]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 * Copyright (c) 2016-2019 Broadcom Limited
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70
71 #define BNXT_TX_TIMEOUT (5 * HZ)
72
73 static const char version[] =
74 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
75
76 MODULE_LICENSE("GPL");
77 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
78 MODULE_VERSION(DRV_MODULE_VERSION);
79
80 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
81 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
82 #define BNXT_RX_COPY_THRESH 256
83
84 #define BNXT_TX_PUSH_THRESH 164
85
86 enum board_idx {
87 BCM57301,
88 BCM57302,
89 BCM57304,
90 BCM57417_NPAR,
91 BCM58700,
92 BCM57311,
93 BCM57312,
94 BCM57402,
95 BCM57404,
96 BCM57406,
97 BCM57402_NPAR,
98 BCM57407,
99 BCM57412,
100 BCM57414,
101 BCM57416,
102 BCM57417,
103 BCM57412_NPAR,
104 BCM57314,
105 BCM57417_SFP,
106 BCM57416_SFP,
107 BCM57404_NPAR,
108 BCM57406_NPAR,
109 BCM57407_SFP,
110 BCM57407_NPAR,
111 BCM57414_NPAR,
112 BCM57416_NPAR,
113 BCM57452,
114 BCM57454,
115 BCM5745x_NPAR,
116 BCM57508,
117 BCM57504,
118 BCM57502,
119 BCM58802,
120 BCM58804,
121 BCM58808,
122 NETXTREME_E_VF,
123 NETXTREME_C_VF,
124 NETXTREME_S_VF,
125 NETXTREME_E_P5_VF,
126 };
127
128 /* indexed by enum above */
129 static const struct {
130 char *name;
131 } board_info[] = {
132 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
133 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
134 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
135 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
136 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
137 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
138 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
139 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
140 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
141 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
142 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
143 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
144 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
145 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
146 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
147 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
148 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
149 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
150 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
151 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
152 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
153 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
154 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
155 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
156 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
157 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
158 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
159 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
160 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
161 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
163 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
164 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
165 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
166 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
167 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
168 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
169 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
170 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
171 };
172
173 static const struct pci_device_id bnxt_pci_tbl[] = {
174 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
175 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
176 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
177 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
178 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
179 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
180 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
181 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
182 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
183 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
184 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
185 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
186 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
187 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
188 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
189 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
190 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
191 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
192 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
193 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
194 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
195 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
196 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
197 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
198 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
199 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
200 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
201 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
202 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
203 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
204 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
205 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
206 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
207 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
208 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
209 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
210 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
211 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
212 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
213 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
214 #ifdef CONFIG_BNXT_SRIOV
215 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
216 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
217 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
218 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
219 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
220 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
221 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
222 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
223 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
224 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
225 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
226 #endif
227 { 0 }
228 };
229
230 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
231
232 static const u16 bnxt_vf_req_snif[] = {
233 HWRM_FUNC_CFG,
234 HWRM_FUNC_VF_CFG,
235 HWRM_PORT_PHY_QCFG,
236 HWRM_CFA_L2_FILTER_ALLOC,
237 };
238
239 static const u16 bnxt_async_events_arr[] = {
240 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
241 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
242 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
243 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
244 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
245 };
246
247 static struct workqueue_struct *bnxt_pf_wq;
248
249 static bool bnxt_vf_pciid(enum board_idx idx)
250 {
251 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
252 idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
253 }
254
255 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
256 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
257 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
258
259 #define BNXT_CP_DB_IRQ_DIS(db) \
260 writel(DB_CP_IRQ_DIS_FLAGS, db)
261
262 #define BNXT_DB_CQ(db, idx) \
263 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
264
265 #define BNXT_DB_NQ_P5(db, idx) \
266 writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
267
268 #define BNXT_DB_CQ_ARM(db, idx) \
269 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
270
271 #define BNXT_DB_NQ_ARM_P5(db, idx) \
272 writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
273
274 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
275 {
276 if (bp->flags & BNXT_FLAG_CHIP_P5)
277 BNXT_DB_NQ_P5(db, idx);
278 else
279 BNXT_DB_CQ(db, idx);
280 }
281
282 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
283 {
284 if (bp->flags & BNXT_FLAG_CHIP_P5)
285 BNXT_DB_NQ_ARM_P5(db, idx);
286 else
287 BNXT_DB_CQ_ARM(db, idx);
288 }
289
290 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
291 {
292 if (bp->flags & BNXT_FLAG_CHIP_P5)
293 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
294 db->doorbell);
295 else
296 BNXT_DB_CQ(db, idx);
297 }
298
299 const u16 bnxt_lhint_arr[] = {
300 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
301 TX_BD_FLAGS_LHINT_512_TO_1023,
302 TX_BD_FLAGS_LHINT_1024_TO_2047,
303 TX_BD_FLAGS_LHINT_1024_TO_2047,
304 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
317 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
318 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319 };
320
321 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
322 {
323 struct metadata_dst *md_dst = skb_metadata_dst(skb);
324
325 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
326 return 0;
327
328 return md_dst->u.port_info.port_id;
329 }
330
331 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
332 {
333 struct bnxt *bp = netdev_priv(dev);
334 struct tx_bd *txbd;
335 struct tx_bd_ext *txbd1;
336 struct netdev_queue *txq;
337 int i;
338 dma_addr_t mapping;
339 unsigned int length, pad = 0;
340 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
341 u16 prod, last_frag;
342 struct pci_dev *pdev = bp->pdev;
343 struct bnxt_tx_ring_info *txr;
344 struct bnxt_sw_tx_bd *tx_buf;
345
346 i = skb_get_queue_mapping(skb);
347 if (unlikely(i >= bp->tx_nr_rings)) {
348 dev_kfree_skb_any(skb);
349 return NETDEV_TX_OK;
350 }
351
352 txq = netdev_get_tx_queue(dev, i);
353 txr = &bp->tx_ring[bp->tx_ring_map[i]];
354 prod = txr->tx_prod;
355
356 free_size = bnxt_tx_avail(bp, txr);
357 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
358 netif_tx_stop_queue(txq);
359 return NETDEV_TX_BUSY;
360 }
361
362 length = skb->len;
363 len = skb_headlen(skb);
364 last_frag = skb_shinfo(skb)->nr_frags;
365
366 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
367
368 txbd->tx_bd_opaque = prod;
369
370 tx_buf = &txr->tx_buf_ring[prod];
371 tx_buf->skb = skb;
372 tx_buf->nr_frags = last_frag;
373
374 vlan_tag_flags = 0;
375 cfa_action = bnxt_xmit_get_cfa_action(skb);
376 if (skb_vlan_tag_present(skb)) {
377 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
378 skb_vlan_tag_get(skb);
379 /* Currently supports 8021Q, 8021AD vlan offloads
380 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
381 */
382 if (skb->vlan_proto == htons(ETH_P_8021Q))
383 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
384 }
385
386 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
387 struct tx_push_buffer *tx_push_buf = txr->tx_push;
388 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
389 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
390 void __iomem *db = txr->tx_db.doorbell;
391 void *pdata = tx_push_buf->data;
392 u64 *end;
393 int j, push_len;
394
395 /* Set COAL_NOW to be ready quickly for the next push */
396 tx_push->tx_bd_len_flags_type =
397 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
398 TX_BD_TYPE_LONG_TX_BD |
399 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
400 TX_BD_FLAGS_COAL_NOW |
401 TX_BD_FLAGS_PACKET_END |
402 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
403
404 if (skb->ip_summed == CHECKSUM_PARTIAL)
405 tx_push1->tx_bd_hsize_lflags =
406 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
407 else
408 tx_push1->tx_bd_hsize_lflags = 0;
409
410 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
411 tx_push1->tx_bd_cfa_action =
412 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
413
414 end = pdata + length;
415 end = PTR_ALIGN(end, 8) - 1;
416 *end = 0;
417
418 skb_copy_from_linear_data(skb, pdata, len);
419 pdata += len;
420 for (j = 0; j < last_frag; j++) {
421 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
422 void *fptr;
423
424 fptr = skb_frag_address_safe(frag);
425 if (!fptr)
426 goto normal_tx;
427
428 memcpy(pdata, fptr, skb_frag_size(frag));
429 pdata += skb_frag_size(frag);
430 }
431
432 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
433 txbd->tx_bd_haddr = txr->data_mapping;
434 prod = NEXT_TX(prod);
435 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
436 memcpy(txbd, tx_push1, sizeof(*txbd));
437 prod = NEXT_TX(prod);
438 tx_push->doorbell =
439 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
440 txr->tx_prod = prod;
441
442 tx_buf->is_push = 1;
443 netdev_tx_sent_queue(txq, skb->len);
444 wmb(); /* Sync is_push and byte queue before pushing data */
445
446 push_len = (length + sizeof(*tx_push) + 7) / 8;
447 if (push_len > 16) {
448 __iowrite64_copy(db, tx_push_buf, 16);
449 __iowrite32_copy(db + 4, tx_push_buf + 1,
450 (push_len - 16) << 1);
451 } else {
452 __iowrite64_copy(db, tx_push_buf, push_len);
453 }
454
455 goto tx_done;
456 }
457
458 normal_tx:
459 if (length < BNXT_MIN_PKT_SIZE) {
460 pad = BNXT_MIN_PKT_SIZE - length;
461 if (skb_pad(skb, pad)) {
462 /* SKB already freed. */
463 tx_buf->skb = NULL;
464 return NETDEV_TX_OK;
465 }
466 length = BNXT_MIN_PKT_SIZE;
467 }
468
469 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
470
471 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
472 dev_kfree_skb_any(skb);
473 tx_buf->skb = NULL;
474 return NETDEV_TX_OK;
475 }
476
477 dma_unmap_addr_set(tx_buf, mapping, mapping);
478 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
479 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
480
481 txbd->tx_bd_haddr = cpu_to_le64(mapping);
482
483 prod = NEXT_TX(prod);
484 txbd1 = (struct tx_bd_ext *)
485 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
486
487 txbd1->tx_bd_hsize_lflags = 0;
488 if (skb_is_gso(skb)) {
489 u32 hdr_len;
490
491 if (skb->encapsulation)
492 hdr_len = skb_inner_network_offset(skb) +
493 skb_inner_network_header_len(skb) +
494 inner_tcp_hdrlen(skb);
495 else
496 hdr_len = skb_transport_offset(skb) +
497 tcp_hdrlen(skb);
498
499 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
500 TX_BD_FLAGS_T_IPID |
501 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
502 length = skb_shinfo(skb)->gso_size;
503 txbd1->tx_bd_mss = cpu_to_le32(length);
504 length += hdr_len;
505 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
506 txbd1->tx_bd_hsize_lflags =
507 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
508 txbd1->tx_bd_mss = 0;
509 }
510
511 length >>= 9;
512 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
513 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
514 skb->len);
515 i = 0;
516 goto tx_dma_error;
517 }
518 flags |= bnxt_lhint_arr[length];
519 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
520
521 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
522 txbd1->tx_bd_cfa_action =
523 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
524 for (i = 0; i < last_frag; i++) {
525 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
526
527 prod = NEXT_TX(prod);
528 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
529
530 len = skb_frag_size(frag);
531 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
532 DMA_TO_DEVICE);
533
534 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
535 goto tx_dma_error;
536
537 tx_buf = &txr->tx_buf_ring[prod];
538 dma_unmap_addr_set(tx_buf, mapping, mapping);
539
540 txbd->tx_bd_haddr = cpu_to_le64(mapping);
541
542 flags = len << TX_BD_LEN_SHIFT;
543 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
544 }
545
546 flags &= ~TX_BD_LEN;
547 txbd->tx_bd_len_flags_type =
548 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
549 TX_BD_FLAGS_PACKET_END);
550
551 netdev_tx_sent_queue(txq, skb->len);
552
553 /* Sync BD data before updating doorbell */
554 wmb();
555
556 prod = NEXT_TX(prod);
557 txr->tx_prod = prod;
558
559 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
560 bnxt_db_write(bp, &txr->tx_db, prod);
561
562 tx_done:
563
564 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
565 if (netdev_xmit_more() && !tx_buf->is_push)
566 bnxt_db_write(bp, &txr->tx_db, prod);
567
568 netif_tx_stop_queue(txq);
569
570 /* netif_tx_stop_queue() must be done before checking
571 * tx index in bnxt_tx_avail() below, because in
572 * bnxt_tx_int(), we update tx index before checking for
573 * netif_tx_queue_stopped().
574 */
575 smp_mb();
576 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
577 netif_tx_wake_queue(txq);
578 }
579 return NETDEV_TX_OK;
580
581 tx_dma_error:
582 last_frag = i;
583
584 /* start back at beginning and unmap skb */
585 prod = txr->tx_prod;
586 tx_buf = &txr->tx_buf_ring[prod];
587 tx_buf->skb = NULL;
588 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
589 skb_headlen(skb), PCI_DMA_TODEVICE);
590 prod = NEXT_TX(prod);
591
592 /* unmap remaining mapped pages */
593 for (i = 0; i < last_frag; i++) {
594 prod = NEXT_TX(prod);
595 tx_buf = &txr->tx_buf_ring[prod];
596 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
597 skb_frag_size(&skb_shinfo(skb)->frags[i]),
598 PCI_DMA_TODEVICE);
599 }
600
601 dev_kfree_skb_any(skb);
602 return NETDEV_TX_OK;
603 }
604
605 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
606 {
607 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
608 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
609 u16 cons = txr->tx_cons;
610 struct pci_dev *pdev = bp->pdev;
611 int i;
612 unsigned int tx_bytes = 0;
613
614 for (i = 0; i < nr_pkts; i++) {
615 struct bnxt_sw_tx_bd *tx_buf;
616 struct sk_buff *skb;
617 int j, last;
618
619 tx_buf = &txr->tx_buf_ring[cons];
620 cons = NEXT_TX(cons);
621 skb = tx_buf->skb;
622 tx_buf->skb = NULL;
623
624 if (tx_buf->is_push) {
625 tx_buf->is_push = 0;
626 goto next_tx_int;
627 }
628
629 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
630 skb_headlen(skb), PCI_DMA_TODEVICE);
631 last = tx_buf->nr_frags;
632
633 for (j = 0; j < last; j++) {
634 cons = NEXT_TX(cons);
635 tx_buf = &txr->tx_buf_ring[cons];
636 dma_unmap_page(
637 &pdev->dev,
638 dma_unmap_addr(tx_buf, mapping),
639 skb_frag_size(&skb_shinfo(skb)->frags[j]),
640 PCI_DMA_TODEVICE);
641 }
642
643 next_tx_int:
644 cons = NEXT_TX(cons);
645
646 tx_bytes += skb->len;
647 dev_kfree_skb_any(skb);
648 }
649
650 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
651 txr->tx_cons = cons;
652
653 /* Need to make the tx_cons update visible to bnxt_start_xmit()
654 * before checking for netif_tx_queue_stopped(). Without the
655 * memory barrier, there is a small possibility that bnxt_start_xmit()
656 * will miss it and cause the queue to be stopped forever.
657 */
658 smp_mb();
659
660 if (unlikely(netif_tx_queue_stopped(txq)) &&
661 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
662 __netif_tx_lock(txq, smp_processor_id());
663 if (netif_tx_queue_stopped(txq) &&
664 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
665 txr->dev_state != BNXT_DEV_STATE_CLOSING)
666 netif_tx_wake_queue(txq);
667 __netif_tx_unlock(txq);
668 }
669 }
670
671 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
672 struct bnxt_rx_ring_info *rxr,
673 gfp_t gfp)
674 {
675 struct device *dev = &bp->pdev->dev;
676 struct page *page;
677
678 page = page_pool_dev_alloc_pages(rxr->page_pool);
679 if (!page)
680 return NULL;
681
682 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
683 DMA_ATTR_WEAK_ORDERING);
684 if (dma_mapping_error(dev, *mapping)) {
685 page_pool_recycle_direct(rxr->page_pool, page);
686 return NULL;
687 }
688 *mapping += bp->rx_dma_offset;
689 return page;
690 }
691
692 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
693 gfp_t gfp)
694 {
695 u8 *data;
696 struct pci_dev *pdev = bp->pdev;
697
698 data = kmalloc(bp->rx_buf_size, gfp);
699 if (!data)
700 return NULL;
701
702 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
703 bp->rx_buf_use_size, bp->rx_dir,
704 DMA_ATTR_WEAK_ORDERING);
705
706 if (dma_mapping_error(&pdev->dev, *mapping)) {
707 kfree(data);
708 data = NULL;
709 }
710 return data;
711 }
712
713 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
714 u16 prod, gfp_t gfp)
715 {
716 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
717 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
718 dma_addr_t mapping;
719
720 if (BNXT_RX_PAGE_MODE(bp)) {
721 struct page *page =
722 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
723
724 if (!page)
725 return -ENOMEM;
726
727 rx_buf->data = page;
728 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
729 } else {
730 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
731
732 if (!data)
733 return -ENOMEM;
734
735 rx_buf->data = data;
736 rx_buf->data_ptr = data + bp->rx_offset;
737 }
738 rx_buf->mapping = mapping;
739
740 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
741 return 0;
742 }
743
744 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
745 {
746 u16 prod = rxr->rx_prod;
747 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
748 struct rx_bd *cons_bd, *prod_bd;
749
750 prod_rx_buf = &rxr->rx_buf_ring[prod];
751 cons_rx_buf = &rxr->rx_buf_ring[cons];
752
753 prod_rx_buf->data = data;
754 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
755
756 prod_rx_buf->mapping = cons_rx_buf->mapping;
757
758 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
759 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
760
761 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
762 }
763
764 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
765 {
766 u16 next, max = rxr->rx_agg_bmap_size;
767
768 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
769 if (next >= max)
770 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
771 return next;
772 }
773
774 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
775 struct bnxt_rx_ring_info *rxr,
776 u16 prod, gfp_t gfp)
777 {
778 struct rx_bd *rxbd =
779 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
780 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
781 struct pci_dev *pdev = bp->pdev;
782 struct page *page;
783 dma_addr_t mapping;
784 u16 sw_prod = rxr->rx_sw_agg_prod;
785 unsigned int offset = 0;
786
787 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
788 page = rxr->rx_page;
789 if (!page) {
790 page = alloc_page(gfp);
791 if (!page)
792 return -ENOMEM;
793 rxr->rx_page = page;
794 rxr->rx_page_offset = 0;
795 }
796 offset = rxr->rx_page_offset;
797 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
798 if (rxr->rx_page_offset == PAGE_SIZE)
799 rxr->rx_page = NULL;
800 else
801 get_page(page);
802 } else {
803 page = alloc_page(gfp);
804 if (!page)
805 return -ENOMEM;
806 }
807
808 mapping = dma_map_page_attrs(&pdev->dev, page, offset,
809 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
810 DMA_ATTR_WEAK_ORDERING);
811 if (dma_mapping_error(&pdev->dev, mapping)) {
812 __free_page(page);
813 return -EIO;
814 }
815
816 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
817 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
818
819 __set_bit(sw_prod, rxr->rx_agg_bmap);
820 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
821 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
822
823 rx_agg_buf->page = page;
824 rx_agg_buf->offset = offset;
825 rx_agg_buf->mapping = mapping;
826 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
827 rxbd->rx_bd_opaque = sw_prod;
828 return 0;
829 }
830
831 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
832 u32 agg_bufs)
833 {
834 struct bnxt_napi *bnapi = cpr->bnapi;
835 struct bnxt *bp = bnapi->bp;
836 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
837 u16 prod = rxr->rx_agg_prod;
838 u16 sw_prod = rxr->rx_sw_agg_prod;
839 u32 i;
840
841 for (i = 0; i < agg_bufs; i++) {
842 u16 cons;
843 struct rx_agg_cmp *agg;
844 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
845 struct rx_bd *prod_bd;
846 struct page *page;
847
848 agg = (struct rx_agg_cmp *)
849 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
850 cons = agg->rx_agg_cmp_opaque;
851 __clear_bit(cons, rxr->rx_agg_bmap);
852
853 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
854 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
855
856 __set_bit(sw_prod, rxr->rx_agg_bmap);
857 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
858 cons_rx_buf = &rxr->rx_agg_ring[cons];
859
860 /* It is possible for sw_prod to be equal to cons, so
861 * set cons_rx_buf->page to NULL first.
862 */
863 page = cons_rx_buf->page;
864 cons_rx_buf->page = NULL;
865 prod_rx_buf->page = page;
866 prod_rx_buf->offset = cons_rx_buf->offset;
867
868 prod_rx_buf->mapping = cons_rx_buf->mapping;
869
870 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
871
872 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
873 prod_bd->rx_bd_opaque = sw_prod;
874
875 prod = NEXT_RX_AGG(prod);
876 sw_prod = NEXT_RX_AGG(sw_prod);
877 cp_cons = NEXT_CMP(cp_cons);
878 }
879 rxr->rx_agg_prod = prod;
880 rxr->rx_sw_agg_prod = sw_prod;
881 }
882
883 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
884 struct bnxt_rx_ring_info *rxr,
885 u16 cons, void *data, u8 *data_ptr,
886 dma_addr_t dma_addr,
887 unsigned int offset_and_len)
888 {
889 unsigned int payload = offset_and_len >> 16;
890 unsigned int len = offset_and_len & 0xffff;
891 struct skb_frag_struct *frag;
892 struct page *page = data;
893 u16 prod = rxr->rx_prod;
894 struct sk_buff *skb;
895 int off, err;
896
897 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
898 if (unlikely(err)) {
899 bnxt_reuse_rx_data(rxr, cons, data);
900 return NULL;
901 }
902 dma_addr -= bp->rx_dma_offset;
903 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
904 DMA_ATTR_WEAK_ORDERING);
905
906 if (unlikely(!payload))
907 payload = eth_get_headlen(bp->dev, data_ptr, len);
908
909 skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
910 if (!skb) {
911 __free_page(page);
912 return NULL;
913 }
914
915 off = (void *)data_ptr - page_address(page);
916 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
917 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
918 payload + NET_IP_ALIGN);
919
920 frag = &skb_shinfo(skb)->frags[0];
921 skb_frag_size_sub(frag, payload);
922 frag->page_offset += payload;
923 skb->data_len -= payload;
924 skb->tail += payload;
925
926 return skb;
927 }
928
929 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
930 struct bnxt_rx_ring_info *rxr, u16 cons,
931 void *data, u8 *data_ptr,
932 dma_addr_t dma_addr,
933 unsigned int offset_and_len)
934 {
935 u16 prod = rxr->rx_prod;
936 struct sk_buff *skb;
937 int err;
938
939 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
940 if (unlikely(err)) {
941 bnxt_reuse_rx_data(rxr, cons, data);
942 return NULL;
943 }
944
945 skb = build_skb(data, 0);
946 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
947 bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
948 if (!skb) {
949 kfree(data);
950 return NULL;
951 }
952
953 skb_reserve(skb, bp->rx_offset);
954 skb_put(skb, offset_and_len & 0xffff);
955 return skb;
956 }
957
958 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
959 struct bnxt_cp_ring_info *cpr,
960 struct sk_buff *skb, u16 cp_cons,
961 u32 agg_bufs)
962 {
963 struct bnxt_napi *bnapi = cpr->bnapi;
964 struct pci_dev *pdev = bp->pdev;
965 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
966 u16 prod = rxr->rx_agg_prod;
967 u32 i;
968
969 for (i = 0; i < agg_bufs; i++) {
970 u16 cons, frag_len;
971 struct rx_agg_cmp *agg;
972 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
973 struct page *page;
974 dma_addr_t mapping;
975
976 agg = (struct rx_agg_cmp *)
977 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
978 cons = agg->rx_agg_cmp_opaque;
979 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
980 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
981
982 cons_rx_buf = &rxr->rx_agg_ring[cons];
983 skb_fill_page_desc(skb, i, cons_rx_buf->page,
984 cons_rx_buf->offset, frag_len);
985 __clear_bit(cons, rxr->rx_agg_bmap);
986
987 /* It is possible for bnxt_alloc_rx_page() to allocate
988 * a sw_prod index that equals the cons index, so we
989 * need to clear the cons entry now.
990 */
991 mapping = cons_rx_buf->mapping;
992 page = cons_rx_buf->page;
993 cons_rx_buf->page = NULL;
994
995 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
996 struct skb_shared_info *shinfo;
997 unsigned int nr_frags;
998
999 shinfo = skb_shinfo(skb);
1000 nr_frags = --shinfo->nr_frags;
1001 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1002
1003 dev_kfree_skb(skb);
1004
1005 cons_rx_buf->page = page;
1006
1007 /* Update prod since possibly some pages have been
1008 * allocated already.
1009 */
1010 rxr->rx_agg_prod = prod;
1011 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs - i);
1012 return NULL;
1013 }
1014
1015 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1016 PCI_DMA_FROMDEVICE,
1017 DMA_ATTR_WEAK_ORDERING);
1018
1019 skb->data_len += frag_len;
1020 skb->len += frag_len;
1021 skb->truesize += PAGE_SIZE;
1022
1023 prod = NEXT_RX_AGG(prod);
1024 cp_cons = NEXT_CMP(cp_cons);
1025 }
1026 rxr->rx_agg_prod = prod;
1027 return skb;
1028 }
1029
1030 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1031 u8 agg_bufs, u32 *raw_cons)
1032 {
1033 u16 last;
1034 struct rx_agg_cmp *agg;
1035
1036 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1037 last = RING_CMP(*raw_cons);
1038 agg = (struct rx_agg_cmp *)
1039 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1040 return RX_AGG_CMP_VALID(agg, *raw_cons);
1041 }
1042
1043 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1044 unsigned int len,
1045 dma_addr_t mapping)
1046 {
1047 struct bnxt *bp = bnapi->bp;
1048 struct pci_dev *pdev = bp->pdev;
1049 struct sk_buff *skb;
1050
1051 skb = napi_alloc_skb(&bnapi->napi, len);
1052 if (!skb)
1053 return NULL;
1054
1055 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1056 bp->rx_dir);
1057
1058 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1059 len + NET_IP_ALIGN);
1060
1061 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1062 bp->rx_dir);
1063
1064 skb_put(skb, len);
1065 return skb;
1066 }
1067
1068 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1069 u32 *raw_cons, void *cmp)
1070 {
1071 struct rx_cmp *rxcmp = cmp;
1072 u32 tmp_raw_cons = *raw_cons;
1073 u8 cmp_type, agg_bufs = 0;
1074
1075 cmp_type = RX_CMP_TYPE(rxcmp);
1076
1077 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1078 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1079 RX_CMP_AGG_BUFS) >>
1080 RX_CMP_AGG_BUFS_SHIFT;
1081 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1082 struct rx_tpa_end_cmp *tpa_end = cmp;
1083
1084 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1085 RX_TPA_END_CMP_AGG_BUFS) >>
1086 RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1087 }
1088
1089 if (agg_bufs) {
1090 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1091 return -EBUSY;
1092 }
1093 *raw_cons = tmp_raw_cons;
1094 return 0;
1095 }
1096
1097 static void bnxt_queue_sp_work(struct bnxt *bp)
1098 {
1099 if (BNXT_PF(bp))
1100 queue_work(bnxt_pf_wq, &bp->sp_task);
1101 else
1102 schedule_work(&bp->sp_task);
1103 }
1104
1105 static void bnxt_cancel_sp_work(struct bnxt *bp)
1106 {
1107 if (BNXT_PF(bp))
1108 flush_workqueue(bnxt_pf_wq);
1109 else
1110 cancel_work_sync(&bp->sp_task);
1111 }
1112
1113 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1114 {
1115 if (!rxr->bnapi->in_reset) {
1116 rxr->bnapi->in_reset = true;
1117 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1118 bnxt_queue_sp_work(bp);
1119 }
1120 rxr->rx_next_cons = 0xffff;
1121 }
1122
1123 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1124 struct rx_tpa_start_cmp *tpa_start,
1125 struct rx_tpa_start_cmp_ext *tpa_start1)
1126 {
1127 u8 agg_id = TPA_START_AGG_ID(tpa_start);
1128 u16 cons, prod;
1129 struct bnxt_tpa_info *tpa_info;
1130 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1131 struct rx_bd *prod_bd;
1132 dma_addr_t mapping;
1133
1134 cons = tpa_start->rx_tpa_start_cmp_opaque;
1135 prod = rxr->rx_prod;
1136 cons_rx_buf = &rxr->rx_buf_ring[cons];
1137 prod_rx_buf = &rxr->rx_buf_ring[prod];
1138 tpa_info = &rxr->rx_tpa[agg_id];
1139
1140 if (unlikely(cons != rxr->rx_next_cons)) {
1141 netdev_warn(bp->dev, "TPA cons %x != expected cons %x\n",
1142 cons, rxr->rx_next_cons);
1143 bnxt_sched_reset(bp, rxr);
1144 return;
1145 }
1146 /* Store cfa_code in tpa_info to use in tpa_end
1147 * completion processing.
1148 */
1149 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1150 prod_rx_buf->data = tpa_info->data;
1151 prod_rx_buf->data_ptr = tpa_info->data_ptr;
1152
1153 mapping = tpa_info->mapping;
1154 prod_rx_buf->mapping = mapping;
1155
1156 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1157
1158 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1159
1160 tpa_info->data = cons_rx_buf->data;
1161 tpa_info->data_ptr = cons_rx_buf->data_ptr;
1162 cons_rx_buf->data = NULL;
1163 tpa_info->mapping = cons_rx_buf->mapping;
1164
1165 tpa_info->len =
1166 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1167 RX_TPA_START_CMP_LEN_SHIFT;
1168 if (likely(TPA_START_HASH_VALID(tpa_start))) {
1169 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1170
1171 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1172 tpa_info->gso_type = SKB_GSO_TCPV4;
1173 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1174 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1175 tpa_info->gso_type = SKB_GSO_TCPV6;
1176 tpa_info->rss_hash =
1177 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1178 } else {
1179 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1180 tpa_info->gso_type = 0;
1181 if (netif_msg_rx_err(bp))
1182 netdev_warn(bp->dev, "TPA packet without valid hash\n");
1183 }
1184 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1185 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1186 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1187
1188 rxr->rx_prod = NEXT_RX(prod);
1189 cons = NEXT_RX(cons);
1190 rxr->rx_next_cons = NEXT_RX(cons);
1191 cons_rx_buf = &rxr->rx_buf_ring[cons];
1192
1193 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1194 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1195 cons_rx_buf->data = NULL;
1196 }
1197
1198 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
1199 u32 agg_bufs)
1200 {
1201 if (agg_bufs)
1202 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1203 }
1204
1205 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1206 int payload_off, int tcp_ts,
1207 struct sk_buff *skb)
1208 {
1209 #ifdef CONFIG_INET
1210 struct tcphdr *th;
1211 int len, nw_off;
1212 u16 outer_ip_off, inner_ip_off, inner_mac_off;
1213 u32 hdr_info = tpa_info->hdr_info;
1214 bool loopback = false;
1215
1216 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1217 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1218 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1219
1220 /* If the packet is an internal loopback packet, the offsets will
1221 * have an extra 4 bytes.
1222 */
1223 if (inner_mac_off == 4) {
1224 loopback = true;
1225 } else if (inner_mac_off > 4) {
1226 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1227 ETH_HLEN - 2));
1228
1229 /* We only support inner iPv4/ipv6. If we don't see the
1230 * correct protocol ID, it must be a loopback packet where
1231 * the offsets are off by 4.
1232 */
1233 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1234 loopback = true;
1235 }
1236 if (loopback) {
1237 /* internal loopback packet, subtract all offsets by 4 */
1238 inner_ip_off -= 4;
1239 inner_mac_off -= 4;
1240 outer_ip_off -= 4;
1241 }
1242
1243 nw_off = inner_ip_off - ETH_HLEN;
1244 skb_set_network_header(skb, nw_off);
1245 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1246 struct ipv6hdr *iph = ipv6_hdr(skb);
1247
1248 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1249 len = skb->len - skb_transport_offset(skb);
1250 th = tcp_hdr(skb);
1251 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1252 } else {
1253 struct iphdr *iph = ip_hdr(skb);
1254
1255 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1256 len = skb->len - skb_transport_offset(skb);
1257 th = tcp_hdr(skb);
1258 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1259 }
1260
1261 if (inner_mac_off) { /* tunnel */
1262 struct udphdr *uh = NULL;
1263 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1264 ETH_HLEN - 2));
1265
1266 if (proto == htons(ETH_P_IP)) {
1267 struct iphdr *iph = (struct iphdr *)skb->data;
1268
1269 if (iph->protocol == IPPROTO_UDP)
1270 uh = (struct udphdr *)(iph + 1);
1271 } else {
1272 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1273
1274 if (iph->nexthdr == IPPROTO_UDP)
1275 uh = (struct udphdr *)(iph + 1);
1276 }
1277 if (uh) {
1278 if (uh->check)
1279 skb_shinfo(skb)->gso_type |=
1280 SKB_GSO_UDP_TUNNEL_CSUM;
1281 else
1282 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1283 }
1284 }
1285 #endif
1286 return skb;
1287 }
1288
1289 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
1290 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1291
1292 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1293 int payload_off, int tcp_ts,
1294 struct sk_buff *skb)
1295 {
1296 #ifdef CONFIG_INET
1297 struct tcphdr *th;
1298 int len, nw_off, tcp_opt_len = 0;
1299
1300 if (tcp_ts)
1301 tcp_opt_len = 12;
1302
1303 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1304 struct iphdr *iph;
1305
1306 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1307 ETH_HLEN;
1308 skb_set_network_header(skb, nw_off);
1309 iph = ip_hdr(skb);
1310 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1311 len = skb->len - skb_transport_offset(skb);
1312 th = tcp_hdr(skb);
1313 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1314 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1315 struct ipv6hdr *iph;
1316
1317 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1318 ETH_HLEN;
1319 skb_set_network_header(skb, nw_off);
1320 iph = ipv6_hdr(skb);
1321 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1322 len = skb->len - skb_transport_offset(skb);
1323 th = tcp_hdr(skb);
1324 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1325 } else {
1326 dev_kfree_skb_any(skb);
1327 return NULL;
1328 }
1329
1330 if (nw_off) { /* tunnel */
1331 struct udphdr *uh = NULL;
1332
1333 if (skb->protocol == htons(ETH_P_IP)) {
1334 struct iphdr *iph = (struct iphdr *)skb->data;
1335
1336 if (iph->protocol == IPPROTO_UDP)
1337 uh = (struct udphdr *)(iph + 1);
1338 } else {
1339 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1340
1341 if (iph->nexthdr == IPPROTO_UDP)
1342 uh = (struct udphdr *)(iph + 1);
1343 }
1344 if (uh) {
1345 if (uh->check)
1346 skb_shinfo(skb)->gso_type |=
1347 SKB_GSO_UDP_TUNNEL_CSUM;
1348 else
1349 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1350 }
1351 }
1352 #endif
1353 return skb;
1354 }
1355
1356 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1357 struct bnxt_tpa_info *tpa_info,
1358 struct rx_tpa_end_cmp *tpa_end,
1359 struct rx_tpa_end_cmp_ext *tpa_end1,
1360 struct sk_buff *skb)
1361 {
1362 #ifdef CONFIG_INET
1363 int payload_off;
1364 u16 segs;
1365
1366 segs = TPA_END_TPA_SEGS(tpa_end);
1367 if (segs == 1)
1368 return skb;
1369
1370 NAPI_GRO_CB(skb)->count = segs;
1371 skb_shinfo(skb)->gso_size =
1372 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1373 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1374 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1375 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1376 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1377 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1378 if (likely(skb))
1379 tcp_gro_complete(skb);
1380 #endif
1381 return skb;
1382 }
1383
1384 /* Given the cfa_code of a received packet determine which
1385 * netdev (vf-rep or PF) the packet is destined to.
1386 */
1387 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1388 {
1389 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1390
1391 /* if vf-rep dev is NULL, the must belongs to the PF */
1392 return dev ? dev : bp->dev;
1393 }
1394
1395 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1396 struct bnxt_cp_ring_info *cpr,
1397 u32 *raw_cons,
1398 struct rx_tpa_end_cmp *tpa_end,
1399 struct rx_tpa_end_cmp_ext *tpa_end1,
1400 u8 *event)
1401 {
1402 struct bnxt_napi *bnapi = cpr->bnapi;
1403 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1404 u8 agg_id = TPA_END_AGG_ID(tpa_end);
1405 u8 *data_ptr, agg_bufs;
1406 u16 cp_cons = RING_CMP(*raw_cons);
1407 unsigned int len;
1408 struct bnxt_tpa_info *tpa_info;
1409 dma_addr_t mapping;
1410 struct sk_buff *skb;
1411 void *data;
1412
1413 if (unlikely(bnapi->in_reset)) {
1414 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1415
1416 if (rc < 0)
1417 return ERR_PTR(-EBUSY);
1418 return NULL;
1419 }
1420
1421 tpa_info = &rxr->rx_tpa[agg_id];
1422 data = tpa_info->data;
1423 data_ptr = tpa_info->data_ptr;
1424 prefetch(data_ptr);
1425 len = tpa_info->len;
1426 mapping = tpa_info->mapping;
1427
1428 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1429 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1430
1431 if (agg_bufs) {
1432 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1433 return ERR_PTR(-EBUSY);
1434
1435 *event |= BNXT_AGG_EVENT;
1436 cp_cons = NEXT_CMP(cp_cons);
1437 }
1438
1439 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1440 bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1441 if (agg_bufs > MAX_SKB_FRAGS)
1442 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1443 agg_bufs, (int)MAX_SKB_FRAGS);
1444 return NULL;
1445 }
1446
1447 if (len <= bp->rx_copy_thresh) {
1448 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1449 if (!skb) {
1450 bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1451 return NULL;
1452 }
1453 } else {
1454 u8 *new_data;
1455 dma_addr_t new_mapping;
1456
1457 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1458 if (!new_data) {
1459 bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1460 return NULL;
1461 }
1462
1463 tpa_info->data = new_data;
1464 tpa_info->data_ptr = new_data + bp->rx_offset;
1465 tpa_info->mapping = new_mapping;
1466
1467 skb = build_skb(data, 0);
1468 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1469 bp->rx_buf_use_size, bp->rx_dir,
1470 DMA_ATTR_WEAK_ORDERING);
1471
1472 if (!skb) {
1473 kfree(data);
1474 bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1475 return NULL;
1476 }
1477 skb_reserve(skb, bp->rx_offset);
1478 skb_put(skb, len);
1479 }
1480
1481 if (agg_bufs) {
1482 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1483 if (!skb) {
1484 /* Page reuse already handled by bnxt_rx_pages(). */
1485 return NULL;
1486 }
1487 }
1488
1489 skb->protocol =
1490 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1491
1492 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1493 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1494
1495 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1496 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1497 u16 vlan_proto = tpa_info->metadata >>
1498 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1499 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1500
1501 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1502 }
1503
1504 skb_checksum_none_assert(skb);
1505 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1506 skb->ip_summed = CHECKSUM_UNNECESSARY;
1507 skb->csum_level =
1508 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1509 }
1510
1511 if (TPA_END_GRO(tpa_end))
1512 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1513
1514 return skb;
1515 }
1516
1517 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1518 struct sk_buff *skb)
1519 {
1520 if (skb->dev != bp->dev) {
1521 /* this packet belongs to a vf-rep */
1522 bnxt_vf_rep_rx(bp, skb);
1523 return;
1524 }
1525 skb_record_rx_queue(skb, bnapi->index);
1526 napi_gro_receive(&bnapi->napi, skb);
1527 }
1528
1529 /* returns the following:
1530 * 1 - 1 packet successfully received
1531 * 0 - successful TPA_START, packet not completed yet
1532 * -EBUSY - completion ring does not have all the agg buffers yet
1533 * -ENOMEM - packet aborted due to out of memory
1534 * -EIO - packet aborted due to hw error indicated in BD
1535 */
1536 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1537 u32 *raw_cons, u8 *event)
1538 {
1539 struct bnxt_napi *bnapi = cpr->bnapi;
1540 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1541 struct net_device *dev = bp->dev;
1542 struct rx_cmp *rxcmp;
1543 struct rx_cmp_ext *rxcmp1;
1544 u32 tmp_raw_cons = *raw_cons;
1545 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1546 struct bnxt_sw_rx_bd *rx_buf;
1547 unsigned int len;
1548 u8 *data_ptr, agg_bufs, cmp_type;
1549 dma_addr_t dma_addr;
1550 struct sk_buff *skb;
1551 void *data;
1552 int rc = 0;
1553 u32 misc;
1554
1555 rxcmp = (struct rx_cmp *)
1556 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1557
1558 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1559 cp_cons = RING_CMP(tmp_raw_cons);
1560 rxcmp1 = (struct rx_cmp_ext *)
1561 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1562
1563 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1564 return -EBUSY;
1565
1566 cmp_type = RX_CMP_TYPE(rxcmp);
1567
1568 prod = rxr->rx_prod;
1569
1570 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1571 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1572 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1573
1574 *event |= BNXT_RX_EVENT;
1575 goto next_rx_no_prod_no_len;
1576
1577 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1578 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1579 (struct rx_tpa_end_cmp *)rxcmp,
1580 (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1581
1582 if (IS_ERR(skb))
1583 return -EBUSY;
1584
1585 rc = -ENOMEM;
1586 if (likely(skb)) {
1587 bnxt_deliver_skb(bp, bnapi, skb);
1588 rc = 1;
1589 }
1590 *event |= BNXT_RX_EVENT;
1591 goto next_rx_no_prod_no_len;
1592 }
1593
1594 cons = rxcmp->rx_cmp_opaque;
1595 if (unlikely(cons != rxr->rx_next_cons)) {
1596 int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1597
1598 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1599 cons, rxr->rx_next_cons);
1600 bnxt_sched_reset(bp, rxr);
1601 return rc1;
1602 }
1603 rx_buf = &rxr->rx_buf_ring[cons];
1604 data = rx_buf->data;
1605 data_ptr = rx_buf->data_ptr;
1606 prefetch(data_ptr);
1607
1608 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1609 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1610
1611 if (agg_bufs) {
1612 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1613 return -EBUSY;
1614
1615 cp_cons = NEXT_CMP(cp_cons);
1616 *event |= BNXT_AGG_EVENT;
1617 }
1618 *event |= BNXT_RX_EVENT;
1619
1620 rx_buf->data = NULL;
1621 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1622 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1623
1624 bnxt_reuse_rx_data(rxr, cons, data);
1625 if (agg_bufs)
1626 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1627
1628 rc = -EIO;
1629 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1630 netdev_warn(bp->dev, "RX buffer error %x\n", rx_err);
1631 bnxt_sched_reset(bp, rxr);
1632 }
1633 goto next_rx_no_len;
1634 }
1635
1636 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1637 dma_addr = rx_buf->mapping;
1638
1639 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1640 rc = 1;
1641 goto next_rx;
1642 }
1643
1644 if (len <= bp->rx_copy_thresh) {
1645 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1646 bnxt_reuse_rx_data(rxr, cons, data);
1647 if (!skb) {
1648 if (agg_bufs)
1649 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1650 rc = -ENOMEM;
1651 goto next_rx;
1652 }
1653 } else {
1654 u32 payload;
1655
1656 if (rx_buf->data_ptr == data_ptr)
1657 payload = misc & RX_CMP_PAYLOAD_OFFSET;
1658 else
1659 payload = 0;
1660 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1661 payload | len);
1662 if (!skb) {
1663 rc = -ENOMEM;
1664 goto next_rx;
1665 }
1666 }
1667
1668 if (agg_bufs) {
1669 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1670 if (!skb) {
1671 rc = -ENOMEM;
1672 goto next_rx;
1673 }
1674 }
1675
1676 if (RX_CMP_HASH_VALID(rxcmp)) {
1677 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1678 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1679
1680 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1681 if (hash_type != 1 && hash_type != 3)
1682 type = PKT_HASH_TYPE_L3;
1683 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1684 }
1685
1686 cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1687 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1688
1689 if ((rxcmp1->rx_cmp_flags2 &
1690 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1691 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1692 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1693 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1694 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1695
1696 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1697 }
1698
1699 skb_checksum_none_assert(skb);
1700 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1701 if (dev->features & NETIF_F_RXCSUM) {
1702 skb->ip_summed = CHECKSUM_UNNECESSARY;
1703 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1704 }
1705 } else {
1706 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1707 if (dev->features & NETIF_F_RXCSUM)
1708 bnapi->cp_ring.rx_l4_csum_errors++;
1709 }
1710 }
1711
1712 bnxt_deliver_skb(bp, bnapi, skb);
1713 rc = 1;
1714
1715 next_rx:
1716 cpr->rx_packets += 1;
1717 cpr->rx_bytes += len;
1718
1719 next_rx_no_len:
1720 rxr->rx_prod = NEXT_RX(prod);
1721 rxr->rx_next_cons = NEXT_RX(cons);
1722
1723 next_rx_no_prod_no_len:
1724 *raw_cons = tmp_raw_cons;
1725
1726 return rc;
1727 }
1728
1729 /* In netpoll mode, if we are using a combined completion ring, we need to
1730 * discard the rx packets and recycle the buffers.
1731 */
1732 static int bnxt_force_rx_discard(struct bnxt *bp,
1733 struct bnxt_cp_ring_info *cpr,
1734 u32 *raw_cons, u8 *event)
1735 {
1736 u32 tmp_raw_cons = *raw_cons;
1737 struct rx_cmp_ext *rxcmp1;
1738 struct rx_cmp *rxcmp;
1739 u16 cp_cons;
1740 u8 cmp_type;
1741
1742 cp_cons = RING_CMP(tmp_raw_cons);
1743 rxcmp = (struct rx_cmp *)
1744 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1745
1746 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1747 cp_cons = RING_CMP(tmp_raw_cons);
1748 rxcmp1 = (struct rx_cmp_ext *)
1749 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1750
1751 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1752 return -EBUSY;
1753
1754 cmp_type = RX_CMP_TYPE(rxcmp);
1755 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1756 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1757 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1758 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1759 struct rx_tpa_end_cmp_ext *tpa_end1;
1760
1761 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1762 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1763 cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1764 }
1765 return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1766 }
1767
1768 #define BNXT_GET_EVENT_PORT(data) \
1769 ((data) & \
1770 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1771
1772 static int bnxt_async_event_process(struct bnxt *bp,
1773 struct hwrm_async_event_cmpl *cmpl)
1774 {
1775 u16 event_id = le16_to_cpu(cmpl->event_id);
1776
1777 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1778 switch (event_id) {
1779 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1780 u32 data1 = le32_to_cpu(cmpl->event_data1);
1781 struct bnxt_link_info *link_info = &bp->link_info;
1782
1783 if (BNXT_VF(bp))
1784 goto async_event_process_exit;
1785
1786 /* print unsupported speed warning in forced speed mode only */
1787 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1788 (data1 & 0x20000)) {
1789 u16 fw_speed = link_info->force_link_speed;
1790 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1791
1792 if (speed != SPEED_UNKNOWN)
1793 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1794 speed);
1795 }
1796 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1797 }
1798 /* fall through */
1799 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1800 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1801 break;
1802 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1803 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1804 break;
1805 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1806 u32 data1 = le32_to_cpu(cmpl->event_data1);
1807 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1808
1809 if (BNXT_VF(bp))
1810 break;
1811
1812 if (bp->pf.port_id != port_id)
1813 break;
1814
1815 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1816 break;
1817 }
1818 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1819 if (BNXT_PF(bp))
1820 goto async_event_process_exit;
1821 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1822 break;
1823 default:
1824 goto async_event_process_exit;
1825 }
1826 bnxt_queue_sp_work(bp);
1827 async_event_process_exit:
1828 bnxt_ulp_async_events(bp, cmpl);
1829 return 0;
1830 }
1831
1832 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1833 {
1834 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1835 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1836 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1837 (struct hwrm_fwd_req_cmpl *)txcmp;
1838
1839 switch (cmpl_type) {
1840 case CMPL_BASE_TYPE_HWRM_DONE:
1841 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1842 if (seq_id == bp->hwrm_intr_seq_id)
1843 bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
1844 else
1845 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1846 break;
1847
1848 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1849 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1850
1851 if ((vf_id < bp->pf.first_vf_id) ||
1852 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1853 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1854 vf_id);
1855 return -EINVAL;
1856 }
1857
1858 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1859 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1860 bnxt_queue_sp_work(bp);
1861 break;
1862
1863 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1864 bnxt_async_event_process(bp,
1865 (struct hwrm_async_event_cmpl *)txcmp);
1866
1867 default:
1868 break;
1869 }
1870
1871 return 0;
1872 }
1873
1874 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1875 {
1876 struct bnxt_napi *bnapi = dev_instance;
1877 struct bnxt *bp = bnapi->bp;
1878 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1879 u32 cons = RING_CMP(cpr->cp_raw_cons);
1880
1881 cpr->event_ctr++;
1882 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1883 napi_schedule(&bnapi->napi);
1884 return IRQ_HANDLED;
1885 }
1886
1887 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1888 {
1889 u32 raw_cons = cpr->cp_raw_cons;
1890 u16 cons = RING_CMP(raw_cons);
1891 struct tx_cmp *txcmp;
1892
1893 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1894
1895 return TX_CMP_VALID(txcmp, raw_cons);
1896 }
1897
1898 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1899 {
1900 struct bnxt_napi *bnapi = dev_instance;
1901 struct bnxt *bp = bnapi->bp;
1902 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1903 u32 cons = RING_CMP(cpr->cp_raw_cons);
1904 u32 int_status;
1905
1906 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1907
1908 if (!bnxt_has_work(bp, cpr)) {
1909 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1910 /* return if erroneous interrupt */
1911 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1912 return IRQ_NONE;
1913 }
1914
1915 /* disable ring IRQ */
1916 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
1917
1918 /* Return here if interrupt is shared and is disabled. */
1919 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1920 return IRQ_HANDLED;
1921
1922 napi_schedule(&bnapi->napi);
1923 return IRQ_HANDLED;
1924 }
1925
1926 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1927 int budget)
1928 {
1929 struct bnxt_napi *bnapi = cpr->bnapi;
1930 u32 raw_cons = cpr->cp_raw_cons;
1931 u32 cons;
1932 int tx_pkts = 0;
1933 int rx_pkts = 0;
1934 u8 event = 0;
1935 struct tx_cmp *txcmp;
1936
1937 cpr->has_more_work = 0;
1938 while (1) {
1939 int rc;
1940
1941 cons = RING_CMP(raw_cons);
1942 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1943
1944 if (!TX_CMP_VALID(txcmp, raw_cons))
1945 break;
1946
1947 /* The valid test of the entry must be done first before
1948 * reading any further.
1949 */
1950 dma_rmb();
1951 cpr->had_work_done = 1;
1952 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1953 tx_pkts++;
1954 /* return full budget so NAPI will complete. */
1955 if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
1956 rx_pkts = budget;
1957 raw_cons = NEXT_RAW_CMP(raw_cons);
1958 if (budget)
1959 cpr->has_more_work = 1;
1960 break;
1961 }
1962 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1963 if (likely(budget))
1964 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
1965 else
1966 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
1967 &event);
1968 if (likely(rc >= 0))
1969 rx_pkts += rc;
1970 /* Increment rx_pkts when rc is -ENOMEM to count towards
1971 * the NAPI budget. Otherwise, we may potentially loop
1972 * here forever if we consistently cannot allocate
1973 * buffers.
1974 */
1975 else if (rc == -ENOMEM && budget)
1976 rx_pkts++;
1977 else if (rc == -EBUSY) /* partial completion */
1978 break;
1979 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1980 CMPL_BASE_TYPE_HWRM_DONE) ||
1981 (TX_CMP_TYPE(txcmp) ==
1982 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1983 (TX_CMP_TYPE(txcmp) ==
1984 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1985 bnxt_hwrm_handler(bp, txcmp);
1986 }
1987 raw_cons = NEXT_RAW_CMP(raw_cons);
1988
1989 if (rx_pkts && rx_pkts == budget) {
1990 cpr->has_more_work = 1;
1991 break;
1992 }
1993 }
1994
1995 if (event & BNXT_REDIRECT_EVENT)
1996 xdp_do_flush_map();
1997
1998 if (event & BNXT_TX_EVENT) {
1999 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2000 u16 prod = txr->tx_prod;
2001
2002 /* Sync BD data before updating doorbell */
2003 wmb();
2004
2005 bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2006 }
2007
2008 cpr->cp_raw_cons = raw_cons;
2009 bnapi->tx_pkts += tx_pkts;
2010 bnapi->events |= event;
2011 return rx_pkts;
2012 }
2013
2014 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2015 {
2016 if (bnapi->tx_pkts) {
2017 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2018 bnapi->tx_pkts = 0;
2019 }
2020
2021 if (bnapi->events & BNXT_RX_EVENT) {
2022 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2023
2024 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2025 if (bnapi->events & BNXT_AGG_EVENT)
2026 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2027 }
2028 bnapi->events = 0;
2029 }
2030
2031 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2032 int budget)
2033 {
2034 struct bnxt_napi *bnapi = cpr->bnapi;
2035 int rx_pkts;
2036
2037 rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2038
2039 /* ACK completion ring before freeing tx ring and producing new
2040 * buffers in rx/agg rings to prevent overflowing the completion
2041 * ring.
2042 */
2043 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2044
2045 __bnxt_poll_work_done(bp, bnapi);
2046 return rx_pkts;
2047 }
2048
2049 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2050 {
2051 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2052 struct bnxt *bp = bnapi->bp;
2053 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2054 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2055 struct tx_cmp *txcmp;
2056 struct rx_cmp_ext *rxcmp1;
2057 u32 cp_cons, tmp_raw_cons;
2058 u32 raw_cons = cpr->cp_raw_cons;
2059 u32 rx_pkts = 0;
2060 u8 event = 0;
2061
2062 while (1) {
2063 int rc;
2064
2065 cp_cons = RING_CMP(raw_cons);
2066 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2067
2068 if (!TX_CMP_VALID(txcmp, raw_cons))
2069 break;
2070
2071 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2072 tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2073 cp_cons = RING_CMP(tmp_raw_cons);
2074 rxcmp1 = (struct rx_cmp_ext *)
2075 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2076
2077 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2078 break;
2079
2080 /* force an error to recycle the buffer */
2081 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2082 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2083
2084 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2085 if (likely(rc == -EIO) && budget)
2086 rx_pkts++;
2087 else if (rc == -EBUSY) /* partial completion */
2088 break;
2089 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
2090 CMPL_BASE_TYPE_HWRM_DONE)) {
2091 bnxt_hwrm_handler(bp, txcmp);
2092 } else {
2093 netdev_err(bp->dev,
2094 "Invalid completion received on special ring\n");
2095 }
2096 raw_cons = NEXT_RAW_CMP(raw_cons);
2097
2098 if (rx_pkts == budget)
2099 break;
2100 }
2101
2102 cpr->cp_raw_cons = raw_cons;
2103 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2104 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2105
2106 if (event & BNXT_AGG_EVENT)
2107 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2108
2109 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2110 napi_complete_done(napi, rx_pkts);
2111 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2112 }
2113 return rx_pkts;
2114 }
2115
2116 static int bnxt_poll(struct napi_struct *napi, int budget)
2117 {
2118 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2119 struct bnxt *bp = bnapi->bp;
2120 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2121 int work_done = 0;
2122
2123 while (1) {
2124 work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2125
2126 if (work_done >= budget) {
2127 if (!budget)
2128 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2129 break;
2130 }
2131
2132 if (!bnxt_has_work(bp, cpr)) {
2133 if (napi_complete_done(napi, work_done))
2134 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2135 break;
2136 }
2137 }
2138 if (bp->flags & BNXT_FLAG_DIM) {
2139 struct dim_sample dim_sample = {};
2140
2141 dim_update_sample(cpr->event_ctr,
2142 cpr->rx_packets,
2143 cpr->rx_bytes,
2144 &dim_sample);
2145 net_dim(&cpr->dim, dim_sample);
2146 }
2147 return work_done;
2148 }
2149
2150 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2151 {
2152 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2153 int i, work_done = 0;
2154
2155 for (i = 0; i < 2; i++) {
2156 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2157
2158 if (cpr2) {
2159 work_done += __bnxt_poll_work(bp, cpr2,
2160 budget - work_done);
2161 cpr->has_more_work |= cpr2->has_more_work;
2162 }
2163 }
2164 return work_done;
2165 }
2166
2167 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2168 u64 dbr_type, bool all)
2169 {
2170 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2171 int i;
2172
2173 for (i = 0; i < 2; i++) {
2174 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2175 struct bnxt_db_info *db;
2176
2177 if (cpr2 && (all || cpr2->had_work_done)) {
2178 db = &cpr2->cp_db;
2179 writeq(db->db_key64 | dbr_type |
2180 RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2181 cpr2->had_work_done = 0;
2182 }
2183 }
2184 __bnxt_poll_work_done(bp, bnapi);
2185 }
2186
2187 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2188 {
2189 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2190 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2191 u32 raw_cons = cpr->cp_raw_cons;
2192 struct bnxt *bp = bnapi->bp;
2193 struct nqe_cn *nqcmp;
2194 int work_done = 0;
2195 u32 cons;
2196
2197 if (cpr->has_more_work) {
2198 cpr->has_more_work = 0;
2199 work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2200 if (cpr->has_more_work) {
2201 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, false);
2202 return work_done;
2203 }
2204 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, true);
2205 if (napi_complete_done(napi, work_done))
2206 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, cpr->cp_raw_cons);
2207 return work_done;
2208 }
2209 while (1) {
2210 cons = RING_CMP(raw_cons);
2211 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2212
2213 if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2214 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
2215 false);
2216 cpr->cp_raw_cons = raw_cons;
2217 if (napi_complete_done(napi, work_done))
2218 BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2219 cpr->cp_raw_cons);
2220 return work_done;
2221 }
2222
2223 /* The valid test of the entry must be done first before
2224 * reading any further.
2225 */
2226 dma_rmb();
2227
2228 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2229 u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2230 struct bnxt_cp_ring_info *cpr2;
2231
2232 cpr2 = cpr->cp_ring_arr[idx];
2233 work_done += __bnxt_poll_work(bp, cpr2,
2234 budget - work_done);
2235 cpr->has_more_work = cpr2->has_more_work;
2236 } else {
2237 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2238 }
2239 raw_cons = NEXT_RAW_CMP(raw_cons);
2240 if (cpr->has_more_work)
2241 break;
2242 }
2243 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, true);
2244 cpr->cp_raw_cons = raw_cons;
2245 return work_done;
2246 }
2247
2248 static void bnxt_free_tx_skbs(struct bnxt *bp)
2249 {
2250 int i, max_idx;
2251 struct pci_dev *pdev = bp->pdev;
2252
2253 if (!bp->tx_ring)
2254 return;
2255
2256 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2257 for (i = 0; i < bp->tx_nr_rings; i++) {
2258 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2259 int j;
2260
2261 for (j = 0; j < max_idx;) {
2262 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2263 struct sk_buff *skb;
2264 int k, last;
2265
2266 if (i < bp->tx_nr_rings_xdp &&
2267 tx_buf->action == XDP_REDIRECT) {
2268 dma_unmap_single(&pdev->dev,
2269 dma_unmap_addr(tx_buf, mapping),
2270 dma_unmap_len(tx_buf, len),
2271 PCI_DMA_TODEVICE);
2272 xdp_return_frame(tx_buf->xdpf);
2273 tx_buf->action = 0;
2274 tx_buf->xdpf = NULL;
2275 j++;
2276 continue;
2277 }
2278
2279 skb = tx_buf->skb;
2280 if (!skb) {
2281 j++;
2282 continue;
2283 }
2284
2285 tx_buf->skb = NULL;
2286
2287 if (tx_buf->is_push) {
2288 dev_kfree_skb(skb);
2289 j += 2;
2290 continue;
2291 }
2292
2293 dma_unmap_single(&pdev->dev,
2294 dma_unmap_addr(tx_buf, mapping),
2295 skb_headlen(skb),
2296 PCI_DMA_TODEVICE);
2297
2298 last = tx_buf->nr_frags;
2299 j += 2;
2300 for (k = 0; k < last; k++, j++) {
2301 int ring_idx = j & bp->tx_ring_mask;
2302 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2303
2304 tx_buf = &txr->tx_buf_ring[ring_idx];
2305 dma_unmap_page(
2306 &pdev->dev,
2307 dma_unmap_addr(tx_buf, mapping),
2308 skb_frag_size(frag), PCI_DMA_TODEVICE);
2309 }
2310 dev_kfree_skb(skb);
2311 }
2312 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2313 }
2314 }
2315
2316 static void bnxt_free_rx_skbs(struct bnxt *bp)
2317 {
2318 int i, max_idx, max_agg_idx;
2319 struct pci_dev *pdev = bp->pdev;
2320
2321 if (!bp->rx_ring)
2322 return;
2323
2324 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2325 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2326 for (i = 0; i < bp->rx_nr_rings; i++) {
2327 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2328 int j;
2329
2330 if (rxr->rx_tpa) {
2331 for (j = 0; j < MAX_TPA; j++) {
2332 struct bnxt_tpa_info *tpa_info =
2333 &rxr->rx_tpa[j];
2334 u8 *data = tpa_info->data;
2335
2336 if (!data)
2337 continue;
2338
2339 dma_unmap_single_attrs(&pdev->dev,
2340 tpa_info->mapping,
2341 bp->rx_buf_use_size,
2342 bp->rx_dir,
2343 DMA_ATTR_WEAK_ORDERING);
2344
2345 tpa_info->data = NULL;
2346
2347 kfree(data);
2348 }
2349 }
2350
2351 for (j = 0; j < max_idx; j++) {
2352 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2353 dma_addr_t mapping = rx_buf->mapping;
2354 void *data = rx_buf->data;
2355
2356 if (!data)
2357 continue;
2358
2359 rx_buf->data = NULL;
2360
2361 if (BNXT_RX_PAGE_MODE(bp)) {
2362 mapping -= bp->rx_dma_offset;
2363 dma_unmap_page_attrs(&pdev->dev, mapping,
2364 PAGE_SIZE, bp->rx_dir,
2365 DMA_ATTR_WEAK_ORDERING);
2366 page_pool_recycle_direct(rxr->page_pool, data);
2367 } else {
2368 dma_unmap_single_attrs(&pdev->dev, mapping,
2369 bp->rx_buf_use_size,
2370 bp->rx_dir,
2371 DMA_ATTR_WEAK_ORDERING);
2372 kfree(data);
2373 }
2374 }
2375
2376 for (j = 0; j < max_agg_idx; j++) {
2377 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2378 &rxr->rx_agg_ring[j];
2379 struct page *page = rx_agg_buf->page;
2380
2381 if (!page)
2382 continue;
2383
2384 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2385 BNXT_RX_PAGE_SIZE,
2386 PCI_DMA_FROMDEVICE,
2387 DMA_ATTR_WEAK_ORDERING);
2388
2389 rx_agg_buf->page = NULL;
2390 __clear_bit(j, rxr->rx_agg_bmap);
2391
2392 __free_page(page);
2393 }
2394 if (rxr->rx_page) {
2395 __free_page(rxr->rx_page);
2396 rxr->rx_page = NULL;
2397 }
2398 }
2399 }
2400
2401 static void bnxt_free_skbs(struct bnxt *bp)
2402 {
2403 bnxt_free_tx_skbs(bp);
2404 bnxt_free_rx_skbs(bp);
2405 }
2406
2407 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2408 {
2409 struct pci_dev *pdev = bp->pdev;
2410 int i;
2411
2412 for (i = 0; i < rmem->nr_pages; i++) {
2413 if (!rmem->pg_arr[i])
2414 continue;
2415
2416 dma_free_coherent(&pdev->dev, rmem->page_size,
2417 rmem->pg_arr[i], rmem->dma_arr[i]);
2418
2419 rmem->pg_arr[i] = NULL;
2420 }
2421 if (rmem->pg_tbl) {
2422 size_t pg_tbl_size = rmem->nr_pages * 8;
2423
2424 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2425 pg_tbl_size = rmem->page_size;
2426 dma_free_coherent(&pdev->dev, pg_tbl_size,
2427 rmem->pg_tbl, rmem->pg_tbl_map);
2428 rmem->pg_tbl = NULL;
2429 }
2430 if (rmem->vmem_size && *rmem->vmem) {
2431 vfree(*rmem->vmem);
2432 *rmem->vmem = NULL;
2433 }
2434 }
2435
2436 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2437 {
2438 struct pci_dev *pdev = bp->pdev;
2439 u64 valid_bit = 0;
2440 int i;
2441
2442 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2443 valid_bit = PTU_PTE_VALID;
2444 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2445 size_t pg_tbl_size = rmem->nr_pages * 8;
2446
2447 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2448 pg_tbl_size = rmem->page_size;
2449 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2450 &rmem->pg_tbl_map,
2451 GFP_KERNEL);
2452 if (!rmem->pg_tbl)
2453 return -ENOMEM;
2454 }
2455
2456 for (i = 0; i < rmem->nr_pages; i++) {
2457 u64 extra_bits = valid_bit;
2458
2459 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2460 rmem->page_size,
2461 &rmem->dma_arr[i],
2462 GFP_KERNEL);
2463 if (!rmem->pg_arr[i])
2464 return -ENOMEM;
2465
2466 if (rmem->nr_pages > 1 || rmem->depth > 0) {
2467 if (i == rmem->nr_pages - 2 &&
2468 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2469 extra_bits |= PTU_PTE_NEXT_TO_LAST;
2470 else if (i == rmem->nr_pages - 1 &&
2471 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2472 extra_bits |= PTU_PTE_LAST;
2473 rmem->pg_tbl[i] =
2474 cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2475 }
2476 }
2477
2478 if (rmem->vmem_size) {
2479 *rmem->vmem = vzalloc(rmem->vmem_size);
2480 if (!(*rmem->vmem))
2481 return -ENOMEM;
2482 }
2483 return 0;
2484 }
2485
2486 static void bnxt_free_rx_rings(struct bnxt *bp)
2487 {
2488 int i;
2489
2490 if (!bp->rx_ring)
2491 return;
2492
2493 for (i = 0; i < bp->rx_nr_rings; i++) {
2494 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2495 struct bnxt_ring_struct *ring;
2496
2497 if (rxr->xdp_prog)
2498 bpf_prog_put(rxr->xdp_prog);
2499
2500 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2501 xdp_rxq_info_unreg(&rxr->xdp_rxq);
2502
2503 page_pool_destroy(rxr->page_pool);
2504 rxr->page_pool = NULL;
2505
2506 kfree(rxr->rx_tpa);
2507 rxr->rx_tpa = NULL;
2508
2509 kfree(rxr->rx_agg_bmap);
2510 rxr->rx_agg_bmap = NULL;
2511
2512 ring = &rxr->rx_ring_struct;
2513 bnxt_free_ring(bp, &ring->ring_mem);
2514
2515 ring = &rxr->rx_agg_ring_struct;
2516 bnxt_free_ring(bp, &ring->ring_mem);
2517 }
2518 }
2519
2520 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2521 struct bnxt_rx_ring_info *rxr)
2522 {
2523 struct page_pool_params pp = { 0 };
2524
2525 pp.pool_size = bp->rx_ring_size;
2526 pp.nid = dev_to_node(&bp->pdev->dev);
2527 pp.dev = &bp->pdev->dev;
2528 pp.dma_dir = DMA_BIDIRECTIONAL;
2529
2530 rxr->page_pool = page_pool_create(&pp);
2531 if (IS_ERR(rxr->page_pool)) {
2532 int err = PTR_ERR(rxr->page_pool);
2533
2534 rxr->page_pool = NULL;
2535 return err;
2536 }
2537 return 0;
2538 }
2539
2540 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2541 {
2542 int i, rc, agg_rings = 0, tpa_rings = 0;
2543
2544 if (!bp->rx_ring)
2545 return -ENOMEM;
2546
2547 if (bp->flags & BNXT_FLAG_AGG_RINGS)
2548 agg_rings = 1;
2549
2550 if (bp->flags & BNXT_FLAG_TPA)
2551 tpa_rings = 1;
2552
2553 for (i = 0; i < bp->rx_nr_rings; i++) {
2554 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2555 struct bnxt_ring_struct *ring;
2556
2557 ring = &rxr->rx_ring_struct;
2558
2559 rc = bnxt_alloc_rx_page_pool(bp, rxr);
2560 if (rc)
2561 return rc;
2562
2563 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2564 if (rc < 0)
2565 return rc;
2566
2567 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2568 MEM_TYPE_PAGE_POOL,
2569 rxr->page_pool);
2570 if (rc) {
2571 xdp_rxq_info_unreg(&rxr->xdp_rxq);
2572 return rc;
2573 }
2574
2575 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2576 if (rc)
2577 return rc;
2578
2579 ring->grp_idx = i;
2580 if (agg_rings) {
2581 u16 mem_size;
2582
2583 ring = &rxr->rx_agg_ring_struct;
2584 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2585 if (rc)
2586 return rc;
2587
2588 ring->grp_idx = i;
2589 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2590 mem_size = rxr->rx_agg_bmap_size / 8;
2591 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2592 if (!rxr->rx_agg_bmap)
2593 return -ENOMEM;
2594
2595 if (tpa_rings) {
2596 rxr->rx_tpa = kcalloc(MAX_TPA,
2597 sizeof(struct bnxt_tpa_info),
2598 GFP_KERNEL);
2599 if (!rxr->rx_tpa)
2600 return -ENOMEM;
2601 }
2602 }
2603 }
2604 return 0;
2605 }
2606
2607 static void bnxt_free_tx_rings(struct bnxt *bp)
2608 {
2609 int i;
2610 struct pci_dev *pdev = bp->pdev;
2611
2612 if (!bp->tx_ring)
2613 return;
2614
2615 for (i = 0; i < bp->tx_nr_rings; i++) {
2616 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2617 struct bnxt_ring_struct *ring;
2618
2619 if (txr->tx_push) {
2620 dma_free_coherent(&pdev->dev, bp->tx_push_size,
2621 txr->tx_push, txr->tx_push_mapping);
2622 txr->tx_push = NULL;
2623 }
2624
2625 ring = &txr->tx_ring_struct;
2626
2627 bnxt_free_ring(bp, &ring->ring_mem);
2628 }
2629 }
2630
2631 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2632 {
2633 int i, j, rc;
2634 struct pci_dev *pdev = bp->pdev;
2635
2636 bp->tx_push_size = 0;
2637 if (bp->tx_push_thresh) {
2638 int push_size;
2639
2640 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2641 bp->tx_push_thresh);
2642
2643 if (push_size > 256) {
2644 push_size = 0;
2645 bp->tx_push_thresh = 0;
2646 }
2647
2648 bp->tx_push_size = push_size;
2649 }
2650
2651 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2652 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2653 struct bnxt_ring_struct *ring;
2654 u8 qidx;
2655
2656 ring = &txr->tx_ring_struct;
2657
2658 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2659 if (rc)
2660 return rc;
2661
2662 ring->grp_idx = txr->bnapi->index;
2663 if (bp->tx_push_size) {
2664 dma_addr_t mapping;
2665
2666 /* One pre-allocated DMA buffer to backup
2667 * TX push operation
2668 */
2669 txr->tx_push = dma_alloc_coherent(&pdev->dev,
2670 bp->tx_push_size,
2671 &txr->tx_push_mapping,
2672 GFP_KERNEL);
2673
2674 if (!txr->tx_push)
2675 return -ENOMEM;
2676
2677 mapping = txr->tx_push_mapping +
2678 sizeof(struct tx_push_bd);
2679 txr->data_mapping = cpu_to_le64(mapping);
2680 }
2681 qidx = bp->tc_to_qidx[j];
2682 ring->queue_id = bp->q_info[qidx].queue_id;
2683 if (i < bp->tx_nr_rings_xdp)
2684 continue;
2685 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2686 j++;
2687 }
2688 return 0;
2689 }
2690
2691 static void bnxt_free_cp_rings(struct bnxt *bp)
2692 {
2693 int i;
2694
2695 if (!bp->bnapi)
2696 return;
2697
2698 for (i = 0; i < bp->cp_nr_rings; i++) {
2699 struct bnxt_napi *bnapi = bp->bnapi[i];
2700 struct bnxt_cp_ring_info *cpr;
2701 struct bnxt_ring_struct *ring;
2702 int j;
2703
2704 if (!bnapi)
2705 continue;
2706
2707 cpr = &bnapi->cp_ring;
2708 ring = &cpr->cp_ring_struct;
2709
2710 bnxt_free_ring(bp, &ring->ring_mem);
2711
2712 for (j = 0; j < 2; j++) {
2713 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2714
2715 if (cpr2) {
2716 ring = &cpr2->cp_ring_struct;
2717 bnxt_free_ring(bp, &ring->ring_mem);
2718 kfree(cpr2);
2719 cpr->cp_ring_arr[j] = NULL;
2720 }
2721 }
2722 }
2723 }
2724
2725 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2726 {
2727 struct bnxt_ring_mem_info *rmem;
2728 struct bnxt_ring_struct *ring;
2729 struct bnxt_cp_ring_info *cpr;
2730 int rc;
2731
2732 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
2733 if (!cpr)
2734 return NULL;
2735
2736 ring = &cpr->cp_ring_struct;
2737 rmem = &ring->ring_mem;
2738 rmem->nr_pages = bp->cp_nr_pages;
2739 rmem->page_size = HW_CMPD_RING_SIZE;
2740 rmem->pg_arr = (void **)cpr->cp_desc_ring;
2741 rmem->dma_arr = cpr->cp_desc_mapping;
2742 rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
2743 rc = bnxt_alloc_ring(bp, rmem);
2744 if (rc) {
2745 bnxt_free_ring(bp, rmem);
2746 kfree(cpr);
2747 cpr = NULL;
2748 }
2749 return cpr;
2750 }
2751
2752 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2753 {
2754 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
2755 int i, rc, ulp_base_vec, ulp_msix;
2756
2757 ulp_msix = bnxt_get_ulp_msix_num(bp);
2758 ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2759 for (i = 0; i < bp->cp_nr_rings; i++) {
2760 struct bnxt_napi *bnapi = bp->bnapi[i];
2761 struct bnxt_cp_ring_info *cpr;
2762 struct bnxt_ring_struct *ring;
2763
2764 if (!bnapi)
2765 continue;
2766
2767 cpr = &bnapi->cp_ring;
2768 cpr->bnapi = bnapi;
2769 ring = &cpr->cp_ring_struct;
2770
2771 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2772 if (rc)
2773 return rc;
2774
2775 if (ulp_msix && i >= ulp_base_vec)
2776 ring->map_idx = i + ulp_msix;
2777 else
2778 ring->map_idx = i;
2779
2780 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2781 continue;
2782
2783 if (i < bp->rx_nr_rings) {
2784 struct bnxt_cp_ring_info *cpr2 =
2785 bnxt_alloc_cp_sub_ring(bp);
2786
2787 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
2788 if (!cpr2)
2789 return -ENOMEM;
2790 cpr2->bnapi = bnapi;
2791 }
2792 if ((sh && i < bp->tx_nr_rings) ||
2793 (!sh && i >= bp->rx_nr_rings)) {
2794 struct bnxt_cp_ring_info *cpr2 =
2795 bnxt_alloc_cp_sub_ring(bp);
2796
2797 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
2798 if (!cpr2)
2799 return -ENOMEM;
2800 cpr2->bnapi = bnapi;
2801 }
2802 }
2803 return 0;
2804 }
2805
2806 static void bnxt_init_ring_struct(struct bnxt *bp)
2807 {
2808 int i;
2809
2810 for (i = 0; i < bp->cp_nr_rings; i++) {
2811 struct bnxt_napi *bnapi = bp->bnapi[i];
2812 struct bnxt_ring_mem_info *rmem;
2813 struct bnxt_cp_ring_info *cpr;
2814 struct bnxt_rx_ring_info *rxr;
2815 struct bnxt_tx_ring_info *txr;
2816 struct bnxt_ring_struct *ring;
2817
2818 if (!bnapi)
2819 continue;
2820
2821 cpr = &bnapi->cp_ring;
2822 ring = &cpr->cp_ring_struct;
2823 rmem = &ring->ring_mem;
2824 rmem->nr_pages = bp->cp_nr_pages;
2825 rmem->page_size = HW_CMPD_RING_SIZE;
2826 rmem->pg_arr = (void **)cpr->cp_desc_ring;
2827 rmem->dma_arr = cpr->cp_desc_mapping;
2828 rmem->vmem_size = 0;
2829
2830 rxr = bnapi->rx_ring;
2831 if (!rxr)
2832 goto skip_rx;
2833
2834 ring = &rxr->rx_ring_struct;
2835 rmem = &ring->ring_mem;
2836 rmem->nr_pages = bp->rx_nr_pages;
2837 rmem->page_size = HW_RXBD_RING_SIZE;
2838 rmem->pg_arr = (void **)rxr->rx_desc_ring;
2839 rmem->dma_arr = rxr->rx_desc_mapping;
2840 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2841 rmem->vmem = (void **)&rxr->rx_buf_ring;
2842
2843 ring = &rxr->rx_agg_ring_struct;
2844 rmem = &ring->ring_mem;
2845 rmem->nr_pages = bp->rx_agg_nr_pages;
2846 rmem->page_size = HW_RXBD_RING_SIZE;
2847 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
2848 rmem->dma_arr = rxr->rx_agg_desc_mapping;
2849 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2850 rmem->vmem = (void **)&rxr->rx_agg_ring;
2851
2852 skip_rx:
2853 txr = bnapi->tx_ring;
2854 if (!txr)
2855 continue;
2856
2857 ring = &txr->tx_ring_struct;
2858 rmem = &ring->ring_mem;
2859 rmem->nr_pages = bp->tx_nr_pages;
2860 rmem->page_size = HW_RXBD_RING_SIZE;
2861 rmem->pg_arr = (void **)txr->tx_desc_ring;
2862 rmem->dma_arr = txr->tx_desc_mapping;
2863 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2864 rmem->vmem = (void **)&txr->tx_buf_ring;
2865 }
2866 }
2867
2868 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2869 {
2870 int i;
2871 u32 prod;
2872 struct rx_bd **rx_buf_ring;
2873
2874 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
2875 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
2876 int j;
2877 struct rx_bd *rxbd;
2878
2879 rxbd = rx_buf_ring[i];
2880 if (!rxbd)
2881 continue;
2882
2883 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2884 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2885 rxbd->rx_bd_opaque = prod;
2886 }
2887 }
2888 }
2889
2890 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2891 {
2892 struct net_device *dev = bp->dev;
2893 struct bnxt_rx_ring_info *rxr;
2894 struct bnxt_ring_struct *ring;
2895 u32 prod, type;
2896 int i;
2897
2898 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2899 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2900
2901 if (NET_IP_ALIGN == 2)
2902 type |= RX_BD_FLAGS_SOP;
2903
2904 rxr = &bp->rx_ring[ring_nr];
2905 ring = &rxr->rx_ring_struct;
2906 bnxt_init_rxbd_pages(ring, type);
2907
2908 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2909 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2910 if (IS_ERR(rxr->xdp_prog)) {
2911 int rc = PTR_ERR(rxr->xdp_prog);
2912
2913 rxr->xdp_prog = NULL;
2914 return rc;
2915 }
2916 }
2917 prod = rxr->rx_prod;
2918 for (i = 0; i < bp->rx_ring_size; i++) {
2919 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2920 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2921 ring_nr, i, bp->rx_ring_size);
2922 break;
2923 }
2924 prod = NEXT_RX(prod);
2925 }
2926 rxr->rx_prod = prod;
2927 ring->fw_ring_id = INVALID_HW_RING_ID;
2928
2929 ring = &rxr->rx_agg_ring_struct;
2930 ring->fw_ring_id = INVALID_HW_RING_ID;
2931
2932 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2933 return 0;
2934
2935 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2936 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2937
2938 bnxt_init_rxbd_pages(ring, type);
2939
2940 prod = rxr->rx_agg_prod;
2941 for (i = 0; i < bp->rx_agg_ring_size; i++) {
2942 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2943 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2944 ring_nr, i, bp->rx_ring_size);
2945 break;
2946 }
2947 prod = NEXT_RX_AGG(prod);
2948 }
2949 rxr->rx_agg_prod = prod;
2950
2951 if (bp->flags & BNXT_FLAG_TPA) {
2952 if (rxr->rx_tpa) {
2953 u8 *data;
2954 dma_addr_t mapping;
2955
2956 for (i = 0; i < MAX_TPA; i++) {
2957 data = __bnxt_alloc_rx_data(bp, &mapping,
2958 GFP_KERNEL);
2959 if (!data)
2960 return -ENOMEM;
2961
2962 rxr->rx_tpa[i].data = data;
2963 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2964 rxr->rx_tpa[i].mapping = mapping;
2965 }
2966 } else {
2967 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2968 return -ENOMEM;
2969 }
2970 }
2971
2972 return 0;
2973 }
2974
2975 static void bnxt_init_cp_rings(struct bnxt *bp)
2976 {
2977 int i, j;
2978
2979 for (i = 0; i < bp->cp_nr_rings; i++) {
2980 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2981 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2982
2983 ring->fw_ring_id = INVALID_HW_RING_ID;
2984 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2985 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2986 for (j = 0; j < 2; j++) {
2987 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2988
2989 if (!cpr2)
2990 continue;
2991
2992 ring = &cpr2->cp_ring_struct;
2993 ring->fw_ring_id = INVALID_HW_RING_ID;
2994 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2995 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2996 }
2997 }
2998 }
2999
3000 static int bnxt_init_rx_rings(struct bnxt *bp)
3001 {
3002 int i, rc = 0;
3003
3004 if (BNXT_RX_PAGE_MODE(bp)) {
3005 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3006 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3007 } else {
3008 bp->rx_offset = BNXT_RX_OFFSET;
3009 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3010 }
3011
3012 for (i = 0; i < bp->rx_nr_rings; i++) {
3013 rc = bnxt_init_one_rx_ring(bp, i);
3014 if (rc)
3015 break;
3016 }
3017
3018 return rc;
3019 }
3020
3021 static int bnxt_init_tx_rings(struct bnxt *bp)
3022 {
3023 u16 i;
3024
3025 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3026 MAX_SKB_FRAGS + 1);
3027
3028 for (i = 0; i < bp->tx_nr_rings; i++) {
3029 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3030 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3031
3032 ring->fw_ring_id = INVALID_HW_RING_ID;
3033 }
3034
3035 return 0;
3036 }
3037
3038 static void bnxt_free_ring_grps(struct bnxt *bp)
3039 {
3040 kfree(bp->grp_info);
3041 bp->grp_info = NULL;
3042 }
3043
3044 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3045 {
3046 int i;
3047
3048 if (irq_re_init) {
3049 bp->grp_info = kcalloc(bp->cp_nr_rings,
3050 sizeof(struct bnxt_ring_grp_info),
3051 GFP_KERNEL);
3052 if (!bp->grp_info)
3053 return -ENOMEM;
3054 }
3055 for (i = 0; i < bp->cp_nr_rings; i++) {
3056 if (irq_re_init)
3057 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3058 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3059 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3060 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3061 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3062 }
3063 return 0;
3064 }
3065
3066 static void bnxt_free_vnics(struct bnxt *bp)
3067 {
3068 kfree(bp->vnic_info);
3069 bp->vnic_info = NULL;
3070 bp->nr_vnics = 0;
3071 }
3072
3073 static int bnxt_alloc_vnics(struct bnxt *bp)
3074 {
3075 int num_vnics = 1;
3076
3077 #ifdef CONFIG_RFS_ACCEL
3078 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3079 num_vnics += bp->rx_nr_rings;
3080 #endif
3081
3082 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3083 num_vnics++;
3084
3085 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3086 GFP_KERNEL);
3087 if (!bp->vnic_info)
3088 return -ENOMEM;
3089
3090 bp->nr_vnics = num_vnics;
3091 return 0;
3092 }
3093
3094 static void bnxt_init_vnics(struct bnxt *bp)
3095 {
3096 int i;
3097
3098 for (i = 0; i < bp->nr_vnics; i++) {
3099 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3100 int j;
3101
3102 vnic->fw_vnic_id = INVALID_HW_RING_ID;
3103 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3104 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3105
3106 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3107
3108 if (bp->vnic_info[i].rss_hash_key) {
3109 if (i == 0)
3110 prandom_bytes(vnic->rss_hash_key,
3111 HW_HASH_KEY_SIZE);
3112 else
3113 memcpy(vnic->rss_hash_key,
3114 bp->vnic_info[0].rss_hash_key,
3115 HW_HASH_KEY_SIZE);
3116 }
3117 }
3118 }
3119
3120 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3121 {
3122 int pages;
3123
3124 pages = ring_size / desc_per_pg;
3125
3126 if (!pages)
3127 return 1;
3128
3129 pages++;
3130
3131 while (pages & (pages - 1))
3132 pages++;
3133
3134 return pages;
3135 }
3136
3137 void bnxt_set_tpa_flags(struct bnxt *bp)
3138 {
3139 bp->flags &= ~BNXT_FLAG_TPA;
3140 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3141 return;
3142 if (bp->dev->features & NETIF_F_LRO)
3143 bp->flags |= BNXT_FLAG_LRO;
3144 else if (bp->dev->features & NETIF_F_GRO_HW)
3145 bp->flags |= BNXT_FLAG_GRO;
3146 }
3147
3148 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3149 * be set on entry.
3150 */
3151 void bnxt_set_ring_params(struct bnxt *bp)
3152 {
3153 u32 ring_size, rx_size, rx_space;
3154 u32 agg_factor = 0, agg_ring_size = 0;
3155
3156 /* 8 for CRC and VLAN */
3157 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3158
3159 rx_space = rx_size + NET_SKB_PAD +
3160 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3161
3162 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3163 ring_size = bp->rx_ring_size;
3164 bp->rx_agg_ring_size = 0;
3165 bp->rx_agg_nr_pages = 0;
3166
3167 if (bp->flags & BNXT_FLAG_TPA)
3168 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3169
3170 bp->flags &= ~BNXT_FLAG_JUMBO;
3171 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3172 u32 jumbo_factor;
3173
3174 bp->flags |= BNXT_FLAG_JUMBO;
3175 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3176 if (jumbo_factor > agg_factor)
3177 agg_factor = jumbo_factor;
3178 }
3179 agg_ring_size = ring_size * agg_factor;
3180
3181 if (agg_ring_size) {
3182 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3183 RX_DESC_CNT);
3184 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3185 u32 tmp = agg_ring_size;
3186
3187 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3188 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3189 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3190 tmp, agg_ring_size);
3191 }
3192 bp->rx_agg_ring_size = agg_ring_size;
3193 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3194 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3195 rx_space = rx_size + NET_SKB_PAD +
3196 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3197 }
3198
3199 bp->rx_buf_use_size = rx_size;
3200 bp->rx_buf_size = rx_space;
3201
3202 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3203 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3204
3205 ring_size = bp->tx_ring_size;
3206 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3207 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3208
3209 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
3210 bp->cp_ring_size = ring_size;
3211
3212 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3213 if (bp->cp_nr_pages > MAX_CP_PAGES) {
3214 bp->cp_nr_pages = MAX_CP_PAGES;
3215 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3216 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3217 ring_size, bp->cp_ring_size);
3218 }
3219 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3220 bp->cp_ring_mask = bp->cp_bit - 1;
3221 }
3222
3223 /* Changing allocation mode of RX rings.
3224 * TODO: Update when extending xdp_rxq_info to support allocation modes.
3225 */
3226 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3227 {
3228 if (page_mode) {
3229 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3230 return -EOPNOTSUPP;
3231 bp->dev->max_mtu =
3232 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3233 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3234 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3235 bp->rx_dir = DMA_BIDIRECTIONAL;
3236 bp->rx_skb_func = bnxt_rx_page_skb;
3237 /* Disable LRO or GRO_HW */
3238 netdev_update_features(bp->dev);
3239 } else {
3240 bp->dev->max_mtu = bp->max_mtu;
3241 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3242 bp->rx_dir = DMA_FROM_DEVICE;
3243 bp->rx_skb_func = bnxt_rx_skb;
3244 }
3245 return 0;
3246 }
3247
3248 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3249 {
3250 int i;
3251 struct bnxt_vnic_info *vnic;
3252 struct pci_dev *pdev = bp->pdev;
3253
3254 if (!bp->vnic_info)
3255 return;
3256
3257 for (i = 0; i < bp->nr_vnics; i++) {
3258 vnic = &bp->vnic_info[i];
3259
3260 kfree(vnic->fw_grp_ids);
3261 vnic->fw_grp_ids = NULL;
3262
3263 kfree(vnic->uc_list);
3264 vnic->uc_list = NULL;
3265
3266 if (vnic->mc_list) {
3267 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3268 vnic->mc_list, vnic->mc_list_mapping);
3269 vnic->mc_list = NULL;
3270 }
3271
3272 if (vnic->rss_table) {
3273 dma_free_coherent(&pdev->dev, PAGE_SIZE,
3274 vnic->rss_table,
3275 vnic->rss_table_dma_addr);
3276 vnic->rss_table = NULL;
3277 }
3278
3279 vnic->rss_hash_key = NULL;
3280 vnic->flags = 0;
3281 }
3282 }
3283
3284 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3285 {
3286 int i, rc = 0, size;
3287 struct bnxt_vnic_info *vnic;
3288 struct pci_dev *pdev = bp->pdev;
3289 int max_rings;
3290
3291 for (i = 0; i < bp->nr_vnics; i++) {
3292 vnic = &bp->vnic_info[i];
3293
3294 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3295 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3296
3297 if (mem_size > 0) {
3298 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3299 if (!vnic->uc_list) {
3300 rc = -ENOMEM;
3301 goto out;
3302 }
3303 }
3304 }
3305
3306 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3307 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3308 vnic->mc_list =
3309 dma_alloc_coherent(&pdev->dev,
3310 vnic->mc_list_size,
3311 &vnic->mc_list_mapping,
3312 GFP_KERNEL);
3313 if (!vnic->mc_list) {
3314 rc = -ENOMEM;
3315 goto out;
3316 }
3317 }
3318
3319 if (bp->flags & BNXT_FLAG_CHIP_P5)
3320 goto vnic_skip_grps;
3321
3322 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3323 max_rings = bp->rx_nr_rings;
3324 else
3325 max_rings = 1;
3326
3327 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3328 if (!vnic->fw_grp_ids) {
3329 rc = -ENOMEM;
3330 goto out;
3331 }
3332 vnic_skip_grps:
3333 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3334 !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3335 continue;
3336
3337 /* Allocate rss table and hash key */
3338 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3339 &vnic->rss_table_dma_addr,
3340 GFP_KERNEL);
3341 if (!vnic->rss_table) {
3342 rc = -ENOMEM;
3343 goto out;
3344 }
3345
3346 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3347
3348 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3349 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3350 }
3351 return 0;
3352
3353 out:
3354 return rc;
3355 }
3356
3357 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3358 {
3359 struct pci_dev *pdev = bp->pdev;
3360
3361 if (bp->hwrm_cmd_resp_addr) {
3362 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3363 bp->hwrm_cmd_resp_dma_addr);
3364 bp->hwrm_cmd_resp_addr = NULL;
3365 }
3366
3367 if (bp->hwrm_cmd_kong_resp_addr) {
3368 dma_free_coherent(&pdev->dev, PAGE_SIZE,
3369 bp->hwrm_cmd_kong_resp_addr,
3370 bp->hwrm_cmd_kong_resp_dma_addr);
3371 bp->hwrm_cmd_kong_resp_addr = NULL;
3372 }
3373 }
3374
3375 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3376 {
3377 struct pci_dev *pdev = bp->pdev;
3378
3379 bp->hwrm_cmd_kong_resp_addr =
3380 dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3381 &bp->hwrm_cmd_kong_resp_dma_addr,
3382 GFP_KERNEL);
3383 if (!bp->hwrm_cmd_kong_resp_addr)
3384 return -ENOMEM;
3385
3386 return 0;
3387 }
3388
3389 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3390 {
3391 struct pci_dev *pdev = bp->pdev;
3392
3393 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3394 &bp->hwrm_cmd_resp_dma_addr,
3395 GFP_KERNEL);
3396 if (!bp->hwrm_cmd_resp_addr)
3397 return -ENOMEM;
3398
3399 return 0;
3400 }
3401
3402 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3403 {
3404 if (bp->hwrm_short_cmd_req_addr) {
3405 struct pci_dev *pdev = bp->pdev;
3406
3407 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3408 bp->hwrm_short_cmd_req_addr,
3409 bp->hwrm_short_cmd_req_dma_addr);
3410 bp->hwrm_short_cmd_req_addr = NULL;
3411 }
3412 }
3413
3414 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3415 {
3416 struct pci_dev *pdev = bp->pdev;
3417
3418 bp->hwrm_short_cmd_req_addr =
3419 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3420 &bp->hwrm_short_cmd_req_dma_addr,
3421 GFP_KERNEL);
3422 if (!bp->hwrm_short_cmd_req_addr)
3423 return -ENOMEM;
3424
3425 return 0;
3426 }
3427
3428 static void bnxt_free_port_stats(struct bnxt *bp)
3429 {
3430 struct pci_dev *pdev = bp->pdev;
3431
3432 bp->flags &= ~BNXT_FLAG_PORT_STATS;
3433 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3434
3435 if (bp->hw_rx_port_stats) {
3436 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3437 bp->hw_rx_port_stats,
3438 bp->hw_rx_port_stats_map);
3439 bp->hw_rx_port_stats = NULL;
3440 }
3441
3442 if (bp->hw_tx_port_stats_ext) {
3443 dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3444 bp->hw_tx_port_stats_ext,
3445 bp->hw_tx_port_stats_ext_map);
3446 bp->hw_tx_port_stats_ext = NULL;
3447 }
3448
3449 if (bp->hw_rx_port_stats_ext) {
3450 dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3451 bp->hw_rx_port_stats_ext,
3452 bp->hw_rx_port_stats_ext_map);
3453 bp->hw_rx_port_stats_ext = NULL;
3454 }
3455
3456 if (bp->hw_pcie_stats) {
3457 dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3458 bp->hw_pcie_stats, bp->hw_pcie_stats_map);
3459 bp->hw_pcie_stats = NULL;
3460 }
3461 }
3462
3463 static void bnxt_free_ring_stats(struct bnxt *bp)
3464 {
3465 struct pci_dev *pdev = bp->pdev;
3466 int size, i;
3467
3468 if (!bp->bnapi)
3469 return;
3470
3471 size = sizeof(struct ctx_hw_stats);
3472
3473 for (i = 0; i < bp->cp_nr_rings; i++) {
3474 struct bnxt_napi *bnapi = bp->bnapi[i];
3475 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3476
3477 if (cpr->hw_stats) {
3478 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3479 cpr->hw_stats_map);
3480 cpr->hw_stats = NULL;
3481 }
3482 }
3483 }
3484
3485 static int bnxt_alloc_stats(struct bnxt *bp)
3486 {
3487 u32 size, i;
3488 struct pci_dev *pdev = bp->pdev;
3489
3490 size = sizeof(struct ctx_hw_stats);
3491
3492 for (i = 0; i < bp->cp_nr_rings; i++) {
3493 struct bnxt_napi *bnapi = bp->bnapi[i];
3494 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3495
3496 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3497 &cpr->hw_stats_map,
3498 GFP_KERNEL);
3499 if (!cpr->hw_stats)
3500 return -ENOMEM;
3501
3502 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3503 }
3504
3505 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3506 return 0;
3507
3508 if (bp->hw_rx_port_stats)
3509 goto alloc_ext_stats;
3510
3511 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3512 sizeof(struct tx_port_stats) + 1024;
3513
3514 bp->hw_rx_port_stats =
3515 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3516 &bp->hw_rx_port_stats_map,
3517 GFP_KERNEL);
3518 if (!bp->hw_rx_port_stats)
3519 return -ENOMEM;
3520
3521 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512;
3522 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3523 sizeof(struct rx_port_stats) + 512;
3524 bp->flags |= BNXT_FLAG_PORT_STATS;
3525
3526 alloc_ext_stats:
3527 /* Display extended statistics only if FW supports it */
3528 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3529 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3530 return 0;
3531
3532 if (bp->hw_rx_port_stats_ext)
3533 goto alloc_tx_ext_stats;
3534
3535 bp->hw_rx_port_stats_ext =
3536 dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3537 &bp->hw_rx_port_stats_ext_map, GFP_KERNEL);
3538 if (!bp->hw_rx_port_stats_ext)
3539 return 0;
3540
3541 alloc_tx_ext_stats:
3542 if (bp->hw_tx_port_stats_ext)
3543 goto alloc_pcie_stats;
3544
3545 if (bp->hwrm_spec_code >= 0x10902 ||
3546 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3547 bp->hw_tx_port_stats_ext =
3548 dma_alloc_coherent(&pdev->dev,
3549 sizeof(struct tx_port_stats_ext),
3550 &bp->hw_tx_port_stats_ext_map,
3551 GFP_KERNEL);
3552 }
3553 bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3554
3555 alloc_pcie_stats:
3556 if (bp->hw_pcie_stats ||
3557 !(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED))
3558 return 0;
3559
3560 bp->hw_pcie_stats =
3561 dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3562 &bp->hw_pcie_stats_map, GFP_KERNEL);
3563 if (!bp->hw_pcie_stats)
3564 return 0;
3565
3566 bp->flags |= BNXT_FLAG_PCIE_STATS;
3567 return 0;
3568 }
3569
3570 static void bnxt_clear_ring_indices(struct bnxt *bp)
3571 {
3572 int i;
3573
3574 if (!bp->bnapi)
3575 return;
3576
3577 for (i = 0; i < bp->cp_nr_rings; i++) {
3578 struct bnxt_napi *bnapi = bp->bnapi[i];
3579 struct bnxt_cp_ring_info *cpr;
3580 struct bnxt_rx_ring_info *rxr;
3581 struct bnxt_tx_ring_info *txr;
3582
3583 if (!bnapi)
3584 continue;
3585
3586 cpr = &bnapi->cp_ring;
3587 cpr->cp_raw_cons = 0;
3588
3589 txr = bnapi->tx_ring;
3590 if (txr) {
3591 txr->tx_prod = 0;
3592 txr->tx_cons = 0;
3593 }
3594
3595 rxr = bnapi->rx_ring;
3596 if (rxr) {
3597 rxr->rx_prod = 0;
3598 rxr->rx_agg_prod = 0;
3599 rxr->rx_sw_agg_prod = 0;
3600 rxr->rx_next_cons = 0;
3601 }
3602 }
3603 }
3604
3605 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3606 {
3607 #ifdef CONFIG_RFS_ACCEL
3608 int i;
3609
3610 /* Under rtnl_lock and all our NAPIs have been disabled. It's
3611 * safe to delete the hash table.
3612 */
3613 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3614 struct hlist_head *head;
3615 struct hlist_node *tmp;
3616 struct bnxt_ntuple_filter *fltr;
3617
3618 head = &bp->ntp_fltr_hash_tbl[i];
3619 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3620 hlist_del(&fltr->hash);
3621 kfree(fltr);
3622 }
3623 }
3624 if (irq_reinit) {
3625 kfree(bp->ntp_fltr_bmap);
3626 bp->ntp_fltr_bmap = NULL;
3627 }
3628 bp->ntp_fltr_count = 0;
3629 #endif
3630 }
3631
3632 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3633 {
3634 #ifdef CONFIG_RFS_ACCEL
3635 int i, rc = 0;
3636
3637 if (!(bp->flags & BNXT_FLAG_RFS))
3638 return 0;
3639
3640 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3641 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3642
3643 bp->ntp_fltr_count = 0;
3644 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3645 sizeof(long),
3646 GFP_KERNEL);
3647
3648 if (!bp->ntp_fltr_bmap)
3649 rc = -ENOMEM;
3650
3651 return rc;
3652 #else
3653 return 0;
3654 #endif
3655 }
3656
3657 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3658 {
3659 bnxt_free_vnic_attributes(bp);
3660 bnxt_free_tx_rings(bp);
3661 bnxt_free_rx_rings(bp);
3662 bnxt_free_cp_rings(bp);
3663 bnxt_free_ntp_fltrs(bp, irq_re_init);
3664 if (irq_re_init) {
3665 bnxt_free_ring_stats(bp);
3666 bnxt_free_ring_grps(bp);
3667 bnxt_free_vnics(bp);
3668 kfree(bp->tx_ring_map);
3669 bp->tx_ring_map = NULL;
3670 kfree(bp->tx_ring);
3671 bp->tx_ring = NULL;
3672 kfree(bp->rx_ring);
3673 bp->rx_ring = NULL;
3674 kfree(bp->bnapi);
3675 bp->bnapi = NULL;
3676 } else {
3677 bnxt_clear_ring_indices(bp);
3678 }
3679 }
3680
3681 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3682 {
3683 int i, j, rc, size, arr_size;
3684 void *bnapi;
3685
3686 if (irq_re_init) {
3687 /* Allocate bnapi mem pointer array and mem block for
3688 * all queues
3689 */
3690 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3691 bp->cp_nr_rings);
3692 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3693 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3694 if (!bnapi)
3695 return -ENOMEM;
3696
3697 bp->bnapi = bnapi;
3698 bnapi += arr_size;
3699 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3700 bp->bnapi[i] = bnapi;
3701 bp->bnapi[i]->index = i;
3702 bp->bnapi[i]->bp = bp;
3703 if (bp->flags & BNXT_FLAG_CHIP_P5) {
3704 struct bnxt_cp_ring_info *cpr =
3705 &bp->bnapi[i]->cp_ring;
3706
3707 cpr->cp_ring_struct.ring_mem.flags =
3708 BNXT_RMEM_RING_PTE_FLAG;
3709 }
3710 }
3711
3712 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3713 sizeof(struct bnxt_rx_ring_info),
3714 GFP_KERNEL);
3715 if (!bp->rx_ring)
3716 return -ENOMEM;
3717
3718 for (i = 0; i < bp->rx_nr_rings; i++) {
3719 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3720
3721 if (bp->flags & BNXT_FLAG_CHIP_P5) {
3722 rxr->rx_ring_struct.ring_mem.flags =
3723 BNXT_RMEM_RING_PTE_FLAG;
3724 rxr->rx_agg_ring_struct.ring_mem.flags =
3725 BNXT_RMEM_RING_PTE_FLAG;
3726 }
3727 rxr->bnapi = bp->bnapi[i];
3728 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3729 }
3730
3731 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3732 sizeof(struct bnxt_tx_ring_info),
3733 GFP_KERNEL);
3734 if (!bp->tx_ring)
3735 return -ENOMEM;
3736
3737 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3738 GFP_KERNEL);
3739
3740 if (!bp->tx_ring_map)
3741 return -ENOMEM;
3742
3743 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3744 j = 0;
3745 else
3746 j = bp->rx_nr_rings;
3747
3748 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3749 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3750
3751 if (bp->flags & BNXT_FLAG_CHIP_P5)
3752 txr->tx_ring_struct.ring_mem.flags =
3753 BNXT_RMEM_RING_PTE_FLAG;
3754 txr->bnapi = bp->bnapi[j];
3755 bp->bnapi[j]->tx_ring = txr;
3756 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3757 if (i >= bp->tx_nr_rings_xdp) {
3758 txr->txq_index = i - bp->tx_nr_rings_xdp;
3759 bp->bnapi[j]->tx_int = bnxt_tx_int;
3760 } else {
3761 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3762 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3763 }
3764 }
3765
3766 rc = bnxt_alloc_stats(bp);
3767 if (rc)
3768 goto alloc_mem_err;
3769
3770 rc = bnxt_alloc_ntp_fltrs(bp);
3771 if (rc)
3772 goto alloc_mem_err;
3773
3774 rc = bnxt_alloc_vnics(bp);
3775 if (rc)
3776 goto alloc_mem_err;
3777 }
3778
3779 bnxt_init_ring_struct(bp);
3780
3781 rc = bnxt_alloc_rx_rings(bp);
3782 if (rc)
3783 goto alloc_mem_err;
3784
3785 rc = bnxt_alloc_tx_rings(bp);
3786 if (rc)
3787 goto alloc_mem_err;
3788
3789 rc = bnxt_alloc_cp_rings(bp);
3790 if (rc)
3791 goto alloc_mem_err;
3792
3793 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3794 BNXT_VNIC_UCAST_FLAG;
3795 rc = bnxt_alloc_vnic_attributes(bp);
3796 if (rc)
3797 goto alloc_mem_err;
3798 return 0;
3799
3800 alloc_mem_err:
3801 bnxt_free_mem(bp, true);
3802 return rc;
3803 }
3804
3805 static void bnxt_disable_int(struct bnxt *bp)
3806 {
3807 int i;
3808
3809 if (!bp->bnapi)
3810 return;
3811
3812 for (i = 0; i < bp->cp_nr_rings; i++) {
3813 struct bnxt_napi *bnapi = bp->bnapi[i];
3814 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3815 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3816
3817 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3818 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
3819 }
3820 }
3821
3822 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3823 {
3824 struct bnxt_napi *bnapi = bp->bnapi[n];
3825 struct bnxt_cp_ring_info *cpr;
3826
3827 cpr = &bnapi->cp_ring;
3828 return cpr->cp_ring_struct.map_idx;
3829 }
3830
3831 static void bnxt_disable_int_sync(struct bnxt *bp)
3832 {
3833 int i;
3834
3835 atomic_inc(&bp->intr_sem);
3836
3837 bnxt_disable_int(bp);
3838 for (i = 0; i < bp->cp_nr_rings; i++) {
3839 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3840
3841 synchronize_irq(bp->irq_tbl[map_idx].vector);
3842 }
3843 }
3844
3845 static void bnxt_enable_int(struct bnxt *bp)
3846 {
3847 int i;
3848
3849 atomic_set(&bp->intr_sem, 0);
3850 for (i = 0; i < bp->cp_nr_rings; i++) {
3851 struct bnxt_napi *bnapi = bp->bnapi[i];
3852 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3853
3854 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
3855 }
3856 }
3857
3858 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3859 u16 cmpl_ring, u16 target_id)
3860 {
3861 struct input *req = request;
3862
3863 req->req_type = cpu_to_le16(req_type);
3864 req->cmpl_ring = cpu_to_le16(cmpl_ring);
3865 req->target_id = cpu_to_le16(target_id);
3866 if (bnxt_kong_hwrm_message(bp, req))
3867 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
3868 else
3869 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3870 }
3871
3872 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3873 int timeout, bool silent)
3874 {
3875 int i, intr_process, rc, tmo_count;
3876 struct input *req = msg;
3877 u32 *data = msg;
3878 __le32 *resp_len;
3879 u8 *valid;
3880 u16 cp_ring_id, len = 0;
3881 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3882 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3883 struct hwrm_short_input short_input = {0};
3884 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
3885 u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
3886 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
3887 u16 dst = BNXT_HWRM_CHNL_CHIMP;
3888
3889 if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3890 if (msg_len > bp->hwrm_max_ext_req_len ||
3891 !bp->hwrm_short_cmd_req_addr)
3892 return -EINVAL;
3893 }
3894
3895 if (bnxt_hwrm_kong_chnl(bp, req)) {
3896 dst = BNXT_HWRM_CHNL_KONG;
3897 bar_offset = BNXT_GRCPF_REG_KONG_COMM;
3898 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
3899 resp = bp->hwrm_cmd_kong_resp_addr;
3900 resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
3901 }
3902
3903 memset(resp, 0, PAGE_SIZE);
3904 cp_ring_id = le16_to_cpu(req->cmpl_ring);
3905 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3906
3907 req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
3908 /* currently supports only one outstanding message */
3909 if (intr_process)
3910 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3911
3912 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
3913 msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3914 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3915 u16 max_msg_len;
3916
3917 /* Set boundary for maximum extended request length for short
3918 * cmd format. If passed up from device use the max supported
3919 * internal req length.
3920 */
3921 max_msg_len = bp->hwrm_max_ext_req_len;
3922
3923 memcpy(short_cmd_req, req, msg_len);
3924 if (msg_len < max_msg_len)
3925 memset(short_cmd_req + msg_len, 0,
3926 max_msg_len - msg_len);
3927
3928 short_input.req_type = req->req_type;
3929 short_input.signature =
3930 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3931 short_input.size = cpu_to_le16(msg_len);
3932 short_input.req_addr =
3933 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3934
3935 data = (u32 *)&short_input;
3936 msg_len = sizeof(short_input);
3937
3938 /* Sync memory write before updating doorbell */
3939 wmb();
3940
3941 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3942 }
3943
3944 /* Write request msg to hwrm channel */
3945 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
3946
3947 for (i = msg_len; i < max_req_len; i += 4)
3948 writel(0, bp->bar0 + bar_offset + i);
3949
3950 /* Ring channel doorbell */
3951 writel(1, bp->bar0 + doorbell_offset);
3952
3953 if (!timeout)
3954 timeout = DFLT_HWRM_CMD_TIMEOUT;
3955 /* convert timeout to usec */
3956 timeout *= 1000;
3957
3958 i = 0;
3959 /* Short timeout for the first few iterations:
3960 * number of loops = number of loops for short timeout +
3961 * number of loops for standard timeout.
3962 */
3963 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3964 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3965 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3966 resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
3967
3968 if (intr_process) {
3969 u16 seq_id = bp->hwrm_intr_seq_id;
3970
3971 /* Wait until hwrm response cmpl interrupt is processed */
3972 while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
3973 i++ < tmo_count) {
3974 /* on first few passes, just barely sleep */
3975 if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3976 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3977 HWRM_SHORT_MAX_TIMEOUT);
3978 else
3979 usleep_range(HWRM_MIN_TIMEOUT,
3980 HWRM_MAX_TIMEOUT);
3981 }
3982
3983 if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
3984 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3985 le16_to_cpu(req->req_type));
3986 return -1;
3987 }
3988 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3989 HWRM_RESP_LEN_SFT;
3990 valid = resp_addr + len - 1;
3991 } else {
3992 int j;
3993
3994 /* Check if response len is updated */
3995 for (i = 0; i < tmo_count; i++) {
3996 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3997 HWRM_RESP_LEN_SFT;
3998 if (len)
3999 break;
4000 /* on first few passes, just barely sleep */
4001 if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4002 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4003 HWRM_SHORT_MAX_TIMEOUT);
4004 else
4005 usleep_range(HWRM_MIN_TIMEOUT,
4006 HWRM_MAX_TIMEOUT);
4007 }
4008
4009 if (i >= tmo_count) {
4010 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4011 HWRM_TOTAL_TIMEOUT(i),
4012 le16_to_cpu(req->req_type),
4013 le16_to_cpu(req->seq_id), len);
4014 return -1;
4015 }
4016
4017 /* Last byte of resp contains valid bit */
4018 valid = resp_addr + len - 1;
4019 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4020 /* make sure we read from updated DMA memory */
4021 dma_rmb();
4022 if (*valid)
4023 break;
4024 usleep_range(1, 5);
4025 }
4026
4027 if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4028 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4029 HWRM_TOTAL_TIMEOUT(i),
4030 le16_to_cpu(req->req_type),
4031 le16_to_cpu(req->seq_id), len, *valid);
4032 return -1;
4033 }
4034 }
4035
4036 /* Zero valid bit for compatibility. Valid bit in an older spec
4037 * may become a new field in a newer spec. We must make sure that
4038 * a new field not implemented by old spec will read zero.
4039 */
4040 *valid = 0;
4041 rc = le16_to_cpu(resp->error_code);
4042 if (rc && !silent)
4043 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4044 le16_to_cpu(resp->req_type),
4045 le16_to_cpu(resp->seq_id), rc);
4046 return rc;
4047 }
4048
4049 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4050 {
4051 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4052 }
4053
4054 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4055 int timeout)
4056 {
4057 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4058 }
4059
4060 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4061 {
4062 int rc;
4063
4064 mutex_lock(&bp->hwrm_cmd_lock);
4065 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4066 mutex_unlock(&bp->hwrm_cmd_lock);
4067 return rc;
4068 }
4069
4070 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4071 int timeout)
4072 {
4073 int rc;
4074
4075 mutex_lock(&bp->hwrm_cmd_lock);
4076 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4077 mutex_unlock(&bp->hwrm_cmd_lock);
4078 return rc;
4079 }
4080
4081 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
4082 int bmap_size)
4083 {
4084 struct hwrm_func_drv_rgtr_input req = {0};
4085 DECLARE_BITMAP(async_events_bmap, 256);
4086 u32 *events = (u32 *)async_events_bmap;
4087 int i;
4088
4089 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4090
4091 req.enables =
4092 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4093
4094 memset(async_events_bmap, 0, sizeof(async_events_bmap));
4095 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
4096 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
4097
4098 if (bmap && bmap_size) {
4099 for (i = 0; i < bmap_size; i++) {
4100 if (test_bit(i, bmap))
4101 __set_bit(i, async_events_bmap);
4102 }
4103 }
4104
4105 for (i = 0; i < 8; i++)
4106 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4107
4108 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4109 }
4110
4111 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
4112 {
4113 struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4114 struct hwrm_func_drv_rgtr_input req = {0};
4115 int rc;
4116
4117 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4118
4119 req.enables =
4120 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4121 FUNC_DRV_RGTR_REQ_ENABLES_VER);
4122
4123 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4124 req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
4125 req.ver_maj_8b = DRV_VER_MAJ;
4126 req.ver_min_8b = DRV_VER_MIN;
4127 req.ver_upd_8b = DRV_VER_UPD;
4128 req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4129 req.ver_min = cpu_to_le16(DRV_VER_MIN);
4130 req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4131
4132 if (BNXT_PF(bp)) {
4133 u32 data[8];
4134 int i;
4135
4136 memset(data, 0, sizeof(data));
4137 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4138 u16 cmd = bnxt_vf_req_snif[i];
4139 unsigned int bit, idx;
4140
4141 idx = cmd / 32;
4142 bit = cmd % 32;
4143 data[idx] |= 1 << bit;
4144 }
4145
4146 for (i = 0; i < 8; i++)
4147 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4148
4149 req.enables |=
4150 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4151 }
4152
4153 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4154 req.flags |= cpu_to_le32(
4155 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4156
4157 mutex_lock(&bp->hwrm_cmd_lock);
4158 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4159 if (rc)
4160 rc = -EIO;
4161 else if (resp->flags &
4162 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4163 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4164 mutex_unlock(&bp->hwrm_cmd_lock);
4165 return rc;
4166 }
4167
4168 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4169 {
4170 struct hwrm_func_drv_unrgtr_input req = {0};
4171
4172 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4173 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4174 }
4175
4176 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4177 {
4178 u32 rc = 0;
4179 struct hwrm_tunnel_dst_port_free_input req = {0};
4180
4181 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4182 req.tunnel_type = tunnel_type;
4183
4184 switch (tunnel_type) {
4185 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4186 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4187 break;
4188 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4189 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4190 break;
4191 default:
4192 break;
4193 }
4194
4195 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4196 if (rc)
4197 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4198 rc);
4199 return rc;
4200 }
4201
4202 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4203 u8 tunnel_type)
4204 {
4205 u32 rc = 0;
4206 struct hwrm_tunnel_dst_port_alloc_input req = {0};
4207 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4208
4209 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4210
4211 req.tunnel_type = tunnel_type;
4212 req.tunnel_dst_port_val = port;
4213
4214 mutex_lock(&bp->hwrm_cmd_lock);
4215 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4216 if (rc) {
4217 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4218 rc);
4219 goto err_out;
4220 }
4221
4222 switch (tunnel_type) {
4223 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4224 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4225 break;
4226 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4227 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4228 break;
4229 default:
4230 break;
4231 }
4232
4233 err_out:
4234 mutex_unlock(&bp->hwrm_cmd_lock);
4235 return rc;
4236 }
4237
4238 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4239 {
4240 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4241 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4242
4243 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4244 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4245
4246 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4247 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4248 req.mask = cpu_to_le32(vnic->rx_mask);
4249 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4250 }
4251
4252 #ifdef CONFIG_RFS_ACCEL
4253 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4254 struct bnxt_ntuple_filter *fltr)
4255 {
4256 struct hwrm_cfa_ntuple_filter_free_input req = {0};
4257
4258 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4259 req.ntuple_filter_id = fltr->filter_id;
4260 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4261 }
4262
4263 #define BNXT_NTP_FLTR_FLAGS \
4264 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
4265 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
4266 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
4267 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
4268 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
4269 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
4270 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
4271 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
4272 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
4273 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
4274 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
4275 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
4276 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
4277 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4278
4279 #define BNXT_NTP_TUNNEL_FLTR_FLAG \
4280 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4281
4282 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4283 struct bnxt_ntuple_filter *fltr)
4284 {
4285 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4286 struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4287 struct flow_keys *keys = &fltr->fkeys;
4288 struct bnxt_vnic_info *vnic;
4289 u32 dst_ena = 0;
4290 int rc = 0;
4291
4292 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4293 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4294
4295 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX) {
4296 dst_ena = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
4297 req.rfs_ring_tbl_idx = cpu_to_le16(fltr->rxq);
4298 vnic = &bp->vnic_info[0];
4299 } else {
4300 vnic = &bp->vnic_info[fltr->rxq + 1];
4301 }
4302 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4303 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS | dst_ena);
4304
4305 req.ethertype = htons(ETH_P_IP);
4306 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4307 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4308 req.ip_protocol = keys->basic.ip_proto;
4309
4310 if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4311 int i;
4312
4313 req.ethertype = htons(ETH_P_IPV6);
4314 req.ip_addr_type =
4315 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4316 *(struct in6_addr *)&req.src_ipaddr[0] =
4317 keys->addrs.v6addrs.src;
4318 *(struct in6_addr *)&req.dst_ipaddr[0] =
4319 keys->addrs.v6addrs.dst;
4320 for (i = 0; i < 4; i++) {
4321 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4322 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4323 }
4324 } else {
4325 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4326 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4327 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4328 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4329 }
4330 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4331 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4332 req.tunnel_type =
4333 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4334 }
4335
4336 req.src_port = keys->ports.src;
4337 req.src_port_mask = cpu_to_be16(0xffff);
4338 req.dst_port = keys->ports.dst;
4339 req.dst_port_mask = cpu_to_be16(0xffff);
4340
4341 mutex_lock(&bp->hwrm_cmd_lock);
4342 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4343 if (!rc) {
4344 resp = bnxt_get_hwrm_resp_addr(bp, &req);
4345 fltr->filter_id = resp->ntuple_filter_id;
4346 }
4347 mutex_unlock(&bp->hwrm_cmd_lock);
4348 return rc;
4349 }
4350 #endif
4351
4352 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4353 u8 *mac_addr)
4354 {
4355 u32 rc = 0;
4356 struct hwrm_cfa_l2_filter_alloc_input req = {0};
4357 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4358
4359 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4360 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4361 if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4362 req.flags |=
4363 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4364 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4365 req.enables =
4366 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4367 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4368 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4369 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4370 req.l2_addr_mask[0] = 0xff;
4371 req.l2_addr_mask[1] = 0xff;
4372 req.l2_addr_mask[2] = 0xff;
4373 req.l2_addr_mask[3] = 0xff;
4374 req.l2_addr_mask[4] = 0xff;
4375 req.l2_addr_mask[5] = 0xff;
4376
4377 mutex_lock(&bp->hwrm_cmd_lock);
4378 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4379 if (!rc)
4380 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4381 resp->l2_filter_id;
4382 mutex_unlock(&bp->hwrm_cmd_lock);
4383 return rc;
4384 }
4385
4386 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4387 {
4388 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4389 int rc = 0;
4390
4391 /* Any associated ntuple filters will also be cleared by firmware. */
4392 mutex_lock(&bp->hwrm_cmd_lock);
4393 for (i = 0; i < num_of_vnics; i++) {
4394 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4395
4396 for (j = 0; j < vnic->uc_filter_count; j++) {
4397 struct hwrm_cfa_l2_filter_free_input req = {0};
4398
4399 bnxt_hwrm_cmd_hdr_init(bp, &req,
4400 HWRM_CFA_L2_FILTER_FREE, -1, -1);
4401
4402 req.l2_filter_id = vnic->fw_l2_filter_id[j];
4403
4404 rc = _hwrm_send_message(bp, &req, sizeof(req),
4405 HWRM_CMD_TIMEOUT);
4406 }
4407 vnic->uc_filter_count = 0;
4408 }
4409 mutex_unlock(&bp->hwrm_cmd_lock);
4410
4411 return rc;
4412 }
4413
4414 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4415 {
4416 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4417 struct hwrm_vnic_tpa_cfg_input req = {0};
4418
4419 if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4420 return 0;
4421
4422 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4423
4424 if (tpa_flags) {
4425 u16 mss = bp->dev->mtu - 40;
4426 u32 nsegs, n, segs = 0, flags;
4427
4428 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4429 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4430 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4431 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4432 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4433 if (tpa_flags & BNXT_FLAG_GRO)
4434 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4435
4436 req.flags = cpu_to_le32(flags);
4437
4438 req.enables =
4439 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4440 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4441 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4442
4443 /* Number of segs are log2 units, and first packet is not
4444 * included as part of this units.
4445 */
4446 if (mss <= BNXT_RX_PAGE_SIZE) {
4447 n = BNXT_RX_PAGE_SIZE / mss;
4448 nsegs = (MAX_SKB_FRAGS - 1) * n;
4449 } else {
4450 n = mss / BNXT_RX_PAGE_SIZE;
4451 if (mss & (BNXT_RX_PAGE_SIZE - 1))
4452 n++;
4453 nsegs = (MAX_SKB_FRAGS - n) / n;
4454 }
4455
4456 segs = ilog2(nsegs);
4457 req.max_agg_segs = cpu_to_le16(segs);
4458 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
4459
4460 req.min_agg_len = cpu_to_le32(512);
4461 }
4462 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4463
4464 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4465 }
4466
4467 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4468 {
4469 struct bnxt_ring_grp_info *grp_info;
4470
4471 grp_info = &bp->grp_info[ring->grp_idx];
4472 return grp_info->cp_fw_ring_id;
4473 }
4474
4475 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4476 {
4477 if (bp->flags & BNXT_FLAG_CHIP_P5) {
4478 struct bnxt_napi *bnapi = rxr->bnapi;
4479 struct bnxt_cp_ring_info *cpr;
4480
4481 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4482 return cpr->cp_ring_struct.fw_ring_id;
4483 } else {
4484 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4485 }
4486 }
4487
4488 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4489 {
4490 if (bp->flags & BNXT_FLAG_CHIP_P5) {
4491 struct bnxt_napi *bnapi = txr->bnapi;
4492 struct bnxt_cp_ring_info *cpr;
4493
4494 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4495 return cpr->cp_ring_struct.fw_ring_id;
4496 } else {
4497 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4498 }
4499 }
4500
4501 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4502 {
4503 u32 i, j, max_rings;
4504 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4505 struct hwrm_vnic_rss_cfg_input req = {0};
4506
4507 if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4508 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4509 return 0;
4510
4511 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4512 if (set_rss) {
4513 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4514 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4515 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4516 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4517 max_rings = bp->rx_nr_rings - 1;
4518 else
4519 max_rings = bp->rx_nr_rings;
4520 } else {
4521 max_rings = 1;
4522 }
4523
4524 /* Fill the RSS indirection table with ring group ids */
4525 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4526 if (j == max_rings)
4527 j = 0;
4528 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4529 }
4530
4531 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4532 req.hash_key_tbl_addr =
4533 cpu_to_le64(vnic->rss_hash_key_dma_addr);
4534 }
4535 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4536 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4537 }
4538
4539 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4540 {
4541 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4542 u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4543 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4544 struct hwrm_vnic_rss_cfg_input req = {0};
4545
4546 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4547 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4548 if (!set_rss) {
4549 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4550 return 0;
4551 }
4552 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4553 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4554 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4555 req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4556 nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4557 for (i = 0, k = 0; i < nr_ctxs; i++) {
4558 __le16 *ring_tbl = vnic->rss_table;
4559 int rc;
4560
4561 req.ring_table_pair_index = i;
4562 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4563 for (j = 0; j < 64; j++) {
4564 u16 ring_id;
4565
4566 ring_id = rxr->rx_ring_struct.fw_ring_id;
4567 *ring_tbl++ = cpu_to_le16(ring_id);
4568 ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4569 *ring_tbl++ = cpu_to_le16(ring_id);
4570 rxr++;
4571 k++;
4572 if (k == max_rings) {
4573 k = 0;
4574 rxr = &bp->rx_ring[0];
4575 }
4576 }
4577 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4578 if (rc)
4579 return -EIO;
4580 }
4581 return 0;
4582 }
4583
4584 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4585 {
4586 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4587 struct hwrm_vnic_plcmodes_cfg_input req = {0};
4588
4589 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4590 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4591 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4592 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4593 req.enables =
4594 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4595 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4596 /* thresholds not implemented in firmware yet */
4597 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4598 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4599 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4600 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4601 }
4602
4603 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4604 u16 ctx_idx)
4605 {
4606 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4607
4608 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4609 req.rss_cos_lb_ctx_id =
4610 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4611
4612 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4613 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4614 }
4615
4616 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4617 {
4618 int i, j;
4619
4620 for (i = 0; i < bp->nr_vnics; i++) {
4621 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4622
4623 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4624 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4625 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4626 }
4627 }
4628 bp->rsscos_nr_ctxs = 0;
4629 }
4630
4631 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4632 {
4633 int rc;
4634 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4635 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4636 bp->hwrm_cmd_resp_addr;
4637
4638 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4639 -1);
4640
4641 mutex_lock(&bp->hwrm_cmd_lock);
4642 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4643 if (!rc)
4644 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4645 le16_to_cpu(resp->rss_cos_lb_ctx_id);
4646 mutex_unlock(&bp->hwrm_cmd_lock);
4647
4648 return rc;
4649 }
4650
4651 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4652 {
4653 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4654 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4655 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4656 }
4657
4658 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4659 {
4660 unsigned int ring = 0, grp_idx;
4661 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4662 struct hwrm_vnic_cfg_input req = {0};
4663 u16 def_vlan = 0;
4664
4665 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4666
4667 if (bp->flags & BNXT_FLAG_CHIP_P5) {
4668 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4669
4670 req.default_rx_ring_id =
4671 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
4672 req.default_cmpl_ring_id =
4673 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
4674 req.enables =
4675 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
4676 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
4677 goto vnic_mru;
4678 }
4679 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4680 /* Only RSS support for now TBD: COS & LB */
4681 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4682 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4683 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4684 VNIC_CFG_REQ_ENABLES_MRU);
4685 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4686 req.rss_rule =
4687 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4688 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4689 VNIC_CFG_REQ_ENABLES_MRU);
4690 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4691 } else {
4692 req.rss_rule = cpu_to_le16(0xffff);
4693 }
4694
4695 if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4696 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4697 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4698 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4699 } else {
4700 req.cos_rule = cpu_to_le16(0xffff);
4701 }
4702
4703 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4704 ring = 0;
4705 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4706 ring = vnic_id - 1;
4707 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4708 ring = bp->rx_nr_rings - 1;
4709
4710 grp_idx = bp->rx_ring[ring].bnapi->index;
4711 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4712 req.lb_rule = cpu_to_le16(0xffff);
4713 vnic_mru:
4714 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4715 VLAN_HLEN);
4716
4717 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4718 #ifdef CONFIG_BNXT_SRIOV
4719 if (BNXT_VF(bp))
4720 def_vlan = bp->vf.vlan;
4721 #endif
4722 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4723 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4724 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4725 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4726
4727 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4728 }
4729
4730 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4731 {
4732 u32 rc = 0;
4733
4734 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4735 struct hwrm_vnic_free_input req = {0};
4736
4737 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4738 req.vnic_id =
4739 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4740
4741 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4742 if (rc)
4743 return rc;
4744 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4745 }
4746 return rc;
4747 }
4748
4749 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4750 {
4751 u16 i;
4752
4753 for (i = 0; i < bp->nr_vnics; i++)
4754 bnxt_hwrm_vnic_free_one(bp, i);
4755 }
4756
4757 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4758 unsigned int start_rx_ring_idx,
4759 unsigned int nr_rings)
4760 {
4761 int rc = 0;
4762 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4763 struct hwrm_vnic_alloc_input req = {0};
4764 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4765 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4766
4767 if (bp->flags & BNXT_FLAG_CHIP_P5)
4768 goto vnic_no_ring_grps;
4769
4770 /* map ring groups to this vnic */
4771 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4772 grp_idx = bp->rx_ring[i].bnapi->index;
4773 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4774 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4775 j, nr_rings);
4776 break;
4777 }
4778 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
4779 }
4780
4781 vnic_no_ring_grps:
4782 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
4783 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
4784 if (vnic_id == 0)
4785 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4786
4787 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4788
4789 mutex_lock(&bp->hwrm_cmd_lock);
4790 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4791 if (!rc)
4792 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
4793 mutex_unlock(&bp->hwrm_cmd_lock);
4794 return rc;
4795 }
4796
4797 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4798 {
4799 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4800 struct hwrm_vnic_qcaps_input req = {0};
4801 int rc;
4802
4803 if (bp->hwrm_spec_code < 0x10600)
4804 return 0;
4805
4806 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4807 mutex_lock(&bp->hwrm_cmd_lock);
4808 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4809 if (!rc) {
4810 u32 flags = le32_to_cpu(resp->flags);
4811
4812 if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
4813 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4814 bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4815 if (flags &
4816 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4817 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4818 }
4819 mutex_unlock(&bp->hwrm_cmd_lock);
4820 return rc;
4821 }
4822
4823 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4824 {
4825 u16 i;
4826 u32 rc = 0;
4827
4828 if (bp->flags & BNXT_FLAG_CHIP_P5)
4829 return 0;
4830
4831 mutex_lock(&bp->hwrm_cmd_lock);
4832 for (i = 0; i < bp->rx_nr_rings; i++) {
4833 struct hwrm_ring_grp_alloc_input req = {0};
4834 struct hwrm_ring_grp_alloc_output *resp =
4835 bp->hwrm_cmd_resp_addr;
4836 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4837
4838 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4839
4840 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4841 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4842 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4843 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4844
4845 rc = _hwrm_send_message(bp, &req, sizeof(req),
4846 HWRM_CMD_TIMEOUT);
4847 if (rc)
4848 break;
4849
4850 bp->grp_info[grp_idx].fw_grp_id =
4851 le32_to_cpu(resp->ring_group_id);
4852 }
4853 mutex_unlock(&bp->hwrm_cmd_lock);
4854 return rc;
4855 }
4856
4857 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4858 {
4859 u16 i;
4860 u32 rc = 0;
4861 struct hwrm_ring_grp_free_input req = {0};
4862
4863 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
4864 return 0;
4865
4866 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4867
4868 mutex_lock(&bp->hwrm_cmd_lock);
4869 for (i = 0; i < bp->cp_nr_rings; i++) {
4870 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4871 continue;
4872 req.ring_group_id =
4873 cpu_to_le32(bp->grp_info[i].fw_grp_id);
4874
4875 rc = _hwrm_send_message(bp, &req, sizeof(req),
4876 HWRM_CMD_TIMEOUT);
4877 if (rc)
4878 break;
4879 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4880 }
4881 mutex_unlock(&bp->hwrm_cmd_lock);
4882 return rc;
4883 }
4884
4885 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4886 struct bnxt_ring_struct *ring,
4887 u32 ring_type, u32 map_index)
4888 {
4889 int rc = 0, err = 0;
4890 struct hwrm_ring_alloc_input req = {0};
4891 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4892 struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
4893 struct bnxt_ring_grp_info *grp_info;
4894 u16 ring_id;
4895
4896 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4897
4898 req.enables = 0;
4899 if (rmem->nr_pages > 1) {
4900 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
4901 /* Page size is in log2 units */
4902 req.page_size = BNXT_PAGE_SHIFT;
4903 req.page_tbl_depth = 1;
4904 } else {
4905 req.page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]);
4906 }
4907 req.fbo = 0;
4908 /* Association of ring index with doorbell index and MSIX number */
4909 req.logical_id = cpu_to_le16(map_index);
4910
4911 switch (ring_type) {
4912 case HWRM_RING_ALLOC_TX: {
4913 struct bnxt_tx_ring_info *txr;
4914
4915 txr = container_of(ring, struct bnxt_tx_ring_info,
4916 tx_ring_struct);
4917 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4918 /* Association of transmit ring with completion ring */
4919 grp_info = &bp->grp_info[ring->grp_idx];
4920 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
4921 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4922 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4923 req.queue_id = cpu_to_le16(ring->queue_id);
4924 break;
4925 }
4926 case HWRM_RING_ALLOC_RX:
4927 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4928 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4929 if (bp->flags & BNXT_FLAG_CHIP_P5) {
4930 u16 flags = 0;
4931
4932 /* Association of rx ring with stats context */
4933 grp_info = &bp->grp_info[ring->grp_idx];
4934 req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
4935 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4936 req.enables |= cpu_to_le32(
4937 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4938 if (NET_IP_ALIGN == 2)
4939 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
4940 req.flags = cpu_to_le16(flags);
4941 }
4942 break;
4943 case HWRM_RING_ALLOC_AGG:
4944 if (bp->flags & BNXT_FLAG_CHIP_P5) {
4945 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
4946 /* Association of agg ring with rx ring */
4947 grp_info = &bp->grp_info[ring->grp_idx];
4948 req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
4949 req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
4950 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4951 req.enables |= cpu_to_le32(
4952 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
4953 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4954 } else {
4955 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4956 }
4957 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4958 break;
4959 case HWRM_RING_ALLOC_CMPL:
4960 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4961 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4962 if (bp->flags & BNXT_FLAG_CHIP_P5) {
4963 /* Association of cp ring with nq */
4964 grp_info = &bp->grp_info[map_index];
4965 req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4966 req.cq_handle = cpu_to_le64(ring->handle);
4967 req.enables |= cpu_to_le32(
4968 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
4969 } else if (bp->flags & BNXT_FLAG_USING_MSIX) {
4970 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4971 }
4972 break;
4973 case HWRM_RING_ALLOC_NQ:
4974 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
4975 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4976 if (bp->flags & BNXT_FLAG_USING_MSIX)
4977 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4978 break;
4979 default:
4980 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4981 ring_type);
4982 return -1;
4983 }
4984
4985 mutex_lock(&bp->hwrm_cmd_lock);
4986 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4987 err = le16_to_cpu(resp->error_code);
4988 ring_id = le16_to_cpu(resp->ring_id);
4989 mutex_unlock(&bp->hwrm_cmd_lock);
4990
4991 if (rc || err) {
4992 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4993 ring_type, rc, err);
4994 return -EIO;
4995 }
4996 ring->fw_ring_id = ring_id;
4997 return rc;
4998 }
4999
5000 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5001 {
5002 int rc;
5003
5004 if (BNXT_PF(bp)) {
5005 struct hwrm_func_cfg_input req = {0};
5006
5007 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5008 req.fid = cpu_to_le16(0xffff);
5009 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5010 req.async_event_cr = cpu_to_le16(idx);
5011 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5012 } else {
5013 struct hwrm_func_vf_cfg_input req = {0};
5014
5015 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5016 req.enables =
5017 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5018 req.async_event_cr = cpu_to_le16(idx);
5019 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5020 }
5021 return rc;
5022 }
5023
5024 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5025 u32 map_idx, u32 xid)
5026 {
5027 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5028 if (BNXT_PF(bp))
5029 db->doorbell = bp->bar1 + 0x10000;
5030 else
5031 db->doorbell = bp->bar1 + 0x4000;
5032 switch (ring_type) {
5033 case HWRM_RING_ALLOC_TX:
5034 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5035 break;
5036 case HWRM_RING_ALLOC_RX:
5037 case HWRM_RING_ALLOC_AGG:
5038 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5039 break;
5040 case HWRM_RING_ALLOC_CMPL:
5041 db->db_key64 = DBR_PATH_L2;
5042 break;
5043 case HWRM_RING_ALLOC_NQ:
5044 db->db_key64 = DBR_PATH_L2;
5045 break;
5046 }
5047 db->db_key64 |= (u64)xid << DBR_XID_SFT;
5048 } else {
5049 db->doorbell = bp->bar1 + map_idx * 0x80;
5050 switch (ring_type) {
5051 case HWRM_RING_ALLOC_TX:
5052 db->db_key32 = DB_KEY_TX;
5053 break;
5054 case HWRM_RING_ALLOC_RX:
5055 case HWRM_RING_ALLOC_AGG:
5056 db->db_key32 = DB_KEY_RX;
5057 break;
5058 case HWRM_RING_ALLOC_CMPL:
5059 db->db_key32 = DB_KEY_CP;
5060 break;
5061 }
5062 }
5063 }
5064
5065 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5066 {
5067 int i, rc = 0;
5068 u32 type;
5069
5070 if (bp->flags & BNXT_FLAG_CHIP_P5)
5071 type = HWRM_RING_ALLOC_NQ;
5072 else
5073 type = HWRM_RING_ALLOC_CMPL;
5074 for (i = 0; i < bp->cp_nr_rings; i++) {
5075 struct bnxt_napi *bnapi = bp->bnapi[i];
5076 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5077 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5078 u32 map_idx = ring->map_idx;
5079 unsigned int vector;
5080
5081 vector = bp->irq_tbl[map_idx].vector;
5082 disable_irq_nosync(vector);
5083 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5084 if (rc) {
5085 enable_irq(vector);
5086 goto err_out;
5087 }
5088 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5089 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5090 enable_irq(vector);
5091 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5092
5093 if (!i) {
5094 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5095 if (rc)
5096 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5097 }
5098 }
5099
5100 type = HWRM_RING_ALLOC_TX;
5101 for (i = 0; i < bp->tx_nr_rings; i++) {
5102 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5103 struct bnxt_ring_struct *ring;
5104 u32 map_idx;
5105
5106 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5107 struct bnxt_napi *bnapi = txr->bnapi;
5108 struct bnxt_cp_ring_info *cpr, *cpr2;
5109 u32 type2 = HWRM_RING_ALLOC_CMPL;
5110
5111 cpr = &bnapi->cp_ring;
5112 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5113 ring = &cpr2->cp_ring_struct;
5114 ring->handle = BNXT_TX_HDL;
5115 map_idx = bnapi->index;
5116 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5117 if (rc)
5118 goto err_out;
5119 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5120 ring->fw_ring_id);
5121 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5122 }
5123 ring = &txr->tx_ring_struct;
5124 map_idx = i;
5125 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5126 if (rc)
5127 goto err_out;
5128 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5129 }
5130
5131 type = HWRM_RING_ALLOC_RX;
5132 for (i = 0; i < bp->rx_nr_rings; i++) {
5133 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5134 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5135 struct bnxt_napi *bnapi = rxr->bnapi;
5136 u32 map_idx = bnapi->index;
5137
5138 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5139 if (rc)
5140 goto err_out;
5141 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5142 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5143 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5144 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5145 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5146 u32 type2 = HWRM_RING_ALLOC_CMPL;
5147 struct bnxt_cp_ring_info *cpr2;
5148
5149 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5150 ring = &cpr2->cp_ring_struct;
5151 ring->handle = BNXT_RX_HDL;
5152 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5153 if (rc)
5154 goto err_out;
5155 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5156 ring->fw_ring_id);
5157 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5158 }
5159 }
5160
5161 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5162 type = HWRM_RING_ALLOC_AGG;
5163 for (i = 0; i < bp->rx_nr_rings; i++) {
5164 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5165 struct bnxt_ring_struct *ring =
5166 &rxr->rx_agg_ring_struct;
5167 u32 grp_idx = ring->grp_idx;
5168 u32 map_idx = grp_idx + bp->rx_nr_rings;
5169
5170 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5171 if (rc)
5172 goto err_out;
5173
5174 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5175 ring->fw_ring_id);
5176 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5177 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5178 }
5179 }
5180 err_out:
5181 return rc;
5182 }
5183
5184 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5185 struct bnxt_ring_struct *ring,
5186 u32 ring_type, int cmpl_ring_id)
5187 {
5188 int rc;
5189 struct hwrm_ring_free_input req = {0};
5190 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5191 u16 error_code;
5192
5193 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5194 req.ring_type = ring_type;
5195 req.ring_id = cpu_to_le16(ring->fw_ring_id);
5196
5197 mutex_lock(&bp->hwrm_cmd_lock);
5198 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5199 error_code = le16_to_cpu(resp->error_code);
5200 mutex_unlock(&bp->hwrm_cmd_lock);
5201
5202 if (rc || error_code) {
5203 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5204 ring_type, rc, error_code);
5205 return -EIO;
5206 }
5207 return 0;
5208 }
5209
5210 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5211 {
5212 u32 type;
5213 int i;
5214
5215 if (!bp->bnapi)
5216 return;
5217
5218 for (i = 0; i < bp->tx_nr_rings; i++) {
5219 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5220 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5221
5222 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5223 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5224
5225 hwrm_ring_free_send_msg(bp, ring,
5226 RING_FREE_REQ_RING_TYPE_TX,
5227 close_path ? cmpl_ring_id :
5228 INVALID_HW_RING_ID);
5229 ring->fw_ring_id = INVALID_HW_RING_ID;
5230 }
5231 }
5232
5233 for (i = 0; i < bp->rx_nr_rings; i++) {
5234 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5235 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5236 u32 grp_idx = rxr->bnapi->index;
5237
5238 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5239 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5240
5241 hwrm_ring_free_send_msg(bp, ring,
5242 RING_FREE_REQ_RING_TYPE_RX,
5243 close_path ? cmpl_ring_id :
5244 INVALID_HW_RING_ID);
5245 ring->fw_ring_id = INVALID_HW_RING_ID;
5246 bp->grp_info[grp_idx].rx_fw_ring_id =
5247 INVALID_HW_RING_ID;
5248 }
5249 }
5250
5251 if (bp->flags & BNXT_FLAG_CHIP_P5)
5252 type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5253 else
5254 type = RING_FREE_REQ_RING_TYPE_RX;
5255 for (i = 0; i < bp->rx_nr_rings; i++) {
5256 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5257 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5258 u32 grp_idx = rxr->bnapi->index;
5259
5260 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5261 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5262
5263 hwrm_ring_free_send_msg(bp, ring, type,
5264 close_path ? cmpl_ring_id :
5265 INVALID_HW_RING_ID);
5266 ring->fw_ring_id = INVALID_HW_RING_ID;
5267 bp->grp_info[grp_idx].agg_fw_ring_id =
5268 INVALID_HW_RING_ID;
5269 }
5270 }
5271
5272 /* The completion rings are about to be freed. After that the
5273 * IRQ doorbell will not work anymore. So we need to disable
5274 * IRQ here.
5275 */
5276 bnxt_disable_int_sync(bp);
5277
5278 if (bp->flags & BNXT_FLAG_CHIP_P5)
5279 type = RING_FREE_REQ_RING_TYPE_NQ;
5280 else
5281 type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5282 for (i = 0; i < bp->cp_nr_rings; i++) {
5283 struct bnxt_napi *bnapi = bp->bnapi[i];
5284 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5285 struct bnxt_ring_struct *ring;
5286 int j;
5287
5288 for (j = 0; j < 2; j++) {
5289 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5290
5291 if (cpr2) {
5292 ring = &cpr2->cp_ring_struct;
5293 if (ring->fw_ring_id == INVALID_HW_RING_ID)
5294 continue;
5295 hwrm_ring_free_send_msg(bp, ring,
5296 RING_FREE_REQ_RING_TYPE_L2_CMPL,
5297 INVALID_HW_RING_ID);
5298 ring->fw_ring_id = INVALID_HW_RING_ID;
5299 }
5300 }
5301 ring = &cpr->cp_ring_struct;
5302 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5303 hwrm_ring_free_send_msg(bp, ring, type,
5304 INVALID_HW_RING_ID);
5305 ring->fw_ring_id = INVALID_HW_RING_ID;
5306 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5307 }
5308 }
5309 }
5310
5311 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5312 bool shared);
5313
5314 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5315 {
5316 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5317 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5318 struct hwrm_func_qcfg_input req = {0};
5319 int rc;
5320
5321 if (bp->hwrm_spec_code < 0x10601)
5322 return 0;
5323
5324 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5325 req.fid = cpu_to_le16(0xffff);
5326 mutex_lock(&bp->hwrm_cmd_lock);
5327 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5328 if (rc) {
5329 mutex_unlock(&bp->hwrm_cmd_lock);
5330 return -EIO;
5331 }
5332
5333 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5334 if (BNXT_NEW_RM(bp)) {
5335 u16 cp, stats;
5336
5337 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5338 hw_resc->resv_hw_ring_grps =
5339 le32_to_cpu(resp->alloc_hw_ring_grps);
5340 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5341 cp = le16_to_cpu(resp->alloc_cmpl_rings);
5342 stats = le16_to_cpu(resp->alloc_stat_ctx);
5343 hw_resc->resv_irqs = cp;
5344 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5345 int rx = hw_resc->resv_rx_rings;
5346 int tx = hw_resc->resv_tx_rings;
5347
5348 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5349 rx >>= 1;
5350 if (cp < (rx + tx)) {
5351 bnxt_trim_rings(bp, &rx, &tx, cp, false);
5352 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5353 rx <<= 1;
5354 hw_resc->resv_rx_rings = rx;
5355 hw_resc->resv_tx_rings = tx;
5356 }
5357 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5358 hw_resc->resv_hw_ring_grps = rx;
5359 }
5360 hw_resc->resv_cp_rings = cp;
5361 hw_resc->resv_stat_ctxs = stats;
5362 }
5363 mutex_unlock(&bp->hwrm_cmd_lock);
5364 return 0;
5365 }
5366
5367 /* Caller must hold bp->hwrm_cmd_lock */
5368 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5369 {
5370 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5371 struct hwrm_func_qcfg_input req = {0};
5372 int rc;
5373
5374 if (bp->hwrm_spec_code < 0x10601)
5375 return 0;
5376
5377 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5378 req.fid = cpu_to_le16(fid);
5379 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5380 if (!rc)
5381 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5382
5383 return rc;
5384 }
5385
5386 static bool bnxt_rfs_supported(struct bnxt *bp);
5387
5388 static void
5389 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5390 int tx_rings, int rx_rings, int ring_grps,
5391 int cp_rings, int stats, int vnics)
5392 {
5393 u32 enables = 0;
5394
5395 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5396 req->fid = cpu_to_le16(0xffff);
5397 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5398 req->num_tx_rings = cpu_to_le16(tx_rings);
5399 if (BNXT_NEW_RM(bp)) {
5400 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5401 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5402 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5403 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5404 enables |= tx_rings + ring_grps ?
5405 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5406 enables |= rx_rings ?
5407 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5408 } else {
5409 enables |= cp_rings ?
5410 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5411 enables |= ring_grps ?
5412 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5413 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5414 }
5415 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5416
5417 req->num_rx_rings = cpu_to_le16(rx_rings);
5418 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5419 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5420 req->num_msix = cpu_to_le16(cp_rings);
5421 req->num_rsscos_ctxs =
5422 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5423 } else {
5424 req->num_cmpl_rings = cpu_to_le16(cp_rings);
5425 req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5426 req->num_rsscos_ctxs = cpu_to_le16(1);
5427 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5428 bnxt_rfs_supported(bp))
5429 req->num_rsscos_ctxs =
5430 cpu_to_le16(ring_grps + 1);
5431 }
5432 req->num_stat_ctxs = cpu_to_le16(stats);
5433 req->num_vnics = cpu_to_le16(vnics);
5434 }
5435 req->enables = cpu_to_le32(enables);
5436 }
5437
5438 static void
5439 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5440 struct hwrm_func_vf_cfg_input *req, int tx_rings,
5441 int rx_rings, int ring_grps, int cp_rings,
5442 int stats, int vnics)
5443 {
5444 u32 enables = 0;
5445
5446 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5447 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5448 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5449 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5450 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5451 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5452 enables |= tx_rings + ring_grps ?
5453 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5454 } else {
5455 enables |= cp_rings ?
5456 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5457 enables |= ring_grps ?
5458 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5459 }
5460 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5461 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5462
5463 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5464 req->num_tx_rings = cpu_to_le16(tx_rings);
5465 req->num_rx_rings = cpu_to_le16(rx_rings);
5466 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5467 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5468 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5469 } else {
5470 req->num_cmpl_rings = cpu_to_le16(cp_rings);
5471 req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5472 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5473 }
5474 req->num_stat_ctxs = cpu_to_le16(stats);
5475 req->num_vnics = cpu_to_le16(vnics);
5476
5477 req->enables = cpu_to_le32(enables);
5478 }
5479
5480 static int
5481 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5482 int ring_grps, int cp_rings, int stats, int vnics)
5483 {
5484 struct hwrm_func_cfg_input req = {0};
5485 int rc;
5486
5487 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5488 cp_rings, stats, vnics);
5489 if (!req.enables)
5490 return 0;
5491
5492 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5493 if (rc)
5494 return -ENOMEM;
5495
5496 if (bp->hwrm_spec_code < 0x10601)
5497 bp->hw_resc.resv_tx_rings = tx_rings;
5498
5499 rc = bnxt_hwrm_get_rings(bp);
5500 return rc;
5501 }
5502
5503 static int
5504 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5505 int ring_grps, int cp_rings, int stats, int vnics)
5506 {
5507 struct hwrm_func_vf_cfg_input req = {0};
5508 int rc;
5509
5510 if (!BNXT_NEW_RM(bp)) {
5511 bp->hw_resc.resv_tx_rings = tx_rings;
5512 return 0;
5513 }
5514
5515 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5516 cp_rings, stats, vnics);
5517 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5518 if (rc)
5519 return -ENOMEM;
5520
5521 rc = bnxt_hwrm_get_rings(bp);
5522 return rc;
5523 }
5524
5525 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5526 int cp, int stat, int vnic)
5527 {
5528 if (BNXT_PF(bp))
5529 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5530 vnic);
5531 else
5532 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5533 vnic);
5534 }
5535
5536 int bnxt_nq_rings_in_use(struct bnxt *bp)
5537 {
5538 int cp = bp->cp_nr_rings;
5539 int ulp_msix, ulp_base;
5540
5541 ulp_msix = bnxt_get_ulp_msix_num(bp);
5542 if (ulp_msix) {
5543 ulp_base = bnxt_get_ulp_msix_base(bp);
5544 cp += ulp_msix;
5545 if ((ulp_base + ulp_msix) > cp)
5546 cp = ulp_base + ulp_msix;
5547 }
5548 return cp;
5549 }
5550
5551 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5552 {
5553 int cp;
5554
5555 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5556 return bnxt_nq_rings_in_use(bp);
5557
5558 cp = bp->tx_nr_rings + bp->rx_nr_rings;
5559 return cp;
5560 }
5561
5562 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5563 {
5564 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
5565 int cp = bp->cp_nr_rings;
5566
5567 if (!ulp_stat)
5568 return cp;
5569
5570 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
5571 return bnxt_get_ulp_msix_base(bp) + ulp_stat;
5572
5573 return cp + ulp_stat;
5574 }
5575
5576 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5577 {
5578 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5579 int cp = bnxt_cp_rings_in_use(bp);
5580 int nq = bnxt_nq_rings_in_use(bp);
5581 int rx = bp->rx_nr_rings, stat;
5582 int vnic = 1, grp = rx;
5583
5584 if (bp->hwrm_spec_code < 0x10601)
5585 return false;
5586
5587 if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5588 return true;
5589
5590 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5591 vnic = rx + 1;
5592 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5593 rx <<= 1;
5594 stat = bnxt_get_func_stat_ctxs(bp);
5595 if (BNXT_NEW_RM(bp) &&
5596 (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5597 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
5598 (hw_resc->resv_hw_ring_grps != grp &&
5599 !(bp->flags & BNXT_FLAG_CHIP_P5))))
5600 return true;
5601 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
5602 hw_resc->resv_irqs != nq)
5603 return true;
5604 return false;
5605 }
5606
5607 static int __bnxt_reserve_rings(struct bnxt *bp)
5608 {
5609 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5610 int cp = bnxt_nq_rings_in_use(bp);
5611 int tx = bp->tx_nr_rings;
5612 int rx = bp->rx_nr_rings;
5613 int grp, rx_rings, rc;
5614 int vnic = 1, stat;
5615 bool sh = false;
5616
5617 if (!bnxt_need_reserve_rings(bp))
5618 return 0;
5619
5620 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5621 sh = true;
5622 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5623 vnic = rx + 1;
5624 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5625 rx <<= 1;
5626 grp = bp->rx_nr_rings;
5627 stat = bnxt_get_func_stat_ctxs(bp);
5628
5629 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5630 if (rc)
5631 return rc;
5632
5633 tx = hw_resc->resv_tx_rings;
5634 if (BNXT_NEW_RM(bp)) {
5635 rx = hw_resc->resv_rx_rings;
5636 cp = hw_resc->resv_irqs;
5637 grp = hw_resc->resv_hw_ring_grps;
5638 vnic = hw_resc->resv_vnics;
5639 stat = hw_resc->resv_stat_ctxs;
5640 }
5641
5642 rx_rings = rx;
5643 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5644 if (rx >= 2) {
5645 rx_rings = rx >> 1;
5646 } else {
5647 if (netif_running(bp->dev))
5648 return -ENOMEM;
5649
5650 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5651 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5652 bp->dev->hw_features &= ~NETIF_F_LRO;
5653 bp->dev->features &= ~NETIF_F_LRO;
5654 bnxt_set_ring_params(bp);
5655 }
5656 }
5657 rx_rings = min_t(int, rx_rings, grp);
5658 cp = min_t(int, cp, bp->cp_nr_rings);
5659 if (stat > bnxt_get_ulp_stat_ctxs(bp))
5660 stat -= bnxt_get_ulp_stat_ctxs(bp);
5661 cp = min_t(int, cp, stat);
5662 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5663 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5664 rx = rx_rings << 1;
5665 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
5666 bp->tx_nr_rings = tx;
5667 bp->rx_nr_rings = rx_rings;
5668 bp->cp_nr_rings = cp;
5669
5670 if (!tx || !rx || !cp || !grp || !vnic || !stat)
5671 return -ENOMEM;
5672
5673 return rc;
5674 }
5675
5676 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5677 int ring_grps, int cp_rings, int stats,
5678 int vnics)
5679 {
5680 struct hwrm_func_vf_cfg_input req = {0};
5681 u32 flags;
5682 int rc;
5683
5684 if (!BNXT_NEW_RM(bp))
5685 return 0;
5686
5687 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5688 cp_rings, stats, vnics);
5689 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
5690 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5691 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5692 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5693 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
5694 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
5695 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5696 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5697
5698 req.flags = cpu_to_le32(flags);
5699 rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5700 if (rc)
5701 return -ENOMEM;
5702 return 0;
5703 }
5704
5705 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5706 int ring_grps, int cp_rings, int stats,
5707 int vnics)
5708 {
5709 struct hwrm_func_cfg_input req = {0};
5710 u32 flags;
5711 int rc;
5712
5713 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5714 cp_rings, stats, vnics);
5715 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
5716 if (BNXT_NEW_RM(bp)) {
5717 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5718 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5719 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5720 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
5721 if (bp->flags & BNXT_FLAG_CHIP_P5)
5722 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
5723 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
5724 else
5725 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5726 }
5727
5728 req.flags = cpu_to_le32(flags);
5729 rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5730 if (rc)
5731 return -ENOMEM;
5732 return 0;
5733 }
5734
5735 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5736 int ring_grps, int cp_rings, int stats,
5737 int vnics)
5738 {
5739 if (bp->hwrm_spec_code < 0x10801)
5740 return 0;
5741
5742 if (BNXT_PF(bp))
5743 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
5744 ring_grps, cp_rings, stats,
5745 vnics);
5746
5747 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
5748 cp_rings, stats, vnics);
5749 }
5750
5751 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
5752 {
5753 struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5754 struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5755 struct hwrm_ring_aggint_qcaps_input req = {0};
5756 int rc;
5757
5758 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
5759 coal_cap->num_cmpl_dma_aggr_max = 63;
5760 coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
5761 coal_cap->cmpl_aggr_dma_tmr_max = 65535;
5762 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
5763 coal_cap->int_lat_tmr_min_max = 65535;
5764 coal_cap->int_lat_tmr_max_max = 65535;
5765 coal_cap->num_cmpl_aggr_int_max = 65535;
5766 coal_cap->timer_units = 80;
5767
5768 if (bp->hwrm_spec_code < 0x10902)
5769 return;
5770
5771 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
5772 mutex_lock(&bp->hwrm_cmd_lock);
5773 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5774 if (!rc) {
5775 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
5776 coal_cap->nq_params = le32_to_cpu(resp->nq_params);
5777 coal_cap->num_cmpl_dma_aggr_max =
5778 le16_to_cpu(resp->num_cmpl_dma_aggr_max);
5779 coal_cap->num_cmpl_dma_aggr_during_int_max =
5780 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
5781 coal_cap->cmpl_aggr_dma_tmr_max =
5782 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
5783 coal_cap->cmpl_aggr_dma_tmr_during_int_max =
5784 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
5785 coal_cap->int_lat_tmr_min_max =
5786 le16_to_cpu(resp->int_lat_tmr_min_max);
5787 coal_cap->int_lat_tmr_max_max =
5788 le16_to_cpu(resp->int_lat_tmr_max_max);
5789 coal_cap->num_cmpl_aggr_int_max =
5790 le16_to_cpu(resp->num_cmpl_aggr_int_max);
5791 coal_cap->timer_units = le16_to_cpu(resp->timer_units);
5792 }
5793 mutex_unlock(&bp->hwrm_cmd_lock);
5794 }
5795
5796 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
5797 {
5798 struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5799
5800 return usec * 1000 / coal_cap->timer_units;
5801 }
5802
5803 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
5804 struct bnxt_coal *hw_coal,
5805 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
5806 {
5807 struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5808 u32 cmpl_params = coal_cap->cmpl_params;
5809 u16 val, tmr, max, flags = 0;
5810
5811 max = hw_coal->bufs_per_record * 128;
5812 if (hw_coal->budget)
5813 max = hw_coal->bufs_per_record * hw_coal->budget;
5814 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
5815
5816 val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
5817 req->num_cmpl_aggr_int = cpu_to_le16(val);
5818
5819 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
5820 req->num_cmpl_dma_aggr = cpu_to_le16(val);
5821
5822 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
5823 coal_cap->num_cmpl_dma_aggr_during_int_max);
5824 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
5825
5826 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
5827 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
5828 req->int_lat_tmr_max = cpu_to_le16(tmr);
5829
5830 /* min timer set to 1/2 of interrupt timer */
5831 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
5832 val = tmr / 2;
5833 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
5834 req->int_lat_tmr_min = cpu_to_le16(val);
5835 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5836 }
5837
5838 /* buf timer set to 1/4 of interrupt timer */
5839 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
5840 req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
5841
5842 if (cmpl_params &
5843 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
5844 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
5845 val = clamp_t(u16, tmr, 1,
5846 coal_cap->cmpl_aggr_dma_tmr_during_int_max);
5847 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
5848 req->enables |=
5849 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
5850 }
5851
5852 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
5853 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
5854 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
5855 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
5856 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
5857 req->flags = cpu_to_le16(flags);
5858 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
5859 }
5860
5861 /* Caller holds bp->hwrm_cmd_lock */
5862 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
5863 struct bnxt_coal *hw_coal)
5864 {
5865 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
5866 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5867 struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5868 u32 nq_params = coal_cap->nq_params;
5869 u16 tmr;
5870
5871 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
5872 return 0;
5873
5874 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
5875 -1, -1);
5876 req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
5877 req.flags =
5878 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
5879
5880 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
5881 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
5882 req.int_lat_tmr_min = cpu_to_le16(tmr);
5883 req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5884 return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5885 }
5886
5887 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
5888 {
5889 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
5890 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5891 struct bnxt_coal coal;
5892
5893 /* Tick values in micro seconds.
5894 * 1 coal_buf x bufs_per_record = 1 completion record.
5895 */
5896 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
5897
5898 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
5899 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
5900
5901 if (!bnapi->rx_ring)
5902 return -ENODEV;
5903
5904 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5905 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5906
5907 bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
5908
5909 req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
5910
5911 return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
5912 HWRM_CMD_TIMEOUT);
5913 }
5914
5915 int bnxt_hwrm_set_coal(struct bnxt *bp)
5916 {
5917 int i, rc = 0;
5918 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
5919 req_tx = {0}, *req;
5920
5921 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5922 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5923 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
5924 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5925
5926 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
5927 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
5928
5929 mutex_lock(&bp->hwrm_cmd_lock);
5930 for (i = 0; i < bp->cp_nr_rings; i++) {
5931 struct bnxt_napi *bnapi = bp->bnapi[i];
5932 struct bnxt_coal *hw_coal;
5933 u16 ring_id;
5934
5935 req = &req_rx;
5936 if (!bnapi->rx_ring) {
5937 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5938 req = &req_tx;
5939 } else {
5940 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
5941 }
5942 req->ring_id = cpu_to_le16(ring_id);
5943
5944 rc = _hwrm_send_message(bp, req, sizeof(*req),
5945 HWRM_CMD_TIMEOUT);
5946 if (rc)
5947 break;
5948
5949 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5950 continue;
5951
5952 if (bnapi->rx_ring && bnapi->tx_ring) {
5953 req = &req_tx;
5954 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5955 req->ring_id = cpu_to_le16(ring_id);
5956 rc = _hwrm_send_message(bp, req, sizeof(*req),
5957 HWRM_CMD_TIMEOUT);
5958 if (rc)
5959 break;
5960 }
5961 if (bnapi->rx_ring)
5962 hw_coal = &bp->rx_coal;
5963 else
5964 hw_coal = &bp->tx_coal;
5965 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
5966 }
5967 mutex_unlock(&bp->hwrm_cmd_lock);
5968 return rc;
5969 }
5970
5971 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5972 {
5973 int rc = 0, i;
5974 struct hwrm_stat_ctx_free_input req = {0};
5975
5976 if (!bp->bnapi)
5977 return 0;
5978
5979 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5980 return 0;
5981
5982 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5983
5984 mutex_lock(&bp->hwrm_cmd_lock);
5985 for (i = 0; i < bp->cp_nr_rings; i++) {
5986 struct bnxt_napi *bnapi = bp->bnapi[i];
5987 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5988
5989 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5990 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5991
5992 rc = _hwrm_send_message(bp, &req, sizeof(req),
5993 HWRM_CMD_TIMEOUT);
5994 if (rc)
5995 break;
5996
5997 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5998 }
5999 }
6000 mutex_unlock(&bp->hwrm_cmd_lock);
6001 return rc;
6002 }
6003
6004 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6005 {
6006 int rc = 0, i;
6007 struct hwrm_stat_ctx_alloc_input req = {0};
6008 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6009
6010 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6011 return 0;
6012
6013 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6014
6015 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6016
6017 mutex_lock(&bp->hwrm_cmd_lock);
6018 for (i = 0; i < bp->cp_nr_rings; i++) {
6019 struct bnxt_napi *bnapi = bp->bnapi[i];
6020 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6021
6022 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
6023
6024 rc = _hwrm_send_message(bp, &req, sizeof(req),
6025 HWRM_CMD_TIMEOUT);
6026 if (rc)
6027 break;
6028
6029 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6030
6031 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6032 }
6033 mutex_unlock(&bp->hwrm_cmd_lock);
6034 return rc;
6035 }
6036
6037 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6038 {
6039 struct hwrm_func_qcfg_input req = {0};
6040 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6041 u16 flags;
6042 int rc;
6043
6044 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6045 req.fid = cpu_to_le16(0xffff);
6046 mutex_lock(&bp->hwrm_cmd_lock);
6047 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6048 if (rc)
6049 goto func_qcfg_exit;
6050
6051 #ifdef CONFIG_BNXT_SRIOV
6052 if (BNXT_VF(bp)) {
6053 struct bnxt_vf_info *vf = &bp->vf;
6054
6055 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6056 }
6057 #endif
6058 flags = le16_to_cpu(resp->flags);
6059 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6060 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6061 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6062 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6063 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6064 }
6065 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6066 bp->flags |= BNXT_FLAG_MULTI_HOST;
6067
6068 switch (resp->port_partition_type) {
6069 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6070 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6071 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6072 bp->port_partition_type = resp->port_partition_type;
6073 break;
6074 }
6075 if (bp->hwrm_spec_code < 0x10707 ||
6076 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6077 bp->br_mode = BRIDGE_MODE_VEB;
6078 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6079 bp->br_mode = BRIDGE_MODE_VEPA;
6080 else
6081 bp->br_mode = BRIDGE_MODE_UNDEF;
6082
6083 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6084 if (!bp->max_mtu)
6085 bp->max_mtu = BNXT_MAX_MTU;
6086
6087 func_qcfg_exit:
6088 mutex_unlock(&bp->hwrm_cmd_lock);
6089 return rc;
6090 }
6091
6092 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6093 {
6094 struct hwrm_func_backing_store_qcaps_input req = {0};
6095 struct hwrm_func_backing_store_qcaps_output *resp =
6096 bp->hwrm_cmd_resp_addr;
6097 int rc;
6098
6099 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6100 return 0;
6101
6102 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6103 mutex_lock(&bp->hwrm_cmd_lock);
6104 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6105 if (!rc) {
6106 struct bnxt_ctx_pg_info *ctx_pg;
6107 struct bnxt_ctx_mem_info *ctx;
6108 int i;
6109
6110 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6111 if (!ctx) {
6112 rc = -ENOMEM;
6113 goto ctx_err;
6114 }
6115 ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
6116 if (!ctx_pg) {
6117 kfree(ctx);
6118 rc = -ENOMEM;
6119 goto ctx_err;
6120 }
6121 for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
6122 ctx->tqm_mem[i] = ctx_pg;
6123
6124 bp->ctx = ctx;
6125 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6126 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6127 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6128 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6129 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6130 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6131 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6132 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6133 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6134 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6135 ctx->vnic_max_vnic_entries =
6136 le16_to_cpu(resp->vnic_max_vnic_entries);
6137 ctx->vnic_max_ring_table_entries =
6138 le16_to_cpu(resp->vnic_max_ring_table_entries);
6139 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6140 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6141 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6142 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6143 ctx->tqm_min_entries_per_ring =
6144 le32_to_cpu(resp->tqm_min_entries_per_ring);
6145 ctx->tqm_max_entries_per_ring =
6146 le32_to_cpu(resp->tqm_max_entries_per_ring);
6147 ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6148 if (!ctx->tqm_entries_multiple)
6149 ctx->tqm_entries_multiple = 1;
6150 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6151 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6152 ctx->mrav_num_entries_units =
6153 le16_to_cpu(resp->mrav_num_entries_units);
6154 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6155 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6156 } else {
6157 rc = 0;
6158 }
6159 ctx_err:
6160 mutex_unlock(&bp->hwrm_cmd_lock);
6161 return rc;
6162 }
6163
6164 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6165 __le64 *pg_dir)
6166 {
6167 u8 pg_size = 0;
6168
6169 if (BNXT_PAGE_SHIFT == 13)
6170 pg_size = 1 << 4;
6171 else if (BNXT_PAGE_SIZE == 16)
6172 pg_size = 2 << 4;
6173
6174 *pg_attr = pg_size;
6175 if (rmem->depth >= 1) {
6176 if (rmem->depth == 2)
6177 *pg_attr |= 2;
6178 else
6179 *pg_attr |= 1;
6180 *pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6181 } else {
6182 *pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6183 }
6184 }
6185
6186 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \
6187 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \
6188 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \
6189 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \
6190 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \
6191 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6192
6193 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6194 {
6195 struct hwrm_func_backing_store_cfg_input req = {0};
6196 struct bnxt_ctx_mem_info *ctx = bp->ctx;
6197 struct bnxt_ctx_pg_info *ctx_pg;
6198 __le32 *num_entries;
6199 __le64 *pg_dir;
6200 u32 flags = 0;
6201 u8 *pg_attr;
6202 int i, rc;
6203 u32 ena;
6204
6205 if (!ctx)
6206 return 0;
6207
6208 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6209 req.enables = cpu_to_le32(enables);
6210
6211 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6212 ctx_pg = &ctx->qp_mem;
6213 req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6214 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6215 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6216 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6217 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6218 &req.qpc_pg_size_qpc_lvl,
6219 &req.qpc_page_dir);
6220 }
6221 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6222 ctx_pg = &ctx->srq_mem;
6223 req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6224 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6225 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6226 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6227 &req.srq_pg_size_srq_lvl,
6228 &req.srq_page_dir);
6229 }
6230 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6231 ctx_pg = &ctx->cq_mem;
6232 req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6233 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6234 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6235 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6236 &req.cq_page_dir);
6237 }
6238 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6239 ctx_pg = &ctx->vnic_mem;
6240 req.vnic_num_vnic_entries =
6241 cpu_to_le16(ctx->vnic_max_vnic_entries);
6242 req.vnic_num_ring_table_entries =
6243 cpu_to_le16(ctx->vnic_max_ring_table_entries);
6244 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6245 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6246 &req.vnic_pg_size_vnic_lvl,
6247 &req.vnic_page_dir);
6248 }
6249 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6250 ctx_pg = &ctx->stat_mem;
6251 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6252 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6253 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6254 &req.stat_pg_size_stat_lvl,
6255 &req.stat_page_dir);
6256 }
6257 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6258 ctx_pg = &ctx->mrav_mem;
6259 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6260 if (ctx->mrav_num_entries_units)
6261 flags |=
6262 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6263 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6264 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6265 &req.mrav_pg_size_mrav_lvl,
6266 &req.mrav_page_dir);
6267 }
6268 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6269 ctx_pg = &ctx->tim_mem;
6270 req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6271 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6272 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6273 &req.tim_pg_size_tim_lvl,
6274 &req.tim_page_dir);
6275 }
6276 for (i = 0, num_entries = &req.tqm_sp_num_entries,
6277 pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6278 pg_dir = &req.tqm_sp_page_dir,
6279 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6280 i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6281 if (!(enables & ena))
6282 continue;
6283
6284 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6285 ctx_pg = ctx->tqm_mem[i];
6286 *num_entries = cpu_to_le32(ctx_pg->entries);
6287 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6288 }
6289 req.flags = cpu_to_le32(flags);
6290 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6291 if (rc)
6292 rc = -EIO;
6293 return rc;
6294 }
6295
6296 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6297 struct bnxt_ctx_pg_info *ctx_pg)
6298 {
6299 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6300
6301 rmem->page_size = BNXT_PAGE_SIZE;
6302 rmem->pg_arr = ctx_pg->ctx_pg_arr;
6303 rmem->dma_arr = ctx_pg->ctx_dma_arr;
6304 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6305 if (rmem->depth >= 1)
6306 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6307 return bnxt_alloc_ring(bp, rmem);
6308 }
6309
6310 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6311 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6312 u8 depth)
6313 {
6314 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6315 int rc;
6316
6317 if (!mem_size)
6318 return 0;
6319
6320 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6321 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6322 ctx_pg->nr_pages = 0;
6323 return -EINVAL;
6324 }
6325 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6326 int nr_tbls, i;
6327
6328 rmem->depth = 2;
6329 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6330 GFP_KERNEL);
6331 if (!ctx_pg->ctx_pg_tbl)
6332 return -ENOMEM;
6333 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6334 rmem->nr_pages = nr_tbls;
6335 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6336 if (rc)
6337 return rc;
6338 for (i = 0; i < nr_tbls; i++) {
6339 struct bnxt_ctx_pg_info *pg_tbl;
6340
6341 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6342 if (!pg_tbl)
6343 return -ENOMEM;
6344 ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6345 rmem = &pg_tbl->ring_mem;
6346 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6347 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6348 rmem->depth = 1;
6349 rmem->nr_pages = MAX_CTX_PAGES;
6350 if (i == (nr_tbls - 1)) {
6351 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6352
6353 if (rem)
6354 rmem->nr_pages = rem;
6355 }
6356 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6357 if (rc)
6358 break;
6359 }
6360 } else {
6361 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6362 if (rmem->nr_pages > 1 || depth)
6363 rmem->depth = 1;
6364 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6365 }
6366 return rc;
6367 }
6368
6369 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6370 struct bnxt_ctx_pg_info *ctx_pg)
6371 {
6372 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6373
6374 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6375 ctx_pg->ctx_pg_tbl) {
6376 int i, nr_tbls = rmem->nr_pages;
6377
6378 for (i = 0; i < nr_tbls; i++) {
6379 struct bnxt_ctx_pg_info *pg_tbl;
6380 struct bnxt_ring_mem_info *rmem2;
6381
6382 pg_tbl = ctx_pg->ctx_pg_tbl[i];
6383 if (!pg_tbl)
6384 continue;
6385 rmem2 = &pg_tbl->ring_mem;
6386 bnxt_free_ring(bp, rmem2);
6387 ctx_pg->ctx_pg_arr[i] = NULL;
6388 kfree(pg_tbl);
6389 ctx_pg->ctx_pg_tbl[i] = NULL;
6390 }
6391 kfree(ctx_pg->ctx_pg_tbl);
6392 ctx_pg->ctx_pg_tbl = NULL;
6393 }
6394 bnxt_free_ring(bp, rmem);
6395 ctx_pg->nr_pages = 0;
6396 }
6397
6398 static void bnxt_free_ctx_mem(struct bnxt *bp)
6399 {
6400 struct bnxt_ctx_mem_info *ctx = bp->ctx;
6401 int i;
6402
6403 if (!ctx)
6404 return;
6405
6406 if (ctx->tqm_mem[0]) {
6407 for (i = 0; i < bp->max_q + 1; i++)
6408 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6409 kfree(ctx->tqm_mem[0]);
6410 ctx->tqm_mem[0] = NULL;
6411 }
6412
6413 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6414 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6415 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6416 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6417 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6418 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6419 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6420 ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6421 }
6422
6423 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6424 {
6425 struct bnxt_ctx_pg_info *ctx_pg;
6426 struct bnxt_ctx_mem_info *ctx;
6427 u32 mem_size, ena, entries;
6428 u32 num_mr, num_ah;
6429 u32 extra_srqs = 0;
6430 u32 extra_qps = 0;
6431 u8 pg_lvl = 1;
6432 int i, rc;
6433
6434 rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6435 if (rc) {
6436 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6437 rc);
6438 return rc;
6439 }
6440 ctx = bp->ctx;
6441 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6442 return 0;
6443
6444 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
6445 pg_lvl = 2;
6446 extra_qps = 65536;
6447 extra_srqs = 8192;
6448 }
6449
6450 ctx_pg = &ctx->qp_mem;
6451 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6452 extra_qps;
6453 mem_size = ctx->qp_entry_size * ctx_pg->entries;
6454 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6455 if (rc)
6456 return rc;
6457
6458 ctx_pg = &ctx->srq_mem;
6459 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6460 mem_size = ctx->srq_entry_size * ctx_pg->entries;
6461 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6462 if (rc)
6463 return rc;
6464
6465 ctx_pg = &ctx->cq_mem;
6466 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6467 mem_size = ctx->cq_entry_size * ctx_pg->entries;
6468 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6469 if (rc)
6470 return rc;
6471
6472 ctx_pg = &ctx->vnic_mem;
6473 ctx_pg->entries = ctx->vnic_max_vnic_entries +
6474 ctx->vnic_max_ring_table_entries;
6475 mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6476 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6477 if (rc)
6478 return rc;
6479
6480 ctx_pg = &ctx->stat_mem;
6481 ctx_pg->entries = ctx->stat_max_entries;
6482 mem_size = ctx->stat_entry_size * ctx_pg->entries;
6483 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6484 if (rc)
6485 return rc;
6486
6487 ena = 0;
6488 if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6489 goto skip_rdma;
6490
6491 ctx_pg = &ctx->mrav_mem;
6492 /* 128K extra is needed to accommodate static AH context
6493 * allocation by f/w.
6494 */
6495 num_mr = 1024 * 256;
6496 num_ah = 1024 * 128;
6497 ctx_pg->entries = num_mr + num_ah;
6498 mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6499 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2);
6500 if (rc)
6501 return rc;
6502 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6503 if (ctx->mrav_num_entries_units)
6504 ctx_pg->entries =
6505 ((num_mr / ctx->mrav_num_entries_units) << 16) |
6506 (num_ah / ctx->mrav_num_entries_units);
6507
6508 ctx_pg = &ctx->tim_mem;
6509 ctx_pg->entries = ctx->qp_mem.entries;
6510 mem_size = ctx->tim_entry_size * ctx_pg->entries;
6511 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6512 if (rc)
6513 return rc;
6514 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6515
6516 skip_rdma:
6517 entries = ctx->qp_max_l2_entries + extra_qps;
6518 entries = roundup(entries, ctx->tqm_entries_multiple);
6519 entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
6520 ctx->tqm_max_entries_per_ring);
6521 for (i = 0; i < bp->max_q + 1; i++) {
6522 ctx_pg = ctx->tqm_mem[i];
6523 ctx_pg->entries = entries;
6524 mem_size = ctx->tqm_entry_size * entries;
6525 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6526 if (rc)
6527 return rc;
6528 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6529 }
6530 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6531 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6532 if (rc)
6533 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6534 rc);
6535 else
6536 ctx->flags |= BNXT_CTX_FLAG_INITED;
6537
6538 return 0;
6539 }
6540
6541 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6542 {
6543 struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6544 struct hwrm_func_resource_qcaps_input req = {0};
6545 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6546 int rc;
6547
6548 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6549 req.fid = cpu_to_le16(0xffff);
6550
6551 mutex_lock(&bp->hwrm_cmd_lock);
6552 rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6553 HWRM_CMD_TIMEOUT);
6554 if (rc) {
6555 rc = -EIO;
6556 goto hwrm_func_resc_qcaps_exit;
6557 }
6558
6559 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6560 if (!all)
6561 goto hwrm_func_resc_qcaps_exit;
6562
6563 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6564 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6565 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6566 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6567 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6568 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6569 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6570 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6571 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6572 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6573 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6574 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6575 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6576 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6577 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6578 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6579
6580 if (bp->flags & BNXT_FLAG_CHIP_P5) {
6581 u16 max_msix = le16_to_cpu(resp->max_msix);
6582
6583 hw_resc->max_nqs = max_msix;
6584 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6585 }
6586
6587 if (BNXT_PF(bp)) {
6588 struct bnxt_pf_info *pf = &bp->pf;
6589
6590 pf->vf_resv_strategy =
6591 le16_to_cpu(resp->vf_reservation_strategy);
6592 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6593 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6594 }
6595 hwrm_func_resc_qcaps_exit:
6596 mutex_unlock(&bp->hwrm_cmd_lock);
6597 return rc;
6598 }
6599
6600 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6601 {
6602 int rc = 0;
6603 struct hwrm_func_qcaps_input req = {0};
6604 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6605 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6606 u32 flags;
6607
6608 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6609 req.fid = cpu_to_le16(0xffff);
6610
6611 mutex_lock(&bp->hwrm_cmd_lock);
6612 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6613 if (rc)
6614 goto hwrm_func_qcaps_exit;
6615
6616 flags = le32_to_cpu(resp->flags);
6617 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6618 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6619 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6620 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6621 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
6622 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
6623 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
6624 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
6625
6626 bp->tx_push_thresh = 0;
6627 if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
6628 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6629
6630 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6631 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6632 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6633 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6634 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
6635 if (!hw_resc->max_hw_ring_grps)
6636 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
6637 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6638 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6639 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6640
6641 if (BNXT_PF(bp)) {
6642 struct bnxt_pf_info *pf = &bp->pf;
6643
6644 pf->fw_fid = le16_to_cpu(resp->fid);
6645 pf->port_id = le16_to_cpu(resp->port_id);
6646 bp->dev->dev_port = pf->port_id;
6647 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
6648 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
6649 pf->max_vfs = le16_to_cpu(resp->max_vfs);
6650 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
6651 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
6652 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
6653 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
6654 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
6655 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
6656 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
6657 bp->flags |= BNXT_FLAG_WOL_CAP;
6658 } else {
6659 #ifdef CONFIG_BNXT_SRIOV
6660 struct bnxt_vf_info *vf = &bp->vf;
6661
6662 vf->fw_fid = le16_to_cpu(resp->fid);
6663 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
6664 #endif
6665 }
6666
6667 hwrm_func_qcaps_exit:
6668 mutex_unlock(&bp->hwrm_cmd_lock);
6669 return rc;
6670 }
6671
6672 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
6673
6674 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
6675 {
6676 int rc;
6677
6678 rc = __bnxt_hwrm_func_qcaps(bp);
6679 if (rc)
6680 return rc;
6681 rc = bnxt_hwrm_queue_qportcfg(bp);
6682 if (rc) {
6683 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
6684 return rc;
6685 }
6686 if (bp->hwrm_spec_code >= 0x10803) {
6687 rc = bnxt_alloc_ctx_mem(bp);
6688 if (rc)
6689 return rc;
6690 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
6691 if (!rc)
6692 bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
6693 }
6694 return 0;
6695 }
6696
6697 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
6698 {
6699 struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
6700 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
6701 int rc = 0;
6702 u32 flags;
6703
6704 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
6705 return 0;
6706
6707 resp = bp->hwrm_cmd_resp_addr;
6708 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
6709
6710 mutex_lock(&bp->hwrm_cmd_lock);
6711 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6712 if (rc)
6713 goto hwrm_cfa_adv_qcaps_exit;
6714
6715 flags = le32_to_cpu(resp->flags);
6716 if (flags &
6717 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_SUPPORTED)
6718 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX;
6719
6720 hwrm_cfa_adv_qcaps_exit:
6721 mutex_unlock(&bp->hwrm_cmd_lock);
6722 return rc;
6723 }
6724
6725 static int bnxt_hwrm_func_reset(struct bnxt *bp)
6726 {
6727 struct hwrm_func_reset_input req = {0};
6728
6729 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
6730 req.enables = 0;
6731
6732 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
6733 }
6734
6735 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
6736 {
6737 int rc = 0;
6738 struct hwrm_queue_qportcfg_input req = {0};
6739 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
6740 u8 i, j, *qptr;
6741 bool no_rdma;
6742
6743 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
6744
6745 mutex_lock(&bp->hwrm_cmd_lock);
6746 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6747 if (rc)
6748 goto qportcfg_exit;
6749
6750 if (!resp->max_configurable_queues) {
6751 rc = -EINVAL;
6752 goto qportcfg_exit;
6753 }
6754 bp->max_tc = resp->max_configurable_queues;
6755 bp->max_lltc = resp->max_configurable_lossless_queues;
6756 if (bp->max_tc > BNXT_MAX_QUEUE)
6757 bp->max_tc = BNXT_MAX_QUEUE;
6758
6759 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
6760 qptr = &resp->queue_id0;
6761 for (i = 0, j = 0; i < bp->max_tc; i++) {
6762 bp->q_info[j].queue_id = *qptr;
6763 bp->q_ids[i] = *qptr++;
6764 bp->q_info[j].queue_profile = *qptr++;
6765 bp->tc_to_qidx[j] = j;
6766 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
6767 (no_rdma && BNXT_PF(bp)))
6768 j++;
6769 }
6770 bp->max_q = bp->max_tc;
6771 bp->max_tc = max_t(u8, j, 1);
6772
6773 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
6774 bp->max_tc = 1;
6775
6776 if (bp->max_lltc > bp->max_tc)
6777 bp->max_lltc = bp->max_tc;
6778
6779 qportcfg_exit:
6780 mutex_unlock(&bp->hwrm_cmd_lock);
6781 return rc;
6782 }
6783
6784 static int bnxt_hwrm_ver_get(struct bnxt *bp)
6785 {
6786 int rc;
6787 struct hwrm_ver_get_input req = {0};
6788 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
6789 u32 dev_caps_cfg;
6790
6791 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
6792 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
6793 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
6794 req.hwrm_intf_min = HWRM_VERSION_MINOR;
6795 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
6796 mutex_lock(&bp->hwrm_cmd_lock);
6797 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6798 if (rc)
6799 goto hwrm_ver_get_exit;
6800
6801 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
6802
6803 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
6804 resp->hwrm_intf_min_8b << 8 |
6805 resp->hwrm_intf_upd_8b;
6806 if (resp->hwrm_intf_maj_8b < 1) {
6807 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
6808 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
6809 resp->hwrm_intf_upd_8b);
6810 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
6811 }
6812 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
6813 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
6814 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
6815
6816 if (strlen(resp->active_pkg_name)) {
6817 int fw_ver_len = strlen(bp->fw_ver_str);
6818
6819 snprintf(bp->fw_ver_str + fw_ver_len,
6820 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
6821 resp->active_pkg_name);
6822 bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
6823 }
6824
6825 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
6826 if (!bp->hwrm_cmd_timeout)
6827 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
6828
6829 if (resp->hwrm_intf_maj_8b >= 1) {
6830 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
6831 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
6832 }
6833 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
6834 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
6835
6836 bp->chip_num = le16_to_cpu(resp->chip_num);
6837 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
6838 !resp->chip_metal)
6839 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
6840
6841 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
6842 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
6843 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
6844 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
6845
6846 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
6847 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
6848
6849 if (dev_caps_cfg &
6850 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
6851 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
6852
6853 if (dev_caps_cfg &
6854 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
6855 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
6856
6857 if (dev_caps_cfg &
6858 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
6859 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
6860
6861 hwrm_ver_get_exit:
6862 mutex_unlock(&bp->hwrm_cmd_lock);
6863 return rc;
6864 }
6865
6866 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
6867 {
6868 struct hwrm_fw_set_time_input req = {0};
6869 struct tm tm;
6870 time64_t now = ktime_get_real_seconds();
6871
6872 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
6873 bp->hwrm_spec_code < 0x10400)
6874 return -EOPNOTSUPP;
6875
6876 time64_to_tm(now, 0, &tm);
6877 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
6878 req.year = cpu_to_le16(1900 + tm.tm_year);
6879 req.month = 1 + tm.tm_mon;
6880 req.day = tm.tm_mday;
6881 req.hour = tm.tm_hour;
6882 req.minute = tm.tm_min;
6883 req.second = tm.tm_sec;
6884 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6885 }
6886
6887 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
6888 {
6889 int rc;
6890 struct bnxt_pf_info *pf = &bp->pf;
6891 struct hwrm_port_qstats_input req = {0};
6892
6893 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
6894 return 0;
6895
6896 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
6897 req.port_id = cpu_to_le16(pf->port_id);
6898 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
6899 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
6900 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6901 return rc;
6902 }
6903
6904 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
6905 {
6906 struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
6907 struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
6908 struct hwrm_port_qstats_ext_input req = {0};
6909 struct bnxt_pf_info *pf = &bp->pf;
6910 u32 tx_stat_size;
6911 int rc;
6912
6913 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
6914 return 0;
6915
6916 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
6917 req.port_id = cpu_to_le16(pf->port_id);
6918 req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
6919 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
6920 tx_stat_size = bp->hw_tx_port_stats_ext ?
6921 sizeof(*bp->hw_tx_port_stats_ext) : 0;
6922 req.tx_stat_size = cpu_to_le16(tx_stat_size);
6923 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
6924 mutex_lock(&bp->hwrm_cmd_lock);
6925 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6926 if (!rc) {
6927 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
6928 bp->fw_tx_stats_ext_size = tx_stat_size ?
6929 le16_to_cpu(resp->tx_stat_size) / 8 : 0;
6930 } else {
6931 bp->fw_rx_stats_ext_size = 0;
6932 bp->fw_tx_stats_ext_size = 0;
6933 }
6934 if (bp->fw_tx_stats_ext_size <=
6935 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
6936 mutex_unlock(&bp->hwrm_cmd_lock);
6937 bp->pri2cos_valid = 0;
6938 return rc;
6939 }
6940
6941 bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
6942 req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
6943
6944 rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
6945 if (!rc) {
6946 struct hwrm_queue_pri2cos_qcfg_output *resp2;
6947 u8 *pri2cos;
6948 int i, j;
6949
6950 resp2 = bp->hwrm_cmd_resp_addr;
6951 pri2cos = &resp2->pri0_cos_queue_id;
6952 for (i = 0; i < 8; i++) {
6953 u8 queue_id = pri2cos[i];
6954
6955 for (j = 0; j < bp->max_q; j++) {
6956 if (bp->q_ids[j] == queue_id)
6957 bp->pri2cos[i] = j;
6958 }
6959 }
6960 bp->pri2cos_valid = 1;
6961 }
6962 mutex_unlock(&bp->hwrm_cmd_lock);
6963 return rc;
6964 }
6965
6966 static int bnxt_hwrm_pcie_qstats(struct bnxt *bp)
6967 {
6968 struct hwrm_pcie_qstats_input req = {0};
6969
6970 if (!(bp->flags & BNXT_FLAG_PCIE_STATS))
6971 return 0;
6972
6973 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1);
6974 req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats));
6975 req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map);
6976 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6977 }
6978
6979 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
6980 {
6981 if (bp->vxlan_port_cnt) {
6982 bnxt_hwrm_tunnel_dst_port_free(
6983 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6984 }
6985 bp->vxlan_port_cnt = 0;
6986 if (bp->nge_port_cnt) {
6987 bnxt_hwrm_tunnel_dst_port_free(
6988 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6989 }
6990 bp->nge_port_cnt = 0;
6991 }
6992
6993 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
6994 {
6995 int rc, i;
6996 u32 tpa_flags = 0;
6997
6998 if (set_tpa)
6999 tpa_flags = bp->flags & BNXT_FLAG_TPA;
7000 for (i = 0; i < bp->nr_vnics; i++) {
7001 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7002 if (rc) {
7003 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7004 i, rc);
7005 return rc;
7006 }
7007 }
7008 return 0;
7009 }
7010
7011 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7012 {
7013 int i;
7014
7015 for (i = 0; i < bp->nr_vnics; i++)
7016 bnxt_hwrm_vnic_set_rss(bp, i, false);
7017 }
7018
7019 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7020 bool irq_re_init)
7021 {
7022 if (bp->vnic_info) {
7023 bnxt_hwrm_clear_vnic_filter(bp);
7024 /* clear all RSS setting before free vnic ctx */
7025 bnxt_hwrm_clear_vnic_rss(bp);
7026 bnxt_hwrm_vnic_ctx_free(bp);
7027 /* before free the vnic, undo the vnic tpa settings */
7028 if (bp->flags & BNXT_FLAG_TPA)
7029 bnxt_set_tpa(bp, false);
7030 bnxt_hwrm_vnic_free(bp);
7031 }
7032 bnxt_hwrm_ring_free(bp, close_path);
7033 bnxt_hwrm_ring_grp_free(bp);
7034 if (irq_re_init) {
7035 bnxt_hwrm_stat_ctx_free(bp);
7036 bnxt_hwrm_free_tunnel_ports(bp);
7037 }
7038 }
7039
7040 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
7041 {
7042 struct hwrm_func_cfg_input req = {0};
7043 int rc;
7044
7045 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7046 req.fid = cpu_to_le16(0xffff);
7047 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
7048 if (br_mode == BRIDGE_MODE_VEB)
7049 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
7050 else if (br_mode == BRIDGE_MODE_VEPA)
7051 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
7052 else
7053 return -EINVAL;
7054 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7055 if (rc)
7056 rc = -EIO;
7057 return rc;
7058 }
7059
7060 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
7061 {
7062 struct hwrm_func_cfg_input req = {0};
7063 int rc;
7064
7065 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7066 return 0;
7067
7068 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7069 req.fid = cpu_to_le16(0xffff);
7070 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7071 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7072 if (size == 128)
7073 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7074
7075 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7076 if (rc)
7077 rc = -EIO;
7078 return rc;
7079 }
7080
7081 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7082 {
7083 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7084 int rc;
7085
7086 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7087 goto skip_rss_ctx;
7088
7089 /* allocate context for vnic */
7090 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7091 if (rc) {
7092 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7093 vnic_id, rc);
7094 goto vnic_setup_err;
7095 }
7096 bp->rsscos_nr_ctxs++;
7097
7098 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7099 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7100 if (rc) {
7101 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7102 vnic_id, rc);
7103 goto vnic_setup_err;
7104 }
7105 bp->rsscos_nr_ctxs++;
7106 }
7107
7108 skip_rss_ctx:
7109 /* configure default vnic, ring grp */
7110 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7111 if (rc) {
7112 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7113 vnic_id, rc);
7114 goto vnic_setup_err;
7115 }
7116
7117 /* Enable RSS hashing on vnic */
7118 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7119 if (rc) {
7120 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7121 vnic_id, rc);
7122 goto vnic_setup_err;
7123 }
7124
7125 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7126 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7127 if (rc) {
7128 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7129 vnic_id, rc);
7130 }
7131 }
7132
7133 vnic_setup_err:
7134 return rc;
7135 }
7136
7137 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7138 {
7139 int rc, i, nr_ctxs;
7140
7141 nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
7142 for (i = 0; i < nr_ctxs; i++) {
7143 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7144 if (rc) {
7145 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7146 vnic_id, i, rc);
7147 break;
7148 }
7149 bp->rsscos_nr_ctxs++;
7150 }
7151 if (i < nr_ctxs)
7152 return -ENOMEM;
7153
7154 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7155 if (rc) {
7156 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7157 vnic_id, rc);
7158 return rc;
7159 }
7160 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7161 if (rc) {
7162 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7163 vnic_id, rc);
7164 return rc;
7165 }
7166 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7167 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7168 if (rc) {
7169 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7170 vnic_id, rc);
7171 }
7172 }
7173 return rc;
7174 }
7175
7176 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7177 {
7178 if (bp->flags & BNXT_FLAG_CHIP_P5)
7179 return __bnxt_setup_vnic_p5(bp, vnic_id);
7180 else
7181 return __bnxt_setup_vnic(bp, vnic_id);
7182 }
7183
7184 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7185 {
7186 #ifdef CONFIG_RFS_ACCEL
7187 int i, rc = 0;
7188
7189 if (bp->flags & BNXT_FLAG_CHIP_P5)
7190 return 0;
7191
7192 for (i = 0; i < bp->rx_nr_rings; i++) {
7193 struct bnxt_vnic_info *vnic;
7194 u16 vnic_id = i + 1;
7195 u16 ring_id = i;
7196
7197 if (vnic_id >= bp->nr_vnics)
7198 break;
7199
7200 vnic = &bp->vnic_info[vnic_id];
7201 vnic->flags |= BNXT_VNIC_RFS_FLAG;
7202 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7203 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7204 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7205 if (rc) {
7206 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7207 vnic_id, rc);
7208 break;
7209 }
7210 rc = bnxt_setup_vnic(bp, vnic_id);
7211 if (rc)
7212 break;
7213 }
7214 return rc;
7215 #else
7216 return 0;
7217 #endif
7218 }
7219
7220 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7221 static bool bnxt_promisc_ok(struct bnxt *bp)
7222 {
7223 #ifdef CONFIG_BNXT_SRIOV
7224 if (BNXT_VF(bp) && !bp->vf.vlan)
7225 return false;
7226 #endif
7227 return true;
7228 }
7229
7230 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7231 {
7232 unsigned int rc = 0;
7233
7234 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7235 if (rc) {
7236 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7237 rc);
7238 return rc;
7239 }
7240
7241 rc = bnxt_hwrm_vnic_cfg(bp, 1);
7242 if (rc) {
7243 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7244 rc);
7245 return rc;
7246 }
7247 return rc;
7248 }
7249
7250 static int bnxt_cfg_rx_mode(struct bnxt *);
7251 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7252
7253 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7254 {
7255 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7256 int rc = 0;
7257 unsigned int rx_nr_rings = bp->rx_nr_rings;
7258
7259 if (irq_re_init) {
7260 rc = bnxt_hwrm_stat_ctx_alloc(bp);
7261 if (rc) {
7262 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7263 rc);
7264 goto err_out;
7265 }
7266 }
7267
7268 rc = bnxt_hwrm_ring_alloc(bp);
7269 if (rc) {
7270 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7271 goto err_out;
7272 }
7273
7274 rc = bnxt_hwrm_ring_grp_alloc(bp);
7275 if (rc) {
7276 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7277 goto err_out;
7278 }
7279
7280 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7281 rx_nr_rings--;
7282
7283 /* default vnic 0 */
7284 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7285 if (rc) {
7286 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7287 goto err_out;
7288 }
7289
7290 rc = bnxt_setup_vnic(bp, 0);
7291 if (rc)
7292 goto err_out;
7293
7294 if (bp->flags & BNXT_FLAG_RFS) {
7295 rc = bnxt_alloc_rfs_vnics(bp);
7296 if (rc)
7297 goto err_out;
7298 }
7299
7300 if (bp->flags & BNXT_FLAG_TPA) {
7301 rc = bnxt_set_tpa(bp, true);
7302 if (rc)
7303 goto err_out;
7304 }
7305
7306 if (BNXT_VF(bp))
7307 bnxt_update_vf_mac(bp);
7308
7309 /* Filter for default vnic 0 */
7310 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7311 if (rc) {
7312 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7313 goto err_out;
7314 }
7315 vnic->uc_filter_count = 1;
7316
7317 vnic->rx_mask = 0;
7318 if (bp->dev->flags & IFF_BROADCAST)
7319 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7320
7321 if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7322 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7323
7324 if (bp->dev->flags & IFF_ALLMULTI) {
7325 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7326 vnic->mc_list_count = 0;
7327 } else {
7328 u32 mask = 0;
7329
7330 bnxt_mc_list_updated(bp, &mask);
7331 vnic->rx_mask |= mask;
7332 }
7333
7334 rc = bnxt_cfg_rx_mode(bp);
7335 if (rc)
7336 goto err_out;
7337
7338 rc = bnxt_hwrm_set_coal(bp);
7339 if (rc)
7340 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7341 rc);
7342
7343 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7344 rc = bnxt_setup_nitroa0_vnic(bp);
7345 if (rc)
7346 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7347 rc);
7348 }
7349
7350 if (BNXT_VF(bp)) {
7351 bnxt_hwrm_func_qcfg(bp);
7352 netdev_update_features(bp->dev);
7353 }
7354
7355 return 0;
7356
7357 err_out:
7358 bnxt_hwrm_resource_free(bp, 0, true);
7359
7360 return rc;
7361 }
7362
7363 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7364 {
7365 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7366 return 0;
7367 }
7368
7369 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7370 {
7371 bnxt_init_cp_rings(bp);
7372 bnxt_init_rx_rings(bp);
7373 bnxt_init_tx_rings(bp);
7374 bnxt_init_ring_grps(bp, irq_re_init);
7375 bnxt_init_vnics(bp);
7376
7377 return bnxt_init_chip(bp, irq_re_init);
7378 }
7379
7380 static int bnxt_set_real_num_queues(struct bnxt *bp)
7381 {
7382 int rc;
7383 struct net_device *dev = bp->dev;
7384
7385 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7386 bp->tx_nr_rings_xdp);
7387 if (rc)
7388 return rc;
7389
7390 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7391 if (rc)
7392 return rc;
7393
7394 #ifdef CONFIG_RFS_ACCEL
7395 if (bp->flags & BNXT_FLAG_RFS)
7396 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7397 #endif
7398
7399 return rc;
7400 }
7401
7402 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7403 bool shared)
7404 {
7405 int _rx = *rx, _tx = *tx;
7406
7407 if (shared) {
7408 *rx = min_t(int, _rx, max);
7409 *tx = min_t(int, _tx, max);
7410 } else {
7411 if (max < 2)
7412 return -ENOMEM;
7413
7414 while (_rx + _tx > max) {
7415 if (_rx > _tx && _rx > 1)
7416 _rx--;
7417 else if (_tx > 1)
7418 _tx--;
7419 }
7420 *rx = _rx;
7421 *tx = _tx;
7422 }
7423 return 0;
7424 }
7425
7426 static void bnxt_setup_msix(struct bnxt *bp)
7427 {
7428 const int len = sizeof(bp->irq_tbl[0].name);
7429 struct net_device *dev = bp->dev;
7430 int tcs, i;
7431
7432 tcs = netdev_get_num_tc(dev);
7433 if (tcs > 1) {
7434 int i, off, count;
7435
7436 for (i = 0; i < tcs; i++) {
7437 count = bp->tx_nr_rings_per_tc;
7438 off = i * count;
7439 netdev_set_tc_queue(dev, i, count, off);
7440 }
7441 }
7442
7443 for (i = 0; i < bp->cp_nr_rings; i++) {
7444 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7445 char *attr;
7446
7447 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7448 attr = "TxRx";
7449 else if (i < bp->rx_nr_rings)
7450 attr = "rx";
7451 else
7452 attr = "tx";
7453
7454 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7455 attr, i);
7456 bp->irq_tbl[map_idx].handler = bnxt_msix;
7457 }
7458 }
7459
7460 static void bnxt_setup_inta(struct bnxt *bp)
7461 {
7462 const int len = sizeof(bp->irq_tbl[0].name);
7463
7464 if (netdev_get_num_tc(bp->dev))
7465 netdev_reset_tc(bp->dev);
7466
7467 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7468 0);
7469 bp->irq_tbl[0].handler = bnxt_inta;
7470 }
7471
7472 static int bnxt_setup_int_mode(struct bnxt *bp)
7473 {
7474 int rc;
7475
7476 if (bp->flags & BNXT_FLAG_USING_MSIX)
7477 bnxt_setup_msix(bp);
7478 else
7479 bnxt_setup_inta(bp);
7480
7481 rc = bnxt_set_real_num_queues(bp);
7482 return rc;
7483 }
7484
7485 #ifdef CONFIG_RFS_ACCEL
7486 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7487 {
7488 return bp->hw_resc.max_rsscos_ctxs;
7489 }
7490
7491 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7492 {
7493 return bp->hw_resc.max_vnics;
7494 }
7495 #endif
7496
7497 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
7498 {
7499 return bp->hw_resc.max_stat_ctxs;
7500 }
7501
7502 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
7503 {
7504 return bp->hw_resc.max_cp_rings;
7505 }
7506
7507 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
7508 {
7509 unsigned int cp = bp->hw_resc.max_cp_rings;
7510
7511 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7512 cp -= bnxt_get_ulp_msix_num(bp);
7513
7514 return cp;
7515 }
7516
7517 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
7518 {
7519 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7520
7521 if (bp->flags & BNXT_FLAG_CHIP_P5)
7522 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
7523
7524 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
7525 }
7526
7527 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
7528 {
7529 bp->hw_resc.max_irqs = max_irqs;
7530 }
7531
7532 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
7533 {
7534 unsigned int cp;
7535
7536 cp = bnxt_get_max_func_cp_rings_for_en(bp);
7537 if (bp->flags & BNXT_FLAG_CHIP_P5)
7538 return cp - bp->rx_nr_rings - bp->tx_nr_rings;
7539 else
7540 return cp - bp->cp_nr_rings;
7541 }
7542
7543 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
7544 {
7545 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
7546 }
7547
7548 int bnxt_get_avail_msix(struct bnxt *bp, int num)
7549 {
7550 int max_cp = bnxt_get_max_func_cp_rings(bp);
7551 int max_irq = bnxt_get_max_func_irqs(bp);
7552 int total_req = bp->cp_nr_rings + num;
7553 int max_idx, avail_msix;
7554
7555 max_idx = bp->total_irqs;
7556 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7557 max_idx = min_t(int, bp->total_irqs, max_cp);
7558 avail_msix = max_idx - bp->cp_nr_rings;
7559 if (!BNXT_NEW_RM(bp) || avail_msix >= num)
7560 return avail_msix;
7561
7562 if (max_irq < total_req) {
7563 num = max_irq - bp->cp_nr_rings;
7564 if (num <= 0)
7565 return 0;
7566 }
7567 return num;
7568 }
7569
7570 static int bnxt_get_num_msix(struct bnxt *bp)
7571 {
7572 if (!BNXT_NEW_RM(bp))
7573 return bnxt_get_max_func_irqs(bp);
7574
7575 return bnxt_nq_rings_in_use(bp);
7576 }
7577
7578 static int bnxt_init_msix(struct bnxt *bp)
7579 {
7580 int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
7581 struct msix_entry *msix_ent;
7582
7583 total_vecs = bnxt_get_num_msix(bp);
7584 max = bnxt_get_max_func_irqs(bp);
7585 if (total_vecs > max)
7586 total_vecs = max;
7587
7588 if (!total_vecs)
7589 return 0;
7590
7591 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
7592 if (!msix_ent)
7593 return -ENOMEM;
7594
7595 for (i = 0; i < total_vecs; i++) {
7596 msix_ent[i].entry = i;
7597 msix_ent[i].vector = 0;
7598 }
7599
7600 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
7601 min = 2;
7602
7603 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
7604 ulp_msix = bnxt_get_ulp_msix_num(bp);
7605 if (total_vecs < 0 || total_vecs < ulp_msix) {
7606 rc = -ENODEV;
7607 goto msix_setup_exit;
7608 }
7609
7610 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
7611 if (bp->irq_tbl) {
7612 for (i = 0; i < total_vecs; i++)
7613 bp->irq_tbl[i].vector = msix_ent[i].vector;
7614
7615 bp->total_irqs = total_vecs;
7616 /* Trim rings based upon num of vectors allocated */
7617 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
7618 total_vecs - ulp_msix, min == 1);
7619 if (rc)
7620 goto msix_setup_exit;
7621
7622 bp->cp_nr_rings = (min == 1) ?
7623 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7624 bp->tx_nr_rings + bp->rx_nr_rings;
7625
7626 } else {
7627 rc = -ENOMEM;
7628 goto msix_setup_exit;
7629 }
7630 bp->flags |= BNXT_FLAG_USING_MSIX;
7631 kfree(msix_ent);
7632 return 0;
7633
7634 msix_setup_exit:
7635 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
7636 kfree(bp->irq_tbl);
7637 bp->irq_tbl = NULL;
7638 pci_disable_msix(bp->pdev);
7639 kfree(msix_ent);
7640 return rc;
7641 }
7642
7643 static int bnxt_init_inta(struct bnxt *bp)
7644 {
7645 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
7646 if (!bp->irq_tbl)
7647 return -ENOMEM;
7648
7649 bp->total_irqs = 1;
7650 bp->rx_nr_rings = 1;
7651 bp->tx_nr_rings = 1;
7652 bp->cp_nr_rings = 1;
7653 bp->flags |= BNXT_FLAG_SHARED_RINGS;
7654 bp->irq_tbl[0].vector = bp->pdev->irq;
7655 return 0;
7656 }
7657
7658 static int bnxt_init_int_mode(struct bnxt *bp)
7659 {
7660 int rc = 0;
7661
7662 if (bp->flags & BNXT_FLAG_MSIX_CAP)
7663 rc = bnxt_init_msix(bp);
7664
7665 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
7666 /* fallback to INTA */
7667 rc = bnxt_init_inta(bp);
7668 }
7669 return rc;
7670 }
7671
7672 static void bnxt_clear_int_mode(struct bnxt *bp)
7673 {
7674 if (bp->flags & BNXT_FLAG_USING_MSIX)
7675 pci_disable_msix(bp->pdev);
7676
7677 kfree(bp->irq_tbl);
7678 bp->irq_tbl = NULL;
7679 bp->flags &= ~BNXT_FLAG_USING_MSIX;
7680 }
7681
7682 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
7683 {
7684 int tcs = netdev_get_num_tc(bp->dev);
7685 bool irq_cleared = false;
7686 int rc;
7687
7688 if (!bnxt_need_reserve_rings(bp))
7689 return 0;
7690
7691 if (irq_re_init && BNXT_NEW_RM(bp) &&
7692 bnxt_get_num_msix(bp) != bp->total_irqs) {
7693 bnxt_ulp_irq_stop(bp);
7694 bnxt_clear_int_mode(bp);
7695 irq_cleared = true;
7696 }
7697 rc = __bnxt_reserve_rings(bp);
7698 if (irq_cleared) {
7699 if (!rc)
7700 rc = bnxt_init_int_mode(bp);
7701 bnxt_ulp_irq_restart(bp, rc);
7702 }
7703 if (rc) {
7704 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
7705 return rc;
7706 }
7707 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
7708 netdev_err(bp->dev, "tx ring reservation failure\n");
7709 netdev_reset_tc(bp->dev);
7710 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
7711 return -ENOMEM;
7712 }
7713 return 0;
7714 }
7715
7716 static void bnxt_free_irq(struct bnxt *bp)
7717 {
7718 struct bnxt_irq *irq;
7719 int i;
7720
7721 #ifdef CONFIG_RFS_ACCEL
7722 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
7723 bp->dev->rx_cpu_rmap = NULL;
7724 #endif
7725 if (!bp->irq_tbl || !bp->bnapi)
7726 return;
7727
7728 for (i = 0; i < bp->cp_nr_rings; i++) {
7729 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7730
7731 irq = &bp->irq_tbl[map_idx];
7732 if (irq->requested) {
7733 if (irq->have_cpumask) {
7734 irq_set_affinity_hint(irq->vector, NULL);
7735 free_cpumask_var(irq->cpu_mask);
7736 irq->have_cpumask = 0;
7737 }
7738 free_irq(irq->vector, bp->bnapi[i]);
7739 }
7740
7741 irq->requested = 0;
7742 }
7743 }
7744
7745 static int bnxt_request_irq(struct bnxt *bp)
7746 {
7747 int i, j, rc = 0;
7748 unsigned long flags = 0;
7749 #ifdef CONFIG_RFS_ACCEL
7750 struct cpu_rmap *rmap;
7751 #endif
7752
7753 rc = bnxt_setup_int_mode(bp);
7754 if (rc) {
7755 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
7756 rc);
7757 return rc;
7758 }
7759 #ifdef CONFIG_RFS_ACCEL
7760 rmap = bp->dev->rx_cpu_rmap;
7761 #endif
7762 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
7763 flags = IRQF_SHARED;
7764
7765 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
7766 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7767 struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
7768
7769 #ifdef CONFIG_RFS_ACCEL
7770 if (rmap && bp->bnapi[i]->rx_ring) {
7771 rc = irq_cpu_rmap_add(rmap, irq->vector);
7772 if (rc)
7773 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
7774 j);
7775 j++;
7776 }
7777 #endif
7778 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
7779 bp->bnapi[i]);
7780 if (rc)
7781 break;
7782
7783 irq->requested = 1;
7784
7785 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
7786 int numa_node = dev_to_node(&bp->pdev->dev);
7787
7788 irq->have_cpumask = 1;
7789 cpumask_set_cpu(cpumask_local_spread(i, numa_node),
7790 irq->cpu_mask);
7791 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
7792 if (rc) {
7793 netdev_warn(bp->dev,
7794 "Set affinity failed, IRQ = %d\n",
7795 irq->vector);
7796 break;
7797 }
7798 }
7799 }
7800 return rc;
7801 }
7802
7803 static void bnxt_del_napi(struct bnxt *bp)
7804 {
7805 int i;
7806
7807 if (!bp->bnapi)
7808 return;
7809
7810 for (i = 0; i < bp->cp_nr_rings; i++) {
7811 struct bnxt_napi *bnapi = bp->bnapi[i];
7812
7813 napi_hash_del(&bnapi->napi);
7814 netif_napi_del(&bnapi->napi);
7815 }
7816 /* We called napi_hash_del() before netif_napi_del(), we need
7817 * to respect an RCU grace period before freeing napi structures.
7818 */
7819 synchronize_net();
7820 }
7821
7822 static void bnxt_init_napi(struct bnxt *bp)
7823 {
7824 int i;
7825 unsigned int cp_nr_rings = bp->cp_nr_rings;
7826 struct bnxt_napi *bnapi;
7827
7828 if (bp->flags & BNXT_FLAG_USING_MSIX) {
7829 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
7830
7831 if (bp->flags & BNXT_FLAG_CHIP_P5)
7832 poll_fn = bnxt_poll_p5;
7833 else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7834 cp_nr_rings--;
7835 for (i = 0; i < cp_nr_rings; i++) {
7836 bnapi = bp->bnapi[i];
7837 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
7838 }
7839 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7840 bnapi = bp->bnapi[cp_nr_rings];
7841 netif_napi_add(bp->dev, &bnapi->napi,
7842 bnxt_poll_nitroa0, 64);
7843 }
7844 } else {
7845 bnapi = bp->bnapi[0];
7846 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
7847 }
7848 }
7849
7850 static void bnxt_disable_napi(struct bnxt *bp)
7851 {
7852 int i;
7853
7854 if (!bp->bnapi)
7855 return;
7856
7857 for (i = 0; i < bp->cp_nr_rings; i++) {
7858 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7859
7860 if (bp->bnapi[i]->rx_ring)
7861 cancel_work_sync(&cpr->dim.work);
7862
7863 napi_disable(&bp->bnapi[i]->napi);
7864 }
7865 }
7866
7867 static void bnxt_enable_napi(struct bnxt *bp)
7868 {
7869 int i;
7870
7871 for (i = 0; i < bp->cp_nr_rings; i++) {
7872 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7873 bp->bnapi[i]->in_reset = false;
7874
7875 if (bp->bnapi[i]->rx_ring) {
7876 INIT_WORK(&cpr->dim.work, bnxt_dim_work);
7877 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
7878 }
7879 napi_enable(&bp->bnapi[i]->napi);
7880 }
7881 }
7882
7883 void bnxt_tx_disable(struct bnxt *bp)
7884 {
7885 int i;
7886 struct bnxt_tx_ring_info *txr;
7887
7888 if (bp->tx_ring) {
7889 for (i = 0; i < bp->tx_nr_rings; i++) {
7890 txr = &bp->tx_ring[i];
7891 txr->dev_state = BNXT_DEV_STATE_CLOSING;
7892 }
7893 }
7894 /* Stop all TX queues */
7895 netif_tx_disable(bp->dev);
7896 netif_carrier_off(bp->dev);
7897 }
7898
7899 void bnxt_tx_enable(struct bnxt *bp)
7900 {
7901 int i;
7902 struct bnxt_tx_ring_info *txr;
7903
7904 for (i = 0; i < bp->tx_nr_rings; i++) {
7905 txr = &bp->tx_ring[i];
7906 txr->dev_state = 0;
7907 }
7908 netif_tx_wake_all_queues(bp->dev);
7909 if (bp->link_info.link_up)
7910 netif_carrier_on(bp->dev);
7911 }
7912
7913 static void bnxt_report_link(struct bnxt *bp)
7914 {
7915 if (bp->link_info.link_up) {
7916 const char *duplex;
7917 const char *flow_ctrl;
7918 u32 speed;
7919 u16 fec;
7920
7921 netif_carrier_on(bp->dev);
7922 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
7923 duplex = "full";
7924 else
7925 duplex = "half";
7926 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
7927 flow_ctrl = "ON - receive & transmit";
7928 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
7929 flow_ctrl = "ON - transmit";
7930 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
7931 flow_ctrl = "ON - receive";
7932 else
7933 flow_ctrl = "none";
7934 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
7935 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
7936 speed, duplex, flow_ctrl);
7937 if (bp->flags & BNXT_FLAG_EEE_CAP)
7938 netdev_info(bp->dev, "EEE is %s\n",
7939 bp->eee.eee_active ? "active" :
7940 "not active");
7941 fec = bp->link_info.fec_cfg;
7942 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
7943 netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
7944 (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
7945 (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
7946 (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
7947 } else {
7948 netif_carrier_off(bp->dev);
7949 netdev_err(bp->dev, "NIC Link is Down\n");
7950 }
7951 }
7952
7953 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
7954 {
7955 int rc = 0;
7956 struct hwrm_port_phy_qcaps_input req = {0};
7957 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7958 struct bnxt_link_info *link_info = &bp->link_info;
7959
7960 if (bp->hwrm_spec_code < 0x10201)
7961 return 0;
7962
7963 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
7964
7965 mutex_lock(&bp->hwrm_cmd_lock);
7966 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7967 if (rc)
7968 goto hwrm_phy_qcaps_exit;
7969
7970 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
7971 struct ethtool_eee *eee = &bp->eee;
7972 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
7973
7974 bp->flags |= BNXT_FLAG_EEE_CAP;
7975 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7976 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
7977 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
7978 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
7979 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
7980 }
7981 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
7982 if (bp->test_info)
7983 bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
7984 }
7985 if (resp->supported_speeds_auto_mode)
7986 link_info->support_auto_speeds =
7987 le16_to_cpu(resp->supported_speeds_auto_mode);
7988
7989 bp->port_count = resp->port_cnt;
7990
7991 hwrm_phy_qcaps_exit:
7992 mutex_unlock(&bp->hwrm_cmd_lock);
7993 return rc;
7994 }
7995
7996 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
7997 {
7998 int rc = 0;
7999 struct bnxt_link_info *link_info = &bp->link_info;
8000 struct hwrm_port_phy_qcfg_input req = {0};
8001 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8002 u8 link_up = link_info->link_up;
8003 u16 diff;
8004
8005 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
8006
8007 mutex_lock(&bp->hwrm_cmd_lock);
8008 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8009 if (rc) {
8010 mutex_unlock(&bp->hwrm_cmd_lock);
8011 return rc;
8012 }
8013
8014 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
8015 link_info->phy_link_status = resp->link;
8016 link_info->duplex = resp->duplex_cfg;
8017 if (bp->hwrm_spec_code >= 0x10800)
8018 link_info->duplex = resp->duplex_state;
8019 link_info->pause = resp->pause;
8020 link_info->auto_mode = resp->auto_mode;
8021 link_info->auto_pause_setting = resp->auto_pause;
8022 link_info->lp_pause = resp->link_partner_adv_pause;
8023 link_info->force_pause_setting = resp->force_pause;
8024 link_info->duplex_setting = resp->duplex_cfg;
8025 if (link_info->phy_link_status == BNXT_LINK_LINK)
8026 link_info->link_speed = le16_to_cpu(resp->link_speed);
8027 else
8028 link_info->link_speed = 0;
8029 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
8030 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
8031 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
8032 link_info->lp_auto_link_speeds =
8033 le16_to_cpu(resp->link_partner_adv_speeds);
8034 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
8035 link_info->phy_ver[0] = resp->phy_maj;
8036 link_info->phy_ver[1] = resp->phy_min;
8037 link_info->phy_ver[2] = resp->phy_bld;
8038 link_info->media_type = resp->media_type;
8039 link_info->phy_type = resp->phy_type;
8040 link_info->transceiver = resp->xcvr_pkg_type;
8041 link_info->phy_addr = resp->eee_config_phy_addr &
8042 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
8043 link_info->module_status = resp->module_status;
8044
8045 if (bp->flags & BNXT_FLAG_EEE_CAP) {
8046 struct ethtool_eee *eee = &bp->eee;
8047 u16 fw_speeds;
8048
8049 eee->eee_active = 0;
8050 if (resp->eee_config_phy_addr &
8051 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
8052 eee->eee_active = 1;
8053 fw_speeds = le16_to_cpu(
8054 resp->link_partner_adv_eee_link_speed_mask);
8055 eee->lp_advertised =
8056 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8057 }
8058
8059 /* Pull initial EEE config */
8060 if (!chng_link_state) {
8061 if (resp->eee_config_phy_addr &
8062 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
8063 eee->eee_enabled = 1;
8064
8065 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8066 eee->advertised =
8067 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8068
8069 if (resp->eee_config_phy_addr &
8070 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8071 __le32 tmr;
8072
8073 eee->tx_lpi_enabled = 1;
8074 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8075 eee->tx_lpi_timer = le32_to_cpu(tmr) &
8076 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8077 }
8078 }
8079 }
8080
8081 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8082 if (bp->hwrm_spec_code >= 0x10504)
8083 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8084
8085 /* TODO: need to add more logic to report VF link */
8086 if (chng_link_state) {
8087 if (link_info->phy_link_status == BNXT_LINK_LINK)
8088 link_info->link_up = 1;
8089 else
8090 link_info->link_up = 0;
8091 if (link_up != link_info->link_up)
8092 bnxt_report_link(bp);
8093 } else {
8094 /* alwasy link down if not require to update link state */
8095 link_info->link_up = 0;
8096 }
8097 mutex_unlock(&bp->hwrm_cmd_lock);
8098
8099 if (!BNXT_SINGLE_PF(bp))
8100 return 0;
8101
8102 diff = link_info->support_auto_speeds ^ link_info->advertising;
8103 if ((link_info->support_auto_speeds | diff) !=
8104 link_info->support_auto_speeds) {
8105 /* An advertised speed is no longer supported, so we need to
8106 * update the advertisement settings. Caller holds RTNL
8107 * so we can modify link settings.
8108 */
8109 link_info->advertising = link_info->support_auto_speeds;
8110 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8111 bnxt_hwrm_set_link_setting(bp, true, false);
8112 }
8113 return 0;
8114 }
8115
8116 static void bnxt_get_port_module_status(struct bnxt *bp)
8117 {
8118 struct bnxt_link_info *link_info = &bp->link_info;
8119 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8120 u8 module_status;
8121
8122 if (bnxt_update_link(bp, true))
8123 return;
8124
8125 module_status = link_info->module_status;
8126 switch (module_status) {
8127 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8128 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8129 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8130 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8131 bp->pf.port_id);
8132 if (bp->hwrm_spec_code >= 0x10201) {
8133 netdev_warn(bp->dev, "Module part number %s\n",
8134 resp->phy_vendor_partnumber);
8135 }
8136 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8137 netdev_warn(bp->dev, "TX is disabled\n");
8138 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8139 netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8140 }
8141 }
8142
8143 static void
8144 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8145 {
8146 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8147 if (bp->hwrm_spec_code >= 0x10201)
8148 req->auto_pause =
8149 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8150 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8151 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8152 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8153 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8154 req->enables |=
8155 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8156 } else {
8157 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8158 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8159 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8160 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
8161 req->enables |=
8162 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
8163 if (bp->hwrm_spec_code >= 0x10201) {
8164 req->auto_pause = req->force_pause;
8165 req->enables |= cpu_to_le32(
8166 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8167 }
8168 }
8169 }
8170
8171 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8172 struct hwrm_port_phy_cfg_input *req)
8173 {
8174 u8 autoneg = bp->link_info.autoneg;
8175 u16 fw_link_speed = bp->link_info.req_link_speed;
8176 u16 advertising = bp->link_info.advertising;
8177
8178 if (autoneg & BNXT_AUTONEG_SPEED) {
8179 req->auto_mode |=
8180 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8181
8182 req->enables |= cpu_to_le32(
8183 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8184 req->auto_link_speed_mask = cpu_to_le16(advertising);
8185
8186 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8187 req->flags |=
8188 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8189 } else {
8190 req->force_link_speed = cpu_to_le16(fw_link_speed);
8191 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8192 }
8193
8194 /* tell chimp that the setting takes effect immediately */
8195 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8196 }
8197
8198 int bnxt_hwrm_set_pause(struct bnxt *bp)
8199 {
8200 struct hwrm_port_phy_cfg_input req = {0};
8201 int rc;
8202
8203 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8204 bnxt_hwrm_set_pause_common(bp, &req);
8205
8206 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8207 bp->link_info.force_link_chng)
8208 bnxt_hwrm_set_link_common(bp, &req);
8209
8210 mutex_lock(&bp->hwrm_cmd_lock);
8211 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8212 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8213 /* since changing of pause setting doesn't trigger any link
8214 * change event, the driver needs to update the current pause
8215 * result upon successfully return of the phy_cfg command
8216 */
8217 bp->link_info.pause =
8218 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8219 bp->link_info.auto_pause_setting = 0;
8220 if (!bp->link_info.force_link_chng)
8221 bnxt_report_link(bp);
8222 }
8223 bp->link_info.force_link_chng = false;
8224 mutex_unlock(&bp->hwrm_cmd_lock);
8225 return rc;
8226 }
8227
8228 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8229 struct hwrm_port_phy_cfg_input *req)
8230 {
8231 struct ethtool_eee *eee = &bp->eee;
8232
8233 if (eee->eee_enabled) {
8234 u16 eee_speeds;
8235 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8236
8237 if (eee->tx_lpi_enabled)
8238 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8239 else
8240 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8241
8242 req->flags |= cpu_to_le32(flags);
8243 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8244 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8245 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8246 } else {
8247 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8248 }
8249 }
8250
8251 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8252 {
8253 struct hwrm_port_phy_cfg_input req = {0};
8254
8255 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8256 if (set_pause)
8257 bnxt_hwrm_set_pause_common(bp, &req);
8258
8259 bnxt_hwrm_set_link_common(bp, &req);
8260
8261 if (set_eee)
8262 bnxt_hwrm_set_eee(bp, &req);
8263 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8264 }
8265
8266 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8267 {
8268 struct hwrm_port_phy_cfg_input req = {0};
8269
8270 if (!BNXT_SINGLE_PF(bp))
8271 return 0;
8272
8273 if (pci_num_vf(bp->pdev))
8274 return 0;
8275
8276 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8277 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8278 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8279 }
8280
8281 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8282 {
8283 struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8284 struct hwrm_func_drv_if_change_input req = {0};
8285 bool resc_reinit = false;
8286 int rc;
8287
8288 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8289 return 0;
8290
8291 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8292 if (up)
8293 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8294 mutex_lock(&bp->hwrm_cmd_lock);
8295 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8296 if (!rc && (resp->flags &
8297 cpu_to_le32(FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)))
8298 resc_reinit = true;
8299 mutex_unlock(&bp->hwrm_cmd_lock);
8300
8301 if (up && resc_reinit && BNXT_NEW_RM(bp)) {
8302 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8303
8304 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8305 hw_resc->resv_cp_rings = 0;
8306 hw_resc->resv_stat_ctxs = 0;
8307 hw_resc->resv_irqs = 0;
8308 hw_resc->resv_tx_rings = 0;
8309 hw_resc->resv_rx_rings = 0;
8310 hw_resc->resv_hw_ring_grps = 0;
8311 hw_resc->resv_vnics = 0;
8312 bp->tx_nr_rings = 0;
8313 bp->rx_nr_rings = 0;
8314 }
8315 return rc;
8316 }
8317
8318 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8319 {
8320 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8321 struct hwrm_port_led_qcaps_input req = {0};
8322 struct bnxt_pf_info *pf = &bp->pf;
8323 int rc;
8324
8325 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8326 return 0;
8327
8328 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8329 req.port_id = cpu_to_le16(pf->port_id);
8330 mutex_lock(&bp->hwrm_cmd_lock);
8331 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8332 if (rc) {
8333 mutex_unlock(&bp->hwrm_cmd_lock);
8334 return rc;
8335 }
8336 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8337 int i;
8338
8339 bp->num_leds = resp->num_leds;
8340 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8341 bp->num_leds);
8342 for (i = 0; i < bp->num_leds; i++) {
8343 struct bnxt_led_info *led = &bp->leds[i];
8344 __le16 caps = led->led_state_caps;
8345
8346 if (!led->led_group_id ||
8347 !BNXT_LED_ALT_BLINK_CAP(caps)) {
8348 bp->num_leds = 0;
8349 break;
8350 }
8351 }
8352 }
8353 mutex_unlock(&bp->hwrm_cmd_lock);
8354 return 0;
8355 }
8356
8357 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8358 {
8359 struct hwrm_wol_filter_alloc_input req = {0};
8360 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8361 int rc;
8362
8363 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8364 req.port_id = cpu_to_le16(bp->pf.port_id);
8365 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8366 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8367 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8368 mutex_lock(&bp->hwrm_cmd_lock);
8369 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8370 if (!rc)
8371 bp->wol_filter_id = resp->wol_filter_id;
8372 mutex_unlock(&bp->hwrm_cmd_lock);
8373 return rc;
8374 }
8375
8376 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8377 {
8378 struct hwrm_wol_filter_free_input req = {0};
8379 int rc;
8380
8381 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8382 req.port_id = cpu_to_le16(bp->pf.port_id);
8383 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8384 req.wol_filter_id = bp->wol_filter_id;
8385 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8386 return rc;
8387 }
8388
8389 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8390 {
8391 struct hwrm_wol_filter_qcfg_input req = {0};
8392 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8393 u16 next_handle = 0;
8394 int rc;
8395
8396 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8397 req.port_id = cpu_to_le16(bp->pf.port_id);
8398 req.handle = cpu_to_le16(handle);
8399 mutex_lock(&bp->hwrm_cmd_lock);
8400 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8401 if (!rc) {
8402 next_handle = le16_to_cpu(resp->next_handle);
8403 if (next_handle != 0) {
8404 if (resp->wol_type ==
8405 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8406 bp->wol = 1;
8407 bp->wol_filter_id = resp->wol_filter_id;
8408 }
8409 }
8410 }
8411 mutex_unlock(&bp->hwrm_cmd_lock);
8412 return next_handle;
8413 }
8414
8415 static void bnxt_get_wol_settings(struct bnxt *bp)
8416 {
8417 u16 handle = 0;
8418
8419 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8420 return;
8421
8422 do {
8423 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8424 } while (handle && handle != 0xffff);
8425 }
8426
8427 #ifdef CONFIG_BNXT_HWMON
8428 static ssize_t bnxt_show_temp(struct device *dev,
8429 struct device_attribute *devattr, char *buf)
8430 {
8431 struct hwrm_temp_monitor_query_input req = {0};
8432 struct hwrm_temp_monitor_query_output *resp;
8433 struct bnxt *bp = dev_get_drvdata(dev);
8434 u32 temp = 0;
8435
8436 resp = bp->hwrm_cmd_resp_addr;
8437 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8438 mutex_lock(&bp->hwrm_cmd_lock);
8439 if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8440 temp = resp->temp * 1000; /* display millidegree */
8441 mutex_unlock(&bp->hwrm_cmd_lock);
8442
8443 return sprintf(buf, "%u\n", temp);
8444 }
8445 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
8446
8447 static struct attribute *bnxt_attrs[] = {
8448 &sensor_dev_attr_temp1_input.dev_attr.attr,
8449 NULL
8450 };
8451 ATTRIBUTE_GROUPS(bnxt);
8452
8453 static void bnxt_hwmon_close(struct bnxt *bp)
8454 {
8455 if (bp->hwmon_dev) {
8456 hwmon_device_unregister(bp->hwmon_dev);
8457 bp->hwmon_dev = NULL;
8458 }
8459 }
8460
8461 static void bnxt_hwmon_open(struct bnxt *bp)
8462 {
8463 struct pci_dev *pdev = bp->pdev;
8464
8465 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
8466 DRV_MODULE_NAME, bp,
8467 bnxt_groups);
8468 if (IS_ERR(bp->hwmon_dev)) {
8469 bp->hwmon_dev = NULL;
8470 dev_warn(&pdev->dev, "Cannot register hwmon device\n");
8471 }
8472 }
8473 #else
8474 static void bnxt_hwmon_close(struct bnxt *bp)
8475 {
8476 }
8477
8478 static void bnxt_hwmon_open(struct bnxt *bp)
8479 {
8480 }
8481 #endif
8482
8483 static bool bnxt_eee_config_ok(struct bnxt *bp)
8484 {
8485 struct ethtool_eee *eee = &bp->eee;
8486 struct bnxt_link_info *link_info = &bp->link_info;
8487
8488 if (!(bp->flags & BNXT_FLAG_EEE_CAP))
8489 return true;
8490
8491 if (eee->eee_enabled) {
8492 u32 advertising =
8493 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
8494
8495 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8496 eee->eee_enabled = 0;
8497 return false;
8498 }
8499 if (eee->advertised & ~advertising) {
8500 eee->advertised = advertising & eee->supported;
8501 return false;
8502 }
8503 }
8504 return true;
8505 }
8506
8507 static int bnxt_update_phy_setting(struct bnxt *bp)
8508 {
8509 int rc;
8510 bool update_link = false;
8511 bool update_pause = false;
8512 bool update_eee = false;
8513 struct bnxt_link_info *link_info = &bp->link_info;
8514
8515 rc = bnxt_update_link(bp, true);
8516 if (rc) {
8517 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
8518 rc);
8519 return rc;
8520 }
8521 if (!BNXT_SINGLE_PF(bp))
8522 return 0;
8523
8524 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8525 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
8526 link_info->req_flow_ctrl)
8527 update_pause = true;
8528 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8529 link_info->force_pause_setting != link_info->req_flow_ctrl)
8530 update_pause = true;
8531 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8532 if (BNXT_AUTO_MODE(link_info->auto_mode))
8533 update_link = true;
8534 if (link_info->req_link_speed != link_info->force_link_speed)
8535 update_link = true;
8536 if (link_info->req_duplex != link_info->duplex_setting)
8537 update_link = true;
8538 } else {
8539 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
8540 update_link = true;
8541 if (link_info->advertising != link_info->auto_link_speeds)
8542 update_link = true;
8543 }
8544
8545 /* The last close may have shutdown the link, so need to call
8546 * PHY_CFG to bring it back up.
8547 */
8548 if (!netif_carrier_ok(bp->dev))
8549 update_link = true;
8550
8551 if (!bnxt_eee_config_ok(bp))
8552 update_eee = true;
8553
8554 if (update_link)
8555 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
8556 else if (update_pause)
8557 rc = bnxt_hwrm_set_pause(bp);
8558 if (rc) {
8559 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
8560 rc);
8561 return rc;
8562 }
8563
8564 return rc;
8565 }
8566
8567 /* Common routine to pre-map certain register block to different GRC window.
8568 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
8569 * in PF and 3 windows in VF that can be customized to map in different
8570 * register blocks.
8571 */
8572 static void bnxt_preset_reg_win(struct bnxt *bp)
8573 {
8574 if (BNXT_PF(bp)) {
8575 /* CAG registers map to GRC window #4 */
8576 writel(BNXT_CAG_REG_BASE,
8577 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
8578 }
8579 }
8580
8581 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
8582
8583 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8584 {
8585 int rc = 0;
8586
8587 bnxt_preset_reg_win(bp);
8588 netif_carrier_off(bp->dev);
8589 if (irq_re_init) {
8590 /* Reserve rings now if none were reserved at driver probe. */
8591 rc = bnxt_init_dflt_ring_mode(bp);
8592 if (rc) {
8593 netdev_err(bp->dev, "Failed to reserve default rings at open\n");
8594 return rc;
8595 }
8596 }
8597 rc = bnxt_reserve_rings(bp, irq_re_init);
8598 if (rc)
8599 return rc;
8600 if ((bp->flags & BNXT_FLAG_RFS) &&
8601 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
8602 /* disable RFS if falling back to INTA */
8603 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
8604 bp->flags &= ~BNXT_FLAG_RFS;
8605 }
8606
8607 rc = bnxt_alloc_mem(bp, irq_re_init);
8608 if (rc) {
8609 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8610 goto open_err_free_mem;
8611 }
8612
8613 if (irq_re_init) {
8614 bnxt_init_napi(bp);
8615 rc = bnxt_request_irq(bp);
8616 if (rc) {
8617 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
8618 goto open_err_irq;
8619 }
8620 }
8621
8622 bnxt_enable_napi(bp);
8623 bnxt_debug_dev_init(bp);
8624
8625 rc = bnxt_init_nic(bp, irq_re_init);
8626 if (rc) {
8627 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8628 goto open_err;
8629 }
8630
8631 if (link_re_init) {
8632 mutex_lock(&bp->link_lock);
8633 rc = bnxt_update_phy_setting(bp);
8634 mutex_unlock(&bp->link_lock);
8635 if (rc) {
8636 netdev_warn(bp->dev, "failed to update phy settings\n");
8637 if (BNXT_SINGLE_PF(bp)) {
8638 bp->link_info.phy_retry = true;
8639 bp->link_info.phy_retry_expires =
8640 jiffies + 5 * HZ;
8641 }
8642 }
8643 }
8644
8645 if (irq_re_init)
8646 udp_tunnel_get_rx_info(bp->dev);
8647
8648 set_bit(BNXT_STATE_OPEN, &bp->state);
8649 bnxt_enable_int(bp);
8650 /* Enable TX queues */
8651 bnxt_tx_enable(bp);
8652 mod_timer(&bp->timer, jiffies + bp->current_interval);
8653 /* Poll link status and check for SFP+ module status */
8654 bnxt_get_port_module_status(bp);
8655
8656 /* VF-reps may need to be re-opened after the PF is re-opened */
8657 if (BNXT_PF(bp))
8658 bnxt_vf_reps_open(bp);
8659 return 0;
8660
8661 open_err:
8662 bnxt_debug_dev_exit(bp);
8663 bnxt_disable_napi(bp);
8664
8665 open_err_irq:
8666 bnxt_del_napi(bp);
8667
8668 open_err_free_mem:
8669 bnxt_free_skbs(bp);
8670 bnxt_free_irq(bp);
8671 bnxt_free_mem(bp, true);
8672 return rc;
8673 }
8674
8675 /* rtnl_lock held */
8676 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8677 {
8678 int rc = 0;
8679
8680 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
8681 if (rc) {
8682 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
8683 dev_close(bp->dev);
8684 }
8685 return rc;
8686 }
8687
8688 /* rtnl_lock held, open the NIC half way by allocating all resources, but
8689 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline
8690 * self tests.
8691 */
8692 int bnxt_half_open_nic(struct bnxt *bp)
8693 {
8694 int rc = 0;
8695
8696 rc = bnxt_alloc_mem(bp, false);
8697 if (rc) {
8698 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8699 goto half_open_err;
8700 }
8701 rc = bnxt_init_nic(bp, false);
8702 if (rc) {
8703 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8704 goto half_open_err;
8705 }
8706 return 0;
8707
8708 half_open_err:
8709 bnxt_free_skbs(bp);
8710 bnxt_free_mem(bp, false);
8711 dev_close(bp->dev);
8712 return rc;
8713 }
8714
8715 /* rtnl_lock held, this call can only be made after a previous successful
8716 * call to bnxt_half_open_nic().
8717 */
8718 void bnxt_half_close_nic(struct bnxt *bp)
8719 {
8720 bnxt_hwrm_resource_free(bp, false, false);
8721 bnxt_free_skbs(bp);
8722 bnxt_free_mem(bp, false);
8723 }
8724
8725 static int bnxt_open(struct net_device *dev)
8726 {
8727 struct bnxt *bp = netdev_priv(dev);
8728 int rc;
8729
8730 bnxt_hwrm_if_change(bp, true);
8731 rc = __bnxt_open_nic(bp, true, true);
8732 if (rc)
8733 bnxt_hwrm_if_change(bp, false);
8734
8735 bnxt_hwmon_open(bp);
8736
8737 return rc;
8738 }
8739
8740 static bool bnxt_drv_busy(struct bnxt *bp)
8741 {
8742 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
8743 test_bit(BNXT_STATE_READ_STATS, &bp->state));
8744 }
8745
8746 static void bnxt_get_ring_stats(struct bnxt *bp,
8747 struct rtnl_link_stats64 *stats);
8748
8749 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
8750 bool link_re_init)
8751 {
8752 /* Close the VF-reps before closing PF */
8753 if (BNXT_PF(bp))
8754 bnxt_vf_reps_close(bp);
8755
8756 /* Change device state to avoid TX queue wake up's */
8757 bnxt_tx_disable(bp);
8758
8759 clear_bit(BNXT_STATE_OPEN, &bp->state);
8760 smp_mb__after_atomic();
8761 while (bnxt_drv_busy(bp))
8762 msleep(20);
8763
8764 /* Flush rings and and disable interrupts */
8765 bnxt_shutdown_nic(bp, irq_re_init);
8766
8767 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
8768
8769 bnxt_debug_dev_exit(bp);
8770 bnxt_disable_napi(bp);
8771 del_timer_sync(&bp->timer);
8772 bnxt_free_skbs(bp);
8773
8774 /* Save ring stats before shutdown */
8775 if (bp->bnapi)
8776 bnxt_get_ring_stats(bp, &bp->net_stats_prev);
8777 if (irq_re_init) {
8778 bnxt_free_irq(bp);
8779 bnxt_del_napi(bp);
8780 }
8781 bnxt_free_mem(bp, irq_re_init);
8782 }
8783
8784 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8785 {
8786 int rc = 0;
8787
8788 #ifdef CONFIG_BNXT_SRIOV
8789 if (bp->sriov_cfg) {
8790 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
8791 !bp->sriov_cfg,
8792 BNXT_SRIOV_CFG_WAIT_TMO);
8793 if (rc)
8794 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
8795 }
8796 #endif
8797 __bnxt_close_nic(bp, irq_re_init, link_re_init);
8798 return rc;
8799 }
8800
8801 static int bnxt_close(struct net_device *dev)
8802 {
8803 struct bnxt *bp = netdev_priv(dev);
8804
8805 bnxt_hwmon_close(bp);
8806 bnxt_close_nic(bp, true, true);
8807 bnxt_hwrm_shutdown_link(bp);
8808 bnxt_hwrm_if_change(bp, false);
8809 return 0;
8810 }
8811
8812 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
8813 u16 *val)
8814 {
8815 struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
8816 struct hwrm_port_phy_mdio_read_input req = {0};
8817 int rc;
8818
8819 if (bp->hwrm_spec_code < 0x10a00)
8820 return -EOPNOTSUPP;
8821
8822 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
8823 req.port_id = cpu_to_le16(bp->pf.port_id);
8824 req.phy_addr = phy_addr;
8825 req.reg_addr = cpu_to_le16(reg & 0x1f);
8826 if (mdio_phy_id_is_c45(phy_addr)) {
8827 req.cl45_mdio = 1;
8828 req.phy_addr = mdio_phy_id_prtad(phy_addr);
8829 req.dev_addr = mdio_phy_id_devad(phy_addr);
8830 req.reg_addr = cpu_to_le16(reg);
8831 }
8832
8833 mutex_lock(&bp->hwrm_cmd_lock);
8834 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8835 if (!rc)
8836 *val = le16_to_cpu(resp->reg_data);
8837 mutex_unlock(&bp->hwrm_cmd_lock);
8838 return rc;
8839 }
8840
8841 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
8842 u16 val)
8843 {
8844 struct hwrm_port_phy_mdio_write_input req = {0};
8845
8846 if (bp->hwrm_spec_code < 0x10a00)
8847 return -EOPNOTSUPP;
8848
8849 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
8850 req.port_id = cpu_to_le16(bp->pf.port_id);
8851 req.phy_addr = phy_addr;
8852 req.reg_addr = cpu_to_le16(reg & 0x1f);
8853 if (mdio_phy_id_is_c45(phy_addr)) {
8854 req.cl45_mdio = 1;
8855 req.phy_addr = mdio_phy_id_prtad(phy_addr);
8856 req.dev_addr = mdio_phy_id_devad(phy_addr);
8857 req.reg_addr = cpu_to_le16(reg);
8858 }
8859 req.reg_data = cpu_to_le16(val);
8860
8861 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8862 }
8863
8864 /* rtnl_lock held */
8865 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
8866 {
8867 struct mii_ioctl_data *mdio = if_mii(ifr);
8868 struct bnxt *bp = netdev_priv(dev);
8869 int rc;
8870
8871 switch (cmd) {
8872 case SIOCGMIIPHY:
8873 mdio->phy_id = bp->link_info.phy_addr;
8874
8875 /* fallthru */
8876 case SIOCGMIIREG: {
8877 u16 mii_regval = 0;
8878
8879 if (!netif_running(dev))
8880 return -EAGAIN;
8881
8882 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
8883 &mii_regval);
8884 mdio->val_out = mii_regval;
8885 return rc;
8886 }
8887
8888 case SIOCSMIIREG:
8889 if (!netif_running(dev))
8890 return -EAGAIN;
8891
8892 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
8893 mdio->val_in);
8894
8895 default:
8896 /* do nothing */
8897 break;
8898 }
8899 return -EOPNOTSUPP;
8900 }
8901
8902 static void bnxt_get_ring_stats(struct bnxt *bp,
8903 struct rtnl_link_stats64 *stats)
8904 {
8905 int i;
8906
8907
8908 for (i = 0; i < bp->cp_nr_rings; i++) {
8909 struct bnxt_napi *bnapi = bp->bnapi[i];
8910 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8911 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
8912
8913 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
8914 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
8915 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
8916
8917 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
8918 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
8919 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
8920
8921 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
8922 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
8923 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
8924
8925 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
8926 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
8927 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
8928
8929 stats->rx_missed_errors +=
8930 le64_to_cpu(hw_stats->rx_discard_pkts);
8931
8932 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
8933
8934 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
8935 }
8936 }
8937
8938 static void bnxt_add_prev_stats(struct bnxt *bp,
8939 struct rtnl_link_stats64 *stats)
8940 {
8941 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
8942
8943 stats->rx_packets += prev_stats->rx_packets;
8944 stats->tx_packets += prev_stats->tx_packets;
8945 stats->rx_bytes += prev_stats->rx_bytes;
8946 stats->tx_bytes += prev_stats->tx_bytes;
8947 stats->rx_missed_errors += prev_stats->rx_missed_errors;
8948 stats->multicast += prev_stats->multicast;
8949 stats->tx_dropped += prev_stats->tx_dropped;
8950 }
8951
8952 static void
8953 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
8954 {
8955 struct bnxt *bp = netdev_priv(dev);
8956
8957 set_bit(BNXT_STATE_READ_STATS, &bp->state);
8958 /* Make sure bnxt_close_nic() sees that we are reading stats before
8959 * we check the BNXT_STATE_OPEN flag.
8960 */
8961 smp_mb__after_atomic();
8962 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
8963 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8964 *stats = bp->net_stats_prev;
8965 return;
8966 }
8967
8968 bnxt_get_ring_stats(bp, stats);
8969 bnxt_add_prev_stats(bp, stats);
8970
8971 if (bp->flags & BNXT_FLAG_PORT_STATS) {
8972 struct rx_port_stats *rx = bp->hw_rx_port_stats;
8973 struct tx_port_stats *tx = bp->hw_tx_port_stats;
8974
8975 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
8976 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
8977 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
8978 le64_to_cpu(rx->rx_ovrsz_frames) +
8979 le64_to_cpu(rx->rx_runt_frames);
8980 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
8981 le64_to_cpu(rx->rx_jbr_frames);
8982 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
8983 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
8984 stats->tx_errors = le64_to_cpu(tx->tx_err);
8985 }
8986 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8987 }
8988
8989 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
8990 {
8991 struct net_device *dev = bp->dev;
8992 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8993 struct netdev_hw_addr *ha;
8994 u8 *haddr;
8995 int mc_count = 0;
8996 bool update = false;
8997 int off = 0;
8998
8999 netdev_for_each_mc_addr(ha, dev) {
9000 if (mc_count >= BNXT_MAX_MC_ADDRS) {
9001 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9002 vnic->mc_list_count = 0;
9003 return false;
9004 }
9005 haddr = ha->addr;
9006 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
9007 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
9008 update = true;
9009 }
9010 off += ETH_ALEN;
9011 mc_count++;
9012 }
9013 if (mc_count)
9014 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
9015
9016 if (mc_count != vnic->mc_list_count) {
9017 vnic->mc_list_count = mc_count;
9018 update = true;
9019 }
9020 return update;
9021 }
9022
9023 static bool bnxt_uc_list_updated(struct bnxt *bp)
9024 {
9025 struct net_device *dev = bp->dev;
9026 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9027 struct netdev_hw_addr *ha;
9028 int off = 0;
9029
9030 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
9031 return true;
9032
9033 netdev_for_each_uc_addr(ha, dev) {
9034 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
9035 return true;
9036
9037 off += ETH_ALEN;
9038 }
9039 return false;
9040 }
9041
9042 static void bnxt_set_rx_mode(struct net_device *dev)
9043 {
9044 struct bnxt *bp = netdev_priv(dev);
9045 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9046 u32 mask = vnic->rx_mask;
9047 bool mc_update = false;
9048 bool uc_update;
9049
9050 if (!netif_running(dev))
9051 return;
9052
9053 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
9054 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
9055 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
9056 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
9057
9058 if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
9059 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9060
9061 uc_update = bnxt_uc_list_updated(bp);
9062
9063 if (dev->flags & IFF_BROADCAST)
9064 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9065 if (dev->flags & IFF_ALLMULTI) {
9066 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9067 vnic->mc_list_count = 0;
9068 } else {
9069 mc_update = bnxt_mc_list_updated(bp, &mask);
9070 }
9071
9072 if (mask != vnic->rx_mask || uc_update || mc_update) {
9073 vnic->rx_mask = mask;
9074
9075 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
9076 bnxt_queue_sp_work(bp);
9077 }
9078 }
9079
9080 static int bnxt_cfg_rx_mode(struct bnxt *bp)
9081 {
9082 struct net_device *dev = bp->dev;
9083 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9084 struct netdev_hw_addr *ha;
9085 int i, off = 0, rc;
9086 bool uc_update;
9087
9088 netif_addr_lock_bh(dev);
9089 uc_update = bnxt_uc_list_updated(bp);
9090 netif_addr_unlock_bh(dev);
9091
9092 if (!uc_update)
9093 goto skip_uc;
9094
9095 mutex_lock(&bp->hwrm_cmd_lock);
9096 for (i = 1; i < vnic->uc_filter_count; i++) {
9097 struct hwrm_cfa_l2_filter_free_input req = {0};
9098
9099 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
9100 -1);
9101
9102 req.l2_filter_id = vnic->fw_l2_filter_id[i];
9103
9104 rc = _hwrm_send_message(bp, &req, sizeof(req),
9105 HWRM_CMD_TIMEOUT);
9106 }
9107 mutex_unlock(&bp->hwrm_cmd_lock);
9108
9109 vnic->uc_filter_count = 1;
9110
9111 netif_addr_lock_bh(dev);
9112 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
9113 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9114 } else {
9115 netdev_for_each_uc_addr(ha, dev) {
9116 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
9117 off += ETH_ALEN;
9118 vnic->uc_filter_count++;
9119 }
9120 }
9121 netif_addr_unlock_bh(dev);
9122
9123 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
9124 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
9125 if (rc) {
9126 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
9127 rc);
9128 vnic->uc_filter_count = i;
9129 return rc;
9130 }
9131 }
9132
9133 skip_uc:
9134 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9135 if (rc && vnic->mc_list_count) {
9136 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
9137 rc);
9138 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9139 vnic->mc_list_count = 0;
9140 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9141 }
9142 if (rc)
9143 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
9144 rc);
9145
9146 return rc;
9147 }
9148
9149 static bool bnxt_can_reserve_rings(struct bnxt *bp)
9150 {
9151 #ifdef CONFIG_BNXT_SRIOV
9152 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
9153 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9154
9155 /* No minimum rings were provisioned by the PF. Don't
9156 * reserve rings by default when device is down.
9157 */
9158 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
9159 return true;
9160
9161 if (!netif_running(bp->dev))
9162 return false;
9163 }
9164 #endif
9165 return true;
9166 }
9167
9168 /* If the chip and firmware supports RFS */
9169 static bool bnxt_rfs_supported(struct bnxt *bp)
9170 {
9171 if (bp->flags & BNXT_FLAG_CHIP_P5) {
9172 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX)
9173 return true;
9174 return false;
9175 }
9176 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
9177 return true;
9178 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9179 return true;
9180 return false;
9181 }
9182
9183 /* If runtime conditions support RFS */
9184 static bool bnxt_rfs_capable(struct bnxt *bp)
9185 {
9186 #ifdef CONFIG_RFS_ACCEL
9187 int vnics, max_vnics, max_rss_ctxs;
9188
9189 if (bp->flags & BNXT_FLAG_CHIP_P5)
9190 return bnxt_rfs_supported(bp);
9191 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9192 return false;
9193
9194 vnics = 1 + bp->rx_nr_rings;
9195 max_vnics = bnxt_get_max_func_vnics(bp);
9196 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9197
9198 /* RSS contexts not a limiting factor */
9199 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9200 max_rss_ctxs = max_vnics;
9201 if (vnics > max_vnics || vnics > max_rss_ctxs) {
9202 if (bp->rx_nr_rings > 1)
9203 netdev_warn(bp->dev,
9204 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9205 min(max_rss_ctxs - 1, max_vnics - 1));
9206 return false;
9207 }
9208
9209 if (!BNXT_NEW_RM(bp))
9210 return true;
9211
9212 if (vnics == bp->hw_resc.resv_vnics)
9213 return true;
9214
9215 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9216 if (vnics <= bp->hw_resc.resv_vnics)
9217 return true;
9218
9219 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9220 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9221 return false;
9222 #else
9223 return false;
9224 #endif
9225 }
9226
9227 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9228 netdev_features_t features)
9229 {
9230 struct bnxt *bp = netdev_priv(dev);
9231
9232 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9233 features &= ~NETIF_F_NTUPLE;
9234
9235 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9236 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9237
9238 if (!(features & NETIF_F_GRO))
9239 features &= ~NETIF_F_GRO_HW;
9240
9241 if (features & NETIF_F_GRO_HW)
9242 features &= ~NETIF_F_LRO;
9243
9244 /* Both CTAG and STAG VLAN accelaration on the RX side have to be
9245 * turned on or off together.
9246 */
9247 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
9248 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
9249 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9250 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9251 NETIF_F_HW_VLAN_STAG_RX);
9252 else
9253 features |= NETIF_F_HW_VLAN_CTAG_RX |
9254 NETIF_F_HW_VLAN_STAG_RX;
9255 }
9256 #ifdef CONFIG_BNXT_SRIOV
9257 if (BNXT_VF(bp)) {
9258 if (bp->vf.vlan) {
9259 features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9260 NETIF_F_HW_VLAN_STAG_RX);
9261 }
9262 }
9263 #endif
9264 return features;
9265 }
9266
9267 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9268 {
9269 struct bnxt *bp = netdev_priv(dev);
9270 u32 flags = bp->flags;
9271 u32 changes;
9272 int rc = 0;
9273 bool re_init = false;
9274 bool update_tpa = false;
9275
9276 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9277 if (features & NETIF_F_GRO_HW)
9278 flags |= BNXT_FLAG_GRO;
9279 else if (features & NETIF_F_LRO)
9280 flags |= BNXT_FLAG_LRO;
9281
9282 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9283 flags &= ~BNXT_FLAG_TPA;
9284
9285 if (features & NETIF_F_HW_VLAN_CTAG_RX)
9286 flags |= BNXT_FLAG_STRIP_VLAN;
9287
9288 if (features & NETIF_F_NTUPLE)
9289 flags |= BNXT_FLAG_RFS;
9290
9291 changes = flags ^ bp->flags;
9292 if (changes & BNXT_FLAG_TPA) {
9293 update_tpa = true;
9294 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9295 (flags & BNXT_FLAG_TPA) == 0)
9296 re_init = true;
9297 }
9298
9299 if (changes & ~BNXT_FLAG_TPA)
9300 re_init = true;
9301
9302 if (flags != bp->flags) {
9303 u32 old_flags = bp->flags;
9304
9305 bp->flags = flags;
9306
9307 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9308 if (update_tpa)
9309 bnxt_set_ring_params(bp);
9310 return rc;
9311 }
9312
9313 if (re_init) {
9314 bnxt_close_nic(bp, false, false);
9315 if (update_tpa)
9316 bnxt_set_ring_params(bp);
9317
9318 return bnxt_open_nic(bp, false, false);
9319 }
9320 if (update_tpa) {
9321 rc = bnxt_set_tpa(bp,
9322 (flags & BNXT_FLAG_TPA) ?
9323 true : false);
9324 if (rc)
9325 bp->flags = old_flags;
9326 }
9327 }
9328 return rc;
9329 }
9330
9331 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9332 u32 ring_id, u32 *prod, u32 *cons)
9333 {
9334 struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9335 struct hwrm_dbg_ring_info_get_input req = {0};
9336 int rc;
9337
9338 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9339 req.ring_type = ring_type;
9340 req.fw_ring_id = cpu_to_le32(ring_id);
9341 mutex_lock(&bp->hwrm_cmd_lock);
9342 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9343 if (!rc) {
9344 *prod = le32_to_cpu(resp->producer_index);
9345 *cons = le32_to_cpu(resp->consumer_index);
9346 }
9347 mutex_unlock(&bp->hwrm_cmd_lock);
9348 return rc;
9349 }
9350
9351 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9352 {
9353 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9354 int i = bnapi->index;
9355
9356 if (!txr)
9357 return;
9358
9359 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9360 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9361 txr->tx_cons);
9362 }
9363
9364 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9365 {
9366 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9367 int i = bnapi->index;
9368
9369 if (!rxr)
9370 return;
9371
9372 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9373 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9374 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9375 rxr->rx_sw_agg_prod);
9376 }
9377
9378 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9379 {
9380 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9381 int i = bnapi->index;
9382
9383 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9384 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9385 }
9386
9387 static void bnxt_dbg_dump_states(struct bnxt *bp)
9388 {
9389 int i;
9390 struct bnxt_napi *bnapi;
9391
9392 for (i = 0; i < bp->cp_nr_rings; i++) {
9393 bnapi = bp->bnapi[i];
9394 if (netif_msg_drv(bp)) {
9395 bnxt_dump_tx_sw_state(bnapi);
9396 bnxt_dump_rx_sw_state(bnapi);
9397 bnxt_dump_cp_sw_state(bnapi);
9398 }
9399 }
9400 }
9401
9402 static void bnxt_reset_task(struct bnxt *bp, bool silent)
9403 {
9404 if (!silent)
9405 bnxt_dbg_dump_states(bp);
9406 if (netif_running(bp->dev)) {
9407 int rc;
9408
9409 if (!silent)
9410 bnxt_ulp_stop(bp);
9411 bnxt_close_nic(bp, false, false);
9412 rc = bnxt_open_nic(bp, false, false);
9413 if (!silent && !rc)
9414 bnxt_ulp_start(bp);
9415 }
9416 }
9417
9418 static void bnxt_tx_timeout(struct net_device *dev)
9419 {
9420 struct bnxt *bp = netdev_priv(dev);
9421
9422 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
9423 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
9424 bnxt_queue_sp_work(bp);
9425 }
9426
9427 static void bnxt_timer(struct timer_list *t)
9428 {
9429 struct bnxt *bp = from_timer(bp, t, timer);
9430 struct net_device *dev = bp->dev;
9431
9432 if (!netif_running(dev))
9433 return;
9434
9435 if (atomic_read(&bp->intr_sem) != 0)
9436 goto bnxt_restart_timer;
9437
9438 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
9439 bp->stats_coal_ticks) {
9440 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
9441 bnxt_queue_sp_work(bp);
9442 }
9443
9444 if (bnxt_tc_flower_enabled(bp)) {
9445 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
9446 bnxt_queue_sp_work(bp);
9447 }
9448
9449 if (bp->link_info.phy_retry) {
9450 if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
9451 bp->link_info.phy_retry = 0;
9452 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
9453 } else {
9454 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
9455 bnxt_queue_sp_work(bp);
9456 }
9457 }
9458
9459 if ((bp->flags & BNXT_FLAG_CHIP_P5) && netif_carrier_ok(dev)) {
9460 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
9461 bnxt_queue_sp_work(bp);
9462 }
9463 bnxt_restart_timer:
9464 mod_timer(&bp->timer, jiffies + bp->current_interval);
9465 }
9466
9467 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
9468 {
9469 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
9470 * set. If the device is being closed, bnxt_close() may be holding
9471 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
9472 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
9473 */
9474 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9475 rtnl_lock();
9476 }
9477
9478 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
9479 {
9480 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9481 rtnl_unlock();
9482 }
9483
9484 /* Only called from bnxt_sp_task() */
9485 static void bnxt_reset(struct bnxt *bp, bool silent)
9486 {
9487 bnxt_rtnl_lock_sp(bp);
9488 if (test_bit(BNXT_STATE_OPEN, &bp->state))
9489 bnxt_reset_task(bp, silent);
9490 bnxt_rtnl_unlock_sp(bp);
9491 }
9492
9493 static void bnxt_chk_missed_irq(struct bnxt *bp)
9494 {
9495 int i;
9496
9497 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9498 return;
9499
9500 for (i = 0; i < bp->cp_nr_rings; i++) {
9501 struct bnxt_napi *bnapi = bp->bnapi[i];
9502 struct bnxt_cp_ring_info *cpr;
9503 u32 fw_ring_id;
9504 int j;
9505
9506 if (!bnapi)
9507 continue;
9508
9509 cpr = &bnapi->cp_ring;
9510 for (j = 0; j < 2; j++) {
9511 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
9512 u32 val[2];
9513
9514 if (!cpr2 || cpr2->has_more_work ||
9515 !bnxt_has_work(bp, cpr2))
9516 continue;
9517
9518 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
9519 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
9520 continue;
9521 }
9522 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
9523 bnxt_dbg_hwrm_ring_info_get(bp,
9524 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
9525 fw_ring_id, &val[0], &val[1]);
9526 cpr->missed_irqs++;
9527 }
9528 }
9529 }
9530
9531 static void bnxt_cfg_ntp_filters(struct bnxt *);
9532
9533 static void bnxt_sp_task(struct work_struct *work)
9534 {
9535 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
9536
9537 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9538 smp_mb__after_atomic();
9539 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9540 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9541 return;
9542 }
9543
9544 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
9545 bnxt_cfg_rx_mode(bp);
9546
9547 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
9548 bnxt_cfg_ntp_filters(bp);
9549 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
9550 bnxt_hwrm_exec_fwd_req(bp);
9551 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9552 bnxt_hwrm_tunnel_dst_port_alloc(
9553 bp, bp->vxlan_port,
9554 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9555 }
9556 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9557 bnxt_hwrm_tunnel_dst_port_free(
9558 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9559 }
9560 if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9561 bnxt_hwrm_tunnel_dst_port_alloc(
9562 bp, bp->nge_port,
9563 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9564 }
9565 if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9566 bnxt_hwrm_tunnel_dst_port_free(
9567 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9568 }
9569 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
9570 bnxt_hwrm_port_qstats(bp);
9571 bnxt_hwrm_port_qstats_ext(bp);
9572 bnxt_hwrm_pcie_qstats(bp);
9573 }
9574
9575 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
9576 int rc;
9577
9578 mutex_lock(&bp->link_lock);
9579 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
9580 &bp->sp_event))
9581 bnxt_hwrm_phy_qcaps(bp);
9582
9583 rc = bnxt_update_link(bp, true);
9584 mutex_unlock(&bp->link_lock);
9585 if (rc)
9586 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
9587 rc);
9588 }
9589 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
9590 int rc;
9591
9592 mutex_lock(&bp->link_lock);
9593 rc = bnxt_update_phy_setting(bp);
9594 mutex_unlock(&bp->link_lock);
9595 if (rc) {
9596 netdev_warn(bp->dev, "update phy settings retry failed\n");
9597 } else {
9598 bp->link_info.phy_retry = false;
9599 netdev_info(bp->dev, "update phy settings retry succeeded\n");
9600 }
9601 }
9602 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
9603 mutex_lock(&bp->link_lock);
9604 bnxt_get_port_module_status(bp);
9605 mutex_unlock(&bp->link_lock);
9606 }
9607
9608 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
9609 bnxt_tc_flow_stats_work(bp);
9610
9611 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
9612 bnxt_chk_missed_irq(bp);
9613
9614 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They
9615 * must be the last functions to be called before exiting.
9616 */
9617 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
9618 bnxt_reset(bp, false);
9619
9620 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
9621 bnxt_reset(bp, true);
9622
9623 smp_mb__before_atomic();
9624 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9625 }
9626
9627 /* Under rtnl_lock */
9628 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
9629 int tx_xdp)
9630 {
9631 int max_rx, max_tx, tx_sets = 1;
9632 int tx_rings_needed, stats;
9633 int rx_rings = rx;
9634 int cp, vnics, rc;
9635
9636 if (tcs)
9637 tx_sets = tcs;
9638
9639 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
9640 if (rc)
9641 return rc;
9642
9643 if (max_rx < rx)
9644 return -ENOMEM;
9645
9646 tx_rings_needed = tx * tx_sets + tx_xdp;
9647 if (max_tx < tx_rings_needed)
9648 return -ENOMEM;
9649
9650 vnics = 1;
9651 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
9652 vnics += rx_rings;
9653
9654 if (bp->flags & BNXT_FLAG_AGG_RINGS)
9655 rx_rings <<= 1;
9656 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
9657 stats = cp;
9658 if (BNXT_NEW_RM(bp)) {
9659 cp += bnxt_get_ulp_msix_num(bp);
9660 stats += bnxt_get_ulp_stat_ctxs(bp);
9661 }
9662 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
9663 stats, vnics);
9664 }
9665
9666 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
9667 {
9668 if (bp->bar2) {
9669 pci_iounmap(pdev, bp->bar2);
9670 bp->bar2 = NULL;
9671 }
9672
9673 if (bp->bar1) {
9674 pci_iounmap(pdev, bp->bar1);
9675 bp->bar1 = NULL;
9676 }
9677
9678 if (bp->bar0) {
9679 pci_iounmap(pdev, bp->bar0);
9680 bp->bar0 = NULL;
9681 }
9682 }
9683
9684 static void bnxt_cleanup_pci(struct bnxt *bp)
9685 {
9686 bnxt_unmap_bars(bp, bp->pdev);
9687 pci_release_regions(bp->pdev);
9688 pci_disable_device(bp->pdev);
9689 }
9690
9691 static void bnxt_init_dflt_coal(struct bnxt *bp)
9692 {
9693 struct bnxt_coal *coal;
9694
9695 /* Tick values in micro seconds.
9696 * 1 coal_buf x bufs_per_record = 1 completion record.
9697 */
9698 coal = &bp->rx_coal;
9699 coal->coal_ticks = 10;
9700 coal->coal_bufs = 30;
9701 coal->coal_ticks_irq = 1;
9702 coal->coal_bufs_irq = 2;
9703 coal->idle_thresh = 50;
9704 coal->bufs_per_record = 2;
9705 coal->budget = 64; /* NAPI budget */
9706
9707 coal = &bp->tx_coal;
9708 coal->coal_ticks = 28;
9709 coal->coal_bufs = 30;
9710 coal->coal_ticks_irq = 2;
9711 coal->coal_bufs_irq = 2;
9712 coal->bufs_per_record = 1;
9713
9714 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
9715 }
9716
9717 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
9718 {
9719 int rc;
9720 struct bnxt *bp = netdev_priv(dev);
9721
9722 SET_NETDEV_DEV(dev, &pdev->dev);
9723
9724 /* enable device (incl. PCI PM wakeup), and bus-mastering */
9725 rc = pci_enable_device(pdev);
9726 if (rc) {
9727 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
9728 goto init_err;
9729 }
9730
9731 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
9732 dev_err(&pdev->dev,
9733 "Cannot find PCI device base address, aborting\n");
9734 rc = -ENODEV;
9735 goto init_err_disable;
9736 }
9737
9738 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
9739 if (rc) {
9740 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
9741 goto init_err_disable;
9742 }
9743
9744 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
9745 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
9746 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
9747 goto init_err_disable;
9748 }
9749
9750 pci_set_master(pdev);
9751
9752 bp->dev = dev;
9753 bp->pdev = pdev;
9754
9755 bp->bar0 = pci_ioremap_bar(pdev, 0);
9756 if (!bp->bar0) {
9757 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
9758 rc = -ENOMEM;
9759 goto init_err_release;
9760 }
9761
9762 bp->bar1 = pci_ioremap_bar(pdev, 2);
9763 if (!bp->bar1) {
9764 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
9765 rc = -ENOMEM;
9766 goto init_err_release;
9767 }
9768
9769 bp->bar2 = pci_ioremap_bar(pdev, 4);
9770 if (!bp->bar2) {
9771 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
9772 rc = -ENOMEM;
9773 goto init_err_release;
9774 }
9775
9776 pci_enable_pcie_error_reporting(pdev);
9777
9778 INIT_WORK(&bp->sp_task, bnxt_sp_task);
9779
9780 spin_lock_init(&bp->ntp_fltr_lock);
9781 #if BITS_PER_LONG == 32
9782 spin_lock_init(&bp->db_lock);
9783 #endif
9784
9785 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
9786 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
9787
9788 bnxt_init_dflt_coal(bp);
9789
9790 timer_setup(&bp->timer, bnxt_timer, 0);
9791 bp->current_interval = BNXT_TIMER_INTERVAL;
9792
9793 clear_bit(BNXT_STATE_OPEN, &bp->state);
9794 return 0;
9795
9796 init_err_release:
9797 bnxt_unmap_bars(bp, pdev);
9798 pci_release_regions(pdev);
9799
9800 init_err_disable:
9801 pci_disable_device(pdev);
9802
9803 init_err:
9804 return rc;
9805 }
9806
9807 /* rtnl_lock held */
9808 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
9809 {
9810 struct sockaddr *addr = p;
9811 struct bnxt *bp = netdev_priv(dev);
9812 int rc = 0;
9813
9814 if (!is_valid_ether_addr(addr->sa_data))
9815 return -EADDRNOTAVAIL;
9816
9817 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
9818 return 0;
9819
9820 rc = bnxt_approve_mac(bp, addr->sa_data, true);
9821 if (rc)
9822 return rc;
9823
9824 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
9825 if (netif_running(dev)) {
9826 bnxt_close_nic(bp, false, false);
9827 rc = bnxt_open_nic(bp, false, false);
9828 }
9829
9830 return rc;
9831 }
9832
9833 /* rtnl_lock held */
9834 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
9835 {
9836 struct bnxt *bp = netdev_priv(dev);
9837
9838 if (netif_running(dev))
9839 bnxt_close_nic(bp, false, false);
9840
9841 dev->mtu = new_mtu;
9842 bnxt_set_ring_params(bp);
9843
9844 if (netif_running(dev))
9845 return bnxt_open_nic(bp, false, false);
9846
9847 return 0;
9848 }
9849
9850 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
9851 {
9852 struct bnxt *bp = netdev_priv(dev);
9853 bool sh = false;
9854 int rc;
9855
9856 if (tc > bp->max_tc) {
9857 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
9858 tc, bp->max_tc);
9859 return -EINVAL;
9860 }
9861
9862 if (netdev_get_num_tc(dev) == tc)
9863 return 0;
9864
9865 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9866 sh = true;
9867
9868 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
9869 sh, tc, bp->tx_nr_rings_xdp);
9870 if (rc)
9871 return rc;
9872
9873 /* Needs to close the device and do hw resource re-allocations */
9874 if (netif_running(bp->dev))
9875 bnxt_close_nic(bp, true, false);
9876
9877 if (tc) {
9878 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
9879 netdev_set_num_tc(dev, tc);
9880 } else {
9881 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
9882 netdev_reset_tc(dev);
9883 }
9884 bp->tx_nr_rings += bp->tx_nr_rings_xdp;
9885 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9886 bp->tx_nr_rings + bp->rx_nr_rings;
9887
9888 if (netif_running(bp->dev))
9889 return bnxt_open_nic(bp, true, false);
9890
9891 return 0;
9892 }
9893
9894 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
9895 void *cb_priv)
9896 {
9897 struct bnxt *bp = cb_priv;
9898
9899 if (!bnxt_tc_flower_enabled(bp) ||
9900 !tc_cls_can_offload_and_chain0(bp->dev, type_data))
9901 return -EOPNOTSUPP;
9902
9903 switch (type) {
9904 case TC_SETUP_CLSFLOWER:
9905 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
9906 default:
9907 return -EOPNOTSUPP;
9908 }
9909 }
9910
9911 static LIST_HEAD(bnxt_block_cb_list);
9912
9913 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
9914 void *type_data)
9915 {
9916 struct bnxt *bp = netdev_priv(dev);
9917
9918 switch (type) {
9919 case TC_SETUP_BLOCK:
9920 return flow_block_cb_setup_simple(type_data,
9921 &bnxt_block_cb_list,
9922 bnxt_setup_tc_block_cb,
9923 bp, bp, true);
9924 case TC_SETUP_QDISC_MQPRIO: {
9925 struct tc_mqprio_qopt *mqprio = type_data;
9926
9927 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
9928
9929 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
9930 }
9931 default:
9932 return -EOPNOTSUPP;
9933 }
9934 }
9935
9936 #ifdef CONFIG_RFS_ACCEL
9937 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
9938 struct bnxt_ntuple_filter *f2)
9939 {
9940 struct flow_keys *keys1 = &f1->fkeys;
9941 struct flow_keys *keys2 = &f2->fkeys;
9942
9943 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
9944 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
9945 keys1->ports.ports == keys2->ports.ports &&
9946 keys1->basic.ip_proto == keys2->basic.ip_proto &&
9947 keys1->basic.n_proto == keys2->basic.n_proto &&
9948 keys1->control.flags == keys2->control.flags &&
9949 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
9950 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
9951 return true;
9952
9953 return false;
9954 }
9955
9956 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
9957 u16 rxq_index, u32 flow_id)
9958 {
9959 struct bnxt *bp = netdev_priv(dev);
9960 struct bnxt_ntuple_filter *fltr, *new_fltr;
9961 struct flow_keys *fkeys;
9962 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
9963 int rc = 0, idx, bit_id, l2_idx = 0;
9964 struct hlist_head *head;
9965
9966 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
9967 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9968 int off = 0, j;
9969
9970 netif_addr_lock_bh(dev);
9971 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
9972 if (ether_addr_equal(eth->h_dest,
9973 vnic->uc_list + off)) {
9974 l2_idx = j + 1;
9975 break;
9976 }
9977 }
9978 netif_addr_unlock_bh(dev);
9979 if (!l2_idx)
9980 return -EINVAL;
9981 }
9982 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
9983 if (!new_fltr)
9984 return -ENOMEM;
9985
9986 fkeys = &new_fltr->fkeys;
9987 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
9988 rc = -EPROTONOSUPPORT;
9989 goto err_free;
9990 }
9991
9992 if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
9993 fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
9994 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
9995 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
9996 rc = -EPROTONOSUPPORT;
9997 goto err_free;
9998 }
9999 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
10000 bp->hwrm_spec_code < 0x10601) {
10001 rc = -EPROTONOSUPPORT;
10002 goto err_free;
10003 }
10004 if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
10005 bp->hwrm_spec_code < 0x10601) {
10006 rc = -EPROTONOSUPPORT;
10007 goto err_free;
10008 }
10009
10010 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
10011 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
10012
10013 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
10014 head = &bp->ntp_fltr_hash_tbl[idx];
10015 rcu_read_lock();
10016 hlist_for_each_entry_rcu(fltr, head, hash) {
10017 if (bnxt_fltr_match(fltr, new_fltr)) {
10018 rcu_read_unlock();
10019 rc = 0;
10020 goto err_free;
10021 }
10022 }
10023 rcu_read_unlock();
10024
10025 spin_lock_bh(&bp->ntp_fltr_lock);
10026 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
10027 BNXT_NTP_FLTR_MAX_FLTR, 0);
10028 if (bit_id < 0) {
10029 spin_unlock_bh(&bp->ntp_fltr_lock);
10030 rc = -ENOMEM;
10031 goto err_free;
10032 }
10033
10034 new_fltr->sw_id = (u16)bit_id;
10035 new_fltr->flow_id = flow_id;
10036 new_fltr->l2_fltr_idx = l2_idx;
10037 new_fltr->rxq = rxq_index;
10038 hlist_add_head_rcu(&new_fltr->hash, head);
10039 bp->ntp_fltr_count++;
10040 spin_unlock_bh(&bp->ntp_fltr_lock);
10041
10042 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10043 bnxt_queue_sp_work(bp);
10044
10045 return new_fltr->sw_id;
10046
10047 err_free:
10048 kfree(new_fltr);
10049 return rc;
10050 }
10051
10052 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
10053 {
10054 int i;
10055
10056 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
10057 struct hlist_head *head;
10058 struct hlist_node *tmp;
10059 struct bnxt_ntuple_filter *fltr;
10060 int rc;
10061
10062 head = &bp->ntp_fltr_hash_tbl[i];
10063 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
10064 bool del = false;
10065
10066 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
10067 if (rps_may_expire_flow(bp->dev, fltr->rxq,
10068 fltr->flow_id,
10069 fltr->sw_id)) {
10070 bnxt_hwrm_cfa_ntuple_filter_free(bp,
10071 fltr);
10072 del = true;
10073 }
10074 } else {
10075 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
10076 fltr);
10077 if (rc)
10078 del = true;
10079 else
10080 set_bit(BNXT_FLTR_VALID, &fltr->state);
10081 }
10082
10083 if (del) {
10084 spin_lock_bh(&bp->ntp_fltr_lock);
10085 hlist_del_rcu(&fltr->hash);
10086 bp->ntp_fltr_count--;
10087 spin_unlock_bh(&bp->ntp_fltr_lock);
10088 synchronize_rcu();
10089 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
10090 kfree(fltr);
10091 }
10092 }
10093 }
10094 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
10095 netdev_info(bp->dev, "Receive PF driver unload event!");
10096 }
10097
10098 #else
10099
10100 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
10101 {
10102 }
10103
10104 #endif /* CONFIG_RFS_ACCEL */
10105
10106 static void bnxt_udp_tunnel_add(struct net_device *dev,
10107 struct udp_tunnel_info *ti)
10108 {
10109 struct bnxt *bp = netdev_priv(dev);
10110
10111 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
10112 return;
10113
10114 if (!netif_running(dev))
10115 return;
10116
10117 switch (ti->type) {
10118 case UDP_TUNNEL_TYPE_VXLAN:
10119 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
10120 return;
10121
10122 bp->vxlan_port_cnt++;
10123 if (bp->vxlan_port_cnt == 1) {
10124 bp->vxlan_port = ti->port;
10125 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
10126 bnxt_queue_sp_work(bp);
10127 }
10128 break;
10129 case UDP_TUNNEL_TYPE_GENEVE:
10130 if (bp->nge_port_cnt && bp->nge_port != ti->port)
10131 return;
10132
10133 bp->nge_port_cnt++;
10134 if (bp->nge_port_cnt == 1) {
10135 bp->nge_port = ti->port;
10136 set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
10137 }
10138 break;
10139 default:
10140 return;
10141 }
10142
10143 bnxt_queue_sp_work(bp);
10144 }
10145
10146 static void bnxt_udp_tunnel_del(struct net_device *dev,
10147 struct udp_tunnel_info *ti)
10148 {
10149 struct bnxt *bp = netdev_priv(dev);
10150
10151 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
10152 return;
10153
10154 if (!netif_running(dev))
10155 return;
10156
10157 switch (ti->type) {
10158 case UDP_TUNNEL_TYPE_VXLAN:
10159 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
10160 return;
10161 bp->vxlan_port_cnt--;
10162
10163 if (bp->vxlan_port_cnt != 0)
10164 return;
10165
10166 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
10167 break;
10168 case UDP_TUNNEL_TYPE_GENEVE:
10169 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
10170 return;
10171 bp->nge_port_cnt--;
10172
10173 if (bp->nge_port_cnt != 0)
10174 return;
10175
10176 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
10177 break;
10178 default:
10179 return;
10180 }
10181
10182 bnxt_queue_sp_work(bp);
10183 }
10184
10185 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
10186 struct net_device *dev, u32 filter_mask,
10187 int nlflags)
10188 {
10189 struct bnxt *bp = netdev_priv(dev);
10190
10191 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
10192 nlflags, filter_mask, NULL);
10193 }
10194
10195 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
10196 u16 flags, struct netlink_ext_ack *extack)
10197 {
10198 struct bnxt *bp = netdev_priv(dev);
10199 struct nlattr *attr, *br_spec;
10200 int rem, rc = 0;
10201
10202 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
10203 return -EOPNOTSUPP;
10204
10205 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
10206 if (!br_spec)
10207 return -EINVAL;
10208
10209 nla_for_each_nested(attr, br_spec, rem) {
10210 u16 mode;
10211
10212 if (nla_type(attr) != IFLA_BRIDGE_MODE)
10213 continue;
10214
10215 if (nla_len(attr) < sizeof(mode))
10216 return -EINVAL;
10217
10218 mode = nla_get_u16(attr);
10219 if (mode == bp->br_mode)
10220 break;
10221
10222 rc = bnxt_hwrm_set_br_mode(bp, mode);
10223 if (!rc)
10224 bp->br_mode = mode;
10225 break;
10226 }
10227 return rc;
10228 }
10229
10230 int bnxt_get_port_parent_id(struct net_device *dev,
10231 struct netdev_phys_item_id *ppid)
10232 {
10233 struct bnxt *bp = netdev_priv(dev);
10234
10235 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
10236 return -EOPNOTSUPP;
10237
10238 /* The PF and it's VF-reps only support the switchdev framework */
10239 if (!BNXT_PF(bp))
10240 return -EOPNOTSUPP;
10241
10242 ppid->id_len = sizeof(bp->switch_id);
10243 memcpy(ppid->id, bp->switch_id, ppid->id_len);
10244
10245 return 0;
10246 }
10247
10248 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
10249 {
10250 struct bnxt *bp = netdev_priv(dev);
10251
10252 return &bp->dl_port;
10253 }
10254
10255 static const struct net_device_ops bnxt_netdev_ops = {
10256 .ndo_open = bnxt_open,
10257 .ndo_start_xmit = bnxt_start_xmit,
10258 .ndo_stop = bnxt_close,
10259 .ndo_get_stats64 = bnxt_get_stats64,
10260 .ndo_set_rx_mode = bnxt_set_rx_mode,
10261 .ndo_do_ioctl = bnxt_ioctl,
10262 .ndo_validate_addr = eth_validate_addr,
10263 .ndo_set_mac_address = bnxt_change_mac_addr,
10264 .ndo_change_mtu = bnxt_change_mtu,
10265 .ndo_fix_features = bnxt_fix_features,
10266 .ndo_set_features = bnxt_set_features,
10267 .ndo_tx_timeout = bnxt_tx_timeout,
10268 #ifdef CONFIG_BNXT_SRIOV
10269 .ndo_get_vf_config = bnxt_get_vf_config,
10270 .ndo_set_vf_mac = bnxt_set_vf_mac,
10271 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
10272 .ndo_set_vf_rate = bnxt_set_vf_bw,
10273 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
10274 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
10275 .ndo_set_vf_trust = bnxt_set_vf_trust,
10276 #endif
10277 .ndo_setup_tc = bnxt_setup_tc,
10278 #ifdef CONFIG_RFS_ACCEL
10279 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
10280 #endif
10281 .ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
10282 .ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
10283 .ndo_bpf = bnxt_xdp,
10284 .ndo_xdp_xmit = bnxt_xdp_xmit,
10285 .ndo_bridge_getlink = bnxt_bridge_getlink,
10286 .ndo_bridge_setlink = bnxt_bridge_setlink,
10287 .ndo_get_devlink_port = bnxt_get_devlink_port,
10288 };
10289
10290 static void bnxt_remove_one(struct pci_dev *pdev)
10291 {
10292 struct net_device *dev = pci_get_drvdata(pdev);
10293 struct bnxt *bp = netdev_priv(dev);
10294
10295 if (BNXT_PF(bp)) {
10296 bnxt_sriov_disable(bp);
10297 bnxt_dl_unregister(bp);
10298 }
10299
10300 pci_disable_pcie_error_reporting(pdev);
10301 unregister_netdev(dev);
10302 bnxt_shutdown_tc(bp);
10303 bnxt_cancel_sp_work(bp);
10304 bp->sp_event = 0;
10305
10306 bnxt_clear_int_mode(bp);
10307 bnxt_hwrm_func_drv_unrgtr(bp);
10308 bnxt_free_hwrm_resources(bp);
10309 bnxt_free_hwrm_short_cmd_req(bp);
10310 bnxt_ethtool_free(bp);
10311 bnxt_dcb_free(bp);
10312 kfree(bp->edev);
10313 bp->edev = NULL;
10314 bnxt_cleanup_pci(bp);
10315 bnxt_free_ctx_mem(bp);
10316 kfree(bp->ctx);
10317 bp->ctx = NULL;
10318 bnxt_free_port_stats(bp);
10319 free_netdev(dev);
10320 }
10321
10322 static int bnxt_probe_phy(struct bnxt *bp)
10323 {
10324 int rc = 0;
10325 struct bnxt_link_info *link_info = &bp->link_info;
10326
10327 rc = bnxt_hwrm_phy_qcaps(bp);
10328 if (rc) {
10329 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
10330 rc);
10331 return rc;
10332 }
10333 mutex_init(&bp->link_lock);
10334
10335 rc = bnxt_update_link(bp, false);
10336 if (rc) {
10337 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
10338 rc);
10339 return rc;
10340 }
10341
10342 /* Older firmware does not have supported_auto_speeds, so assume
10343 * that all supported speeds can be autonegotiated.
10344 */
10345 if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
10346 link_info->support_auto_speeds = link_info->support_speeds;
10347
10348 /*initialize the ethool setting copy with NVM settings */
10349 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10350 link_info->autoneg = BNXT_AUTONEG_SPEED;
10351 if (bp->hwrm_spec_code >= 0x10201) {
10352 if (link_info->auto_pause_setting &
10353 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10354 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10355 } else {
10356 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10357 }
10358 link_info->advertising = link_info->auto_link_speeds;
10359 } else {
10360 link_info->req_link_speed = link_info->force_link_speed;
10361 link_info->req_duplex = link_info->duplex_setting;
10362 }
10363 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10364 link_info->req_flow_ctrl =
10365 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10366 else
10367 link_info->req_flow_ctrl = link_info->force_pause_setting;
10368 return rc;
10369 }
10370
10371 static int bnxt_get_max_irq(struct pci_dev *pdev)
10372 {
10373 u16 ctrl;
10374
10375 if (!pdev->msix_cap)
10376 return 1;
10377
10378 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
10379 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
10380 }
10381
10382 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10383 int *max_cp)
10384 {
10385 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10386 int max_ring_grps = 0, max_irq;
10387
10388 *max_tx = hw_resc->max_tx_rings;
10389 *max_rx = hw_resc->max_rx_rings;
10390 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
10391 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
10392 bnxt_get_ulp_msix_num(bp),
10393 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
10394 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10395 *max_cp = min_t(int, *max_cp, max_irq);
10396 max_ring_grps = hw_resc->max_hw_ring_grps;
10397 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
10398 *max_cp -= 1;
10399 *max_rx -= 2;
10400 }
10401 if (bp->flags & BNXT_FLAG_AGG_RINGS)
10402 *max_rx >>= 1;
10403 if (bp->flags & BNXT_FLAG_CHIP_P5) {
10404 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
10405 /* On P5 chips, max_cp output param should be available NQs */
10406 *max_cp = max_irq;
10407 }
10408 *max_rx = min_t(int, *max_rx, max_ring_grps);
10409 }
10410
10411 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
10412 {
10413 int rx, tx, cp;
10414
10415 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
10416 *max_rx = rx;
10417 *max_tx = tx;
10418 if (!rx || !tx || !cp)
10419 return -ENOMEM;
10420
10421 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
10422 }
10423
10424 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10425 bool shared)
10426 {
10427 int rc;
10428
10429 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10430 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
10431 /* Not enough rings, try disabling agg rings. */
10432 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
10433 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10434 if (rc) {
10435 /* set BNXT_FLAG_AGG_RINGS back for consistency */
10436 bp->flags |= BNXT_FLAG_AGG_RINGS;
10437 return rc;
10438 }
10439 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
10440 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10441 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10442 bnxt_set_ring_params(bp);
10443 }
10444
10445 if (bp->flags & BNXT_FLAG_ROCE_CAP) {
10446 int max_cp, max_stat, max_irq;
10447
10448 /* Reserve minimum resources for RoCE */
10449 max_cp = bnxt_get_max_func_cp_rings(bp);
10450 max_stat = bnxt_get_max_func_stat_ctxs(bp);
10451 max_irq = bnxt_get_max_func_irqs(bp);
10452 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
10453 max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
10454 max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
10455 return 0;
10456
10457 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
10458 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
10459 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
10460 max_cp = min_t(int, max_cp, max_irq);
10461 max_cp = min_t(int, max_cp, max_stat);
10462 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
10463 if (rc)
10464 rc = 0;
10465 }
10466 return rc;
10467 }
10468
10469 /* In initial default shared ring setting, each shared ring must have a
10470 * RX/TX ring pair.
10471 */
10472 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
10473 {
10474 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
10475 bp->rx_nr_rings = bp->cp_nr_rings;
10476 bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
10477 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10478 }
10479
10480 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
10481 {
10482 int dflt_rings, max_rx_rings, max_tx_rings, rc;
10483
10484 if (!bnxt_can_reserve_rings(bp))
10485 return 0;
10486
10487 if (sh)
10488 bp->flags |= BNXT_FLAG_SHARED_RINGS;
10489 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
10490 /* Reduce default rings on multi-port cards so that total default
10491 * rings do not exceed CPU count.
10492 */
10493 if (bp->port_count > 1) {
10494 int max_rings =
10495 max_t(int, num_online_cpus() / bp->port_count, 1);
10496
10497 dflt_rings = min_t(int, dflt_rings, max_rings);
10498 }
10499 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
10500 if (rc)
10501 return rc;
10502 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
10503 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
10504 if (sh)
10505 bnxt_trim_dflt_sh_rings(bp);
10506 else
10507 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
10508 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10509
10510 rc = __bnxt_reserve_rings(bp);
10511 if (rc)
10512 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
10513 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10514 if (sh)
10515 bnxt_trim_dflt_sh_rings(bp);
10516
10517 /* Rings may have been trimmed, re-reserve the trimmed rings. */
10518 if (bnxt_need_reserve_rings(bp)) {
10519 rc = __bnxt_reserve_rings(bp);
10520 if (rc)
10521 netdev_warn(bp->dev, "2nd rings reservation failed.\n");
10522 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10523 }
10524 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10525 bp->rx_nr_rings++;
10526 bp->cp_nr_rings++;
10527 }
10528 return rc;
10529 }
10530
10531 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
10532 {
10533 int rc;
10534
10535 if (bp->tx_nr_rings)
10536 return 0;
10537
10538 bnxt_ulp_irq_stop(bp);
10539 bnxt_clear_int_mode(bp);
10540 rc = bnxt_set_dflt_rings(bp, true);
10541 if (rc) {
10542 netdev_err(bp->dev, "Not enough rings available.\n");
10543 goto init_dflt_ring_err;
10544 }
10545 rc = bnxt_init_int_mode(bp);
10546 if (rc)
10547 goto init_dflt_ring_err;
10548
10549 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10550 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
10551 bp->flags |= BNXT_FLAG_RFS;
10552 bp->dev->features |= NETIF_F_NTUPLE;
10553 }
10554 init_dflt_ring_err:
10555 bnxt_ulp_irq_restart(bp, rc);
10556 return rc;
10557 }
10558
10559 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
10560 {
10561 int rc;
10562
10563 ASSERT_RTNL();
10564 bnxt_hwrm_func_qcaps(bp);
10565
10566 if (netif_running(bp->dev))
10567 __bnxt_close_nic(bp, true, false);
10568
10569 bnxt_ulp_irq_stop(bp);
10570 bnxt_clear_int_mode(bp);
10571 rc = bnxt_init_int_mode(bp);
10572 bnxt_ulp_irq_restart(bp, rc);
10573
10574 if (netif_running(bp->dev)) {
10575 if (rc)
10576 dev_close(bp->dev);
10577 else
10578 rc = bnxt_open_nic(bp, true, false);
10579 }
10580
10581 return rc;
10582 }
10583
10584 static int bnxt_init_mac_addr(struct bnxt *bp)
10585 {
10586 int rc = 0;
10587
10588 if (BNXT_PF(bp)) {
10589 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
10590 } else {
10591 #ifdef CONFIG_BNXT_SRIOV
10592 struct bnxt_vf_info *vf = &bp->vf;
10593 bool strict_approval = true;
10594
10595 if (is_valid_ether_addr(vf->mac_addr)) {
10596 /* overwrite netdev dev_addr with admin VF MAC */
10597 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
10598 /* Older PF driver or firmware may not approve this
10599 * correctly.
10600 */
10601 strict_approval = false;
10602 } else {
10603 eth_hw_addr_random(bp->dev);
10604 }
10605 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
10606 #endif
10607 }
10608 return rc;
10609 }
10610
10611 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
10612 {
10613 struct pci_dev *pdev = bp->pdev;
10614 int pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
10615 u32 dw;
10616
10617 if (!pos) {
10618 netdev_info(bp->dev, "Unable do read adapter's DSN");
10619 return -EOPNOTSUPP;
10620 }
10621
10622 /* DSN (two dw) is at an offset of 4 from the cap pos */
10623 pos += 4;
10624 pci_read_config_dword(pdev, pos, &dw);
10625 put_unaligned_le32(dw, &dsn[0]);
10626 pci_read_config_dword(pdev, pos + 4, &dw);
10627 put_unaligned_le32(dw, &dsn[4]);
10628 return 0;
10629 }
10630
10631 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
10632 {
10633 static int version_printed;
10634 struct net_device *dev;
10635 struct bnxt *bp;
10636 int rc, max_irqs;
10637
10638 if (pci_is_bridge(pdev))
10639 return -ENODEV;
10640
10641 if (version_printed++ == 0)
10642 pr_info("%s", version);
10643
10644 max_irqs = bnxt_get_max_irq(pdev);
10645 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
10646 if (!dev)
10647 return -ENOMEM;
10648
10649 bp = netdev_priv(dev);
10650 bnxt_set_max_func_irqs(bp, max_irqs);
10651
10652 if (bnxt_vf_pciid(ent->driver_data))
10653 bp->flags |= BNXT_FLAG_VF;
10654
10655 if (pdev->msix_cap)
10656 bp->flags |= BNXT_FLAG_MSIX_CAP;
10657
10658 rc = bnxt_init_board(pdev, dev);
10659 if (rc < 0)
10660 goto init_err_free;
10661
10662 dev->netdev_ops = &bnxt_netdev_ops;
10663 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
10664 dev->ethtool_ops = &bnxt_ethtool_ops;
10665 pci_set_drvdata(pdev, dev);
10666
10667 rc = bnxt_alloc_hwrm_resources(bp);
10668 if (rc)
10669 goto init_err_pci_clean;
10670
10671 mutex_init(&bp->hwrm_cmd_lock);
10672 rc = bnxt_hwrm_ver_get(bp);
10673 if (rc)
10674 goto init_err_pci_clean;
10675
10676 if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10677 rc = bnxt_alloc_kong_hwrm_resources(bp);
10678 if (rc)
10679 bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10680 }
10681
10682 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10683 bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10684 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10685 if (rc)
10686 goto init_err_pci_clean;
10687 }
10688
10689 if (BNXT_CHIP_P5(bp))
10690 bp->flags |= BNXT_FLAG_CHIP_P5;
10691
10692 rc = bnxt_hwrm_func_reset(bp);
10693 if (rc)
10694 goto init_err_pci_clean;
10695
10696 bnxt_hwrm_fw_set_time(bp);
10697
10698 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10699 NETIF_F_TSO | NETIF_F_TSO6 |
10700 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10701 NETIF_F_GSO_IPXIP4 |
10702 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10703 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
10704 NETIF_F_RXCSUM | NETIF_F_GRO;
10705
10706 if (BNXT_SUPPORTS_TPA(bp))
10707 dev->hw_features |= NETIF_F_LRO;
10708
10709 dev->hw_enc_features =
10710 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10711 NETIF_F_TSO | NETIF_F_TSO6 |
10712 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10713 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10714 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
10715 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
10716 NETIF_F_GSO_GRE_CSUM;
10717 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
10718 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
10719 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
10720 if (BNXT_SUPPORTS_TPA(bp))
10721 dev->hw_features |= NETIF_F_GRO_HW;
10722 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
10723 if (dev->features & NETIF_F_GRO_HW)
10724 dev->features &= ~NETIF_F_LRO;
10725 dev->priv_flags |= IFF_UNICAST_FLT;
10726
10727 #ifdef CONFIG_BNXT_SRIOV
10728 init_waitqueue_head(&bp->sriov_cfg_wait);
10729 mutex_init(&bp->sriov_lock);
10730 #endif
10731 if (BNXT_SUPPORTS_TPA(bp)) {
10732 bp->gro_func = bnxt_gro_func_5730x;
10733 if (BNXT_CHIP_P4(bp))
10734 bp->gro_func = bnxt_gro_func_5731x;
10735 }
10736 if (!BNXT_CHIP_P4_PLUS(bp))
10737 bp->flags |= BNXT_FLAG_DOUBLE_DB;
10738
10739 rc = bnxt_hwrm_func_drv_rgtr(bp);
10740 if (rc)
10741 goto init_err_pci_clean;
10742
10743 rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
10744 if (rc)
10745 goto init_err_pci_clean;
10746
10747 bp->ulp_probe = bnxt_ulp_probe;
10748
10749 rc = bnxt_hwrm_queue_qportcfg(bp);
10750 if (rc) {
10751 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
10752 rc);
10753 rc = -1;
10754 goto init_err_pci_clean;
10755 }
10756 /* Get the MAX capabilities for this function */
10757 rc = bnxt_hwrm_func_qcaps(bp);
10758 if (rc) {
10759 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10760 rc);
10761 rc = -1;
10762 goto init_err_pci_clean;
10763 }
10764
10765 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10766 if (rc)
10767 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10768 rc);
10769
10770 rc = bnxt_init_mac_addr(bp);
10771 if (rc) {
10772 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
10773 rc = -EADDRNOTAVAIL;
10774 goto init_err_pci_clean;
10775 }
10776
10777 if (BNXT_PF(bp)) {
10778 /* Read the adapter's DSN to use as the eswitch switch_id */
10779 rc = bnxt_pcie_dsn_get(bp, bp->switch_id);
10780 if (rc)
10781 goto init_err_pci_clean;
10782 }
10783 bnxt_hwrm_func_qcfg(bp);
10784 bnxt_hwrm_vnic_qcaps(bp);
10785 bnxt_hwrm_port_led_qcaps(bp);
10786 bnxt_ethtool_init(bp);
10787 bnxt_dcb_init(bp);
10788
10789 /* MTU range: 60 - FW defined max */
10790 dev->min_mtu = ETH_ZLEN;
10791 dev->max_mtu = bp->max_mtu;
10792
10793 rc = bnxt_probe_phy(bp);
10794 if (rc)
10795 goto init_err_pci_clean;
10796
10797 bnxt_set_rx_skb_mode(bp, false);
10798 bnxt_set_tpa_flags(bp);
10799 bnxt_set_ring_params(bp);
10800 rc = bnxt_set_dflt_rings(bp, true);
10801 if (rc) {
10802 netdev_err(bp->dev, "Not enough rings available.\n");
10803 rc = -ENOMEM;
10804 goto init_err_pci_clean;
10805 }
10806
10807 /* Default RSS hash cfg. */
10808 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10809 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10810 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10811 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10812 if (BNXT_CHIP_P4(bp) && bp->hwrm_spec_code >= 0x10501) {
10813 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10814 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10815 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10816 }
10817
10818 if (bnxt_rfs_supported(bp)) {
10819 dev->hw_features |= NETIF_F_NTUPLE;
10820 if (bnxt_rfs_capable(bp)) {
10821 bp->flags |= BNXT_FLAG_RFS;
10822 dev->features |= NETIF_F_NTUPLE;
10823 }
10824 }
10825
10826 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
10827 bp->flags |= BNXT_FLAG_STRIP_VLAN;
10828
10829 rc = bnxt_init_int_mode(bp);
10830 if (rc)
10831 goto init_err_pci_clean;
10832
10833 /* No TC has been set yet and rings may have been trimmed due to
10834 * limited MSIX, so we re-initialize the TX rings per TC.
10835 */
10836 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10837
10838 bnxt_get_wol_settings(bp);
10839 if (bp->flags & BNXT_FLAG_WOL_CAP)
10840 device_set_wakeup_enable(&pdev->dev, bp->wol);
10841 else
10842 device_set_wakeup_capable(&pdev->dev, false);
10843
10844 bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10845
10846 bnxt_hwrm_coal_params_qcaps(bp);
10847
10848 if (BNXT_PF(bp)) {
10849 if (!bnxt_pf_wq) {
10850 bnxt_pf_wq =
10851 create_singlethread_workqueue("bnxt_pf_wq");
10852 if (!bnxt_pf_wq) {
10853 dev_err(&pdev->dev, "Unable to create workqueue.\n");
10854 goto init_err_pci_clean;
10855 }
10856 }
10857 bnxt_init_tc(bp);
10858 }
10859
10860 rc = register_netdev(dev);
10861 if (rc)
10862 goto init_err_cleanup_tc;
10863
10864 if (BNXT_PF(bp))
10865 bnxt_dl_register(bp);
10866
10867 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
10868 board_info[ent->driver_data].name,
10869 (long)pci_resource_start(pdev, 0), dev->dev_addr);
10870 pcie_print_link_status(pdev);
10871
10872 return 0;
10873
10874 init_err_cleanup_tc:
10875 bnxt_shutdown_tc(bp);
10876 bnxt_clear_int_mode(bp);
10877
10878 init_err_pci_clean:
10879 bnxt_free_hwrm_short_cmd_req(bp);
10880 bnxt_free_hwrm_resources(bp);
10881 bnxt_free_ctx_mem(bp);
10882 kfree(bp->ctx);
10883 bp->ctx = NULL;
10884 bnxt_cleanup_pci(bp);
10885
10886 init_err_free:
10887 free_netdev(dev);
10888 return rc;
10889 }
10890
10891 static void bnxt_shutdown(struct pci_dev *pdev)
10892 {
10893 struct net_device *dev = pci_get_drvdata(pdev);
10894 struct bnxt *bp;
10895
10896 if (!dev)
10897 return;
10898
10899 rtnl_lock();
10900 bp = netdev_priv(dev);
10901 if (!bp)
10902 goto shutdown_exit;
10903
10904 if (netif_running(dev))
10905 dev_close(dev);
10906
10907 bnxt_ulp_shutdown(bp);
10908
10909 if (system_state == SYSTEM_POWER_OFF) {
10910 bnxt_clear_int_mode(bp);
10911 pci_disable_device(pdev);
10912 pci_wake_from_d3(pdev, bp->wol);
10913 pci_set_power_state(pdev, PCI_D3hot);
10914 }
10915
10916 shutdown_exit:
10917 rtnl_unlock();
10918 }
10919
10920 #ifdef CONFIG_PM_SLEEP
10921 static int bnxt_suspend(struct device *device)
10922 {
10923 struct pci_dev *pdev = to_pci_dev(device);
10924 struct net_device *dev = pci_get_drvdata(pdev);
10925 struct bnxt *bp = netdev_priv(dev);
10926 int rc = 0;
10927
10928 rtnl_lock();
10929 if (netif_running(dev)) {
10930 netif_device_detach(dev);
10931 rc = bnxt_close(dev);
10932 }
10933 bnxt_hwrm_func_drv_unrgtr(bp);
10934 rtnl_unlock();
10935 return rc;
10936 }
10937
10938 static int bnxt_resume(struct device *device)
10939 {
10940 struct pci_dev *pdev = to_pci_dev(device);
10941 struct net_device *dev = pci_get_drvdata(pdev);
10942 struct bnxt *bp = netdev_priv(dev);
10943 int rc = 0;
10944
10945 rtnl_lock();
10946 if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
10947 rc = -ENODEV;
10948 goto resume_exit;
10949 }
10950 rc = bnxt_hwrm_func_reset(bp);
10951 if (rc) {
10952 rc = -EBUSY;
10953 goto resume_exit;
10954 }
10955 bnxt_get_wol_settings(bp);
10956 if (netif_running(dev)) {
10957 rc = bnxt_open(dev);
10958 if (!rc)
10959 netif_device_attach(dev);
10960 }
10961
10962 resume_exit:
10963 rtnl_unlock();
10964 return rc;
10965 }
10966
10967 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
10968 #define BNXT_PM_OPS (&bnxt_pm_ops)
10969
10970 #else
10971
10972 #define BNXT_PM_OPS NULL
10973
10974 #endif /* CONFIG_PM_SLEEP */
10975
10976 /**
10977 * bnxt_io_error_detected - called when PCI error is detected
10978 * @pdev: Pointer to PCI device
10979 * @state: The current pci connection state
10980 *
10981 * This function is called after a PCI bus error affecting
10982 * this device has been detected.
10983 */
10984 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
10985 pci_channel_state_t state)
10986 {
10987 struct net_device *netdev = pci_get_drvdata(pdev);
10988 struct bnxt *bp = netdev_priv(netdev);
10989
10990 netdev_info(netdev, "PCI I/O error detected\n");
10991
10992 rtnl_lock();
10993 netif_device_detach(netdev);
10994
10995 bnxt_ulp_stop(bp);
10996
10997 if (state == pci_channel_io_perm_failure) {
10998 rtnl_unlock();
10999 return PCI_ERS_RESULT_DISCONNECT;
11000 }
11001
11002 if (netif_running(netdev))
11003 bnxt_close(netdev);
11004
11005 pci_disable_device(pdev);
11006 rtnl_unlock();
11007
11008 /* Request a slot slot reset. */
11009 return PCI_ERS_RESULT_NEED_RESET;
11010 }
11011
11012 /**
11013 * bnxt_io_slot_reset - called after the pci bus has been reset.
11014 * @pdev: Pointer to PCI device
11015 *
11016 * Restart the card from scratch, as if from a cold-boot.
11017 * At this point, the card has exprienced a hard reset,
11018 * followed by fixups by BIOS, and has its config space
11019 * set up identically to what it was at cold boot.
11020 */
11021 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
11022 {
11023 struct net_device *netdev = pci_get_drvdata(pdev);
11024 struct bnxt *bp = netdev_priv(netdev);
11025 int err = 0;
11026 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
11027
11028 netdev_info(bp->dev, "PCI Slot Reset\n");
11029
11030 rtnl_lock();
11031
11032 if (pci_enable_device(pdev)) {
11033 dev_err(&pdev->dev,
11034 "Cannot re-enable PCI device after reset.\n");
11035 } else {
11036 pci_set_master(pdev);
11037
11038 err = bnxt_hwrm_func_reset(bp);
11039 if (!err && netif_running(netdev))
11040 err = bnxt_open(netdev);
11041
11042 if (!err) {
11043 result = PCI_ERS_RESULT_RECOVERED;
11044 bnxt_ulp_start(bp);
11045 }
11046 }
11047
11048 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
11049 dev_close(netdev);
11050
11051 rtnl_unlock();
11052
11053 return PCI_ERS_RESULT_RECOVERED;
11054 }
11055
11056 /**
11057 * bnxt_io_resume - called when traffic can start flowing again.
11058 * @pdev: Pointer to PCI device
11059 *
11060 * This callback is called when the error recovery driver tells
11061 * us that its OK to resume normal operation.
11062 */
11063 static void bnxt_io_resume(struct pci_dev *pdev)
11064 {
11065 struct net_device *netdev = pci_get_drvdata(pdev);
11066
11067 rtnl_lock();
11068
11069 netif_device_attach(netdev);
11070
11071 rtnl_unlock();
11072 }
11073
11074 static const struct pci_error_handlers bnxt_err_handler = {
11075 .error_detected = bnxt_io_error_detected,
11076 .slot_reset = bnxt_io_slot_reset,
11077 .resume = bnxt_io_resume
11078 };
11079
11080 static struct pci_driver bnxt_pci_driver = {
11081 .name = DRV_MODULE_NAME,
11082 .id_table = bnxt_pci_tbl,
11083 .probe = bnxt_init_one,
11084 .remove = bnxt_remove_one,
11085 .shutdown = bnxt_shutdown,
11086 .driver.pm = BNXT_PM_OPS,
11087 .err_handler = &bnxt_err_handler,
11088 #if defined(CONFIG_BNXT_SRIOV)
11089 .sriov_configure = bnxt_sriov_configure,
11090 #endif
11091 };
11092
11093 static int __init bnxt_init(void)
11094 {
11095 bnxt_debug_init();
11096 return pci_register_driver(&bnxt_pci_driver);
11097 }
11098
11099 static void __exit bnxt_exit(void)
11100 {
11101 pci_unregister_driver(&bnxt_pci_driver);
11102 if (bnxt_pf_wq)
11103 destroy_workqueue(bnxt_pf_wq);
11104 bnxt_debug_exit();
11105 }
11106
11107 module_init(bnxt_init);
11108 module_exit(bnxt_exit);