]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/broadcom/genet/bcmgenet.c
Merge tag 'mmc-v4.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2 * Broadcom GENET (Gigabit Ethernet) controller driver
3 *
4 * Copyright (c) 2014-2017 Broadcom
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT 4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY 0
56
57 #define GENET_Q16_RX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT \
60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH 2048
63 #define SKB_ALIGNMENT 32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
73 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 void __iomem *d, u32 value)
77 {
78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 void __iomem *d)
83 {
84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 void __iomem *d,
89 dma_addr_t addr)
90 {
91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93 /* Register writes to GISB bus can take couple hundred nanoseconds
94 * and are done for each packet, save these expensive writes unless
95 * the platform is explicitly configured for 64-bits/LPAE.
96 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 if (priv->hw_params->flags & GENET_HAS_40BITS)
99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 dmadesc_set_addr(priv, d, addr);
108 dmadesc_set_length_status(priv, d, val);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 void __iomem *d)
113 {
114 dma_addr_t addr;
115
116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118 /* Register writes to GISB bus can take couple hundred nanoseconds
119 * and are done for each packet, save these expensive writes unless
120 * the platform is explicitly configured for 64-bits/LPAE.
121 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 if (priv->hw_params->flags & GENET_HAS_40BITS)
124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 return addr;
127 }
128
129 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 if (GENET_IS_V1(priv))
137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 else
139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 if (GENET_IS_V1(priv))
145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 else
147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151 * between GENET1.1 and GENET2. Only those currently being used
152 * by driver are defined.
153 */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 if (GENET_IS_V1(priv))
157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 else
159 return __raw_readl(priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 if (GENET_IS_V1(priv))
166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 else
168 __raw_writel(val, priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 if (GENET_IS_V1(priv))
175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 else
177 return __raw_readl(priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 if (GENET_IS_V1(priv))
184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 else
186 __raw_writel(val, priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 DMA_RING_CFG = 0,
193 DMA_CTRL,
194 DMA_STATUS,
195 DMA_SCB_BURST_SIZE,
196 DMA_ARB_CTRL,
197 DMA_PRIORITY_0,
198 DMA_PRIORITY_1,
199 DMA_PRIORITY_2,
200 DMA_INDEX2RING_0,
201 DMA_INDEX2RING_1,
202 DMA_INDEX2RING_2,
203 DMA_INDEX2RING_3,
204 DMA_INDEX2RING_4,
205 DMA_INDEX2RING_5,
206 DMA_INDEX2RING_6,
207 DMA_INDEX2RING_7,
208 DMA_RING0_TIMEOUT,
209 DMA_RING1_TIMEOUT,
210 DMA_RING2_TIMEOUT,
211 DMA_RING3_TIMEOUT,
212 DMA_RING4_TIMEOUT,
213 DMA_RING5_TIMEOUT,
214 DMA_RING6_TIMEOUT,
215 DMA_RING7_TIMEOUT,
216 DMA_RING8_TIMEOUT,
217 DMA_RING9_TIMEOUT,
218 DMA_RING10_TIMEOUT,
219 DMA_RING11_TIMEOUT,
220 DMA_RING12_TIMEOUT,
221 DMA_RING13_TIMEOUT,
222 DMA_RING14_TIMEOUT,
223 DMA_RING15_TIMEOUT,
224 DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 [DMA_RING_CFG] = 0x00,
229 [DMA_CTRL] = 0x04,
230 [DMA_STATUS] = 0x08,
231 [DMA_SCB_BURST_SIZE] = 0x0C,
232 [DMA_ARB_CTRL] = 0x2C,
233 [DMA_PRIORITY_0] = 0x30,
234 [DMA_PRIORITY_1] = 0x34,
235 [DMA_PRIORITY_2] = 0x38,
236 [DMA_RING0_TIMEOUT] = 0x2C,
237 [DMA_RING1_TIMEOUT] = 0x30,
238 [DMA_RING2_TIMEOUT] = 0x34,
239 [DMA_RING3_TIMEOUT] = 0x38,
240 [DMA_RING4_TIMEOUT] = 0x3c,
241 [DMA_RING5_TIMEOUT] = 0x40,
242 [DMA_RING6_TIMEOUT] = 0x44,
243 [DMA_RING7_TIMEOUT] = 0x48,
244 [DMA_RING8_TIMEOUT] = 0x4c,
245 [DMA_RING9_TIMEOUT] = 0x50,
246 [DMA_RING10_TIMEOUT] = 0x54,
247 [DMA_RING11_TIMEOUT] = 0x58,
248 [DMA_RING12_TIMEOUT] = 0x5c,
249 [DMA_RING13_TIMEOUT] = 0x60,
250 [DMA_RING14_TIMEOUT] = 0x64,
251 [DMA_RING15_TIMEOUT] = 0x68,
252 [DMA_RING16_TIMEOUT] = 0x6C,
253 [DMA_INDEX2RING_0] = 0x70,
254 [DMA_INDEX2RING_1] = 0x74,
255 [DMA_INDEX2RING_2] = 0x78,
256 [DMA_INDEX2RING_3] = 0x7C,
257 [DMA_INDEX2RING_4] = 0x80,
258 [DMA_INDEX2RING_5] = 0x84,
259 [DMA_INDEX2RING_6] = 0x88,
260 [DMA_INDEX2RING_7] = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 [DMA_RING_CFG] = 0x00,
265 [DMA_CTRL] = 0x04,
266 [DMA_STATUS] = 0x08,
267 [DMA_SCB_BURST_SIZE] = 0x0C,
268 [DMA_ARB_CTRL] = 0x30,
269 [DMA_PRIORITY_0] = 0x34,
270 [DMA_PRIORITY_1] = 0x38,
271 [DMA_PRIORITY_2] = 0x3C,
272 [DMA_RING0_TIMEOUT] = 0x2C,
273 [DMA_RING1_TIMEOUT] = 0x30,
274 [DMA_RING2_TIMEOUT] = 0x34,
275 [DMA_RING3_TIMEOUT] = 0x38,
276 [DMA_RING4_TIMEOUT] = 0x3c,
277 [DMA_RING5_TIMEOUT] = 0x40,
278 [DMA_RING6_TIMEOUT] = 0x44,
279 [DMA_RING7_TIMEOUT] = 0x48,
280 [DMA_RING8_TIMEOUT] = 0x4c,
281 [DMA_RING9_TIMEOUT] = 0x50,
282 [DMA_RING10_TIMEOUT] = 0x54,
283 [DMA_RING11_TIMEOUT] = 0x58,
284 [DMA_RING12_TIMEOUT] = 0x5c,
285 [DMA_RING13_TIMEOUT] = 0x60,
286 [DMA_RING14_TIMEOUT] = 0x64,
287 [DMA_RING15_TIMEOUT] = 0x68,
288 [DMA_RING16_TIMEOUT] = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 [DMA_CTRL] = 0x00,
293 [DMA_STATUS] = 0x04,
294 [DMA_SCB_BURST_SIZE] = 0x0C,
295 [DMA_ARB_CTRL] = 0x30,
296 [DMA_PRIORITY_0] = 0x34,
297 [DMA_PRIORITY_1] = 0x38,
298 [DMA_PRIORITY_2] = 0x3C,
299 [DMA_RING0_TIMEOUT] = 0x2C,
300 [DMA_RING1_TIMEOUT] = 0x30,
301 [DMA_RING2_TIMEOUT] = 0x34,
302 [DMA_RING3_TIMEOUT] = 0x38,
303 [DMA_RING4_TIMEOUT] = 0x3c,
304 [DMA_RING5_TIMEOUT] = 0x40,
305 [DMA_RING6_TIMEOUT] = 0x44,
306 [DMA_RING7_TIMEOUT] = 0x48,
307 [DMA_RING8_TIMEOUT] = 0x4c,
308 [DMA_RING9_TIMEOUT] = 0x50,
309 [DMA_RING10_TIMEOUT] = 0x54,
310 [DMA_RING11_TIMEOUT] = 0x58,
311 [DMA_RING12_TIMEOUT] = 0x5c,
312 [DMA_RING13_TIMEOUT] = 0x60,
313 [DMA_RING14_TIMEOUT] = 0x64,
314 [DMA_RING15_TIMEOUT] = 0x68,
315 [DMA_RING16_TIMEOUT] = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 enum dma_reg r)
328 {
329 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 u32 val, enum dma_reg r)
335 {
336 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 enum dma_reg r)
342 {
343 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 u32 val, enum dma_reg r)
349 {
350 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355 * we merge the common fields and just prefix with T/D the registers
356 * having different meaning depending on the direction
357 */
358 enum dma_ring_reg {
359 TDMA_READ_PTR = 0,
360 RDMA_WRITE_PTR = TDMA_READ_PTR,
361 TDMA_READ_PTR_HI,
362 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 TDMA_CONS_INDEX,
364 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 TDMA_PROD_INDEX,
366 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 DMA_RING_BUF_SIZE,
368 DMA_START_ADDR,
369 DMA_START_ADDR_HI,
370 DMA_END_ADDR,
371 DMA_END_ADDR_HI,
372 DMA_MBUF_DONE_THRESH,
373 TDMA_FLOW_PERIOD,
374 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 TDMA_WRITE_PTR,
376 RDMA_READ_PTR = TDMA_WRITE_PTR,
377 TDMA_WRITE_PTR_HI,
378 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382 * for obvious reasons the LO and HI word parts
383 * are contiguous, but this offsets the other
384 * registers.
385 */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 [TDMA_READ_PTR] = 0x00,
388 [TDMA_READ_PTR_HI] = 0x04,
389 [TDMA_CONS_INDEX] = 0x08,
390 [TDMA_PROD_INDEX] = 0x0C,
391 [DMA_RING_BUF_SIZE] = 0x10,
392 [DMA_START_ADDR] = 0x14,
393 [DMA_START_ADDR_HI] = 0x18,
394 [DMA_END_ADDR] = 0x1C,
395 [DMA_END_ADDR_HI] = 0x20,
396 [DMA_MBUF_DONE_THRESH] = 0x24,
397 [TDMA_FLOW_PERIOD] = 0x28,
398 [TDMA_WRITE_PTR] = 0x2C,
399 [TDMA_WRITE_PTR_HI] = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403 [TDMA_READ_PTR] = 0x00,
404 [TDMA_CONS_INDEX] = 0x04,
405 [TDMA_PROD_INDEX] = 0x08,
406 [DMA_RING_BUF_SIZE] = 0x0C,
407 [DMA_START_ADDR] = 0x10,
408 [DMA_END_ADDR] = 0x14,
409 [DMA_MBUF_DONE_THRESH] = 0x18,
410 [TDMA_FLOW_PERIOD] = 0x1C,
411 [TDMA_WRITE_PTR] = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 unsigned int ring,
419 enum dma_ring_reg r)
420 {
421 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 unsigned int ring, u32 val,
428 enum dma_ring_reg r)
429 {
430 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 unsigned int ring,
437 enum dma_ring_reg r)
438 {
439 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 unsigned int ring, u32 val,
446 enum dma_ring_reg r)
447 {
448 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 (DMA_RING_SIZE * ring) +
450 genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_begin(struct net_device *dev)
454 {
455 struct bcmgenet_priv *priv = netdev_priv(dev);
456
457 /* Turn on the clock */
458 return clk_prepare_enable(priv->clk);
459 }
460
461 static void bcmgenet_complete(struct net_device *dev)
462 {
463 struct bcmgenet_priv *priv = netdev_priv(dev);
464
465 /* Turn off the clock */
466 clk_disable_unprepare(priv->clk);
467 }
468
469 static int bcmgenet_get_link_ksettings(struct net_device *dev,
470 struct ethtool_link_ksettings *cmd)
471 {
472 struct bcmgenet_priv *priv = netdev_priv(dev);
473
474 if (!netif_running(dev))
475 return -EINVAL;
476
477 if (!priv->phydev)
478 return -ENODEV;
479
480 return phy_ethtool_ksettings_get(priv->phydev, cmd);
481 }
482
483 static int bcmgenet_set_link_ksettings(struct net_device *dev,
484 const struct ethtool_link_ksettings *cmd)
485 {
486 struct bcmgenet_priv *priv = netdev_priv(dev);
487
488 if (!netif_running(dev))
489 return -EINVAL;
490
491 if (!priv->phydev)
492 return -ENODEV;
493
494 return phy_ethtool_ksettings_set(priv->phydev, cmd);
495 }
496
497 static int bcmgenet_set_rx_csum(struct net_device *dev,
498 netdev_features_t wanted)
499 {
500 struct bcmgenet_priv *priv = netdev_priv(dev);
501 u32 rbuf_chk_ctrl;
502 bool rx_csum_en;
503
504 rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
505
506 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
507
508 /* enable rx checksumming */
509 if (rx_csum_en)
510 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
511 else
512 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
513 priv->desc_rxchk_en = rx_csum_en;
514
515 /* If UniMAC forwards CRC, we need to skip over it to get
516 * a valid CHK bit to be set in the per-packet status word
517 */
518 if (rx_csum_en && priv->crc_fwd_en)
519 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
520 else
521 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
522
523 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
524
525 return 0;
526 }
527
528 static int bcmgenet_set_tx_csum(struct net_device *dev,
529 netdev_features_t wanted)
530 {
531 struct bcmgenet_priv *priv = netdev_priv(dev);
532 bool desc_64b_en;
533 u32 tbuf_ctrl, rbuf_ctrl;
534
535 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
536 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
537
538 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
539
540 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
541 if (desc_64b_en) {
542 tbuf_ctrl |= RBUF_64B_EN;
543 rbuf_ctrl |= RBUF_64B_EN;
544 } else {
545 tbuf_ctrl &= ~RBUF_64B_EN;
546 rbuf_ctrl &= ~RBUF_64B_EN;
547 }
548 priv->desc_64b_en = desc_64b_en;
549
550 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
551 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
552
553 return 0;
554 }
555
556 static int bcmgenet_set_features(struct net_device *dev,
557 netdev_features_t features)
558 {
559 netdev_features_t changed = features ^ dev->features;
560 netdev_features_t wanted = dev->wanted_features;
561 int ret = 0;
562
563 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
564 ret = bcmgenet_set_tx_csum(dev, wanted);
565 if (changed & (NETIF_F_RXCSUM))
566 ret = bcmgenet_set_rx_csum(dev, wanted);
567
568 return ret;
569 }
570
571 static u32 bcmgenet_get_msglevel(struct net_device *dev)
572 {
573 struct bcmgenet_priv *priv = netdev_priv(dev);
574
575 return priv->msg_enable;
576 }
577
578 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
579 {
580 struct bcmgenet_priv *priv = netdev_priv(dev);
581
582 priv->msg_enable = level;
583 }
584
585 static int bcmgenet_get_coalesce(struct net_device *dev,
586 struct ethtool_coalesce *ec)
587 {
588 struct bcmgenet_priv *priv = netdev_priv(dev);
589
590 ec->tx_max_coalesced_frames =
591 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
592 DMA_MBUF_DONE_THRESH);
593 ec->rx_max_coalesced_frames =
594 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
595 DMA_MBUF_DONE_THRESH);
596 ec->rx_coalesce_usecs =
597 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
598
599 return 0;
600 }
601
602 static int bcmgenet_set_coalesce(struct net_device *dev,
603 struct ethtool_coalesce *ec)
604 {
605 struct bcmgenet_priv *priv = netdev_priv(dev);
606 unsigned int i;
607 u32 reg;
608
609 /* Base system clock is 125Mhz, DMA timeout is this reference clock
610 * divided by 1024, which yields roughly 8.192us, our maximum value
611 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
612 */
613 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
614 ec->tx_max_coalesced_frames == 0 ||
615 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
617 return -EINVAL;
618
619 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
620 return -EINVAL;
621
622 /* GENET TDMA hardware does not support a configurable timeout, but will
623 * always generate an interrupt either after MBDONE packets have been
624 * transmitted, or when the ring is emtpy.
625 */
626 if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
627 ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
628 return -EOPNOTSUPP;
629
630 /* Program all TX queues with the same values, as there is no
631 * ethtool knob to do coalescing on a per-queue basis
632 */
633 for (i = 0; i < priv->hw_params->tx_queues; i++)
634 bcmgenet_tdma_ring_writel(priv, i,
635 ec->tx_max_coalesced_frames,
636 DMA_MBUF_DONE_THRESH);
637 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
638 ec->tx_max_coalesced_frames,
639 DMA_MBUF_DONE_THRESH);
640
641 for (i = 0; i < priv->hw_params->rx_queues; i++) {
642 bcmgenet_rdma_ring_writel(priv, i,
643 ec->rx_max_coalesced_frames,
644 DMA_MBUF_DONE_THRESH);
645
646 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
647 reg &= ~DMA_TIMEOUT_MASK;
648 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
649 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
650 }
651
652 bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
653 ec->rx_max_coalesced_frames,
654 DMA_MBUF_DONE_THRESH);
655
656 reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
657 reg &= ~DMA_TIMEOUT_MASK;
658 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
659 bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
660
661 return 0;
662 }
663
664 /* standard ethtool support functions. */
665 enum bcmgenet_stat_type {
666 BCMGENET_STAT_NETDEV = -1,
667 BCMGENET_STAT_MIB_RX,
668 BCMGENET_STAT_MIB_TX,
669 BCMGENET_STAT_RUNT,
670 BCMGENET_STAT_MISC,
671 BCMGENET_STAT_SOFT,
672 };
673
674 struct bcmgenet_stats {
675 char stat_string[ETH_GSTRING_LEN];
676 int stat_sizeof;
677 int stat_offset;
678 enum bcmgenet_stat_type type;
679 /* reg offset from UMAC base for misc counters */
680 u16 reg_offset;
681 };
682
683 #define STAT_NETDEV(m) { \
684 .stat_string = __stringify(m), \
685 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
686 .stat_offset = offsetof(struct net_device_stats, m), \
687 .type = BCMGENET_STAT_NETDEV, \
688 }
689
690 #define STAT_GENET_MIB(str, m, _type) { \
691 .stat_string = str, \
692 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
693 .stat_offset = offsetof(struct bcmgenet_priv, m), \
694 .type = _type, \
695 }
696
697 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
698 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
699 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
700 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
701
702 #define STAT_GENET_MISC(str, m, offset) { \
703 .stat_string = str, \
704 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
705 .stat_offset = offsetof(struct bcmgenet_priv, m), \
706 .type = BCMGENET_STAT_MISC, \
707 .reg_offset = offset, \
708 }
709
710
711 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
712 * between the end of TX stats and the beginning of the RX RUNT
713 */
714 #define BCMGENET_STAT_OFFSET 0xc
715
716 /* Hardware counters must be kept in sync because the order/offset
717 * is important here (order in structure declaration = order in hardware)
718 */
719 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
720 /* general stats */
721 STAT_NETDEV(rx_packets),
722 STAT_NETDEV(tx_packets),
723 STAT_NETDEV(rx_bytes),
724 STAT_NETDEV(tx_bytes),
725 STAT_NETDEV(rx_errors),
726 STAT_NETDEV(tx_errors),
727 STAT_NETDEV(rx_dropped),
728 STAT_NETDEV(tx_dropped),
729 STAT_NETDEV(multicast),
730 /* UniMAC RSV counters */
731 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
732 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
733 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
734 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
735 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
736 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
737 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
738 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
739 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
740 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
741 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
742 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
743 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
744 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
745 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
746 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
747 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
748 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
749 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
750 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
751 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
752 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
753 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
754 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
755 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
756 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
757 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
758 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
759 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
760 /* UniMAC TSV counters */
761 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
762 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
763 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
764 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
765 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
766 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
767 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
768 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
769 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
770 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
771 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
772 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
773 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
774 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
775 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
776 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
777 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
778 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
779 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
780 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
781 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
782 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
783 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
784 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
785 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
786 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
787 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
788 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
789 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
790 /* UniMAC RUNT counters */
791 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
792 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
793 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
794 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
795 /* Misc UniMAC counters */
796 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
797 UMAC_RBUF_OVFL_CNT_V1),
798 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
799 UMAC_RBUF_ERR_CNT_V1),
800 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
801 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
802 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
803 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
804 };
805
806 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
807
808 static void bcmgenet_get_drvinfo(struct net_device *dev,
809 struct ethtool_drvinfo *info)
810 {
811 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
812 strlcpy(info->version, "v2.0", sizeof(info->version));
813 }
814
815 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
816 {
817 switch (string_set) {
818 case ETH_SS_STATS:
819 return BCMGENET_STATS_LEN;
820 default:
821 return -EOPNOTSUPP;
822 }
823 }
824
825 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
826 u8 *data)
827 {
828 int i;
829
830 switch (stringset) {
831 case ETH_SS_STATS:
832 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
833 memcpy(data + i * ETH_GSTRING_LEN,
834 bcmgenet_gstrings_stats[i].stat_string,
835 ETH_GSTRING_LEN);
836 }
837 break;
838 }
839 }
840
841 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
842 {
843 u16 new_offset;
844 u32 val;
845
846 switch (offset) {
847 case UMAC_RBUF_OVFL_CNT_V1:
848 if (GENET_IS_V2(priv))
849 new_offset = RBUF_OVFL_CNT_V2;
850 else
851 new_offset = RBUF_OVFL_CNT_V3PLUS;
852
853 val = bcmgenet_rbuf_readl(priv, new_offset);
854 /* clear if overflowed */
855 if (val == ~0)
856 bcmgenet_rbuf_writel(priv, 0, new_offset);
857 break;
858 case UMAC_RBUF_ERR_CNT_V1:
859 if (GENET_IS_V2(priv))
860 new_offset = RBUF_ERR_CNT_V2;
861 else
862 new_offset = RBUF_ERR_CNT_V3PLUS;
863
864 val = bcmgenet_rbuf_readl(priv, new_offset);
865 /* clear if overflowed */
866 if (val == ~0)
867 bcmgenet_rbuf_writel(priv, 0, new_offset);
868 break;
869 default:
870 val = bcmgenet_umac_readl(priv, offset);
871 /* clear if overflowed */
872 if (val == ~0)
873 bcmgenet_umac_writel(priv, 0, offset);
874 break;
875 }
876
877 return val;
878 }
879
880 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
881 {
882 int i, j = 0;
883
884 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
885 const struct bcmgenet_stats *s;
886 u8 offset = 0;
887 u32 val = 0;
888 char *p;
889
890 s = &bcmgenet_gstrings_stats[i];
891 switch (s->type) {
892 case BCMGENET_STAT_NETDEV:
893 case BCMGENET_STAT_SOFT:
894 continue;
895 case BCMGENET_STAT_RUNT:
896 offset += BCMGENET_STAT_OFFSET;
897 /* fall through */
898 case BCMGENET_STAT_MIB_TX:
899 offset += BCMGENET_STAT_OFFSET;
900 /* fall through */
901 case BCMGENET_STAT_MIB_RX:
902 val = bcmgenet_umac_readl(priv,
903 UMAC_MIB_START + j + offset);
904 offset = 0; /* Reset Offset */
905 break;
906 case BCMGENET_STAT_MISC:
907 if (GENET_IS_V1(priv)) {
908 val = bcmgenet_umac_readl(priv, s->reg_offset);
909 /* clear if overflowed */
910 if (val == ~0)
911 bcmgenet_umac_writel(priv, 0,
912 s->reg_offset);
913 } else {
914 val = bcmgenet_update_stat_misc(priv,
915 s->reg_offset);
916 }
917 break;
918 }
919
920 j += s->stat_sizeof;
921 p = (char *)priv + s->stat_offset;
922 *(u32 *)p = val;
923 }
924 }
925
926 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
927 struct ethtool_stats *stats,
928 u64 *data)
929 {
930 struct bcmgenet_priv *priv = netdev_priv(dev);
931 int i;
932
933 if (netif_running(dev))
934 bcmgenet_update_mib_counters(priv);
935
936 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
937 const struct bcmgenet_stats *s;
938 char *p;
939
940 s = &bcmgenet_gstrings_stats[i];
941 if (s->type == BCMGENET_STAT_NETDEV)
942 p = (char *)&dev->stats;
943 else
944 p = (char *)priv;
945 p += s->stat_offset;
946 if (sizeof(unsigned long) != sizeof(u32) &&
947 s->stat_sizeof == sizeof(unsigned long))
948 data[i] = *(unsigned long *)p;
949 else
950 data[i] = *(u32 *)p;
951 }
952 }
953
954 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
955 {
956 struct bcmgenet_priv *priv = netdev_priv(dev);
957 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
958 u32 reg;
959
960 if (enable && !priv->clk_eee_enabled) {
961 clk_prepare_enable(priv->clk_eee);
962 priv->clk_eee_enabled = true;
963 }
964
965 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
966 if (enable)
967 reg |= EEE_EN;
968 else
969 reg &= ~EEE_EN;
970 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
971
972 /* Enable EEE and switch to a 27Mhz clock automatically */
973 reg = __raw_readl(priv->base + off);
974 if (enable)
975 reg |= TBUF_EEE_EN | TBUF_PM_EN;
976 else
977 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
978 __raw_writel(reg, priv->base + off);
979
980 /* Do the same for thing for RBUF */
981 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
982 if (enable)
983 reg |= RBUF_EEE_EN | RBUF_PM_EN;
984 else
985 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
986 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
987
988 if (!enable && priv->clk_eee_enabled) {
989 clk_disable_unprepare(priv->clk_eee);
990 priv->clk_eee_enabled = false;
991 }
992
993 priv->eee.eee_enabled = enable;
994 priv->eee.eee_active = enable;
995 }
996
997 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
998 {
999 struct bcmgenet_priv *priv = netdev_priv(dev);
1000 struct ethtool_eee *p = &priv->eee;
1001
1002 if (GENET_IS_V1(priv))
1003 return -EOPNOTSUPP;
1004
1005 e->eee_enabled = p->eee_enabled;
1006 e->eee_active = p->eee_active;
1007 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1008
1009 return phy_ethtool_get_eee(priv->phydev, e);
1010 }
1011
1012 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1013 {
1014 struct bcmgenet_priv *priv = netdev_priv(dev);
1015 struct ethtool_eee *p = &priv->eee;
1016 int ret = 0;
1017
1018 if (GENET_IS_V1(priv))
1019 return -EOPNOTSUPP;
1020
1021 p->eee_enabled = e->eee_enabled;
1022
1023 if (!p->eee_enabled) {
1024 bcmgenet_eee_enable_set(dev, false);
1025 } else {
1026 ret = phy_init_eee(priv->phydev, 0);
1027 if (ret) {
1028 netif_err(priv, hw, dev, "EEE initialization failed\n");
1029 return ret;
1030 }
1031
1032 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1033 bcmgenet_eee_enable_set(dev, true);
1034 }
1035
1036 return phy_ethtool_set_eee(priv->phydev, e);
1037 }
1038
1039 /* standard ethtool support functions. */
1040 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1041 .begin = bcmgenet_begin,
1042 .complete = bcmgenet_complete,
1043 .get_strings = bcmgenet_get_strings,
1044 .get_sset_count = bcmgenet_get_sset_count,
1045 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1046 .get_drvinfo = bcmgenet_get_drvinfo,
1047 .get_link = ethtool_op_get_link,
1048 .get_msglevel = bcmgenet_get_msglevel,
1049 .set_msglevel = bcmgenet_set_msglevel,
1050 .get_wol = bcmgenet_get_wol,
1051 .set_wol = bcmgenet_set_wol,
1052 .get_eee = bcmgenet_get_eee,
1053 .set_eee = bcmgenet_set_eee,
1054 .nway_reset = phy_ethtool_nway_reset,
1055 .get_coalesce = bcmgenet_get_coalesce,
1056 .set_coalesce = bcmgenet_set_coalesce,
1057 .get_link_ksettings = bcmgenet_get_link_ksettings,
1058 .set_link_ksettings = bcmgenet_set_link_ksettings,
1059 };
1060
1061 /* Power down the unimac, based on mode. */
1062 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1063 enum bcmgenet_power_mode mode)
1064 {
1065 int ret = 0;
1066 u32 reg;
1067
1068 switch (mode) {
1069 case GENET_POWER_CABLE_SENSE:
1070 phy_detach(priv->phydev);
1071 break;
1072
1073 case GENET_POWER_WOL_MAGIC:
1074 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1075 break;
1076
1077 case GENET_POWER_PASSIVE:
1078 /* Power down LED */
1079 if (priv->hw_params->flags & GENET_HAS_EXT) {
1080 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1081 reg |= (EXT_PWR_DOWN_PHY |
1082 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1083 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1084
1085 bcmgenet_phy_power_set(priv->dev, false);
1086 }
1087 break;
1088 default:
1089 break;
1090 }
1091
1092 return 0;
1093 }
1094
1095 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1096 enum bcmgenet_power_mode mode)
1097 {
1098 u32 reg;
1099
1100 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1101 return;
1102
1103 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1104
1105 switch (mode) {
1106 case GENET_POWER_PASSIVE:
1107 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1108 EXT_PWR_DOWN_BIAS);
1109 /* fallthrough */
1110 case GENET_POWER_CABLE_SENSE:
1111 /* enable APD */
1112 reg |= EXT_PWR_DN_EN_LD;
1113 break;
1114 case GENET_POWER_WOL_MAGIC:
1115 bcmgenet_wol_power_up_cfg(priv, mode);
1116 return;
1117 default:
1118 break;
1119 }
1120
1121 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1122 if (mode == GENET_POWER_PASSIVE) {
1123 bcmgenet_phy_power_set(priv->dev, true);
1124 bcmgenet_mii_reset(priv->dev);
1125 }
1126 }
1127
1128 /* ioctl handle special commands that are not present in ethtool. */
1129 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1130 {
1131 struct bcmgenet_priv *priv = netdev_priv(dev);
1132 int val = 0;
1133
1134 if (!netif_running(dev))
1135 return -EINVAL;
1136
1137 switch (cmd) {
1138 case SIOCGMIIPHY:
1139 case SIOCGMIIREG:
1140 case SIOCSMIIREG:
1141 if (!priv->phydev)
1142 val = -ENODEV;
1143 else
1144 val = phy_mii_ioctl(priv->phydev, rq, cmd);
1145 break;
1146
1147 default:
1148 val = -EINVAL;
1149 break;
1150 }
1151
1152 return val;
1153 }
1154
1155 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1156 struct bcmgenet_tx_ring *ring)
1157 {
1158 struct enet_cb *tx_cb_ptr;
1159
1160 tx_cb_ptr = ring->cbs;
1161 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1162
1163 /* Advancing local write pointer */
1164 if (ring->write_ptr == ring->end_ptr)
1165 ring->write_ptr = ring->cb_ptr;
1166 else
1167 ring->write_ptr++;
1168
1169 return tx_cb_ptr;
1170 }
1171
1172 /* Simple helper to free a control block's resources */
1173 static void bcmgenet_free_cb(struct enet_cb *cb)
1174 {
1175 dev_kfree_skb_any(cb->skb);
1176 cb->skb = NULL;
1177 dma_unmap_addr_set(cb, dma_addr, 0);
1178 }
1179
1180 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1181 {
1182 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1183 INTRL2_CPU_MASK_SET);
1184 }
1185
1186 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1187 {
1188 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1189 INTRL2_CPU_MASK_CLEAR);
1190 }
1191
1192 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1193 {
1194 bcmgenet_intrl2_1_writel(ring->priv,
1195 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1196 INTRL2_CPU_MASK_SET);
1197 }
1198
1199 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1200 {
1201 bcmgenet_intrl2_1_writel(ring->priv,
1202 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1203 INTRL2_CPU_MASK_CLEAR);
1204 }
1205
1206 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1207 {
1208 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1209 INTRL2_CPU_MASK_SET);
1210 }
1211
1212 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1213 {
1214 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1215 INTRL2_CPU_MASK_CLEAR);
1216 }
1217
1218 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1219 {
1220 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1221 INTRL2_CPU_MASK_CLEAR);
1222 }
1223
1224 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1225 {
1226 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1227 INTRL2_CPU_MASK_SET);
1228 }
1229
1230 /* Unlocked version of the reclaim routine */
1231 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1232 struct bcmgenet_tx_ring *ring)
1233 {
1234 struct bcmgenet_priv *priv = netdev_priv(dev);
1235 struct device *kdev = &priv->pdev->dev;
1236 struct enet_cb *tx_cb_ptr;
1237 unsigned int pkts_compl = 0;
1238 unsigned int bytes_compl = 0;
1239 unsigned int c_index;
1240 unsigned int txbds_ready;
1241 unsigned int txbds_processed = 0;
1242
1243 /* Compute how many buffers are transmitted since last xmit call */
1244 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1245 c_index &= DMA_C_INDEX_MASK;
1246
1247 if (likely(c_index >= ring->c_index))
1248 txbds_ready = c_index - ring->c_index;
1249 else
1250 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1251
1252 netif_dbg(priv, tx_done, dev,
1253 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1254 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1255
1256 /* Reclaim transmitted buffers */
1257 while (txbds_processed < txbds_ready) {
1258 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1259 if (tx_cb_ptr->skb) {
1260 pkts_compl++;
1261 bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1262 dma_unmap_single(kdev,
1263 dma_unmap_addr(tx_cb_ptr, dma_addr),
1264 dma_unmap_len(tx_cb_ptr, dma_len),
1265 DMA_TO_DEVICE);
1266 bcmgenet_free_cb(tx_cb_ptr);
1267 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1268 dma_unmap_page(kdev,
1269 dma_unmap_addr(tx_cb_ptr, dma_addr),
1270 dma_unmap_len(tx_cb_ptr, dma_len),
1271 DMA_TO_DEVICE);
1272 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1273 }
1274
1275 txbds_processed++;
1276 if (likely(ring->clean_ptr < ring->end_ptr))
1277 ring->clean_ptr++;
1278 else
1279 ring->clean_ptr = ring->cb_ptr;
1280 }
1281
1282 ring->free_bds += txbds_processed;
1283 ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1284
1285 dev->stats.tx_packets += pkts_compl;
1286 dev->stats.tx_bytes += bytes_compl;
1287
1288 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1289 pkts_compl, bytes_compl);
1290
1291 return pkts_compl;
1292 }
1293
1294 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1295 struct bcmgenet_tx_ring *ring)
1296 {
1297 unsigned int released;
1298 unsigned long flags;
1299
1300 spin_lock_irqsave(&ring->lock, flags);
1301 released = __bcmgenet_tx_reclaim(dev, ring);
1302 spin_unlock_irqrestore(&ring->lock, flags);
1303
1304 return released;
1305 }
1306
1307 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1308 {
1309 struct bcmgenet_tx_ring *ring =
1310 container_of(napi, struct bcmgenet_tx_ring, napi);
1311 unsigned int work_done = 0;
1312 struct netdev_queue *txq;
1313 unsigned long flags;
1314
1315 spin_lock_irqsave(&ring->lock, flags);
1316 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1317 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1318 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1319 netif_tx_wake_queue(txq);
1320 }
1321 spin_unlock_irqrestore(&ring->lock, flags);
1322
1323 if (work_done == 0) {
1324 napi_complete(napi);
1325 ring->int_enable(ring);
1326
1327 return 0;
1328 }
1329
1330 return budget;
1331 }
1332
1333 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1334 {
1335 struct bcmgenet_priv *priv = netdev_priv(dev);
1336 int i;
1337
1338 if (netif_is_multiqueue(dev)) {
1339 for (i = 0; i < priv->hw_params->tx_queues; i++)
1340 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1341 }
1342
1343 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1344 }
1345
1346 /* Transmits a single SKB (either head of a fragment or a single SKB)
1347 * caller must hold priv->lock
1348 */
1349 static int bcmgenet_xmit_single(struct net_device *dev,
1350 struct sk_buff *skb,
1351 u16 dma_desc_flags,
1352 struct bcmgenet_tx_ring *ring)
1353 {
1354 struct bcmgenet_priv *priv = netdev_priv(dev);
1355 struct device *kdev = &priv->pdev->dev;
1356 struct enet_cb *tx_cb_ptr;
1357 unsigned int skb_len;
1358 dma_addr_t mapping;
1359 u32 length_status;
1360 int ret;
1361
1362 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1363
1364 if (unlikely(!tx_cb_ptr))
1365 BUG();
1366
1367 tx_cb_ptr->skb = skb;
1368
1369 skb_len = skb_headlen(skb);
1370
1371 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1372 ret = dma_mapping_error(kdev, mapping);
1373 if (ret) {
1374 priv->mib.tx_dma_failed++;
1375 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1376 dev_kfree_skb(skb);
1377 return ret;
1378 }
1379
1380 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1381 dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1382 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1383 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1384 DMA_TX_APPEND_CRC;
1385
1386 if (skb->ip_summed == CHECKSUM_PARTIAL)
1387 length_status |= DMA_TX_DO_CSUM;
1388
1389 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1390
1391 return 0;
1392 }
1393
1394 /* Transmit a SKB fragment */
1395 static int bcmgenet_xmit_frag(struct net_device *dev,
1396 skb_frag_t *frag,
1397 u16 dma_desc_flags,
1398 struct bcmgenet_tx_ring *ring)
1399 {
1400 struct bcmgenet_priv *priv = netdev_priv(dev);
1401 struct device *kdev = &priv->pdev->dev;
1402 struct enet_cb *tx_cb_ptr;
1403 unsigned int frag_size;
1404 dma_addr_t mapping;
1405 int ret;
1406
1407 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1408
1409 if (unlikely(!tx_cb_ptr))
1410 BUG();
1411
1412 tx_cb_ptr->skb = NULL;
1413
1414 frag_size = skb_frag_size(frag);
1415
1416 mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1417 ret = dma_mapping_error(kdev, mapping);
1418 if (ret) {
1419 priv->mib.tx_dma_failed++;
1420 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1421 __func__);
1422 return ret;
1423 }
1424
1425 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1426 dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1427
1428 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1429 (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1430 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1431
1432 return 0;
1433 }
1434
1435 /* Reallocate the SKB to put enough headroom in front of it and insert
1436 * the transmit checksum offsets in the descriptors
1437 */
1438 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1439 struct sk_buff *skb)
1440 {
1441 struct status_64 *status = NULL;
1442 struct sk_buff *new_skb;
1443 u16 offset;
1444 u8 ip_proto;
1445 u16 ip_ver;
1446 u32 tx_csum_info;
1447
1448 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1449 /* If 64 byte status block enabled, must make sure skb has
1450 * enough headroom for us to insert 64B status block.
1451 */
1452 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1453 dev_kfree_skb(skb);
1454 if (!new_skb) {
1455 dev->stats.tx_dropped++;
1456 return NULL;
1457 }
1458 skb = new_skb;
1459 }
1460
1461 skb_push(skb, sizeof(*status));
1462 status = (struct status_64 *)skb->data;
1463
1464 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1465 ip_ver = htons(skb->protocol);
1466 switch (ip_ver) {
1467 case ETH_P_IP:
1468 ip_proto = ip_hdr(skb)->protocol;
1469 break;
1470 case ETH_P_IPV6:
1471 ip_proto = ipv6_hdr(skb)->nexthdr;
1472 break;
1473 default:
1474 return skb;
1475 }
1476
1477 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1478 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1479 (offset + skb->csum_offset);
1480
1481 /* Set the length valid bit for TCP and UDP and just set
1482 * the special UDP flag for IPv4, else just set to 0.
1483 */
1484 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1485 tx_csum_info |= STATUS_TX_CSUM_LV;
1486 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1487 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1488 } else {
1489 tx_csum_info = 0;
1490 }
1491
1492 status->tx_csum_info = tx_csum_info;
1493 }
1494
1495 return skb;
1496 }
1497
1498 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1499 {
1500 struct bcmgenet_priv *priv = netdev_priv(dev);
1501 struct bcmgenet_tx_ring *ring = NULL;
1502 struct netdev_queue *txq;
1503 unsigned long flags = 0;
1504 int nr_frags, index;
1505 u16 dma_desc_flags;
1506 int ret;
1507 int i;
1508
1509 index = skb_get_queue_mapping(skb);
1510 /* Mapping strategy:
1511 * queue_mapping = 0, unclassified, packet xmited through ring16
1512 * queue_mapping = 1, goes to ring 0. (highest priority queue
1513 * queue_mapping = 2, goes to ring 1.
1514 * queue_mapping = 3, goes to ring 2.
1515 * queue_mapping = 4, goes to ring 3.
1516 */
1517 if (index == 0)
1518 index = DESC_INDEX;
1519 else
1520 index -= 1;
1521
1522 ring = &priv->tx_rings[index];
1523 txq = netdev_get_tx_queue(dev, ring->queue);
1524
1525 nr_frags = skb_shinfo(skb)->nr_frags;
1526
1527 spin_lock_irqsave(&ring->lock, flags);
1528 if (ring->free_bds <= (nr_frags + 1)) {
1529 if (!netif_tx_queue_stopped(txq)) {
1530 netif_tx_stop_queue(txq);
1531 netdev_err(dev,
1532 "%s: tx ring %d full when queue %d awake\n",
1533 __func__, index, ring->queue);
1534 }
1535 ret = NETDEV_TX_BUSY;
1536 goto out;
1537 }
1538
1539 if (skb_padto(skb, ETH_ZLEN)) {
1540 ret = NETDEV_TX_OK;
1541 goto out;
1542 }
1543
1544 /* Retain how many bytes will be sent on the wire, without TSB inserted
1545 * by transmit checksum offload
1546 */
1547 GENET_CB(skb)->bytes_sent = skb->len;
1548
1549 /* set the SKB transmit checksum */
1550 if (priv->desc_64b_en) {
1551 skb = bcmgenet_put_tx_csum(dev, skb);
1552 if (!skb) {
1553 ret = NETDEV_TX_OK;
1554 goto out;
1555 }
1556 }
1557
1558 dma_desc_flags = DMA_SOP;
1559 if (nr_frags == 0)
1560 dma_desc_flags |= DMA_EOP;
1561
1562 /* Transmit single SKB or head of fragment list */
1563 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1564 if (ret) {
1565 ret = NETDEV_TX_OK;
1566 goto out;
1567 }
1568
1569 /* xmit fragment */
1570 for (i = 0; i < nr_frags; i++) {
1571 ret = bcmgenet_xmit_frag(dev,
1572 &skb_shinfo(skb)->frags[i],
1573 (i == nr_frags - 1) ? DMA_EOP : 0,
1574 ring);
1575 if (ret) {
1576 ret = NETDEV_TX_OK;
1577 goto out;
1578 }
1579 }
1580
1581 skb_tx_timestamp(skb);
1582
1583 /* Decrement total BD count and advance our write pointer */
1584 ring->free_bds -= nr_frags + 1;
1585 ring->prod_index += nr_frags + 1;
1586 ring->prod_index &= DMA_P_INDEX_MASK;
1587
1588 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1589
1590 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1591 netif_tx_stop_queue(txq);
1592
1593 if (!skb->xmit_more || netif_xmit_stopped(txq))
1594 /* Packets are ready, update producer index */
1595 bcmgenet_tdma_ring_writel(priv, ring->index,
1596 ring->prod_index, TDMA_PROD_INDEX);
1597 out:
1598 spin_unlock_irqrestore(&ring->lock, flags);
1599
1600 return ret;
1601 }
1602
1603 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1604 struct enet_cb *cb)
1605 {
1606 struct device *kdev = &priv->pdev->dev;
1607 struct sk_buff *skb;
1608 struct sk_buff *rx_skb;
1609 dma_addr_t mapping;
1610
1611 /* Allocate a new Rx skb */
1612 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1613 if (!skb) {
1614 priv->mib.alloc_rx_buff_failed++;
1615 netif_err(priv, rx_err, priv->dev,
1616 "%s: Rx skb allocation failed\n", __func__);
1617 return NULL;
1618 }
1619
1620 /* DMA-map the new Rx skb */
1621 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1622 DMA_FROM_DEVICE);
1623 if (dma_mapping_error(kdev, mapping)) {
1624 priv->mib.rx_dma_failed++;
1625 dev_kfree_skb_any(skb);
1626 netif_err(priv, rx_err, priv->dev,
1627 "%s: Rx skb DMA mapping failed\n", __func__);
1628 return NULL;
1629 }
1630
1631 /* Grab the current Rx skb from the ring and DMA-unmap it */
1632 rx_skb = cb->skb;
1633 if (likely(rx_skb))
1634 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1635 priv->rx_buf_len, DMA_FROM_DEVICE);
1636
1637 /* Put the new Rx skb on the ring */
1638 cb->skb = skb;
1639 dma_unmap_addr_set(cb, dma_addr, mapping);
1640 dmadesc_set_addr(priv, cb->bd_addr, mapping);
1641
1642 /* Return the current Rx skb to caller */
1643 return rx_skb;
1644 }
1645
1646 /* bcmgenet_desc_rx - descriptor based rx process.
1647 * this could be called from bottom half, or from NAPI polling method.
1648 */
1649 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1650 unsigned int budget)
1651 {
1652 struct bcmgenet_priv *priv = ring->priv;
1653 struct net_device *dev = priv->dev;
1654 struct enet_cb *cb;
1655 struct sk_buff *skb;
1656 u32 dma_length_status;
1657 unsigned long dma_flag;
1658 int len;
1659 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1660 unsigned int p_index;
1661 unsigned int discards;
1662 unsigned int chksum_ok = 0;
1663
1664 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1665
1666 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1667 DMA_P_INDEX_DISCARD_CNT_MASK;
1668 if (discards > ring->old_discards) {
1669 discards = discards - ring->old_discards;
1670 dev->stats.rx_missed_errors += discards;
1671 dev->stats.rx_errors += discards;
1672 ring->old_discards += discards;
1673
1674 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1675 if (ring->old_discards >= 0xC000) {
1676 ring->old_discards = 0;
1677 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1678 RDMA_PROD_INDEX);
1679 }
1680 }
1681
1682 p_index &= DMA_P_INDEX_MASK;
1683
1684 if (likely(p_index >= ring->c_index))
1685 rxpkttoprocess = p_index - ring->c_index;
1686 else
1687 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1688 p_index;
1689
1690 netif_dbg(priv, rx_status, dev,
1691 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1692
1693 while ((rxpktprocessed < rxpkttoprocess) &&
1694 (rxpktprocessed < budget)) {
1695 cb = &priv->rx_cbs[ring->read_ptr];
1696 skb = bcmgenet_rx_refill(priv, cb);
1697
1698 if (unlikely(!skb)) {
1699 dev->stats.rx_dropped++;
1700 goto next;
1701 }
1702
1703 if (!priv->desc_64b_en) {
1704 dma_length_status =
1705 dmadesc_get_length_status(priv, cb->bd_addr);
1706 } else {
1707 struct status_64 *status;
1708
1709 status = (struct status_64 *)skb->data;
1710 dma_length_status = status->length_status;
1711 }
1712
1713 /* DMA flags and length are still valid no matter how
1714 * we got the Receive Status Vector (64B RSB or register)
1715 */
1716 dma_flag = dma_length_status & 0xffff;
1717 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1718
1719 netif_dbg(priv, rx_status, dev,
1720 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1721 __func__, p_index, ring->c_index,
1722 ring->read_ptr, dma_length_status);
1723
1724 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1725 netif_err(priv, rx_status, dev,
1726 "dropping fragmented packet!\n");
1727 dev->stats.rx_errors++;
1728 dev_kfree_skb_any(skb);
1729 goto next;
1730 }
1731
1732 /* report errors */
1733 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1734 DMA_RX_OV |
1735 DMA_RX_NO |
1736 DMA_RX_LG |
1737 DMA_RX_RXER))) {
1738 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1739 (unsigned int)dma_flag);
1740 if (dma_flag & DMA_RX_CRC_ERROR)
1741 dev->stats.rx_crc_errors++;
1742 if (dma_flag & DMA_RX_OV)
1743 dev->stats.rx_over_errors++;
1744 if (dma_flag & DMA_RX_NO)
1745 dev->stats.rx_frame_errors++;
1746 if (dma_flag & DMA_RX_LG)
1747 dev->stats.rx_length_errors++;
1748 dev->stats.rx_errors++;
1749 dev_kfree_skb_any(skb);
1750 goto next;
1751 } /* error packet */
1752
1753 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1754 priv->desc_rxchk_en;
1755
1756 skb_put(skb, len);
1757 if (priv->desc_64b_en) {
1758 skb_pull(skb, 64);
1759 len -= 64;
1760 }
1761
1762 if (likely(chksum_ok))
1763 skb->ip_summed = CHECKSUM_UNNECESSARY;
1764
1765 /* remove hardware 2bytes added for IP alignment */
1766 skb_pull(skb, 2);
1767 len -= 2;
1768
1769 if (priv->crc_fwd_en) {
1770 skb_trim(skb, len - ETH_FCS_LEN);
1771 len -= ETH_FCS_LEN;
1772 }
1773
1774 /*Finish setting up the received SKB and send it to the kernel*/
1775 skb->protocol = eth_type_trans(skb, priv->dev);
1776 dev->stats.rx_packets++;
1777 dev->stats.rx_bytes += len;
1778 if (dma_flag & DMA_RX_MULT)
1779 dev->stats.multicast++;
1780
1781 /* Notify kernel */
1782 napi_gro_receive(&ring->napi, skb);
1783 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1784
1785 next:
1786 rxpktprocessed++;
1787 if (likely(ring->read_ptr < ring->end_ptr))
1788 ring->read_ptr++;
1789 else
1790 ring->read_ptr = ring->cb_ptr;
1791
1792 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1793 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1794 }
1795
1796 return rxpktprocessed;
1797 }
1798
1799 /* Rx NAPI polling method */
1800 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1801 {
1802 struct bcmgenet_rx_ring *ring = container_of(napi,
1803 struct bcmgenet_rx_ring, napi);
1804 unsigned int work_done;
1805
1806 work_done = bcmgenet_desc_rx(ring, budget);
1807
1808 if (work_done < budget) {
1809 napi_complete_done(napi, work_done);
1810 ring->int_enable(ring);
1811 }
1812
1813 return work_done;
1814 }
1815
1816 /* Assign skb to RX DMA descriptor. */
1817 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1818 struct bcmgenet_rx_ring *ring)
1819 {
1820 struct enet_cb *cb;
1821 struct sk_buff *skb;
1822 int i;
1823
1824 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1825
1826 /* loop here for each buffer needing assign */
1827 for (i = 0; i < ring->size; i++) {
1828 cb = ring->cbs + i;
1829 skb = bcmgenet_rx_refill(priv, cb);
1830 if (skb)
1831 dev_kfree_skb_any(skb);
1832 if (!cb->skb)
1833 return -ENOMEM;
1834 }
1835
1836 return 0;
1837 }
1838
1839 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1840 {
1841 struct device *kdev = &priv->pdev->dev;
1842 struct enet_cb *cb;
1843 int i;
1844
1845 for (i = 0; i < priv->num_rx_bds; i++) {
1846 cb = &priv->rx_cbs[i];
1847
1848 if (dma_unmap_addr(cb, dma_addr)) {
1849 dma_unmap_single(kdev,
1850 dma_unmap_addr(cb, dma_addr),
1851 priv->rx_buf_len, DMA_FROM_DEVICE);
1852 dma_unmap_addr_set(cb, dma_addr, 0);
1853 }
1854
1855 if (cb->skb)
1856 bcmgenet_free_cb(cb);
1857 }
1858 }
1859
1860 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1861 {
1862 u32 reg;
1863
1864 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1865 if (enable)
1866 reg |= mask;
1867 else
1868 reg &= ~mask;
1869 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1870
1871 /* UniMAC stops on a packet boundary, wait for a full-size packet
1872 * to be processed
1873 */
1874 if (enable == 0)
1875 usleep_range(1000, 2000);
1876 }
1877
1878 static int reset_umac(struct bcmgenet_priv *priv)
1879 {
1880 struct device *kdev = &priv->pdev->dev;
1881 unsigned int timeout = 0;
1882 u32 reg;
1883
1884 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1885 bcmgenet_rbuf_ctrl_set(priv, 0);
1886 udelay(10);
1887
1888 /* disable MAC while updating its registers */
1889 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1890
1891 /* issue soft reset, wait for it to complete */
1892 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1893 while (timeout++ < 1000) {
1894 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1895 if (!(reg & CMD_SW_RESET))
1896 return 0;
1897
1898 udelay(1);
1899 }
1900
1901 if (timeout == 1000) {
1902 dev_err(kdev,
1903 "timeout waiting for MAC to come out of reset\n");
1904 return -ETIMEDOUT;
1905 }
1906
1907 return 0;
1908 }
1909
1910 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1911 {
1912 /* Mask all interrupts.*/
1913 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1914 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1915 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1916 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1917 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1918 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1919 }
1920
1921 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1922 {
1923 u32 int0_enable = 0;
1924
1925 /* Monitor cable plug/unplugged event for internal PHY, external PHY
1926 * and MoCA PHY
1927 */
1928 if (priv->internal_phy) {
1929 int0_enable |= UMAC_IRQ_LINK_EVENT;
1930 } else if (priv->ext_phy) {
1931 int0_enable |= UMAC_IRQ_LINK_EVENT;
1932 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1933 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1934 int0_enable |= UMAC_IRQ_LINK_EVENT;
1935 }
1936 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1937 }
1938
1939 static int init_umac(struct bcmgenet_priv *priv)
1940 {
1941 struct device *kdev = &priv->pdev->dev;
1942 int ret;
1943 u32 reg;
1944 u32 int0_enable = 0;
1945 u32 int1_enable = 0;
1946 int i;
1947
1948 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1949
1950 ret = reset_umac(priv);
1951 if (ret)
1952 return ret;
1953
1954 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1955 /* clear tx/rx counter */
1956 bcmgenet_umac_writel(priv,
1957 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1958 UMAC_MIB_CTRL);
1959 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1960
1961 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1962
1963 /* init rx registers, enable ip header optimization */
1964 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1965 reg |= RBUF_ALIGN_2B;
1966 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1967
1968 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1969 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1970
1971 bcmgenet_intr_disable(priv);
1972
1973 /* Enable Rx default queue 16 interrupts */
1974 int0_enable |= UMAC_IRQ_RXDMA_DONE;
1975
1976 /* Enable Tx default queue 16 interrupts */
1977 int0_enable |= UMAC_IRQ_TXDMA_DONE;
1978
1979 /* Configure backpressure vectors for MoCA */
1980 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1981 reg = bcmgenet_bp_mc_get(priv);
1982 reg |= BIT(priv->hw_params->bp_in_en_shift);
1983
1984 /* bp_mask: back pressure mask */
1985 if (netif_is_multiqueue(priv->dev))
1986 reg |= priv->hw_params->bp_in_mask;
1987 else
1988 reg &= ~priv->hw_params->bp_in_mask;
1989 bcmgenet_bp_mc_set(priv, reg);
1990 }
1991
1992 /* Enable MDIO interrupts on GENET v3+ */
1993 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1994 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1995
1996 /* Enable Rx priority queue interrupts */
1997 for (i = 0; i < priv->hw_params->rx_queues; ++i)
1998 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1999
2000 /* Enable Tx priority queue interrupts */
2001 for (i = 0; i < priv->hw_params->tx_queues; ++i)
2002 int1_enable |= (1 << i);
2003
2004 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2005 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2006
2007 /* Enable rx/tx engine.*/
2008 dev_dbg(kdev, "done init umac\n");
2009
2010 return 0;
2011 }
2012
2013 /* Initialize a Tx ring along with corresponding hardware registers */
2014 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2015 unsigned int index, unsigned int size,
2016 unsigned int start_ptr, unsigned int end_ptr)
2017 {
2018 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2019 u32 words_per_bd = WORDS_PER_BD(priv);
2020 u32 flow_period_val = 0;
2021
2022 spin_lock_init(&ring->lock);
2023 ring->priv = priv;
2024 ring->index = index;
2025 if (index == DESC_INDEX) {
2026 ring->queue = 0;
2027 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2028 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2029 } else {
2030 ring->queue = index + 1;
2031 ring->int_enable = bcmgenet_tx_ring_int_enable;
2032 ring->int_disable = bcmgenet_tx_ring_int_disable;
2033 }
2034 ring->cbs = priv->tx_cbs + start_ptr;
2035 ring->size = size;
2036 ring->clean_ptr = start_ptr;
2037 ring->c_index = 0;
2038 ring->free_bds = size;
2039 ring->write_ptr = start_ptr;
2040 ring->cb_ptr = start_ptr;
2041 ring->end_ptr = end_ptr - 1;
2042 ring->prod_index = 0;
2043
2044 /* Set flow period for ring != 16 */
2045 if (index != DESC_INDEX)
2046 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2047
2048 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2049 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2050 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2051 /* Disable rate control for now */
2052 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2053 TDMA_FLOW_PERIOD);
2054 bcmgenet_tdma_ring_writel(priv, index,
2055 ((size << DMA_RING_SIZE_SHIFT) |
2056 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2057
2058 /* Set start and end address, read and write pointers */
2059 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2060 DMA_START_ADDR);
2061 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2062 TDMA_READ_PTR);
2063 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2064 TDMA_WRITE_PTR);
2065 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2066 DMA_END_ADDR);
2067 }
2068
2069 /* Initialize a RDMA ring */
2070 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2071 unsigned int index, unsigned int size,
2072 unsigned int start_ptr, unsigned int end_ptr)
2073 {
2074 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2075 u32 words_per_bd = WORDS_PER_BD(priv);
2076 int ret;
2077
2078 ring->priv = priv;
2079 ring->index = index;
2080 if (index == DESC_INDEX) {
2081 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2082 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2083 } else {
2084 ring->int_enable = bcmgenet_rx_ring_int_enable;
2085 ring->int_disable = bcmgenet_rx_ring_int_disable;
2086 }
2087 ring->cbs = priv->rx_cbs + start_ptr;
2088 ring->size = size;
2089 ring->c_index = 0;
2090 ring->read_ptr = start_ptr;
2091 ring->cb_ptr = start_ptr;
2092 ring->end_ptr = end_ptr - 1;
2093
2094 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2095 if (ret)
2096 return ret;
2097
2098 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2099 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2100 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2101 bcmgenet_rdma_ring_writel(priv, index,
2102 ((size << DMA_RING_SIZE_SHIFT) |
2103 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2104 bcmgenet_rdma_ring_writel(priv, index,
2105 (DMA_FC_THRESH_LO <<
2106 DMA_XOFF_THRESHOLD_SHIFT) |
2107 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2108
2109 /* Set start and end address, read and write pointers */
2110 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2111 DMA_START_ADDR);
2112 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2113 RDMA_READ_PTR);
2114 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2115 RDMA_WRITE_PTR);
2116 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2117 DMA_END_ADDR);
2118
2119 return ret;
2120 }
2121
2122 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2123 {
2124 unsigned int i;
2125 struct bcmgenet_tx_ring *ring;
2126
2127 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2128 ring = &priv->tx_rings[i];
2129 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2130 }
2131
2132 ring = &priv->tx_rings[DESC_INDEX];
2133 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2134 }
2135
2136 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2137 {
2138 unsigned int i;
2139 struct bcmgenet_tx_ring *ring;
2140
2141 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2142 ring = &priv->tx_rings[i];
2143 napi_enable(&ring->napi);
2144 }
2145
2146 ring = &priv->tx_rings[DESC_INDEX];
2147 napi_enable(&ring->napi);
2148 }
2149
2150 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2151 {
2152 unsigned int i;
2153 struct bcmgenet_tx_ring *ring;
2154
2155 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2156 ring = &priv->tx_rings[i];
2157 napi_disable(&ring->napi);
2158 }
2159
2160 ring = &priv->tx_rings[DESC_INDEX];
2161 napi_disable(&ring->napi);
2162 }
2163
2164 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2165 {
2166 unsigned int i;
2167 struct bcmgenet_tx_ring *ring;
2168
2169 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2170 ring = &priv->tx_rings[i];
2171 netif_napi_del(&ring->napi);
2172 }
2173
2174 ring = &priv->tx_rings[DESC_INDEX];
2175 netif_napi_del(&ring->napi);
2176 }
2177
2178 /* Initialize Tx queues
2179 *
2180 * Queues 0-3 are priority-based, each one has 32 descriptors,
2181 * with queue 0 being the highest priority queue.
2182 *
2183 * Queue 16 is the default Tx queue with
2184 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2185 *
2186 * The transmit control block pool is then partitioned as follows:
2187 * - Tx queue 0 uses tx_cbs[0..31]
2188 * - Tx queue 1 uses tx_cbs[32..63]
2189 * - Tx queue 2 uses tx_cbs[64..95]
2190 * - Tx queue 3 uses tx_cbs[96..127]
2191 * - Tx queue 16 uses tx_cbs[128..255]
2192 */
2193 static void bcmgenet_init_tx_queues(struct net_device *dev)
2194 {
2195 struct bcmgenet_priv *priv = netdev_priv(dev);
2196 u32 i, dma_enable;
2197 u32 dma_ctrl, ring_cfg;
2198 u32 dma_priority[3] = {0, 0, 0};
2199
2200 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2201 dma_enable = dma_ctrl & DMA_EN;
2202 dma_ctrl &= ~DMA_EN;
2203 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2204
2205 dma_ctrl = 0;
2206 ring_cfg = 0;
2207
2208 /* Enable strict priority arbiter mode */
2209 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2210
2211 /* Initialize Tx priority queues */
2212 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2213 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2214 i * priv->hw_params->tx_bds_per_q,
2215 (i + 1) * priv->hw_params->tx_bds_per_q);
2216 ring_cfg |= (1 << i);
2217 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2218 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2219 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2220 }
2221
2222 /* Initialize Tx default queue 16 */
2223 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2224 priv->hw_params->tx_queues *
2225 priv->hw_params->tx_bds_per_q,
2226 TOTAL_DESC);
2227 ring_cfg |= (1 << DESC_INDEX);
2228 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2229 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2230 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2231 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2232
2233 /* Set Tx queue priorities */
2234 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2235 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2236 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2237
2238 /* Initialize Tx NAPI */
2239 bcmgenet_init_tx_napi(priv);
2240
2241 /* Enable Tx queues */
2242 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2243
2244 /* Enable Tx DMA */
2245 if (dma_enable)
2246 dma_ctrl |= DMA_EN;
2247 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2248 }
2249
2250 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2251 {
2252 unsigned int i;
2253 struct bcmgenet_rx_ring *ring;
2254
2255 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2256 ring = &priv->rx_rings[i];
2257 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2258 }
2259
2260 ring = &priv->rx_rings[DESC_INDEX];
2261 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2262 }
2263
2264 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2265 {
2266 unsigned int i;
2267 struct bcmgenet_rx_ring *ring;
2268
2269 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2270 ring = &priv->rx_rings[i];
2271 napi_enable(&ring->napi);
2272 }
2273
2274 ring = &priv->rx_rings[DESC_INDEX];
2275 napi_enable(&ring->napi);
2276 }
2277
2278 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2279 {
2280 unsigned int i;
2281 struct bcmgenet_rx_ring *ring;
2282
2283 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2284 ring = &priv->rx_rings[i];
2285 napi_disable(&ring->napi);
2286 }
2287
2288 ring = &priv->rx_rings[DESC_INDEX];
2289 napi_disable(&ring->napi);
2290 }
2291
2292 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2293 {
2294 unsigned int i;
2295 struct bcmgenet_rx_ring *ring;
2296
2297 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2298 ring = &priv->rx_rings[i];
2299 netif_napi_del(&ring->napi);
2300 }
2301
2302 ring = &priv->rx_rings[DESC_INDEX];
2303 netif_napi_del(&ring->napi);
2304 }
2305
2306 /* Initialize Rx queues
2307 *
2308 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2309 * used to direct traffic to these queues.
2310 *
2311 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2312 */
2313 static int bcmgenet_init_rx_queues(struct net_device *dev)
2314 {
2315 struct bcmgenet_priv *priv = netdev_priv(dev);
2316 u32 i;
2317 u32 dma_enable;
2318 u32 dma_ctrl;
2319 u32 ring_cfg;
2320 int ret;
2321
2322 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2323 dma_enable = dma_ctrl & DMA_EN;
2324 dma_ctrl &= ~DMA_EN;
2325 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2326
2327 dma_ctrl = 0;
2328 ring_cfg = 0;
2329
2330 /* Initialize Rx priority queues */
2331 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2332 ret = bcmgenet_init_rx_ring(priv, i,
2333 priv->hw_params->rx_bds_per_q,
2334 i * priv->hw_params->rx_bds_per_q,
2335 (i + 1) *
2336 priv->hw_params->rx_bds_per_q);
2337 if (ret)
2338 return ret;
2339
2340 ring_cfg |= (1 << i);
2341 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2342 }
2343
2344 /* Initialize Rx default queue 16 */
2345 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2346 priv->hw_params->rx_queues *
2347 priv->hw_params->rx_bds_per_q,
2348 TOTAL_DESC);
2349 if (ret)
2350 return ret;
2351
2352 ring_cfg |= (1 << DESC_INDEX);
2353 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2354
2355 /* Initialize Rx NAPI */
2356 bcmgenet_init_rx_napi(priv);
2357
2358 /* Enable rings */
2359 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2360
2361 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2362 if (dma_enable)
2363 dma_ctrl |= DMA_EN;
2364 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2365
2366 return 0;
2367 }
2368
2369 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2370 {
2371 int ret = 0;
2372 int timeout = 0;
2373 u32 reg;
2374 u32 dma_ctrl;
2375 int i;
2376
2377 /* Disable TDMA to stop add more frames in TX DMA */
2378 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2379 reg &= ~DMA_EN;
2380 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2381
2382 /* Check TDMA status register to confirm TDMA is disabled */
2383 while (timeout++ < DMA_TIMEOUT_VAL) {
2384 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2385 if (reg & DMA_DISABLED)
2386 break;
2387
2388 udelay(1);
2389 }
2390
2391 if (timeout == DMA_TIMEOUT_VAL) {
2392 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2393 ret = -ETIMEDOUT;
2394 }
2395
2396 /* Wait 10ms for packet drain in both tx and rx dma */
2397 usleep_range(10000, 20000);
2398
2399 /* Disable RDMA */
2400 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2401 reg &= ~DMA_EN;
2402 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2403
2404 timeout = 0;
2405 /* Check RDMA status register to confirm RDMA is disabled */
2406 while (timeout++ < DMA_TIMEOUT_VAL) {
2407 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2408 if (reg & DMA_DISABLED)
2409 break;
2410
2411 udelay(1);
2412 }
2413
2414 if (timeout == DMA_TIMEOUT_VAL) {
2415 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2416 ret = -ETIMEDOUT;
2417 }
2418
2419 dma_ctrl = 0;
2420 for (i = 0; i < priv->hw_params->rx_queues; i++)
2421 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2422 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2423 reg &= ~dma_ctrl;
2424 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2425
2426 dma_ctrl = 0;
2427 for (i = 0; i < priv->hw_params->tx_queues; i++)
2428 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2429 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2430 reg &= ~dma_ctrl;
2431 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2432
2433 return ret;
2434 }
2435
2436 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2437 {
2438 int i;
2439 struct netdev_queue *txq;
2440
2441 bcmgenet_fini_rx_napi(priv);
2442 bcmgenet_fini_tx_napi(priv);
2443
2444 /* disable DMA */
2445 bcmgenet_dma_teardown(priv);
2446
2447 for (i = 0; i < priv->num_tx_bds; i++) {
2448 if (priv->tx_cbs[i].skb != NULL) {
2449 dev_kfree_skb(priv->tx_cbs[i].skb);
2450 priv->tx_cbs[i].skb = NULL;
2451 }
2452 }
2453
2454 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2455 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2456 netdev_tx_reset_queue(txq);
2457 }
2458
2459 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2460 netdev_tx_reset_queue(txq);
2461
2462 bcmgenet_free_rx_buffers(priv);
2463 kfree(priv->rx_cbs);
2464 kfree(priv->tx_cbs);
2465 }
2466
2467 /* init_edma: Initialize DMA control register */
2468 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2469 {
2470 int ret;
2471 unsigned int i;
2472 struct enet_cb *cb;
2473
2474 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2475
2476 /* Initialize common Rx ring structures */
2477 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2478 priv->num_rx_bds = TOTAL_DESC;
2479 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2480 GFP_KERNEL);
2481 if (!priv->rx_cbs)
2482 return -ENOMEM;
2483
2484 for (i = 0; i < priv->num_rx_bds; i++) {
2485 cb = priv->rx_cbs + i;
2486 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2487 }
2488
2489 /* Initialize common TX ring structures */
2490 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2491 priv->num_tx_bds = TOTAL_DESC;
2492 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2493 GFP_KERNEL);
2494 if (!priv->tx_cbs) {
2495 kfree(priv->rx_cbs);
2496 return -ENOMEM;
2497 }
2498
2499 for (i = 0; i < priv->num_tx_bds; i++) {
2500 cb = priv->tx_cbs + i;
2501 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2502 }
2503
2504 /* Init rDma */
2505 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2506
2507 /* Initialize Rx queues */
2508 ret = bcmgenet_init_rx_queues(priv->dev);
2509 if (ret) {
2510 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2511 bcmgenet_free_rx_buffers(priv);
2512 kfree(priv->rx_cbs);
2513 kfree(priv->tx_cbs);
2514 return ret;
2515 }
2516
2517 /* Init tDma */
2518 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2519
2520 /* Initialize Tx queues */
2521 bcmgenet_init_tx_queues(priv->dev);
2522
2523 return 0;
2524 }
2525
2526 /* Interrupt bottom half */
2527 static void bcmgenet_irq_task(struct work_struct *work)
2528 {
2529 unsigned long flags;
2530 unsigned int status;
2531 struct bcmgenet_priv *priv = container_of(
2532 work, struct bcmgenet_priv, bcmgenet_irq_work);
2533
2534 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2535
2536 spin_lock_irqsave(&priv->lock, flags);
2537 status = priv->irq0_stat;
2538 priv->irq0_stat = 0;
2539 spin_unlock_irqrestore(&priv->lock, flags);
2540
2541 if (status & UMAC_IRQ_MPD_R) {
2542 netif_dbg(priv, wol, priv->dev,
2543 "magic packet detected, waking up\n");
2544 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2545 }
2546
2547 /* Link UP/DOWN event */
2548 if (status & UMAC_IRQ_LINK_EVENT)
2549 phy_mac_interrupt(priv->phydev,
2550 !!(status & UMAC_IRQ_LINK_UP));
2551 }
2552
2553 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2554 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2555 {
2556 struct bcmgenet_priv *priv = dev_id;
2557 struct bcmgenet_rx_ring *rx_ring;
2558 struct bcmgenet_tx_ring *tx_ring;
2559 unsigned int index, status;
2560
2561 /* Read irq status */
2562 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2563 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2564
2565 /* clear interrupts */
2566 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2567
2568 netif_dbg(priv, intr, priv->dev,
2569 "%s: IRQ=0x%x\n", __func__, status);
2570
2571 /* Check Rx priority queue interrupts */
2572 for (index = 0; index < priv->hw_params->rx_queues; index++) {
2573 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2574 continue;
2575
2576 rx_ring = &priv->rx_rings[index];
2577
2578 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2579 rx_ring->int_disable(rx_ring);
2580 __napi_schedule_irqoff(&rx_ring->napi);
2581 }
2582 }
2583
2584 /* Check Tx priority queue interrupts */
2585 for (index = 0; index < priv->hw_params->tx_queues; index++) {
2586 if (!(status & BIT(index)))
2587 continue;
2588
2589 tx_ring = &priv->tx_rings[index];
2590
2591 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2592 tx_ring->int_disable(tx_ring);
2593 __napi_schedule_irqoff(&tx_ring->napi);
2594 }
2595 }
2596
2597 return IRQ_HANDLED;
2598 }
2599
2600 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2601 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2602 {
2603 struct bcmgenet_priv *priv = dev_id;
2604 struct bcmgenet_rx_ring *rx_ring;
2605 struct bcmgenet_tx_ring *tx_ring;
2606 unsigned int status;
2607 unsigned long flags;
2608
2609 /* Read irq status */
2610 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2611 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2612
2613 /* clear interrupts */
2614 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2615
2616 netif_dbg(priv, intr, priv->dev,
2617 "IRQ=0x%x\n", status);
2618
2619 if (status & UMAC_IRQ_RXDMA_DONE) {
2620 rx_ring = &priv->rx_rings[DESC_INDEX];
2621
2622 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2623 rx_ring->int_disable(rx_ring);
2624 __napi_schedule_irqoff(&rx_ring->napi);
2625 }
2626 }
2627
2628 if (status & UMAC_IRQ_TXDMA_DONE) {
2629 tx_ring = &priv->tx_rings[DESC_INDEX];
2630
2631 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2632 tx_ring->int_disable(tx_ring);
2633 __napi_schedule_irqoff(&tx_ring->napi);
2634 }
2635 }
2636
2637 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2638 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2639 wake_up(&priv->wq);
2640 }
2641
2642 /* all other interested interrupts handled in bottom half */
2643 status &= (UMAC_IRQ_LINK_EVENT |
2644 UMAC_IRQ_MPD_R);
2645 if (status) {
2646 /* Save irq status for bottom-half processing. */
2647 spin_lock_irqsave(&priv->lock, flags);
2648 priv->irq0_stat |= status;
2649 spin_unlock_irqrestore(&priv->lock, flags);
2650
2651 schedule_work(&priv->bcmgenet_irq_work);
2652 }
2653
2654 return IRQ_HANDLED;
2655 }
2656
2657 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2658 {
2659 struct bcmgenet_priv *priv = dev_id;
2660
2661 pm_wakeup_event(&priv->pdev->dev, 0);
2662
2663 return IRQ_HANDLED;
2664 }
2665
2666 #ifdef CONFIG_NET_POLL_CONTROLLER
2667 static void bcmgenet_poll_controller(struct net_device *dev)
2668 {
2669 struct bcmgenet_priv *priv = netdev_priv(dev);
2670
2671 /* Invoke the main RX/TX interrupt handler */
2672 disable_irq(priv->irq0);
2673 bcmgenet_isr0(priv->irq0, priv);
2674 enable_irq(priv->irq0);
2675
2676 /* And the interrupt handler for RX/TX priority queues */
2677 disable_irq(priv->irq1);
2678 bcmgenet_isr1(priv->irq1, priv);
2679 enable_irq(priv->irq1);
2680 }
2681 #endif
2682
2683 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2684 {
2685 u32 reg;
2686
2687 reg = bcmgenet_rbuf_ctrl_get(priv);
2688 reg |= BIT(1);
2689 bcmgenet_rbuf_ctrl_set(priv, reg);
2690 udelay(10);
2691
2692 reg &= ~BIT(1);
2693 bcmgenet_rbuf_ctrl_set(priv, reg);
2694 udelay(10);
2695 }
2696
2697 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2698 unsigned char *addr)
2699 {
2700 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2701 (addr[2] << 8) | addr[3], UMAC_MAC0);
2702 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2703 }
2704
2705 /* Returns a reusable dma control register value */
2706 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2707 {
2708 u32 reg;
2709 u32 dma_ctrl;
2710
2711 /* disable DMA */
2712 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2713 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2714 reg &= ~dma_ctrl;
2715 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2716
2717 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2718 reg &= ~dma_ctrl;
2719 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2720
2721 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2722 udelay(10);
2723 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2724
2725 return dma_ctrl;
2726 }
2727
2728 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2729 {
2730 u32 reg;
2731
2732 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2733 reg |= dma_ctrl;
2734 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2735
2736 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2737 reg |= dma_ctrl;
2738 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2739 }
2740
2741 /* bcmgenet_hfb_clear
2742 *
2743 * Clear Hardware Filter Block and disable all filtering.
2744 */
2745 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2746 {
2747 u32 i;
2748
2749 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2750 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2751 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2752
2753 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2754 bcmgenet_rdma_writel(priv, 0x0, i);
2755
2756 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2757 bcmgenet_hfb_reg_writel(priv, 0x0,
2758 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2759
2760 for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2761 priv->hw_params->hfb_filter_size; i++)
2762 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2763 }
2764
2765 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2766 {
2767 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2768 return;
2769
2770 bcmgenet_hfb_clear(priv);
2771 }
2772
2773 static void bcmgenet_netif_start(struct net_device *dev)
2774 {
2775 struct bcmgenet_priv *priv = netdev_priv(dev);
2776
2777 /* Start the network engine */
2778 bcmgenet_enable_rx_napi(priv);
2779 bcmgenet_enable_tx_napi(priv);
2780
2781 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2782
2783 netif_tx_start_all_queues(dev);
2784
2785 /* Monitor link interrupts now */
2786 bcmgenet_link_intr_enable(priv);
2787
2788 phy_start(priv->phydev);
2789 }
2790
2791 static int bcmgenet_open(struct net_device *dev)
2792 {
2793 struct bcmgenet_priv *priv = netdev_priv(dev);
2794 unsigned long dma_ctrl;
2795 u32 reg;
2796 int ret;
2797
2798 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2799
2800 /* Turn on the clock */
2801 clk_prepare_enable(priv->clk);
2802
2803 /* If this is an internal GPHY, power it back on now, before UniMAC is
2804 * brought out of reset as absolutely no UniMAC activity is allowed
2805 */
2806 if (priv->internal_phy)
2807 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2808
2809 /* take MAC out of reset */
2810 bcmgenet_umac_reset(priv);
2811
2812 ret = init_umac(priv);
2813 if (ret)
2814 goto err_clk_disable;
2815
2816 /* disable ethernet MAC while updating its registers */
2817 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2818
2819 /* Make sure we reflect the value of CRC_CMD_FWD */
2820 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2821 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2822
2823 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2824
2825 if (priv->internal_phy) {
2826 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2827 reg |= EXT_ENERGY_DET_MASK;
2828 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2829 }
2830
2831 /* Disable RX/TX DMA and flush TX queues */
2832 dma_ctrl = bcmgenet_dma_disable(priv);
2833
2834 /* Reinitialize TDMA and RDMA and SW housekeeping */
2835 ret = bcmgenet_init_dma(priv);
2836 if (ret) {
2837 netdev_err(dev, "failed to initialize DMA\n");
2838 goto err_clk_disable;
2839 }
2840
2841 /* Always enable ring 16 - descriptor ring */
2842 bcmgenet_enable_dma(priv, dma_ctrl);
2843
2844 /* HFB init */
2845 bcmgenet_hfb_init(priv);
2846
2847 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2848 dev->name, priv);
2849 if (ret < 0) {
2850 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2851 goto err_fini_dma;
2852 }
2853
2854 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2855 dev->name, priv);
2856 if (ret < 0) {
2857 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2858 goto err_irq0;
2859 }
2860
2861 ret = bcmgenet_mii_probe(dev);
2862 if (ret) {
2863 netdev_err(dev, "failed to connect to PHY\n");
2864 goto err_irq1;
2865 }
2866
2867 bcmgenet_netif_start(dev);
2868
2869 return 0;
2870
2871 err_irq1:
2872 free_irq(priv->irq1, priv);
2873 err_irq0:
2874 free_irq(priv->irq0, priv);
2875 err_fini_dma:
2876 bcmgenet_fini_dma(priv);
2877 err_clk_disable:
2878 if (priv->internal_phy)
2879 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2880 clk_disable_unprepare(priv->clk);
2881 return ret;
2882 }
2883
2884 static void bcmgenet_netif_stop(struct net_device *dev)
2885 {
2886 struct bcmgenet_priv *priv = netdev_priv(dev);
2887
2888 netif_tx_stop_all_queues(dev);
2889 phy_stop(priv->phydev);
2890 bcmgenet_intr_disable(priv);
2891 bcmgenet_disable_rx_napi(priv);
2892 bcmgenet_disable_tx_napi(priv);
2893
2894 /* Wait for pending work items to complete. Since interrupts are
2895 * disabled no new work will be scheduled.
2896 */
2897 cancel_work_sync(&priv->bcmgenet_irq_work);
2898
2899 priv->old_link = -1;
2900 priv->old_speed = -1;
2901 priv->old_duplex = -1;
2902 priv->old_pause = -1;
2903 }
2904
2905 static int bcmgenet_close(struct net_device *dev)
2906 {
2907 struct bcmgenet_priv *priv = netdev_priv(dev);
2908 int ret;
2909
2910 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2911
2912 bcmgenet_netif_stop(dev);
2913
2914 /* Really kill the PHY state machine and disconnect from it */
2915 phy_disconnect(priv->phydev);
2916
2917 /* Disable MAC receive */
2918 umac_enable_set(priv, CMD_RX_EN, false);
2919
2920 ret = bcmgenet_dma_teardown(priv);
2921 if (ret)
2922 return ret;
2923
2924 /* Disable MAC transmit. TX DMA disabled have to done before this */
2925 umac_enable_set(priv, CMD_TX_EN, false);
2926
2927 /* tx reclaim */
2928 bcmgenet_tx_reclaim_all(dev);
2929 bcmgenet_fini_dma(priv);
2930
2931 free_irq(priv->irq0, priv);
2932 free_irq(priv->irq1, priv);
2933
2934 if (priv->internal_phy)
2935 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2936
2937 clk_disable_unprepare(priv->clk);
2938
2939 return ret;
2940 }
2941
2942 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2943 {
2944 struct bcmgenet_priv *priv = ring->priv;
2945 u32 p_index, c_index, intsts, intmsk;
2946 struct netdev_queue *txq;
2947 unsigned int free_bds;
2948 unsigned long flags;
2949 bool txq_stopped;
2950
2951 if (!netif_msg_tx_err(priv))
2952 return;
2953
2954 txq = netdev_get_tx_queue(priv->dev, ring->queue);
2955
2956 spin_lock_irqsave(&ring->lock, flags);
2957 if (ring->index == DESC_INDEX) {
2958 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2959 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2960 } else {
2961 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2962 intmsk = 1 << ring->index;
2963 }
2964 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2965 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2966 txq_stopped = netif_tx_queue_stopped(txq);
2967 free_bds = ring->free_bds;
2968 spin_unlock_irqrestore(&ring->lock, flags);
2969
2970 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2971 "TX queue status: %s, interrupts: %s\n"
2972 "(sw)free_bds: %d (sw)size: %d\n"
2973 "(sw)p_index: %d (hw)p_index: %d\n"
2974 "(sw)c_index: %d (hw)c_index: %d\n"
2975 "(sw)clean_p: %d (sw)write_p: %d\n"
2976 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2977 ring->index, ring->queue,
2978 txq_stopped ? "stopped" : "active",
2979 intsts & intmsk ? "enabled" : "disabled",
2980 free_bds, ring->size,
2981 ring->prod_index, p_index & DMA_P_INDEX_MASK,
2982 ring->c_index, c_index & DMA_C_INDEX_MASK,
2983 ring->clean_ptr, ring->write_ptr,
2984 ring->cb_ptr, ring->end_ptr);
2985 }
2986
2987 static void bcmgenet_timeout(struct net_device *dev)
2988 {
2989 struct bcmgenet_priv *priv = netdev_priv(dev);
2990 u32 int0_enable = 0;
2991 u32 int1_enable = 0;
2992 unsigned int q;
2993
2994 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2995
2996 for (q = 0; q < priv->hw_params->tx_queues; q++)
2997 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
2998 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
2999
3000 bcmgenet_tx_reclaim_all(dev);
3001
3002 for (q = 0; q < priv->hw_params->tx_queues; q++)
3003 int1_enable |= (1 << q);
3004
3005 int0_enable = UMAC_IRQ_TXDMA_DONE;
3006
3007 /* Re-enable TX interrupts if disabled */
3008 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3009 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3010
3011 netif_trans_update(dev);
3012
3013 dev->stats.tx_errors++;
3014
3015 netif_tx_wake_all_queues(dev);
3016 }
3017
3018 #define MAX_MC_COUNT 16
3019
3020 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3021 unsigned char *addr,
3022 int *i,
3023 int *mc)
3024 {
3025 u32 reg;
3026
3027 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3028 UMAC_MDF_ADDR + (*i * 4));
3029 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3030 addr[4] << 8 | addr[5],
3031 UMAC_MDF_ADDR + ((*i + 1) * 4));
3032 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3033 reg |= (1 << (MAX_MC_COUNT - *mc));
3034 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3035 *i += 2;
3036 (*mc)++;
3037 }
3038
3039 static void bcmgenet_set_rx_mode(struct net_device *dev)
3040 {
3041 struct bcmgenet_priv *priv = netdev_priv(dev);
3042 struct netdev_hw_addr *ha;
3043 int i, mc;
3044 u32 reg;
3045
3046 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3047
3048 /* Promiscuous mode */
3049 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3050 if (dev->flags & IFF_PROMISC) {
3051 reg |= CMD_PROMISC;
3052 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3053 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3054 return;
3055 } else {
3056 reg &= ~CMD_PROMISC;
3057 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3058 }
3059
3060 /* UniMac doesn't support ALLMULTI */
3061 if (dev->flags & IFF_ALLMULTI) {
3062 netdev_warn(dev, "ALLMULTI is not supported\n");
3063 return;
3064 }
3065
3066 /* update MDF filter */
3067 i = 0;
3068 mc = 0;
3069 /* Broadcast */
3070 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3071 /* my own address.*/
3072 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3073 /* Unicast list*/
3074 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3075 return;
3076
3077 if (!netdev_uc_empty(dev))
3078 netdev_for_each_uc_addr(ha, dev)
3079 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3080 /* Multicast */
3081 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3082 return;
3083
3084 netdev_for_each_mc_addr(ha, dev)
3085 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3086 }
3087
3088 /* Set the hardware MAC address. */
3089 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3090 {
3091 struct sockaddr *addr = p;
3092
3093 /* Setting the MAC address at the hardware level is not possible
3094 * without disabling the UniMAC RX/TX enable bits.
3095 */
3096 if (netif_running(dev))
3097 return -EBUSY;
3098
3099 ether_addr_copy(dev->dev_addr, addr->sa_data);
3100
3101 return 0;
3102 }
3103
3104 static const struct net_device_ops bcmgenet_netdev_ops = {
3105 .ndo_open = bcmgenet_open,
3106 .ndo_stop = bcmgenet_close,
3107 .ndo_start_xmit = bcmgenet_xmit,
3108 .ndo_tx_timeout = bcmgenet_timeout,
3109 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3110 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3111 .ndo_do_ioctl = bcmgenet_ioctl,
3112 .ndo_set_features = bcmgenet_set_features,
3113 #ifdef CONFIG_NET_POLL_CONTROLLER
3114 .ndo_poll_controller = bcmgenet_poll_controller,
3115 #endif
3116 };
3117
3118 /* Array of GENET hardware parameters/characteristics */
3119 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3120 [GENET_V1] = {
3121 .tx_queues = 0,
3122 .tx_bds_per_q = 0,
3123 .rx_queues = 0,
3124 .rx_bds_per_q = 0,
3125 .bp_in_en_shift = 16,
3126 .bp_in_mask = 0xffff,
3127 .hfb_filter_cnt = 16,
3128 .qtag_mask = 0x1F,
3129 .hfb_offset = 0x1000,
3130 .rdma_offset = 0x2000,
3131 .tdma_offset = 0x3000,
3132 .words_per_bd = 2,
3133 },
3134 [GENET_V2] = {
3135 .tx_queues = 4,
3136 .tx_bds_per_q = 32,
3137 .rx_queues = 0,
3138 .rx_bds_per_q = 0,
3139 .bp_in_en_shift = 16,
3140 .bp_in_mask = 0xffff,
3141 .hfb_filter_cnt = 16,
3142 .qtag_mask = 0x1F,
3143 .tbuf_offset = 0x0600,
3144 .hfb_offset = 0x1000,
3145 .hfb_reg_offset = 0x2000,
3146 .rdma_offset = 0x3000,
3147 .tdma_offset = 0x4000,
3148 .words_per_bd = 2,
3149 .flags = GENET_HAS_EXT,
3150 },
3151 [GENET_V3] = {
3152 .tx_queues = 4,
3153 .tx_bds_per_q = 32,
3154 .rx_queues = 0,
3155 .rx_bds_per_q = 0,
3156 .bp_in_en_shift = 17,
3157 .bp_in_mask = 0x1ffff,
3158 .hfb_filter_cnt = 48,
3159 .hfb_filter_size = 128,
3160 .qtag_mask = 0x3F,
3161 .tbuf_offset = 0x0600,
3162 .hfb_offset = 0x8000,
3163 .hfb_reg_offset = 0xfc00,
3164 .rdma_offset = 0x10000,
3165 .tdma_offset = 0x11000,
3166 .words_per_bd = 2,
3167 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3168 GENET_HAS_MOCA_LINK_DET,
3169 },
3170 [GENET_V4] = {
3171 .tx_queues = 4,
3172 .tx_bds_per_q = 32,
3173 .rx_queues = 0,
3174 .rx_bds_per_q = 0,
3175 .bp_in_en_shift = 17,
3176 .bp_in_mask = 0x1ffff,
3177 .hfb_filter_cnt = 48,
3178 .hfb_filter_size = 128,
3179 .qtag_mask = 0x3F,
3180 .tbuf_offset = 0x0600,
3181 .hfb_offset = 0x8000,
3182 .hfb_reg_offset = 0xfc00,
3183 .rdma_offset = 0x2000,
3184 .tdma_offset = 0x4000,
3185 .words_per_bd = 3,
3186 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3187 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3188 },
3189 };
3190
3191 /* Infer hardware parameters from the detected GENET version */
3192 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3193 {
3194 struct bcmgenet_hw_params *params;
3195 u32 reg;
3196 u8 major;
3197 u16 gphy_rev;
3198
3199 if (GENET_IS_V4(priv)) {
3200 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3201 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3202 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3203 priv->version = GENET_V4;
3204 } else if (GENET_IS_V3(priv)) {
3205 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3206 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3207 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3208 priv->version = GENET_V3;
3209 } else if (GENET_IS_V2(priv)) {
3210 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3211 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3212 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3213 priv->version = GENET_V2;
3214 } else if (GENET_IS_V1(priv)) {
3215 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3216 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3217 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3218 priv->version = GENET_V1;
3219 }
3220
3221 /* enum genet_version starts at 1 */
3222 priv->hw_params = &bcmgenet_hw_params[priv->version];
3223 params = priv->hw_params;
3224
3225 /* Read GENET HW version */
3226 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3227 major = (reg >> 24 & 0x0f);
3228 if (major == 5)
3229 major = 4;
3230 else if (major == 0)
3231 major = 1;
3232 if (major != priv->version) {
3233 dev_err(&priv->pdev->dev,
3234 "GENET version mismatch, got: %d, configured for: %d\n",
3235 major, priv->version);
3236 }
3237
3238 /* Print the GENET core version */
3239 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3240 major, (reg >> 16) & 0x0f, reg & 0xffff);
3241
3242 /* Store the integrated PHY revision for the MDIO probing function
3243 * to pass this information to the PHY driver. The PHY driver expects
3244 * to find the PHY major revision in bits 15:8 while the GENET register
3245 * stores that information in bits 7:0, account for that.
3246 *
3247 * On newer chips, starting with PHY revision G0, a new scheme is
3248 * deployed similar to the Starfighter 2 switch with GPHY major
3249 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3250 * is reserved as well as special value 0x01ff, we have a small
3251 * heuristic to check for the new GPHY revision and re-arrange things
3252 * so the GPHY driver is happy.
3253 */
3254 gphy_rev = reg & 0xffff;
3255
3256 /* This is reserved so should require special treatment */
3257 if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3258 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3259 return;
3260 }
3261
3262 /* This is the good old scheme, just GPHY major, no minor nor patch */
3263 if ((gphy_rev & 0xf0) != 0)
3264 priv->gphy_rev = gphy_rev << 8;
3265
3266 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3267 else if ((gphy_rev & 0xff00) != 0)
3268 priv->gphy_rev = gphy_rev;
3269
3270 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3271 if (!(params->flags & GENET_HAS_40BITS))
3272 pr_warn("GENET does not support 40-bits PA\n");
3273 #endif
3274
3275 pr_debug("Configuration for version: %d\n"
3276 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3277 "BP << en: %2d, BP msk: 0x%05x\n"
3278 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3279 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3280 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3281 "Words/BD: %d\n",
3282 priv->version,
3283 params->tx_queues, params->tx_bds_per_q,
3284 params->rx_queues, params->rx_bds_per_q,
3285 params->bp_in_en_shift, params->bp_in_mask,
3286 params->hfb_filter_cnt, params->qtag_mask,
3287 params->tbuf_offset, params->hfb_offset,
3288 params->hfb_reg_offset,
3289 params->rdma_offset, params->tdma_offset,
3290 params->words_per_bd);
3291 }
3292
3293 static const struct of_device_id bcmgenet_match[] = {
3294 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3295 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3296 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3297 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3298 { },
3299 };
3300 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3301
3302 static int bcmgenet_probe(struct platform_device *pdev)
3303 {
3304 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3305 struct device_node *dn = pdev->dev.of_node;
3306 const struct of_device_id *of_id = NULL;
3307 struct bcmgenet_priv *priv;
3308 struct net_device *dev;
3309 const void *macaddr;
3310 struct resource *r;
3311 int err = -EIO;
3312 const char *phy_mode_str;
3313
3314 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3315 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3316 GENET_MAX_MQ_CNT + 1);
3317 if (!dev) {
3318 dev_err(&pdev->dev, "can't allocate net device\n");
3319 return -ENOMEM;
3320 }
3321
3322 if (dn) {
3323 of_id = of_match_node(bcmgenet_match, dn);
3324 if (!of_id)
3325 return -EINVAL;
3326 }
3327
3328 priv = netdev_priv(dev);
3329 priv->irq0 = platform_get_irq(pdev, 0);
3330 priv->irq1 = platform_get_irq(pdev, 1);
3331 priv->wol_irq = platform_get_irq(pdev, 2);
3332 if (!priv->irq0 || !priv->irq1) {
3333 dev_err(&pdev->dev, "can't find IRQs\n");
3334 err = -EINVAL;
3335 goto err;
3336 }
3337
3338 if (dn) {
3339 macaddr = of_get_mac_address(dn);
3340 if (!macaddr) {
3341 dev_err(&pdev->dev, "can't find MAC address\n");
3342 err = -EINVAL;
3343 goto err;
3344 }
3345 } else {
3346 macaddr = pd->mac_address;
3347 }
3348
3349 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3350 priv->base = devm_ioremap_resource(&pdev->dev, r);
3351 if (IS_ERR(priv->base)) {
3352 err = PTR_ERR(priv->base);
3353 goto err;
3354 }
3355
3356 spin_lock_init(&priv->lock);
3357
3358 SET_NETDEV_DEV(dev, &pdev->dev);
3359 dev_set_drvdata(&pdev->dev, dev);
3360 ether_addr_copy(dev->dev_addr, macaddr);
3361 dev->watchdog_timeo = 2 * HZ;
3362 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3363 dev->netdev_ops = &bcmgenet_netdev_ops;
3364
3365 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3366
3367 /* Set hardware features */
3368 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3369 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3370
3371 /* Request the WOL interrupt and advertise suspend if available */
3372 priv->wol_irq_disabled = true;
3373 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3374 dev->name, priv);
3375 if (!err)
3376 device_set_wakeup_capable(&pdev->dev, 1);
3377
3378 /* Set the needed headroom to account for any possible
3379 * features enabling/disabling at runtime
3380 */
3381 dev->needed_headroom += 64;
3382
3383 netdev_boot_setup_check(dev);
3384
3385 priv->dev = dev;
3386 priv->pdev = pdev;
3387 if (of_id)
3388 priv->version = (enum bcmgenet_version)of_id->data;
3389 else
3390 priv->version = pd->genet_version;
3391
3392 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3393 if (IS_ERR(priv->clk)) {
3394 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3395 priv->clk = NULL;
3396 }
3397
3398 clk_prepare_enable(priv->clk);
3399
3400 bcmgenet_set_hw_params(priv);
3401
3402 /* Mii wait queue */
3403 init_waitqueue_head(&priv->wq);
3404 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3405 priv->rx_buf_len = RX_BUF_LENGTH;
3406 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3407
3408 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3409 if (IS_ERR(priv->clk_wol)) {
3410 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3411 priv->clk_wol = NULL;
3412 }
3413
3414 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3415 if (IS_ERR(priv->clk_eee)) {
3416 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3417 priv->clk_eee = NULL;
3418 }
3419
3420 /* If this is an internal GPHY, power it on now, before UniMAC is
3421 * brought out of reset as absolutely no UniMAC activity is allowed
3422 */
3423 if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3424 !strcasecmp(phy_mode_str, "internal"))
3425 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3426
3427 err = reset_umac(priv);
3428 if (err)
3429 goto err_clk_disable;
3430
3431 err = bcmgenet_mii_init(dev);
3432 if (err)
3433 goto err_clk_disable;
3434
3435 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3436 * just the ring 16 descriptor based TX
3437 */
3438 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3439 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3440
3441 /* libphy will determine the link state */
3442 netif_carrier_off(dev);
3443
3444 /* Turn off the main clock, WOL clock is handled separately */
3445 clk_disable_unprepare(priv->clk);
3446
3447 err = register_netdev(dev);
3448 if (err)
3449 goto err;
3450
3451 return err;
3452
3453 err_clk_disable:
3454 clk_disable_unprepare(priv->clk);
3455 err:
3456 free_netdev(dev);
3457 return err;
3458 }
3459
3460 static int bcmgenet_remove(struct platform_device *pdev)
3461 {
3462 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3463
3464 dev_set_drvdata(&pdev->dev, NULL);
3465 unregister_netdev(priv->dev);
3466 bcmgenet_mii_exit(priv->dev);
3467 free_netdev(priv->dev);
3468
3469 return 0;
3470 }
3471
3472 #ifdef CONFIG_PM_SLEEP
3473 static int bcmgenet_suspend(struct device *d)
3474 {
3475 struct net_device *dev = dev_get_drvdata(d);
3476 struct bcmgenet_priv *priv = netdev_priv(dev);
3477 int ret;
3478
3479 if (!netif_running(dev))
3480 return 0;
3481
3482 bcmgenet_netif_stop(dev);
3483
3484 if (!device_may_wakeup(d))
3485 phy_suspend(priv->phydev);
3486
3487 netif_device_detach(dev);
3488
3489 /* Disable MAC receive */
3490 umac_enable_set(priv, CMD_RX_EN, false);
3491
3492 ret = bcmgenet_dma_teardown(priv);
3493 if (ret)
3494 return ret;
3495
3496 /* Disable MAC transmit. TX DMA disabled have to done before this */
3497 umac_enable_set(priv, CMD_TX_EN, false);
3498
3499 /* tx reclaim */
3500 bcmgenet_tx_reclaim_all(dev);
3501 bcmgenet_fini_dma(priv);
3502
3503 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3504 if (device_may_wakeup(d) && priv->wolopts) {
3505 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3506 clk_prepare_enable(priv->clk_wol);
3507 } else if (priv->internal_phy) {
3508 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3509 }
3510
3511 /* Turn off the clocks */
3512 clk_disable_unprepare(priv->clk);
3513
3514 return ret;
3515 }
3516
3517 static int bcmgenet_resume(struct device *d)
3518 {
3519 struct net_device *dev = dev_get_drvdata(d);
3520 struct bcmgenet_priv *priv = netdev_priv(dev);
3521 unsigned long dma_ctrl;
3522 int ret;
3523 u32 reg;
3524
3525 if (!netif_running(dev))
3526 return 0;
3527
3528 /* Turn on the clock */
3529 ret = clk_prepare_enable(priv->clk);
3530 if (ret)
3531 return ret;
3532
3533 /* If this is an internal GPHY, power it back on now, before UniMAC is
3534 * brought out of reset as absolutely no UniMAC activity is allowed
3535 */
3536 if (priv->internal_phy)
3537 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3538
3539 bcmgenet_umac_reset(priv);
3540
3541 ret = init_umac(priv);
3542 if (ret)
3543 goto out_clk_disable;
3544
3545 /* From WOL-enabled suspend, switch to regular clock */
3546 if (priv->wolopts)
3547 clk_disable_unprepare(priv->clk_wol);
3548
3549 phy_init_hw(priv->phydev);
3550 /* Speed settings must be restored */
3551 bcmgenet_mii_config(priv->dev);
3552
3553 /* disable ethernet MAC while updating its registers */
3554 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3555
3556 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3557
3558 if (priv->internal_phy) {
3559 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3560 reg |= EXT_ENERGY_DET_MASK;
3561 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3562 }
3563
3564 if (priv->wolopts)
3565 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3566
3567 /* Disable RX/TX DMA and flush TX queues */
3568 dma_ctrl = bcmgenet_dma_disable(priv);
3569
3570 /* Reinitialize TDMA and RDMA and SW housekeeping */
3571 ret = bcmgenet_init_dma(priv);
3572 if (ret) {
3573 netdev_err(dev, "failed to initialize DMA\n");
3574 goto out_clk_disable;
3575 }
3576
3577 /* Always enable ring 16 - descriptor ring */
3578 bcmgenet_enable_dma(priv, dma_ctrl);
3579
3580 netif_device_attach(dev);
3581
3582 if (!device_may_wakeup(d))
3583 phy_resume(priv->phydev);
3584
3585 if (priv->eee.eee_enabled)
3586 bcmgenet_eee_enable_set(dev, true);
3587
3588 bcmgenet_netif_start(dev);
3589
3590 return 0;
3591
3592 out_clk_disable:
3593 if (priv->internal_phy)
3594 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3595 clk_disable_unprepare(priv->clk);
3596 return ret;
3597 }
3598 #endif /* CONFIG_PM_SLEEP */
3599
3600 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3601
3602 static struct platform_driver bcmgenet_driver = {
3603 .probe = bcmgenet_probe,
3604 .remove = bcmgenet_remove,
3605 .driver = {
3606 .name = "bcmgenet",
3607 .of_match_table = bcmgenet_match,
3608 .pm = &bcmgenet_pm_ops,
3609 },
3610 };
3611 module_platform_driver(bcmgenet_driver);
3612
3613 MODULE_AUTHOR("Broadcom Corporation");
3614 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3615 MODULE_ALIAS("platform:bcmgenet");
3616 MODULE_LICENSE("GPL");