]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/broadcom/genet/bcmgenet.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2 * Broadcom GENET (Gigabit Ethernet) controller driver
3 *
4 * Copyright (c) 2014 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45
46 #include <asm/unaligned.h>
47
48 #include "bcmgenet.h"
49
50 /* Maximum number of hardware queues, downsized if needed */
51 #define GENET_MAX_MQ_CNT 4
52
53 /* Default highest priority queue for multi queue support */
54 #define GENET_Q0_PRIORITY 0
55
56 #define GENET_DEFAULT_BD_CNT \
57 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->bds_cnt)
58
59 #define RX_BUF_LENGTH 2048
60 #define SKB_ALIGNMENT 32
61
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
65
66 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
67 TOTAL_DESC * DMA_DESC_SIZE)
68
69 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
71
72 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
73 void __iomem *d, u32 value)
74 {
75 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
76 }
77
78 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
79 void __iomem *d)
80 {
81 return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
82 }
83
84 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
85 void __iomem *d,
86 dma_addr_t addr)
87 {
88 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
89
90 /* Register writes to GISB bus can take couple hundred nanoseconds
91 * and are done for each packet, save these expensive writes unless
92 * the platform is explicitly configured for 64-bits/LPAE.
93 */
94 #ifdef CONFIG_PHYS_ADDR_T_64BIT
95 if (priv->hw_params->flags & GENET_HAS_40BITS)
96 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
97 #endif
98 }
99
100 /* Combined address + length/status setter */
101 static inline void dmadesc_set(struct bcmgenet_priv *priv,
102 void __iomem *d, dma_addr_t addr, u32 val)
103 {
104 dmadesc_set_length_status(priv, d, val);
105 dmadesc_set_addr(priv, d, addr);
106 }
107
108 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
109 void __iomem *d)
110 {
111 dma_addr_t addr;
112
113 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
114
115 /* Register writes to GISB bus can take couple hundred nanoseconds
116 * and are done for each packet, save these expensive writes unless
117 * the platform is explicitly configured for 64-bits/LPAE.
118 */
119 #ifdef CONFIG_PHYS_ADDR_T_64BIT
120 if (priv->hw_params->flags & GENET_HAS_40BITS)
121 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
122 #endif
123 return addr;
124 }
125
126 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
127
128 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
129 NETIF_MSG_LINK)
130
131 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
132 {
133 if (GENET_IS_V1(priv))
134 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
135 else
136 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
137 }
138
139 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
140 {
141 if (GENET_IS_V1(priv))
142 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
143 else
144 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
145 }
146
147 /* These macros are defined to deal with register map change
148 * between GENET1.1 and GENET2. Only those currently being used
149 * by driver are defined.
150 */
151 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
152 {
153 if (GENET_IS_V1(priv))
154 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
155 else
156 return __raw_readl(priv->base +
157 priv->hw_params->tbuf_offset + TBUF_CTRL);
158 }
159
160 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
161 {
162 if (GENET_IS_V1(priv))
163 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
164 else
165 __raw_writel(val, priv->base +
166 priv->hw_params->tbuf_offset + TBUF_CTRL);
167 }
168
169 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
170 {
171 if (GENET_IS_V1(priv))
172 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
173 else
174 return __raw_readl(priv->base +
175 priv->hw_params->tbuf_offset + TBUF_BP_MC);
176 }
177
178 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
179 {
180 if (GENET_IS_V1(priv))
181 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
182 else
183 __raw_writel(val, priv->base +
184 priv->hw_params->tbuf_offset + TBUF_BP_MC);
185 }
186
187 /* RX/TX DMA register accessors */
188 enum dma_reg {
189 DMA_RING_CFG = 0,
190 DMA_CTRL,
191 DMA_STATUS,
192 DMA_SCB_BURST_SIZE,
193 DMA_ARB_CTRL,
194 DMA_PRIORITY,
195 DMA_RING_PRIORITY,
196 };
197
198 static const u8 bcmgenet_dma_regs_v3plus[] = {
199 [DMA_RING_CFG] = 0x00,
200 [DMA_CTRL] = 0x04,
201 [DMA_STATUS] = 0x08,
202 [DMA_SCB_BURST_SIZE] = 0x0C,
203 [DMA_ARB_CTRL] = 0x2C,
204 [DMA_PRIORITY] = 0x30,
205 [DMA_RING_PRIORITY] = 0x38,
206 };
207
208 static const u8 bcmgenet_dma_regs_v2[] = {
209 [DMA_RING_CFG] = 0x00,
210 [DMA_CTRL] = 0x04,
211 [DMA_STATUS] = 0x08,
212 [DMA_SCB_BURST_SIZE] = 0x0C,
213 [DMA_ARB_CTRL] = 0x30,
214 [DMA_PRIORITY] = 0x34,
215 [DMA_RING_PRIORITY] = 0x3C,
216 };
217
218 static const u8 bcmgenet_dma_regs_v1[] = {
219 [DMA_CTRL] = 0x00,
220 [DMA_STATUS] = 0x04,
221 [DMA_SCB_BURST_SIZE] = 0x0C,
222 [DMA_ARB_CTRL] = 0x30,
223 [DMA_PRIORITY] = 0x34,
224 [DMA_RING_PRIORITY] = 0x3C,
225 };
226
227 /* Set at runtime once bcmgenet version is known */
228 static const u8 *bcmgenet_dma_regs;
229
230 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
231 {
232 return netdev_priv(dev_get_drvdata(dev));
233 }
234
235 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
236 enum dma_reg r)
237 {
238 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
239 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
240 }
241
242 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
243 u32 val, enum dma_reg r)
244 {
245 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
246 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
247 }
248
249 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
250 enum dma_reg r)
251 {
252 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
253 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
254 }
255
256 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
257 u32 val, enum dma_reg r)
258 {
259 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
260 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
261 }
262
263 /* RDMA/TDMA ring registers and accessors
264 * we merge the common fields and just prefix with T/D the registers
265 * having different meaning depending on the direction
266 */
267 enum dma_ring_reg {
268 TDMA_READ_PTR = 0,
269 RDMA_WRITE_PTR = TDMA_READ_PTR,
270 TDMA_READ_PTR_HI,
271 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
272 TDMA_CONS_INDEX,
273 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
274 TDMA_PROD_INDEX,
275 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
276 DMA_RING_BUF_SIZE,
277 DMA_START_ADDR,
278 DMA_START_ADDR_HI,
279 DMA_END_ADDR,
280 DMA_END_ADDR_HI,
281 DMA_MBUF_DONE_THRESH,
282 TDMA_FLOW_PERIOD,
283 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
284 TDMA_WRITE_PTR,
285 RDMA_READ_PTR = TDMA_WRITE_PTR,
286 TDMA_WRITE_PTR_HI,
287 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
288 };
289
290 /* GENET v4 supports 40-bits pointer addressing
291 * for obvious reasons the LO and HI word parts
292 * are contiguous, but this offsets the other
293 * registers.
294 */
295 static const u8 genet_dma_ring_regs_v4[] = {
296 [TDMA_READ_PTR] = 0x00,
297 [TDMA_READ_PTR_HI] = 0x04,
298 [TDMA_CONS_INDEX] = 0x08,
299 [TDMA_PROD_INDEX] = 0x0C,
300 [DMA_RING_BUF_SIZE] = 0x10,
301 [DMA_START_ADDR] = 0x14,
302 [DMA_START_ADDR_HI] = 0x18,
303 [DMA_END_ADDR] = 0x1C,
304 [DMA_END_ADDR_HI] = 0x20,
305 [DMA_MBUF_DONE_THRESH] = 0x24,
306 [TDMA_FLOW_PERIOD] = 0x28,
307 [TDMA_WRITE_PTR] = 0x2C,
308 [TDMA_WRITE_PTR_HI] = 0x30,
309 };
310
311 static const u8 genet_dma_ring_regs_v123[] = {
312 [TDMA_READ_PTR] = 0x00,
313 [TDMA_CONS_INDEX] = 0x04,
314 [TDMA_PROD_INDEX] = 0x08,
315 [DMA_RING_BUF_SIZE] = 0x0C,
316 [DMA_START_ADDR] = 0x10,
317 [DMA_END_ADDR] = 0x14,
318 [DMA_MBUF_DONE_THRESH] = 0x18,
319 [TDMA_FLOW_PERIOD] = 0x1C,
320 [TDMA_WRITE_PTR] = 0x20,
321 };
322
323 /* Set at runtime once GENET version is known */
324 static const u8 *genet_dma_ring_regs;
325
326 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
327 unsigned int ring,
328 enum dma_ring_reg r)
329 {
330 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
331 (DMA_RING_SIZE * ring) +
332 genet_dma_ring_regs[r]);
333 }
334
335 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
336 unsigned int ring, u32 val,
337 enum dma_ring_reg r)
338 {
339 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
340 (DMA_RING_SIZE * ring) +
341 genet_dma_ring_regs[r]);
342 }
343
344 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
345 unsigned int ring,
346 enum dma_ring_reg r)
347 {
348 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
349 (DMA_RING_SIZE * ring) +
350 genet_dma_ring_regs[r]);
351 }
352
353 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
354 unsigned int ring, u32 val,
355 enum dma_ring_reg r)
356 {
357 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
358 (DMA_RING_SIZE * ring) +
359 genet_dma_ring_regs[r]);
360 }
361
362 static int bcmgenet_get_settings(struct net_device *dev,
363 struct ethtool_cmd *cmd)
364 {
365 struct bcmgenet_priv *priv = netdev_priv(dev);
366
367 if (!netif_running(dev))
368 return -EINVAL;
369
370 if (!priv->phydev)
371 return -ENODEV;
372
373 return phy_ethtool_gset(priv->phydev, cmd);
374 }
375
376 static int bcmgenet_set_settings(struct net_device *dev,
377 struct ethtool_cmd *cmd)
378 {
379 struct bcmgenet_priv *priv = netdev_priv(dev);
380
381 if (!netif_running(dev))
382 return -EINVAL;
383
384 if (!priv->phydev)
385 return -ENODEV;
386
387 return phy_ethtool_sset(priv->phydev, cmd);
388 }
389
390 static int bcmgenet_set_rx_csum(struct net_device *dev,
391 netdev_features_t wanted)
392 {
393 struct bcmgenet_priv *priv = netdev_priv(dev);
394 u32 rbuf_chk_ctrl;
395 bool rx_csum_en;
396
397 rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
398
399 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
400
401 /* enable rx checksumming */
402 if (rx_csum_en)
403 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
404 else
405 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
406 priv->desc_rxchk_en = rx_csum_en;
407
408 /* If UniMAC forwards CRC, we need to skip over it to get
409 * a valid CHK bit to be set in the per-packet status word
410 */
411 if (rx_csum_en && priv->crc_fwd_en)
412 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
413 else
414 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
415
416 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
417
418 return 0;
419 }
420
421 static int bcmgenet_set_tx_csum(struct net_device *dev,
422 netdev_features_t wanted)
423 {
424 struct bcmgenet_priv *priv = netdev_priv(dev);
425 bool desc_64b_en;
426 u32 tbuf_ctrl, rbuf_ctrl;
427
428 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
429 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
430
431 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
432
433 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
434 if (desc_64b_en) {
435 tbuf_ctrl |= RBUF_64B_EN;
436 rbuf_ctrl |= RBUF_64B_EN;
437 } else {
438 tbuf_ctrl &= ~RBUF_64B_EN;
439 rbuf_ctrl &= ~RBUF_64B_EN;
440 }
441 priv->desc_64b_en = desc_64b_en;
442
443 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
444 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
445
446 return 0;
447 }
448
449 static int bcmgenet_set_features(struct net_device *dev,
450 netdev_features_t features)
451 {
452 netdev_features_t changed = features ^ dev->features;
453 netdev_features_t wanted = dev->wanted_features;
454 int ret = 0;
455
456 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
457 ret = bcmgenet_set_tx_csum(dev, wanted);
458 if (changed & (NETIF_F_RXCSUM))
459 ret = bcmgenet_set_rx_csum(dev, wanted);
460
461 return ret;
462 }
463
464 static u32 bcmgenet_get_msglevel(struct net_device *dev)
465 {
466 struct bcmgenet_priv *priv = netdev_priv(dev);
467
468 return priv->msg_enable;
469 }
470
471 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
472 {
473 struct bcmgenet_priv *priv = netdev_priv(dev);
474
475 priv->msg_enable = level;
476 }
477
478 /* standard ethtool support functions. */
479 enum bcmgenet_stat_type {
480 BCMGENET_STAT_NETDEV = -1,
481 BCMGENET_STAT_MIB_RX,
482 BCMGENET_STAT_MIB_TX,
483 BCMGENET_STAT_RUNT,
484 BCMGENET_STAT_MISC,
485 };
486
487 struct bcmgenet_stats {
488 char stat_string[ETH_GSTRING_LEN];
489 int stat_sizeof;
490 int stat_offset;
491 enum bcmgenet_stat_type type;
492 /* reg offset from UMAC base for misc counters */
493 u16 reg_offset;
494 };
495
496 #define STAT_NETDEV(m) { \
497 .stat_string = __stringify(m), \
498 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
499 .stat_offset = offsetof(struct net_device_stats, m), \
500 .type = BCMGENET_STAT_NETDEV, \
501 }
502
503 #define STAT_GENET_MIB(str, m, _type) { \
504 .stat_string = str, \
505 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
506 .stat_offset = offsetof(struct bcmgenet_priv, m), \
507 .type = _type, \
508 }
509
510 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
511 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
512 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
513
514 #define STAT_GENET_MISC(str, m, offset) { \
515 .stat_string = str, \
516 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
517 .stat_offset = offsetof(struct bcmgenet_priv, m), \
518 .type = BCMGENET_STAT_MISC, \
519 .reg_offset = offset, \
520 }
521
522
523 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
524 * between the end of TX stats and the beginning of the RX RUNT
525 */
526 #define BCMGENET_STAT_OFFSET 0xc
527
528 /* Hardware counters must be kept in sync because the order/offset
529 * is important here (order in structure declaration = order in hardware)
530 */
531 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
532 /* general stats */
533 STAT_NETDEV(rx_packets),
534 STAT_NETDEV(tx_packets),
535 STAT_NETDEV(rx_bytes),
536 STAT_NETDEV(tx_bytes),
537 STAT_NETDEV(rx_errors),
538 STAT_NETDEV(tx_errors),
539 STAT_NETDEV(rx_dropped),
540 STAT_NETDEV(tx_dropped),
541 STAT_NETDEV(multicast),
542 /* UniMAC RSV counters */
543 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
544 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
545 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
546 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
547 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
548 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
549 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
550 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
551 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
552 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
553 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
554 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
555 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
556 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
557 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
558 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
559 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
560 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
561 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
562 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
563 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
564 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
565 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
566 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
567 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
568 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
569 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
570 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
571 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
572 /* UniMAC TSV counters */
573 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
574 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
575 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
576 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
577 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
578 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
579 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
580 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
581 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
582 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
583 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
584 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
585 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
586 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
587 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
588 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
589 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
590 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
591 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
592 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
593 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
594 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
595 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
596 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
597 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
598 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
599 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
600 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
601 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
602 /* UniMAC RUNT counters */
603 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
604 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
605 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
606 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
607 /* Misc UniMAC counters */
608 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
609 UMAC_RBUF_OVFL_CNT),
610 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
611 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
612 };
613
614 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
615
616 static void bcmgenet_get_drvinfo(struct net_device *dev,
617 struct ethtool_drvinfo *info)
618 {
619 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
620 strlcpy(info->version, "v2.0", sizeof(info->version));
621 info->n_stats = BCMGENET_STATS_LEN;
622 }
623
624 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
625 {
626 switch (string_set) {
627 case ETH_SS_STATS:
628 return BCMGENET_STATS_LEN;
629 default:
630 return -EOPNOTSUPP;
631 }
632 }
633
634 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
635 u8 *data)
636 {
637 int i;
638
639 switch (stringset) {
640 case ETH_SS_STATS:
641 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
642 memcpy(data + i * ETH_GSTRING_LEN,
643 bcmgenet_gstrings_stats[i].stat_string,
644 ETH_GSTRING_LEN);
645 }
646 break;
647 }
648 }
649
650 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
651 {
652 int i, j = 0;
653
654 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
655 const struct bcmgenet_stats *s;
656 u8 offset = 0;
657 u32 val = 0;
658 char *p;
659
660 s = &bcmgenet_gstrings_stats[i];
661 switch (s->type) {
662 case BCMGENET_STAT_NETDEV:
663 continue;
664 case BCMGENET_STAT_MIB_RX:
665 case BCMGENET_STAT_MIB_TX:
666 case BCMGENET_STAT_RUNT:
667 if (s->type != BCMGENET_STAT_MIB_RX)
668 offset = BCMGENET_STAT_OFFSET;
669 val = bcmgenet_umac_readl(priv,
670 UMAC_MIB_START + j + offset);
671 break;
672 case BCMGENET_STAT_MISC:
673 val = bcmgenet_umac_readl(priv, s->reg_offset);
674 /* clear if overflowed */
675 if (val == ~0)
676 bcmgenet_umac_writel(priv, 0, s->reg_offset);
677 break;
678 }
679
680 j += s->stat_sizeof;
681 p = (char *)priv + s->stat_offset;
682 *(u32 *)p = val;
683 }
684 }
685
686 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
687 struct ethtool_stats *stats,
688 u64 *data)
689 {
690 struct bcmgenet_priv *priv = netdev_priv(dev);
691 int i;
692
693 if (netif_running(dev))
694 bcmgenet_update_mib_counters(priv);
695
696 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
697 const struct bcmgenet_stats *s;
698 char *p;
699
700 s = &bcmgenet_gstrings_stats[i];
701 if (s->type == BCMGENET_STAT_NETDEV)
702 p = (char *)&dev->stats;
703 else
704 p = (char *)priv;
705 p += s->stat_offset;
706 data[i] = *(u32 *)p;
707 }
708 }
709
710 /* standard ethtool support functions. */
711 static struct ethtool_ops bcmgenet_ethtool_ops = {
712 .get_strings = bcmgenet_get_strings,
713 .get_sset_count = bcmgenet_get_sset_count,
714 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
715 .get_settings = bcmgenet_get_settings,
716 .set_settings = bcmgenet_set_settings,
717 .get_drvinfo = bcmgenet_get_drvinfo,
718 .get_link = ethtool_op_get_link,
719 .get_msglevel = bcmgenet_get_msglevel,
720 .set_msglevel = bcmgenet_set_msglevel,
721 .get_wol = bcmgenet_get_wol,
722 .set_wol = bcmgenet_set_wol,
723 };
724
725 /* Power down the unimac, based on mode. */
726 static void bcmgenet_power_down(struct bcmgenet_priv *priv,
727 enum bcmgenet_power_mode mode)
728 {
729 u32 reg;
730
731 switch (mode) {
732 case GENET_POWER_CABLE_SENSE:
733 phy_detach(priv->phydev);
734 break;
735
736 case GENET_POWER_WOL_MAGIC:
737 bcmgenet_wol_power_down_cfg(priv, mode);
738 break;
739
740 case GENET_POWER_PASSIVE:
741 /* Power down LED */
742 if (priv->hw_params->flags & GENET_HAS_EXT) {
743 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
744 reg |= (EXT_PWR_DOWN_PHY |
745 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
746 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
747 }
748 break;
749 default:
750 break;
751 }
752 }
753
754 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
755 enum bcmgenet_power_mode mode)
756 {
757 u32 reg;
758
759 if (!(priv->hw_params->flags & GENET_HAS_EXT))
760 return;
761
762 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
763
764 switch (mode) {
765 case GENET_POWER_PASSIVE:
766 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
767 EXT_PWR_DOWN_BIAS);
768 /* fallthrough */
769 case GENET_POWER_CABLE_SENSE:
770 /* enable APD */
771 reg |= EXT_PWR_DN_EN_LD;
772 break;
773 case GENET_POWER_WOL_MAGIC:
774 bcmgenet_wol_power_up_cfg(priv, mode);
775 return;
776 default:
777 break;
778 }
779
780 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
781
782 if (mode == GENET_POWER_PASSIVE)
783 bcmgenet_mii_reset(priv->dev);
784 }
785
786 /* ioctl handle special commands that are not present in ethtool. */
787 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
788 {
789 struct bcmgenet_priv *priv = netdev_priv(dev);
790 int val = 0;
791
792 if (!netif_running(dev))
793 return -EINVAL;
794
795 switch (cmd) {
796 case SIOCGMIIPHY:
797 case SIOCGMIIREG:
798 case SIOCSMIIREG:
799 if (!priv->phydev)
800 val = -ENODEV;
801 else
802 val = phy_mii_ioctl(priv->phydev, rq, cmd);
803 break;
804
805 default:
806 val = -EINVAL;
807 break;
808 }
809
810 return val;
811 }
812
813 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
814 struct bcmgenet_tx_ring *ring)
815 {
816 struct enet_cb *tx_cb_ptr;
817
818 tx_cb_ptr = ring->cbs;
819 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
820 tx_cb_ptr->bd_addr = priv->tx_bds + ring->write_ptr * DMA_DESC_SIZE;
821 /* Advancing local write pointer */
822 if (ring->write_ptr == ring->end_ptr)
823 ring->write_ptr = ring->cb_ptr;
824 else
825 ring->write_ptr++;
826
827 return tx_cb_ptr;
828 }
829
830 /* Simple helper to free a control block's resources */
831 static void bcmgenet_free_cb(struct enet_cb *cb)
832 {
833 dev_kfree_skb_any(cb->skb);
834 cb->skb = NULL;
835 dma_unmap_addr_set(cb, dma_addr, 0);
836 }
837
838 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv,
839 struct bcmgenet_tx_ring *ring)
840 {
841 bcmgenet_intrl2_0_writel(priv,
842 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
843 INTRL2_CPU_MASK_SET);
844 }
845
846 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv,
847 struct bcmgenet_tx_ring *ring)
848 {
849 bcmgenet_intrl2_0_writel(priv,
850 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
851 INTRL2_CPU_MASK_CLEAR);
852 }
853
854 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv,
855 struct bcmgenet_tx_ring *ring)
856 {
857 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
858 INTRL2_CPU_MASK_CLEAR);
859 priv->int1_mask &= ~(1 << ring->index);
860 }
861
862 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv,
863 struct bcmgenet_tx_ring *ring)
864 {
865 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
866 INTRL2_CPU_MASK_SET);
867 priv->int1_mask |= (1 << ring->index);
868 }
869
870 /* Unlocked version of the reclaim routine */
871 static void __bcmgenet_tx_reclaim(struct net_device *dev,
872 struct bcmgenet_tx_ring *ring)
873 {
874 struct bcmgenet_priv *priv = netdev_priv(dev);
875 int last_tx_cn, last_c_index, num_tx_bds;
876 struct enet_cb *tx_cb_ptr;
877 struct netdev_queue *txq;
878 unsigned int c_index;
879
880 /* Compute how many buffers are transmitted since last xmit call */
881 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
882 txq = netdev_get_tx_queue(dev, ring->queue);
883
884 last_c_index = ring->c_index;
885 num_tx_bds = ring->size;
886
887 c_index &= (num_tx_bds - 1);
888
889 if (c_index >= last_c_index)
890 last_tx_cn = c_index - last_c_index;
891 else
892 last_tx_cn = num_tx_bds - last_c_index + c_index;
893
894 netif_dbg(priv, tx_done, dev,
895 "%s ring=%d index=%d last_tx_cn=%d last_index=%d\n",
896 __func__, ring->index,
897 c_index, last_tx_cn, last_c_index);
898
899 /* Reclaim transmitted buffers */
900 while (last_tx_cn-- > 0) {
901 tx_cb_ptr = ring->cbs + last_c_index;
902 if (tx_cb_ptr->skb) {
903 dev->stats.tx_bytes += tx_cb_ptr->skb->len;
904 dma_unmap_single(&dev->dev,
905 dma_unmap_addr(tx_cb_ptr, dma_addr),
906 tx_cb_ptr->skb->len,
907 DMA_TO_DEVICE);
908 bcmgenet_free_cb(tx_cb_ptr);
909 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
910 dev->stats.tx_bytes +=
911 dma_unmap_len(tx_cb_ptr, dma_len);
912 dma_unmap_page(&dev->dev,
913 dma_unmap_addr(tx_cb_ptr, dma_addr),
914 dma_unmap_len(tx_cb_ptr, dma_len),
915 DMA_TO_DEVICE);
916 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
917 }
918 dev->stats.tx_packets++;
919 ring->free_bds += 1;
920
921 last_c_index++;
922 last_c_index &= (num_tx_bds - 1);
923 }
924
925 if (ring->free_bds > (MAX_SKB_FRAGS + 1))
926 ring->int_disable(priv, ring);
927
928 if (netif_tx_queue_stopped(txq))
929 netif_tx_wake_queue(txq);
930
931 ring->c_index = c_index;
932 }
933
934 static void bcmgenet_tx_reclaim(struct net_device *dev,
935 struct bcmgenet_tx_ring *ring)
936 {
937 unsigned long flags;
938
939 spin_lock_irqsave(&ring->lock, flags);
940 __bcmgenet_tx_reclaim(dev, ring);
941 spin_unlock_irqrestore(&ring->lock, flags);
942 }
943
944 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
945 {
946 struct bcmgenet_priv *priv = netdev_priv(dev);
947 int i;
948
949 if (netif_is_multiqueue(dev)) {
950 for (i = 0; i < priv->hw_params->tx_queues; i++)
951 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
952 }
953
954 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
955 }
956
957 /* Transmits a single SKB (either head of a fragment or a single SKB)
958 * caller must hold priv->lock
959 */
960 static int bcmgenet_xmit_single(struct net_device *dev,
961 struct sk_buff *skb,
962 u16 dma_desc_flags,
963 struct bcmgenet_tx_ring *ring)
964 {
965 struct bcmgenet_priv *priv = netdev_priv(dev);
966 struct device *kdev = &priv->pdev->dev;
967 struct enet_cb *tx_cb_ptr;
968 unsigned int skb_len;
969 dma_addr_t mapping;
970 u32 length_status;
971 int ret;
972
973 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
974
975 if (unlikely(!tx_cb_ptr))
976 BUG();
977
978 tx_cb_ptr->skb = skb;
979
980 skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
981
982 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
983 ret = dma_mapping_error(kdev, mapping);
984 if (ret) {
985 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
986 dev_kfree_skb(skb);
987 return ret;
988 }
989
990 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
991 dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
992 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
993 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
994 DMA_TX_APPEND_CRC;
995
996 if (skb->ip_summed == CHECKSUM_PARTIAL)
997 length_status |= DMA_TX_DO_CSUM;
998
999 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1000
1001 /* Decrement total BD count and advance our write pointer */
1002 ring->free_bds -= 1;
1003 ring->prod_index += 1;
1004 ring->prod_index &= DMA_P_INDEX_MASK;
1005
1006 return 0;
1007 }
1008
1009 /* Transmit a SKB fragment */
1010 static int bcmgenet_xmit_frag(struct net_device *dev,
1011 skb_frag_t *frag,
1012 u16 dma_desc_flags,
1013 struct bcmgenet_tx_ring *ring)
1014 {
1015 struct bcmgenet_priv *priv = netdev_priv(dev);
1016 struct device *kdev = &priv->pdev->dev;
1017 struct enet_cb *tx_cb_ptr;
1018 dma_addr_t mapping;
1019 int ret;
1020
1021 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1022
1023 if (unlikely(!tx_cb_ptr))
1024 BUG();
1025 tx_cb_ptr->skb = NULL;
1026
1027 mapping = skb_frag_dma_map(kdev, frag, 0,
1028 skb_frag_size(frag), DMA_TO_DEVICE);
1029 ret = dma_mapping_error(kdev, mapping);
1030 if (ret) {
1031 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1032 __func__);
1033 return ret;
1034 }
1035
1036 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1037 dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1038
1039 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1040 (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1041 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1042
1043
1044 ring->free_bds -= 1;
1045 ring->prod_index += 1;
1046 ring->prod_index &= DMA_P_INDEX_MASK;
1047
1048 return 0;
1049 }
1050
1051 /* Reallocate the SKB to put enough headroom in front of it and insert
1052 * the transmit checksum offsets in the descriptors
1053 */
1054 static int bcmgenet_put_tx_csum(struct net_device *dev, struct sk_buff *skb)
1055 {
1056 struct status_64 *status = NULL;
1057 struct sk_buff *new_skb;
1058 u16 offset;
1059 u8 ip_proto;
1060 u16 ip_ver;
1061 u32 tx_csum_info;
1062
1063 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1064 /* If 64 byte status block enabled, must make sure skb has
1065 * enough headroom for us to insert 64B status block.
1066 */
1067 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1068 dev_kfree_skb(skb);
1069 if (!new_skb) {
1070 dev->stats.tx_errors++;
1071 dev->stats.tx_dropped++;
1072 return -ENOMEM;
1073 }
1074 skb = new_skb;
1075 }
1076
1077 skb_push(skb, sizeof(*status));
1078 status = (struct status_64 *)skb->data;
1079
1080 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1081 ip_ver = htons(skb->protocol);
1082 switch (ip_ver) {
1083 case ETH_P_IP:
1084 ip_proto = ip_hdr(skb)->protocol;
1085 break;
1086 case ETH_P_IPV6:
1087 ip_proto = ipv6_hdr(skb)->nexthdr;
1088 break;
1089 default:
1090 return 0;
1091 }
1092
1093 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1094 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1095 (offset + skb->csum_offset);
1096
1097 /* Set the length valid bit for TCP and UDP and just set
1098 * the special UDP flag for IPv4, else just set to 0.
1099 */
1100 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1101 tx_csum_info |= STATUS_TX_CSUM_LV;
1102 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1103 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1104 } else {
1105 tx_csum_info = 0;
1106 }
1107
1108 status->tx_csum_info = tx_csum_info;
1109 }
1110
1111 return 0;
1112 }
1113
1114 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1115 {
1116 struct bcmgenet_priv *priv = netdev_priv(dev);
1117 struct bcmgenet_tx_ring *ring = NULL;
1118 struct netdev_queue *txq;
1119 unsigned long flags = 0;
1120 int nr_frags, index;
1121 u16 dma_desc_flags;
1122 int ret;
1123 int i;
1124
1125 index = skb_get_queue_mapping(skb);
1126 /* Mapping strategy:
1127 * queue_mapping = 0, unclassified, packet xmited through ring16
1128 * queue_mapping = 1, goes to ring 0. (highest priority queue
1129 * queue_mapping = 2, goes to ring 1.
1130 * queue_mapping = 3, goes to ring 2.
1131 * queue_mapping = 4, goes to ring 3.
1132 */
1133 if (index == 0)
1134 index = DESC_INDEX;
1135 else
1136 index -= 1;
1137
1138 nr_frags = skb_shinfo(skb)->nr_frags;
1139 ring = &priv->tx_rings[index];
1140 txq = netdev_get_tx_queue(dev, ring->queue);
1141
1142 spin_lock_irqsave(&ring->lock, flags);
1143 if (ring->free_bds <= nr_frags + 1) {
1144 netif_tx_stop_queue(txq);
1145 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1146 __func__, index, ring->queue);
1147 ret = NETDEV_TX_BUSY;
1148 goto out;
1149 }
1150
1151 if (skb_padto(skb, ETH_ZLEN)) {
1152 ret = NETDEV_TX_OK;
1153 goto out;
1154 }
1155
1156 /* set the SKB transmit checksum */
1157 if (priv->desc_64b_en) {
1158 ret = bcmgenet_put_tx_csum(dev, skb);
1159 if (ret) {
1160 ret = NETDEV_TX_OK;
1161 goto out;
1162 }
1163 }
1164
1165 dma_desc_flags = DMA_SOP;
1166 if (nr_frags == 0)
1167 dma_desc_flags |= DMA_EOP;
1168
1169 /* Transmit single SKB or head of fragment list */
1170 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1171 if (ret) {
1172 ret = NETDEV_TX_OK;
1173 goto out;
1174 }
1175
1176 /* xmit fragment */
1177 for (i = 0; i < nr_frags; i++) {
1178 ret = bcmgenet_xmit_frag(dev,
1179 &skb_shinfo(skb)->frags[i],
1180 (i == nr_frags - 1) ? DMA_EOP : 0,
1181 ring);
1182 if (ret) {
1183 ret = NETDEV_TX_OK;
1184 goto out;
1185 }
1186 }
1187
1188 skb_tx_timestamp(skb);
1189
1190 /* we kept a software copy of how much we should advance the TDMA
1191 * producer index, now write it down to the hardware
1192 */
1193 bcmgenet_tdma_ring_writel(priv, ring->index,
1194 ring->prod_index, TDMA_PROD_INDEX);
1195
1196 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) {
1197 netif_tx_stop_queue(txq);
1198 ring->int_enable(priv, ring);
1199 }
1200
1201 out:
1202 spin_unlock_irqrestore(&ring->lock, flags);
1203
1204 return ret;
1205 }
1206
1207
1208 static int bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb)
1209 {
1210 struct device *kdev = &priv->pdev->dev;
1211 struct sk_buff *skb;
1212 dma_addr_t mapping;
1213 int ret;
1214
1215 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1216 if (!skb)
1217 return -ENOMEM;
1218
1219 /* a caller did not release this control block */
1220 WARN_ON(cb->skb != NULL);
1221 cb->skb = skb;
1222 mapping = dma_map_single(kdev, skb->data,
1223 priv->rx_buf_len, DMA_FROM_DEVICE);
1224 ret = dma_mapping_error(kdev, mapping);
1225 if (ret) {
1226 bcmgenet_free_cb(cb);
1227 netif_err(priv, rx_err, priv->dev,
1228 "%s DMA map failed\n", __func__);
1229 return ret;
1230 }
1231
1232 dma_unmap_addr_set(cb, dma_addr, mapping);
1233 /* assign packet, prepare descriptor, and advance pointer */
1234
1235 dmadesc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);
1236
1237 /* turn on the newly assigned BD for DMA to use */
1238 priv->rx_bd_assign_index++;
1239 priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
1240
1241 priv->rx_bd_assign_ptr = priv->rx_bds +
1242 (priv->rx_bd_assign_index * DMA_DESC_SIZE);
1243
1244 return 0;
1245 }
1246
1247 /* bcmgenet_desc_rx - descriptor based rx process.
1248 * this could be called from bottom half, or from NAPI polling method.
1249 */
1250 static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv,
1251 unsigned int budget)
1252 {
1253 struct net_device *dev = priv->dev;
1254 struct enet_cb *cb;
1255 struct sk_buff *skb;
1256 u32 dma_length_status;
1257 unsigned long dma_flag;
1258 int len, err;
1259 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1260 unsigned int p_index;
1261 unsigned int chksum_ok = 0;
1262
1263 p_index = bcmgenet_rdma_ring_readl(priv, DESC_INDEX, RDMA_PROD_INDEX);
1264 p_index &= DMA_P_INDEX_MASK;
1265
1266 if (p_index < priv->rx_c_index)
1267 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) -
1268 priv->rx_c_index + p_index;
1269 else
1270 rxpkttoprocess = p_index - priv->rx_c_index;
1271
1272 netif_dbg(priv, rx_status, dev,
1273 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1274
1275 while ((rxpktprocessed < rxpkttoprocess) &&
1276 (rxpktprocessed < budget)) {
1277 /* Unmap the packet contents such that we can use the
1278 * RSV from the 64 bytes descriptor when enabled and save
1279 * a 32-bits register read
1280 */
1281 cb = &priv->rx_cbs[priv->rx_read_ptr];
1282 skb = cb->skb;
1283 dma_unmap_single(&dev->dev, dma_unmap_addr(cb, dma_addr),
1284 priv->rx_buf_len, DMA_FROM_DEVICE);
1285
1286 if (!priv->desc_64b_en) {
1287 dma_length_status =
1288 dmadesc_get_length_status(priv,
1289 priv->rx_bds +
1290 (priv->rx_read_ptr *
1291 DMA_DESC_SIZE));
1292 } else {
1293 struct status_64 *status;
1294
1295 status = (struct status_64 *)skb->data;
1296 dma_length_status = status->length_status;
1297 }
1298
1299 /* DMA flags and length are still valid no matter how
1300 * we got the Receive Status Vector (64B RSB or register)
1301 */
1302 dma_flag = dma_length_status & 0xffff;
1303 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1304
1305 netif_dbg(priv, rx_status, dev,
1306 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1307 __func__, p_index, priv->rx_c_index,
1308 priv->rx_read_ptr, dma_length_status);
1309
1310 rxpktprocessed++;
1311
1312 priv->rx_read_ptr++;
1313 priv->rx_read_ptr &= (priv->num_rx_bds - 1);
1314
1315 /* out of memory, just drop packets at the hardware level */
1316 if (unlikely(!skb)) {
1317 dev->stats.rx_dropped++;
1318 dev->stats.rx_errors++;
1319 goto refill;
1320 }
1321
1322 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1323 netif_err(priv, rx_status, dev,
1324 "dropping fragmented packet!\n");
1325 dev->stats.rx_dropped++;
1326 dev->stats.rx_errors++;
1327 dev_kfree_skb_any(cb->skb);
1328 cb->skb = NULL;
1329 goto refill;
1330 }
1331 /* report errors */
1332 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1333 DMA_RX_OV |
1334 DMA_RX_NO |
1335 DMA_RX_LG |
1336 DMA_RX_RXER))) {
1337 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1338 (unsigned int)dma_flag);
1339 if (dma_flag & DMA_RX_CRC_ERROR)
1340 dev->stats.rx_crc_errors++;
1341 if (dma_flag & DMA_RX_OV)
1342 dev->stats.rx_over_errors++;
1343 if (dma_flag & DMA_RX_NO)
1344 dev->stats.rx_frame_errors++;
1345 if (dma_flag & DMA_RX_LG)
1346 dev->stats.rx_length_errors++;
1347 dev->stats.rx_dropped++;
1348 dev->stats.rx_errors++;
1349
1350 /* discard the packet and advance consumer index.*/
1351 dev_kfree_skb_any(cb->skb);
1352 cb->skb = NULL;
1353 goto refill;
1354 } /* error packet */
1355
1356 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1357 priv->desc_rxchk_en;
1358
1359 skb_put(skb, len);
1360 if (priv->desc_64b_en) {
1361 skb_pull(skb, 64);
1362 len -= 64;
1363 }
1364
1365 if (likely(chksum_ok))
1366 skb->ip_summed = CHECKSUM_UNNECESSARY;
1367
1368 /* remove hardware 2bytes added for IP alignment */
1369 skb_pull(skb, 2);
1370 len -= 2;
1371
1372 if (priv->crc_fwd_en) {
1373 skb_trim(skb, len - ETH_FCS_LEN);
1374 len -= ETH_FCS_LEN;
1375 }
1376
1377 /*Finish setting up the received SKB and send it to the kernel*/
1378 skb->protocol = eth_type_trans(skb, priv->dev);
1379 dev->stats.rx_packets++;
1380 dev->stats.rx_bytes += len;
1381 if (dma_flag & DMA_RX_MULT)
1382 dev->stats.multicast++;
1383
1384 /* Notify kernel */
1385 napi_gro_receive(&priv->napi, skb);
1386 cb->skb = NULL;
1387 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1388
1389 /* refill RX path on the current control block */
1390 refill:
1391 err = bcmgenet_rx_refill(priv, cb);
1392 if (err)
1393 netif_err(priv, rx_err, dev, "Rx refill failed\n");
1394 }
1395
1396 return rxpktprocessed;
1397 }
1398
1399 /* Assign skb to RX DMA descriptor. */
1400 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv)
1401 {
1402 struct enet_cb *cb;
1403 int ret = 0;
1404 int i;
1405
1406 netif_dbg(priv, hw, priv->dev, "%s:\n", __func__);
1407
1408 /* loop here for each buffer needing assign */
1409 for (i = 0; i < priv->num_rx_bds; i++) {
1410 cb = &priv->rx_cbs[priv->rx_bd_assign_index];
1411 if (cb->skb)
1412 continue;
1413
1414 ret = bcmgenet_rx_refill(priv, cb);
1415 if (ret)
1416 break;
1417 }
1418
1419 return ret;
1420 }
1421
1422 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1423 {
1424 struct enet_cb *cb;
1425 int i;
1426
1427 for (i = 0; i < priv->num_rx_bds; i++) {
1428 cb = &priv->rx_cbs[i];
1429
1430 if (dma_unmap_addr(cb, dma_addr)) {
1431 dma_unmap_single(&priv->dev->dev,
1432 dma_unmap_addr(cb, dma_addr),
1433 priv->rx_buf_len, DMA_FROM_DEVICE);
1434 dma_unmap_addr_set(cb, dma_addr, 0);
1435 }
1436
1437 if (cb->skb)
1438 bcmgenet_free_cb(cb);
1439 }
1440 }
1441
1442 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1443 {
1444 u32 reg;
1445
1446 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1447 if (enable)
1448 reg |= mask;
1449 else
1450 reg &= ~mask;
1451 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1452
1453 /* UniMAC stops on a packet boundary, wait for a full-size packet
1454 * to be processed
1455 */
1456 if (enable == 0)
1457 usleep_range(1000, 2000);
1458 }
1459
1460 static int reset_umac(struct bcmgenet_priv *priv)
1461 {
1462 struct device *kdev = &priv->pdev->dev;
1463 unsigned int timeout = 0;
1464 u32 reg;
1465
1466 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1467 bcmgenet_rbuf_ctrl_set(priv, 0);
1468 udelay(10);
1469
1470 /* disable MAC while updating its registers */
1471 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1472
1473 /* issue soft reset, wait for it to complete */
1474 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1475 while (timeout++ < 1000) {
1476 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1477 if (!(reg & CMD_SW_RESET))
1478 return 0;
1479
1480 udelay(1);
1481 }
1482
1483 if (timeout == 1000) {
1484 dev_err(kdev,
1485 "timeout waiting for MAC to come out of reset\n");
1486 return -ETIMEDOUT;
1487 }
1488
1489 return 0;
1490 }
1491
1492 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1493 {
1494 /* Mask all interrupts.*/
1495 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1496 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1497 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1498 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1499 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1500 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1501 }
1502
1503 static int init_umac(struct bcmgenet_priv *priv)
1504 {
1505 struct device *kdev = &priv->pdev->dev;
1506 int ret;
1507 u32 reg, cpu_mask_clear;
1508
1509 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1510
1511 ret = reset_umac(priv);
1512 if (ret)
1513 return ret;
1514
1515 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1516 /* clear tx/rx counter */
1517 bcmgenet_umac_writel(priv,
1518 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1519 UMAC_MIB_CTRL);
1520 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1521
1522 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1523
1524 /* init rx registers, enable ip header optimization */
1525 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1526 reg |= RBUF_ALIGN_2B;
1527 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1528
1529 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1530 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1531
1532 bcmgenet_intr_disable(priv);
1533
1534 cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE;
1535
1536 dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__);
1537
1538 /* Monitor cable plug/unplugged event for internal PHY */
1539 if (phy_is_internal(priv->phydev)) {
1540 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1541 } else if (priv->ext_phy) {
1542 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1543 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1544 reg = bcmgenet_bp_mc_get(priv);
1545 reg |= BIT(priv->hw_params->bp_in_en_shift);
1546
1547 /* bp_mask: back pressure mask */
1548 if (netif_is_multiqueue(priv->dev))
1549 reg |= priv->hw_params->bp_in_mask;
1550 else
1551 reg &= ~priv->hw_params->bp_in_mask;
1552 bcmgenet_bp_mc_set(priv, reg);
1553 }
1554
1555 /* Enable MDIO interrupts on GENET v3+ */
1556 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1557 cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR;
1558
1559 bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR);
1560
1561 /* Enable rx/tx engine.*/
1562 dev_dbg(kdev, "done init umac\n");
1563
1564 return 0;
1565 }
1566
1567 /* Initialize all house-keeping variables for a TX ring, along
1568 * with corresponding hardware registers
1569 */
1570 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1571 unsigned int index, unsigned int size,
1572 unsigned int write_ptr, unsigned int end_ptr)
1573 {
1574 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1575 u32 words_per_bd = WORDS_PER_BD(priv);
1576 u32 flow_period_val = 0;
1577 unsigned int first_bd;
1578
1579 spin_lock_init(&ring->lock);
1580 ring->index = index;
1581 if (index == DESC_INDEX) {
1582 ring->queue = 0;
1583 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1584 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1585 } else {
1586 ring->queue = index + 1;
1587 ring->int_enable = bcmgenet_tx_ring_int_enable;
1588 ring->int_disable = bcmgenet_tx_ring_int_disable;
1589 }
1590 ring->cbs = priv->tx_cbs + write_ptr;
1591 ring->size = size;
1592 ring->c_index = 0;
1593 ring->free_bds = size;
1594 ring->write_ptr = write_ptr;
1595 ring->cb_ptr = write_ptr;
1596 ring->end_ptr = end_ptr - 1;
1597 ring->prod_index = 0;
1598
1599 /* Set flow period for ring != 16 */
1600 if (index != DESC_INDEX)
1601 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1602
1603 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1604 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1605 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1606 /* Disable rate control for now */
1607 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1608 TDMA_FLOW_PERIOD);
1609 /* Unclassified traffic goes to ring 16 */
1610 bcmgenet_tdma_ring_writel(priv, index,
1611 ((size << DMA_RING_SIZE_SHIFT) |
1612 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1613
1614 first_bd = write_ptr;
1615
1616 /* Set start and end address, read and write pointers */
1617 bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1618 DMA_START_ADDR);
1619 bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1620 TDMA_READ_PTR);
1621 bcmgenet_tdma_ring_writel(priv, index, first_bd,
1622 TDMA_WRITE_PTR);
1623 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1624 DMA_END_ADDR);
1625 }
1626
1627 /* Initialize a RDMA ring */
1628 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1629 unsigned int index, unsigned int size)
1630 {
1631 u32 words_per_bd = WORDS_PER_BD(priv);
1632 int ret;
1633
1634 priv->num_rx_bds = TOTAL_DESC;
1635 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
1636 priv->rx_bd_assign_ptr = priv->rx_bds;
1637 priv->rx_bd_assign_index = 0;
1638 priv->rx_c_index = 0;
1639 priv->rx_read_ptr = 0;
1640 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
1641 GFP_KERNEL);
1642 if (!priv->rx_cbs)
1643 return -ENOMEM;
1644
1645 ret = bcmgenet_alloc_rx_buffers(priv);
1646 if (ret) {
1647 kfree(priv->rx_cbs);
1648 return ret;
1649 }
1650
1651 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_WRITE_PTR);
1652 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1653 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1654 bcmgenet_rdma_ring_writel(priv, index,
1655 ((size << DMA_RING_SIZE_SHIFT) |
1656 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1657 bcmgenet_rdma_ring_writel(priv, index, 0, DMA_START_ADDR);
1658 bcmgenet_rdma_ring_writel(priv, index,
1659 words_per_bd * size - 1, DMA_END_ADDR);
1660 bcmgenet_rdma_ring_writel(priv, index,
1661 (DMA_FC_THRESH_LO <<
1662 DMA_XOFF_THRESHOLD_SHIFT) |
1663 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1664 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_READ_PTR);
1665
1666 return ret;
1667 }
1668
1669 /* init multi xmit queues, only available for GENET2+
1670 * the queue is partitioned as follows:
1671 *
1672 * queue 0 - 3 is priority based, each one has 32 descriptors,
1673 * with queue 0 being the highest priority queue.
1674 *
1675 * queue 16 is the default tx queue with GENET_DEFAULT_BD_CNT
1676 * descriptors: 256 - (number of tx queues * bds per queues) = 128
1677 * descriptors.
1678 *
1679 * The transmit control block pool is then partitioned as following:
1680 * - tx_cbs[0...127] are for queue 16
1681 * - tx_ring_cbs[0] points to tx_cbs[128..159]
1682 * - tx_ring_cbs[1] points to tx_cbs[160..191]
1683 * - tx_ring_cbs[2] points to tx_cbs[192..223]
1684 * - tx_ring_cbs[3] points to tx_cbs[224..255]
1685 */
1686 static void bcmgenet_init_multiq(struct net_device *dev)
1687 {
1688 struct bcmgenet_priv *priv = netdev_priv(dev);
1689 unsigned int i, dma_enable;
1690 u32 reg, dma_ctrl, ring_cfg = 0, dma_priority = 0;
1691
1692 if (!netif_is_multiqueue(dev)) {
1693 netdev_warn(dev, "called with non multi queue aware HW\n");
1694 return;
1695 }
1696
1697 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1698 dma_enable = dma_ctrl & DMA_EN;
1699 dma_ctrl &= ~DMA_EN;
1700 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1701
1702 /* Enable strict priority arbiter mode */
1703 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1704
1705 for (i = 0; i < priv->hw_params->tx_queues; i++) {
1706 /* first 64 tx_cbs are reserved for default tx queue
1707 * (ring 16)
1708 */
1709 bcmgenet_init_tx_ring(priv, i, priv->hw_params->bds_cnt,
1710 i * priv->hw_params->bds_cnt,
1711 (i + 1) * priv->hw_params->bds_cnt);
1712
1713 /* Configure ring as descriptor ring and setup priority */
1714 ring_cfg |= 1 << i;
1715 dma_priority |= ((GENET_Q0_PRIORITY + i) <<
1716 (GENET_MAX_MQ_CNT + 1) * i);
1717 dma_ctrl |= 1 << (i + DMA_RING_BUF_EN_SHIFT);
1718 }
1719
1720 /* Enable rings */
1721 reg = bcmgenet_tdma_readl(priv, DMA_RING_CFG);
1722 reg |= ring_cfg;
1723 bcmgenet_tdma_writel(priv, reg, DMA_RING_CFG);
1724
1725 /* Use configured rings priority and set ring #16 priority */
1726 reg = bcmgenet_tdma_readl(priv, DMA_RING_PRIORITY);
1727 reg |= ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 20);
1728 reg |= dma_priority;
1729 bcmgenet_tdma_writel(priv, reg, DMA_PRIORITY);
1730
1731 /* Configure ring as descriptor ring and re-enable DMA if enabled */
1732 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1733 reg |= dma_ctrl;
1734 if (dma_enable)
1735 reg |= DMA_EN;
1736 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1737 }
1738
1739 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1740 {
1741 int i;
1742
1743 /* disable DMA */
1744 bcmgenet_rdma_writel(priv, 0, DMA_CTRL);
1745 bcmgenet_tdma_writel(priv, 0, DMA_CTRL);
1746
1747 for (i = 0; i < priv->num_tx_bds; i++) {
1748 if (priv->tx_cbs[i].skb != NULL) {
1749 dev_kfree_skb(priv->tx_cbs[i].skb);
1750 priv->tx_cbs[i].skb = NULL;
1751 }
1752 }
1753
1754 bcmgenet_free_rx_buffers(priv);
1755 kfree(priv->rx_cbs);
1756 kfree(priv->tx_cbs);
1757 }
1758
1759 /* init_edma: Initialize DMA control register */
1760 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
1761 {
1762 int ret;
1763
1764 netif_dbg(priv, hw, priv->dev, "bcmgenet: init_edma\n");
1765
1766 /* by default, enable ring 16 (descriptor based) */
1767 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, TOTAL_DESC);
1768 if (ret) {
1769 netdev_err(priv->dev, "failed to initialize RX ring\n");
1770 return ret;
1771 }
1772
1773 /* init rDma */
1774 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1775
1776 /* Init tDma */
1777 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1778
1779 /* Initialize common TX ring structures */
1780 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
1781 priv->num_tx_bds = TOTAL_DESC;
1782 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
1783 GFP_KERNEL);
1784 if (!priv->tx_cbs) {
1785 bcmgenet_fini_dma(priv);
1786 return -ENOMEM;
1787 }
1788
1789 /* initialize multi xmit queue */
1790 bcmgenet_init_multiq(priv->dev);
1791
1792 /* initialize special ring 16 */
1793 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_DEFAULT_BD_CNT,
1794 priv->hw_params->tx_queues *
1795 priv->hw_params->bds_cnt,
1796 TOTAL_DESC);
1797
1798 return 0;
1799 }
1800
1801 /* NAPI polling method*/
1802 static int bcmgenet_poll(struct napi_struct *napi, int budget)
1803 {
1804 struct bcmgenet_priv *priv = container_of(napi,
1805 struct bcmgenet_priv, napi);
1806 unsigned int work_done;
1807
1808 /* tx reclaim */
1809 bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]);
1810
1811 work_done = bcmgenet_desc_rx(priv, budget);
1812
1813 /* Advancing our consumer index*/
1814 priv->rx_c_index += work_done;
1815 priv->rx_c_index &= DMA_C_INDEX_MASK;
1816 bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
1817 priv->rx_c_index, RDMA_CONS_INDEX);
1818 if (work_done < budget) {
1819 napi_complete(napi);
1820 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
1821 INTRL2_CPU_MASK_CLEAR);
1822 }
1823
1824 return work_done;
1825 }
1826
1827 /* Interrupt bottom half */
1828 static void bcmgenet_irq_task(struct work_struct *work)
1829 {
1830 struct bcmgenet_priv *priv = container_of(
1831 work, struct bcmgenet_priv, bcmgenet_irq_work);
1832
1833 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
1834
1835 if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
1836 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
1837 netif_dbg(priv, wol, priv->dev,
1838 "magic packet detected, waking up\n");
1839 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
1840 }
1841
1842 /* Link UP/DOWN event */
1843 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
1844 (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) {
1845 phy_mac_interrupt(priv->phydev,
1846 priv->irq0_stat & UMAC_IRQ_LINK_UP);
1847 priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN);
1848 }
1849 }
1850
1851 /* bcmgenet_isr1: interrupt handler for ring buffer. */
1852 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
1853 {
1854 struct bcmgenet_priv *priv = dev_id;
1855 unsigned int index;
1856
1857 /* Save irq status for bottom-half processing. */
1858 priv->irq1_stat =
1859 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
1860 ~priv->int1_mask;
1861 /* clear interrupts */
1862 bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
1863
1864 netif_dbg(priv, intr, priv->dev,
1865 "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
1866 /* Check the MBDONE interrupts.
1867 * packet is done, reclaim descriptors
1868 */
1869 if (priv->irq1_stat & 0x0000ffff) {
1870 index = 0;
1871 for (index = 0; index < 16; index++) {
1872 if (priv->irq1_stat & (1 << index))
1873 bcmgenet_tx_reclaim(priv->dev,
1874 &priv->tx_rings[index]);
1875 }
1876 }
1877 return IRQ_HANDLED;
1878 }
1879
1880 /* bcmgenet_isr0: Handle various interrupts. */
1881 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
1882 {
1883 struct bcmgenet_priv *priv = dev_id;
1884
1885 /* Save irq status for bottom-half processing. */
1886 priv->irq0_stat =
1887 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
1888 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
1889 /* clear interrupts */
1890 bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
1891
1892 netif_dbg(priv, intr, priv->dev,
1893 "IRQ=0x%x\n", priv->irq0_stat);
1894
1895 if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) {
1896 /* We use NAPI(software interrupt throttling, if
1897 * Rx Descriptor throttling is not used.
1898 * Disable interrupt, will be enabled in the poll method.
1899 */
1900 if (likely(napi_schedule_prep(&priv->napi))) {
1901 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
1902 INTRL2_CPU_MASK_SET);
1903 __napi_schedule(&priv->napi);
1904 }
1905 }
1906 if (priv->irq0_stat &
1907 (UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) {
1908 /* Tx reclaim */
1909 bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]);
1910 }
1911 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
1912 UMAC_IRQ_PHY_DET_F |
1913 UMAC_IRQ_LINK_UP |
1914 UMAC_IRQ_LINK_DOWN |
1915 UMAC_IRQ_HFB_SM |
1916 UMAC_IRQ_HFB_MM |
1917 UMAC_IRQ_MPD_R)) {
1918 /* all other interested interrupts handled in bottom half */
1919 schedule_work(&priv->bcmgenet_irq_work);
1920 }
1921
1922 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
1923 priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
1924 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1925 wake_up(&priv->wq);
1926 }
1927
1928 return IRQ_HANDLED;
1929 }
1930
1931 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
1932 {
1933 struct bcmgenet_priv *priv = dev_id;
1934
1935 pm_wakeup_event(&priv->pdev->dev, 0);
1936
1937 return IRQ_HANDLED;
1938 }
1939
1940 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
1941 {
1942 u32 reg;
1943
1944 reg = bcmgenet_rbuf_ctrl_get(priv);
1945 reg |= BIT(1);
1946 bcmgenet_rbuf_ctrl_set(priv, reg);
1947 udelay(10);
1948
1949 reg &= ~BIT(1);
1950 bcmgenet_rbuf_ctrl_set(priv, reg);
1951 udelay(10);
1952 }
1953
1954 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
1955 unsigned char *addr)
1956 {
1957 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
1958 (addr[2] << 8) | addr[3], UMAC_MAC0);
1959 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
1960 }
1961
1962 static int bcmgenet_wol_resume(struct bcmgenet_priv *priv)
1963 {
1964 /* From WOL-enabled suspend, switch to regular clock */
1965 if (priv->wolopts)
1966 clk_disable_unprepare(priv->clk_wol);
1967
1968 phy_init_hw(priv->phydev);
1969 /* Speed settings must be restored */
1970 bcmgenet_mii_config(priv->dev);
1971
1972 return 0;
1973 }
1974
1975 /* Returns a reusable dma control register value */
1976 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
1977 {
1978 u32 reg;
1979 u32 dma_ctrl;
1980
1981 /* disable DMA */
1982 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
1983 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1984 reg &= ~dma_ctrl;
1985 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1986
1987 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
1988 reg &= ~dma_ctrl;
1989 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
1990
1991 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
1992 udelay(10);
1993 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
1994
1995 return dma_ctrl;
1996 }
1997
1998 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
1999 {
2000 u32 reg;
2001
2002 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2003 reg |= dma_ctrl;
2004 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2005
2006 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2007 reg |= dma_ctrl;
2008 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2009 }
2010
2011 static void bcmgenet_netif_start(struct net_device *dev)
2012 {
2013 struct bcmgenet_priv *priv = netdev_priv(dev);
2014
2015 /* Start the network engine */
2016 napi_enable(&priv->napi);
2017
2018 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2019
2020 if (phy_is_internal(priv->phydev))
2021 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2022
2023 netif_tx_start_all_queues(dev);
2024
2025 phy_start(priv->phydev);
2026 }
2027
2028 static int bcmgenet_open(struct net_device *dev)
2029 {
2030 struct bcmgenet_priv *priv = netdev_priv(dev);
2031 unsigned long dma_ctrl;
2032 u32 reg;
2033 int ret;
2034
2035 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2036
2037 /* Turn on the clock */
2038 if (!IS_ERR(priv->clk))
2039 clk_prepare_enable(priv->clk);
2040
2041 /* take MAC out of reset */
2042 bcmgenet_umac_reset(priv);
2043
2044 ret = init_umac(priv);
2045 if (ret)
2046 goto err_clk_disable;
2047
2048 /* disable ethernet MAC while updating its registers */
2049 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2050
2051 /* Make sure we reflect the value of CRC_CMD_FWD */
2052 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2053 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2054
2055 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2056
2057 if (phy_is_internal(priv->phydev)) {
2058 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2059 reg |= EXT_ENERGY_DET_MASK;
2060 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2061 }
2062
2063 /* Disable RX/TX DMA and flush TX queues */
2064 dma_ctrl = bcmgenet_dma_disable(priv);
2065
2066 /* Reinitialize TDMA and RDMA and SW housekeeping */
2067 ret = bcmgenet_init_dma(priv);
2068 if (ret) {
2069 netdev_err(dev, "failed to initialize DMA\n");
2070 goto err_fini_dma;
2071 }
2072
2073 /* Always enable ring 16 - descriptor ring */
2074 bcmgenet_enable_dma(priv, dma_ctrl);
2075
2076 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2077 dev->name, priv);
2078 if (ret < 0) {
2079 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2080 goto err_fini_dma;
2081 }
2082
2083 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2084 dev->name, priv);
2085 if (ret < 0) {
2086 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2087 goto err_irq0;
2088 }
2089
2090 bcmgenet_netif_start(dev);
2091
2092 return 0;
2093
2094 err_irq0:
2095 free_irq(priv->irq0, dev);
2096 err_fini_dma:
2097 bcmgenet_fini_dma(priv);
2098 err_clk_disable:
2099 if (!IS_ERR(priv->clk))
2100 clk_disable_unprepare(priv->clk);
2101 return ret;
2102 }
2103
2104 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2105 {
2106 int ret = 0;
2107 int timeout = 0;
2108 u32 reg;
2109
2110 /* Disable TDMA to stop add more frames in TX DMA */
2111 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2112 reg &= ~DMA_EN;
2113 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2114
2115 /* Check TDMA status register to confirm TDMA is disabled */
2116 while (timeout++ < DMA_TIMEOUT_VAL) {
2117 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2118 if (reg & DMA_DISABLED)
2119 break;
2120
2121 udelay(1);
2122 }
2123
2124 if (timeout == DMA_TIMEOUT_VAL) {
2125 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2126 ret = -ETIMEDOUT;
2127 }
2128
2129 /* Wait 10ms for packet drain in both tx and rx dma */
2130 usleep_range(10000, 20000);
2131
2132 /* Disable RDMA */
2133 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2134 reg &= ~DMA_EN;
2135 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2136
2137 timeout = 0;
2138 /* Check RDMA status register to confirm RDMA is disabled */
2139 while (timeout++ < DMA_TIMEOUT_VAL) {
2140 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2141 if (reg & DMA_DISABLED)
2142 break;
2143
2144 udelay(1);
2145 }
2146
2147 if (timeout == DMA_TIMEOUT_VAL) {
2148 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2149 ret = -ETIMEDOUT;
2150 }
2151
2152 return ret;
2153 }
2154
2155 static void bcmgenet_netif_stop(struct net_device *dev)
2156 {
2157 struct bcmgenet_priv *priv = netdev_priv(dev);
2158
2159 netif_tx_stop_all_queues(dev);
2160 napi_disable(&priv->napi);
2161 phy_stop(priv->phydev);
2162
2163 bcmgenet_intr_disable(priv);
2164
2165 /* Wait for pending work items to complete. Since interrupts are
2166 * disabled no new work will be scheduled.
2167 */
2168 cancel_work_sync(&priv->bcmgenet_irq_work);
2169
2170 priv->old_pause = -1;
2171 priv->old_link = -1;
2172 priv->old_duplex = -1;
2173 }
2174
2175 static int bcmgenet_close(struct net_device *dev)
2176 {
2177 struct bcmgenet_priv *priv = netdev_priv(dev);
2178 int ret;
2179
2180 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2181
2182 bcmgenet_netif_stop(dev);
2183
2184 /* Disable MAC receive */
2185 umac_enable_set(priv, CMD_RX_EN, false);
2186
2187 ret = bcmgenet_dma_teardown(priv);
2188 if (ret)
2189 return ret;
2190
2191 /* Disable MAC transmit. TX DMA disabled have to done before this */
2192 umac_enable_set(priv, CMD_TX_EN, false);
2193
2194 /* tx reclaim */
2195 bcmgenet_tx_reclaim_all(dev);
2196 bcmgenet_fini_dma(priv);
2197
2198 free_irq(priv->irq0, priv);
2199 free_irq(priv->irq1, priv);
2200
2201 if (phy_is_internal(priv->phydev))
2202 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2203
2204 if (!IS_ERR(priv->clk))
2205 clk_disable_unprepare(priv->clk);
2206
2207 return 0;
2208 }
2209
2210 static void bcmgenet_timeout(struct net_device *dev)
2211 {
2212 struct bcmgenet_priv *priv = netdev_priv(dev);
2213
2214 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2215
2216 dev->trans_start = jiffies;
2217
2218 dev->stats.tx_errors++;
2219
2220 netif_tx_wake_all_queues(dev);
2221 }
2222
2223 #define MAX_MC_COUNT 16
2224
2225 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2226 unsigned char *addr,
2227 int *i,
2228 int *mc)
2229 {
2230 u32 reg;
2231
2232 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2233 UMAC_MDF_ADDR + (*i * 4));
2234 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2235 addr[4] << 8 | addr[5],
2236 UMAC_MDF_ADDR + ((*i + 1) * 4));
2237 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2238 reg |= (1 << (MAX_MC_COUNT - *mc));
2239 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2240 *i += 2;
2241 (*mc)++;
2242 }
2243
2244 static void bcmgenet_set_rx_mode(struct net_device *dev)
2245 {
2246 struct bcmgenet_priv *priv = netdev_priv(dev);
2247 struct netdev_hw_addr *ha;
2248 int i, mc;
2249 u32 reg;
2250
2251 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2252
2253 /* Promiscuous mode */
2254 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2255 if (dev->flags & IFF_PROMISC) {
2256 reg |= CMD_PROMISC;
2257 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2258 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2259 return;
2260 } else {
2261 reg &= ~CMD_PROMISC;
2262 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2263 }
2264
2265 /* UniMac doesn't support ALLMULTI */
2266 if (dev->flags & IFF_ALLMULTI) {
2267 netdev_warn(dev, "ALLMULTI is not supported\n");
2268 return;
2269 }
2270
2271 /* update MDF filter */
2272 i = 0;
2273 mc = 0;
2274 /* Broadcast */
2275 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2276 /* my own address.*/
2277 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2278 /* Unicast list*/
2279 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2280 return;
2281
2282 if (!netdev_uc_empty(dev))
2283 netdev_for_each_uc_addr(ha, dev)
2284 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2285 /* Multicast */
2286 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2287 return;
2288
2289 netdev_for_each_mc_addr(ha, dev)
2290 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2291 }
2292
2293 /* Set the hardware MAC address. */
2294 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2295 {
2296 struct sockaddr *addr = p;
2297
2298 /* Setting the MAC address at the hardware level is not possible
2299 * without disabling the UniMAC RX/TX enable bits.
2300 */
2301 if (netif_running(dev))
2302 return -EBUSY;
2303
2304 ether_addr_copy(dev->dev_addr, addr->sa_data);
2305
2306 return 0;
2307 }
2308
2309 static const struct net_device_ops bcmgenet_netdev_ops = {
2310 .ndo_open = bcmgenet_open,
2311 .ndo_stop = bcmgenet_close,
2312 .ndo_start_xmit = bcmgenet_xmit,
2313 .ndo_tx_timeout = bcmgenet_timeout,
2314 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
2315 .ndo_set_mac_address = bcmgenet_set_mac_addr,
2316 .ndo_do_ioctl = bcmgenet_ioctl,
2317 .ndo_set_features = bcmgenet_set_features,
2318 };
2319
2320 /* Array of GENET hardware parameters/characteristics */
2321 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2322 [GENET_V1] = {
2323 .tx_queues = 0,
2324 .rx_queues = 0,
2325 .bds_cnt = 0,
2326 .bp_in_en_shift = 16,
2327 .bp_in_mask = 0xffff,
2328 .hfb_filter_cnt = 16,
2329 .qtag_mask = 0x1F,
2330 .hfb_offset = 0x1000,
2331 .rdma_offset = 0x2000,
2332 .tdma_offset = 0x3000,
2333 .words_per_bd = 2,
2334 },
2335 [GENET_V2] = {
2336 .tx_queues = 4,
2337 .rx_queues = 4,
2338 .bds_cnt = 32,
2339 .bp_in_en_shift = 16,
2340 .bp_in_mask = 0xffff,
2341 .hfb_filter_cnt = 16,
2342 .qtag_mask = 0x1F,
2343 .tbuf_offset = 0x0600,
2344 .hfb_offset = 0x1000,
2345 .hfb_reg_offset = 0x2000,
2346 .rdma_offset = 0x3000,
2347 .tdma_offset = 0x4000,
2348 .words_per_bd = 2,
2349 .flags = GENET_HAS_EXT,
2350 },
2351 [GENET_V3] = {
2352 .tx_queues = 4,
2353 .rx_queues = 4,
2354 .bds_cnt = 32,
2355 .bp_in_en_shift = 17,
2356 .bp_in_mask = 0x1ffff,
2357 .hfb_filter_cnt = 48,
2358 .qtag_mask = 0x3F,
2359 .tbuf_offset = 0x0600,
2360 .hfb_offset = 0x8000,
2361 .hfb_reg_offset = 0xfc00,
2362 .rdma_offset = 0x10000,
2363 .tdma_offset = 0x11000,
2364 .words_per_bd = 2,
2365 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2366 },
2367 [GENET_V4] = {
2368 .tx_queues = 4,
2369 .rx_queues = 4,
2370 .bds_cnt = 32,
2371 .bp_in_en_shift = 17,
2372 .bp_in_mask = 0x1ffff,
2373 .hfb_filter_cnt = 48,
2374 .qtag_mask = 0x3F,
2375 .tbuf_offset = 0x0600,
2376 .hfb_offset = 0x8000,
2377 .hfb_reg_offset = 0xfc00,
2378 .rdma_offset = 0x2000,
2379 .tdma_offset = 0x4000,
2380 .words_per_bd = 3,
2381 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2382 },
2383 };
2384
2385 /* Infer hardware parameters from the detected GENET version */
2386 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2387 {
2388 struct bcmgenet_hw_params *params;
2389 u32 reg;
2390 u8 major;
2391
2392 if (GENET_IS_V4(priv)) {
2393 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2394 genet_dma_ring_regs = genet_dma_ring_regs_v4;
2395 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2396 priv->version = GENET_V4;
2397 } else if (GENET_IS_V3(priv)) {
2398 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2399 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2400 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2401 priv->version = GENET_V3;
2402 } else if (GENET_IS_V2(priv)) {
2403 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2404 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2405 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2406 priv->version = GENET_V2;
2407 } else if (GENET_IS_V1(priv)) {
2408 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2409 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2410 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2411 priv->version = GENET_V1;
2412 }
2413
2414 /* enum genet_version starts at 1 */
2415 priv->hw_params = &bcmgenet_hw_params[priv->version];
2416 params = priv->hw_params;
2417
2418 /* Read GENET HW version */
2419 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2420 major = (reg >> 24 & 0x0f);
2421 if (major == 5)
2422 major = 4;
2423 else if (major == 0)
2424 major = 1;
2425 if (major != priv->version) {
2426 dev_err(&priv->pdev->dev,
2427 "GENET version mismatch, got: %d, configured for: %d\n",
2428 major, priv->version);
2429 }
2430
2431 /* Print the GENET core version */
2432 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
2433 major, (reg >> 16) & 0x0f, reg & 0xffff);
2434
2435 #ifdef CONFIG_PHYS_ADDR_T_64BIT
2436 if (!(params->flags & GENET_HAS_40BITS))
2437 pr_warn("GENET does not support 40-bits PA\n");
2438 #endif
2439
2440 pr_debug("Configuration for version: %d\n"
2441 "TXq: %1d, RXq: %1d, BDs: %1d\n"
2442 "BP << en: %2d, BP msk: 0x%05x\n"
2443 "HFB count: %2d, QTAQ msk: 0x%05x\n"
2444 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
2445 "RDMA: 0x%05x, TDMA: 0x%05x\n"
2446 "Words/BD: %d\n",
2447 priv->version,
2448 params->tx_queues, params->rx_queues, params->bds_cnt,
2449 params->bp_in_en_shift, params->bp_in_mask,
2450 params->hfb_filter_cnt, params->qtag_mask,
2451 params->tbuf_offset, params->hfb_offset,
2452 params->hfb_reg_offset,
2453 params->rdma_offset, params->tdma_offset,
2454 params->words_per_bd);
2455 }
2456
2457 static const struct of_device_id bcmgenet_match[] = {
2458 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
2459 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
2460 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
2461 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
2462 { },
2463 };
2464
2465 static int bcmgenet_probe(struct platform_device *pdev)
2466 {
2467 struct device_node *dn = pdev->dev.of_node;
2468 const struct of_device_id *of_id;
2469 struct bcmgenet_priv *priv;
2470 struct net_device *dev;
2471 const void *macaddr;
2472 struct resource *r;
2473 int err = -EIO;
2474
2475 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and a single RX queue */
2476 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 1);
2477 if (!dev) {
2478 dev_err(&pdev->dev, "can't allocate net device\n");
2479 return -ENOMEM;
2480 }
2481
2482 of_id = of_match_node(bcmgenet_match, dn);
2483 if (!of_id)
2484 return -EINVAL;
2485
2486 priv = netdev_priv(dev);
2487 priv->irq0 = platform_get_irq(pdev, 0);
2488 priv->irq1 = platform_get_irq(pdev, 1);
2489 priv->wol_irq = platform_get_irq(pdev, 2);
2490 if (!priv->irq0 || !priv->irq1) {
2491 dev_err(&pdev->dev, "can't find IRQs\n");
2492 err = -EINVAL;
2493 goto err;
2494 }
2495
2496 macaddr = of_get_mac_address(dn);
2497 if (!macaddr) {
2498 dev_err(&pdev->dev, "can't find MAC address\n");
2499 err = -EINVAL;
2500 goto err;
2501 }
2502
2503 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2504 priv->base = devm_ioremap_resource(&pdev->dev, r);
2505 if (IS_ERR(priv->base)) {
2506 err = PTR_ERR(priv->base);
2507 goto err;
2508 }
2509
2510 SET_NETDEV_DEV(dev, &pdev->dev);
2511 dev_set_drvdata(&pdev->dev, dev);
2512 ether_addr_copy(dev->dev_addr, macaddr);
2513 dev->watchdog_timeo = 2 * HZ;
2514 dev->ethtool_ops = &bcmgenet_ethtool_ops;
2515 dev->netdev_ops = &bcmgenet_netdev_ops;
2516 netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64);
2517
2518 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
2519
2520 /* Set hardware features */
2521 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
2522 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2523
2524 /* Request the WOL interrupt and advertise suspend if available */
2525 priv->wol_irq_disabled = true;
2526 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
2527 dev->name, priv);
2528 if (!err)
2529 device_set_wakeup_capable(&pdev->dev, 1);
2530
2531 /* Set the needed headroom to account for any possible
2532 * features enabling/disabling at runtime
2533 */
2534 dev->needed_headroom += 64;
2535
2536 netdev_boot_setup_check(dev);
2537
2538 priv->dev = dev;
2539 priv->pdev = pdev;
2540 priv->version = (enum bcmgenet_version)of_id->data;
2541
2542 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
2543 if (IS_ERR(priv->clk))
2544 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
2545
2546 if (!IS_ERR(priv->clk))
2547 clk_prepare_enable(priv->clk);
2548
2549 bcmgenet_set_hw_params(priv);
2550
2551 /* Mii wait queue */
2552 init_waitqueue_head(&priv->wq);
2553 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
2554 priv->rx_buf_len = RX_BUF_LENGTH;
2555 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
2556
2557 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
2558 if (IS_ERR(priv->clk_wol))
2559 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
2560
2561 err = reset_umac(priv);
2562 if (err)
2563 goto err_clk_disable;
2564
2565 err = bcmgenet_mii_init(dev);
2566 if (err)
2567 goto err_clk_disable;
2568
2569 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
2570 * just the ring 16 descriptor based TX
2571 */
2572 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
2573 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
2574
2575 /* libphy will determine the link state */
2576 netif_carrier_off(dev);
2577
2578 /* Turn off the main clock, WOL clock is handled separately */
2579 if (!IS_ERR(priv->clk))
2580 clk_disable_unprepare(priv->clk);
2581
2582 err = register_netdev(dev);
2583 if (err)
2584 goto err;
2585
2586 return err;
2587
2588 err_clk_disable:
2589 if (!IS_ERR(priv->clk))
2590 clk_disable_unprepare(priv->clk);
2591 err:
2592 free_netdev(dev);
2593 return err;
2594 }
2595
2596 static int bcmgenet_remove(struct platform_device *pdev)
2597 {
2598 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
2599
2600 dev_set_drvdata(&pdev->dev, NULL);
2601 unregister_netdev(priv->dev);
2602 bcmgenet_mii_exit(priv->dev);
2603 free_netdev(priv->dev);
2604
2605 return 0;
2606 }
2607
2608 #ifdef CONFIG_PM_SLEEP
2609 static int bcmgenet_suspend(struct device *d)
2610 {
2611 struct net_device *dev = dev_get_drvdata(d);
2612 struct bcmgenet_priv *priv = netdev_priv(dev);
2613 int ret;
2614
2615 if (!netif_running(dev))
2616 return 0;
2617
2618 bcmgenet_netif_stop(dev);
2619
2620 phy_suspend(priv->phydev);
2621
2622 netif_device_detach(dev);
2623
2624 /* Disable MAC receive */
2625 umac_enable_set(priv, CMD_RX_EN, false);
2626
2627 ret = bcmgenet_dma_teardown(priv);
2628 if (ret)
2629 return ret;
2630
2631 /* Disable MAC transmit. TX DMA disabled have to done before this */
2632 umac_enable_set(priv, CMD_TX_EN, false);
2633
2634 /* tx reclaim */
2635 bcmgenet_tx_reclaim_all(dev);
2636 bcmgenet_fini_dma(priv);
2637
2638 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
2639 if (device_may_wakeup(d) && priv->wolopts) {
2640 bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
2641 clk_prepare_enable(priv->clk_wol);
2642 }
2643
2644 /* Turn off the clocks */
2645 clk_disable_unprepare(priv->clk);
2646
2647 return 0;
2648 }
2649
2650 static int bcmgenet_resume(struct device *d)
2651 {
2652 struct net_device *dev = dev_get_drvdata(d);
2653 struct bcmgenet_priv *priv = netdev_priv(dev);
2654 unsigned long dma_ctrl;
2655 int ret;
2656 u32 reg;
2657
2658 if (!netif_running(dev))
2659 return 0;
2660
2661 /* Turn on the clock */
2662 ret = clk_prepare_enable(priv->clk);
2663 if (ret)
2664 return ret;
2665
2666 bcmgenet_umac_reset(priv);
2667
2668 ret = init_umac(priv);
2669 if (ret)
2670 goto out_clk_disable;
2671
2672 ret = bcmgenet_wol_resume(priv);
2673 if (ret)
2674 goto out_clk_disable;
2675
2676 /* disable ethernet MAC while updating its registers */
2677 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2678
2679 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2680
2681 if (phy_is_internal(priv->phydev)) {
2682 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2683 reg |= EXT_ENERGY_DET_MASK;
2684 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2685 }
2686
2687 if (priv->wolopts)
2688 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2689
2690 /* Disable RX/TX DMA and flush TX queues */
2691 dma_ctrl = bcmgenet_dma_disable(priv);
2692
2693 /* Reinitialize TDMA and RDMA and SW housekeeping */
2694 ret = bcmgenet_init_dma(priv);
2695 if (ret) {
2696 netdev_err(dev, "failed to initialize DMA\n");
2697 goto out_clk_disable;
2698 }
2699
2700 /* Always enable ring 16 - descriptor ring */
2701 bcmgenet_enable_dma(priv, dma_ctrl);
2702
2703 netif_device_attach(dev);
2704
2705 phy_resume(priv->phydev);
2706
2707 bcmgenet_netif_start(dev);
2708
2709 return 0;
2710
2711 out_clk_disable:
2712 clk_disable_unprepare(priv->clk);
2713 return ret;
2714 }
2715 #endif /* CONFIG_PM_SLEEP */
2716
2717 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
2718
2719 static struct platform_driver bcmgenet_driver = {
2720 .probe = bcmgenet_probe,
2721 .remove = bcmgenet_remove,
2722 .driver = {
2723 .name = "bcmgenet",
2724 .owner = THIS_MODULE,
2725 .of_match_table = bcmgenet_match,
2726 .pm = &bcmgenet_pm_ops,
2727 },
2728 };
2729 module_platform_driver(bcmgenet_driver);
2730
2731 MODULE_AUTHOR("Broadcom Corporation");
2732 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
2733 MODULE_ALIAS("platform:bcmgenet");
2734 MODULE_LICENSE("GPL");