]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/broadcom/genet/bcmgenet.c
ASoC: rockchip: add bindings for rk3368 i2s
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2 * Broadcom GENET (Gigabit Ethernet) controller driver
3 *
4 * Copyright (c) 2014 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT 4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY 0
56
57 #define GENET_Q16_RX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT \
60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH 2048
63 #define SKB_ALIGNMENT 32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
73 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 void __iomem *d, u32 value)
77 {
78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 void __iomem *d)
83 {
84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 void __iomem *d,
89 dma_addr_t addr)
90 {
91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93 /* Register writes to GISB bus can take couple hundred nanoseconds
94 * and are done for each packet, save these expensive writes unless
95 * the platform is explicitly configured for 64-bits/LPAE.
96 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 if (priv->hw_params->flags & GENET_HAS_40BITS)
99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 dmadesc_set_addr(priv, d, addr);
108 dmadesc_set_length_status(priv, d, val);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 void __iomem *d)
113 {
114 dma_addr_t addr;
115
116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118 /* Register writes to GISB bus can take couple hundred nanoseconds
119 * and are done for each packet, save these expensive writes unless
120 * the platform is explicitly configured for 64-bits/LPAE.
121 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 if (priv->hw_params->flags & GENET_HAS_40BITS)
124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 return addr;
127 }
128
129 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 if (GENET_IS_V1(priv))
137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 else
139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 if (GENET_IS_V1(priv))
145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 else
147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151 * between GENET1.1 and GENET2. Only those currently being used
152 * by driver are defined.
153 */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 if (GENET_IS_V1(priv))
157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 else
159 return __raw_readl(priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 if (GENET_IS_V1(priv))
166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 else
168 __raw_writel(val, priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 if (GENET_IS_V1(priv))
175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 else
177 return __raw_readl(priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 if (GENET_IS_V1(priv))
184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 else
186 __raw_writel(val, priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 DMA_RING_CFG = 0,
193 DMA_CTRL,
194 DMA_STATUS,
195 DMA_SCB_BURST_SIZE,
196 DMA_ARB_CTRL,
197 DMA_PRIORITY_0,
198 DMA_PRIORITY_1,
199 DMA_PRIORITY_2,
200 DMA_INDEX2RING_0,
201 DMA_INDEX2RING_1,
202 DMA_INDEX2RING_2,
203 DMA_INDEX2RING_3,
204 DMA_INDEX2RING_4,
205 DMA_INDEX2RING_5,
206 DMA_INDEX2RING_6,
207 DMA_INDEX2RING_7,
208 DMA_RING0_TIMEOUT,
209 DMA_RING1_TIMEOUT,
210 DMA_RING2_TIMEOUT,
211 DMA_RING3_TIMEOUT,
212 DMA_RING4_TIMEOUT,
213 DMA_RING5_TIMEOUT,
214 DMA_RING6_TIMEOUT,
215 DMA_RING7_TIMEOUT,
216 DMA_RING8_TIMEOUT,
217 DMA_RING9_TIMEOUT,
218 DMA_RING10_TIMEOUT,
219 DMA_RING11_TIMEOUT,
220 DMA_RING12_TIMEOUT,
221 DMA_RING13_TIMEOUT,
222 DMA_RING14_TIMEOUT,
223 DMA_RING15_TIMEOUT,
224 DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 [DMA_RING_CFG] = 0x00,
229 [DMA_CTRL] = 0x04,
230 [DMA_STATUS] = 0x08,
231 [DMA_SCB_BURST_SIZE] = 0x0C,
232 [DMA_ARB_CTRL] = 0x2C,
233 [DMA_PRIORITY_0] = 0x30,
234 [DMA_PRIORITY_1] = 0x34,
235 [DMA_PRIORITY_2] = 0x38,
236 [DMA_RING0_TIMEOUT] = 0x2C,
237 [DMA_RING1_TIMEOUT] = 0x30,
238 [DMA_RING2_TIMEOUT] = 0x34,
239 [DMA_RING3_TIMEOUT] = 0x38,
240 [DMA_RING4_TIMEOUT] = 0x3c,
241 [DMA_RING5_TIMEOUT] = 0x40,
242 [DMA_RING6_TIMEOUT] = 0x44,
243 [DMA_RING7_TIMEOUT] = 0x48,
244 [DMA_RING8_TIMEOUT] = 0x4c,
245 [DMA_RING9_TIMEOUT] = 0x50,
246 [DMA_RING10_TIMEOUT] = 0x54,
247 [DMA_RING11_TIMEOUT] = 0x58,
248 [DMA_RING12_TIMEOUT] = 0x5c,
249 [DMA_RING13_TIMEOUT] = 0x60,
250 [DMA_RING14_TIMEOUT] = 0x64,
251 [DMA_RING15_TIMEOUT] = 0x68,
252 [DMA_RING16_TIMEOUT] = 0x6C,
253 [DMA_INDEX2RING_0] = 0x70,
254 [DMA_INDEX2RING_1] = 0x74,
255 [DMA_INDEX2RING_2] = 0x78,
256 [DMA_INDEX2RING_3] = 0x7C,
257 [DMA_INDEX2RING_4] = 0x80,
258 [DMA_INDEX2RING_5] = 0x84,
259 [DMA_INDEX2RING_6] = 0x88,
260 [DMA_INDEX2RING_7] = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 [DMA_RING_CFG] = 0x00,
265 [DMA_CTRL] = 0x04,
266 [DMA_STATUS] = 0x08,
267 [DMA_SCB_BURST_SIZE] = 0x0C,
268 [DMA_ARB_CTRL] = 0x30,
269 [DMA_PRIORITY_0] = 0x34,
270 [DMA_PRIORITY_1] = 0x38,
271 [DMA_PRIORITY_2] = 0x3C,
272 [DMA_RING0_TIMEOUT] = 0x2C,
273 [DMA_RING1_TIMEOUT] = 0x30,
274 [DMA_RING2_TIMEOUT] = 0x34,
275 [DMA_RING3_TIMEOUT] = 0x38,
276 [DMA_RING4_TIMEOUT] = 0x3c,
277 [DMA_RING5_TIMEOUT] = 0x40,
278 [DMA_RING6_TIMEOUT] = 0x44,
279 [DMA_RING7_TIMEOUT] = 0x48,
280 [DMA_RING8_TIMEOUT] = 0x4c,
281 [DMA_RING9_TIMEOUT] = 0x50,
282 [DMA_RING10_TIMEOUT] = 0x54,
283 [DMA_RING11_TIMEOUT] = 0x58,
284 [DMA_RING12_TIMEOUT] = 0x5c,
285 [DMA_RING13_TIMEOUT] = 0x60,
286 [DMA_RING14_TIMEOUT] = 0x64,
287 [DMA_RING15_TIMEOUT] = 0x68,
288 [DMA_RING16_TIMEOUT] = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 [DMA_CTRL] = 0x00,
293 [DMA_STATUS] = 0x04,
294 [DMA_SCB_BURST_SIZE] = 0x0C,
295 [DMA_ARB_CTRL] = 0x30,
296 [DMA_PRIORITY_0] = 0x34,
297 [DMA_PRIORITY_1] = 0x38,
298 [DMA_PRIORITY_2] = 0x3C,
299 [DMA_RING0_TIMEOUT] = 0x2C,
300 [DMA_RING1_TIMEOUT] = 0x30,
301 [DMA_RING2_TIMEOUT] = 0x34,
302 [DMA_RING3_TIMEOUT] = 0x38,
303 [DMA_RING4_TIMEOUT] = 0x3c,
304 [DMA_RING5_TIMEOUT] = 0x40,
305 [DMA_RING6_TIMEOUT] = 0x44,
306 [DMA_RING7_TIMEOUT] = 0x48,
307 [DMA_RING8_TIMEOUT] = 0x4c,
308 [DMA_RING9_TIMEOUT] = 0x50,
309 [DMA_RING10_TIMEOUT] = 0x54,
310 [DMA_RING11_TIMEOUT] = 0x58,
311 [DMA_RING12_TIMEOUT] = 0x5c,
312 [DMA_RING13_TIMEOUT] = 0x60,
313 [DMA_RING14_TIMEOUT] = 0x64,
314 [DMA_RING15_TIMEOUT] = 0x68,
315 [DMA_RING16_TIMEOUT] = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 enum dma_reg r)
328 {
329 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 u32 val, enum dma_reg r)
335 {
336 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 enum dma_reg r)
342 {
343 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 u32 val, enum dma_reg r)
349 {
350 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355 * we merge the common fields and just prefix with T/D the registers
356 * having different meaning depending on the direction
357 */
358 enum dma_ring_reg {
359 TDMA_READ_PTR = 0,
360 RDMA_WRITE_PTR = TDMA_READ_PTR,
361 TDMA_READ_PTR_HI,
362 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 TDMA_CONS_INDEX,
364 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 TDMA_PROD_INDEX,
366 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 DMA_RING_BUF_SIZE,
368 DMA_START_ADDR,
369 DMA_START_ADDR_HI,
370 DMA_END_ADDR,
371 DMA_END_ADDR_HI,
372 DMA_MBUF_DONE_THRESH,
373 TDMA_FLOW_PERIOD,
374 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 TDMA_WRITE_PTR,
376 RDMA_READ_PTR = TDMA_WRITE_PTR,
377 TDMA_WRITE_PTR_HI,
378 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382 * for obvious reasons the LO and HI word parts
383 * are contiguous, but this offsets the other
384 * registers.
385 */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 [TDMA_READ_PTR] = 0x00,
388 [TDMA_READ_PTR_HI] = 0x04,
389 [TDMA_CONS_INDEX] = 0x08,
390 [TDMA_PROD_INDEX] = 0x0C,
391 [DMA_RING_BUF_SIZE] = 0x10,
392 [DMA_START_ADDR] = 0x14,
393 [DMA_START_ADDR_HI] = 0x18,
394 [DMA_END_ADDR] = 0x1C,
395 [DMA_END_ADDR_HI] = 0x20,
396 [DMA_MBUF_DONE_THRESH] = 0x24,
397 [TDMA_FLOW_PERIOD] = 0x28,
398 [TDMA_WRITE_PTR] = 0x2C,
399 [TDMA_WRITE_PTR_HI] = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403 [TDMA_READ_PTR] = 0x00,
404 [TDMA_CONS_INDEX] = 0x04,
405 [TDMA_PROD_INDEX] = 0x08,
406 [DMA_RING_BUF_SIZE] = 0x0C,
407 [DMA_START_ADDR] = 0x10,
408 [DMA_END_ADDR] = 0x14,
409 [DMA_MBUF_DONE_THRESH] = 0x18,
410 [TDMA_FLOW_PERIOD] = 0x1C,
411 [TDMA_WRITE_PTR] = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 unsigned int ring,
419 enum dma_ring_reg r)
420 {
421 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 unsigned int ring, u32 val,
428 enum dma_ring_reg r)
429 {
430 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 unsigned int ring,
437 enum dma_ring_reg r)
438 {
439 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 unsigned int ring, u32 val,
446 enum dma_ring_reg r)
447 {
448 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 (DMA_RING_SIZE * ring) +
450 genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_get_link_ksettings(struct net_device *dev,
454 struct ethtool_link_ksettings *cmd)
455 {
456 struct bcmgenet_priv *priv = netdev_priv(dev);
457
458 if (!netif_running(dev))
459 return -EINVAL;
460
461 if (!priv->phydev)
462 return -ENODEV;
463
464 return phy_ethtool_ksettings_get(priv->phydev, cmd);
465 }
466
467 static int bcmgenet_set_link_ksettings(struct net_device *dev,
468 const struct ethtool_link_ksettings *cmd)
469 {
470 struct bcmgenet_priv *priv = netdev_priv(dev);
471
472 if (!netif_running(dev))
473 return -EINVAL;
474
475 if (!priv->phydev)
476 return -ENODEV;
477
478 return phy_ethtool_ksettings_set(priv->phydev, cmd);
479 }
480
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482 netdev_features_t wanted)
483 {
484 struct bcmgenet_priv *priv = netdev_priv(dev);
485 u32 rbuf_chk_ctrl;
486 bool rx_csum_en;
487
488 rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489
490 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491
492 /* enable rx checksumming */
493 if (rx_csum_en)
494 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495 else
496 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497 priv->desc_rxchk_en = rx_csum_en;
498
499 /* If UniMAC forwards CRC, we need to skip over it to get
500 * a valid CHK bit to be set in the per-packet status word
501 */
502 if (rx_csum_en && priv->crc_fwd_en)
503 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504 else
505 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506
507 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508
509 return 0;
510 }
511
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513 netdev_features_t wanted)
514 {
515 struct bcmgenet_priv *priv = netdev_priv(dev);
516 bool desc_64b_en;
517 u32 tbuf_ctrl, rbuf_ctrl;
518
519 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521
522 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523
524 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525 if (desc_64b_en) {
526 tbuf_ctrl |= RBUF_64B_EN;
527 rbuf_ctrl |= RBUF_64B_EN;
528 } else {
529 tbuf_ctrl &= ~RBUF_64B_EN;
530 rbuf_ctrl &= ~RBUF_64B_EN;
531 }
532 priv->desc_64b_en = desc_64b_en;
533
534 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536
537 return 0;
538 }
539
540 static int bcmgenet_set_features(struct net_device *dev,
541 netdev_features_t features)
542 {
543 netdev_features_t changed = features ^ dev->features;
544 netdev_features_t wanted = dev->wanted_features;
545 int ret = 0;
546
547 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548 ret = bcmgenet_set_tx_csum(dev, wanted);
549 if (changed & (NETIF_F_RXCSUM))
550 ret = bcmgenet_set_rx_csum(dev, wanted);
551
552 return ret;
553 }
554
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557 struct bcmgenet_priv *priv = netdev_priv(dev);
558
559 return priv->msg_enable;
560 }
561
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564 struct bcmgenet_priv *priv = netdev_priv(dev);
565
566 priv->msg_enable = level;
567 }
568
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570 struct ethtool_coalesce *ec)
571 {
572 struct bcmgenet_priv *priv = netdev_priv(dev);
573
574 ec->tx_max_coalesced_frames =
575 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576 DMA_MBUF_DONE_THRESH);
577 ec->rx_max_coalesced_frames =
578 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579 DMA_MBUF_DONE_THRESH);
580 ec->rx_coalesce_usecs =
581 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582
583 return 0;
584 }
585
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587 struct ethtool_coalesce *ec)
588 {
589 struct bcmgenet_priv *priv = netdev_priv(dev);
590 unsigned int i;
591 u32 reg;
592
593 /* Base system clock is 125Mhz, DMA timeout is this reference clock
594 * divided by 1024, which yields roughly 8.192us, our maximum value
595 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596 */
597 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598 ec->tx_max_coalesced_frames == 0 ||
599 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601 return -EINVAL;
602
603 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604 return -EINVAL;
605
606 /* GENET TDMA hardware does not support a configurable timeout, but will
607 * always generate an interrupt either after MBDONE packets have been
608 * transmitted, or when the ring is emtpy.
609 */
610 if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611 ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612 return -EOPNOTSUPP;
613
614 /* Program all TX queues with the same values, as there is no
615 * ethtool knob to do coalescing on a per-queue basis
616 */
617 for (i = 0; i < priv->hw_params->tx_queues; i++)
618 bcmgenet_tdma_ring_writel(priv, i,
619 ec->tx_max_coalesced_frames,
620 DMA_MBUF_DONE_THRESH);
621 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
622 ec->tx_max_coalesced_frames,
623 DMA_MBUF_DONE_THRESH);
624
625 for (i = 0; i < priv->hw_params->rx_queues; i++) {
626 bcmgenet_rdma_ring_writel(priv, i,
627 ec->rx_max_coalesced_frames,
628 DMA_MBUF_DONE_THRESH);
629
630 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
631 reg &= ~DMA_TIMEOUT_MASK;
632 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
633 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
634 }
635
636 bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
637 ec->rx_max_coalesced_frames,
638 DMA_MBUF_DONE_THRESH);
639
640 reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
641 reg &= ~DMA_TIMEOUT_MASK;
642 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
643 bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
644
645 return 0;
646 }
647
648 /* standard ethtool support functions. */
649 enum bcmgenet_stat_type {
650 BCMGENET_STAT_NETDEV = -1,
651 BCMGENET_STAT_MIB_RX,
652 BCMGENET_STAT_MIB_TX,
653 BCMGENET_STAT_RUNT,
654 BCMGENET_STAT_MISC,
655 BCMGENET_STAT_SOFT,
656 };
657
658 struct bcmgenet_stats {
659 char stat_string[ETH_GSTRING_LEN];
660 int stat_sizeof;
661 int stat_offset;
662 enum bcmgenet_stat_type type;
663 /* reg offset from UMAC base for misc counters */
664 u16 reg_offset;
665 };
666
667 #define STAT_NETDEV(m) { \
668 .stat_string = __stringify(m), \
669 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
670 .stat_offset = offsetof(struct net_device_stats, m), \
671 .type = BCMGENET_STAT_NETDEV, \
672 }
673
674 #define STAT_GENET_MIB(str, m, _type) { \
675 .stat_string = str, \
676 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
677 .stat_offset = offsetof(struct bcmgenet_priv, m), \
678 .type = _type, \
679 }
680
681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685
686 #define STAT_GENET_MISC(str, m, offset) { \
687 .stat_string = str, \
688 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
689 .stat_offset = offsetof(struct bcmgenet_priv, m), \
690 .type = BCMGENET_STAT_MISC, \
691 .reg_offset = offset, \
692 }
693
694
695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
696 * between the end of TX stats and the beginning of the RX RUNT
697 */
698 #define BCMGENET_STAT_OFFSET 0xc
699
700 /* Hardware counters must be kept in sync because the order/offset
701 * is important here (order in structure declaration = order in hardware)
702 */
703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
704 /* general stats */
705 STAT_NETDEV(rx_packets),
706 STAT_NETDEV(tx_packets),
707 STAT_NETDEV(rx_bytes),
708 STAT_NETDEV(tx_bytes),
709 STAT_NETDEV(rx_errors),
710 STAT_NETDEV(tx_errors),
711 STAT_NETDEV(rx_dropped),
712 STAT_NETDEV(tx_dropped),
713 STAT_NETDEV(multicast),
714 /* UniMAC RSV counters */
715 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
716 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
717 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
718 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
719 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
720 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
721 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
722 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
723 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
724 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
725 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
726 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
727 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
728 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
729 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
730 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
731 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
732 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
733 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
734 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
735 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
736 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
737 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
738 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
739 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
740 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
741 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
742 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
743 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
744 /* UniMAC TSV counters */
745 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
746 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
747 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
748 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
749 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
750 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
751 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
752 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
753 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
754 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
755 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
756 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
757 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
758 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
759 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
760 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
761 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
762 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
763 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
764 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
765 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
766 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
767 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
768 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
769 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
770 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
771 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
772 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
773 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
774 /* UniMAC RUNT counters */
775 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
776 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
777 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
778 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
779 /* Misc UniMAC counters */
780 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
781 UMAC_RBUF_OVFL_CNT),
782 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
783 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
784 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
785 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
786 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
787 };
788
789 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
790
791 static void bcmgenet_get_drvinfo(struct net_device *dev,
792 struct ethtool_drvinfo *info)
793 {
794 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
795 strlcpy(info->version, "v2.0", sizeof(info->version));
796 }
797
798 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
799 {
800 switch (string_set) {
801 case ETH_SS_STATS:
802 return BCMGENET_STATS_LEN;
803 default:
804 return -EOPNOTSUPP;
805 }
806 }
807
808 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
809 u8 *data)
810 {
811 int i;
812
813 switch (stringset) {
814 case ETH_SS_STATS:
815 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
816 memcpy(data + i * ETH_GSTRING_LEN,
817 bcmgenet_gstrings_stats[i].stat_string,
818 ETH_GSTRING_LEN);
819 }
820 break;
821 }
822 }
823
824 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
825 {
826 int i, j = 0;
827
828 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
829 const struct bcmgenet_stats *s;
830 u8 offset = 0;
831 u32 val = 0;
832 char *p;
833
834 s = &bcmgenet_gstrings_stats[i];
835 switch (s->type) {
836 case BCMGENET_STAT_NETDEV:
837 case BCMGENET_STAT_SOFT:
838 continue;
839 case BCMGENET_STAT_MIB_RX:
840 case BCMGENET_STAT_MIB_TX:
841 case BCMGENET_STAT_RUNT:
842 if (s->type != BCMGENET_STAT_MIB_RX)
843 offset = BCMGENET_STAT_OFFSET;
844 val = bcmgenet_umac_readl(priv,
845 UMAC_MIB_START + j + offset);
846 break;
847 case BCMGENET_STAT_MISC:
848 val = bcmgenet_umac_readl(priv, s->reg_offset);
849 /* clear if overflowed */
850 if (val == ~0)
851 bcmgenet_umac_writel(priv, 0, s->reg_offset);
852 break;
853 }
854
855 j += s->stat_sizeof;
856 p = (char *)priv + s->stat_offset;
857 *(u32 *)p = val;
858 }
859 }
860
861 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
862 struct ethtool_stats *stats,
863 u64 *data)
864 {
865 struct bcmgenet_priv *priv = netdev_priv(dev);
866 int i;
867
868 if (netif_running(dev))
869 bcmgenet_update_mib_counters(priv);
870
871 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
872 const struct bcmgenet_stats *s;
873 char *p;
874
875 s = &bcmgenet_gstrings_stats[i];
876 if (s->type == BCMGENET_STAT_NETDEV)
877 p = (char *)&dev->stats;
878 else
879 p = (char *)priv;
880 p += s->stat_offset;
881 if (sizeof(unsigned long) != sizeof(u32) &&
882 s->stat_sizeof == sizeof(unsigned long))
883 data[i] = *(unsigned long *)p;
884 else
885 data[i] = *(u32 *)p;
886 }
887 }
888
889 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
890 {
891 struct bcmgenet_priv *priv = netdev_priv(dev);
892 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
893 u32 reg;
894
895 if (enable && !priv->clk_eee_enabled) {
896 clk_prepare_enable(priv->clk_eee);
897 priv->clk_eee_enabled = true;
898 }
899
900 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
901 if (enable)
902 reg |= EEE_EN;
903 else
904 reg &= ~EEE_EN;
905 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
906
907 /* Enable EEE and switch to a 27Mhz clock automatically */
908 reg = __raw_readl(priv->base + off);
909 if (enable)
910 reg |= TBUF_EEE_EN | TBUF_PM_EN;
911 else
912 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
913 __raw_writel(reg, priv->base + off);
914
915 /* Do the same for thing for RBUF */
916 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
917 if (enable)
918 reg |= RBUF_EEE_EN | RBUF_PM_EN;
919 else
920 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
921 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
922
923 if (!enable && priv->clk_eee_enabled) {
924 clk_disable_unprepare(priv->clk_eee);
925 priv->clk_eee_enabled = false;
926 }
927
928 priv->eee.eee_enabled = enable;
929 priv->eee.eee_active = enable;
930 }
931
932 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
933 {
934 struct bcmgenet_priv *priv = netdev_priv(dev);
935 struct ethtool_eee *p = &priv->eee;
936
937 if (GENET_IS_V1(priv))
938 return -EOPNOTSUPP;
939
940 e->eee_enabled = p->eee_enabled;
941 e->eee_active = p->eee_active;
942 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
943
944 return phy_ethtool_get_eee(priv->phydev, e);
945 }
946
947 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
948 {
949 struct bcmgenet_priv *priv = netdev_priv(dev);
950 struct ethtool_eee *p = &priv->eee;
951 int ret = 0;
952
953 if (GENET_IS_V1(priv))
954 return -EOPNOTSUPP;
955
956 p->eee_enabled = e->eee_enabled;
957
958 if (!p->eee_enabled) {
959 bcmgenet_eee_enable_set(dev, false);
960 } else {
961 ret = phy_init_eee(priv->phydev, 0);
962 if (ret) {
963 netif_err(priv, hw, dev, "EEE initialization failed\n");
964 return ret;
965 }
966
967 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
968 bcmgenet_eee_enable_set(dev, true);
969 }
970
971 return phy_ethtool_set_eee(priv->phydev, e);
972 }
973
974 /* standard ethtool support functions. */
975 static const struct ethtool_ops bcmgenet_ethtool_ops = {
976 .get_strings = bcmgenet_get_strings,
977 .get_sset_count = bcmgenet_get_sset_count,
978 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
979 .get_drvinfo = bcmgenet_get_drvinfo,
980 .get_link = ethtool_op_get_link,
981 .get_msglevel = bcmgenet_get_msglevel,
982 .set_msglevel = bcmgenet_set_msglevel,
983 .get_wol = bcmgenet_get_wol,
984 .set_wol = bcmgenet_set_wol,
985 .get_eee = bcmgenet_get_eee,
986 .set_eee = bcmgenet_set_eee,
987 .nway_reset = phy_ethtool_nway_reset,
988 .get_coalesce = bcmgenet_get_coalesce,
989 .set_coalesce = bcmgenet_set_coalesce,
990 .get_link_ksettings = bcmgenet_get_link_ksettings,
991 .set_link_ksettings = bcmgenet_set_link_ksettings,
992 };
993
994 /* Power down the unimac, based on mode. */
995 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
996 enum bcmgenet_power_mode mode)
997 {
998 int ret = 0;
999 u32 reg;
1000
1001 switch (mode) {
1002 case GENET_POWER_CABLE_SENSE:
1003 phy_detach(priv->phydev);
1004 break;
1005
1006 case GENET_POWER_WOL_MAGIC:
1007 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1008 break;
1009
1010 case GENET_POWER_PASSIVE:
1011 /* Power down LED */
1012 if (priv->hw_params->flags & GENET_HAS_EXT) {
1013 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1014 reg |= (EXT_PWR_DOWN_PHY |
1015 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1016 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1017
1018 bcmgenet_phy_power_set(priv->dev, false);
1019 }
1020 break;
1021 default:
1022 break;
1023 }
1024
1025 return 0;
1026 }
1027
1028 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1029 enum bcmgenet_power_mode mode)
1030 {
1031 u32 reg;
1032
1033 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1034 return;
1035
1036 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1037
1038 switch (mode) {
1039 case GENET_POWER_PASSIVE:
1040 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1041 EXT_PWR_DOWN_BIAS);
1042 /* fallthrough */
1043 case GENET_POWER_CABLE_SENSE:
1044 /* enable APD */
1045 reg |= EXT_PWR_DN_EN_LD;
1046 break;
1047 case GENET_POWER_WOL_MAGIC:
1048 bcmgenet_wol_power_up_cfg(priv, mode);
1049 return;
1050 default:
1051 break;
1052 }
1053
1054 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1055 if (mode == GENET_POWER_PASSIVE) {
1056 bcmgenet_phy_power_set(priv->dev, true);
1057 bcmgenet_mii_reset(priv->dev);
1058 }
1059 }
1060
1061 /* ioctl handle special commands that are not present in ethtool. */
1062 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1063 {
1064 struct bcmgenet_priv *priv = netdev_priv(dev);
1065 int val = 0;
1066
1067 if (!netif_running(dev))
1068 return -EINVAL;
1069
1070 switch (cmd) {
1071 case SIOCGMIIPHY:
1072 case SIOCGMIIREG:
1073 case SIOCSMIIREG:
1074 if (!priv->phydev)
1075 val = -ENODEV;
1076 else
1077 val = phy_mii_ioctl(priv->phydev, rq, cmd);
1078 break;
1079
1080 default:
1081 val = -EINVAL;
1082 break;
1083 }
1084
1085 return val;
1086 }
1087
1088 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1089 struct bcmgenet_tx_ring *ring)
1090 {
1091 struct enet_cb *tx_cb_ptr;
1092
1093 tx_cb_ptr = ring->cbs;
1094 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1095
1096 /* Advancing local write pointer */
1097 if (ring->write_ptr == ring->end_ptr)
1098 ring->write_ptr = ring->cb_ptr;
1099 else
1100 ring->write_ptr++;
1101
1102 return tx_cb_ptr;
1103 }
1104
1105 /* Simple helper to free a control block's resources */
1106 static void bcmgenet_free_cb(struct enet_cb *cb)
1107 {
1108 dev_kfree_skb_any(cb->skb);
1109 cb->skb = NULL;
1110 dma_unmap_addr_set(cb, dma_addr, 0);
1111 }
1112
1113 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1114 {
1115 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1116 INTRL2_CPU_MASK_SET);
1117 }
1118
1119 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1120 {
1121 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1122 INTRL2_CPU_MASK_CLEAR);
1123 }
1124
1125 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1126 {
1127 bcmgenet_intrl2_1_writel(ring->priv,
1128 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1129 INTRL2_CPU_MASK_SET);
1130 }
1131
1132 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1133 {
1134 bcmgenet_intrl2_1_writel(ring->priv,
1135 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1136 INTRL2_CPU_MASK_CLEAR);
1137 }
1138
1139 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1140 {
1141 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1142 INTRL2_CPU_MASK_SET);
1143 }
1144
1145 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1146 {
1147 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1148 INTRL2_CPU_MASK_CLEAR);
1149 }
1150
1151 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1152 {
1153 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1154 INTRL2_CPU_MASK_CLEAR);
1155 }
1156
1157 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1158 {
1159 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1160 INTRL2_CPU_MASK_SET);
1161 }
1162
1163 /* Unlocked version of the reclaim routine */
1164 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1165 struct bcmgenet_tx_ring *ring)
1166 {
1167 struct bcmgenet_priv *priv = netdev_priv(dev);
1168 struct device *kdev = &priv->pdev->dev;
1169 struct enet_cb *tx_cb_ptr;
1170 struct netdev_queue *txq;
1171 unsigned int pkts_compl = 0;
1172 unsigned int bytes_compl = 0;
1173 unsigned int c_index;
1174 unsigned int txbds_ready;
1175 unsigned int txbds_processed = 0;
1176
1177 /* Compute how many buffers are transmitted since last xmit call */
1178 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1179 c_index &= DMA_C_INDEX_MASK;
1180
1181 if (likely(c_index >= ring->c_index))
1182 txbds_ready = c_index - ring->c_index;
1183 else
1184 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1185
1186 netif_dbg(priv, tx_done, dev,
1187 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1188 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1189
1190 /* Reclaim transmitted buffers */
1191 while (txbds_processed < txbds_ready) {
1192 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1193 if (tx_cb_ptr->skb) {
1194 pkts_compl++;
1195 bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1196 dma_unmap_single(kdev,
1197 dma_unmap_addr(tx_cb_ptr, dma_addr),
1198 dma_unmap_len(tx_cb_ptr, dma_len),
1199 DMA_TO_DEVICE);
1200 bcmgenet_free_cb(tx_cb_ptr);
1201 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1202 dma_unmap_page(kdev,
1203 dma_unmap_addr(tx_cb_ptr, dma_addr),
1204 dma_unmap_len(tx_cb_ptr, dma_len),
1205 DMA_TO_DEVICE);
1206 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1207 }
1208
1209 txbds_processed++;
1210 if (likely(ring->clean_ptr < ring->end_ptr))
1211 ring->clean_ptr++;
1212 else
1213 ring->clean_ptr = ring->cb_ptr;
1214 }
1215
1216 ring->free_bds += txbds_processed;
1217 ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1218
1219 dev->stats.tx_packets += pkts_compl;
1220 dev->stats.tx_bytes += bytes_compl;
1221
1222 txq = netdev_get_tx_queue(dev, ring->queue);
1223 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
1224
1225 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1226 if (netif_tx_queue_stopped(txq))
1227 netif_tx_wake_queue(txq);
1228 }
1229
1230 return pkts_compl;
1231 }
1232
1233 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1234 struct bcmgenet_tx_ring *ring)
1235 {
1236 unsigned int released;
1237 unsigned long flags;
1238
1239 spin_lock_irqsave(&ring->lock, flags);
1240 released = __bcmgenet_tx_reclaim(dev, ring);
1241 spin_unlock_irqrestore(&ring->lock, flags);
1242
1243 return released;
1244 }
1245
1246 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1247 {
1248 struct bcmgenet_tx_ring *ring =
1249 container_of(napi, struct bcmgenet_tx_ring, napi);
1250 unsigned int work_done = 0;
1251
1252 work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1253
1254 if (work_done == 0) {
1255 napi_complete(napi);
1256 ring->int_enable(ring);
1257
1258 return 0;
1259 }
1260
1261 return budget;
1262 }
1263
1264 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1265 {
1266 struct bcmgenet_priv *priv = netdev_priv(dev);
1267 int i;
1268
1269 if (netif_is_multiqueue(dev)) {
1270 for (i = 0; i < priv->hw_params->tx_queues; i++)
1271 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1272 }
1273
1274 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1275 }
1276
1277 /* Transmits a single SKB (either head of a fragment or a single SKB)
1278 * caller must hold priv->lock
1279 */
1280 static int bcmgenet_xmit_single(struct net_device *dev,
1281 struct sk_buff *skb,
1282 u16 dma_desc_flags,
1283 struct bcmgenet_tx_ring *ring)
1284 {
1285 struct bcmgenet_priv *priv = netdev_priv(dev);
1286 struct device *kdev = &priv->pdev->dev;
1287 struct enet_cb *tx_cb_ptr;
1288 unsigned int skb_len;
1289 dma_addr_t mapping;
1290 u32 length_status;
1291 int ret;
1292
1293 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1294
1295 if (unlikely(!tx_cb_ptr))
1296 BUG();
1297
1298 tx_cb_ptr->skb = skb;
1299
1300 skb_len = skb_headlen(skb);
1301
1302 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1303 ret = dma_mapping_error(kdev, mapping);
1304 if (ret) {
1305 priv->mib.tx_dma_failed++;
1306 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1307 dev_kfree_skb(skb);
1308 return ret;
1309 }
1310
1311 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1312 dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1313 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1314 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1315 DMA_TX_APPEND_CRC;
1316
1317 if (skb->ip_summed == CHECKSUM_PARTIAL)
1318 length_status |= DMA_TX_DO_CSUM;
1319
1320 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1321
1322 return 0;
1323 }
1324
1325 /* Transmit a SKB fragment */
1326 static int bcmgenet_xmit_frag(struct net_device *dev,
1327 skb_frag_t *frag,
1328 u16 dma_desc_flags,
1329 struct bcmgenet_tx_ring *ring)
1330 {
1331 struct bcmgenet_priv *priv = netdev_priv(dev);
1332 struct device *kdev = &priv->pdev->dev;
1333 struct enet_cb *tx_cb_ptr;
1334 unsigned int frag_size;
1335 dma_addr_t mapping;
1336 int ret;
1337
1338 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1339
1340 if (unlikely(!tx_cb_ptr))
1341 BUG();
1342
1343 tx_cb_ptr->skb = NULL;
1344
1345 frag_size = skb_frag_size(frag);
1346
1347 mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1348 ret = dma_mapping_error(kdev, mapping);
1349 if (ret) {
1350 priv->mib.tx_dma_failed++;
1351 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1352 __func__);
1353 return ret;
1354 }
1355
1356 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1357 dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1358
1359 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1360 (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1361 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1362
1363 return 0;
1364 }
1365
1366 /* Reallocate the SKB to put enough headroom in front of it and insert
1367 * the transmit checksum offsets in the descriptors
1368 */
1369 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1370 struct sk_buff *skb)
1371 {
1372 struct status_64 *status = NULL;
1373 struct sk_buff *new_skb;
1374 u16 offset;
1375 u8 ip_proto;
1376 u16 ip_ver;
1377 u32 tx_csum_info;
1378
1379 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1380 /* If 64 byte status block enabled, must make sure skb has
1381 * enough headroom for us to insert 64B status block.
1382 */
1383 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1384 dev_kfree_skb(skb);
1385 if (!new_skb) {
1386 dev->stats.tx_dropped++;
1387 return NULL;
1388 }
1389 skb = new_skb;
1390 }
1391
1392 skb_push(skb, sizeof(*status));
1393 status = (struct status_64 *)skb->data;
1394
1395 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1396 ip_ver = htons(skb->protocol);
1397 switch (ip_ver) {
1398 case ETH_P_IP:
1399 ip_proto = ip_hdr(skb)->protocol;
1400 break;
1401 case ETH_P_IPV6:
1402 ip_proto = ipv6_hdr(skb)->nexthdr;
1403 break;
1404 default:
1405 return skb;
1406 }
1407
1408 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1409 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1410 (offset + skb->csum_offset);
1411
1412 /* Set the length valid bit for TCP and UDP and just set
1413 * the special UDP flag for IPv4, else just set to 0.
1414 */
1415 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1416 tx_csum_info |= STATUS_TX_CSUM_LV;
1417 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1418 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1419 } else {
1420 tx_csum_info = 0;
1421 }
1422
1423 status->tx_csum_info = tx_csum_info;
1424 }
1425
1426 return skb;
1427 }
1428
1429 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1430 {
1431 struct bcmgenet_priv *priv = netdev_priv(dev);
1432 struct bcmgenet_tx_ring *ring = NULL;
1433 struct netdev_queue *txq;
1434 unsigned long flags = 0;
1435 int nr_frags, index;
1436 u16 dma_desc_flags;
1437 int ret;
1438 int i;
1439
1440 index = skb_get_queue_mapping(skb);
1441 /* Mapping strategy:
1442 * queue_mapping = 0, unclassified, packet xmited through ring16
1443 * queue_mapping = 1, goes to ring 0. (highest priority queue
1444 * queue_mapping = 2, goes to ring 1.
1445 * queue_mapping = 3, goes to ring 2.
1446 * queue_mapping = 4, goes to ring 3.
1447 */
1448 if (index == 0)
1449 index = DESC_INDEX;
1450 else
1451 index -= 1;
1452
1453 ring = &priv->tx_rings[index];
1454 txq = netdev_get_tx_queue(dev, ring->queue);
1455
1456 nr_frags = skb_shinfo(skb)->nr_frags;
1457
1458 spin_lock_irqsave(&ring->lock, flags);
1459 if (ring->free_bds <= (nr_frags + 1)) {
1460 if (!netif_tx_queue_stopped(txq)) {
1461 netif_tx_stop_queue(txq);
1462 netdev_err(dev,
1463 "%s: tx ring %d full when queue %d awake\n",
1464 __func__, index, ring->queue);
1465 }
1466 ret = NETDEV_TX_BUSY;
1467 goto out;
1468 }
1469
1470 if (skb_padto(skb, ETH_ZLEN)) {
1471 ret = NETDEV_TX_OK;
1472 goto out;
1473 }
1474
1475 /* Retain how many bytes will be sent on the wire, without TSB inserted
1476 * by transmit checksum offload
1477 */
1478 GENET_CB(skb)->bytes_sent = skb->len;
1479
1480 /* set the SKB transmit checksum */
1481 if (priv->desc_64b_en) {
1482 skb = bcmgenet_put_tx_csum(dev, skb);
1483 if (!skb) {
1484 ret = NETDEV_TX_OK;
1485 goto out;
1486 }
1487 }
1488
1489 dma_desc_flags = DMA_SOP;
1490 if (nr_frags == 0)
1491 dma_desc_flags |= DMA_EOP;
1492
1493 /* Transmit single SKB or head of fragment list */
1494 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1495 if (ret) {
1496 ret = NETDEV_TX_OK;
1497 goto out;
1498 }
1499
1500 /* xmit fragment */
1501 for (i = 0; i < nr_frags; i++) {
1502 ret = bcmgenet_xmit_frag(dev,
1503 &skb_shinfo(skb)->frags[i],
1504 (i == nr_frags - 1) ? DMA_EOP : 0,
1505 ring);
1506 if (ret) {
1507 ret = NETDEV_TX_OK;
1508 goto out;
1509 }
1510 }
1511
1512 skb_tx_timestamp(skb);
1513
1514 /* Decrement total BD count and advance our write pointer */
1515 ring->free_bds -= nr_frags + 1;
1516 ring->prod_index += nr_frags + 1;
1517 ring->prod_index &= DMA_P_INDEX_MASK;
1518
1519 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1520
1521 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1522 netif_tx_stop_queue(txq);
1523
1524 if (!skb->xmit_more || netif_xmit_stopped(txq))
1525 /* Packets are ready, update producer index */
1526 bcmgenet_tdma_ring_writel(priv, ring->index,
1527 ring->prod_index, TDMA_PROD_INDEX);
1528 out:
1529 spin_unlock_irqrestore(&ring->lock, flags);
1530
1531 return ret;
1532 }
1533
1534 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1535 struct enet_cb *cb)
1536 {
1537 struct device *kdev = &priv->pdev->dev;
1538 struct sk_buff *skb;
1539 struct sk_buff *rx_skb;
1540 dma_addr_t mapping;
1541
1542 /* Allocate a new Rx skb */
1543 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1544 if (!skb) {
1545 priv->mib.alloc_rx_buff_failed++;
1546 netif_err(priv, rx_err, priv->dev,
1547 "%s: Rx skb allocation failed\n", __func__);
1548 return NULL;
1549 }
1550
1551 /* DMA-map the new Rx skb */
1552 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1553 DMA_FROM_DEVICE);
1554 if (dma_mapping_error(kdev, mapping)) {
1555 priv->mib.rx_dma_failed++;
1556 dev_kfree_skb_any(skb);
1557 netif_err(priv, rx_err, priv->dev,
1558 "%s: Rx skb DMA mapping failed\n", __func__);
1559 return NULL;
1560 }
1561
1562 /* Grab the current Rx skb from the ring and DMA-unmap it */
1563 rx_skb = cb->skb;
1564 if (likely(rx_skb))
1565 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1566 priv->rx_buf_len, DMA_FROM_DEVICE);
1567
1568 /* Put the new Rx skb on the ring */
1569 cb->skb = skb;
1570 dma_unmap_addr_set(cb, dma_addr, mapping);
1571 dmadesc_set_addr(priv, cb->bd_addr, mapping);
1572
1573 /* Return the current Rx skb to caller */
1574 return rx_skb;
1575 }
1576
1577 /* bcmgenet_desc_rx - descriptor based rx process.
1578 * this could be called from bottom half, or from NAPI polling method.
1579 */
1580 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1581 unsigned int budget)
1582 {
1583 struct bcmgenet_priv *priv = ring->priv;
1584 struct net_device *dev = priv->dev;
1585 struct enet_cb *cb;
1586 struct sk_buff *skb;
1587 u32 dma_length_status;
1588 unsigned long dma_flag;
1589 int len;
1590 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1591 unsigned int p_index;
1592 unsigned int discards;
1593 unsigned int chksum_ok = 0;
1594
1595 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1596
1597 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1598 DMA_P_INDEX_DISCARD_CNT_MASK;
1599 if (discards > ring->old_discards) {
1600 discards = discards - ring->old_discards;
1601 dev->stats.rx_missed_errors += discards;
1602 dev->stats.rx_errors += discards;
1603 ring->old_discards += discards;
1604
1605 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1606 if (ring->old_discards >= 0xC000) {
1607 ring->old_discards = 0;
1608 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1609 RDMA_PROD_INDEX);
1610 }
1611 }
1612
1613 p_index &= DMA_P_INDEX_MASK;
1614
1615 if (likely(p_index >= ring->c_index))
1616 rxpkttoprocess = p_index - ring->c_index;
1617 else
1618 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1619 p_index;
1620
1621 netif_dbg(priv, rx_status, dev,
1622 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1623
1624 while ((rxpktprocessed < rxpkttoprocess) &&
1625 (rxpktprocessed < budget)) {
1626 cb = &priv->rx_cbs[ring->read_ptr];
1627 skb = bcmgenet_rx_refill(priv, cb);
1628
1629 if (unlikely(!skb)) {
1630 dev->stats.rx_dropped++;
1631 goto next;
1632 }
1633
1634 if (!priv->desc_64b_en) {
1635 dma_length_status =
1636 dmadesc_get_length_status(priv, cb->bd_addr);
1637 } else {
1638 struct status_64 *status;
1639
1640 status = (struct status_64 *)skb->data;
1641 dma_length_status = status->length_status;
1642 }
1643
1644 /* DMA flags and length are still valid no matter how
1645 * we got the Receive Status Vector (64B RSB or register)
1646 */
1647 dma_flag = dma_length_status & 0xffff;
1648 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1649
1650 netif_dbg(priv, rx_status, dev,
1651 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1652 __func__, p_index, ring->c_index,
1653 ring->read_ptr, dma_length_status);
1654
1655 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1656 netif_err(priv, rx_status, dev,
1657 "dropping fragmented packet!\n");
1658 dev->stats.rx_errors++;
1659 dev_kfree_skb_any(skb);
1660 goto next;
1661 }
1662
1663 /* report errors */
1664 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1665 DMA_RX_OV |
1666 DMA_RX_NO |
1667 DMA_RX_LG |
1668 DMA_RX_RXER))) {
1669 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1670 (unsigned int)dma_flag);
1671 if (dma_flag & DMA_RX_CRC_ERROR)
1672 dev->stats.rx_crc_errors++;
1673 if (dma_flag & DMA_RX_OV)
1674 dev->stats.rx_over_errors++;
1675 if (dma_flag & DMA_RX_NO)
1676 dev->stats.rx_frame_errors++;
1677 if (dma_flag & DMA_RX_LG)
1678 dev->stats.rx_length_errors++;
1679 dev->stats.rx_errors++;
1680 dev_kfree_skb_any(skb);
1681 goto next;
1682 } /* error packet */
1683
1684 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1685 priv->desc_rxchk_en;
1686
1687 skb_put(skb, len);
1688 if (priv->desc_64b_en) {
1689 skb_pull(skb, 64);
1690 len -= 64;
1691 }
1692
1693 if (likely(chksum_ok))
1694 skb->ip_summed = CHECKSUM_UNNECESSARY;
1695
1696 /* remove hardware 2bytes added for IP alignment */
1697 skb_pull(skb, 2);
1698 len -= 2;
1699
1700 if (priv->crc_fwd_en) {
1701 skb_trim(skb, len - ETH_FCS_LEN);
1702 len -= ETH_FCS_LEN;
1703 }
1704
1705 /*Finish setting up the received SKB and send it to the kernel*/
1706 skb->protocol = eth_type_trans(skb, priv->dev);
1707 dev->stats.rx_packets++;
1708 dev->stats.rx_bytes += len;
1709 if (dma_flag & DMA_RX_MULT)
1710 dev->stats.multicast++;
1711
1712 /* Notify kernel */
1713 napi_gro_receive(&ring->napi, skb);
1714 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1715
1716 next:
1717 rxpktprocessed++;
1718 if (likely(ring->read_ptr < ring->end_ptr))
1719 ring->read_ptr++;
1720 else
1721 ring->read_ptr = ring->cb_ptr;
1722
1723 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1724 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1725 }
1726
1727 return rxpktprocessed;
1728 }
1729
1730 /* Rx NAPI polling method */
1731 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1732 {
1733 struct bcmgenet_rx_ring *ring = container_of(napi,
1734 struct bcmgenet_rx_ring, napi);
1735 unsigned int work_done;
1736
1737 work_done = bcmgenet_desc_rx(ring, budget);
1738
1739 if (work_done < budget) {
1740 napi_complete_done(napi, work_done);
1741 ring->int_enable(ring);
1742 }
1743
1744 return work_done;
1745 }
1746
1747 /* Assign skb to RX DMA descriptor. */
1748 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1749 struct bcmgenet_rx_ring *ring)
1750 {
1751 struct enet_cb *cb;
1752 struct sk_buff *skb;
1753 int i;
1754
1755 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1756
1757 /* loop here for each buffer needing assign */
1758 for (i = 0; i < ring->size; i++) {
1759 cb = ring->cbs + i;
1760 skb = bcmgenet_rx_refill(priv, cb);
1761 if (skb)
1762 dev_kfree_skb_any(skb);
1763 if (!cb->skb)
1764 return -ENOMEM;
1765 }
1766
1767 return 0;
1768 }
1769
1770 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1771 {
1772 struct device *kdev = &priv->pdev->dev;
1773 struct enet_cb *cb;
1774 int i;
1775
1776 for (i = 0; i < priv->num_rx_bds; i++) {
1777 cb = &priv->rx_cbs[i];
1778
1779 if (dma_unmap_addr(cb, dma_addr)) {
1780 dma_unmap_single(kdev,
1781 dma_unmap_addr(cb, dma_addr),
1782 priv->rx_buf_len, DMA_FROM_DEVICE);
1783 dma_unmap_addr_set(cb, dma_addr, 0);
1784 }
1785
1786 if (cb->skb)
1787 bcmgenet_free_cb(cb);
1788 }
1789 }
1790
1791 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1792 {
1793 u32 reg;
1794
1795 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1796 if (enable)
1797 reg |= mask;
1798 else
1799 reg &= ~mask;
1800 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1801
1802 /* UniMAC stops on a packet boundary, wait for a full-size packet
1803 * to be processed
1804 */
1805 if (enable == 0)
1806 usleep_range(1000, 2000);
1807 }
1808
1809 static int reset_umac(struct bcmgenet_priv *priv)
1810 {
1811 struct device *kdev = &priv->pdev->dev;
1812 unsigned int timeout = 0;
1813 u32 reg;
1814
1815 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1816 bcmgenet_rbuf_ctrl_set(priv, 0);
1817 udelay(10);
1818
1819 /* disable MAC while updating its registers */
1820 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1821
1822 /* issue soft reset, wait for it to complete */
1823 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1824 while (timeout++ < 1000) {
1825 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1826 if (!(reg & CMD_SW_RESET))
1827 return 0;
1828
1829 udelay(1);
1830 }
1831
1832 if (timeout == 1000) {
1833 dev_err(kdev,
1834 "timeout waiting for MAC to come out of reset\n");
1835 return -ETIMEDOUT;
1836 }
1837
1838 return 0;
1839 }
1840
1841 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1842 {
1843 /* Mask all interrupts.*/
1844 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1845 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1846 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1847 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1848 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1849 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1850 }
1851
1852 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1853 {
1854 u32 int0_enable = 0;
1855
1856 /* Monitor cable plug/unplugged event for internal PHY, external PHY
1857 * and MoCA PHY
1858 */
1859 if (priv->internal_phy) {
1860 int0_enable |= UMAC_IRQ_LINK_EVENT;
1861 } else if (priv->ext_phy) {
1862 int0_enable |= UMAC_IRQ_LINK_EVENT;
1863 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1864 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1865 int0_enable |= UMAC_IRQ_LINK_EVENT;
1866 }
1867 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1868 }
1869
1870 static int init_umac(struct bcmgenet_priv *priv)
1871 {
1872 struct device *kdev = &priv->pdev->dev;
1873 int ret;
1874 u32 reg;
1875 u32 int0_enable = 0;
1876 u32 int1_enable = 0;
1877 int i;
1878
1879 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1880
1881 ret = reset_umac(priv);
1882 if (ret)
1883 return ret;
1884
1885 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1886 /* clear tx/rx counter */
1887 bcmgenet_umac_writel(priv,
1888 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1889 UMAC_MIB_CTRL);
1890 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1891
1892 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1893
1894 /* init rx registers, enable ip header optimization */
1895 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1896 reg |= RBUF_ALIGN_2B;
1897 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1898
1899 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1900 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1901
1902 bcmgenet_intr_disable(priv);
1903
1904 /* Enable Rx default queue 16 interrupts */
1905 int0_enable |= UMAC_IRQ_RXDMA_DONE;
1906
1907 /* Enable Tx default queue 16 interrupts */
1908 int0_enable |= UMAC_IRQ_TXDMA_DONE;
1909
1910 /* Configure backpressure vectors for MoCA */
1911 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1912 reg = bcmgenet_bp_mc_get(priv);
1913 reg |= BIT(priv->hw_params->bp_in_en_shift);
1914
1915 /* bp_mask: back pressure mask */
1916 if (netif_is_multiqueue(priv->dev))
1917 reg |= priv->hw_params->bp_in_mask;
1918 else
1919 reg &= ~priv->hw_params->bp_in_mask;
1920 bcmgenet_bp_mc_set(priv, reg);
1921 }
1922
1923 /* Enable MDIO interrupts on GENET v3+ */
1924 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1925 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1926
1927 /* Enable Rx priority queue interrupts */
1928 for (i = 0; i < priv->hw_params->rx_queues; ++i)
1929 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1930
1931 /* Enable Tx priority queue interrupts */
1932 for (i = 0; i < priv->hw_params->tx_queues; ++i)
1933 int1_enable |= (1 << i);
1934
1935 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1936 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1937
1938 /* Enable rx/tx engine.*/
1939 dev_dbg(kdev, "done init umac\n");
1940
1941 return 0;
1942 }
1943
1944 /* Initialize a Tx ring along with corresponding hardware registers */
1945 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1946 unsigned int index, unsigned int size,
1947 unsigned int start_ptr, unsigned int end_ptr)
1948 {
1949 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1950 u32 words_per_bd = WORDS_PER_BD(priv);
1951 u32 flow_period_val = 0;
1952
1953 spin_lock_init(&ring->lock);
1954 ring->priv = priv;
1955 ring->index = index;
1956 if (index == DESC_INDEX) {
1957 ring->queue = 0;
1958 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1959 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1960 } else {
1961 ring->queue = index + 1;
1962 ring->int_enable = bcmgenet_tx_ring_int_enable;
1963 ring->int_disable = bcmgenet_tx_ring_int_disable;
1964 }
1965 ring->cbs = priv->tx_cbs + start_ptr;
1966 ring->size = size;
1967 ring->clean_ptr = start_ptr;
1968 ring->c_index = 0;
1969 ring->free_bds = size;
1970 ring->write_ptr = start_ptr;
1971 ring->cb_ptr = start_ptr;
1972 ring->end_ptr = end_ptr - 1;
1973 ring->prod_index = 0;
1974
1975 /* Set flow period for ring != 16 */
1976 if (index != DESC_INDEX)
1977 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1978
1979 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1980 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1981 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1982 /* Disable rate control for now */
1983 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1984 TDMA_FLOW_PERIOD);
1985 bcmgenet_tdma_ring_writel(priv, index,
1986 ((size << DMA_RING_SIZE_SHIFT) |
1987 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1988
1989 /* Set start and end address, read and write pointers */
1990 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1991 DMA_START_ADDR);
1992 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1993 TDMA_READ_PTR);
1994 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1995 TDMA_WRITE_PTR);
1996 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1997 DMA_END_ADDR);
1998 }
1999
2000 /* Initialize a RDMA ring */
2001 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2002 unsigned int index, unsigned int size,
2003 unsigned int start_ptr, unsigned int end_ptr)
2004 {
2005 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2006 u32 words_per_bd = WORDS_PER_BD(priv);
2007 int ret;
2008
2009 ring->priv = priv;
2010 ring->index = index;
2011 if (index == DESC_INDEX) {
2012 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2013 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2014 } else {
2015 ring->int_enable = bcmgenet_rx_ring_int_enable;
2016 ring->int_disable = bcmgenet_rx_ring_int_disable;
2017 }
2018 ring->cbs = priv->rx_cbs + start_ptr;
2019 ring->size = size;
2020 ring->c_index = 0;
2021 ring->read_ptr = start_ptr;
2022 ring->cb_ptr = start_ptr;
2023 ring->end_ptr = end_ptr - 1;
2024
2025 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2026 if (ret)
2027 return ret;
2028
2029 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2030 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2031 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2032 bcmgenet_rdma_ring_writel(priv, index,
2033 ((size << DMA_RING_SIZE_SHIFT) |
2034 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2035 bcmgenet_rdma_ring_writel(priv, index,
2036 (DMA_FC_THRESH_LO <<
2037 DMA_XOFF_THRESHOLD_SHIFT) |
2038 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2039
2040 /* Set start and end address, read and write pointers */
2041 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2042 DMA_START_ADDR);
2043 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2044 RDMA_READ_PTR);
2045 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2046 RDMA_WRITE_PTR);
2047 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2048 DMA_END_ADDR);
2049
2050 return ret;
2051 }
2052
2053 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2054 {
2055 unsigned int i;
2056 struct bcmgenet_tx_ring *ring;
2057
2058 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2059 ring = &priv->tx_rings[i];
2060 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2061 }
2062
2063 ring = &priv->tx_rings[DESC_INDEX];
2064 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2065 }
2066
2067 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2068 {
2069 unsigned int i;
2070 struct bcmgenet_tx_ring *ring;
2071
2072 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2073 ring = &priv->tx_rings[i];
2074 napi_enable(&ring->napi);
2075 }
2076
2077 ring = &priv->tx_rings[DESC_INDEX];
2078 napi_enable(&ring->napi);
2079 }
2080
2081 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2082 {
2083 unsigned int i;
2084 struct bcmgenet_tx_ring *ring;
2085
2086 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2087 ring = &priv->tx_rings[i];
2088 napi_disable(&ring->napi);
2089 }
2090
2091 ring = &priv->tx_rings[DESC_INDEX];
2092 napi_disable(&ring->napi);
2093 }
2094
2095 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2096 {
2097 unsigned int i;
2098 struct bcmgenet_tx_ring *ring;
2099
2100 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2101 ring = &priv->tx_rings[i];
2102 netif_napi_del(&ring->napi);
2103 }
2104
2105 ring = &priv->tx_rings[DESC_INDEX];
2106 netif_napi_del(&ring->napi);
2107 }
2108
2109 /* Initialize Tx queues
2110 *
2111 * Queues 0-3 are priority-based, each one has 32 descriptors,
2112 * with queue 0 being the highest priority queue.
2113 *
2114 * Queue 16 is the default Tx queue with
2115 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2116 *
2117 * The transmit control block pool is then partitioned as follows:
2118 * - Tx queue 0 uses tx_cbs[0..31]
2119 * - Tx queue 1 uses tx_cbs[32..63]
2120 * - Tx queue 2 uses tx_cbs[64..95]
2121 * - Tx queue 3 uses tx_cbs[96..127]
2122 * - Tx queue 16 uses tx_cbs[128..255]
2123 */
2124 static void bcmgenet_init_tx_queues(struct net_device *dev)
2125 {
2126 struct bcmgenet_priv *priv = netdev_priv(dev);
2127 u32 i, dma_enable;
2128 u32 dma_ctrl, ring_cfg;
2129 u32 dma_priority[3] = {0, 0, 0};
2130
2131 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2132 dma_enable = dma_ctrl & DMA_EN;
2133 dma_ctrl &= ~DMA_EN;
2134 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2135
2136 dma_ctrl = 0;
2137 ring_cfg = 0;
2138
2139 /* Enable strict priority arbiter mode */
2140 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2141
2142 /* Initialize Tx priority queues */
2143 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2144 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2145 i * priv->hw_params->tx_bds_per_q,
2146 (i + 1) * priv->hw_params->tx_bds_per_q);
2147 ring_cfg |= (1 << i);
2148 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2149 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2150 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2151 }
2152
2153 /* Initialize Tx default queue 16 */
2154 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2155 priv->hw_params->tx_queues *
2156 priv->hw_params->tx_bds_per_q,
2157 TOTAL_DESC);
2158 ring_cfg |= (1 << DESC_INDEX);
2159 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2160 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2161 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2162 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2163
2164 /* Set Tx queue priorities */
2165 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2166 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2167 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2168
2169 /* Initialize Tx NAPI */
2170 bcmgenet_init_tx_napi(priv);
2171
2172 /* Enable Tx queues */
2173 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2174
2175 /* Enable Tx DMA */
2176 if (dma_enable)
2177 dma_ctrl |= DMA_EN;
2178 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2179 }
2180
2181 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2182 {
2183 unsigned int i;
2184 struct bcmgenet_rx_ring *ring;
2185
2186 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2187 ring = &priv->rx_rings[i];
2188 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2189 }
2190
2191 ring = &priv->rx_rings[DESC_INDEX];
2192 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2193 }
2194
2195 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2196 {
2197 unsigned int i;
2198 struct bcmgenet_rx_ring *ring;
2199
2200 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2201 ring = &priv->rx_rings[i];
2202 napi_enable(&ring->napi);
2203 }
2204
2205 ring = &priv->rx_rings[DESC_INDEX];
2206 napi_enable(&ring->napi);
2207 }
2208
2209 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2210 {
2211 unsigned int i;
2212 struct bcmgenet_rx_ring *ring;
2213
2214 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2215 ring = &priv->rx_rings[i];
2216 napi_disable(&ring->napi);
2217 }
2218
2219 ring = &priv->rx_rings[DESC_INDEX];
2220 napi_disable(&ring->napi);
2221 }
2222
2223 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2224 {
2225 unsigned int i;
2226 struct bcmgenet_rx_ring *ring;
2227
2228 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2229 ring = &priv->rx_rings[i];
2230 netif_napi_del(&ring->napi);
2231 }
2232
2233 ring = &priv->rx_rings[DESC_INDEX];
2234 netif_napi_del(&ring->napi);
2235 }
2236
2237 /* Initialize Rx queues
2238 *
2239 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2240 * used to direct traffic to these queues.
2241 *
2242 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2243 */
2244 static int bcmgenet_init_rx_queues(struct net_device *dev)
2245 {
2246 struct bcmgenet_priv *priv = netdev_priv(dev);
2247 u32 i;
2248 u32 dma_enable;
2249 u32 dma_ctrl;
2250 u32 ring_cfg;
2251 int ret;
2252
2253 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2254 dma_enable = dma_ctrl & DMA_EN;
2255 dma_ctrl &= ~DMA_EN;
2256 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2257
2258 dma_ctrl = 0;
2259 ring_cfg = 0;
2260
2261 /* Initialize Rx priority queues */
2262 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2263 ret = bcmgenet_init_rx_ring(priv, i,
2264 priv->hw_params->rx_bds_per_q,
2265 i * priv->hw_params->rx_bds_per_q,
2266 (i + 1) *
2267 priv->hw_params->rx_bds_per_q);
2268 if (ret)
2269 return ret;
2270
2271 ring_cfg |= (1 << i);
2272 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2273 }
2274
2275 /* Initialize Rx default queue 16 */
2276 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2277 priv->hw_params->rx_queues *
2278 priv->hw_params->rx_bds_per_q,
2279 TOTAL_DESC);
2280 if (ret)
2281 return ret;
2282
2283 ring_cfg |= (1 << DESC_INDEX);
2284 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2285
2286 /* Initialize Rx NAPI */
2287 bcmgenet_init_rx_napi(priv);
2288
2289 /* Enable rings */
2290 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2291
2292 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2293 if (dma_enable)
2294 dma_ctrl |= DMA_EN;
2295 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2296
2297 return 0;
2298 }
2299
2300 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2301 {
2302 int ret = 0;
2303 int timeout = 0;
2304 u32 reg;
2305 u32 dma_ctrl;
2306 int i;
2307
2308 /* Disable TDMA to stop add more frames in TX DMA */
2309 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2310 reg &= ~DMA_EN;
2311 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2312
2313 /* Check TDMA status register to confirm TDMA is disabled */
2314 while (timeout++ < DMA_TIMEOUT_VAL) {
2315 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2316 if (reg & DMA_DISABLED)
2317 break;
2318
2319 udelay(1);
2320 }
2321
2322 if (timeout == DMA_TIMEOUT_VAL) {
2323 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2324 ret = -ETIMEDOUT;
2325 }
2326
2327 /* Wait 10ms for packet drain in both tx and rx dma */
2328 usleep_range(10000, 20000);
2329
2330 /* Disable RDMA */
2331 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2332 reg &= ~DMA_EN;
2333 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2334
2335 timeout = 0;
2336 /* Check RDMA status register to confirm RDMA is disabled */
2337 while (timeout++ < DMA_TIMEOUT_VAL) {
2338 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2339 if (reg & DMA_DISABLED)
2340 break;
2341
2342 udelay(1);
2343 }
2344
2345 if (timeout == DMA_TIMEOUT_VAL) {
2346 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2347 ret = -ETIMEDOUT;
2348 }
2349
2350 dma_ctrl = 0;
2351 for (i = 0; i < priv->hw_params->rx_queues; i++)
2352 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2353 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2354 reg &= ~dma_ctrl;
2355 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2356
2357 dma_ctrl = 0;
2358 for (i = 0; i < priv->hw_params->tx_queues; i++)
2359 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2360 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2361 reg &= ~dma_ctrl;
2362 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2363
2364 return ret;
2365 }
2366
2367 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2368 {
2369 int i;
2370 struct netdev_queue *txq;
2371
2372 bcmgenet_fini_rx_napi(priv);
2373 bcmgenet_fini_tx_napi(priv);
2374
2375 /* disable DMA */
2376 bcmgenet_dma_teardown(priv);
2377
2378 for (i = 0; i < priv->num_tx_bds; i++) {
2379 if (priv->tx_cbs[i].skb != NULL) {
2380 dev_kfree_skb(priv->tx_cbs[i].skb);
2381 priv->tx_cbs[i].skb = NULL;
2382 }
2383 }
2384
2385 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2386 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2387 netdev_tx_reset_queue(txq);
2388 }
2389
2390 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2391 netdev_tx_reset_queue(txq);
2392
2393 bcmgenet_free_rx_buffers(priv);
2394 kfree(priv->rx_cbs);
2395 kfree(priv->tx_cbs);
2396 }
2397
2398 /* init_edma: Initialize DMA control register */
2399 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2400 {
2401 int ret;
2402 unsigned int i;
2403 struct enet_cb *cb;
2404
2405 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2406
2407 /* Initialize common Rx ring structures */
2408 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2409 priv->num_rx_bds = TOTAL_DESC;
2410 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2411 GFP_KERNEL);
2412 if (!priv->rx_cbs)
2413 return -ENOMEM;
2414
2415 for (i = 0; i < priv->num_rx_bds; i++) {
2416 cb = priv->rx_cbs + i;
2417 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2418 }
2419
2420 /* Initialize common TX ring structures */
2421 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2422 priv->num_tx_bds = TOTAL_DESC;
2423 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2424 GFP_KERNEL);
2425 if (!priv->tx_cbs) {
2426 kfree(priv->rx_cbs);
2427 return -ENOMEM;
2428 }
2429
2430 for (i = 0; i < priv->num_tx_bds; i++) {
2431 cb = priv->tx_cbs + i;
2432 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2433 }
2434
2435 /* Init rDma */
2436 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2437
2438 /* Initialize Rx queues */
2439 ret = bcmgenet_init_rx_queues(priv->dev);
2440 if (ret) {
2441 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2442 bcmgenet_free_rx_buffers(priv);
2443 kfree(priv->rx_cbs);
2444 kfree(priv->tx_cbs);
2445 return ret;
2446 }
2447
2448 /* Init tDma */
2449 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2450
2451 /* Initialize Tx queues */
2452 bcmgenet_init_tx_queues(priv->dev);
2453
2454 return 0;
2455 }
2456
2457 /* Interrupt bottom half */
2458 static void bcmgenet_irq_task(struct work_struct *work)
2459 {
2460 struct bcmgenet_priv *priv = container_of(
2461 work, struct bcmgenet_priv, bcmgenet_irq_work);
2462
2463 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2464
2465 if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2466 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2467 netif_dbg(priv, wol, priv->dev,
2468 "magic packet detected, waking up\n");
2469 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2470 }
2471
2472 /* Link UP/DOWN event */
2473 if (priv->irq0_stat & UMAC_IRQ_LINK_EVENT) {
2474 phy_mac_interrupt(priv->phydev,
2475 !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2476 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2477 }
2478 }
2479
2480 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2481 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2482 {
2483 struct bcmgenet_priv *priv = dev_id;
2484 struct bcmgenet_rx_ring *rx_ring;
2485 struct bcmgenet_tx_ring *tx_ring;
2486 unsigned int index;
2487
2488 /* Save irq status for bottom-half processing. */
2489 priv->irq1_stat =
2490 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2491 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2492
2493 /* clear interrupts */
2494 bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2495
2496 netif_dbg(priv, intr, priv->dev,
2497 "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2498
2499 /* Check Rx priority queue interrupts */
2500 for (index = 0; index < priv->hw_params->rx_queues; index++) {
2501 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2502 continue;
2503
2504 rx_ring = &priv->rx_rings[index];
2505
2506 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2507 rx_ring->int_disable(rx_ring);
2508 __napi_schedule_irqoff(&rx_ring->napi);
2509 }
2510 }
2511
2512 /* Check Tx priority queue interrupts */
2513 for (index = 0; index < priv->hw_params->tx_queues; index++) {
2514 if (!(priv->irq1_stat & BIT(index)))
2515 continue;
2516
2517 tx_ring = &priv->tx_rings[index];
2518
2519 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2520 tx_ring->int_disable(tx_ring);
2521 __napi_schedule_irqoff(&tx_ring->napi);
2522 }
2523 }
2524
2525 return IRQ_HANDLED;
2526 }
2527
2528 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2529 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2530 {
2531 struct bcmgenet_priv *priv = dev_id;
2532 struct bcmgenet_rx_ring *rx_ring;
2533 struct bcmgenet_tx_ring *tx_ring;
2534
2535 /* Save irq status for bottom-half processing. */
2536 priv->irq0_stat =
2537 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2538 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2539
2540 /* clear interrupts */
2541 bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2542
2543 netif_dbg(priv, intr, priv->dev,
2544 "IRQ=0x%x\n", priv->irq0_stat);
2545
2546 if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2547 rx_ring = &priv->rx_rings[DESC_INDEX];
2548
2549 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2550 rx_ring->int_disable(rx_ring);
2551 __napi_schedule_irqoff(&rx_ring->napi);
2552 }
2553 }
2554
2555 if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2556 tx_ring = &priv->tx_rings[DESC_INDEX];
2557
2558 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2559 tx_ring->int_disable(tx_ring);
2560 __napi_schedule_irqoff(&tx_ring->napi);
2561 }
2562 }
2563
2564 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2565 UMAC_IRQ_PHY_DET_F |
2566 UMAC_IRQ_LINK_EVENT |
2567 UMAC_IRQ_HFB_SM |
2568 UMAC_IRQ_HFB_MM |
2569 UMAC_IRQ_MPD_R)) {
2570 /* all other interested interrupts handled in bottom half */
2571 schedule_work(&priv->bcmgenet_irq_work);
2572 }
2573
2574 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2575 priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2576 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2577 wake_up(&priv->wq);
2578 }
2579
2580 return IRQ_HANDLED;
2581 }
2582
2583 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2584 {
2585 struct bcmgenet_priv *priv = dev_id;
2586
2587 pm_wakeup_event(&priv->pdev->dev, 0);
2588
2589 return IRQ_HANDLED;
2590 }
2591
2592 #ifdef CONFIG_NET_POLL_CONTROLLER
2593 static void bcmgenet_poll_controller(struct net_device *dev)
2594 {
2595 struct bcmgenet_priv *priv = netdev_priv(dev);
2596
2597 /* Invoke the main RX/TX interrupt handler */
2598 disable_irq(priv->irq0);
2599 bcmgenet_isr0(priv->irq0, priv);
2600 enable_irq(priv->irq0);
2601
2602 /* And the interrupt handler for RX/TX priority queues */
2603 disable_irq(priv->irq1);
2604 bcmgenet_isr1(priv->irq1, priv);
2605 enable_irq(priv->irq1);
2606 }
2607 #endif
2608
2609 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2610 {
2611 u32 reg;
2612
2613 reg = bcmgenet_rbuf_ctrl_get(priv);
2614 reg |= BIT(1);
2615 bcmgenet_rbuf_ctrl_set(priv, reg);
2616 udelay(10);
2617
2618 reg &= ~BIT(1);
2619 bcmgenet_rbuf_ctrl_set(priv, reg);
2620 udelay(10);
2621 }
2622
2623 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2624 unsigned char *addr)
2625 {
2626 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2627 (addr[2] << 8) | addr[3], UMAC_MAC0);
2628 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2629 }
2630
2631 /* Returns a reusable dma control register value */
2632 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2633 {
2634 u32 reg;
2635 u32 dma_ctrl;
2636
2637 /* disable DMA */
2638 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2639 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2640 reg &= ~dma_ctrl;
2641 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2642
2643 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2644 reg &= ~dma_ctrl;
2645 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2646
2647 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2648 udelay(10);
2649 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2650
2651 return dma_ctrl;
2652 }
2653
2654 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2655 {
2656 u32 reg;
2657
2658 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2659 reg |= dma_ctrl;
2660 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2661
2662 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2663 reg |= dma_ctrl;
2664 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2665 }
2666
2667 /* bcmgenet_hfb_clear
2668 *
2669 * Clear Hardware Filter Block and disable all filtering.
2670 */
2671 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2672 {
2673 u32 i;
2674
2675 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2676 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2677 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2678
2679 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2680 bcmgenet_rdma_writel(priv, 0x0, i);
2681
2682 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2683 bcmgenet_hfb_reg_writel(priv, 0x0,
2684 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2685
2686 for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2687 priv->hw_params->hfb_filter_size; i++)
2688 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2689 }
2690
2691 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2692 {
2693 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2694 return;
2695
2696 bcmgenet_hfb_clear(priv);
2697 }
2698
2699 static void bcmgenet_netif_start(struct net_device *dev)
2700 {
2701 struct bcmgenet_priv *priv = netdev_priv(dev);
2702
2703 /* Start the network engine */
2704 bcmgenet_enable_rx_napi(priv);
2705 bcmgenet_enable_tx_napi(priv);
2706
2707 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2708
2709 netif_tx_start_all_queues(dev);
2710
2711 /* Monitor link interrupts now */
2712 bcmgenet_link_intr_enable(priv);
2713
2714 phy_start(priv->phydev);
2715 }
2716
2717 static int bcmgenet_open(struct net_device *dev)
2718 {
2719 struct bcmgenet_priv *priv = netdev_priv(dev);
2720 unsigned long dma_ctrl;
2721 u32 reg;
2722 int ret;
2723
2724 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2725
2726 /* Turn on the clock */
2727 clk_prepare_enable(priv->clk);
2728
2729 /* If this is an internal GPHY, power it back on now, before UniMAC is
2730 * brought out of reset as absolutely no UniMAC activity is allowed
2731 */
2732 if (priv->internal_phy)
2733 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2734
2735 /* take MAC out of reset */
2736 bcmgenet_umac_reset(priv);
2737
2738 ret = init_umac(priv);
2739 if (ret)
2740 goto err_clk_disable;
2741
2742 /* disable ethernet MAC while updating its registers */
2743 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2744
2745 /* Make sure we reflect the value of CRC_CMD_FWD */
2746 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2747 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2748
2749 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2750
2751 if (priv->internal_phy) {
2752 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2753 reg |= EXT_ENERGY_DET_MASK;
2754 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2755 }
2756
2757 /* Disable RX/TX DMA and flush TX queues */
2758 dma_ctrl = bcmgenet_dma_disable(priv);
2759
2760 /* Reinitialize TDMA and RDMA and SW housekeeping */
2761 ret = bcmgenet_init_dma(priv);
2762 if (ret) {
2763 netdev_err(dev, "failed to initialize DMA\n");
2764 goto err_clk_disable;
2765 }
2766
2767 /* Always enable ring 16 - descriptor ring */
2768 bcmgenet_enable_dma(priv, dma_ctrl);
2769
2770 /* HFB init */
2771 bcmgenet_hfb_init(priv);
2772
2773 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2774 dev->name, priv);
2775 if (ret < 0) {
2776 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2777 goto err_fini_dma;
2778 }
2779
2780 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2781 dev->name, priv);
2782 if (ret < 0) {
2783 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2784 goto err_irq0;
2785 }
2786
2787 ret = bcmgenet_mii_probe(dev);
2788 if (ret) {
2789 netdev_err(dev, "failed to connect to PHY\n");
2790 goto err_irq1;
2791 }
2792
2793 bcmgenet_netif_start(dev);
2794
2795 return 0;
2796
2797 err_irq1:
2798 free_irq(priv->irq1, priv);
2799 err_irq0:
2800 free_irq(priv->irq0, priv);
2801 err_fini_dma:
2802 bcmgenet_fini_dma(priv);
2803 err_clk_disable:
2804 clk_disable_unprepare(priv->clk);
2805 return ret;
2806 }
2807
2808 static void bcmgenet_netif_stop(struct net_device *dev)
2809 {
2810 struct bcmgenet_priv *priv = netdev_priv(dev);
2811
2812 netif_tx_stop_all_queues(dev);
2813 phy_stop(priv->phydev);
2814 bcmgenet_intr_disable(priv);
2815 bcmgenet_disable_rx_napi(priv);
2816 bcmgenet_disable_tx_napi(priv);
2817
2818 /* Wait for pending work items to complete. Since interrupts are
2819 * disabled no new work will be scheduled.
2820 */
2821 cancel_work_sync(&priv->bcmgenet_irq_work);
2822
2823 priv->old_link = -1;
2824 priv->old_speed = -1;
2825 priv->old_duplex = -1;
2826 priv->old_pause = -1;
2827 }
2828
2829 static int bcmgenet_close(struct net_device *dev)
2830 {
2831 struct bcmgenet_priv *priv = netdev_priv(dev);
2832 int ret;
2833
2834 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2835
2836 bcmgenet_netif_stop(dev);
2837
2838 /* Really kill the PHY state machine and disconnect from it */
2839 phy_disconnect(priv->phydev);
2840
2841 /* Disable MAC receive */
2842 umac_enable_set(priv, CMD_RX_EN, false);
2843
2844 ret = bcmgenet_dma_teardown(priv);
2845 if (ret)
2846 return ret;
2847
2848 /* Disable MAC transmit. TX DMA disabled have to done before this */
2849 umac_enable_set(priv, CMD_TX_EN, false);
2850
2851 /* tx reclaim */
2852 bcmgenet_tx_reclaim_all(dev);
2853 bcmgenet_fini_dma(priv);
2854
2855 free_irq(priv->irq0, priv);
2856 free_irq(priv->irq1, priv);
2857
2858 if (priv->internal_phy)
2859 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2860
2861 clk_disable_unprepare(priv->clk);
2862
2863 return ret;
2864 }
2865
2866 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2867 {
2868 struct bcmgenet_priv *priv = ring->priv;
2869 u32 p_index, c_index, intsts, intmsk;
2870 struct netdev_queue *txq;
2871 unsigned int free_bds;
2872 unsigned long flags;
2873 bool txq_stopped;
2874
2875 if (!netif_msg_tx_err(priv))
2876 return;
2877
2878 txq = netdev_get_tx_queue(priv->dev, ring->queue);
2879
2880 spin_lock_irqsave(&ring->lock, flags);
2881 if (ring->index == DESC_INDEX) {
2882 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2883 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2884 } else {
2885 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2886 intmsk = 1 << ring->index;
2887 }
2888 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2889 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2890 txq_stopped = netif_tx_queue_stopped(txq);
2891 free_bds = ring->free_bds;
2892 spin_unlock_irqrestore(&ring->lock, flags);
2893
2894 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2895 "TX queue status: %s, interrupts: %s\n"
2896 "(sw)free_bds: %d (sw)size: %d\n"
2897 "(sw)p_index: %d (hw)p_index: %d\n"
2898 "(sw)c_index: %d (hw)c_index: %d\n"
2899 "(sw)clean_p: %d (sw)write_p: %d\n"
2900 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2901 ring->index, ring->queue,
2902 txq_stopped ? "stopped" : "active",
2903 intsts & intmsk ? "enabled" : "disabled",
2904 free_bds, ring->size,
2905 ring->prod_index, p_index & DMA_P_INDEX_MASK,
2906 ring->c_index, c_index & DMA_C_INDEX_MASK,
2907 ring->clean_ptr, ring->write_ptr,
2908 ring->cb_ptr, ring->end_ptr);
2909 }
2910
2911 static void bcmgenet_timeout(struct net_device *dev)
2912 {
2913 struct bcmgenet_priv *priv = netdev_priv(dev);
2914 u32 int0_enable = 0;
2915 u32 int1_enable = 0;
2916 unsigned int q;
2917
2918 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2919
2920 for (q = 0; q < priv->hw_params->tx_queues; q++)
2921 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
2922 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
2923
2924 bcmgenet_tx_reclaim_all(dev);
2925
2926 for (q = 0; q < priv->hw_params->tx_queues; q++)
2927 int1_enable |= (1 << q);
2928
2929 int0_enable = UMAC_IRQ_TXDMA_DONE;
2930
2931 /* Re-enable TX interrupts if disabled */
2932 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2933 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2934
2935 netif_trans_update(dev);
2936
2937 dev->stats.tx_errors++;
2938
2939 netif_tx_wake_all_queues(dev);
2940 }
2941
2942 #define MAX_MC_COUNT 16
2943
2944 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2945 unsigned char *addr,
2946 int *i,
2947 int *mc)
2948 {
2949 u32 reg;
2950
2951 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2952 UMAC_MDF_ADDR + (*i * 4));
2953 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2954 addr[4] << 8 | addr[5],
2955 UMAC_MDF_ADDR + ((*i + 1) * 4));
2956 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2957 reg |= (1 << (MAX_MC_COUNT - *mc));
2958 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2959 *i += 2;
2960 (*mc)++;
2961 }
2962
2963 static void bcmgenet_set_rx_mode(struct net_device *dev)
2964 {
2965 struct bcmgenet_priv *priv = netdev_priv(dev);
2966 struct netdev_hw_addr *ha;
2967 int i, mc;
2968 u32 reg;
2969
2970 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2971
2972 /* Promiscuous mode */
2973 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2974 if (dev->flags & IFF_PROMISC) {
2975 reg |= CMD_PROMISC;
2976 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2977 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2978 return;
2979 } else {
2980 reg &= ~CMD_PROMISC;
2981 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2982 }
2983
2984 /* UniMac doesn't support ALLMULTI */
2985 if (dev->flags & IFF_ALLMULTI) {
2986 netdev_warn(dev, "ALLMULTI is not supported\n");
2987 return;
2988 }
2989
2990 /* update MDF filter */
2991 i = 0;
2992 mc = 0;
2993 /* Broadcast */
2994 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2995 /* my own address.*/
2996 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2997 /* Unicast list*/
2998 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2999 return;
3000
3001 if (!netdev_uc_empty(dev))
3002 netdev_for_each_uc_addr(ha, dev)
3003 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3004 /* Multicast */
3005 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3006 return;
3007
3008 netdev_for_each_mc_addr(ha, dev)
3009 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3010 }
3011
3012 /* Set the hardware MAC address. */
3013 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3014 {
3015 struct sockaddr *addr = p;
3016
3017 /* Setting the MAC address at the hardware level is not possible
3018 * without disabling the UniMAC RX/TX enable bits.
3019 */
3020 if (netif_running(dev))
3021 return -EBUSY;
3022
3023 ether_addr_copy(dev->dev_addr, addr->sa_data);
3024
3025 return 0;
3026 }
3027
3028 static const struct net_device_ops bcmgenet_netdev_ops = {
3029 .ndo_open = bcmgenet_open,
3030 .ndo_stop = bcmgenet_close,
3031 .ndo_start_xmit = bcmgenet_xmit,
3032 .ndo_tx_timeout = bcmgenet_timeout,
3033 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3034 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3035 .ndo_do_ioctl = bcmgenet_ioctl,
3036 .ndo_set_features = bcmgenet_set_features,
3037 #ifdef CONFIG_NET_POLL_CONTROLLER
3038 .ndo_poll_controller = bcmgenet_poll_controller,
3039 #endif
3040 };
3041
3042 /* Array of GENET hardware parameters/characteristics */
3043 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3044 [GENET_V1] = {
3045 .tx_queues = 0,
3046 .tx_bds_per_q = 0,
3047 .rx_queues = 0,
3048 .rx_bds_per_q = 0,
3049 .bp_in_en_shift = 16,
3050 .bp_in_mask = 0xffff,
3051 .hfb_filter_cnt = 16,
3052 .qtag_mask = 0x1F,
3053 .hfb_offset = 0x1000,
3054 .rdma_offset = 0x2000,
3055 .tdma_offset = 0x3000,
3056 .words_per_bd = 2,
3057 },
3058 [GENET_V2] = {
3059 .tx_queues = 4,
3060 .tx_bds_per_q = 32,
3061 .rx_queues = 0,
3062 .rx_bds_per_q = 0,
3063 .bp_in_en_shift = 16,
3064 .bp_in_mask = 0xffff,
3065 .hfb_filter_cnt = 16,
3066 .qtag_mask = 0x1F,
3067 .tbuf_offset = 0x0600,
3068 .hfb_offset = 0x1000,
3069 .hfb_reg_offset = 0x2000,
3070 .rdma_offset = 0x3000,
3071 .tdma_offset = 0x4000,
3072 .words_per_bd = 2,
3073 .flags = GENET_HAS_EXT,
3074 },
3075 [GENET_V3] = {
3076 .tx_queues = 4,
3077 .tx_bds_per_q = 32,
3078 .rx_queues = 0,
3079 .rx_bds_per_q = 0,
3080 .bp_in_en_shift = 17,
3081 .bp_in_mask = 0x1ffff,
3082 .hfb_filter_cnt = 48,
3083 .hfb_filter_size = 128,
3084 .qtag_mask = 0x3F,
3085 .tbuf_offset = 0x0600,
3086 .hfb_offset = 0x8000,
3087 .hfb_reg_offset = 0xfc00,
3088 .rdma_offset = 0x10000,
3089 .tdma_offset = 0x11000,
3090 .words_per_bd = 2,
3091 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3092 GENET_HAS_MOCA_LINK_DET,
3093 },
3094 [GENET_V4] = {
3095 .tx_queues = 4,
3096 .tx_bds_per_q = 32,
3097 .rx_queues = 0,
3098 .rx_bds_per_q = 0,
3099 .bp_in_en_shift = 17,
3100 .bp_in_mask = 0x1ffff,
3101 .hfb_filter_cnt = 48,
3102 .hfb_filter_size = 128,
3103 .qtag_mask = 0x3F,
3104 .tbuf_offset = 0x0600,
3105 .hfb_offset = 0x8000,
3106 .hfb_reg_offset = 0xfc00,
3107 .rdma_offset = 0x2000,
3108 .tdma_offset = 0x4000,
3109 .words_per_bd = 3,
3110 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3111 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3112 },
3113 };
3114
3115 /* Infer hardware parameters from the detected GENET version */
3116 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3117 {
3118 struct bcmgenet_hw_params *params;
3119 u32 reg;
3120 u8 major;
3121 u16 gphy_rev;
3122
3123 if (GENET_IS_V4(priv)) {
3124 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3125 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3126 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3127 priv->version = GENET_V4;
3128 } else if (GENET_IS_V3(priv)) {
3129 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3130 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3131 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3132 priv->version = GENET_V3;
3133 } else if (GENET_IS_V2(priv)) {
3134 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3135 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3136 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3137 priv->version = GENET_V2;
3138 } else if (GENET_IS_V1(priv)) {
3139 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3140 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3141 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3142 priv->version = GENET_V1;
3143 }
3144
3145 /* enum genet_version starts at 1 */
3146 priv->hw_params = &bcmgenet_hw_params[priv->version];
3147 params = priv->hw_params;
3148
3149 /* Read GENET HW version */
3150 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3151 major = (reg >> 24 & 0x0f);
3152 if (major == 5)
3153 major = 4;
3154 else if (major == 0)
3155 major = 1;
3156 if (major != priv->version) {
3157 dev_err(&priv->pdev->dev,
3158 "GENET version mismatch, got: %d, configured for: %d\n",
3159 major, priv->version);
3160 }
3161
3162 /* Print the GENET core version */
3163 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3164 major, (reg >> 16) & 0x0f, reg & 0xffff);
3165
3166 /* Store the integrated PHY revision for the MDIO probing function
3167 * to pass this information to the PHY driver. The PHY driver expects
3168 * to find the PHY major revision in bits 15:8 while the GENET register
3169 * stores that information in bits 7:0, account for that.
3170 *
3171 * On newer chips, starting with PHY revision G0, a new scheme is
3172 * deployed similar to the Starfighter 2 switch with GPHY major
3173 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3174 * is reserved as well as special value 0x01ff, we have a small
3175 * heuristic to check for the new GPHY revision and re-arrange things
3176 * so the GPHY driver is happy.
3177 */
3178 gphy_rev = reg & 0xffff;
3179
3180 /* This is the good old scheme, just GPHY major, no minor nor patch */
3181 if ((gphy_rev & 0xf0) != 0)
3182 priv->gphy_rev = gphy_rev << 8;
3183
3184 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3185 else if ((gphy_rev & 0xff00) != 0)
3186 priv->gphy_rev = gphy_rev;
3187
3188 /* This is reserved so should require special treatment */
3189 else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3190 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3191 return;
3192 }
3193
3194 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3195 if (!(params->flags & GENET_HAS_40BITS))
3196 pr_warn("GENET does not support 40-bits PA\n");
3197 #endif
3198
3199 pr_debug("Configuration for version: %d\n"
3200 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3201 "BP << en: %2d, BP msk: 0x%05x\n"
3202 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3203 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3204 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3205 "Words/BD: %d\n",
3206 priv->version,
3207 params->tx_queues, params->tx_bds_per_q,
3208 params->rx_queues, params->rx_bds_per_q,
3209 params->bp_in_en_shift, params->bp_in_mask,
3210 params->hfb_filter_cnt, params->qtag_mask,
3211 params->tbuf_offset, params->hfb_offset,
3212 params->hfb_reg_offset,
3213 params->rdma_offset, params->tdma_offset,
3214 params->words_per_bd);
3215 }
3216
3217 static const struct of_device_id bcmgenet_match[] = {
3218 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3219 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3220 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3221 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3222 { },
3223 };
3224 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3225
3226 static int bcmgenet_probe(struct platform_device *pdev)
3227 {
3228 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3229 struct device_node *dn = pdev->dev.of_node;
3230 const struct of_device_id *of_id = NULL;
3231 struct bcmgenet_priv *priv;
3232 struct net_device *dev;
3233 const void *macaddr;
3234 struct resource *r;
3235 int err = -EIO;
3236
3237 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3238 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3239 GENET_MAX_MQ_CNT + 1);
3240 if (!dev) {
3241 dev_err(&pdev->dev, "can't allocate net device\n");
3242 return -ENOMEM;
3243 }
3244
3245 if (dn) {
3246 of_id = of_match_node(bcmgenet_match, dn);
3247 if (!of_id)
3248 return -EINVAL;
3249 }
3250
3251 priv = netdev_priv(dev);
3252 priv->irq0 = platform_get_irq(pdev, 0);
3253 priv->irq1 = platform_get_irq(pdev, 1);
3254 priv->wol_irq = platform_get_irq(pdev, 2);
3255 if (!priv->irq0 || !priv->irq1) {
3256 dev_err(&pdev->dev, "can't find IRQs\n");
3257 err = -EINVAL;
3258 goto err;
3259 }
3260
3261 if (dn) {
3262 macaddr = of_get_mac_address(dn);
3263 if (!macaddr) {
3264 dev_err(&pdev->dev, "can't find MAC address\n");
3265 err = -EINVAL;
3266 goto err;
3267 }
3268 } else {
3269 macaddr = pd->mac_address;
3270 }
3271
3272 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3273 priv->base = devm_ioremap_resource(&pdev->dev, r);
3274 if (IS_ERR(priv->base)) {
3275 err = PTR_ERR(priv->base);
3276 goto err;
3277 }
3278
3279 SET_NETDEV_DEV(dev, &pdev->dev);
3280 dev_set_drvdata(&pdev->dev, dev);
3281 ether_addr_copy(dev->dev_addr, macaddr);
3282 dev->watchdog_timeo = 2 * HZ;
3283 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3284 dev->netdev_ops = &bcmgenet_netdev_ops;
3285
3286 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3287
3288 /* Set hardware features */
3289 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3290 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3291
3292 /* Request the WOL interrupt and advertise suspend if available */
3293 priv->wol_irq_disabled = true;
3294 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3295 dev->name, priv);
3296 if (!err)
3297 device_set_wakeup_capable(&pdev->dev, 1);
3298
3299 /* Set the needed headroom to account for any possible
3300 * features enabling/disabling at runtime
3301 */
3302 dev->needed_headroom += 64;
3303
3304 netdev_boot_setup_check(dev);
3305
3306 priv->dev = dev;
3307 priv->pdev = pdev;
3308 if (of_id)
3309 priv->version = (enum bcmgenet_version)of_id->data;
3310 else
3311 priv->version = pd->genet_version;
3312
3313 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3314 if (IS_ERR(priv->clk)) {
3315 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3316 priv->clk = NULL;
3317 }
3318
3319 clk_prepare_enable(priv->clk);
3320
3321 bcmgenet_set_hw_params(priv);
3322
3323 /* Mii wait queue */
3324 init_waitqueue_head(&priv->wq);
3325 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3326 priv->rx_buf_len = RX_BUF_LENGTH;
3327 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3328
3329 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3330 if (IS_ERR(priv->clk_wol)) {
3331 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3332 priv->clk_wol = NULL;
3333 }
3334
3335 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3336 if (IS_ERR(priv->clk_eee)) {
3337 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3338 priv->clk_eee = NULL;
3339 }
3340
3341 err = reset_umac(priv);
3342 if (err)
3343 goto err_clk_disable;
3344
3345 err = bcmgenet_mii_init(dev);
3346 if (err)
3347 goto err_clk_disable;
3348
3349 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3350 * just the ring 16 descriptor based TX
3351 */
3352 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3353 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3354
3355 /* libphy will determine the link state */
3356 netif_carrier_off(dev);
3357
3358 /* Turn off the main clock, WOL clock is handled separately */
3359 clk_disable_unprepare(priv->clk);
3360
3361 err = register_netdev(dev);
3362 if (err)
3363 goto err;
3364
3365 return err;
3366
3367 err_clk_disable:
3368 clk_disable_unprepare(priv->clk);
3369 err:
3370 free_netdev(dev);
3371 return err;
3372 }
3373
3374 static int bcmgenet_remove(struct platform_device *pdev)
3375 {
3376 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3377
3378 dev_set_drvdata(&pdev->dev, NULL);
3379 unregister_netdev(priv->dev);
3380 bcmgenet_mii_exit(priv->dev);
3381 free_netdev(priv->dev);
3382
3383 return 0;
3384 }
3385
3386 #ifdef CONFIG_PM_SLEEP
3387 static int bcmgenet_suspend(struct device *d)
3388 {
3389 struct net_device *dev = dev_get_drvdata(d);
3390 struct bcmgenet_priv *priv = netdev_priv(dev);
3391 int ret;
3392
3393 if (!netif_running(dev))
3394 return 0;
3395
3396 bcmgenet_netif_stop(dev);
3397
3398 phy_suspend(priv->phydev);
3399
3400 netif_device_detach(dev);
3401
3402 /* Disable MAC receive */
3403 umac_enable_set(priv, CMD_RX_EN, false);
3404
3405 ret = bcmgenet_dma_teardown(priv);
3406 if (ret)
3407 return ret;
3408
3409 /* Disable MAC transmit. TX DMA disabled have to done before this */
3410 umac_enable_set(priv, CMD_TX_EN, false);
3411
3412 /* tx reclaim */
3413 bcmgenet_tx_reclaim_all(dev);
3414 bcmgenet_fini_dma(priv);
3415
3416 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3417 if (device_may_wakeup(d) && priv->wolopts) {
3418 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3419 clk_prepare_enable(priv->clk_wol);
3420 } else if (priv->internal_phy) {
3421 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3422 }
3423
3424 /* Turn off the clocks */
3425 clk_disable_unprepare(priv->clk);
3426
3427 return ret;
3428 }
3429
3430 static int bcmgenet_resume(struct device *d)
3431 {
3432 struct net_device *dev = dev_get_drvdata(d);
3433 struct bcmgenet_priv *priv = netdev_priv(dev);
3434 unsigned long dma_ctrl;
3435 int ret;
3436 u32 reg;
3437
3438 if (!netif_running(dev))
3439 return 0;
3440
3441 /* Turn on the clock */
3442 ret = clk_prepare_enable(priv->clk);
3443 if (ret)
3444 return ret;
3445
3446 /* If this is an internal GPHY, power it back on now, before UniMAC is
3447 * brought out of reset as absolutely no UniMAC activity is allowed
3448 */
3449 if (priv->internal_phy)
3450 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3451
3452 bcmgenet_umac_reset(priv);
3453
3454 ret = init_umac(priv);
3455 if (ret)
3456 goto out_clk_disable;
3457
3458 /* From WOL-enabled suspend, switch to regular clock */
3459 if (priv->wolopts)
3460 clk_disable_unprepare(priv->clk_wol);
3461
3462 phy_init_hw(priv->phydev);
3463 /* Speed settings must be restored */
3464 bcmgenet_mii_config(priv->dev);
3465
3466 /* disable ethernet MAC while updating its registers */
3467 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3468
3469 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3470
3471 if (priv->internal_phy) {
3472 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3473 reg |= EXT_ENERGY_DET_MASK;
3474 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3475 }
3476
3477 if (priv->wolopts)
3478 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3479
3480 /* Disable RX/TX DMA and flush TX queues */
3481 dma_ctrl = bcmgenet_dma_disable(priv);
3482
3483 /* Reinitialize TDMA and RDMA and SW housekeeping */
3484 ret = bcmgenet_init_dma(priv);
3485 if (ret) {
3486 netdev_err(dev, "failed to initialize DMA\n");
3487 goto out_clk_disable;
3488 }
3489
3490 /* Always enable ring 16 - descriptor ring */
3491 bcmgenet_enable_dma(priv, dma_ctrl);
3492
3493 netif_device_attach(dev);
3494
3495 phy_resume(priv->phydev);
3496
3497 if (priv->eee.eee_enabled)
3498 bcmgenet_eee_enable_set(dev, true);
3499
3500 bcmgenet_netif_start(dev);
3501
3502 return 0;
3503
3504 out_clk_disable:
3505 clk_disable_unprepare(priv->clk);
3506 return ret;
3507 }
3508 #endif /* CONFIG_PM_SLEEP */
3509
3510 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3511
3512 static struct platform_driver bcmgenet_driver = {
3513 .probe = bcmgenet_probe,
3514 .remove = bcmgenet_remove,
3515 .driver = {
3516 .name = "bcmgenet",
3517 .of_match_table = bcmgenet_match,
3518 .pm = &bcmgenet_pm_ops,
3519 },
3520 };
3521 module_platform_driver(bcmgenet_driver);
3522
3523 MODULE_AUTHOR("Broadcom Corporation");
3524 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3525 MODULE_ALIAS("platform:bcmgenet");
3526 MODULE_LICENSE("GPL");