]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt_tc.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / broadcom / bnxt / bnxt_tc.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2017 Broadcom Limited
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/netdevice.h>
11 #include <linux/inetdevice.h>
12 #include <linux/if_vlan.h>
13 #include <net/flow_dissector.h>
14 #include <net/pkt_cls.h>
15 #include <net/tc_act/tc_gact.h>
16 #include <net/tc_act/tc_skbedit.h>
17 #include <net/tc_act/tc_mirred.h>
18 #include <net/tc_act/tc_vlan.h>
19
20 #include "bnxt_hsi.h"
21 #include "bnxt.h"
22 #include "bnxt_sriov.h"
23 #include "bnxt_tc.h"
24 #include "bnxt_vfr.h"
25
26 #ifdef CONFIG_BNXT_FLOWER_OFFLOAD
27
28 #define BNXT_FID_INVALID 0xffff
29 #define VLAN_TCI(vid, prio) ((vid) | ((prio) << VLAN_PRIO_SHIFT))
30
31 /* Return the dst fid of the func for flow forwarding
32 * For PFs: src_fid is the fid of the PF
33 * For VF-reps: src_fid the fid of the VF
34 */
35 static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev)
36 {
37 struct bnxt *bp;
38
39 /* check if dev belongs to the same switch */
40 if (!switchdev_port_same_parent_id(pf_bp->dev, dev)) {
41 netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch",
42 dev->ifindex);
43 return BNXT_FID_INVALID;
44 }
45
46 /* Is dev a VF-rep? */
47 if (dev != pf_bp->dev)
48 return bnxt_vf_rep_get_fid(dev);
49
50 bp = netdev_priv(dev);
51 return bp->pf.fw_fid;
52 }
53
54 static int bnxt_tc_parse_redir(struct bnxt *bp,
55 struct bnxt_tc_actions *actions,
56 const struct tc_action *tc_act)
57 {
58 int ifindex = tcf_mirred_ifindex(tc_act);
59 struct net_device *dev;
60 u16 dst_fid;
61
62 dev = __dev_get_by_index(dev_net(bp->dev), ifindex);
63 if (!dev) {
64 netdev_info(bp->dev, "no dev for ifindex=%d", ifindex);
65 return -EINVAL;
66 }
67
68 /* find the FID from dev */
69 dst_fid = bnxt_flow_get_dst_fid(bp, dev);
70 if (dst_fid == BNXT_FID_INVALID) {
71 netdev_info(bp->dev, "can't get fid for ifindex=%d", ifindex);
72 return -EINVAL;
73 }
74
75 actions->flags |= BNXT_TC_ACTION_FLAG_FWD;
76 actions->dst_fid = dst_fid;
77 actions->dst_dev = dev;
78 return 0;
79 }
80
81 static void bnxt_tc_parse_vlan(struct bnxt *bp,
82 struct bnxt_tc_actions *actions,
83 const struct tc_action *tc_act)
84 {
85 if (tcf_vlan_action(tc_act) == TCA_VLAN_ACT_POP) {
86 actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN;
87 } else if (tcf_vlan_action(tc_act) == TCA_VLAN_ACT_PUSH) {
88 actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN;
89 actions->push_vlan_tci = htons(tcf_vlan_push_vid(tc_act));
90 actions->push_vlan_tpid = tcf_vlan_push_proto(tc_act);
91 }
92 }
93
94 static int bnxt_tc_parse_actions(struct bnxt *bp,
95 struct bnxt_tc_actions *actions,
96 struct tcf_exts *tc_exts)
97 {
98 const struct tc_action *tc_act;
99 LIST_HEAD(tc_actions);
100 int rc;
101
102 if (!tcf_exts_has_actions(tc_exts)) {
103 netdev_info(bp->dev, "no actions");
104 return -EINVAL;
105 }
106
107 tcf_exts_to_list(tc_exts, &tc_actions);
108 list_for_each_entry(tc_act, &tc_actions, list) {
109 /* Drop action */
110 if (is_tcf_gact_shot(tc_act)) {
111 actions->flags |= BNXT_TC_ACTION_FLAG_DROP;
112 return 0; /* don't bother with other actions */
113 }
114
115 /* Redirect action */
116 if (is_tcf_mirred_egress_redirect(tc_act)) {
117 rc = bnxt_tc_parse_redir(bp, actions, tc_act);
118 if (rc)
119 return rc;
120 continue;
121 }
122
123 /* Push/pop VLAN */
124 if (is_tcf_vlan(tc_act)) {
125 bnxt_tc_parse_vlan(bp, actions, tc_act);
126 continue;
127 }
128 }
129
130 return 0;
131 }
132
133 #define GET_KEY(flow_cmd, key_type) \
134 skb_flow_dissector_target((flow_cmd)->dissector, key_type,\
135 (flow_cmd)->key)
136 #define GET_MASK(flow_cmd, key_type) \
137 skb_flow_dissector_target((flow_cmd)->dissector, key_type,\
138 (flow_cmd)->mask)
139
140 static int bnxt_tc_parse_flow(struct bnxt *bp,
141 struct tc_cls_flower_offload *tc_flow_cmd,
142 struct bnxt_tc_flow *flow)
143 {
144 struct flow_dissector *dissector = tc_flow_cmd->dissector;
145 u16 addr_type = 0;
146
147 /* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */
148 if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 ||
149 (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) {
150 netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x",
151 dissector->used_keys);
152 return -EOPNOTSUPP;
153 }
154
155 if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_CONTROL)) {
156 struct flow_dissector_key_control *key =
157 GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_CONTROL);
158
159 addr_type = key->addr_type;
160 }
161
162 if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC)) {
163 struct flow_dissector_key_basic *key =
164 GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_BASIC);
165 struct flow_dissector_key_basic *mask =
166 GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_BASIC);
167
168 flow->l2_key.ether_type = key->n_proto;
169 flow->l2_mask.ether_type = mask->n_proto;
170
171 if (key->n_proto == htons(ETH_P_IP) ||
172 key->n_proto == htons(ETH_P_IPV6)) {
173 flow->l4_key.ip_proto = key->ip_proto;
174 flow->l4_mask.ip_proto = mask->ip_proto;
175 }
176 }
177
178 if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
179 struct flow_dissector_key_eth_addrs *key =
180 GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_ETH_ADDRS);
181 struct flow_dissector_key_eth_addrs *mask =
182 GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_ETH_ADDRS);
183
184 flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS;
185 ether_addr_copy(flow->l2_key.dmac, key->dst);
186 ether_addr_copy(flow->l2_mask.dmac, mask->dst);
187 ether_addr_copy(flow->l2_key.smac, key->src);
188 ether_addr_copy(flow->l2_mask.smac, mask->src);
189 }
190
191 if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_VLAN)) {
192 struct flow_dissector_key_vlan *key =
193 GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_VLAN);
194 struct flow_dissector_key_vlan *mask =
195 GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_VLAN);
196
197 flow->l2_key.inner_vlan_tci =
198 cpu_to_be16(VLAN_TCI(key->vlan_id, key->vlan_priority));
199 flow->l2_mask.inner_vlan_tci =
200 cpu_to_be16((VLAN_TCI(mask->vlan_id, mask->vlan_priority)));
201 flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q);
202 flow->l2_mask.inner_vlan_tpid = htons(0xffff);
203 flow->l2_key.num_vlans = 1;
204 }
205
206 if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
207 struct flow_dissector_key_ipv4_addrs *key =
208 GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV4_ADDRS);
209 struct flow_dissector_key_ipv4_addrs *mask =
210 GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV4_ADDRS);
211
212 flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS;
213 flow->l3_key.ipv4.daddr.s_addr = key->dst;
214 flow->l3_mask.ipv4.daddr.s_addr = mask->dst;
215 flow->l3_key.ipv4.saddr.s_addr = key->src;
216 flow->l3_mask.ipv4.saddr.s_addr = mask->src;
217 } else if (dissector_uses_key(dissector,
218 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
219 struct flow_dissector_key_ipv6_addrs *key =
220 GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV6_ADDRS);
221 struct flow_dissector_key_ipv6_addrs *mask =
222 GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV6_ADDRS);
223
224 flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS;
225 flow->l3_key.ipv6.daddr = key->dst;
226 flow->l3_mask.ipv6.daddr = mask->dst;
227 flow->l3_key.ipv6.saddr = key->src;
228 flow->l3_mask.ipv6.saddr = mask->src;
229 }
230
231 if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_PORTS)) {
232 struct flow_dissector_key_ports *key =
233 GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_PORTS);
234 struct flow_dissector_key_ports *mask =
235 GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_PORTS);
236
237 flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS;
238 flow->l4_key.ports.dport = key->dst;
239 flow->l4_mask.ports.dport = mask->dst;
240 flow->l4_key.ports.sport = key->src;
241 flow->l4_mask.ports.sport = mask->src;
242 }
243
244 if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_ICMP)) {
245 struct flow_dissector_key_icmp *key =
246 GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_ICMP);
247 struct flow_dissector_key_icmp *mask =
248 GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_ICMP);
249
250 flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP;
251 flow->l4_key.icmp.type = key->type;
252 flow->l4_key.icmp.code = key->code;
253 flow->l4_mask.icmp.type = mask->type;
254 flow->l4_mask.icmp.code = mask->code;
255 }
256
257 return bnxt_tc_parse_actions(bp, &flow->actions, tc_flow_cmd->exts);
258 }
259
260 static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp, __le16 flow_handle)
261 {
262 struct hwrm_cfa_flow_free_input req = { 0 };
263 int rc;
264
265 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_FREE, -1, -1);
266 req.flow_handle = flow_handle;
267
268 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
269 if (rc)
270 netdev_info(bp->dev, "Error: %s: flow_handle=0x%x rc=%d",
271 __func__, flow_handle, rc);
272 return rc;
273 }
274
275 static int ipv6_mask_len(struct in6_addr *mask)
276 {
277 int mask_len = 0, i;
278
279 for (i = 0; i < 4; i++)
280 mask_len += inet_mask_len(mask->s6_addr32[i]);
281
282 return mask_len;
283 }
284
285 static bool is_wildcard(void *mask, int len)
286 {
287 const u8 *p = mask;
288 int i;
289
290 for (i = 0; i < len; i++) {
291 if (p[i] != 0)
292 return false;
293 }
294 return true;
295 }
296
297 static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow,
298 __le16 ref_flow_handle, __le16 *flow_handle)
299 {
300 struct hwrm_cfa_flow_alloc_output *resp = bp->hwrm_cmd_resp_addr;
301 struct bnxt_tc_actions *actions = &flow->actions;
302 struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask;
303 struct bnxt_tc_l3_key *l3_key = &flow->l3_key;
304 struct hwrm_cfa_flow_alloc_input req = { 0 };
305 u16 flow_flags = 0, action_flags = 0;
306 int rc;
307
308 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_ALLOC, -1, -1);
309
310 req.src_fid = cpu_to_le16(flow->src_fid);
311 req.ref_flow_handle = ref_flow_handle;
312 req.ethertype = flow->l2_key.ether_type;
313 req.ip_proto = flow->l4_key.ip_proto;
314
315 if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) {
316 memcpy(req.dmac, flow->l2_key.dmac, ETH_ALEN);
317 memcpy(req.smac, flow->l2_key.smac, ETH_ALEN);
318 }
319
320 if (flow->l2_key.num_vlans > 0) {
321 flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE;
322 /* FW expects the inner_vlan_tci value to be set
323 * in outer_vlan_tci when num_vlans is 1 (which is
324 * always the case in TC.)
325 */
326 req.outer_vlan_tci = flow->l2_key.inner_vlan_tci;
327 }
328
329 /* If all IP and L4 fields are wildcarded then this is an L2 flow */
330 if (is_wildcard(&l3_mask, sizeof(l3_mask)) &&
331 is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) {
332 flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2;
333 } else {
334 flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ?
335 CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 :
336 CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6;
337
338 if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) {
339 req.ip_dst[0] = l3_key->ipv4.daddr.s_addr;
340 req.ip_dst_mask_len =
341 inet_mask_len(l3_mask->ipv4.daddr.s_addr);
342 req.ip_src[0] = l3_key->ipv4.saddr.s_addr;
343 req.ip_src_mask_len =
344 inet_mask_len(l3_mask->ipv4.saddr.s_addr);
345 } else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) {
346 memcpy(req.ip_dst, l3_key->ipv6.daddr.s6_addr32,
347 sizeof(req.ip_dst));
348 req.ip_dst_mask_len =
349 ipv6_mask_len(&l3_mask->ipv6.daddr);
350 memcpy(req.ip_src, l3_key->ipv6.saddr.s6_addr32,
351 sizeof(req.ip_src));
352 req.ip_src_mask_len =
353 ipv6_mask_len(&l3_mask->ipv6.saddr);
354 }
355 }
356
357 if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) {
358 req.l4_src_port = flow->l4_key.ports.sport;
359 req.l4_src_port_mask = flow->l4_mask.ports.sport;
360 req.l4_dst_port = flow->l4_key.ports.dport;
361 req.l4_dst_port_mask = flow->l4_mask.ports.dport;
362 } else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) {
363 /* l4 ports serve as type/code when ip_proto is ICMP */
364 req.l4_src_port = htons(flow->l4_key.icmp.type);
365 req.l4_src_port_mask = htons(flow->l4_mask.icmp.type);
366 req.l4_dst_port = htons(flow->l4_key.icmp.code);
367 req.l4_dst_port_mask = htons(flow->l4_mask.icmp.code);
368 }
369 req.flags = cpu_to_le16(flow_flags);
370
371 if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) {
372 action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP;
373 } else {
374 if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
375 action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD;
376 req.dst_fid = cpu_to_le16(actions->dst_fid);
377 }
378 if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) {
379 action_flags |=
380 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
381 req.l2_rewrite_vlan_tpid = actions->push_vlan_tpid;
382 req.l2_rewrite_vlan_tci = actions->push_vlan_tci;
383 memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
384 memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
385 }
386 if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) {
387 action_flags |=
388 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
389 /* Rewrite config with tpid = 0 implies vlan pop */
390 req.l2_rewrite_vlan_tpid = 0;
391 memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
392 memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
393 }
394 }
395 req.action_flags = cpu_to_le16(action_flags);
396
397 mutex_lock(&bp->hwrm_cmd_lock);
398
399 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
400 if (!rc)
401 *flow_handle = resp->flow_handle;
402
403 mutex_unlock(&bp->hwrm_cmd_lock);
404
405 return rc;
406 }
407
408 /* Add val to accum while handling a possible wraparound
409 * of val. Eventhough val is of type u64, its actual width
410 * is denoted by mask and will wrap-around beyond that width.
411 */
412 static void accumulate_val(u64 *accum, u64 val, u64 mask)
413 {
414 #define low_bits(x, mask) ((x) & (mask))
415 #define high_bits(x, mask) ((x) & ~(mask))
416 bool wrapped = val < low_bits(*accum, mask);
417
418 *accum = high_bits(*accum, mask) + val;
419 if (wrapped)
420 *accum += (mask + 1);
421 }
422
423 /* The HW counters' width is much less than 64bits.
424 * Handle possible wrap-around while updating the stat counters
425 */
426 static void bnxt_flow_stats_fix_wraparound(struct bnxt_tc_info *tc_info,
427 struct bnxt_tc_flow_stats *stats,
428 struct bnxt_tc_flow_stats *hw_stats)
429 {
430 accumulate_val(&stats->bytes, hw_stats->bytes, tc_info->bytes_mask);
431 accumulate_val(&stats->packets, hw_stats->packets,
432 tc_info->packets_mask);
433 }
434
435 /* Fix possible wraparound of the stats queried from HW, calculate
436 * the delta from prev_stats, and also update the prev_stats.
437 * The HW flow stats are fetched under the hwrm_cmd_lock mutex.
438 * This routine is best called while under the mutex so that the
439 * stats processing happens atomically.
440 */
441 static void bnxt_flow_stats_calc(struct bnxt_tc_info *tc_info,
442 struct bnxt_tc_flow *flow,
443 struct bnxt_tc_flow_stats *stats)
444 {
445 struct bnxt_tc_flow_stats *acc_stats, *prev_stats;
446
447 acc_stats = &flow->stats;
448 bnxt_flow_stats_fix_wraparound(tc_info, acc_stats, stats);
449
450 prev_stats = &flow->prev_stats;
451 stats->bytes = acc_stats->bytes - prev_stats->bytes;
452 stats->packets = acc_stats->packets - prev_stats->packets;
453 *prev_stats = *acc_stats;
454 }
455
456 static int bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp,
457 __le16 flow_handle,
458 struct bnxt_tc_flow *flow,
459 struct bnxt_tc_flow_stats *stats)
460 {
461 struct hwrm_cfa_flow_stats_output *resp = bp->hwrm_cmd_resp_addr;
462 struct hwrm_cfa_flow_stats_input req = { 0 };
463 int rc;
464
465 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_STATS, -1, -1);
466 req.num_flows = cpu_to_le16(1);
467 req.flow_handle_0 = flow_handle;
468
469 mutex_lock(&bp->hwrm_cmd_lock);
470 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
471 if (!rc) {
472 stats->packets = le64_to_cpu(resp->packet_0);
473 stats->bytes = le64_to_cpu(resp->byte_0);
474 bnxt_flow_stats_calc(&bp->tc_info, flow, stats);
475 } else {
476 netdev_info(bp->dev, "error rc=%d", rc);
477 }
478
479 mutex_unlock(&bp->hwrm_cmd_lock);
480 return rc;
481 }
482
483 static int bnxt_tc_put_l2_node(struct bnxt *bp,
484 struct bnxt_tc_flow_node *flow_node)
485 {
486 struct bnxt_tc_l2_node *l2_node = flow_node->l2_node;
487 struct bnxt_tc_info *tc_info = &bp->tc_info;
488 int rc;
489
490 /* remove flow_node from the L2 shared flow list */
491 list_del(&flow_node->l2_list_node);
492 if (--l2_node->refcount == 0) {
493 rc = rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node,
494 tc_info->l2_ht_params);
495 if (rc)
496 netdev_err(bp->dev,
497 "Error: %s: rhashtable_remove_fast: %d",
498 __func__, rc);
499 kfree_rcu(l2_node, rcu);
500 }
501 return 0;
502 }
503
504 static struct bnxt_tc_l2_node *
505 bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table,
506 struct rhashtable_params ht_params,
507 struct bnxt_tc_l2_key *l2_key)
508 {
509 struct bnxt_tc_l2_node *l2_node;
510 int rc;
511
512 l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params);
513 if (!l2_node) {
514 l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL);
515 if (!l2_node) {
516 rc = -ENOMEM;
517 return NULL;
518 }
519
520 l2_node->key = *l2_key;
521 rc = rhashtable_insert_fast(l2_table, &l2_node->node,
522 ht_params);
523 if (rc) {
524 kfree(l2_node);
525 netdev_err(bp->dev,
526 "Error: %s: rhashtable_insert_fast: %d",
527 __func__, rc);
528 return NULL;
529 }
530 INIT_LIST_HEAD(&l2_node->common_l2_flows);
531 }
532 return l2_node;
533 }
534
535 /* Get the ref_flow_handle for a flow by checking if there are any other
536 * flows that share the same L2 key as this flow.
537 */
538 static int
539 bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
540 struct bnxt_tc_flow_node *flow_node,
541 __le16 *ref_flow_handle)
542 {
543 struct bnxt_tc_info *tc_info = &bp->tc_info;
544 struct bnxt_tc_flow_node *ref_flow_node;
545 struct bnxt_tc_l2_node *l2_node;
546
547 l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table,
548 tc_info->l2_ht_params,
549 &flow->l2_key);
550 if (!l2_node)
551 return -1;
552
553 /* If any other flow is using this l2_node, use it's flow_handle
554 * as the ref_flow_handle
555 */
556 if (l2_node->refcount > 0) {
557 ref_flow_node = list_first_entry(&l2_node->common_l2_flows,
558 struct bnxt_tc_flow_node,
559 l2_list_node);
560 *ref_flow_handle = ref_flow_node->flow_handle;
561 } else {
562 *ref_flow_handle = cpu_to_le16(0xffff);
563 }
564
565 /* Insert the l2_node into the flow_node so that subsequent flows
566 * with a matching l2 key can use the flow_handle of this flow
567 * as their ref_flow_handle
568 */
569 flow_node->l2_node = l2_node;
570 list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows);
571 l2_node->refcount++;
572 return 0;
573 }
574
575 /* After the flow parsing is done, this routine is used for checking
576 * if there are any aspects of the flow that prevent it from being
577 * offloaded.
578 */
579 static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow)
580 {
581 /* If L4 ports are specified then ip_proto must be TCP or UDP */
582 if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) &&
583 (flow->l4_key.ip_proto != IPPROTO_TCP &&
584 flow->l4_key.ip_proto != IPPROTO_UDP)) {
585 netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports",
586 flow->l4_key.ip_proto);
587 return false;
588 }
589
590 return true;
591 }
592
593 static int __bnxt_tc_del_flow(struct bnxt *bp,
594 struct bnxt_tc_flow_node *flow_node)
595 {
596 struct bnxt_tc_info *tc_info = &bp->tc_info;
597 int rc;
598
599 /* send HWRM cmd to free the flow-id */
600 bnxt_hwrm_cfa_flow_free(bp, flow_node->flow_handle);
601
602 mutex_lock(&tc_info->lock);
603
604 /* release reference to l2 node */
605 bnxt_tc_put_l2_node(bp, flow_node);
606
607 mutex_unlock(&tc_info->lock);
608
609 rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node,
610 tc_info->flow_ht_params);
611 if (rc)
612 netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d",
613 __func__, rc);
614
615 kfree_rcu(flow_node, rcu);
616 return 0;
617 }
618
619 /* Add a new flow or replace an existing flow.
620 * Notes on locking:
621 * There are essentially two critical sections here.
622 * 1. while adding a new flow
623 * a) lookup l2-key
624 * b) issue HWRM cmd and get flow_handle
625 * c) link l2-key with flow
626 * 2. while deleting a flow
627 * a) unlinking l2-key from flow
628 * A lock is needed to protect these two critical sections.
629 *
630 * The hash-tables are already protected by the rhashtable API.
631 */
632 static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid,
633 struct tc_cls_flower_offload *tc_flow_cmd)
634 {
635 struct bnxt_tc_flow_node *new_node, *old_node;
636 struct bnxt_tc_info *tc_info = &bp->tc_info;
637 struct bnxt_tc_flow *flow;
638 __le16 ref_flow_handle;
639 int rc;
640
641 /* allocate memory for the new flow and it's node */
642 new_node = kzalloc(sizeof(*new_node), GFP_KERNEL);
643 if (!new_node) {
644 rc = -ENOMEM;
645 goto done;
646 }
647 new_node->cookie = tc_flow_cmd->cookie;
648 flow = &new_node->flow;
649
650 rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow);
651 if (rc)
652 goto free_node;
653 flow->src_fid = src_fid;
654
655 if (!bnxt_tc_can_offload(bp, flow)) {
656 rc = -ENOSPC;
657 goto free_node;
658 }
659
660 /* If a flow exists with the same cookie, delete it */
661 old_node = rhashtable_lookup_fast(&tc_info->flow_table,
662 &tc_flow_cmd->cookie,
663 tc_info->flow_ht_params);
664 if (old_node)
665 __bnxt_tc_del_flow(bp, old_node);
666
667 /* Check if the L2 part of the flow has been offloaded already.
668 * If so, bump up it's refcnt and get it's reference handle.
669 */
670 mutex_lock(&tc_info->lock);
671 rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle);
672 if (rc)
673 goto unlock;
674
675 /* send HWRM cmd to alloc the flow */
676 rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle,
677 &new_node->flow_handle);
678 if (rc)
679 goto put_l2;
680
681 /* add new flow to flow-table */
682 rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node,
683 tc_info->flow_ht_params);
684 if (rc)
685 goto hwrm_flow_free;
686
687 mutex_unlock(&tc_info->lock);
688 return 0;
689
690 hwrm_flow_free:
691 bnxt_hwrm_cfa_flow_free(bp, new_node->flow_handle);
692 put_l2:
693 bnxt_tc_put_l2_node(bp, new_node);
694 unlock:
695 mutex_unlock(&tc_info->lock);
696 free_node:
697 kfree(new_node);
698 done:
699 netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d",
700 __func__, tc_flow_cmd->cookie, rc);
701 return rc;
702 }
703
704 static int bnxt_tc_del_flow(struct bnxt *bp,
705 struct tc_cls_flower_offload *tc_flow_cmd)
706 {
707 struct bnxt_tc_info *tc_info = &bp->tc_info;
708 struct bnxt_tc_flow_node *flow_node;
709
710 flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
711 &tc_flow_cmd->cookie,
712 tc_info->flow_ht_params);
713 if (!flow_node) {
714 netdev_info(bp->dev, "ERROR: no flow_node for cookie %lx",
715 tc_flow_cmd->cookie);
716 return -EINVAL;
717 }
718
719 return __bnxt_tc_del_flow(bp, flow_node);
720 }
721
722 static int bnxt_tc_get_flow_stats(struct bnxt *bp,
723 struct tc_cls_flower_offload *tc_flow_cmd)
724 {
725 struct bnxt_tc_info *tc_info = &bp->tc_info;
726 struct bnxt_tc_flow_node *flow_node;
727 struct bnxt_tc_flow_stats stats;
728 int rc;
729
730 flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
731 &tc_flow_cmd->cookie,
732 tc_info->flow_ht_params);
733 if (!flow_node) {
734 netdev_info(bp->dev, "Error: no flow_node for cookie %lx",
735 tc_flow_cmd->cookie);
736 return -1;
737 }
738
739 rc = bnxt_hwrm_cfa_flow_stats_get(bp, flow_node->flow_handle,
740 &flow_node->flow, &stats);
741 if (rc)
742 return rc;
743
744 tcf_exts_stats_update(tc_flow_cmd->exts, stats.bytes, stats.packets, 0);
745 return 0;
746 }
747
748 int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid,
749 struct tc_cls_flower_offload *cls_flower)
750 {
751 int rc = 0;
752
753 if (!is_classid_clsact_ingress(cls_flower->common.classid) ||
754 cls_flower->common.chain_index)
755 return -EOPNOTSUPP;
756
757 switch (cls_flower->command) {
758 case TC_CLSFLOWER_REPLACE:
759 rc = bnxt_tc_add_flow(bp, src_fid, cls_flower);
760 break;
761
762 case TC_CLSFLOWER_DESTROY:
763 rc = bnxt_tc_del_flow(bp, cls_flower);
764 break;
765
766 case TC_CLSFLOWER_STATS:
767 rc = bnxt_tc_get_flow_stats(bp, cls_flower);
768 break;
769 }
770 return rc;
771 }
772
773 static const struct rhashtable_params bnxt_tc_flow_ht_params = {
774 .head_offset = offsetof(struct bnxt_tc_flow_node, node),
775 .key_offset = offsetof(struct bnxt_tc_flow_node, cookie),
776 .key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie),
777 .automatic_shrinking = true
778 };
779
780 static const struct rhashtable_params bnxt_tc_l2_ht_params = {
781 .head_offset = offsetof(struct bnxt_tc_l2_node, node),
782 .key_offset = offsetof(struct bnxt_tc_l2_node, key),
783 .key_len = BNXT_TC_L2_KEY_LEN,
784 .automatic_shrinking = true
785 };
786
787 /* convert counter width in bits to a mask */
788 #define mask(width) ((u64)~0 >> (64 - (width)))
789
790 int bnxt_init_tc(struct bnxt *bp)
791 {
792 struct bnxt_tc_info *tc_info = &bp->tc_info;
793 int rc;
794
795 if (bp->hwrm_spec_code < 0x10800) {
796 netdev_warn(bp->dev,
797 "Firmware does not support TC flower offload.\n");
798 return -ENOTSUPP;
799 }
800 mutex_init(&tc_info->lock);
801
802 /* Counter widths are programmed by FW */
803 tc_info->bytes_mask = mask(36);
804 tc_info->packets_mask = mask(28);
805
806 tc_info->flow_ht_params = bnxt_tc_flow_ht_params;
807 rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params);
808 if (rc)
809 return rc;
810
811 tc_info->l2_ht_params = bnxt_tc_l2_ht_params;
812 rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params);
813 if (rc)
814 goto destroy_flow_table;
815
816 tc_info->enabled = true;
817 bp->dev->hw_features |= NETIF_F_HW_TC;
818 bp->dev->features |= NETIF_F_HW_TC;
819 return 0;
820
821 destroy_flow_table:
822 rhashtable_destroy(&tc_info->flow_table);
823 return rc;
824 }
825
826 void bnxt_shutdown_tc(struct bnxt *bp)
827 {
828 struct bnxt_tc_info *tc_info = &bp->tc_info;
829
830 if (!tc_info->enabled)
831 return;
832
833 rhashtable_destroy(&tc_info->flow_table);
834 rhashtable_destroy(&tc_info->l2_table);
835 }
836
837 #else
838 #endif