_dev *pdev = bp->pdev;
2311
2312 bp->tx_push_size = 0;
2313 if (bp->tx_push_thresh) {
2314 int push_size;
2315
2316 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2317 bp->tx_push_thresh);
2318
2319 if (push_size > 256) {
2320 push_size = 0;
2321 bp->tx_push_thresh = 0;
2322 }
2323
2324 bp->tx_push_size = push_size;
2325 }
2326
2327 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2328 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2329 struct bnxt_ring_struct *ring;
2330
2331 ring = &txr->tx_ring_struct;
2332
2333 rc = bnxt_alloc_ring(bp, ring);
2334 if (rc)
2335 return rc;
2336
2337 if (bp->tx_push_size) {
2338 dma_addr_t mapping;
2339
2340 /* One pre-allocated DMA buffer to backup
2341 * TX push operation
2342 */
2343 txr->tx_push = dma_alloc_coherent(&pdev->dev,
2344 bp->tx_push_size,
2345 &txr->tx_push_mapping,
2346 GFP_KERNEL);
2347
2348 if (!txr->tx_push)
2349 return -ENOMEM;
2350
2351 mapping = txr->tx_push_mapping +
2352 sizeof(struct tx_push_bd);
2353 txr->data_mapping = cpu_to_le64(mapping);
2354
2355 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2356 }
2357 ring->queue_id = bp->q_info[j].queue_id;
2358 if (i < bp->tx_nr_rings_xdp)
2359 continue;
2360 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2361 j++;
2362 }
2363 return 0;
2364 }
2365
2366 static void bnxt_free_cp_rings(struct bnxt *bp)
2367 {
2368 int i;
2369
2370 if (!bp->bnapi)
2371 return;
2372
2373 for (i = 0; i < bp->cp_nr_rings; i++) {
2374 struct bnxt_napi *bnapi = bp->bnapi[i];
2375 struct bnxt_cp_ring_info *cpr;
2376 struct bnxt_ring_struct *ring;
2377
2378 if (!bnapi)
2379 continue;
2380
2381 cpr = &bnapi->cp_ring;
2382 ring = &cpr->cp_ring_struct;
2383
2384 bnxt_free_ring(bp, ring);
2385 }
2386 }
2387
2388 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2389 {
2390 int i, rc;
2391
2392 for (i = 0; i < bp->cp_nr_rings; i++) {
2393 struct bnxt_napi *bnapi = bp->bnapi[i];
2394 struct bnxt_cp_ring_info *cpr;
2395 struct bnxt_ring_struct *ring;
2396
2397 if (!bnapi)
2398 continue;
2399
2400 cpr = &bnapi->cp_ring;
2401 ring = &cpr->cp_ring_struct;
2402
2403 rc = bnxt_alloc_ring(bp, ring);
2404 if (rc)
2405 return rc;
2406 }
2407 return 0;
2408 }
2409
2410 static void bnxt_init_ring_struct(struct bnxt *bp)
2411 {
2412 int i;
2413
2414 for (i = 0; i < bp->cp_nr_rings; i++) {
2415 struct bnxt_napi *bnapi = bp->bnapi[i];
2416 struct bnxt_cp_ring_info *cpr;
2417 struct bnxt_rx_ring_info *rxr;
2418 struct bnxt_tx_ring_info *txr;
2419 struct bnxt_ring_struct *ring;
2420
2421 if (!bnapi)
2422 continue;
2423
2424 cpr = &bnapi->cp_ring;
2425 ring = &cpr->cp_ring_struct;
2426 ring->nr_pages = bp->cp_nr_pages;
2427 ring->page_size = HW_CMPD_RING_SIZE;
2428 ring->pg_arr = (void **)cpr->cp_desc_ring;
2429 ring->dma_arr = cpr->cp_desc_mapping;
2430 ring->vmem_size = 0;
2431
2432 rxr = bnapi->rx_ring;
2433 if (!rxr)
2434 goto skip_rx;
2435
2436 ring = &rxr->rx_ring_struct;
2437 ring->nr_pages = bp->rx_nr_pages;
2438 ring->page_size = HW_RXBD_RING_SIZE;
2439 ring->pg_arr = (void **)rxr->rx_desc_ring;
2440 ring->dma_arr = rxr->rx_desc_mapping;
2441 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2442 ring->vmem = (void **)&rxr->rx_buf_ring;
2443
2444 ring = &rxr->rx_agg_ring_struct;
2445 ring->nr_pages = bp->rx_agg_nr_pages;
2446 ring->page_size = HW_RXBD_RING_SIZE;
2447 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2448 ring->dma_arr = rxr->rx_agg_desc_mapping;
2449 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2450 ring->vmem = (void **)&rxr->rx_agg_ring;
2451
2452 skip_rx:
2453 txr = bnapi->tx_ring;
2454 if (!txr)
2455 continue;
2456
2457 ring = &txr->tx_ring_struct;
2458 ring->nr_pages = bp->tx_nr_pages;
2459 ring->page_size = HW_RXBD_RING_SIZE;
2460 ring->pg_arr = (void **)txr->tx_desc_ring;
2461 ring->dma_arr = txr->tx_desc_mapping;
2462 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2463 ring->vmem = (void **)&txr->tx_buf_ring;
2464 }
2465 }
2466
2467 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2468 {
2469 int i;
2470 u32 prod;
2471 struct rx_bd **rx_buf_ring;
2472
2473 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2474 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2475 int j;
2476 struct rx_bd *rxbd;
2477
2478 rxbd = rx_buf_ring[i];
2479 if (!rxbd)
2480 continue;
2481
2482 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2483 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2484 rxbd->rx_bd_opaque = prod;
2485 }
2486 }
2487 }
2488
2489 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2490 {
2491 struct net_device *dev = bp->dev;
2492 struct bnxt_rx_ring_info *rxr;
2493 struct bnxt_ring_struct *ring;
2494 u32 prod, type;
2495 int i;
2496
2497 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2498 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2499
2500 if (NET_IP_ALIGN == 2)
2501 type |= RX_BD_FLAGS_SOP;
2502
2503 rxr = &bp->rx_ring[ring_nr];
2504 ring = &rxr->rx_ring_struct;
2505 bnxt_init_rxbd_pages(ring, type);
2506
2507 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2508 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2509 if (IS_ERR(rxr->xdp_prog)) {
2510 int rc = PTR_ERR(rxr->xdp_prog);
2511
2512 rxr->xdp_prog = NULL;
2513 return rc;
2514 }
2515 }
2516 prod = rxr->rx_prod;
2517 for (i = 0; i < bp->rx_ring_size; i++) {
2518 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2519 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2520 ring_nr, i, bp->rx_ring_size);
2521 break;
2522 }
2523 prod = NEXT_RX(prod);
2524 }
2525 rxr->rx_prod = prod;
2526 ring->fw_ring_id = INVALID_HW_RING_ID;
2527
2528 ring = &rxr->rx_agg_ring_struct;
2529 ring->fw_ring_id = INVALID_HW_RING_ID;
2530
2531 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2532 return 0;
2533
2534 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2535 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2536
2537 bnxt_init_rxbd_pages(ring, type);
2538
2539 prod = rxr->rx_agg_prod;
2540 for (i = 0; i < bp->rx_agg_ring_size; i++) {
2541 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2542 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2543 ring_nr, i, bp->rx_ring_size);
2544 break;
2545 }
2546 prod = NEXT_RX_AGG(prod);
2547 }
2548 rxr->rx_agg_prod = prod;
2549
2550 if (bp->flags & BNXT_FLAG_TPA) {
2551 if (rxr->rx_tpa) {
2552 u8 *data;
2553 dma_addr_t mapping;
2554
2555 for (i = 0; i < MAX_TPA; i++) {
2556 data = __bnxt_alloc_rx_data(bp, &mapping,
2557 GFP_KERNEL);
2558 if (!data)
2559 return -ENOMEM;
2560
2561 rxr->rx_tpa[i].data = data;
2562 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2563 rxr->rx_tpa[i].mapping = mapping;
2564 }
2565 } else {
2566 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2567 return -ENOMEM;
2568 }
2569 }
2570
2571 return 0;
2572 }
2573
2574 static void bnxt_init_cp_rings(struct bnxt *bp)
2575 {
2576 int i;
2577
2578 for (i = 0; i < bp->cp_nr_rings; i++) {
2579 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2580 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2581
2582 ring->fw_ring_id = INVALID_HW_RING_ID;
2583 }
2584 }
2585
2586 static int bnxt_init_rx_rings(struct bnxt *bp)
2587 {
2588 int i, rc = 0;
2589
2590 if (BNXT_RX_PAGE_MODE(bp)) {
2591 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2592 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2593 } else {
2594 bp->rx_offset = BNXT_RX_OFFSET;
2595 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2596 }
2597
2598 for (i = 0; i < bp->rx_nr_rings; i++) {
2599 rc = bnxt_init_one_rx_ring(bp, i);
2600 if (rc)
2601 break;
2602 }
2603
2604 return rc;
2605 }
2606
2607 static int bnxt_init_tx_rings(struct bnxt *bp)
2608 {
2609 u16 i;
2610
2611 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2612 MAX_SKB_FRAGS + 1);
2613
2614 for (i = 0; i < bp->tx_nr_rings; i++) {
2615 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2616 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2617
2618 ring->fw_ring_id = INVALID_HW_RING_ID;
2619 }
2620
2621 return 0;
2622 }
2623
2624 static void bnxt_free_ring_grps(struct bnxt *bp)
2625 {
2626 kfree(bp->grp_info);
2627 bp->grp_info = NULL;
2628 }
2629
2630 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2631 {
2632 int i;
2633
2634 if (irq_re_init) {
2635 bp->grp_info = kcalloc(bp->cp_nr_rings,
2636 sizeof(struct bnxt_ring_grp_info),
2637 GFP_KERNEL);
2638 if (!bp->grp_info)
2639 return -ENOMEM;
2640 }
2641 for (i = 0; i < bp->cp_nr_rings; i++) {
2642 if (irq_re_init)
2643 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2644 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2645 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2646 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2647 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2648 }
2649 return 0;
2650 }
2651
2652 static void bnxt_free_vnics(struct bnxt *bp)
2653 {
2654 kfree(bp->vnic_info);
2655 bp->vnic_info = NULL;
2656 bp->nr_vnics = 0;
2657 }
2658
2659 static int bnxt_alloc_vnics(struct bnxt *bp)
2660 {
2661 int num_vnics = 1;
2662
2663 #ifdef CONFIG_RFS_ACCEL
2664 if (bp->flags & BNXT_FLAG_RFS)
2665 num_vnics += bp->rx_nr_rings;
2666 #endif
2667
2668 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2669 num_vnics++;
2670
2671 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2672 GFP_KERNEL);
2673 if (!bp->vnic_info)
2674 return -ENOMEM;
2675
2676 bp->nr_vnics = num_vnics;
2677 return 0;
2678 }
2679
2680 static void bnxt_init_vnics(struct bnxt *bp)
2681 {
2682 int i;
2683
2684 for (i = 0; i < bp->nr_vnics; i++) {
2685 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2686
2687 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2688 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2689 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2690 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2691
2692 if (bp->vnic_info[i].rss_hash_key) {
2693 if (i == 0)
2694 prandom_bytes(vnic->rss_hash_key,
2695 HW_HASH_KEY_SIZE);
2696 else
2697 memcpy(vnic->rss_hash_key,
2698 bp->vnic_info[0].rss_hash_key,
2699 HW_HASH_KEY_SIZE);
2700 }
2701 }
2702 }
2703
2704 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2705 {
2706 int pages;
2707
2708 pages = ring_size / desc_per_pg;
2709
2710 if (!pages)
2711 return 1;
2712
2713 pages++;
2714
2715 while (pages & (pages - 1))
2716 pages++;
2717
2718 return pages;
2719 }
2720
2721 void bnxt_set_tpa_flags(struct bnxt *bp)
2722 {
2723 bp->flags &= ~BNXT_FLAG_TPA;
2724 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2725 return;
2726 if (bp->dev->features & NETIF_F_LRO)
2727 bp->flags |= BNXT_FLAG_LRO;
2728 if (bp->dev->features & NETIF_F_GRO)
2729 bp->flags |= BNXT_FLAG_GRO;
2730 }
2731
2732 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2733 * be set on entry.
2734 */
2735 void bnxt_set_ring_params(struct bnxt *bp)
2736 {
2737 u32 ring_size, rx_size, rx_space;
2738 u32 agg_factor = 0, agg_ring_size = 0;
2739
2740 /* 8 for CRC and VLAN */
2741 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2742
2743 rx_space = rx_size + NET_SKB_PAD +
2744 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2745
2746 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2747 ring_size = bp->rx_ring_size;
2748 bp->rx_agg_ring_size = 0;
2749 bp->rx_agg_nr_pages = 0;
2750
2751 if (bp->flags & BNXT_FLAG_TPA)
2752 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2753
2754 bp->flags &= ~BNXT_FLAG_JUMBO;
2755 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2756 u32 jumbo_factor;
2757
2758 bp->flags |= BNXT_FLAG_JUMBO;
2759 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2760 if (jumbo_factor > agg_factor)
2761 agg_factor = jumbo_factor;
2762 }
2763 agg_ring_size = ring_size * agg_factor;
2764
2765 if (agg_ring_size) {
2766 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2767 RX_DESC_CNT);
2768 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2769 u32 tmp = agg_ring_size;
2770
2771 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2772 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2773 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2774 tmp, agg_ring_size);
2775 }
2776 bp->rx_agg_ring_size = agg_ring_size;
2777 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2778 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2779 rx_space = rx_size + NET_SKB_PAD +
2780 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2781 }
2782
2783 bp->rx_buf_use_size = rx_size;
2784 bp->rx_buf_size = rx_space;
2785
2786 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2787 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2788
2789 ring_size = bp->tx_ring_size;
2790 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2791 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2792
2793 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2794 bp->cp_ring_size = ring_size;
2795
2796 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2797 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2798 bp->cp_nr_pages = MAX_CP_PAGES;
2799 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2800 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2801 ring_size, bp->cp_ring_size);
2802 }
2803 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2804 bp->cp_ring_mask = bp->cp_bit - 1;
2805 }
2806
2807 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2808 {
2809 if (page_mode) {
2810 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2811 return -EOPNOTSUPP;
2812 bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
2813 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2814 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2815 bp->dev->hw_features &= ~NETIF_F_LRO;
2816 bp->dev->features &= ~NETIF_F_LRO;
2817 bp->rx_dir = DMA_BIDIRECTIONAL;
2818 bp->rx_skb_func = bnxt_rx_page_skb;
2819 } else {
2820 bp->dev->max_mtu = BNXT_MAX_MTU;
2821 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2822 bp->rx_dir = DMA_FROM_DEVICE;
2823 bp->rx_skb_func = bnxt_rx_skb;
2824 }
2825 return 0;
2826 }
2827
2828 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2829 {
2830 int i;
2831 struct bnxt_vnic_info *vnic;
2832 struct pci_dev *pdev = bp->pdev;
2833
2834 if (!bp->vnic_info)
2835 return;
2836
2837 for (i = 0; i < bp->nr_vnics; i++) {
2838 vnic = &bp->vnic_info[i];
2839
2840 kfree(vnic->fw_grp_ids);
2841 vnic->fw_grp_ids = NULL;
2842
2843 kfree(vnic->uc_list);
2844 vnic->uc_list = NULL;
2845
2846 if (vnic->mc_list) {
2847 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2848 vnic->mc_list, vnic->mc_list_mapping);
2849 vnic->mc_list = NULL;
2850 }
2851
2852 if (vnic->rss_table) {
2853 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2854 vnic->rss_table,
2855 vnic->rss_table_dma_addr);
2856 vnic->rss_table = NULL;
2857 }
2858
2859 vnic->rss_hash_key = NULL;
2860 vnic->flags = 0;
2861 }
2862 }
2863
2864 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2865 {
2866 int i, rc = 0, size;
2867 struct bnxt_vnic_info *vnic;
2868 struct pci_dev *pdev = bp->pdev;
2869 int max_rings;
2870
2871 for (i = 0; i < bp->nr_vnics; i++) {
2872 vnic = &bp->vnic_info[i];
2873
2874 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2875 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2876
2877 if (mem_size > 0) {
2878 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2879 if (!vnic->uc_list) {
2880 rc = -ENOMEM;
2881 goto out;
2882 }
2883 }
2884 }
2885
2886 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2887 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2888 vnic->mc_list =
2889 dma_alloc_coherent(&pdev->dev,
2890 vnic->mc_list_size,
2891 &vnic->mc_list_mapping,
2892 GFP_KERNEL);
2893 if (!vnic->mc_list) {
2894 rc = -ENOMEM;
2895 goto out;
2896 }
2897 }
2898
2899 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2900 max_rings = bp->rx_nr_rings;
2901 else
2902 max_rings = 1;
2903
2904 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2905 if (!vnic->fw_grp_ids) {
2906 rc = -ENOMEM;
2907 goto out;
2908 }
2909
2910 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2911 !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2912 continue;
2913
2914 /* Allocate rss table and hash key */
2915 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2916 &vnic->rss_table_dma_addr,
2917 GFP_KERNEL);
2918 if (!vnic->rss_table) {
2919 rc = -ENOMEM;
2920 goto out;
2921 }
2922
2923 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2924
2925 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2926 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2927 }
2928 return 0;
2929
2930 out:
2931 return rc;
2932 }
2933
2934 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2935 {
2936 struct pci_dev *pdev = bp->pdev;
2937
2938 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2939 bp->hwrm_cmd_resp_dma_addr);
2940
2941 bp->hwrm_cmd_resp_addr = NULL;
2942 if (bp->hwrm_dbg_resp_addr) {
2943 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2944 bp->hwrm_dbg_resp_addr,
2945 bp->hwrm_dbg_resp_dma_addr);
2946
2947 bp->hwrm_dbg_resp_addr = NULL;
2948 }
2949 }
2950
2951 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2952 {
2953 struct pci_dev *pdev = bp->pdev;
2954
2955 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2956 &bp->hwrm_cmd_resp_dma_addr,
2957 GFP_KERNEL);
2958 if (!bp->hwrm_cmd_resp_addr)
2959 return -ENOMEM;
2960 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2961 HWRM_DBG_REG_BUF_SIZE,
2962 &bp->hwrm_dbg_resp_dma_addr,
2963 GFP_KERNEL);
2964 if (!bp->hwrm_dbg_resp_addr)
2965 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2966
2967 return 0;
2968 }
2969
2970 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
2971 {
2972 if (bp->hwrm_short_cmd_req_addr) {
2973 struct pci_dev *pdev = bp->pdev;
2974
2975 dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
2976 bp->hwrm_short_cmd_req_addr,
2977 bp->hwrm_short_cmd_req_dma_addr);
2978 bp->hwrm_short_cmd_req_addr = NULL;
2979 }
2980 }
2981
2982 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
2983 {
2984 struct pci_dev *pdev = bp->pdev;
2985
2986 bp->hwrm_short_cmd_req_addr =
2987 dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
2988 &bp->hwrm_short_cmd_req_dma_addr,
2989 GFP_KERNEL);
2990 if (!bp->hwrm_short_cmd_req_addr)
2991 return -ENOMEM;
2992
2993 return 0;
2994 }
2995
2996 static void bnxt_free_stats(struct bnxt *bp)
2997 {
2998 u32 size, i;
2999 struct pci_dev *pdev = bp->pdev;
3000
3001 if (bp->hw_rx_port_stats) {
3002 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3003 bp->hw_rx_port_stats,
3004 bp->hw_rx_port_stats_map);
3005 bp->hw_rx_port_stats = NULL;
3006 bp->flags &= ~BNXT_FLAG_PORT_STATS;
3007 }
3008
3009 if (!bp->bnapi)
3010 return;
3011
3012 size = sizeof(struct ctx_hw_stats);
3013
3014 for (i = 0; i < bp->cp_nr_rings; i++) {
3015 struct bnxt_napi *bnapi = bp->bnapi[i];
3016 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3017
3018 if (cpr->hw_stats) {
3019 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3020 cpr->hw_stats_map);
3021 cpr->hw_stats = NULL;
3022 }
3023 }
3024 }
3025
3026 static int bnxt_alloc_stats(struct bnxt *bp)
3027 {
3028 u32 size, i;
3029 struct pci_dev *pdev = bp->pdev;
3030
3031 size = sizeof(struct ctx_hw_stats);
3032
3033 for (i = 0; i < bp->cp_nr_rings; i++) {
3034 struct bnxt_napi *bnapi = bp->bnapi[i];
3035 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3036
3037 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3038 &cpr->hw_stats_map,
3039 GFP_KERNEL);
3040 if (!cpr->hw_stats)
3041 return -ENOMEM;
3042
3043 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3044 }
3045
3046 if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3047 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3048 sizeof(struct tx_port_stats) + 1024;
3049
3050 bp->hw_rx_port_stats =
3051 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3052 &bp->hw_rx_port_stats_map,
3053 GFP_KERNEL);
3054 if (!bp->hw_rx_port_stats)
3055 return -ENOMEM;
3056
3057 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3058 512;
3059 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3060 sizeof(struct rx_port_stats) + 512;
3061 bp->flags |= BNXT_FLAG_PORT_STATS;
3062 }
3063 return 0;
3064 }
3065
3066 static void bnxt_clear_ring_indices(struct bnxt *bp)
3067 {
3068 int i;
3069
3070 if (!bp->bnapi)
3071 return;
3072
3073 for (i = 0; i < bp->cp_nr_rings; i++) {
3074 struct bnxt_napi *bnapi = bp->bnapi[i];
3075 struct bnxt_cp_ring_info *cpr;
3076 struct bnxt_rx_ring_info *rxr;
3077 struct bnxt_tx_ring_info *txr;
3078
3079 if (!bnapi)
3080 continue;
3081
3082 cpr = &bnapi->cp_ring;
3083 cpr->cp_raw_cons = 0;
3084
3085 txr = bnapi->tx_ring;
3086 if (txr) {
3087 txr->tx_prod = 0;
3088 txr->tx_cons = 0;
3089 }
3090
3091 rxr = bnapi->rx_ring;
3092 if (rxr) {
3093 rxr->rx_prod = 0;
3094 rxr->rx_agg_prod = 0;
3095 rxr->rx_sw_agg_prod = 0;
3096 rxr->rx_next_cons = 0;
3097 }
3098 }
3099 }
3100
3101 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3102 {
3103 #ifdef CONFIG_RFS_ACCEL
3104 int i;
3105
3106 /* Under rtnl_lock and all our NAPIs have been disabled. It's
3107 * safe to delete the hash table.
3108 */
3109 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3110 struct hlist_head *head;
3111 struct hlist_node *tmp;
3112 struct bnxt_ntuple_filter *fltr;
3113
3114 head = &bp->ntp_fltr_hash_tbl[i];
3115 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3116 hlist_del(&fltr->hash);
3117 kfree(fltr);
3118 }
3119 }
3120 if (irq_reinit) {
3121 kfree(bp->ntp_fltr_bmap);
3122 bp->ntp_fltr_bmap = NULL;
3123 }
3124 bp->ntp_fltr_count = 0;
3125 #endif
3126 }
3127
3128 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3129 {
3130 #ifdef CONFIG_RFS_ACCEL
3131 int i, rc = 0;
3132
3133 if (!(bp->flags & BNXT_FLAG_RFS))
3134 return 0;
3135
3136 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3137 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3138
3139 bp->ntp_fltr_count = 0;
3140 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3141 sizeof(long),
3142 GFP_KERNEL);
3143
3144 if (!bp->ntp_fltr_bmap)
3145 rc = -ENOMEM;
3146
3147 return rc;
3148 #else
3149 return 0;
3150 #endif
3151 }
3152
3153 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3154 {
3155 bnxt_free_vnic_attributes(bp);
3156 bnxt_free_tx_rings(bp);
3157 bnxt_free_rx_rings(bp);
3158 bnxt_free_cp_rings(bp);
3159 bnxt_free_ntp_fltrs(bp, irq_re_init);
3160 if (irq_re_init) {
3161 bnxt_free_stats(bp);
3162 bnxt_free_ring_grps(bp);
3163 bnxt_free_vnics(bp);
3164 kfree(bp->tx_ring_map);
3165 bp->tx_ring_map = NULL;
3166 kfree(bp->tx_ring);
3167 bp->tx_ring = NULL;
3168 kfree(bp->rx_ring);
3169 bp->rx_ring = NULL;
3170 kfree(bp->bnapi);
3171 bp->bnapi = NULL;
3172 } else {
3173 bnxt_clear_ring_indices(bp);
3174 }
3175 }
3176
3177 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3178 {
3179 int i, j, rc, size, arr_size;
3180 void *bnapi;
3181
3182 if (irq_re_init) {
3183 /* Allocate bnapi mem pointer array and mem block for
3184 * all queues
3185 */
3186 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3187 bp->cp_nr_rings);
3188 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3189 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3190 if (!bnapi)
3191 return -ENOMEM;
3192
3193 bp->bnapi = bnapi;
3194 bnapi += arr_size;
3195 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3196 bp->bnapi[i] = bnapi;
3197 bp->bnapi[i]->index = i;
3198 bp->bnapi[i]->bp = bp;
3199 }
3200
3201 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3202 sizeof(struct bnxt_rx_ring_info),
3203 GFP_KERNEL);
3204 if (!bp->rx_ring)
3205 return -ENOMEM;
3206
3207 for (i = 0; i < bp->rx_nr_rings; i++) {
3208 bp->rx_ring[i].bnapi = bp->bnapi[i];
3209 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3210 }
3211
3212 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3213 sizeof(struct bnxt_tx_ring_info),
3214 GFP_KERNEL);
3215 if (!bp->tx_ring)
3216 return -ENOMEM;
3217
3218 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3219 GFP_KERNEL);
3220
3221 if (!bp->tx_ring_map)
3222 return -ENOMEM;
3223
3224 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3225 j = 0;
3226 else
3227 j = bp->rx_nr_rings;
3228
3229 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3230 bp->tx_ring[i].bnapi = bp->bnapi[j];
3231 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3232 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3233 if (i >= bp->tx_nr_rings_xdp) {
3234 bp->tx_ring[i].txq_index = i -
3235 bp->tx_nr_rings_xdp;
3236 bp->bnapi[j]->tx_int = bnxt_tx_int;
3237 } else {
3238 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3239 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3240 }
3241 }
3242
3243 rc = bnxt_alloc_stats(bp);
3244 if (rc)
3245 goto alloc_mem_err;
3246
3247 rc = bnxt_alloc_ntp_fltrs(bp);
3248 if (rc)
3249 goto alloc_mem_err;
3250
3251 rc = bnxt_alloc_vnics(bp);
3252 if (rc)
3253 goto alloc_mem_err;
3254 }
3255
3256 bnxt_init_ring_struct(bp);
3257
3258 rc = bnxt_alloc_rx_rings(bp);
3259 if (rc)
3260 goto alloc_mem_err;
3261
3262 rc = bnxt_alloc_tx_rings(bp);
3263 if (rc)
3264 goto alloc_mem_err;
3265
3266 rc = bnxt_alloc_cp_rings(bp);
3267 if (rc)
3268 goto alloc_mem_err;
3269
3270 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3271 BNXT_VNIC_UCAST_FLAG;
3272 rc = bnxt_alloc_vnic_attributes(bp);
3273 if (rc)
3274 goto alloc_mem_err;
3275 return 0;
3276
3277 alloc_mem_err:
3278 bnxt_free_mem(bp, true);
3279 return rc;
3280 }
3281
3282 static void bnxt_disable_int(struct bnxt *bp)
3283 {
3284 int i;
3285
3286 if (!bp->bnapi)
3287 return;
3288
3289 for (i = 0; i < bp->cp_nr_rings; i++) {
3290 struct bnxt_napi *bnapi = bp->bnapi[i];
3291 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3292 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3293
3294 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3295 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3296 }
3297 }
3298
3299 static void bnxt_disable_int_sync(struct bnxt *bp)
3300 {
3301 int i;
3302
3303 atomic_inc(&bp->intr_sem);
3304
3305 bnxt_disable_int(bp);
3306 for (i = 0; i < bp->cp_nr_rings; i++)
3307 synchronize_irq(bp->irq_tbl[i].vector);
3308 }
3309
3310 static void bnxt_enable_int(struct bnxt *bp)
3311 {
3312 int i;
3313
3314 atomic_set(&bp->intr_sem, 0);
3315 for (i = 0; i < bp->cp_nr_rings; i++) {
3316 struct bnxt_napi *bnapi = bp->bnapi[i];
3317 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3318
3319 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3320 }
3321 }
3322
3323 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3324 u16 cmpl_ring, u16 target_id)
3325 {
3326 struct input *req = request;
3327
3328 req->req_type = cpu_to_le16(req_type);
3329 req->cmpl_ring = cpu_to_le16(cmpl_ring);
3330 req->target_id = cpu_to_le16(target_id);
3331 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3332 }
3333
3334 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3335 int timeout, bool silent)
3336 {
3337 int i, intr_process, rc, tmo_count;
3338 struct input *req = msg;
3339 u32 *data = msg;
3340 __le32 *resp_len, *valid;
3341 u16 cp_ring_id, len = 0;
3342 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3343 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3344
3345 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3346 memset(resp, 0, PAGE_SIZE);
3347 cp_ring_id = le16_to_cpu(req->cmpl_ring);
3348 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3349
3350 if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3351 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3352 struct hwrm_short_input short_input = {0};
3353
3354 memcpy(short_cmd_req, req, msg_len);
3355 memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3356 msg_len);
3357
3358 short_input.req_type = req->req_type;
3359 short_input.signature =
3360 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3361 short_input.size = cpu_to_le16(msg_len);
3362 short_input.req_addr =
3363 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3364
3365 data = (u32 *)&short_input;
3366 msg_len = sizeof(short_input);
3367
3368 /* Sync memory write before updating doorbell */
3369 wmb();
3370
3371 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3372 }
3373
3374 /* Write request msg to hwrm channel */
3375 __iowrite32_copy(bp->bar0, data, msg_len / 4);
3376
3377 for (i = msg_len; i < max_req_len; i += 4)
3378 writel(0, bp->bar0 + i);
3379
3380 /* currently supports only one outstanding message */
3381 if (intr_process)
3382 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3383
3384 /* Ring channel doorbell */
3385 writel(1, bp->bar0 + 0x100);
3386
3387 if (!timeout)
3388 timeout = DFLT_HWRM_CMD_TIMEOUT;
3389
3390 i = 0;
3391 tmo_count = timeout * 40;
3392 if (intr_process) {
3393 /* Wait until hwrm response cmpl interrupt is processed */
3394 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3395 i++ < tmo_count) {
3396 usleep_range(25, 40);
3397 }
3398
3399 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3400 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3401 le16_to_cpu(req->req_type));
3402 return -1;
3403 }
3404 } else {
3405 /* Check if response len is updated */
3406 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3407 for (i = 0; i < tmo_count; i++) {
3408 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3409 HWRM_RESP_LEN_SFT;
3410 if (len)
3411 break;
3412 usleep_range(25, 40);
3413 }
3414
3415 if (i >= tmo_count) {
3416 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3417 timeout, le16_to_cpu(req->req_type),
3418 le16_to_cpu(req->seq_id), len);
3419 return -1;
3420 }
3421
3422 /* Last word of resp contains valid bit */
3423 valid = bp->hwrm_cmd_resp_addr + len - 4;
3424 for (i = 0; i < 5; i++) {
3425 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3426 break;
3427 udelay(1);
3428 }
3429
3430 if (i >= 5) {
3431 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3432 timeout, le16_to_cpu(req->req_type),
3433 le16_to_cpu(req->seq_id), len, *valid);
3434 return -1;
3435 }
3436 }
3437
3438 rc = le16_to_cpu(resp->error_code);
3439 if (rc && !silent)
3440 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3441 le16_to_cpu(resp->req_type),
3442 le16_to_cpu(resp->seq_id), rc);
3443 return rc;
3444 }
3445
3446 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3447 {
3448 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3449 }
3450
3451 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3452 {
3453 int rc;
3454
3455 mutex_lock(&bp->hwrm_cmd_lock);
3456 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3457 mutex_unlock(&bp->hwrm_cmd_lock);
3458 return rc;
3459 }
3460
3461 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3462 int timeout)
3463 {
3464 int rc;
3465
3466 mutex_lock(&bp->hwrm_cmd_lock);
3467 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3468 mutex_unlock(&bp->hwrm_cmd_lock);
3469 return rc;
3470 }
3471
3472 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3473 int bmap_size)
3474 {
3475 struct hwrm_func_drv_rgtr_input req = {0};
3476 DECLARE_BITMAP(async_events_bmap, 256);
3477 u32 *events = (u32 *)async_events_bmap;
3478 int i;
3479
3480 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3481
3482 req.enables =
3483 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3484
3485 memset(async_events_bmap, 0, sizeof(async_events_bmap));
3486 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3487 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3488
3489 if (bmap && bmap_size) {
3490 for (i = 0; i < bmap_size; i++) {
3491 if (test_bit(i, bmap))
3492 __set_bit(i, async_events_bmap);
3493 }
3494 }
3495
3496 for (i = 0; i < 8; i++)
3497 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3498
3499 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3500 }
3501
3502 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3503 {
3504 struct hwrm_func_drv_rgtr_input req = {0};
3505
3506 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3507
3508 req.enables =
3509 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3510 FUNC_DRV_RGTR_REQ_ENABLES_VER);
3511
3512 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3513 req.ver_maj = DRV_VER_MAJ;
3514 req.ver_min = DRV_VER_MIN;
3515 req.ver_upd = DRV_VER_UPD;
3516
3517 if (BNXT_PF(bp)) {
3518 u32 data[8];
3519 int i;
3520
3521 memset(data, 0, sizeof(data));
3522 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3523 u16 cmd = bnxt_vf_req_snif[i];
3524 unsigned int bit, idx;
3525
3526 idx = cmd / 32;
3527 bit = cmd % 32;
3528 data[idx] |= 1 << bit;
3529 }
3530
3531 for (i = 0; i < 8; i++)
3532 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3533
3534 req.enables |=
3535 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3536 }
3537
3538 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3539 }
3540
3541 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3542 {
3543 struct hwrm_func_drv_unrgtr_input req = {0};
3544
3545 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3546 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3547 }
3548
3549 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3550 {
3551 u32 rc = 0;
3552 struct hwrm_tunnel_dst_port_free_input req = {0};
3553
3554 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3555 req.tunnel_type = tunnel_type;
3556
3557 switch (tunnel_type) {
3558 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3559 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3560 break;
3561 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3562 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3563 break;
3564 default:
3565 break;
3566 }
3567
3568 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3569 if (rc)
3570 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3571 rc);
3572 return rc;
3573 }
3574
3575 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3576 u8 tunnel_type)
3577 {
3578 u32 rc = 0;
3579 struct hwrm_tunnel_dst_port_alloc_input req = {0};
3580 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3581
3582 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3583
3584 req.tunnel_type = tunnel_type;
3585 req.tunnel_dst_port_val = port;
3586
3587 mutex_lock(&bp->hwrm_cmd_lock);
3588 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3589 if (rc) {
3590 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3591 rc);
3592 goto err_out;
3593 }
3594
3595 switch (tunnel_type) {
3596 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3597 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3598 break;
3599 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3600 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3601 break;
3602 default:
3603 break;
3604 }
3605
3606 err_out:
3607 mutex_unlock(&bp->hwrm_cmd_lock);
3608 return rc;
3609 }
3610
3611 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3612 {
3613 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3614 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3615
3616 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3617 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3618
3619 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3620 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3621 req.mask = cpu_to_le32(vnic->rx_mask);
3622 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3623 }
3624
3625 #ifdef CONFIG_RFS_ACCEL
3626 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3627 struct bnxt_ntuple_filter *fltr)
3628 {
3629 struct hwrm_cfa_ntuple_filter_free_input req = {0};
3630
3631 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3632 req.ntuple_filter_id = fltr->filter_id;
3633 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3634 }
3635
3636 #define BNXT_NTP_FLTR_FLAGS \
3637 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
3638 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
3639 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
3640 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
3641 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
3642 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
3643 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
3644 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
3645 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
3646 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
3647 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
3648 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
3649 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
3650 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3651
3652 #define BNXT_NTP_TUNNEL_FLTR_FLAG \
3653 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3654
3655 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3656 struct bnxt_ntuple_filter *fltr)
3657 {
3658 int rc = 0;
3659 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3660 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3661 bp->hwrm_cmd_resp_addr;
3662 struct flow_keys *keys = &fltr->fkeys;
3663 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3664
3665 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3666 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3667
3668 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3669
3670 req.ethertype = htons(ETH_P_IP);
3671 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3672 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3673 req.ip_protocol = keys->basic.ip_proto;
3674
3675 if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3676 int i;
3677
3678 req.ethertype = htons(ETH_P_IPV6);
3679 req.ip_addr_type =
3680 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3681 *(struct in6_addr *)&req.src_ipaddr[0] =
3682 keys->addrs.v6addrs.src;
3683 *(struct in6_addr *)&req.dst_ipaddr[0] =
3684 keys->addrs.v6addrs.dst;
3685 for (i = 0; i < 4; i++) {
3686 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3687 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3688 }
3689 } else {
3690 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3691 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3692 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3693 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3694 }
3695 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3696 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3697 req.tunnel_type =
3698 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3699 }
3700
3701 req.src_port = keys->ports.src;
3702 req.src_port_mask = cpu_to_be16(0xffff);
3703 req.dst_port = keys->ports.dst;
3704 req.dst_port_mask = cpu_to_be16(0xffff);
3705
3706 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3707 mutex_lock(&bp->hwrm_cmd_lock);
3708 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3709 if (!rc)
3710 fltr->filter_id = resp->ntuple_filter_id;
3711 mutex_unlock(&bp->hwrm_cmd_lock);
3712 return rc;
3713 }
3714 #endif
3715
3716 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3717 u8 *mac_addr)
3718 {
3719 u32 rc = 0;
3720 struct hwrm_cfa_l2_filter_alloc_input req = {0};
3721 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3722
3723 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3724 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3725 if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3726 req.flags |=
3727 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3728 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3729 req.enables =
3730 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3731 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3732 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3733 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3734 req.l2_addr_mask[0] = 0xff;
3735 req.l2_addr_mask[1] = 0xff;
3736 req.l2_addr_mask[2] = 0xff;
3737 req.l2_addr_mask[3] = 0xff;
3738 req.l2_addr_mask[4] = 0xff;
3739 req.l2_addr_mask[5] = 0xff;
3740
3741 mutex_lock(&bp->hwrm_cmd_lock);
3742 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3743 if (!rc)
3744 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3745 resp->l2_filter_id;
3746 mutex_unlock(&bp->hwrm_cmd_lock);
3747 return rc;
3748 }
3749
3750 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3751 {
3752 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3753 int rc = 0;
3754
3755 /* Any associated ntuple filters will also be cleared by firmware. */
3756 mutex_lock(&bp->hwrm_cmd_lock);
3757 for (i = 0; i < num_of_vnics; i++) {
3758 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3759
3760 for (j = 0; j < vnic->uc_filter_count; j++) {
3761 struct hwrm_cfa_l2_filter_free_input req = {0};
3762
3763 bnxt_hwrm_cmd_hdr_init(bp, &req,
3764 HWRM_CFA_L2_FILTER_FREE, -1, -1);
3765
3766 req.l2_filter_id = vnic->fw_l2_filter_id[j];
3767
3768 rc = _hwrm_send_message(bp, &req, sizeof(req),
3769 HWRM_CMD_TIMEOUT);
3770 }
3771 vnic->uc_filter_count = 0;
3772 }
3773 mutex_unlock(&bp->hwrm_cmd_lock);
3774
3775 return rc;
3776 }
3777
3778 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3779 {
3780 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3781 struct hwrm_vnic_tpa_cfg_input req = {0};
3782
3783 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3784
3785 if (tpa_flags) {
3786 u16 mss = bp->dev->mtu - 40;
3787 u32 nsegs, n, segs = 0, flags;
3788
3789 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3790 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3791 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3792 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3793 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3794 if (tpa_flags & BNXT_FLAG_GRO)
3795 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3796
3797 req.flags = cpu_to_le32(flags);
3798
3799 req.enables =
3800 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3801 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3802 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3803
3804 /* Number of segs are log2 units, and first packet is not
3805 * included as part of this units.
3806 */
3807 if (mss <= BNXT_RX_PAGE_SIZE) {
3808 n = BNXT_RX_PAGE_SIZE / mss;
3809 nsegs = (MAX_SKB_FRAGS - 1) * n;
3810 } else {
3811 n = mss / BNXT_RX_PAGE_SIZE;
3812 if (mss & (BNXT_RX_PAGE_SIZE - 1))
3813 n++;
3814 nsegs = (MAX_SKB_FRAGS - n) / n;
3815 }
3816
3817 segs = ilog2(nsegs);
3818 req.max_agg_segs = cpu_to_le16(segs);
3819 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3820
3821 req.min_agg_len = cpu_to_le32(512);
3822 }
3823 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3824
3825 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3826 }
3827
3828 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3829 {
3830 u32 i, j, max_rings;
3831 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3832 struct hwrm_vnic_rss_cfg_input req = {0};
3833
3834 if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3835 return 0;
3836
3837 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3838 if (set_rss) {
3839 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3840 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3841 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3842 max_rings = bp->rx_nr_rings - 1;
3843 else
3844 max_rings = bp->rx_nr_rings;
3845 } else {
3846 max_rings = 1;
3847 }
3848
3849 /* Fill the RSS indirection table with ring group ids */
3850 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3851 if (j == max_rings)
3852 j = 0;
3853 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3854 }
3855
3856 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3857 req.hash_key_tbl_addr =
3858 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3859 }
3860 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3861 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3862 }
3863
3864 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3865 {
3866 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3867 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3868
3869 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3870 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3871 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3872 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3873 req.enables =
3874 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3875 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3876 /* thresholds not implemented in firmware yet */
3877 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3878 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3879 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3880 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3881 }
3882
3883 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3884 u16 ctx_idx)
3885 {
3886 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3887
3888 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3889 req.rss_cos_lb_ctx_id =
3890 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3891
3892 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3893 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3894 }
3895
3896 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3897 {
3898 int i, j;
3899
3900 for (i = 0; i < bp->nr_vnics; i++) {
3901 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3902
3903 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3904 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3905 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3906 }
3907 }
3908 bp->rsscos_nr_ctxs = 0;
3909 }
3910
3911 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3912 {
3913 int rc;
3914 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3915 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3916 bp->hwrm_cmd_resp_addr;
3917
3918 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3919 -1);
3920
3921 mutex_lock(&bp->hwrm_cmd_lock);
3922 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3923 if (!rc)
3924 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3925 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3926 mutex_unlock(&bp->hwrm_cmd_lock);
3927
3928 return rc;
3929 }
3930
3931 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3932 {
3933 unsigned int ring = 0, grp_idx;
3934 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3935 struct hwrm_vnic_cfg_input req = {0};
3936 u16 def_vlan = 0;
3937
3938 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3939
3940 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3941 /* Only RSS support for now TBD: COS & LB */
3942 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3943 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3944 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3945 VNIC_CFG_REQ_ENABLES_MRU);
3946 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3947 req.rss_rule =
3948 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3949 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3950 VNIC_CFG_REQ_ENABLES_MRU);
3951 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3952 } else {
3953 req.rss_rule = cpu_to_le16(0xffff);
3954 }
3955
3956 if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3957 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3958 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3959 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3960 } else {
3961 req.cos_rule = cpu_to_le16(0xffff);
3962 }
3963
3964 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3965 ring = 0;
3966 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3967 ring = vnic_id - 1;
3968 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3969 ring = bp->rx_nr_rings - 1;
3970
3971 grp_idx = bp->rx_ring[ring].bnapi->index;
3972 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3973 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3974
3975 req.lb_rule = cpu_to_le16(0xffff);
3976 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3977 VLAN_HLEN);
3978
3979 #ifdef CONFIG_BNXT_SRIOV
3980 if (BNXT_VF(bp))
3981 def_vlan = bp->vf.vlan;
3982 #endif
3983 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3984 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3985 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
3986 req.flags |=
3987 cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
3988
3989 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3990 }
3991
3992 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3993 {
3994 u32 rc = 0;
3995
3996 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3997 struct hwrm_vnic_free_input req = {0};
3998
3999 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4000 req.vnic_id =
4001 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4002
4003 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4004 if (rc)
4005 return rc;
4006 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4007 }
4008 return rc;
4009 }
4010
4011 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4012 {
4013 u16 i;
4014
4015 for (i = 0; i < bp->nr_vnics; i++)
4016 bnxt_hwrm_vnic_free_one(bp, i);
4017 }
4018
4019 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4020 unsigned int start_rx_ring_idx,
4021 unsigned int nr_rings)
4022 {
4023 int rc = 0;
4024 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4025 struct hwrm_vnic_alloc_input req = {0};
4026 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4027
4028 /* map ring groups to this vnic */
4029 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4030 grp_idx = bp->rx_ring[i].bnapi->index;
4031 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4032 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4033 j, nr_rings);
4034 break;
4035 }
4036 bp->vnic_info[vnic_id].fw_grp_ids[j] =
4037 bp->grp_info[grp_idx].fw_grp_id;
4038 }
4039
4040 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4041 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4042 if (vnic_id == 0)
4043 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4044
4045 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4046
4047 mutex_lock(&bp->hwrm_cmd_lock);
4048 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4049 if (!rc)
4050 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4051 mutex_unlock(&bp->hwrm_cmd_lock);
4052 return rc;
4053 }
4054
4055 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4056 {
4057 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4058 struct hwrm_vnic_qcaps_input req = {0};
4059 int rc;
4060
4061 if (bp->hwrm_spec_code < 0x10600)
4062 return 0;
4063
4064 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4065 mutex_lock(&bp->hwrm_cmd_lock);
4066 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4067 if (!rc) {
4068 if (resp->flags &
4069 cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4070 bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4071 }
4072 mutex_unlock(&bp->hwrm_cmd_lock);
4073 return rc;
4074 }
4075
4076 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4077 {
4078 u16 i;
4079 u32 rc = 0;
4080
4081 mutex_lock(&bp->hwrm_cmd_lock);
4082 for (i = 0; i < bp->rx_nr_rings; i++) {
4083 struct hwrm_ring_grp_alloc_input req = {0};
4084 struct hwrm_ring_grp_alloc_output *resp =
4085 bp->hwrm_cmd_resp_addr;
4086 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4087
4088 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4089
4090 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4091 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4092 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4093 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4094
4095 rc = _hwrm_send_message(bp, &req, sizeof(req),
4096 HWRM_CMD_TIMEOUT);
4097 if (rc)
4098 break;
4099
4100 bp->grp_info[grp_idx].fw_grp_id =
4101 le32_to_cpu(resp->ring_group_id);
4102 }
4103 mutex_unlock(&bp->hwrm_cmd_lock);
4104 return rc;
4105 }
4106
4107 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4108 {
4109 u16 i;
4110 u32 rc = 0;
4111 struct hwrm_ring_grp_free_input req = {0};
4112
4113 if (!bp->grp_info)
4114 return 0;
4115
4116 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4117
4118 mutex_lock(&bp->hwrm_cmd_lock);
4119 for (i = 0; i < bp->cp_nr_rings; i++) {
4120 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4121 continue;
4122 req.ring_group_id =
4123 cpu_to_le32(bp->grp_info[i].fw_grp_id);
4124
4125 rc = _hwrm_send_message(bp, &req, sizeof(req),
4126 HWRM_CMD_TIMEOUT);
4127 if (rc)
4128 break;
4129 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4130 }
4131 mutex_unlock(&bp->hwrm_cmd_lock);
4132 return rc;
4133 }
4134
4135 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4136 struct bnxt_ring_struct *ring,
4137 u32 ring_type, u32 map_index,
4138 u32 stats_ctx_id)
4139 {
4140 int rc = 0, err = 0;
4141 struct hwrm_ring_alloc_input req = {0};
4142 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4143 u16 ring_id;
4144
4145 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4146
4147 req.enables = 0;
4148 if (ring->nr_pages > 1) {
4149 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4150 /* Page size is in log2 units */
4151 req.page_size = BNXT_PAGE_SHIFT;
4152 req.page_tbl_depth = 1;
4153 } else {
4154 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
4155 }
4156 req.fbo = 0;
4157 /* Association of ring index with doorbell index and MSIX number */
4158 req.logical_id = cpu_to_le16(map_index);
4159
4160 switch (ring_type) {
4161 case HWRM_RING_ALLOC_TX:
4162 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4163 /* Association of transmit ring with completion ring */
4164 req.cmpl_ring_id =
4165 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
4166 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4167 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4168 req.queue_id = cpu_to_le16(ring->queue_id);
4169 break;
4170 case HWRM_RING_ALLOC_RX:
4171 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4172 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4173 break;
4174 case HWRM_RING_ALLOC_AGG:
4175 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4176 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4177 break;
4178 case HWRM_RING_ALLOC_CMPL:
4179 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4180 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4181 if (bp->flags & BNXT_FLAG_USING_MSIX)
4182 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4183 break;
4184 default:
4185 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4186 ring_type);
4187 return -1;
4188 }
4189
4190 mutex_lock(&bp->hwrm_cmd_lock);
4191 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4192 err = le16_to_cpu(resp->error_code);
4193 ring_id = le16_to_cpu(resp->ring_id);
4194 mutex_unlock(&bp->hwrm_cmd_lock);
4195
4196 if (rc || err) {
4197 switch (ring_type) {
4198 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4199 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4200 rc, err);
4201 return -1;
4202
4203 case RING_FREE_REQ_RING_TYPE_RX:
4204 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4205 rc, err);
4206 return -1;
4207
4208 case RING_FREE_REQ_RING_TYPE_TX:
4209 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4210 rc, err);
4211 return -1;
4212
4213 default:
4214 netdev_err(bp->dev, "Invalid ring\n");
4215 return -1;
4216 }
4217 }
4218 ring->fw_ring_id = ring_id;
4219 return rc;
4220 }
4221
4222 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4223 {
4224 int rc;
4225
4226 if (BNXT_PF(bp)) {
4227 struct hwrm_func_cfg_input req = {0};
4228
4229 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4230 req.fid = cpu_to_le16(0xffff);
4231 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4232 req.async_event_cr = cpu_to_le16(idx);
4233 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4234 } else {
4235 struct hwrm_func_vf_cfg_input req = {0};
4236
4237 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4238 req.enables =
4239 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4240 req.async_event_cr = cpu_to_le16(idx);
4241 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4242 }
4243 return rc;
4244 }
4245
4246 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4247 {
4248 int i, rc = 0;
4249
4250 for (i = 0; i < bp->cp_nr_rings; i++) {
4251 struct bnxt_napi *bnapi = bp->bnapi[i];
4252 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4253 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4254
4255 cpr->cp_doorbell = bp->bar1 + i * 0x80;
4256 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4257 INVALID_STATS_CTX_ID);
4258 if (rc)
4259 goto err_out;
4260 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4261 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4262
4263 if (!i) {
4264 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4265 if (rc)
4266 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4267 }
4268 }
4269
4270 for (i = 0; i < bp->tx_nr_rings; i++) {
4271 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4272 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4273 u32 map_idx = txr->bnapi->index;
4274 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4275
4276 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4277 map_idx, fw_stats_ctx);
4278 if (rc)
4279 goto err_out;
4280 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4281 }
4282
4283 for (i = 0; i < bp->rx_nr_rings; i++) {
4284 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4285 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4286 u32 map_idx = rxr->bnapi->index;
4287
4288 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4289 map_idx, INVALID_STATS_CTX_ID);
4290 if (rc)
4291 goto err_out;
4292 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4293 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4294 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4295 }
4296
4297 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4298 for (i = 0; i < bp->rx_nr_rings; i++) {
4299 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4300 struct bnxt_ring_struct *ring =
4301 &rxr->rx_agg_ring_struct;
4302 u32 grp_idx = rxr->bnapi->index;
4303 u32 map_idx = grp_idx + bp->rx_nr_rings;
4304
4305 rc = hwrm_ring_alloc_send_msg(bp, ring,
4306 HWRM_RING_ALLOC_AGG,
4307 map_idx,
4308 INVALID_STATS_CTX_ID);
4309 if (rc)
4310 goto err_out;
4311
4312 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4313 writel(DB_KEY_RX | rxr->rx_agg_prod,
4314 rxr->rx_agg_doorbell);
4315 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4316 }
4317 }
4318 err_out:
4319 return rc;
4320 }
4321
4322 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4323 struct bnxt_ring_struct *ring,
4324 u32 ring_type, int cmpl_ring_id)
4325 {
4326 int rc;
4327 struct hwrm_ring_free_input req = {0};
4328 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4329 u16 error_code;
4330
4331 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4332 req.ring_type = ring_type;
4333 req.ring_id = cpu_to_le16(ring->fw_ring_id);
4334
4335 mutex_lock(&bp->hwrm_cmd_lock);
4336 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4337 error_code = le16_to_cpu(resp->error_code);
4338 mutex_unlock(&bp->hwrm_cmd_lock);
4339
4340 if (rc || error_code) {
4341 switch (ring_type) {
4342 case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4343 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4344 rc);
4345 return rc;
4346 case RING_FREE_REQ_RING_TYPE_RX:
4347 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4348 rc);
4349 return rc;
4350 case RING_FREE_REQ_RING_TYPE_TX:
4351 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4352 rc);
4353 return rc;
4354 default:
4355 netdev_err(bp->dev, "Invalid ring\n");
4356 return -1;
4357 }
4358 }
4359 return 0;
4360 }
4361
4362 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4363 {
4364 int i;
4365
4366 if (!bp->bnapi)
4367 return;
4368
4369 for (i = 0; i < bp->tx_nr_rings; i++) {
4370 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4371 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4372 u32 grp_idx = txr->bnapi->index;
4373 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4374
4375 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4376 hwrm_ring_free_send_msg(bp, ring,
4377 RING_FREE_REQ_RING_TYPE_TX,
4378 close_path ? cmpl_ring_id :
4379 INVALID_HW_RING_ID);
4380 ring->fw_ring_id = INVALID_HW_RING_ID;
4381 }
4382 }
4383
4384 for (i = 0; i < bp->rx_nr_rings; i++) {
4385 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4386 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4387 u32 grp_idx = rxr->bnapi->index;
4388 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4389
4390 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4391 hwrm_ring_free_send_msg(bp, ring,
4392 RING_FREE_REQ_RING_TYPE_RX,
4393 close_path ? cmpl_ring_id :
4394 INVALID_HW_RING_ID);
4395 ring->fw_ring_id = INVALID_HW_RING_ID;
4396 bp->grp_info[grp_idx].rx_fw_ring_id =
4397 INVALID_HW_RING_ID;
4398 }
4399 }
4400
4401 for (i = 0; i < bp->rx_nr_rings; i++) {
4402 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4403 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4404 u32 grp_idx = rxr->bnapi->index;
4405 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4406
4407 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4408 hwrm_ring_free_send_msg(bp, ring,
4409 RING_FREE_REQ_RING_TYPE_RX,
4410 close_path ? cmpl_ring_id :
4411 INVALID_HW_RING_ID);
4412 ring->fw_ring_id = INVALID_HW_RING_ID;
4413 bp->grp_info[grp_idx].agg_fw_ring_id =
4414 INVALID_HW_RING_ID;
4415 }
4416 }
4417
4418 /* The completion rings are about to be freed. After that the
4419 * IRQ doorbell will not work anymore. So we need to disable
4420 * IRQ here.
4421 */
4422 bnxt_disable_int_sync(bp);
4423
4424 for (i = 0; i < bp->cp_nr_rings; i++) {
4425 struct bnxt_napi *bnapi = bp->bnapi[i];
4426 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4427 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4428
4429 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4430 hwrm_ring_free_send_msg(bp, ring,
4431 RING_FREE_REQ_RING_TYPE_L2_CMPL,
4432 INVALID_HW_RING_ID);
4433 ring->fw_ring_id = INVALID_HW_RING_ID;
4434 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4435 }
4436 }
4437 }
4438
4439 /* Caller must hold bp->hwrm_cmd_lock */
4440 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4441 {
4442 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4443 struct hwrm_func_qcfg_input req = {0};
4444 int rc;
4445
4446 if (bp->hwrm_spec_code < 0x10601)
4447 return 0;
4448
4449 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4450 req.fid = cpu_to_le16(fid);
4451 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4452 if (!rc)
4453 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4454
4455 return rc;
4456 }
4457
4458 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4459 {
4460 struct hwrm_func_cfg_input req = {0};
4461 int rc;
4462
4463 if (bp->hwrm_spec_code < 0x10601)
4464 return 0;
4465
4466 if (BNXT_VF(bp))
4467 return 0;
4468
4469 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4470 req.fid = cpu_to_le16(0xffff);
4471 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4472 req.num_tx_rings = cpu_to_le16(*tx_rings);
4473 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4474 if (rc)
4475 return rc;
4476
4477 mutex_lock(&bp->hwrm_cmd_lock);
4478 rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4479 mutex_unlock(&bp->hwrm_cmd_lock);
4480 if (!rc)
4481 bp->tx_reserved_rings = *tx_rings;
4482 return rc;
4483 }
4484
4485 static int bnxt_hwrm_check_tx_rings(struct bnxt *bp, int tx_rings)
4486 {
4487 struct hwrm_func_cfg_input req = {0};
4488 int rc;
4489
4490 if (bp->hwrm_spec_code < 0x10801)
4491 return 0;
4492
4493 if (BNXT_VF(bp))
4494 return 0;
4495
4496 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4497 req.fid = cpu_to_le16(0xffff);
4498 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST);
4499 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4500 req.num_tx_rings = cpu_to_le16(tx_rings);
4501 rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4502 if (rc)
4503 return -ENOMEM;
4504 return 0;
4505 }
4506
4507 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
4508 u32 buf_tmrs, u16 flags,
4509 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4510 {
4511 req->flags = cpu_to_le16(flags);
4512 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
4513 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
4514 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
4515 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
4516 /* Minimum time between 2 interrupts set to buf_tmr x 2 */
4517 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
4518 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
4519 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
4520 }
4521
4522 int bnxt_hwrm_set_coal(struct bnxt *bp)
4523 {
4524 int i, rc = 0;
4525 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4526 req_tx = {0}, *req;
4527 u16 max_buf, max_buf_irq;
4528 u16 buf_tmr, buf_tmr_irq;
4529 u32 flags;
4530
4531 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4532 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4533 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4534 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4535
4536 /* Each rx completion (2 records) should be DMAed immediately.
4537 * DMA 1/4 of the completion buffers at a time.
4538 */
4539 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4540 /* max_buf must not be zero */
4541 max_buf = clamp_t(u16, max_buf, 1, 63);
4542 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4543 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4544 /* buf timer set to 1/4 of interrupt timer */
4545 buf_tmr = max_t(u16, buf_tmr / 4, 1);
4546 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4547 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4548
4549 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4550
4551 /* RING_IDLE generates more IRQs for lower latency. Enable it only
4552 * if coal_ticks is less than 25 us.
4553 */
4554 if (bp->rx_coal_ticks < 25)
4555 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4556
4557 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4558 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4559
4560 /* max_buf must not be zero */
4561 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4562 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4563 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4564 /* buf timer set to 1/4 of interrupt timer */
4565 buf_tmr = max_t(u16, buf_tmr / 4, 1);
4566 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4567 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4568
4569 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4570 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4571 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4572
4573 mutex_lock(&bp->hwrm_cmd_lock);
4574 for (i = 0; i < bp->cp_nr_rings; i++) {
4575 struct bnxt_napi *bnapi = bp->bnapi[i];
4576
4577 req = &req_rx;
4578 if (!bnapi->rx_ring)
4579 req = &req_tx;
4580 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4581
4582 rc = _hwrm_send_message(bp, req, sizeof(*req),
4583 HWRM_CMD_TIMEOUT);
4584 if (rc)
4585 break;
4586 }
4587 mutex_unlock(&bp->hwrm_cmd_lock);
4588 return rc;
4589 }
4590
4591 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4592 {
4593 int rc = 0, i;
4594 struct hwrm_stat_ctx_free_input req = {0};
4595
4596 if (!bp->bnapi)
4597 return 0;
4598
4599 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4600 return 0;
4601
4602 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4603
4604 mutex_lock(&bp->hwrm_cmd_lock);
4605 for (i = 0; i < bp->cp_nr_rings; i++) {
4606 struct bnxt_napi *bnapi = bp->bnapi[i];
4607 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4608
4609 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4610 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4611
4612 rc = _hwrm_send_message(bp, &req, sizeof(req),
4613 HWRM_CMD_TIMEOUT);
4614 if (rc)
4615 break;
4616
4617 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4618 }
4619 }
4620 mutex_unlock(&bp->hwrm_cmd_lock);
4621 return rc;
4622 }
4623
4624 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4625 {
4626 int rc = 0, i;
4627 struct hwrm_stat_ctx_alloc_input req = {0};
4628 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4629
4630 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4631 return 0;
4632
4633 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4634
4635 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4636
4637 mutex_lock(&bp->hwrm_cmd_lock);
4638 for (i = 0; i < bp->cp_nr_rings; i++) {
4639 struct bnxt_napi *bnapi = bp->bnapi[i];
4640 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4641
4642 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4643
4644 rc = _hwrm_send_message(bp, &req, sizeof(req),
4645 HWRM_CMD_TIMEOUT);
4646 if (rc)
4647 break;
4648
4649 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4650
4651 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4652 }
4653 mutex_unlock(&bp->hwrm_cmd_lock);
4654 return rc;
4655 }
4656
4657 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4658 {
4659 struct hwrm_func_qcfg_input req = {0};
4660 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4661 u16 flags;
4662 int rc;
4663
4664 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4665 req.fid = cpu_to_le16(0xffff);
4666 mutex_lock(&bp->hwrm_cmd_lock);
4667 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4668 if (rc)
4669 goto func_qcfg_exit;
4670
4671 #ifdef CONFIG_BNXT_SRIOV
4672 if (BNXT_VF(bp)) {
4673 struct bnxt_vf_info *vf = &bp->vf;
4674
4675 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4676 }
4677 #endif
4678 flags = le16_to_cpu(resp->flags);
4679 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
4680 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
4681 bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
4682 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
4683 bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
4684 }
4685 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
4686 bp->flags |= BNXT_FLAG_MULTI_HOST;
4687
4688 switch (resp->port_partition_type) {
4689 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4690 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4691 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4692 bp->port_partition_type = resp->port_partition_type;
4693 break;
4694 }
4695 if (bp->hwrm_spec_code < 0x10707 ||
4696 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
4697 bp->br_mode = BRIDGE_MODE_VEB;
4698 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
4699 bp->br_mode = BRIDGE_MODE_VEPA;
4700 else
4701 bp->br_mode = BRIDGE_MODE_UNDEF;
4702
4703 func_qcfg_exit:
4704 mutex_unlock(&bp->hwrm_cmd_lock);
4705 return rc;
4706 }
4707
4708 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4709 {
4710 int rc = 0;
4711 struct hwrm_func_qcaps_input req = {0};
4712 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4713
4714 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4715 req.fid = cpu_to_le16(0xffff);
4716
4717 mutex_lock(&bp->hwrm_cmd_lock);
4718 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4719 if (rc)
4720 goto hwrm_func_qcaps_exit;
4721
4722 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4723 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4724 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4725 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4726
4727 bp->tx_push_thresh = 0;
4728 if (resp->flags &
4729 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4730 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4731
4732 if (BNXT_PF(bp)) {
4733 struct bnxt_pf_info *pf = &bp->pf;
4734
4735 pf->fw_fid = le16_to_cpu(resp->fid);
4736 pf->port_id = le16_to_cpu(resp->port_id);
4737 bp->dev->dev_port = pf->port_id;
4738 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4739 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4740 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4741 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4742 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4743 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4744 if (!pf->max_hw_ring_grps)
4745 pf->max_hw_ring_grps = pf->max_tx_rings;
4746 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4747 pf->max_vnics = le16_to_cpu(resp->max_vnics);
4748 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4749 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4750 pf->max_vfs = le16_to_cpu(resp->max_vfs);
4751 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4752 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4753 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4754 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4755 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4756 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4757 if (resp->flags &
4758 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
4759 bp->flags |= BNXT_FLAG_WOL_CAP;
4760 } else {
4761 #ifdef CONFIG_BNXT_SRIOV
4762 struct bnxt_vf_info *vf = &bp->vf;
4763
4764 vf->fw_fid = le16_to_cpu(resp->fid);
4765
4766 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4767 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4768 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4769 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4770 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4771 if (!vf->max_hw_ring_grps)
4772 vf->max_hw_ring_grps = vf->max_tx_rings;
4773 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4774 vf->max_vnics = le16_to_cpu(resp->max_vnics);
4775 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4776
4777 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4778 #endif
4779 }
4780
4781 hwrm_func_qcaps_exit:
4782 mutex_unlock(&bp->hwrm_cmd_lock);
4783 return rc;
4784 }
4785
4786 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4787 {
4788 struct hwrm_func_reset_input req = {0};
4789
4790 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4791 req.enables = 0;
4792
4793 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4794 }
4795
4796 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4797 {
4798 int rc = 0;
4799 struct hwrm_queue_qportcfg_input req = {0};
4800 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4801 u8 i, *qptr;
4802
4803 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4804
4805 mutex_lock(&bp->hwrm_cmd_lock);
4806 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4807 if (rc)
4808 goto qportcfg_exit;
4809
4810 if (!resp->max_configurable_queues) {
4811 rc = -EINVAL;
4812 goto qportcfg_exit;
4813 }
4814 bp->max_tc = resp->max_configurable_queues;
4815 bp->max_lltc = resp->max_configurable_lossless_queues;
4816 if (bp->max_tc > BNXT_MAX_QUEUE)
4817 bp->max_tc = BNXT_MAX_QUEUE;
4818
4819 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4820 bp->max_tc = 1;
4821
4822 if (bp->max_lltc > bp->max_tc)
4823 bp->max_lltc = bp->max_tc;
4824
4825 qptr = &resp->queue_id0;
4826 for (i = 0; i < bp->max_tc; i++) {
4827 bp->q_info[i].queue_id = *qptr++;
4828 bp->q_info[i].queue_profile = *qptr++;
4829 }
4830
4831 qportcfg_exit:
4832 mutex_unlock(&bp->hwrm_cmd_lock);
4833 return rc;
4834 }
4835
4836 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4837 {
4838 int rc;
4839 struct hwrm_ver_get_input req = {0};
4840 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4841 u32 dev_caps_cfg;
4842
4843 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4844 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4845 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4846 req.hwrm_intf_min = HWRM_VERSION_MINOR;
4847 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4848 mutex_lock(&bp->hwrm_cmd_lock);
4849 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4850 if (rc)
4851 goto hwrm_ver_get_exit;
4852
4853 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4854
4855 bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4856 resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4857 if (resp->hwrm_intf_maj < 1) {
4858 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4859 resp->hwrm_intf_maj, resp->hwrm_intf_min,
4860 resp->hwrm_intf_upd);
4861 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4862 }
4863 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4864 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4865 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4866
4867 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4868 if (!bp->hwrm_cmd_timeout)
4869 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4870
4871 if (resp->hwrm_intf_maj >= 1)
4872 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4873
4874 bp->chip_num = le16_to_cpu(resp->chip_num);
4875 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4876 !resp->chip_metal)
4877 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4878
4879 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
4880 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
4881 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
4882 bp->flags |= BNXT_FLAG_SHORT_CMD;
4883
4884 hwrm_ver_get_exit:
4885 mutex_unlock(&bp->hwrm_cmd_lock);
4886 return rc;
4887 }
4888
4889 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4890 {
4891 #if IS_ENABLED(CONFIG_RTC_LIB)
4892 struct hwrm_fw_set_time_input req = {0};
4893 struct rtc_time tm;
4894 struct timeval tv;
4895
4896 if (bp->hwrm_spec_code < 0x10400)
4897 return -EOPNOTSUPP;
4898
4899 do_gettimeofday(&tv);
4900 rtc_time_to_tm(tv.tv_sec, &tm);
4901 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4902 req.year = cpu_to_le16(1900 + tm.tm_year);
4903 req.month = 1 + tm.tm_mon;
4904 req.day = tm.tm_mday;
4905 req.hour = tm.tm_hour;
4906 req.minute = tm.tm_min;
4907 req.second = tm.tm_sec;
4908 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4909 #else
4910 return -EOPNOTSUPP;
4911 #endif
4912 }
4913
4914 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4915 {
4916 int rc;
4917 struct bnxt_pf_info *pf = &bp->pf;
4918 struct hwrm_port_qstats_input req = {0};
4919
4920 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4921 return 0;
4922
4923 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4924 req.port_id = cpu_to_le16(pf->port_id);
4925 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4926 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4927 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4928 return rc;
4929 }
4930
4931 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4932 {
4933 if (bp->vxlan_port_cnt) {
4934 bnxt_hwrm_tunnel_dst_port_free(
4935 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4936 }
4937 bp->vxlan_port_cnt = 0;
4938 if (bp->nge_port_cnt) {
4939 bnxt_hwrm_tunnel_dst_port_free(
4940 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4941 }
4942 bp->nge_port_cnt = 0;
4943 }
4944
4945 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4946 {
4947 int rc, i;
4948 u32 tpa_flags = 0;
4949
4950 if (set_tpa)
4951 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4952 for (i = 0; i < bp->nr_vnics; i++) {
4953 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4954 if (rc) {
4955 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4956 i, rc);
4957 return rc;
4958 }
4959 }
4960 return 0;
4961 }
4962
4963 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4964 {
4965 int i;
4966
4967 for (i = 0; i < bp->nr_vnics; i++)
4968 bnxt_hwrm_vnic_set_rss(bp, i, false);
4969 }
4970
4971 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4972 bool irq_re_init)
4973 {
4974 if (bp->vnic_info) {
4975 bnxt_hwrm_clear_vnic_filter(bp);
4976 /* clear all RSS setting before free vnic ctx */
4977 bnxt_hwrm_clear_vnic_rss(bp);
4978 bnxt_hwrm_vnic_ctx_free(bp);
4979 /* before free the vnic, undo the vnic tpa settings */
4980 if (bp->flags & BNXT_FLAG_TPA)
4981 bnxt_set_tpa(bp, false);
4982 bnxt_hwrm_vnic_free(bp);
4983 }
4984 bnxt_hwrm_ring_free(bp, close_path);
4985 bnxt_hwrm_ring_grp_free(bp);
4986 if (irq_re_init) {
4987 bnxt_hwrm_stat_ctx_free(bp);
4988 bnxt_hwrm_free_tunnel_ports(bp);
4989 }
4990 }
4991
4992 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
4993 {
4994 struct hwrm_func_cfg_input req = {0};
4995 int rc;
4996
4997 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4998 req.fid = cpu_to_le16(0xffff);
4999 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5000 if (br_mode == BRIDGE_MODE_VEB)
5001 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5002 else if (br_mode == BRIDGE_MODE_VEPA)
5003 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5004 else
5005 return -EINVAL;
5006 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5007 if (rc)
5008 rc = -EIO;
5009 return rc;
5010 }
5011
5012 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5013 {
5014 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5015 int rc;
5016
5017 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5018 goto skip_rss_ctx;
5019
5020 /* allocate context for vnic */
5021 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5022 if (rc) {
5023 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5024 vnic_id, rc);
5025 goto vnic_setup_err;
5026 }
5027 bp->rsscos_nr_ctxs++;
5028
5029 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5030 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5031 if (rc) {
5032 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5033 vnic_id, rc);
5034 goto vnic_setup_err;
5035 }
5036 bp->rsscos_nr_ctxs++;
5037 }
5038
5039 skip_rss_ctx:
5040 /* configure default vnic, ring grp */
5041 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5042 if (rc) {
5043 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5044 vnic_id, rc);
5045 goto vnic_setup_err;
5046 }
5047
5048 /* Enable RSS hashing on vnic */
5049 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5050 if (rc) {
5051 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5052 vnic_id, rc);
5053 goto vnic_setup_err;
5054 }
5055
5056 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5057 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5058 if (rc) {
5059 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5060 vnic_id, rc);
5061 }
5062 }
5063
5064 vnic_setup_err:
5065 return rc;
5066 }
5067
5068 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5069 {
5070 #ifdef CONFIG_RFS_ACCEL
5071 int i, rc = 0;
5072
5073 for (i = 0; i < bp->rx_nr_rings; i++) {
5074 struct bnxt_vnic_info *vnic;
5075 u16 vnic_id = i + 1;
5076 u16 ring_id = i;
5077
5078 if (vnic_id >= bp->nr_vnics)
5079 break;
5080
5081 vnic = &bp->vnic_info[vnic_id];
5082 vnic->flags |= BNXT_VNIC_RFS_FLAG;
5083 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5084 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5085 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5086 if (rc) {
5087 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5088 vnic_id, rc);
5089 break;
5090 }
5091 rc = bnxt_setup_vnic(bp, vnic_id);
5092 if (rc)
5093 break;
5094 }
5095 return rc;
5096 #else
5097 return 0;
5098 #endif
5099 }
5100
5101 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5102 static bool bnxt_promisc_ok(struct bnxt *bp)
5103 {
5104 #ifdef CONFIG_BNXT_SRIOV
5105 if (BNXT_VF(bp) && !bp->vf.vlan)
5106 return false;
5107 #endif
5108 return true;
5109 }
5110
5111 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5112 {
5113 unsigned int rc = 0;
5114
5115 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5116 if (rc) {
5117 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5118 rc);
5119 return rc;
5120 }
5121
5122 rc = bnxt_hwrm_vnic_cfg(bp, 1);
5123 if (rc) {
5124 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5125 rc);
5126 return rc;
5127 }
5128 return rc;
5129 }
5130
5131 static int bnxt_cfg_rx_mode(struct bnxt *);
5132 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5133
5134 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5135 {
5136 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5137 int rc = 0;
5138 unsigned int rx_nr_rings = bp->rx_nr_rings;
5139
5140 if (irq_re_init) {
5141 rc = bnxt_hwrm_stat_ctx_alloc(bp);
5142 if (rc) {
5143 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5144 rc);
5145 goto err_out;
5146 }
5147 if (bp->tx_reserved_rings != bp->tx_nr_rings) {
5148 int tx = bp->tx_nr_rings;
5149
5150 if (bnxt_hwrm_reserve_tx_rings(bp, &tx) ||
5151 tx < bp->tx_nr_rings) {
5152 rc = -ENOMEM;
5153 goto err_out;
5154 }
5155 }
5156 }
5157
5158 rc = bnxt_hwrm_ring_alloc(bp);
5159 if (rc) {
5160 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5161 goto err_out;
5162 }
5163
5164 rc = bnxt_hwrm_ring_grp_alloc(bp);
5165 if (rc) {
5166 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5167 goto err_out;
5168 }
5169
5170 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5171 rx_nr_rings--;
5172
5173 /* default vnic 0 */
5174 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5175 if (rc) {
5176 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5177 goto err_out;
5178 }
5179
5180 rc = bnxt_setup_vnic(bp, 0);
5181 if (rc)
5182 goto err_out;
5183
5184 if (bp->flags & BNXT_FLAG_RFS) {
5185 rc = bnxt_alloc_rfs_vnics(bp);
5186 if (rc)
5187 goto err_out;
5188 }
5189
5190 if (bp->flags & BNXT_FLAG_TPA) {
5191 rc = bnxt_set_tpa(bp, true);
5192 if (rc)
5193 goto err_out;
5194 }
5195
5196 if (BNXT_VF(bp))
5197 bnxt_update_vf_mac(bp);
5198
5199 /* Filter for default vnic 0 */
5200 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5201 if (rc) {
5202 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5203 goto err_out;
5204 }
5205 vnic->uc_filter_count = 1;
5206
5207 vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5208
5209 if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5210 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5211
5212 if (bp->dev->flags & IFF_ALLMULTI) {
5213 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5214 vnic->mc_list_count = 0;
5215 } else {
5216 u32 mask = 0;
5217
5218 bnxt_mc_list_updated(bp, &mask);
5219 vnic->rx_mask |= mask;
5220 }
5221
5222 rc = bnxt_cfg_rx_mode(bp);
5223 if (rc)
5224 goto err_out;
5225
5226 rc = bnxt_hwrm_set_coal(bp);
5227 if (rc)
5228 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5229 rc);
5230
5231 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5232 rc = bnxt_setup_nitroa0_vnic(bp);
5233 if (rc)
5234 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5235 rc);
5236 }
5237
5238 if (BNXT_VF(bp)) {
5239 bnxt_hwrm_func_qcfg(bp);
5240 netdev_update_features(bp->dev);
5241 }
5242
5243 return 0;
5244
5245 err_out:
5246 bnxt_hwrm_resource_free(bp, 0, true);
5247
5248 return rc;
5249 }
5250
5251 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5252 {
5253 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5254 return 0;
5255 }
5256
5257 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5258 {
5259 bnxt_init_cp_rings(bp);
5260 bnxt_init_rx_rings(bp);
5261 bnxt_init_tx_rings(bp);
5262 bnxt_init_ring_grps(bp, irq_re_init);
5263 bnxt_init_vnics(bp);
5264
5265 return bnxt_init_chip(bp, irq_re_init);
5266 }
5267
5268 static int bnxt_set_real_num_queues(struct bnxt *bp)
5269 {
5270 int rc;
5271 struct net_device *dev = bp->dev;
5272
5273 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5274 bp->tx_nr_rings_xdp);
5275 if (rc)
5276 return rc;
5277
5278 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5279 if (rc)
5280 return rc;
5281
5282 #ifdef CONFIG_RFS_ACCEL
5283 if (bp->flags & BNXT_FLAG_RFS)
5284 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5285 #endif
5286
5287 return rc;
5288 }
5289
5290 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5291 bool shared)
5292 {
5293 int _rx = *rx, _tx = *tx;
5294
5295 if (shared) {
5296 *rx = min_t(int, _rx, max);
5297 *tx = min_t(int, _tx, max);
5298 } else {
5299 if (max < 2)
5300 return -ENOMEM;
5301
5302 while (_rx + _tx > max) {
5303 if (_rx > _tx && _rx > 1)
5304 _rx--;
5305 else if (_tx > 1)
5306 _tx--;
5307 }
5308 *rx = _rx;
5309 *tx = _tx;
5310 }
5311 return 0;
5312 }
5313
5314 static void bnxt_setup_msix(struct bnxt *bp)
5315 {
5316 const int len = sizeof(bp->irq_tbl[0].name);
5317 struct net_device *dev = bp->dev;
5318 int tcs, i;
5319
5320 tcs = netdev_get_num_tc(dev);
5321 if (tcs > 1) {
5322 int i, off, count;
5323
5324 for (i = 0; i < tcs; i++) {
5325 count = bp->tx_nr_rings_per_tc;
5326 off = i * count;
5327 netdev_set_tc_queue(dev, i, count, off);
5328 }
5329 }
5330
5331 for (i = 0; i < bp->cp_nr_rings; i++) {
5332 char *attr;
5333
5334 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5335 attr = "TxRx";
5336 else if (i < bp->rx_nr_rings)
5337 attr = "rx";
5338 else
5339 attr = "tx";
5340
5341 snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5342 i);
5343 bp->irq_tbl[i].handler = bnxt_msix;
5344 }
5345 }
5346
5347 static void bnxt_setup_inta(struct bnxt *bp)
5348 {
5349 const int len = sizeof(bp->irq_tbl[0].name);
5350
5351 if (netdev_get_num_tc(bp->dev))
5352 netdev_reset_tc(bp->dev);
5353
5354 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5355 0);
5356 bp->irq_tbl[0].handler = bnxt_inta;
5357 }
5358
5359 static int bnxt_setup_int_mode(struct bnxt *bp)
5360 {
5361 int rc;
5362
5363 if (bp->flags & BNXT_FLAG_USING_MSIX)
5364 bnxt_setup_msix(bp);
5365 else
5366 bnxt_setup_inta(bp);
5367
5368 rc = bnxt_set_real_num_queues(bp);
5369 return rc;
5370 }
5371
5372 #ifdef CONFIG_RFS_ACCEL
5373 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5374 {
5375 #if defined(CONFIG_BNXT_SRIOV)
5376 if (BNXT_VF(bp))
5377 return bp->vf.max_rsscos_ctxs;
5378 #endif
5379 return bp->pf.max_rsscos_ctxs;
5380 }
5381
5382 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5383 {
5384 #if defined(CONFIG_BNXT_SRIOV)
5385 if (BNXT_VF(bp))
5386 return bp->vf.max_vnics;
5387 #endif
5388 return bp->pf.max_vnics;
5389 }
5390 #endif
5391
5392 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5393 {
5394 #if defined(CONFIG_BNXT_SRIOV)
5395 if (BNXT_VF(bp))
5396 return bp->vf.max_stat_ctxs;
5397 #endif
5398 return bp->pf.max_stat_ctxs;
5399 }
5400
5401 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5402 {
5403 #if defined(CONFIG_BNXT_SRIOV)
5404 if (BNXT_VF(bp))
5405 bp->vf.max_stat_ctxs = max;
5406 else
5407 #endif
5408 bp->pf.max_stat_ctxs = max;
5409 }
5410
5411 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5412 {
5413 #if defined(CONFIG_BNXT_SRIOV)
5414 if (BNXT_VF(bp))
5415 return bp->vf.max_cp_rings;
5416 #endif
5417 return bp->pf.max_cp_rings;
5418 }
5419
5420 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5421 {
5422 #if defined(CONFIG_BNXT_SRIOV)
5423 if (BNXT_VF(bp))
5424 bp->vf.max_cp_rings = max;
5425 else
5426 #endif
5427 bp->pf.max_cp_rings = max;
5428 }
5429
5430 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5431 {
5432 #if defined(CONFIG_BNXT_SRIOV)
5433 if (BNXT_VF(bp))
5434 return min_t(unsigned int, bp->vf.max_irqs,
5435 bp->vf.max_cp_rings);
5436 #endif
5437 return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5438 }
5439
5440 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5441 {
5442 #if defined(CONFIG_BNXT_SRIOV)
5443 if (BNXT_VF(bp))
5444 bp->vf.max_irqs = max_irqs;
5445 else
5446 #endif
5447 bp->pf.max_irqs = max_irqs;
5448 }
5449
5450 static int bnxt_init_msix(struct bnxt *bp)
5451 {
5452 int i, total_vecs, rc = 0, min = 1;
5453 struct msix_entry *msix_ent;
5454
5455 total_vecs = bnxt_get_max_func_irqs(bp);
5456 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5457 if (!msix_ent)
5458 return -ENOMEM;
5459
5460 for (i = 0; i < total_vecs; i++) {
5461 msix_ent[i].entry = i;
5462 msix_ent[i].vector = 0;
5463 }
5464
5465 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5466 min = 2;
5467
5468 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5469 if (total_vecs < 0) {
5470 rc = -ENODEV;
5471 goto msix_setup_exit;
5472 }
5473
5474 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5475 if (bp->irq_tbl) {
5476 for (i = 0; i < total_vecs; i++)
5477 bp->irq_tbl[i].vector = msix_ent[i].vector;
5478
5479 bp->total_irqs = total_vecs;
5480 /* Trim rings based upon num of vectors allocated */
5481 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5482 total_vecs, min == 1);
5483 if (rc)
5484 goto msix_setup_exit;
5485
5486 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5487 bp->cp_nr_rings = (min == 1) ?
5488 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5489 bp->tx_nr_rings + bp->rx_nr_rings;
5490
5491 } else {
5492 rc = -ENOMEM;
5493 goto msix_setup_exit;
5494 }
5495 bp->flags |= BNXT_FLAG_USING_MSIX;
5496 kfree(msix_ent);
5497 return 0;
5498
5499 msix_setup_exit:
5500 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5501 kfree(bp->irq_tbl);
5502 bp->irq_tbl = NULL;
5503 pci_disable_msix(bp->pdev);
5504 kfree(msix_ent);
5505 return rc;
5506 }
5507
5508 static int bnxt_init_inta(struct bnxt *bp)
5509 {
5510 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5511 if (!bp->irq_tbl)
5512 return -ENOMEM;
5513
5514 bp->total_irqs = 1;
5515 bp->rx_nr_rings = 1;
5516 bp->tx_nr_rings = 1;
5517 bp->cp_nr_rings = 1;
5518 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5519 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5520 bp->irq_tbl[0].vector = bp->pdev->irq;
5521 return 0;
5522 }
5523
5524 static int bnxt_init_int_mode(struct bnxt *bp)
5525 {
5526 int rc = 0;
5527
5528 if (bp->flags & BNXT_FLAG_MSIX_CAP)
5529 rc = bnxt_init_msix(bp);
5530
5531 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5532 /* fallback to INTA */
5533 rc = bnxt_init_inta(bp);
5534 }
5535 return rc;
5536 }
5537
5538 static void bnxt_clear_int_mode(struct bnxt *bp)
5539 {
5540 if (bp->flags & BNXT_FLAG_USING_MSIX)
5541 pci_disable_msix(bp->pdev);
5542
5543 kfree(bp->irq_tbl);
5544 bp->irq_tbl = NULL;
5545 bp->flags &= ~BNXT_FLAG_USING_MSIX;
5546 }
5547
5548 static void bnxt_free_irq(struct bnxt *bp)
5549 {
5550 struct bnxt_irq *irq;
5551 int i;
5552
5553 #ifdef CONFIG_RFS_ACCEL
5554 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5555 bp->dev->rx_cpu_rmap = NULL;
5556 #endif
5557 if (!bp->irq_tbl)
5558 return;
5559
5560 for (i = 0; i < bp->cp_nr_rings; i++) {
5561 irq = &bp->irq_tbl[i];
5562 if (irq->requested) {
5563 if (irq->have_cpumask) {
5564 irq_set_affinity_hint(irq->vector, NULL);
5565 free_cpumask_var(irq->cpu_mask);
5566 irq->have_cpumask = 0;
5567 }
5568 free_irq(irq->vector, bp->bnapi[i]);
5569 }
5570
5571 irq->requested = 0;
5572 }
5573 }
5574
5575 static int bnxt_request_irq(struct bnxt *bp)
5576 {
5577 int i, j, rc = 0;
5578 unsigned long flags = 0;
5579 #ifdef CONFIG_RFS_ACCEL
5580 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5581 #endif
5582
5583 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5584 flags = IRQF_SHARED;
5585
5586 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5587 struct bnxt_irq *irq = &bp->irq_tbl[i];
5588 #ifdef CONFIG_RFS_ACCEL
5589 if (rmap && bp->bnapi[i]->rx_ring) {
5590 rc = irq_cpu_rmap_add(rmap, irq->vector);
5591 if (rc)
5592 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5593 j);
5594 j++;
5595 }
5596 #endif
5597 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5598 bp->bnapi[i]);
5599 if (rc)
5600 break;
5601
5602 irq->requested = 1;
5603
5604 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
5605 int numa_node = dev_to_node(&bp->pdev->dev);
5606
5607 irq->have_cpumask = 1;
5608 cpumask_set_cpu(cpumask_local_spread(i, numa_node),
5609 irq->cpu_mask);
5610 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
5611 if (rc) {
5612 netdev_warn(bp->dev,
5613 "Set affinity failed, IRQ = %d\n",
5614 irq->vector);
5615 break;
5616 }
5617 }
5618 }
5619 return rc;
5620 }
5621
5622 static void bnxt_del_napi(struct bnxt *bp)
5623 {
5624 int i;
5625
5626 if (!bp->bnapi)
5627 return;
5628
5629 for (i = 0; i < bp->cp_nr_rings; i++) {
5630 struct bnxt_napi *bnapi = bp->bnapi[i];
5631
5632 napi_hash_del(&bnapi->napi);
5633 netif_napi_del(&bnapi->napi);
5634 }
5635 /* We called napi_hash_del() before netif_napi_del(), we need
5636 * to respect an RCU grace period before freeing napi structures.
5637 */
5638 synchronize_net();
5639 }
5640
5641 static void bnxt_init_napi(struct bnxt *bp)
5642 {
5643 int i;
5644 unsigned int cp_nr_rings = bp->cp_nr_rings;
5645 struct bnxt_napi *bnapi;
5646
5647 if (bp->flags & BNXT_FLAG_USING_MSIX) {
5648 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5649 cp_nr_rings--;
5650 for (i = 0; i < cp_nr_rings; i++) {
5651 bnapi = bp->bnapi[i];
5652 netif_napi_add(bp->dev, &bnapi->napi,
5653 bnxt_poll, 64);
5654 }
5655 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5656 bnapi = bp->bnapi[cp_nr_rings];
5657 netif_napi_add(bp->dev, &bnapi->napi,
5658 bnxt_poll_nitroa0, 64);
5659 }
5660 } else {
5661 bnapi = bp->bnapi[0];
5662 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5663 }
5664 }
5665
5666 static void bnxt_disable_napi(struct bnxt *bp)
5667 {
5668 int i;
5669
5670 if (!bp->bnapi)
5671 return;
5672
5673 for (i = 0; i < bp->cp_nr_rings; i++)
5674 napi_disable(&bp->bnapi[i]->napi);
5675 }
5676
5677 static void bnxt_enable_napi(struct bnxt *bp)
5678 {
5679 int i;
5680
5681 for (i = 0; i < bp->cp_nr_rings; i++) {
5682 bp->bnapi[i]->in_reset = false;
5683 napi_enable(&bp->bnapi[i]->napi);
5684 }
5685 }
5686
5687 void bnxt_tx_disable(struct bnxt *bp)
5688 {
5689 int i;
5690 struct bnxt_tx_ring_info *txr;
5691
5692 if (bp->tx_ring) {
5693 for (i = 0; i < bp->tx_nr_rings; i++) {
5694 txr = &bp->tx_ring[i];
5695 txr->dev_state = BNXT_DEV_STATE_CLOSING;
5696 }
5697 }
5698 /* Stop all TX queues */
5699 netif_tx_disable(bp->dev);
5700 netif_carrier_off(bp->dev);
5701 }
5702
5703 void bnxt_tx_enable(struct bnxt *bp)
5704 {
5705 int i;
5706 struct bnxt_tx_ring_info *txr;
5707
5708 for (i = 0; i < bp->tx_nr_rings; i++) {
5709 txr = &bp->tx_ring[i];
5710 txr->dev_state = 0;
5711 }
5712 netif_tx_wake_all_queues(bp->dev);
5713 if (bp->link_info.link_up)
5714 netif_carrier_on(bp->dev);
5715 }
5716
5717 static void bnxt_report_link(struct bnxt *bp)
5718 {
5719 if (bp->link_info.link_up) {
5720 const char *duplex;
5721 const char *flow_ctrl;
5722 u32 speed;
5723 u16 fec;
5724
5725 netif_carrier_on(bp->dev);
5726 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5727 duplex = "full";
5728 else
5729 duplex = "half";
5730 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5731 flow_ctrl = "ON - receive & transmit";
5732 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5733 flow_ctrl = "ON - transmit";
5734 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5735 flow_ctrl = "ON - receive";
5736 else
5737 flow_ctrl = "none";
5738 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5739 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
5740 speed, duplex, flow_ctrl);
5741 if (bp->flags & BNXT_FLAG_EEE_CAP)
5742 netdev_info(bp->dev, "EEE is %s\n",
5743 bp->eee.eee_active ? "active" :
5744 "not active");
5745 fec = bp->link_info.fec_cfg;
5746 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5747 netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5748 (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5749 (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5750 (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5751 } else {
5752 netif_carrier_off(bp->dev);
5753 netdev_err(bp->dev, "NIC Link is Down\n");
5754 }
5755 }
5756
5757 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5758 {
5759 int rc = 0;
5760 struct hwrm_port_phy_qcaps_input req = {0};
5761 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5762 struct bnxt_link_info *link_info = &bp->link_info;
5763
5764 if (bp->hwrm_spec_code < 0x10201)
5765 return 0;
5766
5767 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5768
5769 mutex_lock(&bp->hwrm_cmd_lock);
5770 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5771 if (rc)
5772 goto hwrm_phy_qcaps_exit;
5773
5774 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
5775 struct ethtool_eee *eee = &bp->eee;
5776 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5777
5778 bp->flags |= BNXT_FLAG_EEE_CAP;
5779 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5780 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5781 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5782 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5783 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5784 }
5785 if (resp->supported_speeds_auto_mode)
5786 link_info->support_auto_speeds =
5787 le16_to_cpu(resp->supported_speeds_auto_mode);
5788
5789 bp->port_count = resp->port_cnt;
5790
5791 hwrm_phy_qcaps_exit:
5792 mutex_unlock(&bp->hwrm_cmd_lock);
5793 return rc;
5794 }
5795
5796 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5797 {
5798 int rc = 0;
5799 struct bnxt_link_info *link_info = &bp->link_info;
5800 struct hwrm_port_phy_qcfg_input req = {0};
5801 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5802 u8 link_up = link_info->link_up;
5803 u16 diff;
5804
5805 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5806
5807 mutex_lock(&bp->hwrm_cmd_lock);
5808 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5809 if (rc) {
5810 mutex_unlock(&bp->hwrm_cmd_lock);
5811 return rc;
5812 }
5813
5814 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5815 link_info->phy_link_status = resp->link;
5816 link_info->duplex = resp->duplex_cfg;
5817 if (bp->hwrm_spec_code >= 0x10800)
5818 link_info->duplex = resp->duplex_state;
5819 link_info->pause = resp->pause;
5820 link_info->auto_mode = resp->auto_mode;
5821 link_info->auto_pause_setting = resp->auto_pause;
5822 link_info->lp_pause = resp->link_partner_adv_pause;
5823 link_info->force_pause_setting = resp->force_pause;
5824 link_info->duplex_setting = resp->duplex_cfg;
5825 if (link_info->phy_link_status == BNXT_LINK_LINK)
5826 link_info->link_speed = le16_to_cpu(resp->link_speed);
5827 else
5828 link_info->link_speed = 0;
5829 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5830 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5831 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5832 link_info->lp_auto_link_speeds =
5833 le16_to_cpu(resp->link_partner_adv_speeds);
5834 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5835 link_info->phy_ver[0] = resp->phy_maj;
5836 link_info->phy_ver[1] = resp->phy_min;
5837 link_info->phy_ver[2] = resp->phy_bld;
5838 link_info->media_type = resp->media_type;
5839 link_info->phy_type = resp->phy_type;
5840 link_info->transceiver = resp->xcvr_pkg_type;
5841 link_info->phy_addr = resp->eee_config_phy_addr &
5842 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5843 link_info->module_status = resp->module_status;
5844
5845 if (bp->flags & BNXT_FLAG_EEE_CAP) {
5846 struct ethtool_eee *eee = &bp->eee;
5847 u16 fw_speeds;
5848
5849 eee->eee_active = 0;
5850 if (resp->eee_config_phy_addr &
5851 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5852 eee->eee_active = 1;
5853 fw_speeds = le16_to_cpu(
5854 resp->link_partner_adv_eee_link_speed_mask);
5855 eee->lp_advertised =
5856 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5857 }
5858
5859 /* Pull initial EEE config */
5860 if (!chng_link_state) {
5861 if (resp->eee_config_phy_addr &
5862 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5863 eee->eee_enabled = 1;
5864
5865 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5866 eee->advertised =
5867 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5868
5869 if (resp->eee_config_phy_addr &
5870 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5871 __le32 tmr;
5872
5873 eee->tx_lpi_enabled = 1;
5874 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5875 eee->tx_lpi_timer = le32_to_cpu(tmr) &
5876 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5877 }
5878 }
5879 }
5880
5881 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5882 if (bp->hwrm_spec_code >= 0x10504)
5883 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5884
5885 /* TODO: need to add more logic to report VF link */
5886 if (chng_link_state) {
5887 if (link_info->phy_link_status == BNXT_LINK_LINK)
5888 link_info->link_up = 1;
5889 else
5890 link_info->link_up = 0;
5891 if (link_up != link_info->link_up)
5892 bnxt_report_link(bp);
5893 } else {
5894 /* alwasy link down if not require to update link state */
5895 link_info->link_up = 0;
5896 }
5897 mutex_unlock(&bp->hwrm_cmd_lock);
5898
5899 diff = link_info->support_auto_speeds ^ link_info->advertising;
5900 if ((link_info->support_auto_speeds | diff) !=
5901 link_info->support_auto_speeds) {
5902 /* An advertised speed is no longer supported, so we need to
5903 * update the advertisement settings. Caller holds RTNL
5904 * so we can modify link settings.
5905 */
5906 link_info->advertising = link_info->support_auto_speeds;
5907 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5908 bnxt_hwrm_set_link_setting(bp, true, false);
5909 }
5910 return 0;
5911 }
5912
5913 static void bnxt_get_port_module_status(struct bnxt *bp)
5914 {
5915 struct bnxt_link_info *link_info = &bp->link_info;
5916 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5917 u8 module_status;
5918
5919 if (bnxt_update_link(bp, true))
5920 return;
5921
5922 module_status = link_info->module_status;
5923 switch (module_status) {
5924 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5925 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5926 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5927 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5928 bp->pf.port_id);
5929 if (bp->hwrm_spec_code >= 0x10201) {
5930 netdev_warn(bp->dev, "Module part number %s\n",
5931 resp->phy_vendor_partnumber);
5932 }
5933 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5934 netdev_warn(bp->dev, "TX is disabled\n");
5935 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5936 netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5937 }
5938 }
5939
5940 static void
5941 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5942 {
5943 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5944 if (bp->hwrm_spec_code >= 0x10201)
5945 req->auto_pause =
5946 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5947 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5948 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5949 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5950 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5951 req->enables |=
5952 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5953 } else {
5954 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5955 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5956 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5957 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5958 req->enables |=
5959 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5960 if (bp->hwrm_spec_code >= 0x10201) {
5961 req->auto_pause = req->force_pause;
5962 req->enables |= cpu_to_le32(
5963 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5964 }
5965 }
5966 }
5967
5968 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5969 struct hwrm_port_phy_cfg_input *req)
5970 {
5971 u8 autoneg = bp->link_info.autoneg;
5972 u16 fw_link_speed = bp->link_info.req_link_speed;
5973 u16 advertising = bp->link_info.advertising;
5974
5975 if (autoneg & BNXT_AUTONEG_SPEED) {
5976 req->auto_mode |=
5977 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5978
5979 req->enables |= cpu_to_le32(
5980 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5981 req->auto_link_speed_mask = cpu_to_le16(advertising);
5982
5983 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5984 req->flags |=
5985 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5986 } else {
5987 req->force_link_speed = cpu_to_le16(fw_link_speed);
5988 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5989 }
5990
5991 /* tell chimp that the setting takes effect immediately */
5992 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5993 }
5994
5995 int bnxt_hwrm_set_pause(struct bnxt *bp)
5996 {
5997 struct hwrm_port_phy_cfg_input req = {0};
5998 int rc;
5999
6000 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6001 bnxt_hwrm_set_pause_common(bp, &req);
6002
6003 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6004 bp->link_info.force_link_chng)
6005 bnxt_hwrm_set_link_common(bp, &req);
6006
6007 mutex_lock(&bp->hwrm_cmd_lock);
6008 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6009 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6010 /* since changing of pause setting doesn't trigger any link
6011 * change event, the driver needs to update the current pause
6012 * result upon successfully return of the phy_cfg command
6013 */
6014 bp->link_info.pause =
6015 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6016 bp->link_info.auto_pause_setting = 0;
6017 if (!bp->link_info.force_link_chng)
6018 bnxt_report_link(bp);
6019 }
6020 bp->link_info.force_link_chng = false;
6021 mutex_unlock(&bp->hwrm_cmd_lock);
6022 return rc;
6023 }
6024
6025 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6026 struct hwrm_port_phy_cfg_input *req)
6027 {
6028 struct ethtool_eee *eee = &bp->eee;
6029
6030 if (eee->eee_enabled) {
6031 u16 eee_speeds;
6032 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6033
6034 if (eee->tx_lpi_enabled)
6035 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6036 else
6037 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6038
6039 req->flags |= cpu_to_le32(flags);
6040 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6041 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6042 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6043 } else {
6044 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6045 }
6046 }
6047
6048 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6049 {
6050 struct hwrm_port_phy_cfg_input req = {0};
6051
6052 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6053 if (set_pause)
6054 bnxt_hwrm_set_pause_common(bp, &req);
6055
6056 bnxt_hwrm_set_link_common(bp, &req);
6057
6058 if (set_eee)
6059 bnxt_hwrm_set_eee(bp, &req);
6060 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6061 }
6062
6063 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6064 {
6065 struct hwrm_port_phy_cfg_input req = {0};
6066
6067 if (!BNXT_SINGLE_PF(bp))
6068 return 0;
6069
6070 if (pci_num_vf(bp->pdev))
6071 return 0;
6072
6073 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6074 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6075 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6076 }
6077
6078 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6079 {
6080 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6081 struct hwrm_port_led_qcaps_input req = {0};
6082 struct bnxt_pf_info *pf = &bp->pf;
6083 int rc;
6084
6085 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6086 return 0;
6087
6088 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6089 req.port_id = cpu_to_le16(pf->port_id);
6090 mutex_lock(&bp->hwrm_cmd_lock);
6091 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6092 if (rc) {
6093 mutex_unlock(&bp->hwrm_cmd_lock);
6094 return rc;
6095 }
6096 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6097 int i;
6098
6099 bp->num_leds = resp->num_leds;
6100 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6101 bp->num_leds);
6102 for (i = 0; i < bp->num_leds; i++) {
6103 struct bnxt_led_info *led = &bp->leds[i];
6104 __le16 caps = led->led_state_caps;
6105
6106 if (!led->led_group_id ||
6107 !BNXT_LED_ALT_BLINK_CAP(caps)) {
6108 bp->num_leds = 0;
6109 break;
6110 }
6111 }
6112 }
6113 mutex_unlock(&bp->hwrm_cmd_lock);
6114 return 0;
6115 }
6116
6117 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6118 {
6119 struct hwrm_wol_filter_alloc_input req = {0};
6120 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6121 int rc;
6122
6123 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6124 req.port_id = cpu_to_le16(bp->pf.port_id);
6125 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6126 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6127 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6128 mutex_lock(&bp->hwrm_cmd_lock);
6129 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6130 if (!rc)
6131 bp->wol_filter_id = resp->wol_filter_id;
6132 mutex_unlock(&bp->hwrm_cmd_lock);
6133 return rc;
6134 }
6135
6136 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6137 {
6138 struct hwrm_wol_filter_free_input req = {0};
6139 int rc;
6140
6141 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6142 req.port_id = cpu_to_le16(bp->pf.port_id);
6143 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6144 req.wol_filter_id = bp->wol_filter_id;
6145 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6146 return rc;
6147 }
6148
6149 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6150 {
6151 struct hwrm_wol_filter_qcfg_input req = {0};
6152 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6153 u16 next_handle = 0;
6154 int rc;
6155
6156 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6157 req.port_id = cpu_to_le16(bp->pf.port_id);
6158 req.handle = cpu_to_le16(handle);
6159 mutex_lock(&bp->hwrm_cmd_lock);
6160 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6161 if (!rc) {
6162 next_handle = le16_to_cpu(resp->next_handle);
6163 if (next_handle != 0) {
6164 if (resp->wol_type ==
6165 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6166 bp->wol = 1;
6167 bp->wol_filter_id = resp->wol_filter_id;
6168 }
6169 }
6170 }
6171 mutex_unlock(&bp->hwrm_cmd_lock);
6172 return next_handle;
6173 }
6174
6175 static void bnxt_get_wol_settings(struct bnxt *bp)
6176 {
6177 u16 handle = 0;
6178
6179 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6180 return;
6181
6182 do {
6183 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6184 } while (handle && handle != 0xffff);
6185 }
6186
6187 static bool bnxt_eee_config_ok(struct bnxt *bp)
6188 {
6189 struct ethtool_eee *eee = &bp->eee;
6190 struct bnxt_link_info *link_info = &bp->link_info;
6191
6192 if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6193 return true;
6194
6195 if (eee->eee_enabled) {
6196 u32 advertising =
6197 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6198
6199 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6200 eee->eee_enabled = 0;
6201 return false;
6202 }
6203 if (eee->advertised & ~advertising) {
6204 eee->advertised = advertising & eee->supported;
6205 return false;
6206 }
6207 }
6208 return true;
6209 }
6210
6211 static int bnxt_update_phy_setting(struct bnxt *bp)
6212 {
6213 int rc;
6214 bool update_link = false;
6215 bool update_pause = false;
6216 bool update_eee = false;
6217 struct bnxt_link_info *link_info = &bp->link_info;
6218
6219 rc = bnxt_update_link(bp, true);
6220 if (rc) {
6221 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6222 rc);
6223 return rc;
6224 }
6225 if (!BNXT_SINGLE_PF(bp))
6226 return 0;
6227
6228 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6229 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6230 link_info->req_flow_ctrl)
6231 update_pause = true;
6232 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6233 link_info->force_pause_setting != link_info->req_flow_ctrl)
6234 update_pause = true;
6235 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6236 if (BNXT_AUTO_MODE(link_info->auto_mode))
6237 update_link = true;
6238 if (link_info->req_link_speed != link_info->force_link_speed)
6239 update_link = true;
6240 if (link_info->req_duplex != link_info->duplex_setting)
6241 update_link = true;
6242 } else {
6243 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6244 update_link = true;
6245 if (link_info->advertising != link_info->auto_link_speeds)
6246 update_link = true;
6247 }
6248
6249 /* The last close may have shutdown the link, so need to call
6250 * PHY_CFG to bring it back up.
6251 */
6252 if (!netif_carrier_ok(bp->dev))
6253 update_link = true;
6254
6255 if (!bnxt_eee_config_ok(bp))
6256 update_eee = true;
6257
6258 if (update_link)
6259 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6260 else if (update_pause)
6261 rc = bnxt_hwrm_set_pause(bp);
6262 if (rc) {
6263 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6264 rc);
6265 return rc;
6266 }
6267
6268 return rc;
6269 }
6270
6271 /* Common routine to pre-map certain register block to different GRC window.
6272 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6273 * in PF and 3 windows in VF that can be customized to map in different
6274 * register blocks.
6275 */
6276 static void bnxt_preset_reg_win(struct bnxt *bp)
6277 {
6278 if (BNXT_PF(bp)) {
6279 /* CAG registers map to GRC window #4 */
6280 writel(BNXT_CAG_REG_BASE,
6281 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6282 }
6283 }
6284
6285 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6286 {
6287 int rc = 0;
6288
6289 bnxt_preset_reg_win(bp);
6290 netif_carrier_off(bp->dev);
6291 if (irq_re_init) {
6292 rc = bnxt_setup_int_mode(bp);
6293 if (rc) {
6294 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6295 rc);
6296 return rc;
6297 }
6298 }
6299 if ((bp->flags & BNXT_FLAG_RFS) &&
6300 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6301 /* disable RFS if falling back to INTA */
6302 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6303 bp->flags &= ~BNXT_FLAG_RFS;
6304 }
6305
6306 rc = bnxt_alloc_mem(bp, irq_re_init);
6307 if (rc) {
6308 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6309 goto open_err_free_mem;
6310 }
6311
6312 if (irq_re_init) {
6313 bnxt_init_napi(bp);
6314 rc = bnxt_request_irq(bp);
6315 if (rc) {
6316 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6317 goto open_err;
6318 }
6319 }
6320
6321 bnxt_enable_napi(bp);
6322
6323 rc = bnxt_init_nic(bp, irq_re_init);
6324 if (rc) {
6325 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6326 goto open_err;
6327 }
6328
6329 if (link_re_init) {
6330 rc = bnxt_update_phy_setting(bp);
6331 if (rc)
6332 netdev_warn(bp->dev, "failed to update phy settings\n");
6333 }
6334
6335 if (irq_re_init)
6336 udp_tunnel_get_rx_info(bp->dev);
6337
6338 set_bit(BNXT_STATE_OPEN, &bp->state);
6339 bnxt_enable_int(bp);
6340 /* Enable TX queues */
6341 bnxt_tx_enable(bp);
6342 mod_timer(&bp->timer, jiffies + bp->current_interval);
6343 /* Poll link status and check for SFP+ module status */
6344 bnxt_get_port_module_status(bp);
6345
6346 /* VF-reps may need to be re-opened after the PF is re-opened */
6347 if (BNXT_PF(bp))
6348 bnxt_vf_reps_open(bp);
6349 return 0;
6350
6351 open_err:
6352 bnxt_disable_napi(bp);
6353 bnxt_del_napi(bp);
6354
6355 open_err_free_mem:
6356 bnxt_free_skbs(bp);
6357 bnxt_free_irq(bp);
6358 bnxt_free_mem(bp, true);
6359 return rc;
6360 }
6361
6362 /* rtnl_lock held */
6363 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6364 {
6365 int rc = 0;
6366
6367 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6368 if (rc) {
6369 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6370 dev_close(bp->dev);
6371 }
6372 return rc;
6373 }
6374
6375 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6376 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline
6377 * self tests.
6378 */
6379 int bnxt_half_open_nic(struct bnxt *bp)
6380 {
6381 int rc = 0;
6382
6383 rc = bnxt_alloc_mem(bp, false);
6384 if (rc) {
6385 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6386 goto half_open_err;
6387 }
6388 rc = bnxt_init_nic(bp, false);
6389 if (rc) {
6390 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6391 goto half_open_err;
6392 }
6393 return 0;
6394
6395 half_open_err:
6396 bnxt_free_skbs(bp);
6397 bnxt_free_mem(bp, false);
6398 dev_close(bp->dev);
6399 return rc;
6400 }
6401
6402 /* rtnl_lock held, this call can only be made after a previous successful
6403 * call to bnxt_half_open_nic().
6404 */
6405 void bnxt_half_close_nic(struct bnxt *bp)
6406 {
6407 bnxt_hwrm_resource_free(bp, false, false);
6408 bnxt_free_skbs(bp);
6409 bnxt_free_mem(bp, false);
6410 }
6411
6412 static int bnxt_open(struct net_device *dev)
6413 {
6414 struct bnxt *bp = netdev_priv(dev);
6415
6416 return __bnxt_open_nic(bp, true, true);
6417 }
6418
6419 static bool bnxt_drv_busy(struct bnxt *bp)
6420 {
6421 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
6422 test_bit(BNXT_STATE_READ_STATS, &bp->state));
6423 }
6424
6425 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6426 {
6427 int rc = 0;
6428
6429 #ifdef CONFIG_BNXT_SRIOV
6430 if (bp->sriov_cfg) {
6431 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6432 !bp->sriov_cfg,
6433 BNXT_SRIOV_CFG_WAIT_TMO);
6434 if (rc)
6435 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6436 }
6437
6438 /* Close the VF-reps before closing PF */
6439 if (BNXT_PF(bp))
6440 bnxt_vf_reps_close(bp);
6441 #endif
6442 /* Change device state to avoid TX queue wake up's */
6443 bnxt_tx_disable(bp);
6444
6445 clear_bit(BNXT_STATE_OPEN, &bp->state);
6446 smp_mb__after_atomic();
6447 while (bnxt_drv_busy(bp))
6448 msleep(20);
6449
6450 /* Flush rings and and disable interrupts */
6451 bnxt_shutdown_nic(bp, irq_re_init);
6452
6453 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6454
6455 bnxt_disable_napi(bp);
6456 del_timer_sync(&bp->timer);
6457 bnxt_free_skbs(bp);
6458
6459 if (irq_re_init) {
6460 bnxt_free_irq(bp);
6461 bnxt_del_napi(bp);
6462 }
6463 bnxt_free_mem(bp, irq_re_init);
6464 return rc;
6465 }
6466
6467 static int bnxt_close(struct net_device *dev)
6468 {
6469 struct bnxt *bp = netdev_priv(dev);
6470
6471 bnxt_close_nic(bp, true, true);
6472 bnxt_hwrm_shutdown_link(bp);
6473 return 0;
6474 }
6475
6476 /* rtnl_lock held */
6477 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6478 {
6479 switch (cmd) {
6480 case SIOCGMIIPHY:
6481 /* fallthru */
6482 case SIOCGMIIREG: {
6483 if (!netif_running(dev))
6484 return -EAGAIN;
6485
6486 return 0;
6487 }
6488
6489 case SIOCSMIIREG:
6490 if (!netif_running(dev))
6491 return -EAGAIN;
6492
6493 return 0;
6494
6495 default:
6496 /* do nothing */
6497 break;
6498 }
6499 return -EOPNOTSUPP;
6500 }
6501
6502 static void
6503 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6504 {
6505 u32 i;
6506 struct bnxt *bp = netdev_priv(dev);
6507
6508 set_bit(BNXT_STATE_READ_STATS, &bp->state);
6509 /* Make sure bnxt_close_nic() sees that we are reading stats before
6510 * we check the BNXT_STATE_OPEN flag.
6511 */
6512 smp_mb__after_atomic();
6513 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6514 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6515 return;
6516 }
6517
6518 /* TODO check if we need to synchronize with bnxt_close path */
6519 for (i = 0; i < bp->cp_nr_rings; i++) {
6520 struct bnxt_napi *bnapi = bp->bnapi[i];
6521 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6522 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6523
6524 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6525 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6526 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6527
6528 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6529 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6530 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6531
6532 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6533 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6534 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6535
6536 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6537 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6538 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6539
6540 stats->rx_missed_errors +=
6541 le64_to_cpu(hw_stats->rx_discard_pkts);
6542
6543 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6544
6545 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6546 }
6547
6548 if (bp->flags & BNXT_FLAG_PORT_STATS) {
6549 struct rx_port_stats *rx = bp->hw_rx_port_stats;
6550 struct tx_port_stats *tx = bp->hw_tx_port_stats;
6551
6552 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6553 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6554 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6555 le64_to_cpu(rx->rx_ovrsz_frames) +
6556 le64_to_cpu(rx->rx_runt_frames);
6557 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6558 le64_to_cpu(rx->rx_jbr_frames);
6559 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6560 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6561 stats->tx_errors = le64_to_cpu(tx->tx_err);
6562 }
6563 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6564 }
6565
6566 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6567 {
6568 struct net_device *dev = bp->dev;
6569 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6570 struct netdev_hw_addr *ha;
6571 u8 *haddr;
6572 int mc_count = 0;
6573 bool update = false;
6574 int off = 0;
6575
6576 netdev_for_each_mc_addr(ha, dev) {
6577 if (mc_count >= BNXT_MAX_MC_ADDRS) {
6578 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6579 vnic->mc_list_count = 0;
6580 return false;
6581 }
6582 haddr = ha->addr;
6583 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6584 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6585 update = true;
6586 }
6587 off += ETH_ALEN;
6588 mc_count++;
6589 }
6590 if (mc_count)
6591 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6592
6593 if (mc_count != vnic->mc_list_count) {
6594 vnic->mc_list_count = mc_count;
6595 update = true;
6596 }
6597 return update;
6598 }
6599
6600 static bool bnxt_uc_list_updated(struct bnxt *bp)
6601 {
6602 struct net_device *dev = bp->dev;
6603 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6604 struct netdev_hw_addr *ha;
6605 int off = 0;
6606
6607 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6608 return true;
6609
6610 netdev_for_each_uc_addr(ha, dev) {
6611 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6612 return true;
6613
6614 off += ETH_ALEN;
6615 }
6616 return false;
6617 }
6618
6619 static void bnxt_set_rx_mode(struct net_device *dev)
6620 {
6621 struct bnxt *bp = netdev_priv(dev);
6622 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6623 u32 mask = vnic->rx_mask;
6624 bool mc_update = false;
6625 bool uc_update;
6626
6627 if (!netif_running(dev))
6628 return;
6629
6630 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6631 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6632 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6633
6634 if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6635 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6636
6637 uc_update = bnxt_uc_list_updated(bp);
6638
6639 if (dev->flags & IFF_ALLMULTI) {
6640 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6641 vnic->mc_list_count = 0;
6642 } else {
6643 mc_update = bnxt_mc_list_updated(bp, &mask);
6644 }
6645
6646 if (mask != vnic->rx_mask || uc_update || mc_update) {
6647 vnic->rx_mask = mask;
6648
6649 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6650 schedule_work(&bp->sp_task);
6651 }
6652 }
6653
6654 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6655 {
6656 struct net_device *dev = bp->dev;
6657 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6658 struct netdev_hw_addr *ha;
6659 int i, off = 0, rc;
6660 bool uc_update;
6661
6662 netif_addr_lock_bh(dev);
6663 uc_update = bnxt_uc_list_updated(bp);
6664 netif_addr_unlock_bh(dev);
6665
6666 if (!uc_update)
6667 goto skip_uc;
6668
6669 mutex_lock(&bp->hwrm_cmd_lock);
6670 for (i = 1; i < vnic->uc_filter_count; i++) {
6671 struct hwrm_cfa_l2_filter_free_input req = {0};
6672
6673 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6674 -1);
6675
6676 req.l2_filter_id = vnic->fw_l2_filter_id[i];
6677
6678 rc = _hwrm_send_message(bp, &req, sizeof(req),
6679 HWRM_CMD_TIMEOUT);
6680 }
6681 mutex_unlock(&bp->hwrm_cmd_lock);
6682
6683 vnic->uc_filter_count = 1;
6684
6685 netif_addr_lock_bh(dev);
6686 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6687 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6688 } else {
6689 netdev_for_each_uc_addr(ha, dev) {
6690 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6691 off += ETH_ALEN;
6692 vnic->uc_filter_count++;
6693 }
6694 }
6695 netif_addr_unlock_bh(dev);
6696
6697 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6698 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6699 if (rc) {
6700 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6701 rc);
6702 vnic->uc_filter_count = i;
6703 return rc;
6704 }
6705 }
6706
6707 skip_uc:
6708 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6709 if (rc)
6710 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6711 rc);
6712
6713 return rc;
6714 }
6715
6716 /* If the chip and firmware supports RFS */
6717 static bool bnxt_rfs_supported(struct bnxt *bp)
6718 {
6719 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6720 return true;
6721 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6722 return true;
6723 return false;
6724 }
6725
6726 /* If runtime conditions support RFS */
6727 static bool bnxt_rfs_capable(struct bnxt *bp)
6728 {
6729 #ifdef CONFIG_RFS_ACCEL
6730 int vnics, max_vnics, max_rss_ctxs;
6731
6732 if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6733 return false;
6734
6735 vnics = 1 + bp->rx_nr_rings;
6736 max_vnics = bnxt_get_max_func_vnics(bp);
6737 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6738
6739 /* RSS contexts not a limiting factor */
6740 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6741 max_rss_ctxs = max_vnics;
6742 if (vnics > max_vnics || vnics > max_rss_ctxs) {
6743 netdev_warn(bp->dev,
6744 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6745 min(max_rss_ctxs - 1, max_vnics - 1));
6746 return false;
6747 }
6748
6749 return true;
6750 #else
6751 return false;
6752 #endif
6753 }
6754
6755 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6756 netdev_features_t features)
6757 {
6758 struct bnxt *bp = netdev_priv(dev);
6759
6760 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6761 features &= ~NETIF_F_NTUPLE;
6762
6763 /* Both CTAG and STAG VLAN accelaration on the RX side have to be
6764 * turned on or off together.
6765 */
6766 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6767 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6768 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6769 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6770 NETIF_F_HW_VLAN_STAG_RX);
6771 else
6772 features |= NETIF_F_HW_VLAN_CTAG_RX |
6773 NETIF_F_HW_VLAN_STAG_RX;
6774 }
6775 #ifdef CONFIG_BNXT_SRIOV
6776 if (BNXT_VF(bp)) {
6777 if (bp->vf.vlan) {
6778 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6779 NETIF_F_HW_VLAN_STAG_RX);
6780 }
6781 }
6782 #endif
6783 return features;
6784 }
6785
6786 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6787 {
6788 struct bnxt *bp = netdev_priv(dev);
6789 u32 flags = bp->flags;
6790 u32 changes;
6791 int rc = 0;
6792 bool re_init = false;
6793 bool update_tpa = false;
6794
6795 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6796 if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6797 flags |= BNXT_FLAG_GRO;
6798 if (features & NETIF_F_LRO)
6799 flags |= BNXT_FLAG_LRO;
6800
6801 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6802 flags &= ~BNXT_FLAG_TPA;
6803
6804 if (features & NETIF_F_HW_VLAN_CTAG_RX)
6805 flags |= BNXT_FLAG_STRIP_VLAN;
6806
6807 if (features & NETIF_F_NTUPLE)
6808 flags |= BNXT_FLAG_RFS;
6809
6810 changes = flags ^ bp->flags;
6811 if (changes & BNXT_FLAG_TPA) {
6812 update_tpa = true;
6813 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6814 (flags & BNXT_FLAG_TPA) == 0)
6815 re_init = true;
6816 }
6817
6818 if (changes & ~BNXT_FLAG_TPA)
6819 re_init = true;
6820
6821 if (flags != bp->flags) {
6822 u32 old_flags = bp->flags;
6823
6824 bp->flags = flags;
6825
6826 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6827 if (update_tpa)
6828 bnxt_set_ring_params(bp);
6829 return rc;
6830 }
6831
6832 if (re_init) {
6833 bnxt_close_nic(bp, false, false);
6834 if (update_tpa)
6835 bnxt_set_ring_params(bp);
6836
6837 return bnxt_open_nic(bp, false, false);
6838 }
6839 if (update_tpa) {
6840 rc = bnxt_set_tpa(bp,
6841 (flags & BNXT_FLAG_TPA) ?
6842 true : false);
6843 if (rc)
6844 bp->flags = old_flags;
6845 }
6846 }
6847 return rc;
6848 }
6849
6850 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6851 {
6852 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6853 int i = bnapi->index;
6854
6855 if (!txr)
6856 return;
6857
6858 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6859 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6860 txr->tx_cons);
6861 }
6862
6863 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6864 {
6865 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6866 int i = bnapi->index;
6867
6868 if (!rxr)
6869 return;
6870
6871 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6872 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6873 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6874 rxr->rx_sw_agg_prod);
6875 }
6876
6877 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6878 {
6879 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6880 int i = bnapi->index;
6881
6882 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6883 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6884 }
6885
6886 static void bnxt_dbg_dump_states(struct bnxt *bp)
6887 {
6888 int i;
6889 struct bnxt_napi *bnapi;
6890
6891 for (i = 0; i < bp->cp_nr_rings; i++) {
6892 bnapi = bp->bnapi[i];
6893 if (netif_msg_drv(bp)) {
6894 bnxt_dump_tx_sw_state(bnapi);
6895 bnxt_dump_rx_sw_state(bnapi);
6896 bnxt_dump_cp_sw_state(bnapi);
6897 }
6898 }
6899 }
6900
6901 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6902 {
6903 if (!silent)
6904 bnxt_dbg_dump_states(bp);
6905 if (netif_running(bp->dev)) {
6906 int rc;
6907
6908 if (!silent)
6909 bnxt_ulp_stop(bp);
6910 bnxt_close_nic(bp, false, false);
6911 rc = bnxt_open_nic(bp, false, false);
6912 if (!silent && !rc)
6913 bnxt_ulp_start(bp);
6914 }
6915 }
6916
6917 static void bnxt_tx_timeout(struct net_device *dev)
6918 {
6919 struct bnxt *bp = netdev_priv(dev);
6920
6921 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
6922 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6923 schedule_work(&bp->sp_task);
6924 }
6925
6926 #ifdef CONFIG_NET_POLL_CONTROLLER
6927 static void bnxt_poll_controller(struct net_device *dev)
6928 {
6929 struct bnxt *bp = netdev_priv(dev);
6930 int i;
6931
6932 /* Only process tx rings/combined rings in netpoll mode. */
6933 for (i = 0; i < bp->tx_nr_rings; i++) {
6934 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6935
6936 napi_schedule(&txr->bnapi->napi);
6937 }
6938 }
6939 #endif
6940
6941 static void bnxt_timer(unsigned long data)
6942 {
6943 struct bnxt *bp = (struct bnxt *)data;
6944 struct net_device *dev = bp->dev;
6945
6946 if (!netif_running(dev))
6947 return;
6948
6949 if (atomic_read(&bp->intr_sem) != 0)
6950 goto bnxt_restart_timer;
6951
6952 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
6953 bp->stats_coal_ticks) {
6954 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6955 schedule_work(&bp->sp_task);
6956 }
6957 bnxt_restart_timer:
6958 mod_timer(&bp->timer, jiffies + bp->current_interval);
6959 }
6960
6961 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6962 {
6963 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6964 * set. If the device is being closed, bnxt_close() may be holding
6965 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
6966 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6967 */
6968 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6969 rtnl_lock();
6970 }
6971
6972 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
6973 {
6974 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6975 rtnl_unlock();
6976 }
6977
6978 /* Only called from bnxt_sp_task() */
6979 static void bnxt_reset(struct bnxt *bp, bool silent)
6980 {
6981 bnxt_rtnl_lock_sp(bp);
6982 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6983 bnxt_reset_task(bp, silent);
6984 bnxt_rtnl_unlock_sp(bp);
6985 }
6986
6987 static void bnxt_cfg_ntp_filters(struct bnxt *);
6988
6989 static void bnxt_sp_task(struct work_struct *work)
6990 {
6991 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6992
6993 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6994 smp_mb__after_atomic();
6995 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6996 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6997 return;
6998 }
6999
7000 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7001 bnxt_cfg_rx_mode(bp);
7002
7003 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7004 bnxt_cfg_ntp_filters(bp);
7005 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7006 bnxt_hwrm_exec_fwd_req(bp);
7007 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7008 bnxt_hwrm_tunnel_dst_port_alloc(
7009 bp, bp->vxlan_port,
7010 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7011 }
7012 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7013 bnxt_hwrm_tunnel_dst_port_free(
7014 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7015 }
7016 if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7017 bnxt_hwrm_tunnel_dst_port_alloc(
7018 bp, bp->nge_port,
7019 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7020 }
7021 if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7022 bnxt_hwrm_tunnel_dst_port_free(
7023 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7024 }
7025 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
7026 bnxt_hwrm_port_qstats(bp);
7027
7028 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They
7029 * must be the last functions to be called before exiting.
7030 */
7031 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7032 int rc = 0;
7033
7034 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7035 &bp->sp_event))
7036 bnxt_hwrm_phy_qcaps(bp);
7037
7038 bnxt_rtnl_lock_sp(bp);
7039 if (test_bit(BNXT_STATE_OPEN, &bp->state))
7040 rc = bnxt_update_link(bp, true);
7041 bnxt_rtnl_unlock_sp(bp);
7042 if (rc)
7043 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7044 rc);
7045 }
7046 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7047 bnxt_rtnl_lock_sp(bp);
7048 if (test_bit(BNXT_STATE_OPEN, &bp->state))
7049 bnxt_get_port_module_status(bp);
7050 bnxt_rtnl_unlock_sp(bp);
7051 }
7052 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7053 bnxt_reset(bp, false);
7054
7055 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7056 bnxt_reset(bp, true);
7057
7058 smp_mb__before_atomic();
7059 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7060 }
7061
7062 /* Under rtnl_lock */
7063 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7064 int tx_xdp)
7065 {
7066 int max_rx, max_tx, tx_sets = 1;
7067 int tx_rings_needed;
7068 int rc;
7069
7070 if (tcs)
7071 tx_sets = tcs;
7072
7073 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7074 if (rc)
7075 return rc;
7076
7077 if (max_rx < rx)
7078 return -ENOMEM;
7079
7080 tx_rings_needed = tx * tx_sets + tx_xdp;
7081 if (max_tx < tx_rings_needed)
7082 return -ENOMEM;
7083
7084 return bnxt_hwrm_check_tx_rings(bp, tx_rings_needed);
7085 }
7086
7087 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7088 {
7089 if (bp->bar2) {
7090 pci_iounmap(pdev, bp->bar2);
7091 bp->bar2 = NULL;
7092 }
7093
7094 if (bp->bar1) {
7095 pci_iounmap(pdev, bp->bar1);
7096 bp->bar1 = NULL;
7097 }
7098
7099 if (bp->bar0) {
7100 pci_iounmap(pdev, bp->bar0);
7101 bp->bar0 = NULL;
7102 }
7103 }
7104
7105 static void bnxt_cleanup_pci(struct bnxt *bp)
7106 {
7107 bnxt_unmap_bars(bp, bp->pdev);
7108 pci_release_regions(bp->pdev);
7109 pci_disable_device(bp->pdev);
7110 }
7111
7112 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7113 {
7114 int rc;
7115 struct bnxt *bp = netdev_priv(dev);
7116
7117 SET_NETDEV_DEV(dev, &pdev->dev);
7118
7119 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7120 rc = pci_enable_device(pdev);
7121 if (rc) {
7122 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7123 goto init_err;
7124 }
7125
7126 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7127 dev_err(&pdev->dev,
7128 "Cannot find PCI device base address, aborting\n");
7129 rc = -ENODEV;
7130 goto init_err_disable;
7131 }
7132
7133 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7134 if (rc) {
7135 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7136 goto init_err_disable;
7137 }
7138
7139 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7140 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7141 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7142 goto init_err_disable;
7143 }
7144
7145 pci_set_master(pdev);
7146
7147 bp->dev = dev;
7148 bp->pdev = pdev;
7149
7150 bp->bar0 = pci_ioremap_bar(pdev, 0);
7151 if (!bp->bar0) {
7152 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7153 rc = -ENOMEM;
7154 goto init_err_release;
7155 }
7156
7157 bp->bar1 = pci_ioremap_bar(pdev, 2);
7158 if (!bp->bar1) {
7159 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7160 rc = -ENOMEM;
7161 goto init_err_release;
7162 }
7163
7164 bp->bar2 = pci_ioremap_bar(pdev, 4);
7165 if (!bp->bar2) {
7166 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7167 rc = -ENOMEM;
7168 goto init_err_release;
7169 }
7170
7171 pci_enable_pcie_error_reporting(pdev);
7172
7173 INIT_WORK(&bp->sp_task, bnxt_sp_task);
7174
7175 spin_lock_init(&bp->ntp_fltr_lock);
7176
7177 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7178 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7179
7180 /* tick values in micro seconds */
7181 bp->rx_coal_ticks = 12;
7182 bp->rx_coal_bufs = 30;
7183 bp->rx_coal_ticks_irq = 1;
7184 bp->rx_coal_bufs_irq = 2;
7185
7186 bp->tx_coal_ticks = 25;
7187 bp->tx_coal_bufs = 30;
7188 bp->tx_coal_ticks_irq = 2;
7189 bp->tx_coal_bufs_irq = 2;
7190
7191 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7192
7193 init_timer(&bp->timer);
7194 bp->timer.data = (unsigned long)bp;
7195 bp->timer.function = bnxt_timer;
7196 bp->current_interval = BNXT_TIMER_INTERVAL;
7197
7198 clear_bit(BNXT_STATE_OPEN, &bp->state);
7199 return 0;
7200
7201 init_err_release:
7202 bnxt_unmap_bars(bp, pdev);
7203 pci_release_regions(pdev);
7204
7205 init_err_disable:
7206 pci_disable_device(pdev);
7207
7208 init_err:
7209 return rc;
7210 }
7211
7212 /* rtnl_lock held */
7213 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7214 {
7215 struct sockaddr *addr = p;
7216 struct bnxt *bp = netdev_priv(dev);
7217 int rc = 0;
7218
7219 if (!is_valid_ether_addr(addr->sa_data))
7220 return -EADDRNOTAVAIL;
7221
7222 rc = bnxt_approve_mac(bp, addr->sa_data);
7223 if (rc)
7224 return rc;
7225
7226 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7227 return 0;
7228
7229 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7230 if (netif_running(dev)) {
7231 bnxt_close_nic(bp, false, false);
7232 rc = bnxt_open_nic(bp, false, false);
7233 }
7234
7235 return rc;
7236 }
7237
7238 /* rtnl_lock held */
7239 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7240 {
7241 struct bnxt *bp = netdev_priv(dev);
7242
7243 if (netif_running(dev))
7244 bnxt_close_nic(bp, false, false);
7245
7246 dev->mtu = new_mtu;
7247 bnxt_set_ring_params(bp);
7248
7249 if (netif_running(dev))
7250 return bnxt_open_nic(bp, false, false);
7251
7252 return 0;
7253 }
7254
7255 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7256 {
7257 struct bnxt *bp = netdev_priv(dev);
7258 bool sh = false;
7259 int rc;
7260
7261 if (tc > bp->max_tc) {
7262 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7263 tc, bp->max_tc);
7264 return -EINVAL;
7265 }
7266
7267 if (netdev_get_num_tc(dev) == tc)
7268 return 0;
7269
7270 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7271 sh = true;
7272
7273 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7274 sh, tc, bp->tx_nr_rings_xdp);
7275 if (rc)
7276 return rc;
7277
7278 /* Needs to close the device and do hw resource re-allocations */
7279 if (netif_running(bp->dev))
7280 bnxt_close_nic(bp, true, false);
7281
7282 if (tc) {
7283 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7284 netdev_set_num_tc(dev, tc);
7285 } else {
7286 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7287 netdev_reset_tc(dev);
7288 }
7289 bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7290 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7291 bp->tx_nr_rings + bp->rx_nr_rings;
7292 bp->num_stat_ctxs = bp->cp_nr_rings;
7293
7294 if (netif_running(bp->dev))
7295 return bnxt_open_nic(bp, true, false);
7296
7297 return 0;
7298 }
7299
7300 static int bnxt_setup_flower(struct net_device *dev,
7301 struct tc_cls_flower_offload *cls_flower)
7302 {
7303 struct bnxt *bp = netdev_priv(dev);
7304
7305 if (BNXT_VF(bp))
7306 return -EOPNOTSUPP;
7307
7308 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, cls_flower);
7309 }
7310
7311 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7312 void *type_data)
7313 {
7314 switch (type) {
7315 case TC_SETUP_CLSFLOWER:
7316 return bnxt_setup_flower(dev, type_data);
7317 case TC_SETUP_MQPRIO: {
7318 struct tc_mqprio_qopt *mqprio = type_data;
7319
7320 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7321
7322 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
7323 }
7324 default:
7325 return -EOPNOTSUPP;
7326 }
7327 }
7328
7329 #ifdef CONFIG_RFS_ACCEL
7330 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7331 struct bnxt_ntuple_filter *f2)
7332 {
7333 struct flow_keys *keys1 = &f1->fkeys;
7334 struct flow_keys *keys2 = &f2->fkeys;
7335
7336 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7337 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7338 keys1->ports.ports == keys2->ports.ports &&
7339 keys1->basic.ip_proto == keys2->basic.ip_proto &&
7340 keys1->basic.n_proto == keys2->basic.n_proto &&
7341 keys1->control.flags == keys2->control.flags &&
7342 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7343 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7344 return true;
7345
7346 return false;
7347 }
7348
7349 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7350 u16 rxq_index, u32 flow_id)
7351 {
7352 struct bnxt *bp = netdev_priv(dev);
7353 struct bnxt_ntuple_filter *fltr, *new_fltr;
7354 struct flow_keys *fkeys;
7355 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
7356 int rc = 0, idx, bit_id, l2_idx = 0;
7357 struct hlist_head *head;
7358
7359 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
7360 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7361 int off = 0, j;
7362
7363 netif_addr_lock_bh(dev);
7364 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
7365 if (ether_addr_equal(eth->h_dest,
7366 vnic->uc_list + off)) {
7367 l2_idx = j + 1;
7368 break;
7369 }
7370 }
7371 netif_addr_unlock_bh(dev);
7372 if (!l2_idx)
7373 return -EINVAL;
7374 }
7375 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
7376 if (!new_fltr)
7377 return -ENOMEM;
7378
7379 fkeys = &new_fltr->fkeys;
7380 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
7381 rc = -EPROTONOSUPPORT;
7382 goto err_free;
7383 }
7384
7385 if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
7386 fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
7387 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
7388 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
7389 rc = -EPROTONOSUPPORT;
7390 goto err_free;
7391 }
7392 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
7393 bp->hwrm_spec_code < 0x10601) {
7394 rc = -EPROTONOSUPPORT;
7395 goto err_free;
7396 }
7397 if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
7398 bp->hwrm_spec_code < 0x10601) {
7399 rc = -EPROTONOSUPPORT;
7400 goto err_free;
7401 }
7402
7403 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7404 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7405
7406 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7407 head = &bp->ntp_fltr_hash_tbl[idx];
7408 rcu_read_lock();
7409 hlist_for_each_entry_rcu(fltr, head, hash) {
7410 if (bnxt_fltr_match(fltr, new_fltr)) {
7411 rcu_read_unlock();
7412 rc = 0;
7413 goto err_free;
7414 }
7415 }
7416 rcu_read_unlock();
7417
7418 spin_lock_bh(&bp->ntp_fltr_lock);
7419 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7420 BNXT_NTP_FLTR_MAX_FLTR, 0);
7421 if (bit_id < 0) {
7422 spin_unlock_bh(&bp->ntp_fltr_lock);
7423 rc = -ENOMEM;
7424 goto err_free;
7425 }
7426
7427 new_fltr->sw_id = (u16)bit_id;
7428 new_fltr->flow_id = flow_id;
7429 new_fltr->l2_fltr_idx = l2_idx;
7430 new_fltr->rxq = rxq_index;
7431 hlist_add_head_rcu(&new_fltr->hash, head);
7432 bp->ntp_fltr_count++;
7433 spin_unlock_bh(&bp->ntp_fltr_lock);
7434
7435 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7436 schedule_work(&bp->sp_task);
7437
7438 return new_fltr->sw_id;
7439
7440 err_free:
7441 kfree(new_fltr);
7442 return rc;
7443 }
7444
7445 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7446 {
7447 int i;
7448
7449 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7450 struct hlist_head *head;
7451 struct hlist_node *tmp;
7452 struct bnxt_ntuple_filter *fltr;
7453 int rc;
7454
7455 head = &bp->ntp_fltr_hash_tbl[i];
7456 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7457 bool del = false;
7458
7459 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7460 if (rps_may_expire_flow(bp->dev, fltr->rxq,
7461 fltr->flow_id,
7462 fltr->sw_id)) {
7463 bnxt_hwrm_cfa_ntuple_filter_free(bp,
7464 fltr);
7465 del = true;
7466 }
7467 } else {
7468 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7469 fltr);
7470 if (rc)
7471 del = true;
7472 else
7473 set_bit(BNXT_FLTR_VALID, &fltr->state);
7474 }
7475
7476 if (del) {
7477 spin_lock_bh(&bp->ntp_fltr_lock);
7478 hlist_del_rcu(&fltr->hash);
7479 bp->ntp_fltr_count--;
7480 spin_unlock_bh(&bp->ntp_fltr_lock);
7481 synchronize_rcu();
7482 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7483 kfree(fltr);
7484 }
7485 }
7486 }
7487 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7488 netdev_info(bp->dev, "Receive PF driver unload event!");
7489 }
7490
7491 #else
7492
7493 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7494 {
7495 }
7496
7497 #endif /* CONFIG_RFS_ACCEL */
7498
7499 static void bnxt_udp_tunnel_add(struct net_device *dev,
7500 struct udp_tunnel_info *ti)
7501 {
7502 struct bnxt *bp = netdev_priv(dev);
7503
7504 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7505 return;
7506
7507 if (!netif_running(dev))
7508 return;
7509
7510 switch (ti->type) {
7511 case UDP_TUNNEL_TYPE_VXLAN:
7512 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7513 return;
7514
7515 bp->vxlan_port_cnt++;
7516 if (bp->vxlan_port_cnt == 1) {
7517 bp->vxlan_port = ti->port;
7518 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7519 schedule_work(&bp->sp_task);
7520 }
7521 break;
7522 case UDP_TUNNEL_TYPE_GENEVE:
7523 if (bp->nge_port_cnt && bp->nge_port != ti->port)
7524 return;
7525
7526 bp->nge_port_cnt++;
7527 if (bp->nge_port_cnt == 1) {
7528 bp->nge_port = ti->port;
7529 set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7530 }
7531 break;
7532 default:
7533 return;
7534 }
7535
7536 schedule_work(&bp->sp_task);
7537 }
7538
7539 static void bnxt_udp_tunnel_del(struct net_device *dev,
7540 struct udp_tunnel_info *ti)
7541 {
7542 struct bnxt *bp = netdev_priv(dev);
7543
7544 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7545 return;
7546
7547 if (!netif_running(dev))
7548 return;
7549
7550 switch (ti->type) {
7551 case UDP_TUNNEL_TYPE_VXLAN:
7552 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7553 return;
7554 bp->vxlan_port_cnt--;
7555
7556 if (bp->vxlan_port_cnt != 0)
7557 return;
7558
7559 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7560 break;
7561 case UDP_TUNNEL_TYPE_GENEVE:
7562 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7563 return;
7564 bp->nge_port_cnt--;
7565
7566 if (bp->nge_port_cnt != 0)
7567 return;
7568
7569 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7570 break;
7571 default:
7572 return;
7573 }
7574
7575 schedule_work(&bp->sp_task);
7576 }
7577
7578 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7579 struct net_device *dev, u32 filter_mask,
7580 int nlflags)
7581 {
7582 struct bnxt *bp = netdev_priv(dev);
7583
7584 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
7585 nlflags, filter_mask, NULL);
7586 }
7587
7588 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7589 u16 flags)
7590 {
7591 struct bnxt *bp = netdev_priv(dev);
7592 struct nlattr *attr, *br_spec;
7593 int rem, rc = 0;
7594
7595 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
7596 return -EOPNOTSUPP;
7597
7598 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7599 if (!br_spec)
7600 return -EINVAL;
7601
7602 nla_for_each_nested(attr, br_spec, rem) {
7603 u16 mode;
7604
7605 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7606 continue;
7607
7608 if (nla_len(attr) < sizeof(mode))
7609 return -EINVAL;
7610
7611 mode = nla_get_u16(attr);
7612 if (mode == bp->br_mode)
7613 break;
7614
7615 rc = bnxt_hwrm_set_br_mode(bp, mode);
7616 if (!rc)
7617 bp->br_mode = mode;
7618 break;
7619 }
7620 return rc;
7621 }
7622
7623 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
7624 size_t len)
7625 {
7626 struct bnxt *bp = netdev_priv(dev);
7627 int rc;
7628
7629 /* The PF and it's VF-reps only support the switchdev framework */
7630 if (!BNXT_PF(bp))
7631 return -EOPNOTSUPP;
7632
7633 rc = snprintf(buf, len, "p%d", bp->pf.port_id);
7634
7635 if (rc >= len)
7636 return -EOPNOTSUPP;
7637 return 0;
7638 }
7639
7640 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
7641 {
7642 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
7643 return -EOPNOTSUPP;
7644
7645 /* The PF and it's VF-reps only support the switchdev framework */
7646 if (!BNXT_PF(bp))
7647 return -EOPNOTSUPP;
7648
7649 switch (attr->id) {
7650 case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
7651 /* In SRIOV each PF-pool (PF + child VFs) serves as a
7652 * switching domain, the PF's perm mac-addr can be used
7653 * as the unique parent-id
7654 */
7655 attr->u.ppid.id_len = ETH_ALEN;
7656 ether_addr_copy(attr->u.ppid.id, bp->pf.mac_addr);
7657 break;
7658 default:
7659 return -EOPNOTSUPP;
7660 }
7661 return 0;
7662 }
7663
7664 static int bnxt_swdev_port_attr_get(struct net_device *dev,
7665 struct switchdev_attr *attr)
7666 {
7667 return bnxt_port_attr_get(netdev_priv(dev), attr);
7668 }
7669
7670 static const struct switchdev_ops bnxt_switchdev_ops = {
7671 .switchdev_port_attr_get = bnxt_swdev_port_attr_get
7672 };
7673
7674 static const struct net_device_ops bnxt_netdev_ops = {
7675 .ndo_open = bnxt_open,
7676 .ndo_start_xmit = bnxt_start_xmit,
7677 .ndo_stop = bnxt_close,
7678 .ndo_get_stats64 = bnxt_get_stats64,
7679 .ndo_set_rx_mode = bnxt_set_rx_mode,
7680 .ndo_do_ioctl = bnxt_ioctl,
7681 .ndo_validate_addr = eth_validate_addr,
7682 .ndo_set_mac_address = bnxt_change_mac_addr,
7683 .ndo_change_mtu = bnxt_change_mtu,
7684 .ndo_fix_features = bnxt_fix_features,
7685 .ndo_set_features = bnxt_set_features,
7686 .ndo_tx_timeout = bnxt_tx_timeout,
7687 #ifdef CONFIG_BNXT_SRIOV
7688 .ndo_get_vf_config = bnxt_get_vf_config,
7689 .ndo_set_vf_mac = bnxt_set_vf_mac,
7690 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
7691 .ndo_set_vf_rate = bnxt_set_vf_bw,
7692 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
7693 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
7694 #endif
7695 #ifdef CONFIG_NET_POLL_CONTROLLER
7696 .ndo_poll_controller = bnxt_poll_controller,
7697 #endif
7698 .ndo_setup_tc = bnxt_setup_tc,
7699 #ifdef CONFIG_RFS_ACCEL
7700 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
7701 #endif
7702 .ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
7703 .ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
7704 .ndo_xdp = bnxt_xdp,
7705 .ndo_bridge_getlink = bnxt_bridge_getlink,
7706 .ndo_bridge_setlink = bnxt_bridge_setlink,
7707 .ndo_get_phys_port_name = bnxt_get_phys_port_name
7708 };
7709
7710 static void bnxt_remove_one(struct pci_dev *pdev)
7711 {
7712 struct net_device *dev = pci_get_drvdata(pdev);
7713 struct bnxt *bp = netdev_priv(dev);
7714
7715 if (BNXT_PF(bp)) {
7716 bnxt_sriov_disable(bp);
7717 bnxt_dl_unregister(bp);
7718 }
7719
7720 pci_disable_pcie_error_reporting(pdev);
7721 unregister_netdev(dev);
7722 bnxt_shutdown_tc(bp);
7723 cancel_work_sync(&bp->sp_task);
7724 bp->sp_event = 0;
7725
7726 bnxt_clear_int_mode(bp);
7727 bnxt_hwrm_func_drv_unrgtr(bp);
7728 bnxt_free_hwrm_resources(bp);
7729 bnxt_free_hwrm_short_cmd_req(bp);
7730 bnxt_ethtool_free(bp);
7731 bnxt_dcb_free(bp);
7732 kfree(bp->edev);
7733 bp->edev = NULL;
7734 if (bp->xdp_prog)
7735 bpf_prog_put(bp->xdp_prog);
7736 bnxt_cleanup_pci(bp);
7737 free_netdev(dev);
7738 }
7739
7740 static int bnxt_probe_phy(struct bnxt *bp)
7741 {
7742 int rc = 0;
7743 struct bnxt_link_info *link_info = &bp->link_info;
7744
7745 rc = bnxt_hwrm_phy_qcaps(bp);
7746 if (rc) {
7747 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7748 rc);
7749 return rc;
7750 }
7751
7752 rc = bnxt_update_link(bp, false);
7753 if (rc) {
7754 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7755 rc);
7756 return rc;
7757 }
7758
7759 /* Older firmware does not have supported_auto_speeds, so assume
7760 * that all supported speeds can be autonegotiated.
7761 */
7762 if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7763 link_info->support_auto_speeds = link_info->support_speeds;
7764
7765 /*initialize the ethool setting copy with NVM settings */
7766 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7767 link_info->autoneg = BNXT_AUTONEG_SPEED;
7768 if (bp->hwrm_spec_code >= 0x10201) {
7769 if (link_info->auto_pause_setting &
7770 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7771 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7772 } else {
7773 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7774 }
7775 link_info->advertising = link_info->auto_link_speeds;
7776 } else {
7777 link_info->req_link_speed = link_info->force_link_speed;
7778 link_info->req_duplex = link_info->duplex_setting;
7779 }
7780 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7781 link_info->req_flow_ctrl =
7782 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7783 else
7784 link_info->req_flow_ctrl = link_info->force_pause_setting;
7785 return rc;
7786 }
7787
7788 static int bnxt_get_max_irq(struct pci_dev *pdev)
7789 {
7790 u16 ctrl;
7791
7792 if (!pdev->msix_cap)
7793 return 1;
7794
7795 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7796 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7797 }
7798
7799 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7800 int *max_cp)
7801 {
7802 int max_ring_grps = 0;
7803
7804 #ifdef CONFIG_BNXT_SRIOV
7805 if (!BNXT_PF(bp)) {
7806 *max_tx = bp->vf.max_tx_rings;
7807 *max_rx = bp->vf.max_rx_rings;
7808 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7809 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7810 max_ring_grps = bp->vf.max_hw_ring_grps;
7811 } else
7812 #endif
7813 {
7814 *max_tx = bp->pf.max_tx_rings;
7815 *max_rx = bp->pf.max_rx_rings;
7816 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7817 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7818 max_ring_grps = bp->pf.max_hw_ring_grps;
7819 }
7820 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7821 *max_cp -= 1;
7822 *max_rx -= 2;
7823 }
7824 if (bp->flags & BNXT_FLAG_AGG_RINGS)
7825 *max_rx >>= 1;
7826 *max_rx = min_t(int, *max_rx, max_ring_grps);
7827 }
7828
7829 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7830 {
7831 int rx, tx, cp;
7832
7833 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
7834 if (!rx || !tx || !cp)
7835 return -ENOMEM;
7836
7837 *max_rx = rx;
7838 *max_tx = tx;
7839 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7840 }
7841
7842 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7843 bool shared)
7844 {
7845 int rc;
7846
7847 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7848 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7849 /* Not enough rings, try disabling agg rings. */
7850 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7851 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7852 if (rc)
7853 return rc;
7854 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7855 bp->dev->hw_features &= ~NETIF_F_LRO;
7856 bp->dev->features &= ~NETIF_F_LRO;
7857 bnxt_set_ring_params(bp);
7858 }
7859
7860 if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7861 int max_cp, max_stat, max_irq;
7862
7863 /* Reserve minimum resources for RoCE */
7864 max_cp = bnxt_get_max_func_cp_rings(bp);
7865 max_stat = bnxt_get_max_func_stat_ctxs(bp);
7866 max_irq = bnxt_get_max_func_irqs(bp);
7867 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7868 max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7869 max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7870 return 0;
7871
7872 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7873 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7874 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7875 max_cp = min_t(int, max_cp, max_irq);
7876 max_cp = min_t(int, max_cp, max_stat);
7877 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7878 if (rc)
7879 rc = 0;
7880 }
7881 return rc;
7882 }
7883
7884 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
7885 {
7886 int dflt_rings, max_rx_rings, max_tx_rings, rc;
7887
7888 if (sh)
7889 bp->flags |= BNXT_FLAG_SHARED_RINGS;
7890 dflt_rings = netif_get_num_default_rss_queues();
7891 /* Reduce default rings to reduce memory usage on multi-port cards */
7892 if (bp->port_count > 1)
7893 dflt_rings = min_t(int, dflt_rings, 4);
7894 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7895 if (rc)
7896 return rc;
7897 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7898 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7899
7900 rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7901 if (rc)
7902 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7903
7904 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7905 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7906 bp->tx_nr_rings + bp->rx_nr_rings;
7907 bp->num_stat_ctxs = bp->cp_nr_rings;
7908 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7909 bp->rx_nr_rings++;
7910 bp->cp_nr_rings++;
7911 }
7912 return rc;
7913 }
7914
7915 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7916 {
7917 ASSERT_RTNL();
7918 bnxt_hwrm_func_qcaps(bp);
7919 bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7920 }
7921
7922 static int bnxt_init_mac_addr(struct bnxt *bp)
7923 {
7924 int rc = 0;
7925
7926 if (BNXT_PF(bp)) {
7927 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
7928 } else {
7929 #ifdef CONFIG_BNXT_SRIOV
7930 struct bnxt_vf_info *vf = &bp->vf;
7931
7932 if (is_valid_ether_addr(vf->mac_addr)) {
7933 /* overwrite netdev dev_adr with admin VF MAC */
7934 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
7935 } else {
7936 eth_hw_addr_random(bp->dev);
7937 rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
7938 }
7939 #endif
7940 }
7941 return rc;
7942 }
7943
7944 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
7945 {
7946 enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
7947 enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
7948
7949 if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
7950 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
7951 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
7952 else
7953 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
7954 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
7955 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
7956 speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
7957 "Unknown", width);
7958 }
7959
7960 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7961 {
7962 static int version_printed;
7963 struct net_device *dev;
7964 struct bnxt *bp;
7965 int rc, max_irqs;
7966
7967 if (pci_is_bridge(pdev))
7968 return -ENODEV;
7969
7970 if (version_printed++ == 0)
7971 pr_info("%s", version);
7972
7973 max_irqs = bnxt_get_max_irq(pdev);
7974 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
7975 if (!dev)
7976 return -ENOMEM;
7977
7978 bp = netdev_priv(dev);
7979
7980 if (bnxt_vf_pciid(ent->driver_data))
7981 bp->flags |= BNXT_FLAG_VF;
7982
7983 if (pdev->msix_cap)
7984 bp->flags |= BNXT_FLAG_MSIX_CAP;
7985
7986 rc = bnxt_init_board(pdev, dev);
7987 if (rc < 0)
7988 goto init_err_free;
7989
7990 dev->netdev_ops = &bnxt_netdev_ops;
7991 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
7992 dev->ethtool_ops = &bnxt_ethtool_ops;
7993 SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
7994 pci_set_drvdata(pdev, dev);
7995
7996 rc = bnxt_alloc_hwrm_resources(bp);
7997 if (rc)
7998 goto init_err_pci_clean;
7999
8000 mutex_init(&bp->hwrm_cmd_lock);
8001 rc = bnxt_hwrm_ver_get(bp);
8002 if (rc)
8003 goto init_err_pci_clean;
8004
8005 if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8006 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8007 if (rc)
8008 goto init_err_pci_clean;
8009 }
8010
8011 rc = bnxt_hwrm_func_reset(bp);
8012 if (rc)
8013 goto init_err_pci_clean;
8014
8015 bnxt_hwrm_fw_set_time(bp);
8016
8017 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8018 NETIF_F_TSO | NETIF_F_TSO6 |
8019 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8020 NETIF_F_GSO_IPXIP4 |
8021 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8022 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8023 NETIF_F_RXCSUM | NETIF_F_GRO;
8024
8025 if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8026 dev->hw_features |= NETIF_F_LRO;
8027
8028 dev->hw_enc_features =
8029 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8030 NETIF_F_TSO | NETIF_F_TSO6 |
8031 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8032 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8033 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8034 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8035 NETIF_F_GSO_GRE_CSUM;
8036 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8037 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8038 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8039 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8040 dev->priv_flags |= IFF_UNICAST_FLT;
8041
8042 /* MTU range: 60 - 9500 */
8043 dev->min_mtu = ETH_ZLEN;
8044 dev->max_mtu = BNXT_MAX_MTU;
8045
8046 #ifdef CONFIG_BNXT_SRIOV
8047 init_waitqueue_head(&bp->sriov_cfg_wait);
8048 mutex_init(&bp->sriov_lock);
8049 #endif
8050 bp->gro_func = bnxt_gro_func_5730x;
8051 if (BNXT_CHIP_P4_PLUS(bp))
8052 bp->gro_func = bnxt_gro_func_5731x;
8053 else
8054 bp->flags |= BNXT_FLAG_DOUBLE_DB;
8055
8056 rc = bnxt_hwrm_func_drv_rgtr(bp);
8057 if (rc)
8058 goto init_err_pci_clean;
8059
8060 rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8061 if (rc)
8062 goto init_err_pci_clean;
8063
8064 bp->ulp_probe = bnxt_ulp_probe;
8065
8066 /* Get the MAX capabilities for this function */
8067 rc = bnxt_hwrm_func_qcaps(bp);
8068 if (rc) {
8069 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8070 rc);
8071 rc = -1;
8072 goto init_err_pci_clean;
8073 }
8074 rc = bnxt_init_mac_addr(bp);
8075 if (rc) {
8076 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8077 rc = -EADDRNOTAVAIL;
8078 goto init_err_pci_clean;
8079 }
8080 rc = bnxt_hwrm_queue_qportcfg(bp);
8081 if (rc) {
8082 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8083 rc);
8084 rc = -1;
8085 goto init_err_pci_clean;
8086 }
8087
8088 bnxt_hwrm_func_qcfg(bp);
8089 bnxt_hwrm_port_led_qcaps(bp);
8090 bnxt_ethtool_init(bp);
8091 bnxt_dcb_init(bp);
8092
8093 rc = bnxt_probe_phy(bp);
8094 if (rc)
8095 goto init_err_pci_clean;
8096
8097 bnxt_set_rx_skb_mode(bp, false);
8098 bnxt_set_tpa_flags(bp);
8099 bnxt_set_ring_params(bp);
8100 bnxt_set_max_func_irqs(bp, max_irqs);
8101 rc = bnxt_set_dflt_rings(bp, true);
8102 if (rc) {
8103 netdev_err(bp->dev, "Not enough rings available.\n");
8104 rc = -ENOMEM;
8105 goto init_err_pci_clean;
8106 }
8107
8108 /* Default RSS hash cfg. */
8109 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8110 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8111 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8112 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8113 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8114 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8115 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8116 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8117 }
8118
8119 bnxt_hwrm_vnic_qcaps(bp);
8120 if (bnxt_rfs_supported(bp)) {
8121 dev->hw_features |= NETIF_F_NTUPLE;
8122 if (bnxt_rfs_capable(bp)) {
8123 bp->flags |= BNXT_FLAG_RFS;
8124 dev->features |= NETIF_F_NTUPLE;
8125 }
8126 }
8127
8128 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8129 bp->flags |= BNXT_FLAG_STRIP_VLAN;
8130
8131 rc = bnxt_init_int_mode(bp);
8132 if (rc)
8133 goto init_err_pci_clean;
8134
8135 bnxt_get_wol_settings(bp);
8136 if (bp->flags & BNXT_FLAG_WOL_CAP)
8137 device_set_wakeup_enable(&pdev->dev, bp->wol);
8138 else
8139 device_set_wakeup_capable(&pdev->dev, false);
8140
8141 if (BNXT_PF(bp))
8142 bnxt_init_tc(bp);
8143
8144 rc = register_netdev(dev);
8145 if (rc)
8146 goto init_err_cleanup_tc;
8147
8148 if (BNXT_PF(bp))
8149 bnxt_dl_register(bp);
8150
8151 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8152 board_info[ent->driver_data].name,
8153 (long)pci_resource_start(pdev, 0), dev->dev_addr);
8154
8155 bnxt_parse_log_pcie_link(bp);
8156
8157 return 0;
8158
8159 init_err_cleanup_tc:
8160 bnxt_shutdown_tc(bp);
8161 bnxt_clear_int_mode(bp);
8162
8163 init_err_pci_clean:
8164 bnxt_cleanup_pci(bp);
8165
8166 init_err_free:
8167 free_netdev(dev);
8168 return rc;
8169 }
8170
8171 static void bnxt_shutdown(struct pci_dev *pdev)
8172 {
8173 struct net_device *dev = pci_get_drvdata(pdev);
8174 struct bnxt *bp;
8175
8176 if (!dev)
8177 return;
8178
8179 rtnl_lock();
8180 bp = netdev_priv(dev);
8181 if (!bp)
8182 goto shutdown_exit;
8183
8184 if (netif_running(dev))
8185 dev_close(dev);
8186
8187 if (system_state == SYSTEM_POWER_OFF) {
8188 bnxt_ulp_shutdown(bp);
8189 bnxt_clear_int_mode(bp);
8190 pci_wake_from_d3(pdev, bp->wol);
8191 pci_set_power_state(pdev, PCI_D3hot);
8192 }
8193
8194 shutdown_exit:
8195 rtnl_unlock();
8196 }
8197
8198 #ifdef CONFIG_PM_SLEEP
8199 static int bnxt_suspend(struct device *device)
8200 {
8201 struct pci_dev *pdev = to_pci_dev(device);
8202 struct net_device *dev = pci_get_drvdata(pdev);
8203 struct bnxt *bp = netdev_priv(dev);
8204 int rc = 0;
8205
8206 rtnl_lock();
8207 if (netif_running(dev)) {
8208 netif_device_detach(dev);
8209 rc = bnxt_close(dev);
8210 }
8211 bnxt_hwrm_func_drv_unrgtr(bp);
8212 rtnl_unlock();
8213 return rc;
8214 }
8215
8216 static int bnxt_resume(struct device *device)
8217 {
8218 struct pci_dev *pdev = to_pci_dev(device);
8219 struct net_device *dev = pci_get_drvdata(pdev);
8220 struct bnxt *bp = netdev_priv(dev);
8221 int rc = 0;
8222
8223 rtnl_lock();
8224 if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8225 rc = -ENODEV;
8226 goto resume_exit;
8227 }
8228 rc = bnxt_hwrm_func_reset(bp);
8229 if (rc) {
8230 rc = -EBUSY;
8231 goto resume_exit;
8232 }
8233 bnxt_get_wol_settings(bp);
8234 if (netif_running(dev)) {
8235 rc = bnxt_open(dev);
8236 if (!rc)
8237 netif_device_attach(dev);
8238 }
8239
8240 resume_exit:
8241 rtnl_unlock();
8242 return rc;
8243 }
8244
8245 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8246 #define BNXT_PM_OPS (&bnxt_pm_ops)
8247
8248 #else
8249
8250 #define BNXT_PM_OPS NULL
8251
8252 #endif /* CONFIG_PM_SLEEP */
8253
8254 /**
8255 * bnxt_io_error_detected - called when PCI error is detected
8256 * @pdev: Pointer to PCI device
8257 * @state: The current pci connection state
8258 *
8259 * This function is called after a PCI bus error affecting
8260 * this device has been detected.
8261 */
8262 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
8263 pci_channel_state_t state)
8264 {
8265 struct net_device *netdev = pci_get_drvdata(pdev);
8266 struct bnxt *bp = netdev_priv(netdev);
8267
8268 netdev_info(netdev, "PCI I/O error detected\n");
8269
8270 rtnl_lock();
8271 netif_device_detach(netdev);
8272
8273 bnxt_ulp_stop(bp);
8274
8275 if (state == pci_channel_io_perm_failure) {
8276 rtnl_unlock();
8277 return PCI_ERS_RESULT_DISCONNECT;
8278 }
8279
8280 if (netif_running(netdev))
8281 bnxt_close(netdev);
8282
8283 pci_disable_device(pdev);
8284 rtnl_unlock();
8285
8286 /* Request a slot slot reset. */
8287 return PCI_ERS_RESULT_NEED_RESET;
8288 }
8289
8290 /**
8291 * bnxt_io_slot_reset - called after the pci bus has been reset.
8292 * @pdev: Pointer to PCI device
8293 *
8294 * Restart the card from scratch, as if from a cold-boot.
8295 * At this point, the card has exprienced a hard reset,
8296 * followed by fixups by BIOS, and has its config space
8297 * set up identically to what it was at cold boot.
8298 */
8299 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
8300 {
8301 struct net_device *netdev = pci_get_drvdata(pdev);
8302 struct bnxt *bp = netdev_priv(netdev);
8303 int err = 0;
8304 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
8305
8306 netdev_info(bp->dev, "PCI Slot Reset\n");
8307
8308 rtnl_lock();
8309
8310 if (pci_enable_device(pdev)) {
8311 dev_err(&pdev->dev,
8312 "Cannot re-enable PCI device after reset.\n");
8313 } else {
8314 pci_set_master(pdev);
8315
8316 err = bnxt_hwrm_func_reset(bp);
8317 if (!err && netif_running(netdev))
8318 err = bnxt_open(netdev);
8319
8320 if (!err) {
8321 result = PCI_ERS_RESULT_RECOVERED;
8322 bnxt_ulp_start(bp);
8323 }
8324 }
8325
8326 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
8327 dev_close(netdev);
8328
8329 rtnl_unlock();
8330
8331 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8332 if (err) {
8333 dev_err(&pdev->dev,
8334 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8335 err); /* non-fatal, continue */
8336 }
8337
8338 return PCI_ERS_RESULT_RECOVERED;
8339 }
8340
8341 /**
8342 * bnxt_io_resume - called when traffic can start flowing again.
8343 * @pdev: Pointer to PCI device
8344 *
8345 * This callback is called when the error recovery driver tells
8346 * us that its OK to resume normal operation.
8347 */
8348 static void bnxt_io_resume(struct pci_dev *pdev)
8349 {
8350 struct net_device *netdev = pci_get_drvdata(pdev);
8351
8352 rtnl_lock();
8353
8354 netif_device_attach(netdev);
8355
8356 rtnl_unlock();
8357 }
8358
8359 static const struct pci_error_handlers bnxt_err_handler = {
8360 .error_detected = bnxt_io_error_detected,
8361 .slot_reset = bnxt_io_slot_reset,
8362 .resume = bnxt_io_resume
8363 };
8364
8365 static struct pci_driver bnxt_pci_driver = {
8366 .name = DRV_MODULE_NAME,
8367 .id_table = bnxt_pci_tbl,
8368 .probe = bnxt_init_one,
8369 .remove = bnxt_remove_one,
8370 .shutdown = bnxt_shutdown,
8371 .driver.pm = BNXT_PM_OPS,
8372 .err_handler = &bnxt_err_handler,
8373 #if defined(CONFIG_BNXT_SRIOV)
8374 .sriov_configure = bnxt_sriov_configure,
8375 #endif
8376 };
8377
8378 module_pci_driver(bnxt_pci_driver);