]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/broadcom/genet/bcmgenet.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2 * Broadcom GENET (Gigabit Ethernet) controller driver
3 *
4 * Copyright (c) 2014 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT 4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY 0
56
57 #define GENET_Q16_RX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT \
60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH 2048
63 #define SKB_ALIGNMENT 32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
73 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 void __iomem *d, u32 value)
77 {
78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 void __iomem *d)
83 {
84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 void __iomem *d,
89 dma_addr_t addr)
90 {
91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93 /* Register writes to GISB bus can take couple hundred nanoseconds
94 * and are done for each packet, save these expensive writes unless
95 * the platform is explicitly configured for 64-bits/LPAE.
96 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 if (priv->hw_params->flags & GENET_HAS_40BITS)
99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 dmadesc_set_addr(priv, d, addr);
108 dmadesc_set_length_status(priv, d, val);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 void __iomem *d)
113 {
114 dma_addr_t addr;
115
116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118 /* Register writes to GISB bus can take couple hundred nanoseconds
119 * and are done for each packet, save these expensive writes unless
120 * the platform is explicitly configured for 64-bits/LPAE.
121 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 if (priv->hw_params->flags & GENET_HAS_40BITS)
124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 return addr;
127 }
128
129 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 if (GENET_IS_V1(priv))
137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 else
139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 if (GENET_IS_V1(priv))
145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 else
147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151 * between GENET1.1 and GENET2. Only those currently being used
152 * by driver are defined.
153 */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 if (GENET_IS_V1(priv))
157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 else
159 return __raw_readl(priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 if (GENET_IS_V1(priv))
166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 else
168 __raw_writel(val, priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 if (GENET_IS_V1(priv))
175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 else
177 return __raw_readl(priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 if (GENET_IS_V1(priv))
184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 else
186 __raw_writel(val, priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 DMA_RING_CFG = 0,
193 DMA_CTRL,
194 DMA_STATUS,
195 DMA_SCB_BURST_SIZE,
196 DMA_ARB_CTRL,
197 DMA_PRIORITY_0,
198 DMA_PRIORITY_1,
199 DMA_PRIORITY_2,
200 DMA_INDEX2RING_0,
201 DMA_INDEX2RING_1,
202 DMA_INDEX2RING_2,
203 DMA_INDEX2RING_3,
204 DMA_INDEX2RING_4,
205 DMA_INDEX2RING_5,
206 DMA_INDEX2RING_6,
207 DMA_INDEX2RING_7,
208 DMA_RING0_TIMEOUT,
209 DMA_RING1_TIMEOUT,
210 DMA_RING2_TIMEOUT,
211 DMA_RING3_TIMEOUT,
212 DMA_RING4_TIMEOUT,
213 DMA_RING5_TIMEOUT,
214 DMA_RING6_TIMEOUT,
215 DMA_RING7_TIMEOUT,
216 DMA_RING8_TIMEOUT,
217 DMA_RING9_TIMEOUT,
218 DMA_RING10_TIMEOUT,
219 DMA_RING11_TIMEOUT,
220 DMA_RING12_TIMEOUT,
221 DMA_RING13_TIMEOUT,
222 DMA_RING14_TIMEOUT,
223 DMA_RING15_TIMEOUT,
224 DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 [DMA_RING_CFG] = 0x00,
229 [DMA_CTRL] = 0x04,
230 [DMA_STATUS] = 0x08,
231 [DMA_SCB_BURST_SIZE] = 0x0C,
232 [DMA_ARB_CTRL] = 0x2C,
233 [DMA_PRIORITY_0] = 0x30,
234 [DMA_PRIORITY_1] = 0x34,
235 [DMA_PRIORITY_2] = 0x38,
236 [DMA_RING0_TIMEOUT] = 0x2C,
237 [DMA_RING1_TIMEOUT] = 0x30,
238 [DMA_RING2_TIMEOUT] = 0x34,
239 [DMA_RING3_TIMEOUT] = 0x38,
240 [DMA_RING4_TIMEOUT] = 0x3c,
241 [DMA_RING5_TIMEOUT] = 0x40,
242 [DMA_RING6_TIMEOUT] = 0x44,
243 [DMA_RING7_TIMEOUT] = 0x48,
244 [DMA_RING8_TIMEOUT] = 0x4c,
245 [DMA_RING9_TIMEOUT] = 0x50,
246 [DMA_RING10_TIMEOUT] = 0x54,
247 [DMA_RING11_TIMEOUT] = 0x58,
248 [DMA_RING12_TIMEOUT] = 0x5c,
249 [DMA_RING13_TIMEOUT] = 0x60,
250 [DMA_RING14_TIMEOUT] = 0x64,
251 [DMA_RING15_TIMEOUT] = 0x68,
252 [DMA_RING16_TIMEOUT] = 0x6C,
253 [DMA_INDEX2RING_0] = 0x70,
254 [DMA_INDEX2RING_1] = 0x74,
255 [DMA_INDEX2RING_2] = 0x78,
256 [DMA_INDEX2RING_3] = 0x7C,
257 [DMA_INDEX2RING_4] = 0x80,
258 [DMA_INDEX2RING_5] = 0x84,
259 [DMA_INDEX2RING_6] = 0x88,
260 [DMA_INDEX2RING_7] = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 [DMA_RING_CFG] = 0x00,
265 [DMA_CTRL] = 0x04,
266 [DMA_STATUS] = 0x08,
267 [DMA_SCB_BURST_SIZE] = 0x0C,
268 [DMA_ARB_CTRL] = 0x30,
269 [DMA_PRIORITY_0] = 0x34,
270 [DMA_PRIORITY_1] = 0x38,
271 [DMA_PRIORITY_2] = 0x3C,
272 [DMA_RING0_TIMEOUT] = 0x2C,
273 [DMA_RING1_TIMEOUT] = 0x30,
274 [DMA_RING2_TIMEOUT] = 0x34,
275 [DMA_RING3_TIMEOUT] = 0x38,
276 [DMA_RING4_TIMEOUT] = 0x3c,
277 [DMA_RING5_TIMEOUT] = 0x40,
278 [DMA_RING6_TIMEOUT] = 0x44,
279 [DMA_RING7_TIMEOUT] = 0x48,
280 [DMA_RING8_TIMEOUT] = 0x4c,
281 [DMA_RING9_TIMEOUT] = 0x50,
282 [DMA_RING10_TIMEOUT] = 0x54,
283 [DMA_RING11_TIMEOUT] = 0x58,
284 [DMA_RING12_TIMEOUT] = 0x5c,
285 [DMA_RING13_TIMEOUT] = 0x60,
286 [DMA_RING14_TIMEOUT] = 0x64,
287 [DMA_RING15_TIMEOUT] = 0x68,
288 [DMA_RING16_TIMEOUT] = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 [DMA_CTRL] = 0x00,
293 [DMA_STATUS] = 0x04,
294 [DMA_SCB_BURST_SIZE] = 0x0C,
295 [DMA_ARB_CTRL] = 0x30,
296 [DMA_PRIORITY_0] = 0x34,
297 [DMA_PRIORITY_1] = 0x38,
298 [DMA_PRIORITY_2] = 0x3C,
299 [DMA_RING0_TIMEOUT] = 0x2C,
300 [DMA_RING1_TIMEOUT] = 0x30,
301 [DMA_RING2_TIMEOUT] = 0x34,
302 [DMA_RING3_TIMEOUT] = 0x38,
303 [DMA_RING4_TIMEOUT] = 0x3c,
304 [DMA_RING5_TIMEOUT] = 0x40,
305 [DMA_RING6_TIMEOUT] = 0x44,
306 [DMA_RING7_TIMEOUT] = 0x48,
307 [DMA_RING8_TIMEOUT] = 0x4c,
308 [DMA_RING9_TIMEOUT] = 0x50,
309 [DMA_RING10_TIMEOUT] = 0x54,
310 [DMA_RING11_TIMEOUT] = 0x58,
311 [DMA_RING12_TIMEOUT] = 0x5c,
312 [DMA_RING13_TIMEOUT] = 0x60,
313 [DMA_RING14_TIMEOUT] = 0x64,
314 [DMA_RING15_TIMEOUT] = 0x68,
315 [DMA_RING16_TIMEOUT] = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 enum dma_reg r)
328 {
329 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 u32 val, enum dma_reg r)
335 {
336 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 enum dma_reg r)
342 {
343 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 u32 val, enum dma_reg r)
349 {
350 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355 * we merge the common fields and just prefix with T/D the registers
356 * having different meaning depending on the direction
357 */
358 enum dma_ring_reg {
359 TDMA_READ_PTR = 0,
360 RDMA_WRITE_PTR = TDMA_READ_PTR,
361 TDMA_READ_PTR_HI,
362 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 TDMA_CONS_INDEX,
364 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 TDMA_PROD_INDEX,
366 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 DMA_RING_BUF_SIZE,
368 DMA_START_ADDR,
369 DMA_START_ADDR_HI,
370 DMA_END_ADDR,
371 DMA_END_ADDR_HI,
372 DMA_MBUF_DONE_THRESH,
373 TDMA_FLOW_PERIOD,
374 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 TDMA_WRITE_PTR,
376 RDMA_READ_PTR = TDMA_WRITE_PTR,
377 TDMA_WRITE_PTR_HI,
378 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382 * for obvious reasons the LO and HI word parts
383 * are contiguous, but this offsets the other
384 * registers.
385 */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 [TDMA_READ_PTR] = 0x00,
388 [TDMA_READ_PTR_HI] = 0x04,
389 [TDMA_CONS_INDEX] = 0x08,
390 [TDMA_PROD_INDEX] = 0x0C,
391 [DMA_RING_BUF_SIZE] = 0x10,
392 [DMA_START_ADDR] = 0x14,
393 [DMA_START_ADDR_HI] = 0x18,
394 [DMA_END_ADDR] = 0x1C,
395 [DMA_END_ADDR_HI] = 0x20,
396 [DMA_MBUF_DONE_THRESH] = 0x24,
397 [TDMA_FLOW_PERIOD] = 0x28,
398 [TDMA_WRITE_PTR] = 0x2C,
399 [TDMA_WRITE_PTR_HI] = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403 [TDMA_READ_PTR] = 0x00,
404 [TDMA_CONS_INDEX] = 0x04,
405 [TDMA_PROD_INDEX] = 0x08,
406 [DMA_RING_BUF_SIZE] = 0x0C,
407 [DMA_START_ADDR] = 0x10,
408 [DMA_END_ADDR] = 0x14,
409 [DMA_MBUF_DONE_THRESH] = 0x18,
410 [TDMA_FLOW_PERIOD] = 0x1C,
411 [TDMA_WRITE_PTR] = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 unsigned int ring,
419 enum dma_ring_reg r)
420 {
421 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 unsigned int ring, u32 val,
428 enum dma_ring_reg r)
429 {
430 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 unsigned int ring,
437 enum dma_ring_reg r)
438 {
439 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 unsigned int ring, u32 val,
446 enum dma_ring_reg r)
447 {
448 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 (DMA_RING_SIZE * ring) +
450 genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_get_settings(struct net_device *dev,
454 struct ethtool_cmd *cmd)
455 {
456 struct bcmgenet_priv *priv = netdev_priv(dev);
457
458 if (!netif_running(dev))
459 return -EINVAL;
460
461 if (!priv->phydev)
462 return -ENODEV;
463
464 return phy_ethtool_gset(priv->phydev, cmd);
465 }
466
467 static int bcmgenet_set_settings(struct net_device *dev,
468 struct ethtool_cmd *cmd)
469 {
470 struct bcmgenet_priv *priv = netdev_priv(dev);
471
472 if (!netif_running(dev))
473 return -EINVAL;
474
475 if (!priv->phydev)
476 return -ENODEV;
477
478 return phy_ethtool_sset(priv->phydev, cmd);
479 }
480
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482 netdev_features_t wanted)
483 {
484 struct bcmgenet_priv *priv = netdev_priv(dev);
485 u32 rbuf_chk_ctrl;
486 bool rx_csum_en;
487
488 rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489
490 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491
492 /* enable rx checksumming */
493 if (rx_csum_en)
494 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495 else
496 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497 priv->desc_rxchk_en = rx_csum_en;
498
499 /* If UniMAC forwards CRC, we need to skip over it to get
500 * a valid CHK bit to be set in the per-packet status word
501 */
502 if (rx_csum_en && priv->crc_fwd_en)
503 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504 else
505 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506
507 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508
509 return 0;
510 }
511
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513 netdev_features_t wanted)
514 {
515 struct bcmgenet_priv *priv = netdev_priv(dev);
516 bool desc_64b_en;
517 u32 tbuf_ctrl, rbuf_ctrl;
518
519 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521
522 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523
524 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525 if (desc_64b_en) {
526 tbuf_ctrl |= RBUF_64B_EN;
527 rbuf_ctrl |= RBUF_64B_EN;
528 } else {
529 tbuf_ctrl &= ~RBUF_64B_EN;
530 rbuf_ctrl &= ~RBUF_64B_EN;
531 }
532 priv->desc_64b_en = desc_64b_en;
533
534 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536
537 return 0;
538 }
539
540 static int bcmgenet_set_features(struct net_device *dev,
541 netdev_features_t features)
542 {
543 netdev_features_t changed = features ^ dev->features;
544 netdev_features_t wanted = dev->wanted_features;
545 int ret = 0;
546
547 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548 ret = bcmgenet_set_tx_csum(dev, wanted);
549 if (changed & (NETIF_F_RXCSUM))
550 ret = bcmgenet_set_rx_csum(dev, wanted);
551
552 return ret;
553 }
554
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557 struct bcmgenet_priv *priv = netdev_priv(dev);
558
559 return priv->msg_enable;
560 }
561
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564 struct bcmgenet_priv *priv = netdev_priv(dev);
565
566 priv->msg_enable = level;
567 }
568
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570 struct ethtool_coalesce *ec)
571 {
572 struct bcmgenet_priv *priv = netdev_priv(dev);
573
574 ec->tx_max_coalesced_frames =
575 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576 DMA_MBUF_DONE_THRESH);
577 ec->rx_max_coalesced_frames =
578 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579 DMA_MBUF_DONE_THRESH);
580 ec->rx_coalesce_usecs =
581 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582
583 return 0;
584 }
585
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587 struct ethtool_coalesce *ec)
588 {
589 struct bcmgenet_priv *priv = netdev_priv(dev);
590 unsigned int i;
591 u32 reg;
592
593 /* Base system clock is 125Mhz, DMA timeout is this reference clock
594 * divided by 1024, which yields roughly 8.192us, our maximum value
595 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596 */
597 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598 ec->tx_max_coalesced_frames == 0 ||
599 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601 return -EINVAL;
602
603 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604 return -EINVAL;
605
606 /* GENET TDMA hardware does not support a configurable timeout, but will
607 * always generate an interrupt either after MBDONE packets have been
608 * transmitted, or when the ring is emtpy.
609 */
610 if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611 ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612 return -EOPNOTSUPP;
613
614 /* Program all TX queues with the same values, as there is no
615 * ethtool knob to do coalescing on a per-queue basis
616 */
617 for (i = 0; i < priv->hw_params->tx_queues; i++)
618 bcmgenet_tdma_ring_writel(priv, i,
619 ec->tx_max_coalesced_frames,
620 DMA_MBUF_DONE_THRESH);
621 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
622 ec->tx_max_coalesced_frames,
623 DMA_MBUF_DONE_THRESH);
624
625 for (i = 0; i < priv->hw_params->rx_queues; i++) {
626 bcmgenet_rdma_ring_writel(priv, i,
627 ec->rx_max_coalesced_frames,
628 DMA_MBUF_DONE_THRESH);
629
630 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
631 reg &= ~DMA_TIMEOUT_MASK;
632 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
633 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
634 }
635
636 bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
637 ec->rx_max_coalesced_frames,
638 DMA_MBUF_DONE_THRESH);
639
640 reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
641 reg &= ~DMA_TIMEOUT_MASK;
642 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
643 bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
644
645 return 0;
646 }
647
648 /* standard ethtool support functions. */
649 enum bcmgenet_stat_type {
650 BCMGENET_STAT_NETDEV = -1,
651 BCMGENET_STAT_MIB_RX,
652 BCMGENET_STAT_MIB_TX,
653 BCMGENET_STAT_RUNT,
654 BCMGENET_STAT_MISC,
655 BCMGENET_STAT_SOFT,
656 };
657
658 struct bcmgenet_stats {
659 char stat_string[ETH_GSTRING_LEN];
660 int stat_sizeof;
661 int stat_offset;
662 enum bcmgenet_stat_type type;
663 /* reg offset from UMAC base for misc counters */
664 u16 reg_offset;
665 };
666
667 #define STAT_NETDEV(m) { \
668 .stat_string = __stringify(m), \
669 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
670 .stat_offset = offsetof(struct net_device_stats, m), \
671 .type = BCMGENET_STAT_NETDEV, \
672 }
673
674 #define STAT_GENET_MIB(str, m, _type) { \
675 .stat_string = str, \
676 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
677 .stat_offset = offsetof(struct bcmgenet_priv, m), \
678 .type = _type, \
679 }
680
681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685
686 #define STAT_GENET_MISC(str, m, offset) { \
687 .stat_string = str, \
688 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
689 .stat_offset = offsetof(struct bcmgenet_priv, m), \
690 .type = BCMGENET_STAT_MISC, \
691 .reg_offset = offset, \
692 }
693
694
695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
696 * between the end of TX stats and the beginning of the RX RUNT
697 */
698 #define BCMGENET_STAT_OFFSET 0xc
699
700 /* Hardware counters must be kept in sync because the order/offset
701 * is important here (order in structure declaration = order in hardware)
702 */
703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
704 /* general stats */
705 STAT_NETDEV(rx_packets),
706 STAT_NETDEV(tx_packets),
707 STAT_NETDEV(rx_bytes),
708 STAT_NETDEV(tx_bytes),
709 STAT_NETDEV(rx_errors),
710 STAT_NETDEV(tx_errors),
711 STAT_NETDEV(rx_dropped),
712 STAT_NETDEV(tx_dropped),
713 STAT_NETDEV(multicast),
714 /* UniMAC RSV counters */
715 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
716 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
717 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
718 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
719 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
720 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
721 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
722 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
723 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
724 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
725 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
726 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
727 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
728 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
729 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
730 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
731 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
732 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
733 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
734 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
735 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
736 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
737 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
738 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
739 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
740 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
741 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
742 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
743 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
744 /* UniMAC TSV counters */
745 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
746 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
747 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
748 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
749 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
750 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
751 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
752 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
753 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
754 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
755 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
756 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
757 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
758 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
759 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
760 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
761 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
762 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
763 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
764 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
765 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
766 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
767 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
768 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
769 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
770 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
771 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
772 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
773 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
774 /* UniMAC RUNT counters */
775 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
776 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
777 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
778 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
779 /* Misc UniMAC counters */
780 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
781 UMAC_RBUF_OVFL_CNT),
782 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
783 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
784 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
785 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
786 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
787 };
788
789 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
790
791 static void bcmgenet_get_drvinfo(struct net_device *dev,
792 struct ethtool_drvinfo *info)
793 {
794 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
795 strlcpy(info->version, "v2.0", sizeof(info->version));
796 }
797
798 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
799 {
800 switch (string_set) {
801 case ETH_SS_STATS:
802 return BCMGENET_STATS_LEN;
803 default:
804 return -EOPNOTSUPP;
805 }
806 }
807
808 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
809 u8 *data)
810 {
811 int i;
812
813 switch (stringset) {
814 case ETH_SS_STATS:
815 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
816 memcpy(data + i * ETH_GSTRING_LEN,
817 bcmgenet_gstrings_stats[i].stat_string,
818 ETH_GSTRING_LEN);
819 }
820 break;
821 }
822 }
823
824 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
825 {
826 int i, j = 0;
827
828 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
829 const struct bcmgenet_stats *s;
830 u8 offset = 0;
831 u32 val = 0;
832 char *p;
833
834 s = &bcmgenet_gstrings_stats[i];
835 switch (s->type) {
836 case BCMGENET_STAT_NETDEV:
837 case BCMGENET_STAT_SOFT:
838 continue;
839 case BCMGENET_STAT_MIB_RX:
840 case BCMGENET_STAT_MIB_TX:
841 case BCMGENET_STAT_RUNT:
842 if (s->type != BCMGENET_STAT_MIB_RX)
843 offset = BCMGENET_STAT_OFFSET;
844 val = bcmgenet_umac_readl(priv,
845 UMAC_MIB_START + j + offset);
846 break;
847 case BCMGENET_STAT_MISC:
848 val = bcmgenet_umac_readl(priv, s->reg_offset);
849 /* clear if overflowed */
850 if (val == ~0)
851 bcmgenet_umac_writel(priv, 0, s->reg_offset);
852 break;
853 }
854
855 j += s->stat_sizeof;
856 p = (char *)priv + s->stat_offset;
857 *(u32 *)p = val;
858 }
859 }
860
861 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
862 struct ethtool_stats *stats,
863 u64 *data)
864 {
865 struct bcmgenet_priv *priv = netdev_priv(dev);
866 int i;
867
868 if (netif_running(dev))
869 bcmgenet_update_mib_counters(priv);
870
871 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
872 const struct bcmgenet_stats *s;
873 char *p;
874
875 s = &bcmgenet_gstrings_stats[i];
876 if (s->type == BCMGENET_STAT_NETDEV)
877 p = (char *)&dev->stats;
878 else
879 p = (char *)priv;
880 p += s->stat_offset;
881 if (sizeof(unsigned long) != sizeof(u32) &&
882 s->stat_sizeof == sizeof(unsigned long))
883 data[i] = *(unsigned long *)p;
884 else
885 data[i] = *(u32 *)p;
886 }
887 }
888
889 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
890 {
891 struct bcmgenet_priv *priv = netdev_priv(dev);
892 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
893 u32 reg;
894
895 if (enable && !priv->clk_eee_enabled) {
896 clk_prepare_enable(priv->clk_eee);
897 priv->clk_eee_enabled = true;
898 }
899
900 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
901 if (enable)
902 reg |= EEE_EN;
903 else
904 reg &= ~EEE_EN;
905 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
906
907 /* Enable EEE and switch to a 27Mhz clock automatically */
908 reg = __raw_readl(priv->base + off);
909 if (enable)
910 reg |= TBUF_EEE_EN | TBUF_PM_EN;
911 else
912 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
913 __raw_writel(reg, priv->base + off);
914
915 /* Do the same for thing for RBUF */
916 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
917 if (enable)
918 reg |= RBUF_EEE_EN | RBUF_PM_EN;
919 else
920 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
921 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
922
923 if (!enable && priv->clk_eee_enabled) {
924 clk_disable_unprepare(priv->clk_eee);
925 priv->clk_eee_enabled = false;
926 }
927
928 priv->eee.eee_enabled = enable;
929 priv->eee.eee_active = enable;
930 }
931
932 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
933 {
934 struct bcmgenet_priv *priv = netdev_priv(dev);
935 struct ethtool_eee *p = &priv->eee;
936
937 if (GENET_IS_V1(priv))
938 return -EOPNOTSUPP;
939
940 e->eee_enabled = p->eee_enabled;
941 e->eee_active = p->eee_active;
942 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
943
944 return phy_ethtool_get_eee(priv->phydev, e);
945 }
946
947 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
948 {
949 struct bcmgenet_priv *priv = netdev_priv(dev);
950 struct ethtool_eee *p = &priv->eee;
951 int ret = 0;
952
953 if (GENET_IS_V1(priv))
954 return -EOPNOTSUPP;
955
956 p->eee_enabled = e->eee_enabled;
957
958 if (!p->eee_enabled) {
959 bcmgenet_eee_enable_set(dev, false);
960 } else {
961 ret = phy_init_eee(priv->phydev, 0);
962 if (ret) {
963 netif_err(priv, hw, dev, "EEE initialization failed\n");
964 return ret;
965 }
966
967 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
968 bcmgenet_eee_enable_set(dev, true);
969 }
970
971 return phy_ethtool_set_eee(priv->phydev, e);
972 }
973
974 static int bcmgenet_nway_reset(struct net_device *dev)
975 {
976 struct bcmgenet_priv *priv = netdev_priv(dev);
977
978 return genphy_restart_aneg(priv->phydev);
979 }
980
981 /* standard ethtool support functions. */
982 static struct ethtool_ops bcmgenet_ethtool_ops = {
983 .get_strings = bcmgenet_get_strings,
984 .get_sset_count = bcmgenet_get_sset_count,
985 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
986 .get_settings = bcmgenet_get_settings,
987 .set_settings = bcmgenet_set_settings,
988 .get_drvinfo = bcmgenet_get_drvinfo,
989 .get_link = ethtool_op_get_link,
990 .get_msglevel = bcmgenet_get_msglevel,
991 .set_msglevel = bcmgenet_set_msglevel,
992 .get_wol = bcmgenet_get_wol,
993 .set_wol = bcmgenet_set_wol,
994 .get_eee = bcmgenet_get_eee,
995 .set_eee = bcmgenet_set_eee,
996 .nway_reset = bcmgenet_nway_reset,
997 .get_coalesce = bcmgenet_get_coalesce,
998 .set_coalesce = bcmgenet_set_coalesce,
999 };
1000
1001 /* Power down the unimac, based on mode. */
1002 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1003 enum bcmgenet_power_mode mode)
1004 {
1005 int ret = 0;
1006 u32 reg;
1007
1008 switch (mode) {
1009 case GENET_POWER_CABLE_SENSE:
1010 phy_detach(priv->phydev);
1011 break;
1012
1013 case GENET_POWER_WOL_MAGIC:
1014 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1015 break;
1016
1017 case GENET_POWER_PASSIVE:
1018 /* Power down LED */
1019 if (priv->hw_params->flags & GENET_HAS_EXT) {
1020 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1021 reg |= (EXT_PWR_DOWN_PHY |
1022 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1023 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1024
1025 bcmgenet_phy_power_set(priv->dev, false);
1026 }
1027 break;
1028 default:
1029 break;
1030 }
1031
1032 return 0;
1033 }
1034
1035 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1036 enum bcmgenet_power_mode mode)
1037 {
1038 u32 reg;
1039
1040 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1041 return;
1042
1043 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1044
1045 switch (mode) {
1046 case GENET_POWER_PASSIVE:
1047 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1048 EXT_PWR_DOWN_BIAS);
1049 /* fallthrough */
1050 case GENET_POWER_CABLE_SENSE:
1051 /* enable APD */
1052 reg |= EXT_PWR_DN_EN_LD;
1053 break;
1054 case GENET_POWER_WOL_MAGIC:
1055 bcmgenet_wol_power_up_cfg(priv, mode);
1056 return;
1057 default:
1058 break;
1059 }
1060
1061 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1062 if (mode == GENET_POWER_PASSIVE) {
1063 bcmgenet_phy_power_set(priv->dev, true);
1064 bcmgenet_mii_reset(priv->dev);
1065 }
1066 }
1067
1068 /* ioctl handle special commands that are not present in ethtool. */
1069 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1070 {
1071 struct bcmgenet_priv *priv = netdev_priv(dev);
1072 int val = 0;
1073
1074 if (!netif_running(dev))
1075 return -EINVAL;
1076
1077 switch (cmd) {
1078 case SIOCGMIIPHY:
1079 case SIOCGMIIREG:
1080 case SIOCSMIIREG:
1081 if (!priv->phydev)
1082 val = -ENODEV;
1083 else
1084 val = phy_mii_ioctl(priv->phydev, rq, cmd);
1085 break;
1086
1087 default:
1088 val = -EINVAL;
1089 break;
1090 }
1091
1092 return val;
1093 }
1094
1095 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1096 struct bcmgenet_tx_ring *ring)
1097 {
1098 struct enet_cb *tx_cb_ptr;
1099
1100 tx_cb_ptr = ring->cbs;
1101 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1102
1103 /* Advancing local write pointer */
1104 if (ring->write_ptr == ring->end_ptr)
1105 ring->write_ptr = ring->cb_ptr;
1106 else
1107 ring->write_ptr++;
1108
1109 return tx_cb_ptr;
1110 }
1111
1112 /* Simple helper to free a control block's resources */
1113 static void bcmgenet_free_cb(struct enet_cb *cb)
1114 {
1115 dev_kfree_skb_any(cb->skb);
1116 cb->skb = NULL;
1117 dma_unmap_addr_set(cb, dma_addr, 0);
1118 }
1119
1120 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1121 {
1122 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1123 INTRL2_CPU_MASK_SET);
1124 }
1125
1126 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1127 {
1128 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1129 INTRL2_CPU_MASK_CLEAR);
1130 }
1131
1132 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1133 {
1134 bcmgenet_intrl2_1_writel(ring->priv,
1135 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1136 INTRL2_CPU_MASK_SET);
1137 }
1138
1139 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1140 {
1141 bcmgenet_intrl2_1_writel(ring->priv,
1142 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1143 INTRL2_CPU_MASK_CLEAR);
1144 }
1145
1146 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1147 {
1148 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1149 INTRL2_CPU_MASK_SET);
1150 }
1151
1152 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1153 {
1154 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1155 INTRL2_CPU_MASK_CLEAR);
1156 }
1157
1158 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1159 {
1160 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1161 INTRL2_CPU_MASK_CLEAR);
1162 }
1163
1164 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1165 {
1166 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1167 INTRL2_CPU_MASK_SET);
1168 }
1169
1170 /* Unlocked version of the reclaim routine */
1171 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1172 struct bcmgenet_tx_ring *ring)
1173 {
1174 struct bcmgenet_priv *priv = netdev_priv(dev);
1175 struct enet_cb *tx_cb_ptr;
1176 struct netdev_queue *txq;
1177 unsigned int pkts_compl = 0;
1178 unsigned int bytes_compl = 0;
1179 unsigned int c_index;
1180 unsigned int txbds_ready;
1181 unsigned int txbds_processed = 0;
1182
1183 /* Compute how many buffers are transmitted since last xmit call */
1184 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1185 c_index &= DMA_C_INDEX_MASK;
1186
1187 if (likely(c_index >= ring->c_index))
1188 txbds_ready = c_index - ring->c_index;
1189 else
1190 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1191
1192 netif_dbg(priv, tx_done, dev,
1193 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1194 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1195
1196 /* Reclaim transmitted buffers */
1197 while (txbds_processed < txbds_ready) {
1198 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1199 if (tx_cb_ptr->skb) {
1200 pkts_compl++;
1201 bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1202 dma_unmap_single(&dev->dev,
1203 dma_unmap_addr(tx_cb_ptr, dma_addr),
1204 dma_unmap_len(tx_cb_ptr, dma_len),
1205 DMA_TO_DEVICE);
1206 bcmgenet_free_cb(tx_cb_ptr);
1207 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1208 dma_unmap_page(&dev->dev,
1209 dma_unmap_addr(tx_cb_ptr, dma_addr),
1210 dma_unmap_len(tx_cb_ptr, dma_len),
1211 DMA_TO_DEVICE);
1212 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1213 }
1214
1215 txbds_processed++;
1216 if (likely(ring->clean_ptr < ring->end_ptr))
1217 ring->clean_ptr++;
1218 else
1219 ring->clean_ptr = ring->cb_ptr;
1220 }
1221
1222 ring->free_bds += txbds_processed;
1223 ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1224
1225 dev->stats.tx_packets += pkts_compl;
1226 dev->stats.tx_bytes += bytes_compl;
1227
1228 txq = netdev_get_tx_queue(dev, ring->queue);
1229 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
1230
1231 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1232 if (netif_tx_queue_stopped(txq))
1233 netif_tx_wake_queue(txq);
1234 }
1235
1236 return pkts_compl;
1237 }
1238
1239 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1240 struct bcmgenet_tx_ring *ring)
1241 {
1242 unsigned int released;
1243 unsigned long flags;
1244
1245 spin_lock_irqsave(&ring->lock, flags);
1246 released = __bcmgenet_tx_reclaim(dev, ring);
1247 spin_unlock_irqrestore(&ring->lock, flags);
1248
1249 return released;
1250 }
1251
1252 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1253 {
1254 struct bcmgenet_tx_ring *ring =
1255 container_of(napi, struct bcmgenet_tx_ring, napi);
1256 unsigned int work_done = 0;
1257
1258 work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1259
1260 if (work_done == 0) {
1261 napi_complete(napi);
1262 ring->int_enable(ring);
1263
1264 return 0;
1265 }
1266
1267 return budget;
1268 }
1269
1270 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1271 {
1272 struct bcmgenet_priv *priv = netdev_priv(dev);
1273 int i;
1274
1275 if (netif_is_multiqueue(dev)) {
1276 for (i = 0; i < priv->hw_params->tx_queues; i++)
1277 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1278 }
1279
1280 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1281 }
1282
1283 /* Transmits a single SKB (either head of a fragment or a single SKB)
1284 * caller must hold priv->lock
1285 */
1286 static int bcmgenet_xmit_single(struct net_device *dev,
1287 struct sk_buff *skb,
1288 u16 dma_desc_flags,
1289 struct bcmgenet_tx_ring *ring)
1290 {
1291 struct bcmgenet_priv *priv = netdev_priv(dev);
1292 struct device *kdev = &priv->pdev->dev;
1293 struct enet_cb *tx_cb_ptr;
1294 unsigned int skb_len;
1295 dma_addr_t mapping;
1296 u32 length_status;
1297 int ret;
1298
1299 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1300
1301 if (unlikely(!tx_cb_ptr))
1302 BUG();
1303
1304 tx_cb_ptr->skb = skb;
1305
1306 skb_len = skb_headlen(skb);
1307
1308 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1309 ret = dma_mapping_error(kdev, mapping);
1310 if (ret) {
1311 priv->mib.tx_dma_failed++;
1312 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1313 dev_kfree_skb(skb);
1314 return ret;
1315 }
1316
1317 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1318 dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1319 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1320 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1321 DMA_TX_APPEND_CRC;
1322
1323 if (skb->ip_summed == CHECKSUM_PARTIAL)
1324 length_status |= DMA_TX_DO_CSUM;
1325
1326 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1327
1328 return 0;
1329 }
1330
1331 /* Transmit a SKB fragment */
1332 static int bcmgenet_xmit_frag(struct net_device *dev,
1333 skb_frag_t *frag,
1334 u16 dma_desc_flags,
1335 struct bcmgenet_tx_ring *ring)
1336 {
1337 struct bcmgenet_priv *priv = netdev_priv(dev);
1338 struct device *kdev = &priv->pdev->dev;
1339 struct enet_cb *tx_cb_ptr;
1340 unsigned int frag_size;
1341 dma_addr_t mapping;
1342 int ret;
1343
1344 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1345
1346 if (unlikely(!tx_cb_ptr))
1347 BUG();
1348
1349 tx_cb_ptr->skb = NULL;
1350
1351 frag_size = skb_frag_size(frag);
1352
1353 mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1354 ret = dma_mapping_error(kdev, mapping);
1355 if (ret) {
1356 priv->mib.tx_dma_failed++;
1357 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1358 __func__);
1359 return ret;
1360 }
1361
1362 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1363 dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1364
1365 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1366 (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1367 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1368
1369 return 0;
1370 }
1371
1372 /* Reallocate the SKB to put enough headroom in front of it and insert
1373 * the transmit checksum offsets in the descriptors
1374 */
1375 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1376 struct sk_buff *skb)
1377 {
1378 struct status_64 *status = NULL;
1379 struct sk_buff *new_skb;
1380 u16 offset;
1381 u8 ip_proto;
1382 u16 ip_ver;
1383 u32 tx_csum_info;
1384
1385 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1386 /* If 64 byte status block enabled, must make sure skb has
1387 * enough headroom for us to insert 64B status block.
1388 */
1389 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1390 dev_kfree_skb(skb);
1391 if (!new_skb) {
1392 dev->stats.tx_dropped++;
1393 return NULL;
1394 }
1395 skb = new_skb;
1396 }
1397
1398 skb_push(skb, sizeof(*status));
1399 status = (struct status_64 *)skb->data;
1400
1401 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1402 ip_ver = htons(skb->protocol);
1403 switch (ip_ver) {
1404 case ETH_P_IP:
1405 ip_proto = ip_hdr(skb)->protocol;
1406 break;
1407 case ETH_P_IPV6:
1408 ip_proto = ipv6_hdr(skb)->nexthdr;
1409 break;
1410 default:
1411 return skb;
1412 }
1413
1414 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1415 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1416 (offset + skb->csum_offset);
1417
1418 /* Set the length valid bit for TCP and UDP and just set
1419 * the special UDP flag for IPv4, else just set to 0.
1420 */
1421 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1422 tx_csum_info |= STATUS_TX_CSUM_LV;
1423 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1424 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1425 } else {
1426 tx_csum_info = 0;
1427 }
1428
1429 status->tx_csum_info = tx_csum_info;
1430 }
1431
1432 return skb;
1433 }
1434
1435 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1436 {
1437 struct bcmgenet_priv *priv = netdev_priv(dev);
1438 struct bcmgenet_tx_ring *ring = NULL;
1439 struct netdev_queue *txq;
1440 unsigned long flags = 0;
1441 int nr_frags, index;
1442 u16 dma_desc_flags;
1443 int ret;
1444 int i;
1445
1446 index = skb_get_queue_mapping(skb);
1447 /* Mapping strategy:
1448 * queue_mapping = 0, unclassified, packet xmited through ring16
1449 * queue_mapping = 1, goes to ring 0. (highest priority queue
1450 * queue_mapping = 2, goes to ring 1.
1451 * queue_mapping = 3, goes to ring 2.
1452 * queue_mapping = 4, goes to ring 3.
1453 */
1454 if (index == 0)
1455 index = DESC_INDEX;
1456 else
1457 index -= 1;
1458
1459 ring = &priv->tx_rings[index];
1460 txq = netdev_get_tx_queue(dev, ring->queue);
1461
1462 nr_frags = skb_shinfo(skb)->nr_frags;
1463
1464 spin_lock_irqsave(&ring->lock, flags);
1465 if (ring->free_bds <= (nr_frags + 1)) {
1466 if (!netif_tx_queue_stopped(txq)) {
1467 netif_tx_stop_queue(txq);
1468 netdev_err(dev,
1469 "%s: tx ring %d full when queue %d awake\n",
1470 __func__, index, ring->queue);
1471 }
1472 ret = NETDEV_TX_BUSY;
1473 goto out;
1474 }
1475
1476 if (skb_padto(skb, ETH_ZLEN)) {
1477 ret = NETDEV_TX_OK;
1478 goto out;
1479 }
1480
1481 /* Retain how many bytes will be sent on the wire, without TSB inserted
1482 * by transmit checksum offload
1483 */
1484 GENET_CB(skb)->bytes_sent = skb->len;
1485
1486 /* set the SKB transmit checksum */
1487 if (priv->desc_64b_en) {
1488 skb = bcmgenet_put_tx_csum(dev, skb);
1489 if (!skb) {
1490 ret = NETDEV_TX_OK;
1491 goto out;
1492 }
1493 }
1494
1495 dma_desc_flags = DMA_SOP;
1496 if (nr_frags == 0)
1497 dma_desc_flags |= DMA_EOP;
1498
1499 /* Transmit single SKB or head of fragment list */
1500 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1501 if (ret) {
1502 ret = NETDEV_TX_OK;
1503 goto out;
1504 }
1505
1506 /* xmit fragment */
1507 for (i = 0; i < nr_frags; i++) {
1508 ret = bcmgenet_xmit_frag(dev,
1509 &skb_shinfo(skb)->frags[i],
1510 (i == nr_frags - 1) ? DMA_EOP : 0,
1511 ring);
1512 if (ret) {
1513 ret = NETDEV_TX_OK;
1514 goto out;
1515 }
1516 }
1517
1518 skb_tx_timestamp(skb);
1519
1520 /* Decrement total BD count and advance our write pointer */
1521 ring->free_bds -= nr_frags + 1;
1522 ring->prod_index += nr_frags + 1;
1523 ring->prod_index &= DMA_P_INDEX_MASK;
1524
1525 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1526
1527 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1528 netif_tx_stop_queue(txq);
1529
1530 if (!skb->xmit_more || netif_xmit_stopped(txq))
1531 /* Packets are ready, update producer index */
1532 bcmgenet_tdma_ring_writel(priv, ring->index,
1533 ring->prod_index, TDMA_PROD_INDEX);
1534 out:
1535 spin_unlock_irqrestore(&ring->lock, flags);
1536
1537 return ret;
1538 }
1539
1540 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1541 struct enet_cb *cb)
1542 {
1543 struct device *kdev = &priv->pdev->dev;
1544 struct sk_buff *skb;
1545 struct sk_buff *rx_skb;
1546 dma_addr_t mapping;
1547
1548 /* Allocate a new Rx skb */
1549 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1550 if (!skb) {
1551 priv->mib.alloc_rx_buff_failed++;
1552 netif_err(priv, rx_err, priv->dev,
1553 "%s: Rx skb allocation failed\n", __func__);
1554 return NULL;
1555 }
1556
1557 /* DMA-map the new Rx skb */
1558 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1559 DMA_FROM_DEVICE);
1560 if (dma_mapping_error(kdev, mapping)) {
1561 priv->mib.rx_dma_failed++;
1562 dev_kfree_skb_any(skb);
1563 netif_err(priv, rx_err, priv->dev,
1564 "%s: Rx skb DMA mapping failed\n", __func__);
1565 return NULL;
1566 }
1567
1568 /* Grab the current Rx skb from the ring and DMA-unmap it */
1569 rx_skb = cb->skb;
1570 if (likely(rx_skb))
1571 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1572 priv->rx_buf_len, DMA_FROM_DEVICE);
1573
1574 /* Put the new Rx skb on the ring */
1575 cb->skb = skb;
1576 dma_unmap_addr_set(cb, dma_addr, mapping);
1577 dmadesc_set_addr(priv, cb->bd_addr, mapping);
1578
1579 /* Return the current Rx skb to caller */
1580 return rx_skb;
1581 }
1582
1583 /* bcmgenet_desc_rx - descriptor based rx process.
1584 * this could be called from bottom half, or from NAPI polling method.
1585 */
1586 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1587 unsigned int budget)
1588 {
1589 struct bcmgenet_priv *priv = ring->priv;
1590 struct net_device *dev = priv->dev;
1591 struct enet_cb *cb;
1592 struct sk_buff *skb;
1593 u32 dma_length_status;
1594 unsigned long dma_flag;
1595 int len;
1596 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1597 unsigned int p_index;
1598 unsigned int discards;
1599 unsigned int chksum_ok = 0;
1600
1601 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1602
1603 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1604 DMA_P_INDEX_DISCARD_CNT_MASK;
1605 if (discards > ring->old_discards) {
1606 discards = discards - ring->old_discards;
1607 dev->stats.rx_missed_errors += discards;
1608 dev->stats.rx_errors += discards;
1609 ring->old_discards += discards;
1610
1611 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1612 if (ring->old_discards >= 0xC000) {
1613 ring->old_discards = 0;
1614 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1615 RDMA_PROD_INDEX);
1616 }
1617 }
1618
1619 p_index &= DMA_P_INDEX_MASK;
1620
1621 if (likely(p_index >= ring->c_index))
1622 rxpkttoprocess = p_index - ring->c_index;
1623 else
1624 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1625 p_index;
1626
1627 netif_dbg(priv, rx_status, dev,
1628 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1629
1630 while ((rxpktprocessed < rxpkttoprocess) &&
1631 (rxpktprocessed < budget)) {
1632 cb = &priv->rx_cbs[ring->read_ptr];
1633 skb = bcmgenet_rx_refill(priv, cb);
1634
1635 if (unlikely(!skb)) {
1636 dev->stats.rx_dropped++;
1637 goto next;
1638 }
1639
1640 if (!priv->desc_64b_en) {
1641 dma_length_status =
1642 dmadesc_get_length_status(priv, cb->bd_addr);
1643 } else {
1644 struct status_64 *status;
1645
1646 status = (struct status_64 *)skb->data;
1647 dma_length_status = status->length_status;
1648 }
1649
1650 /* DMA flags and length are still valid no matter how
1651 * we got the Receive Status Vector (64B RSB or register)
1652 */
1653 dma_flag = dma_length_status & 0xffff;
1654 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1655
1656 netif_dbg(priv, rx_status, dev,
1657 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1658 __func__, p_index, ring->c_index,
1659 ring->read_ptr, dma_length_status);
1660
1661 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1662 netif_err(priv, rx_status, dev,
1663 "dropping fragmented packet!\n");
1664 dev->stats.rx_errors++;
1665 dev_kfree_skb_any(skb);
1666 goto next;
1667 }
1668
1669 /* report errors */
1670 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1671 DMA_RX_OV |
1672 DMA_RX_NO |
1673 DMA_RX_LG |
1674 DMA_RX_RXER))) {
1675 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1676 (unsigned int)dma_flag);
1677 if (dma_flag & DMA_RX_CRC_ERROR)
1678 dev->stats.rx_crc_errors++;
1679 if (dma_flag & DMA_RX_OV)
1680 dev->stats.rx_over_errors++;
1681 if (dma_flag & DMA_RX_NO)
1682 dev->stats.rx_frame_errors++;
1683 if (dma_flag & DMA_RX_LG)
1684 dev->stats.rx_length_errors++;
1685 dev->stats.rx_errors++;
1686 dev_kfree_skb_any(skb);
1687 goto next;
1688 } /* error packet */
1689
1690 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1691 priv->desc_rxchk_en;
1692
1693 skb_put(skb, len);
1694 if (priv->desc_64b_en) {
1695 skb_pull(skb, 64);
1696 len -= 64;
1697 }
1698
1699 if (likely(chksum_ok))
1700 skb->ip_summed = CHECKSUM_UNNECESSARY;
1701
1702 /* remove hardware 2bytes added for IP alignment */
1703 skb_pull(skb, 2);
1704 len -= 2;
1705
1706 if (priv->crc_fwd_en) {
1707 skb_trim(skb, len - ETH_FCS_LEN);
1708 len -= ETH_FCS_LEN;
1709 }
1710
1711 /*Finish setting up the received SKB and send it to the kernel*/
1712 skb->protocol = eth_type_trans(skb, priv->dev);
1713 dev->stats.rx_packets++;
1714 dev->stats.rx_bytes += len;
1715 if (dma_flag & DMA_RX_MULT)
1716 dev->stats.multicast++;
1717
1718 /* Notify kernel */
1719 napi_gro_receive(&ring->napi, skb);
1720 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1721
1722 next:
1723 rxpktprocessed++;
1724 if (likely(ring->read_ptr < ring->end_ptr))
1725 ring->read_ptr++;
1726 else
1727 ring->read_ptr = ring->cb_ptr;
1728
1729 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1730 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1731 }
1732
1733 return rxpktprocessed;
1734 }
1735
1736 /* Rx NAPI polling method */
1737 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1738 {
1739 struct bcmgenet_rx_ring *ring = container_of(napi,
1740 struct bcmgenet_rx_ring, napi);
1741 unsigned int work_done;
1742
1743 work_done = bcmgenet_desc_rx(ring, budget);
1744
1745 if (work_done < budget) {
1746 napi_complete_done(napi, work_done);
1747 ring->int_enable(ring);
1748 }
1749
1750 return work_done;
1751 }
1752
1753 /* Assign skb to RX DMA descriptor. */
1754 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1755 struct bcmgenet_rx_ring *ring)
1756 {
1757 struct enet_cb *cb;
1758 struct sk_buff *skb;
1759 int i;
1760
1761 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1762
1763 /* loop here for each buffer needing assign */
1764 for (i = 0; i < ring->size; i++) {
1765 cb = ring->cbs + i;
1766 skb = bcmgenet_rx_refill(priv, cb);
1767 if (skb)
1768 dev_kfree_skb_any(skb);
1769 if (!cb->skb)
1770 return -ENOMEM;
1771 }
1772
1773 return 0;
1774 }
1775
1776 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1777 {
1778 struct enet_cb *cb;
1779 int i;
1780
1781 for (i = 0; i < priv->num_rx_bds; i++) {
1782 cb = &priv->rx_cbs[i];
1783
1784 if (dma_unmap_addr(cb, dma_addr)) {
1785 dma_unmap_single(&priv->dev->dev,
1786 dma_unmap_addr(cb, dma_addr),
1787 priv->rx_buf_len, DMA_FROM_DEVICE);
1788 dma_unmap_addr_set(cb, dma_addr, 0);
1789 }
1790
1791 if (cb->skb)
1792 bcmgenet_free_cb(cb);
1793 }
1794 }
1795
1796 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1797 {
1798 u32 reg;
1799
1800 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1801 if (enable)
1802 reg |= mask;
1803 else
1804 reg &= ~mask;
1805 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1806
1807 /* UniMAC stops on a packet boundary, wait for a full-size packet
1808 * to be processed
1809 */
1810 if (enable == 0)
1811 usleep_range(1000, 2000);
1812 }
1813
1814 static int reset_umac(struct bcmgenet_priv *priv)
1815 {
1816 struct device *kdev = &priv->pdev->dev;
1817 unsigned int timeout = 0;
1818 u32 reg;
1819
1820 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1821 bcmgenet_rbuf_ctrl_set(priv, 0);
1822 udelay(10);
1823
1824 /* disable MAC while updating its registers */
1825 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1826
1827 /* issue soft reset, wait for it to complete */
1828 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1829 while (timeout++ < 1000) {
1830 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1831 if (!(reg & CMD_SW_RESET))
1832 return 0;
1833
1834 udelay(1);
1835 }
1836
1837 if (timeout == 1000) {
1838 dev_err(kdev,
1839 "timeout waiting for MAC to come out of reset\n");
1840 return -ETIMEDOUT;
1841 }
1842
1843 return 0;
1844 }
1845
1846 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1847 {
1848 /* Mask all interrupts.*/
1849 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1850 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1851 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1852 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1853 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1854 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1855 }
1856
1857 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1858 {
1859 u32 int0_enable = 0;
1860
1861 /* Monitor cable plug/unplugged event for internal PHY, external PHY
1862 * and MoCA PHY
1863 */
1864 if (priv->internal_phy) {
1865 int0_enable |= UMAC_IRQ_LINK_EVENT;
1866 } else if (priv->ext_phy) {
1867 int0_enable |= UMAC_IRQ_LINK_EVENT;
1868 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1869 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1870 int0_enable |= UMAC_IRQ_LINK_EVENT;
1871 }
1872 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1873 }
1874
1875 static int init_umac(struct bcmgenet_priv *priv)
1876 {
1877 struct device *kdev = &priv->pdev->dev;
1878 int ret;
1879 u32 reg;
1880 u32 int0_enable = 0;
1881 u32 int1_enable = 0;
1882 int i;
1883
1884 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1885
1886 ret = reset_umac(priv);
1887 if (ret)
1888 return ret;
1889
1890 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1891 /* clear tx/rx counter */
1892 bcmgenet_umac_writel(priv,
1893 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1894 UMAC_MIB_CTRL);
1895 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1896
1897 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1898
1899 /* init rx registers, enable ip header optimization */
1900 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1901 reg |= RBUF_ALIGN_2B;
1902 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1903
1904 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1905 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1906
1907 bcmgenet_intr_disable(priv);
1908
1909 /* Enable Rx default queue 16 interrupts */
1910 int0_enable |= UMAC_IRQ_RXDMA_DONE;
1911
1912 /* Enable Tx default queue 16 interrupts */
1913 int0_enable |= UMAC_IRQ_TXDMA_DONE;
1914
1915 /* Configure backpressure vectors for MoCA */
1916 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1917 reg = bcmgenet_bp_mc_get(priv);
1918 reg |= BIT(priv->hw_params->bp_in_en_shift);
1919
1920 /* bp_mask: back pressure mask */
1921 if (netif_is_multiqueue(priv->dev))
1922 reg |= priv->hw_params->bp_in_mask;
1923 else
1924 reg &= ~priv->hw_params->bp_in_mask;
1925 bcmgenet_bp_mc_set(priv, reg);
1926 }
1927
1928 /* Enable MDIO interrupts on GENET v3+ */
1929 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1930 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1931
1932 /* Enable Rx priority queue interrupts */
1933 for (i = 0; i < priv->hw_params->rx_queues; ++i)
1934 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1935
1936 /* Enable Tx priority queue interrupts */
1937 for (i = 0; i < priv->hw_params->tx_queues; ++i)
1938 int1_enable |= (1 << i);
1939
1940 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1941 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1942
1943 /* Enable rx/tx engine.*/
1944 dev_dbg(kdev, "done init umac\n");
1945
1946 return 0;
1947 }
1948
1949 /* Initialize a Tx ring along with corresponding hardware registers */
1950 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1951 unsigned int index, unsigned int size,
1952 unsigned int start_ptr, unsigned int end_ptr)
1953 {
1954 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1955 u32 words_per_bd = WORDS_PER_BD(priv);
1956 u32 flow_period_val = 0;
1957
1958 spin_lock_init(&ring->lock);
1959 ring->priv = priv;
1960 ring->index = index;
1961 if (index == DESC_INDEX) {
1962 ring->queue = 0;
1963 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1964 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1965 } else {
1966 ring->queue = index + 1;
1967 ring->int_enable = bcmgenet_tx_ring_int_enable;
1968 ring->int_disable = bcmgenet_tx_ring_int_disable;
1969 }
1970 ring->cbs = priv->tx_cbs + start_ptr;
1971 ring->size = size;
1972 ring->clean_ptr = start_ptr;
1973 ring->c_index = 0;
1974 ring->free_bds = size;
1975 ring->write_ptr = start_ptr;
1976 ring->cb_ptr = start_ptr;
1977 ring->end_ptr = end_ptr - 1;
1978 ring->prod_index = 0;
1979
1980 /* Set flow period for ring != 16 */
1981 if (index != DESC_INDEX)
1982 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1983
1984 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1985 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1986 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1987 /* Disable rate control for now */
1988 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1989 TDMA_FLOW_PERIOD);
1990 bcmgenet_tdma_ring_writel(priv, index,
1991 ((size << DMA_RING_SIZE_SHIFT) |
1992 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1993
1994 /* Set start and end address, read and write pointers */
1995 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1996 DMA_START_ADDR);
1997 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1998 TDMA_READ_PTR);
1999 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2000 TDMA_WRITE_PTR);
2001 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2002 DMA_END_ADDR);
2003 }
2004
2005 /* Initialize a RDMA ring */
2006 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2007 unsigned int index, unsigned int size,
2008 unsigned int start_ptr, unsigned int end_ptr)
2009 {
2010 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2011 u32 words_per_bd = WORDS_PER_BD(priv);
2012 int ret;
2013
2014 ring->priv = priv;
2015 ring->index = index;
2016 if (index == DESC_INDEX) {
2017 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2018 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2019 } else {
2020 ring->int_enable = bcmgenet_rx_ring_int_enable;
2021 ring->int_disable = bcmgenet_rx_ring_int_disable;
2022 }
2023 ring->cbs = priv->rx_cbs + start_ptr;
2024 ring->size = size;
2025 ring->c_index = 0;
2026 ring->read_ptr = start_ptr;
2027 ring->cb_ptr = start_ptr;
2028 ring->end_ptr = end_ptr - 1;
2029
2030 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2031 if (ret)
2032 return ret;
2033
2034 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2035 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2036 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2037 bcmgenet_rdma_ring_writel(priv, index,
2038 ((size << DMA_RING_SIZE_SHIFT) |
2039 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2040 bcmgenet_rdma_ring_writel(priv, index,
2041 (DMA_FC_THRESH_LO <<
2042 DMA_XOFF_THRESHOLD_SHIFT) |
2043 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2044
2045 /* Set start and end address, read and write pointers */
2046 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2047 DMA_START_ADDR);
2048 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2049 RDMA_READ_PTR);
2050 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2051 RDMA_WRITE_PTR);
2052 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2053 DMA_END_ADDR);
2054
2055 return ret;
2056 }
2057
2058 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2059 {
2060 unsigned int i;
2061 struct bcmgenet_tx_ring *ring;
2062
2063 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2064 ring = &priv->tx_rings[i];
2065 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2066 }
2067
2068 ring = &priv->tx_rings[DESC_INDEX];
2069 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2070 }
2071
2072 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2073 {
2074 unsigned int i;
2075 struct bcmgenet_tx_ring *ring;
2076
2077 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2078 ring = &priv->tx_rings[i];
2079 napi_enable(&ring->napi);
2080 }
2081
2082 ring = &priv->tx_rings[DESC_INDEX];
2083 napi_enable(&ring->napi);
2084 }
2085
2086 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2087 {
2088 unsigned int i;
2089 struct bcmgenet_tx_ring *ring;
2090
2091 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2092 ring = &priv->tx_rings[i];
2093 napi_disable(&ring->napi);
2094 }
2095
2096 ring = &priv->tx_rings[DESC_INDEX];
2097 napi_disable(&ring->napi);
2098 }
2099
2100 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2101 {
2102 unsigned int i;
2103 struct bcmgenet_tx_ring *ring;
2104
2105 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2106 ring = &priv->tx_rings[i];
2107 netif_napi_del(&ring->napi);
2108 }
2109
2110 ring = &priv->tx_rings[DESC_INDEX];
2111 netif_napi_del(&ring->napi);
2112 }
2113
2114 /* Initialize Tx queues
2115 *
2116 * Queues 0-3 are priority-based, each one has 32 descriptors,
2117 * with queue 0 being the highest priority queue.
2118 *
2119 * Queue 16 is the default Tx queue with
2120 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2121 *
2122 * The transmit control block pool is then partitioned as follows:
2123 * - Tx queue 0 uses tx_cbs[0..31]
2124 * - Tx queue 1 uses tx_cbs[32..63]
2125 * - Tx queue 2 uses tx_cbs[64..95]
2126 * - Tx queue 3 uses tx_cbs[96..127]
2127 * - Tx queue 16 uses tx_cbs[128..255]
2128 */
2129 static void bcmgenet_init_tx_queues(struct net_device *dev)
2130 {
2131 struct bcmgenet_priv *priv = netdev_priv(dev);
2132 u32 i, dma_enable;
2133 u32 dma_ctrl, ring_cfg;
2134 u32 dma_priority[3] = {0, 0, 0};
2135
2136 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2137 dma_enable = dma_ctrl & DMA_EN;
2138 dma_ctrl &= ~DMA_EN;
2139 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2140
2141 dma_ctrl = 0;
2142 ring_cfg = 0;
2143
2144 /* Enable strict priority arbiter mode */
2145 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2146
2147 /* Initialize Tx priority queues */
2148 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2149 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2150 i * priv->hw_params->tx_bds_per_q,
2151 (i + 1) * priv->hw_params->tx_bds_per_q);
2152 ring_cfg |= (1 << i);
2153 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2154 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2155 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2156 }
2157
2158 /* Initialize Tx default queue 16 */
2159 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2160 priv->hw_params->tx_queues *
2161 priv->hw_params->tx_bds_per_q,
2162 TOTAL_DESC);
2163 ring_cfg |= (1 << DESC_INDEX);
2164 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2165 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2166 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2167 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2168
2169 /* Set Tx queue priorities */
2170 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2171 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2172 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2173
2174 /* Initialize Tx NAPI */
2175 bcmgenet_init_tx_napi(priv);
2176
2177 /* Enable Tx queues */
2178 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2179
2180 /* Enable Tx DMA */
2181 if (dma_enable)
2182 dma_ctrl |= DMA_EN;
2183 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2184 }
2185
2186 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2187 {
2188 unsigned int i;
2189 struct bcmgenet_rx_ring *ring;
2190
2191 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2192 ring = &priv->rx_rings[i];
2193 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2194 }
2195
2196 ring = &priv->rx_rings[DESC_INDEX];
2197 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2198 }
2199
2200 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2201 {
2202 unsigned int i;
2203 struct bcmgenet_rx_ring *ring;
2204
2205 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2206 ring = &priv->rx_rings[i];
2207 napi_enable(&ring->napi);
2208 }
2209
2210 ring = &priv->rx_rings[DESC_INDEX];
2211 napi_enable(&ring->napi);
2212 }
2213
2214 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2215 {
2216 unsigned int i;
2217 struct bcmgenet_rx_ring *ring;
2218
2219 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2220 ring = &priv->rx_rings[i];
2221 napi_disable(&ring->napi);
2222 }
2223
2224 ring = &priv->rx_rings[DESC_INDEX];
2225 napi_disable(&ring->napi);
2226 }
2227
2228 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2229 {
2230 unsigned int i;
2231 struct bcmgenet_rx_ring *ring;
2232
2233 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2234 ring = &priv->rx_rings[i];
2235 netif_napi_del(&ring->napi);
2236 }
2237
2238 ring = &priv->rx_rings[DESC_INDEX];
2239 netif_napi_del(&ring->napi);
2240 }
2241
2242 /* Initialize Rx queues
2243 *
2244 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2245 * used to direct traffic to these queues.
2246 *
2247 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2248 */
2249 static int bcmgenet_init_rx_queues(struct net_device *dev)
2250 {
2251 struct bcmgenet_priv *priv = netdev_priv(dev);
2252 u32 i;
2253 u32 dma_enable;
2254 u32 dma_ctrl;
2255 u32 ring_cfg;
2256 int ret;
2257
2258 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2259 dma_enable = dma_ctrl & DMA_EN;
2260 dma_ctrl &= ~DMA_EN;
2261 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2262
2263 dma_ctrl = 0;
2264 ring_cfg = 0;
2265
2266 /* Initialize Rx priority queues */
2267 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2268 ret = bcmgenet_init_rx_ring(priv, i,
2269 priv->hw_params->rx_bds_per_q,
2270 i * priv->hw_params->rx_bds_per_q,
2271 (i + 1) *
2272 priv->hw_params->rx_bds_per_q);
2273 if (ret)
2274 return ret;
2275
2276 ring_cfg |= (1 << i);
2277 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2278 }
2279
2280 /* Initialize Rx default queue 16 */
2281 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2282 priv->hw_params->rx_queues *
2283 priv->hw_params->rx_bds_per_q,
2284 TOTAL_DESC);
2285 if (ret)
2286 return ret;
2287
2288 ring_cfg |= (1 << DESC_INDEX);
2289 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2290
2291 /* Initialize Rx NAPI */
2292 bcmgenet_init_rx_napi(priv);
2293
2294 /* Enable rings */
2295 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2296
2297 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2298 if (dma_enable)
2299 dma_ctrl |= DMA_EN;
2300 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2301
2302 return 0;
2303 }
2304
2305 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2306 {
2307 int ret = 0;
2308 int timeout = 0;
2309 u32 reg;
2310 u32 dma_ctrl;
2311 int i;
2312
2313 /* Disable TDMA to stop add more frames in TX DMA */
2314 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2315 reg &= ~DMA_EN;
2316 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2317
2318 /* Check TDMA status register to confirm TDMA is disabled */
2319 while (timeout++ < DMA_TIMEOUT_VAL) {
2320 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2321 if (reg & DMA_DISABLED)
2322 break;
2323
2324 udelay(1);
2325 }
2326
2327 if (timeout == DMA_TIMEOUT_VAL) {
2328 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2329 ret = -ETIMEDOUT;
2330 }
2331
2332 /* Wait 10ms for packet drain in both tx and rx dma */
2333 usleep_range(10000, 20000);
2334
2335 /* Disable RDMA */
2336 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2337 reg &= ~DMA_EN;
2338 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2339
2340 timeout = 0;
2341 /* Check RDMA status register to confirm RDMA is disabled */
2342 while (timeout++ < DMA_TIMEOUT_VAL) {
2343 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2344 if (reg & DMA_DISABLED)
2345 break;
2346
2347 udelay(1);
2348 }
2349
2350 if (timeout == DMA_TIMEOUT_VAL) {
2351 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2352 ret = -ETIMEDOUT;
2353 }
2354
2355 dma_ctrl = 0;
2356 for (i = 0; i < priv->hw_params->rx_queues; i++)
2357 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2358 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2359 reg &= ~dma_ctrl;
2360 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2361
2362 dma_ctrl = 0;
2363 for (i = 0; i < priv->hw_params->tx_queues; i++)
2364 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2365 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2366 reg &= ~dma_ctrl;
2367 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2368
2369 return ret;
2370 }
2371
2372 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2373 {
2374 int i;
2375 struct netdev_queue *txq;
2376
2377 bcmgenet_fini_rx_napi(priv);
2378 bcmgenet_fini_tx_napi(priv);
2379
2380 /* disable DMA */
2381 bcmgenet_dma_teardown(priv);
2382
2383 for (i = 0; i < priv->num_tx_bds; i++) {
2384 if (priv->tx_cbs[i].skb != NULL) {
2385 dev_kfree_skb(priv->tx_cbs[i].skb);
2386 priv->tx_cbs[i].skb = NULL;
2387 }
2388 }
2389
2390 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2391 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2392 netdev_tx_reset_queue(txq);
2393 }
2394
2395 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2396 netdev_tx_reset_queue(txq);
2397
2398 bcmgenet_free_rx_buffers(priv);
2399 kfree(priv->rx_cbs);
2400 kfree(priv->tx_cbs);
2401 }
2402
2403 /* init_edma: Initialize DMA control register */
2404 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2405 {
2406 int ret;
2407 unsigned int i;
2408 struct enet_cb *cb;
2409
2410 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2411
2412 /* Initialize common Rx ring structures */
2413 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2414 priv->num_rx_bds = TOTAL_DESC;
2415 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2416 GFP_KERNEL);
2417 if (!priv->rx_cbs)
2418 return -ENOMEM;
2419
2420 for (i = 0; i < priv->num_rx_bds; i++) {
2421 cb = priv->rx_cbs + i;
2422 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2423 }
2424
2425 /* Initialize common TX ring structures */
2426 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2427 priv->num_tx_bds = TOTAL_DESC;
2428 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2429 GFP_KERNEL);
2430 if (!priv->tx_cbs) {
2431 kfree(priv->rx_cbs);
2432 return -ENOMEM;
2433 }
2434
2435 for (i = 0; i < priv->num_tx_bds; i++) {
2436 cb = priv->tx_cbs + i;
2437 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2438 }
2439
2440 /* Init rDma */
2441 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2442
2443 /* Initialize Rx queues */
2444 ret = bcmgenet_init_rx_queues(priv->dev);
2445 if (ret) {
2446 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2447 bcmgenet_free_rx_buffers(priv);
2448 kfree(priv->rx_cbs);
2449 kfree(priv->tx_cbs);
2450 return ret;
2451 }
2452
2453 /* Init tDma */
2454 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2455
2456 /* Initialize Tx queues */
2457 bcmgenet_init_tx_queues(priv->dev);
2458
2459 return 0;
2460 }
2461
2462 /* Interrupt bottom half */
2463 static void bcmgenet_irq_task(struct work_struct *work)
2464 {
2465 struct bcmgenet_priv *priv = container_of(
2466 work, struct bcmgenet_priv, bcmgenet_irq_work);
2467
2468 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2469
2470 if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2471 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2472 netif_dbg(priv, wol, priv->dev,
2473 "magic packet detected, waking up\n");
2474 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2475 }
2476
2477 /* Link UP/DOWN event */
2478 if (priv->irq0_stat & UMAC_IRQ_LINK_EVENT) {
2479 phy_mac_interrupt(priv->phydev,
2480 !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2481 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2482 }
2483 }
2484
2485 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2486 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2487 {
2488 struct bcmgenet_priv *priv = dev_id;
2489 struct bcmgenet_rx_ring *rx_ring;
2490 struct bcmgenet_tx_ring *tx_ring;
2491 unsigned int index;
2492
2493 /* Save irq status for bottom-half processing. */
2494 priv->irq1_stat =
2495 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2496 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2497
2498 /* clear interrupts */
2499 bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2500
2501 netif_dbg(priv, intr, priv->dev,
2502 "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2503
2504 /* Check Rx priority queue interrupts */
2505 for (index = 0; index < priv->hw_params->rx_queues; index++) {
2506 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2507 continue;
2508
2509 rx_ring = &priv->rx_rings[index];
2510
2511 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2512 rx_ring->int_disable(rx_ring);
2513 __napi_schedule_irqoff(&rx_ring->napi);
2514 }
2515 }
2516
2517 /* Check Tx priority queue interrupts */
2518 for (index = 0; index < priv->hw_params->tx_queues; index++) {
2519 if (!(priv->irq1_stat & BIT(index)))
2520 continue;
2521
2522 tx_ring = &priv->tx_rings[index];
2523
2524 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2525 tx_ring->int_disable(tx_ring);
2526 __napi_schedule_irqoff(&tx_ring->napi);
2527 }
2528 }
2529
2530 return IRQ_HANDLED;
2531 }
2532
2533 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2534 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2535 {
2536 struct bcmgenet_priv *priv = dev_id;
2537 struct bcmgenet_rx_ring *rx_ring;
2538 struct bcmgenet_tx_ring *tx_ring;
2539
2540 /* Save irq status for bottom-half processing. */
2541 priv->irq0_stat =
2542 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2543 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2544
2545 /* clear interrupts */
2546 bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2547
2548 netif_dbg(priv, intr, priv->dev,
2549 "IRQ=0x%x\n", priv->irq0_stat);
2550
2551 if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2552 rx_ring = &priv->rx_rings[DESC_INDEX];
2553
2554 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2555 rx_ring->int_disable(rx_ring);
2556 __napi_schedule_irqoff(&rx_ring->napi);
2557 }
2558 }
2559
2560 if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2561 tx_ring = &priv->tx_rings[DESC_INDEX];
2562
2563 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2564 tx_ring->int_disable(tx_ring);
2565 __napi_schedule_irqoff(&tx_ring->napi);
2566 }
2567 }
2568
2569 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2570 UMAC_IRQ_PHY_DET_F |
2571 UMAC_IRQ_LINK_EVENT |
2572 UMAC_IRQ_HFB_SM |
2573 UMAC_IRQ_HFB_MM |
2574 UMAC_IRQ_MPD_R)) {
2575 /* all other interested interrupts handled in bottom half */
2576 schedule_work(&priv->bcmgenet_irq_work);
2577 }
2578
2579 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2580 priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2581 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2582 wake_up(&priv->wq);
2583 }
2584
2585 return IRQ_HANDLED;
2586 }
2587
2588 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2589 {
2590 struct bcmgenet_priv *priv = dev_id;
2591
2592 pm_wakeup_event(&priv->pdev->dev, 0);
2593
2594 return IRQ_HANDLED;
2595 }
2596
2597 #ifdef CONFIG_NET_POLL_CONTROLLER
2598 static void bcmgenet_poll_controller(struct net_device *dev)
2599 {
2600 struct bcmgenet_priv *priv = netdev_priv(dev);
2601
2602 /* Invoke the main RX/TX interrupt handler */
2603 disable_irq(priv->irq0);
2604 bcmgenet_isr0(priv->irq0, priv);
2605 enable_irq(priv->irq0);
2606
2607 /* And the interrupt handler for RX/TX priority queues */
2608 disable_irq(priv->irq1);
2609 bcmgenet_isr1(priv->irq1, priv);
2610 enable_irq(priv->irq1);
2611 }
2612 #endif
2613
2614 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2615 {
2616 u32 reg;
2617
2618 reg = bcmgenet_rbuf_ctrl_get(priv);
2619 reg |= BIT(1);
2620 bcmgenet_rbuf_ctrl_set(priv, reg);
2621 udelay(10);
2622
2623 reg &= ~BIT(1);
2624 bcmgenet_rbuf_ctrl_set(priv, reg);
2625 udelay(10);
2626 }
2627
2628 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2629 unsigned char *addr)
2630 {
2631 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2632 (addr[2] << 8) | addr[3], UMAC_MAC0);
2633 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2634 }
2635
2636 /* Returns a reusable dma control register value */
2637 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2638 {
2639 u32 reg;
2640 u32 dma_ctrl;
2641
2642 /* disable DMA */
2643 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2644 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2645 reg &= ~dma_ctrl;
2646 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2647
2648 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2649 reg &= ~dma_ctrl;
2650 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2651
2652 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2653 udelay(10);
2654 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2655
2656 return dma_ctrl;
2657 }
2658
2659 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2660 {
2661 u32 reg;
2662
2663 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2664 reg |= dma_ctrl;
2665 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2666
2667 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2668 reg |= dma_ctrl;
2669 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2670 }
2671
2672 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2673 u32 f_index)
2674 {
2675 u32 offset;
2676 u32 reg;
2677
2678 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2679 reg = bcmgenet_hfb_reg_readl(priv, offset);
2680 return !!(reg & (1 << (f_index % 32)));
2681 }
2682
2683 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2684 {
2685 u32 offset;
2686 u32 reg;
2687
2688 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2689 reg = bcmgenet_hfb_reg_readl(priv, offset);
2690 reg |= (1 << (f_index % 32));
2691 bcmgenet_hfb_reg_writel(priv, reg, offset);
2692 }
2693
2694 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2695 u32 f_index, u32 rx_queue)
2696 {
2697 u32 offset;
2698 u32 reg;
2699
2700 offset = f_index / 8;
2701 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2702 reg &= ~(0xF << (4 * (f_index % 8)));
2703 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2704 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2705 }
2706
2707 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2708 u32 f_index, u32 f_length)
2709 {
2710 u32 offset;
2711 u32 reg;
2712
2713 offset = HFB_FLT_LEN_V3PLUS +
2714 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2715 sizeof(u32);
2716 reg = bcmgenet_hfb_reg_readl(priv, offset);
2717 reg &= ~(0xFF << (8 * (f_index % 4)));
2718 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2719 bcmgenet_hfb_reg_writel(priv, reg, offset);
2720 }
2721
2722 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2723 {
2724 u32 f_index;
2725
2726 for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2727 if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2728 return f_index;
2729
2730 return -ENOMEM;
2731 }
2732
2733 /* bcmgenet_hfb_add_filter
2734 *
2735 * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2736 * desired Rx queue.
2737 *
2738 * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2739 * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2740 *
2741 * bits 31:20 - unused
2742 * bit 19 - nibble 0 match enable
2743 * bit 18 - nibble 1 match enable
2744 * bit 17 - nibble 2 match enable
2745 * bit 16 - nibble 3 match enable
2746 * bits 15:12 - nibble 0 data
2747 * bits 11:8 - nibble 1 data
2748 * bits 7:4 - nibble 2 data
2749 * bits 3:0 - nibble 3 data
2750 *
2751 * Example:
2752 * In order to match:
2753 * - Ethernet frame type = 0x0800 (IP)
2754 * - IP version field = 4
2755 * - IP protocol field = 0x11 (UDP)
2756 *
2757 * The following filter is needed:
2758 * u32 hfb_filter_ipv4_udp[] = {
2759 * Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2760 * Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2761 * Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2762 * };
2763 *
2764 * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2765 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2766 * ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2767 */
2768 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2769 u32 f_length, u32 rx_queue)
2770 {
2771 int f_index;
2772 u32 i;
2773
2774 f_index = bcmgenet_hfb_find_unused_filter(priv);
2775 if (f_index < 0)
2776 return -ENOMEM;
2777
2778 if (f_length > priv->hw_params->hfb_filter_size)
2779 return -EINVAL;
2780
2781 for (i = 0; i < f_length; i++)
2782 bcmgenet_hfb_writel(priv, f_data[i],
2783 (f_index * priv->hw_params->hfb_filter_size + i) *
2784 sizeof(u32));
2785
2786 bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2787 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2788 bcmgenet_hfb_enable_filter(priv, f_index);
2789 bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2790
2791 return 0;
2792 }
2793
2794 /* bcmgenet_hfb_clear
2795 *
2796 * Clear Hardware Filter Block and disable all filtering.
2797 */
2798 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2799 {
2800 u32 i;
2801
2802 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2803 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2804 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2805
2806 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2807 bcmgenet_rdma_writel(priv, 0x0, i);
2808
2809 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2810 bcmgenet_hfb_reg_writel(priv, 0x0,
2811 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2812
2813 for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2814 priv->hw_params->hfb_filter_size; i++)
2815 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2816 }
2817
2818 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2819 {
2820 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2821 return;
2822
2823 bcmgenet_hfb_clear(priv);
2824 }
2825
2826 static void bcmgenet_netif_start(struct net_device *dev)
2827 {
2828 struct bcmgenet_priv *priv = netdev_priv(dev);
2829
2830 /* Start the network engine */
2831 bcmgenet_enable_rx_napi(priv);
2832 bcmgenet_enable_tx_napi(priv);
2833
2834 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2835
2836 netif_tx_start_all_queues(dev);
2837
2838 /* Monitor link interrupts now */
2839 bcmgenet_link_intr_enable(priv);
2840
2841 phy_start(priv->phydev);
2842 }
2843
2844 static int bcmgenet_open(struct net_device *dev)
2845 {
2846 struct bcmgenet_priv *priv = netdev_priv(dev);
2847 unsigned long dma_ctrl;
2848 u32 reg;
2849 int ret;
2850
2851 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2852
2853 /* Turn on the clock */
2854 clk_prepare_enable(priv->clk);
2855
2856 /* If this is an internal GPHY, power it back on now, before UniMAC is
2857 * brought out of reset as absolutely no UniMAC activity is allowed
2858 */
2859 if (priv->internal_phy)
2860 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2861
2862 /* take MAC out of reset */
2863 bcmgenet_umac_reset(priv);
2864
2865 ret = init_umac(priv);
2866 if (ret)
2867 goto err_clk_disable;
2868
2869 /* disable ethernet MAC while updating its registers */
2870 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2871
2872 /* Make sure we reflect the value of CRC_CMD_FWD */
2873 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2874 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2875
2876 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2877
2878 if (priv->internal_phy) {
2879 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2880 reg |= EXT_ENERGY_DET_MASK;
2881 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2882 }
2883
2884 /* Disable RX/TX DMA and flush TX queues */
2885 dma_ctrl = bcmgenet_dma_disable(priv);
2886
2887 /* Reinitialize TDMA and RDMA and SW housekeeping */
2888 ret = bcmgenet_init_dma(priv);
2889 if (ret) {
2890 netdev_err(dev, "failed to initialize DMA\n");
2891 goto err_clk_disable;
2892 }
2893
2894 /* Always enable ring 16 - descriptor ring */
2895 bcmgenet_enable_dma(priv, dma_ctrl);
2896
2897 /* HFB init */
2898 bcmgenet_hfb_init(priv);
2899
2900 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2901 dev->name, priv);
2902 if (ret < 0) {
2903 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2904 goto err_fini_dma;
2905 }
2906
2907 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2908 dev->name, priv);
2909 if (ret < 0) {
2910 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2911 goto err_irq0;
2912 }
2913
2914 ret = bcmgenet_mii_probe(dev);
2915 if (ret) {
2916 netdev_err(dev, "failed to connect to PHY\n");
2917 goto err_irq1;
2918 }
2919
2920 bcmgenet_netif_start(dev);
2921
2922 return 0;
2923
2924 err_irq1:
2925 free_irq(priv->irq1, priv);
2926 err_irq0:
2927 free_irq(priv->irq0, priv);
2928 err_fini_dma:
2929 bcmgenet_fini_dma(priv);
2930 err_clk_disable:
2931 clk_disable_unprepare(priv->clk);
2932 return ret;
2933 }
2934
2935 static void bcmgenet_netif_stop(struct net_device *dev)
2936 {
2937 struct bcmgenet_priv *priv = netdev_priv(dev);
2938
2939 netif_tx_stop_all_queues(dev);
2940 phy_stop(priv->phydev);
2941 bcmgenet_intr_disable(priv);
2942 bcmgenet_disable_rx_napi(priv);
2943 bcmgenet_disable_tx_napi(priv);
2944
2945 /* Wait for pending work items to complete. Since interrupts are
2946 * disabled no new work will be scheduled.
2947 */
2948 cancel_work_sync(&priv->bcmgenet_irq_work);
2949
2950 priv->old_link = -1;
2951 priv->old_speed = -1;
2952 priv->old_duplex = -1;
2953 priv->old_pause = -1;
2954 }
2955
2956 static int bcmgenet_close(struct net_device *dev)
2957 {
2958 struct bcmgenet_priv *priv = netdev_priv(dev);
2959 int ret;
2960
2961 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2962
2963 bcmgenet_netif_stop(dev);
2964
2965 /* Really kill the PHY state machine and disconnect from it */
2966 phy_disconnect(priv->phydev);
2967
2968 /* Disable MAC receive */
2969 umac_enable_set(priv, CMD_RX_EN, false);
2970
2971 ret = bcmgenet_dma_teardown(priv);
2972 if (ret)
2973 return ret;
2974
2975 /* Disable MAC transmit. TX DMA disabled have to done before this */
2976 umac_enable_set(priv, CMD_TX_EN, false);
2977
2978 /* tx reclaim */
2979 bcmgenet_tx_reclaim_all(dev);
2980 bcmgenet_fini_dma(priv);
2981
2982 free_irq(priv->irq0, priv);
2983 free_irq(priv->irq1, priv);
2984
2985 if (priv->internal_phy)
2986 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2987
2988 clk_disable_unprepare(priv->clk);
2989
2990 return ret;
2991 }
2992
2993 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2994 {
2995 struct bcmgenet_priv *priv = ring->priv;
2996 u32 p_index, c_index, intsts, intmsk;
2997 struct netdev_queue *txq;
2998 unsigned int free_bds;
2999 unsigned long flags;
3000 bool txq_stopped;
3001
3002 if (!netif_msg_tx_err(priv))
3003 return;
3004
3005 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3006
3007 spin_lock_irqsave(&ring->lock, flags);
3008 if (ring->index == DESC_INDEX) {
3009 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3010 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3011 } else {
3012 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3013 intmsk = 1 << ring->index;
3014 }
3015 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3016 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3017 txq_stopped = netif_tx_queue_stopped(txq);
3018 free_bds = ring->free_bds;
3019 spin_unlock_irqrestore(&ring->lock, flags);
3020
3021 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3022 "TX queue status: %s, interrupts: %s\n"
3023 "(sw)free_bds: %d (sw)size: %d\n"
3024 "(sw)p_index: %d (hw)p_index: %d\n"
3025 "(sw)c_index: %d (hw)c_index: %d\n"
3026 "(sw)clean_p: %d (sw)write_p: %d\n"
3027 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3028 ring->index, ring->queue,
3029 txq_stopped ? "stopped" : "active",
3030 intsts & intmsk ? "enabled" : "disabled",
3031 free_bds, ring->size,
3032 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3033 ring->c_index, c_index & DMA_C_INDEX_MASK,
3034 ring->clean_ptr, ring->write_ptr,
3035 ring->cb_ptr, ring->end_ptr);
3036 }
3037
3038 static void bcmgenet_timeout(struct net_device *dev)
3039 {
3040 struct bcmgenet_priv *priv = netdev_priv(dev);
3041 u32 int0_enable = 0;
3042 u32 int1_enable = 0;
3043 unsigned int q;
3044
3045 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3046
3047 for (q = 0; q < priv->hw_params->tx_queues; q++)
3048 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3049 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3050
3051 bcmgenet_tx_reclaim_all(dev);
3052
3053 for (q = 0; q < priv->hw_params->tx_queues; q++)
3054 int1_enable |= (1 << q);
3055
3056 int0_enable = UMAC_IRQ_TXDMA_DONE;
3057
3058 /* Re-enable TX interrupts if disabled */
3059 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3060 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3061
3062 dev->trans_start = jiffies;
3063
3064 dev->stats.tx_errors++;
3065
3066 netif_tx_wake_all_queues(dev);
3067 }
3068
3069 #define MAX_MC_COUNT 16
3070
3071 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3072 unsigned char *addr,
3073 int *i,
3074 int *mc)
3075 {
3076 u32 reg;
3077
3078 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3079 UMAC_MDF_ADDR + (*i * 4));
3080 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3081 addr[4] << 8 | addr[5],
3082 UMAC_MDF_ADDR + ((*i + 1) * 4));
3083 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3084 reg |= (1 << (MAX_MC_COUNT - *mc));
3085 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3086 *i += 2;
3087 (*mc)++;
3088 }
3089
3090 static void bcmgenet_set_rx_mode(struct net_device *dev)
3091 {
3092 struct bcmgenet_priv *priv = netdev_priv(dev);
3093 struct netdev_hw_addr *ha;
3094 int i, mc;
3095 u32 reg;
3096
3097 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3098
3099 /* Promiscuous mode */
3100 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3101 if (dev->flags & IFF_PROMISC) {
3102 reg |= CMD_PROMISC;
3103 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3104 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3105 return;
3106 } else {
3107 reg &= ~CMD_PROMISC;
3108 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3109 }
3110
3111 /* UniMac doesn't support ALLMULTI */
3112 if (dev->flags & IFF_ALLMULTI) {
3113 netdev_warn(dev, "ALLMULTI is not supported\n");
3114 return;
3115 }
3116
3117 /* update MDF filter */
3118 i = 0;
3119 mc = 0;
3120 /* Broadcast */
3121 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3122 /* my own address.*/
3123 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3124 /* Unicast list*/
3125 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3126 return;
3127
3128 if (!netdev_uc_empty(dev))
3129 netdev_for_each_uc_addr(ha, dev)
3130 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3131 /* Multicast */
3132 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3133 return;
3134
3135 netdev_for_each_mc_addr(ha, dev)
3136 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3137 }
3138
3139 /* Set the hardware MAC address. */
3140 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3141 {
3142 struct sockaddr *addr = p;
3143
3144 /* Setting the MAC address at the hardware level is not possible
3145 * without disabling the UniMAC RX/TX enable bits.
3146 */
3147 if (netif_running(dev))
3148 return -EBUSY;
3149
3150 ether_addr_copy(dev->dev_addr, addr->sa_data);
3151
3152 return 0;
3153 }
3154
3155 static const struct net_device_ops bcmgenet_netdev_ops = {
3156 .ndo_open = bcmgenet_open,
3157 .ndo_stop = bcmgenet_close,
3158 .ndo_start_xmit = bcmgenet_xmit,
3159 .ndo_tx_timeout = bcmgenet_timeout,
3160 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3161 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3162 .ndo_do_ioctl = bcmgenet_ioctl,
3163 .ndo_set_features = bcmgenet_set_features,
3164 #ifdef CONFIG_NET_POLL_CONTROLLER
3165 .ndo_poll_controller = bcmgenet_poll_controller,
3166 #endif
3167 };
3168
3169 /* Array of GENET hardware parameters/characteristics */
3170 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3171 [GENET_V1] = {
3172 .tx_queues = 0,
3173 .tx_bds_per_q = 0,
3174 .rx_queues = 0,
3175 .rx_bds_per_q = 0,
3176 .bp_in_en_shift = 16,
3177 .bp_in_mask = 0xffff,
3178 .hfb_filter_cnt = 16,
3179 .qtag_mask = 0x1F,
3180 .hfb_offset = 0x1000,
3181 .rdma_offset = 0x2000,
3182 .tdma_offset = 0x3000,
3183 .words_per_bd = 2,
3184 },
3185 [GENET_V2] = {
3186 .tx_queues = 4,
3187 .tx_bds_per_q = 32,
3188 .rx_queues = 0,
3189 .rx_bds_per_q = 0,
3190 .bp_in_en_shift = 16,
3191 .bp_in_mask = 0xffff,
3192 .hfb_filter_cnt = 16,
3193 .qtag_mask = 0x1F,
3194 .tbuf_offset = 0x0600,
3195 .hfb_offset = 0x1000,
3196 .hfb_reg_offset = 0x2000,
3197 .rdma_offset = 0x3000,
3198 .tdma_offset = 0x4000,
3199 .words_per_bd = 2,
3200 .flags = GENET_HAS_EXT,
3201 },
3202 [GENET_V3] = {
3203 .tx_queues = 4,
3204 .tx_bds_per_q = 32,
3205 .rx_queues = 0,
3206 .rx_bds_per_q = 0,
3207 .bp_in_en_shift = 17,
3208 .bp_in_mask = 0x1ffff,
3209 .hfb_filter_cnt = 48,
3210 .hfb_filter_size = 128,
3211 .qtag_mask = 0x3F,
3212 .tbuf_offset = 0x0600,
3213 .hfb_offset = 0x8000,
3214 .hfb_reg_offset = 0xfc00,
3215 .rdma_offset = 0x10000,
3216 .tdma_offset = 0x11000,
3217 .words_per_bd = 2,
3218 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3219 GENET_HAS_MOCA_LINK_DET,
3220 },
3221 [GENET_V4] = {
3222 .tx_queues = 4,
3223 .tx_bds_per_q = 32,
3224 .rx_queues = 0,
3225 .rx_bds_per_q = 0,
3226 .bp_in_en_shift = 17,
3227 .bp_in_mask = 0x1ffff,
3228 .hfb_filter_cnt = 48,
3229 .hfb_filter_size = 128,
3230 .qtag_mask = 0x3F,
3231 .tbuf_offset = 0x0600,
3232 .hfb_offset = 0x8000,
3233 .hfb_reg_offset = 0xfc00,
3234 .rdma_offset = 0x2000,
3235 .tdma_offset = 0x4000,
3236 .words_per_bd = 3,
3237 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3238 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3239 },
3240 };
3241
3242 /* Infer hardware parameters from the detected GENET version */
3243 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3244 {
3245 struct bcmgenet_hw_params *params;
3246 u32 reg;
3247 u8 major;
3248 u16 gphy_rev;
3249
3250 if (GENET_IS_V4(priv)) {
3251 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3252 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3253 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3254 priv->version = GENET_V4;
3255 } else if (GENET_IS_V3(priv)) {
3256 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3257 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3258 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3259 priv->version = GENET_V3;
3260 } else if (GENET_IS_V2(priv)) {
3261 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3262 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3263 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3264 priv->version = GENET_V2;
3265 } else if (GENET_IS_V1(priv)) {
3266 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3267 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3268 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3269 priv->version = GENET_V1;
3270 }
3271
3272 /* enum genet_version starts at 1 */
3273 priv->hw_params = &bcmgenet_hw_params[priv->version];
3274 params = priv->hw_params;
3275
3276 /* Read GENET HW version */
3277 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3278 major = (reg >> 24 & 0x0f);
3279 if (major == 5)
3280 major = 4;
3281 else if (major == 0)
3282 major = 1;
3283 if (major != priv->version) {
3284 dev_err(&priv->pdev->dev,
3285 "GENET version mismatch, got: %d, configured for: %d\n",
3286 major, priv->version);
3287 }
3288
3289 /* Print the GENET core version */
3290 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3291 major, (reg >> 16) & 0x0f, reg & 0xffff);
3292
3293 /* Store the integrated PHY revision for the MDIO probing function
3294 * to pass this information to the PHY driver. The PHY driver expects
3295 * to find the PHY major revision in bits 15:8 while the GENET register
3296 * stores that information in bits 7:0, account for that.
3297 *
3298 * On newer chips, starting with PHY revision G0, a new scheme is
3299 * deployed similar to the Starfighter 2 switch with GPHY major
3300 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3301 * is reserved as well as special value 0x01ff, we have a small
3302 * heuristic to check for the new GPHY revision and re-arrange things
3303 * so the GPHY driver is happy.
3304 */
3305 gphy_rev = reg & 0xffff;
3306
3307 /* This is the good old scheme, just GPHY major, no minor nor patch */
3308 if ((gphy_rev & 0xf0) != 0)
3309 priv->gphy_rev = gphy_rev << 8;
3310
3311 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3312 else if ((gphy_rev & 0xff00) != 0)
3313 priv->gphy_rev = gphy_rev;
3314
3315 /* This is reserved so should require special treatment */
3316 else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3317 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3318 return;
3319 }
3320
3321 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3322 if (!(params->flags & GENET_HAS_40BITS))
3323 pr_warn("GENET does not support 40-bits PA\n");
3324 #endif
3325
3326 pr_debug("Configuration for version: %d\n"
3327 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3328 "BP << en: %2d, BP msk: 0x%05x\n"
3329 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3330 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3331 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3332 "Words/BD: %d\n",
3333 priv->version,
3334 params->tx_queues, params->tx_bds_per_q,
3335 params->rx_queues, params->rx_bds_per_q,
3336 params->bp_in_en_shift, params->bp_in_mask,
3337 params->hfb_filter_cnt, params->qtag_mask,
3338 params->tbuf_offset, params->hfb_offset,
3339 params->hfb_reg_offset,
3340 params->rdma_offset, params->tdma_offset,
3341 params->words_per_bd);
3342 }
3343
3344 static const struct of_device_id bcmgenet_match[] = {
3345 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3346 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3347 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3348 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3349 { },
3350 };
3351 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3352
3353 static int bcmgenet_probe(struct platform_device *pdev)
3354 {
3355 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3356 struct device_node *dn = pdev->dev.of_node;
3357 const struct of_device_id *of_id = NULL;
3358 struct bcmgenet_priv *priv;
3359 struct net_device *dev;
3360 const void *macaddr;
3361 struct resource *r;
3362 int err = -EIO;
3363
3364 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3365 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3366 GENET_MAX_MQ_CNT + 1);
3367 if (!dev) {
3368 dev_err(&pdev->dev, "can't allocate net device\n");
3369 return -ENOMEM;
3370 }
3371
3372 if (dn) {
3373 of_id = of_match_node(bcmgenet_match, dn);
3374 if (!of_id)
3375 return -EINVAL;
3376 }
3377
3378 priv = netdev_priv(dev);
3379 priv->irq0 = platform_get_irq(pdev, 0);
3380 priv->irq1 = platform_get_irq(pdev, 1);
3381 priv->wol_irq = platform_get_irq(pdev, 2);
3382 if (!priv->irq0 || !priv->irq1) {
3383 dev_err(&pdev->dev, "can't find IRQs\n");
3384 err = -EINVAL;
3385 goto err;
3386 }
3387
3388 if (dn) {
3389 macaddr = of_get_mac_address(dn);
3390 if (!macaddr) {
3391 dev_err(&pdev->dev, "can't find MAC address\n");
3392 err = -EINVAL;
3393 goto err;
3394 }
3395 } else {
3396 macaddr = pd->mac_address;
3397 }
3398
3399 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3400 priv->base = devm_ioremap_resource(&pdev->dev, r);
3401 if (IS_ERR(priv->base)) {
3402 err = PTR_ERR(priv->base);
3403 goto err;
3404 }
3405
3406 SET_NETDEV_DEV(dev, &pdev->dev);
3407 dev_set_drvdata(&pdev->dev, dev);
3408 ether_addr_copy(dev->dev_addr, macaddr);
3409 dev->watchdog_timeo = 2 * HZ;
3410 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3411 dev->netdev_ops = &bcmgenet_netdev_ops;
3412
3413 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3414
3415 /* Set hardware features */
3416 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3417 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3418
3419 /* Request the WOL interrupt and advertise suspend if available */
3420 priv->wol_irq_disabled = true;
3421 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3422 dev->name, priv);
3423 if (!err)
3424 device_set_wakeup_capable(&pdev->dev, 1);
3425
3426 /* Set the needed headroom to account for any possible
3427 * features enabling/disabling at runtime
3428 */
3429 dev->needed_headroom += 64;
3430
3431 netdev_boot_setup_check(dev);
3432
3433 priv->dev = dev;
3434 priv->pdev = pdev;
3435 if (of_id)
3436 priv->version = (enum bcmgenet_version)of_id->data;
3437 else
3438 priv->version = pd->genet_version;
3439
3440 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3441 if (IS_ERR(priv->clk)) {
3442 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3443 priv->clk = NULL;
3444 }
3445
3446 clk_prepare_enable(priv->clk);
3447
3448 bcmgenet_set_hw_params(priv);
3449
3450 /* Mii wait queue */
3451 init_waitqueue_head(&priv->wq);
3452 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3453 priv->rx_buf_len = RX_BUF_LENGTH;
3454 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3455
3456 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3457 if (IS_ERR(priv->clk_wol)) {
3458 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3459 priv->clk_wol = NULL;
3460 }
3461
3462 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3463 if (IS_ERR(priv->clk_eee)) {
3464 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3465 priv->clk_eee = NULL;
3466 }
3467
3468 err = reset_umac(priv);
3469 if (err)
3470 goto err_clk_disable;
3471
3472 err = bcmgenet_mii_init(dev);
3473 if (err)
3474 goto err_clk_disable;
3475
3476 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3477 * just the ring 16 descriptor based TX
3478 */
3479 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3480 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3481
3482 /* libphy will determine the link state */
3483 netif_carrier_off(dev);
3484
3485 /* Turn off the main clock, WOL clock is handled separately */
3486 clk_disable_unprepare(priv->clk);
3487
3488 err = register_netdev(dev);
3489 if (err)
3490 goto err;
3491
3492 return err;
3493
3494 err_clk_disable:
3495 clk_disable_unprepare(priv->clk);
3496 err:
3497 free_netdev(dev);
3498 return err;
3499 }
3500
3501 static int bcmgenet_remove(struct platform_device *pdev)
3502 {
3503 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3504
3505 dev_set_drvdata(&pdev->dev, NULL);
3506 unregister_netdev(priv->dev);
3507 bcmgenet_mii_exit(priv->dev);
3508 free_netdev(priv->dev);
3509
3510 return 0;
3511 }
3512
3513 #ifdef CONFIG_PM_SLEEP
3514 static int bcmgenet_suspend(struct device *d)
3515 {
3516 struct net_device *dev = dev_get_drvdata(d);
3517 struct bcmgenet_priv *priv = netdev_priv(dev);
3518 int ret;
3519
3520 if (!netif_running(dev))
3521 return 0;
3522
3523 bcmgenet_netif_stop(dev);
3524
3525 phy_suspend(priv->phydev);
3526
3527 netif_device_detach(dev);
3528
3529 /* Disable MAC receive */
3530 umac_enable_set(priv, CMD_RX_EN, false);
3531
3532 ret = bcmgenet_dma_teardown(priv);
3533 if (ret)
3534 return ret;
3535
3536 /* Disable MAC transmit. TX DMA disabled have to done before this */
3537 umac_enable_set(priv, CMD_TX_EN, false);
3538
3539 /* tx reclaim */
3540 bcmgenet_tx_reclaim_all(dev);
3541 bcmgenet_fini_dma(priv);
3542
3543 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3544 if (device_may_wakeup(d) && priv->wolopts) {
3545 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3546 clk_prepare_enable(priv->clk_wol);
3547 } else if (priv->internal_phy) {
3548 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3549 }
3550
3551 /* Turn off the clocks */
3552 clk_disable_unprepare(priv->clk);
3553
3554 return ret;
3555 }
3556
3557 static int bcmgenet_resume(struct device *d)
3558 {
3559 struct net_device *dev = dev_get_drvdata(d);
3560 struct bcmgenet_priv *priv = netdev_priv(dev);
3561 unsigned long dma_ctrl;
3562 int ret;
3563 u32 reg;
3564
3565 if (!netif_running(dev))
3566 return 0;
3567
3568 /* Turn on the clock */
3569 ret = clk_prepare_enable(priv->clk);
3570 if (ret)
3571 return ret;
3572
3573 /* If this is an internal GPHY, power it back on now, before UniMAC is
3574 * brought out of reset as absolutely no UniMAC activity is allowed
3575 */
3576 if (priv->internal_phy)
3577 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3578
3579 bcmgenet_umac_reset(priv);
3580
3581 ret = init_umac(priv);
3582 if (ret)
3583 goto out_clk_disable;
3584
3585 /* From WOL-enabled suspend, switch to regular clock */
3586 if (priv->wolopts)
3587 clk_disable_unprepare(priv->clk_wol);
3588
3589 phy_init_hw(priv->phydev);
3590 /* Speed settings must be restored */
3591 bcmgenet_mii_config(priv->dev);
3592
3593 /* disable ethernet MAC while updating its registers */
3594 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3595
3596 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3597
3598 if (priv->internal_phy) {
3599 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3600 reg |= EXT_ENERGY_DET_MASK;
3601 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3602 }
3603
3604 if (priv->wolopts)
3605 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3606
3607 /* Disable RX/TX DMA and flush TX queues */
3608 dma_ctrl = bcmgenet_dma_disable(priv);
3609
3610 /* Reinitialize TDMA and RDMA and SW housekeeping */
3611 ret = bcmgenet_init_dma(priv);
3612 if (ret) {
3613 netdev_err(dev, "failed to initialize DMA\n");
3614 goto out_clk_disable;
3615 }
3616
3617 /* Always enable ring 16 - descriptor ring */
3618 bcmgenet_enable_dma(priv, dma_ctrl);
3619
3620 netif_device_attach(dev);
3621
3622 phy_resume(priv->phydev);
3623
3624 if (priv->eee.eee_enabled)
3625 bcmgenet_eee_enable_set(dev, true);
3626
3627 bcmgenet_netif_start(dev);
3628
3629 return 0;
3630
3631 out_clk_disable:
3632 clk_disable_unprepare(priv->clk);
3633 return ret;
3634 }
3635 #endif /* CONFIG_PM_SLEEP */
3636
3637 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3638
3639 static struct platform_driver bcmgenet_driver = {
3640 .probe = bcmgenet_probe,
3641 .remove = bcmgenet_remove,
3642 .driver = {
3643 .name = "bcmgenet",
3644 .of_match_table = bcmgenet_match,
3645 .pm = &bcmgenet_pm_ops,
3646 },
3647 };
3648 module_platform_driver(bcmgenet_driver);
3649
3650 MODULE_AUTHOR("Broadcom Corporation");
3651 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3652 MODULE_ALIAS("platform:bcmgenet");
3653 MODULE_LICENSE("GPL");